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Abstract

Trial and error learning methods are often ineffective when applied to robots. This is

due to certain characteristics found in robotic domains such as large continuous state

spaces, noisy sensors and faulty actuators. Learning algorithms work best with small

discrete state spaces, discrete deterministic actions, and accurate identification of state.

Since trial and error learning requires that an agent learn by trying actions under all

possible situations, the large continuous state space is the most problematic of the above

characteristics, causing the learning algorithm to become inefficient. There is rarely

enough time to explicitly visit every state or enough memory to store the best action for

every state.

This thesis explores methods for achieving reinforcement learning on large continuous

state spaces, where actions are not discrete. This is done by creating abstract states,

allowing one state to represent numerous similar states. This saves time since not every

state in the abstract state needs to be visited and saves space since only one state needs

to be stored.

The algorithm tested in this thesis learns which volumes of the state space are similar

by recursively subdividing each volume with a KD-tree. Identifying if an abstract state

should be split, which dimension should be split, and where that dimension should be

split is done by collecting statistics on the previous effects of actions. Continuous actions

are dealt with by giving actions inertia, so they can persist past state boundaries if it

necessary.
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Chapter 1

Introduction

1.1 Motivation

One of the goals of the Artificial Intelligence field is the creation of intelligent agents.

An agent is an autonomous system that is able to sense its environment, act on that

information and influence the environment. These agents may be physical like robots

and factory controllers, or like schedulers they may be entirely software. An intelligent

agent must do more than simply interact with its environment. It must act to cause the

environment to reach desirable configurations or goals. The agent often has several goals

that may be conflicting. Intelligent behavior often involves achieving these goals where

the order and manner in which they are achieved is important.

Simple agents like a chess player can be programmed directly because the environment

is well understood, unchanging with deterministic actions. The agent may not be able

to predict exactly how the opponent will behave, but it expects actions to be completely

observable and deterministic. If the agent moves its knight to square C3 then the knight

will be on square C3 not some other square nearby. It is possible to give a complete and

correct description of the environment and the task, from which the agent can plan its

best actions. One reason why there are not more successful intelligent agents, like the

chess playing ones, is that as the task and environment become more complex specifying

complete and correct models becomes increasingly difficult. There are three situations

where learning can be used to attack this complexity.

1



Chapter 1. Introduction 2

Most agents rigidly follow a set of preprogrammed responses. The programmer must

program a response for all possible situations that the agent is likely to encounter. This is

not possible for most environments. Usually the environment is so complex that it is hard

to program for all possible situations, especially in nondeterministic environments where

the number of possible situations could be very large. So the environment is constrained,

as in the case of assembly line robots, to allow only a few possible situations. With the

reduced complexity the programmer is able to explicitly tell the robot what to do. Telling

a housekeeping robot how to wash dishes would be an nearly impossible task, if we had

to specify torques and joint angles, and model every possible dish it might encounter. It

would be nice if the robot could learn without having to be explicitly told what to do.

Even with the reduced environment the human programmer may not understand the

environment well enough, or the information may be unknown. A programmer typically

runs through a test-calibrate cycle several times before the agent has a reasonable perfor

mance. Here the programmer has learned about the interaction between the robot and

the environment, and adapted its behaviour. Having a human do the learning works well

because humans are very good at learning. However, its not always practical or possible

to have a human tune the robot to its environment. Having to send out a specialist with

every housekeeping robot, just to tune it to every different house, would not be profitable.

The third situation is when there is a Dynamic environment. Even if the agent had a

good model of the environment initially it would soon become outdated. An agent in one

of these environments would have to constantly update its model of the environment, for

example, I might have to reprogram my robot to vacuum the rug, just because I moved

the furniture. This could be better solved by having the robot “learn” the location of

the furniture.

Robotic agents make good cases for studying learning algorithms because they often

fall prey to all three of the above difficulties. In addition, in order for any learning system
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work effectively in a robotic domain it must have several properties [19]:

• Fast convergence: Many learning systems require extended training data. Perform

ing millions of training examples on a real robot is impractical, and it could be

expensive, especially if the robot is continually breaking from driving into walls

or off the edge of a cliff, from following a plan made before it has learned the

appropriate behaviour

• Noise immunity: Robotic sensors are typically very noisy. They often give only

approximations to the state information. Any learning system that requires correct

training data would not be very effective.

• Incremental: It may be the case that the agent needs to actually perform its actions

while learning. As in the case of a dynamic environment, it may not be possible to

do a separate off-line learning phase.

• Tractable: Robots must keep pace with the environment, there is little time to

sit and think before choosing the right action. If the agent sits idle for too long

the environment will have changed and the plan is worthless. Any learning system

must be able to perform the required computations in a reasonable amount of time.

• Grounded: The system should only depend upon information available from the

sensors on the robot. While tabula rasa learning is impossible, the robot might not

be able to depend upon a human to give it the necessary information. The human

might not known the information, or the information may be incorrect.

Robotic systems make excellent test cases for evaluating learning systems. One criti

cism of learning systems is that they are only tested on toy examples. Learning on a robot

forces the system to deal with very large sized domains, that are often not well-behaved
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or well-understood. In short if it performs well on a robotic system then it should be

able learn in a lot of other environments that are better behaved and better understood.

Whether the robot benefits from learning depends upon if the cost of doing the learning

out-weighs the cost of programming the robot directly.

1.2 Goals and Objectives

The main goal of this thesis is the development of a reinforcement learning algorithm

[29, 32, 17] that is capable of learning on very large continuous state-spaces, with the

characteristics needed by a robot, that is, fast convergence, noise immunity, incremen

tality, and real-time operation. Current reinforcement algorithms only work on discrete

states with discrete actions. They also suffer the “curse of dimensionality”: while learning

can be polynomial in the number of states, the number of states tends to grow exponen

tially [31]. Overcoming the problem of too many inputs is necessary before learning can

be applied to more than just simple problems.

The solution to this problem outlined in this thesis is to automatically divide up the

state space into abstract states. By testing the ability of different learning paradigms

to learn to play soccer, an objective measure of the effectiveness of each paradigm in a

complex domain can be achieved. This thesis develops experiments for testing different

learning strategies. In comparing the performance of each learning strategy against

an independently developed, non-adaptive agent an objective empirical measure of the

strength and weakness of different algorithms can be determined. Creating a winning

soccer player is not an essential goal.
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1.3 Soccer

The game of soccer was chosen as an environment for testing learning agents because,

as an abstraction of the world, it simplifies the problem but keeps the essential essence

of the problem. In particular it preserves the aspects of the world corresponding to

the three situations listed above. Soccer contains knowledge that is hard to program,

knowledge that is incomplete, a dynamic changing environment. In addition it contains

hostile agents and provides an objective measure of performance [261.

The world is not completely predictable, and much of the information needed to

do classical planning is not known. This state of affairs should be preserved in any

abstraction used to test AT theories. Soccer preserves unpredictability and unknowability.

It is not possible in practice to predict where the ball will go, where the opponent is going,

or where team mates will be. The information needed to create the optimal soccer playing

agent is not known. True, experts exist, but they are unable, or maybe just unwilling,

to divulge this information. It is also not clear that their experience is transferable to a

robot, whose sensors, actuators, and dynamics are different.

Even though an agent cannot be compared to an optimal agent, the standard way

of judging correctness, they can be judged as being relatively more correct than another

agent. An agent that is able to score goals, prevent goals from being scored, and have

an overall higher score, can be said to be more correct than another agent without such

abilities. Such an objective measure is essential for testing learning agents.

1.4 Outline

Chapter 2 describes the reinforcement learning problem, and some of the other work done

in an attempt to solve the input generalization problem.

Chapter 3 describes the Dynamite testbed developed at the University of British
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Columbia. An outline of the Reactive Deliberation controller, developed by Michael

Sahota[25, 26], is given, as well as a description of how it is adapted to perform learning.

Chapter 4 details the different learning algorithms tested, the results and their signif

icance. The basic learning algorithms tested are all based on Q-learning [32]. The only

differences between them is how they divide up the state-space.



Chapter 2

Background

2.1 Markov Decision Processes

Classical planning [2] works in a well structured deterministic domain. When actions

begin to have non-deterministic effects, sensors only give a probability of being in a state,

or when the environment behaves non-deterministically, classical planners run into major

problems. The planner must plan for all the effects of the actions, not just the expected

or desired ones. This causes the search tree to expand rapidly and a planner quickly runs

into computational difficulty. Usually the plan is generated assuming a deterministic

world, and if an action “fails” a new plan is generated. The non-deterministic world can

be more adequately modeled by a Markov Decision Process [5, 13]. A Markov Decision

Process (MDP) consists of four parts:

• A set of states S. The state space of the world. Usually this is thought of as a

finite discrete set, but the model allows continuous state spaces as well.

• A set of actions A(s). This is a function that gives all the possible actions for each

state Si.

• A transition function P(s, a, si). Actions in a MDP are not assumed to be deter

ministic. The function P(s, a, s) gives the probability that performing action a

while in state s will change the world into state s. As expected, the sum of all

the transitions from a single state should be equal to one. That is for any state

7
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s e S,and each action a E A(s),

P(s, a, s) = 1
Si S

• A reward function R(s) This describes the immediate value of the agent being

in that state. The simplest function is to set to R = 1 at the goal states and 0

everywhere else.

The one essential property of MDPs is that deciding the best action to perform

depends only on the current state. The current state of the process contains all the

information necessary to make a prediction about the usefulness of executing a given

action. Knowing the past history, states and actions, does not give any more useful

information. This means that regardless of how the state was reached the actions at the

current state still have the same transition probabilities. That is the state space captures

all the essential properties for predicting rewards and transitions. This is known as the

Markov property. Any system can be modeled as a Markov process if enough details are

provided.

2.2 Dynamic Programming

Deciding on the best action to do next with a MDP is just a matter of maximizing rewards.

The agent must not only pick the action that maximizes the expected immediate reward,

but also maximize the potential for rewards in the future. Picking an action that gives

a high immediate reward may not be the best thing to do, if in the next state the agent

can only pick actions that give negative rewards. A policy r is a function, or universal

plan, Tr(s), that specifies the action to perform for each state s.
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The expected value of the state s, given a fixed policy r, is denoted V (s), and depends

not only on the reward at that state but the expected rewards received by following the

policy from that state. Future rewards are discounted by a factor, -y, a constant between

o and 1. This forces the agent to pick the actions that reach the goals as quickly as

is possible, since, rewards received further in the future are worth less to the decision

maker at the immediate state. The value function then is written as the immediate

reward added to the discounted expected value of following the policy. Equation 2.1

gives a system of SI linear equations that can be solved to give the value of any policy

at any state.

V,(s) = R(s) +-y P(s, ir(s), s)V,,(s) (2.1)
sES

The decision of what to do at each state is equivalent to finding the Optimal policy,

and following it. An optimal policy is a policy that if followed will produce a higher

expected value than any other policy for any state. Let s0 be the initial state of the

agent. Then the value of the optimal policy V,,. (SO) must be greater then or equal to

the expected value of all possible policies, starting from s0. This will hold regardless of

which s0 e S is chosen as the initial state. As long as the agents start in the same state,

the one following policy 7r* is expected to do as least as well as the agent following any

other policy. There is always an optimal policy for a MDP.

Given the transition function and the reward function it is possible to find the optimal

policy for the system. Finding the optimal policy by trying all policies is very inefficient.

Finding the decisions that could improve the policy is not simple. For example, in chess

the actions that give a high immediate reward are not necessarily the best. Similarly,

actions that may get low immediate rewards can lead to good positions. It is possible also

to get into a doomed state, where even the best decision leads to failure. Blaming the
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actions just before failure would be wrong when the decision that needs to be changed

is somewhere further back in the chain. The process of finding which actions to improve

when the actions interact is called credit assignment. Dynamic Programming finds the

decisions that need to be changed by an incremental procedure, building successively

closer approximations to the optimal policy. These methods work well but they need

to be given a model, the reward function and the transition function. These methods

become too time consuming for large state spaces. Recent work has addressed the idea

of how to shrinking the state space until the computation becomes reasonable [12, 7].

2.2.1 Value iteration

The value iteration algorithm proposed by Bellman[5] (see table 2.1), does not actually

solve the equations for the value of a policy, thus avoids the time consuming step. The

idea is intuitively simple, making successive approximations to the optimal policy, and

the value function, until the difference between one approximation and the next is close

to zero. Initially, the value of each state, call it V° is set to 0. In practice the initial values

are usually set to the immediate reward. This is the value of the state when following the

optimal policy for 0 steps. Then a closer approximation of the Value function is created

from the last approximation. For each state the action that maximizes the expected

immediate reward plus the old estimate of the expected value of the state reached is

found. Since, V° was set to the immediate reward, V’ becomes the value of performing

only one action in that state, and then stopping. This is done repeatedly,(step 3(b)),

the V value of the state being calculated from the V”’. In general V” is the value

of the state for following the optimal policy if the agent was only going to perform n

actions. So as ii —b — —+ 0. Value iteration suffers from the problem, of not

knowing when it has reached the optimal policy. Clearly as n —f cc the policy approaches

optimal. The algorithm itself, however does not continue on indefinitely, but terminates
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1. Initialize V° to the immediate reward values.

2. i:=O

3. repeat

(a) i:=i+1

(b) Vs e S do

V(s)
a)

{R(8 a) + P(s, a,
S

(c) 7r(s):= the action a from previous step.

until — ui_i) =

Table 2.1: The Value Iteration Algorithm

when the improvement between successive iterations is small. It is not known in advance

how many iterations this will take; for this reason policy iteration, which is known to

converge in a fixed number of steps, is usually the preferred approach.

2.2.2 Policy Iteration

The policy Iteration Algorithm [13], does solve the system of S equations generating

the value function for the sub-optimal policy. Unlike value iteration, which successively

estimates the value of the optimal policy, policy iteration works on improving a sub

optimal policy. This is done by identifying states that can be improved, and quits when

the policy can no longer be improved. A search is done through the states, finding states

s where there is an action a which if taken for just this one state, and then following 7t

results in a higher expected return than just following K(s). After finding such a state

and action the policy is changed so that it(s) now selects the action a. This results in a

new policy that must have a higher value than the old policy. When no more such states
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1. Let it’ be any policy on S

2. while it it’ do

(a) it := it’

(b) Calculate V,,.(s) Vs e S

(c) Vs E S do

if a e A s.t.

(R(s) + P(s, a, s’)V(s’)) > V(s)
S’ ES

then it’(s) := a else ir’(s) := it(s)

3. return it

Table 2.2: The Policy Iteration Algorithm

and actions can be found, then the optimal policy has been found. This algorithm, unlike

value iteration, is guaranteed to converge in a finite number of iterations, in practice it

is often polynomial in SI.

2.3 Reinforcement learning

Both value iteration and policy iteration require that the transition function, P(si, a, s2),

and the reward function R(s), be known. For many real problems these functions may

be unknown. The only alternative then is to try actions and observe the results. One

can then either try to learn the transition function and the reward function and solve

for the policy using one of the above methods, or one can attempt to learn the policy

directly from the observations. Learning the transition probabilities would require a

table of about size IS 2 A, while learning the policy directly would only require order

SIIAI space. Learning the transitions also has the problem that the agent is not able to

incrementally use the information it has learned. The dynamic programming methods
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are too computationally intensive to perform after each observation. This means that

the agent is required to follow the old policy until such time as the policy can be updated

to incorporate the new observations, usually after a goal state is reached.

Reinforcement learning is learning from rewards and penalties. This is learning from

trial and error, as opposed to supervised learning. In supervised learning the agent is

given pairs of items, an input vector and an output vector. After training the agent is

supposed to produce the correct output vector, when given an input vector. The obvious

problem with this learning by example is that the agent inherits the bias of the teacher,

and this may be bad if the teacher’s bias is incorrect. The main advantage of learning by

example is its rapid convergence, they give good approximations with a lot less training

than self-guided learners. Since, reinforcement learning is self-guiding and able to learn

almost tabula rasa it can be considered a more general form of learning. It still requires

a teacher, or at least a means of identifying which situations are “good” and which

situations are “bad”. This is a much weaker requirement on the teacher than the one

required by example learning systems. Its conceptually easier to tell when something is

right or wrong then it is to show how to do the task.

Learning methods where nothing is predefined are called strong learning methods.

These methods may be either taught by a teacher or self-guided. Like most methods

that are capable of learning everything, strong learning methods are very slow to learn

anything. Weak learning methods require some prior knowledge and are able to learn

faster because of this background information. Weak learning methods suffer from the

fact that they must have background information, and they must accept the background

information as absolutely correct. The majority of weak learning methods are unable

to determine if the domain knowledge they started with is reliable or not. Clearly what

is needed is a general strong learning algorithm that is able to accept existing domain

knowledge, and override such knowledge if it sees fit.
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2.3.1 Temporal Credit Assignment

The field of reinforcement learning is mostly concerned with learning controllers for

Markov decision processes when a model is not available. This involves two separate

credit assignment problems. The first is the temporal credit assignment, and the second

is the structural credit assignment. Temporal Credit assignment is the process of assign

ing responsibility for a good or a bad outcome to the sequence of decisions observed,

that is, identifying which decisions, in the sequence that lead to a reward, were primarily

responsible for that reward [29, 32, 19]. Structural credit assignment assigns values to

decisions at a state, a state that may not have been observed, such that similar states

have would have similar values for a given decision. Early work done in this area includes

Samuel’s checker player [27] and the BOXES algorithm [211. The dynamic programming

methods above solve both credit assignment problems, since DP has a model, it can

adjust the values of every state and decision with out having to observe it. Although DP

suffers from the curse of dimensionality, the problem is not as bad as that experienced

by learning systems, since they have to actually visit each state.

One of the earliest learning systems to solve the temporal credit assignment problem

was Samuel’s checker player. There are two basic methods for solving the temporal credit

assignment problem. The first, and most obvious, is to save every decision and state until

a reward is received. Then the values of all the decisions are adjusted according to some

variant of Equation 2.1. The second, and the one used by Samuel, is the method of

Temporal Differences (TD) [29]. Samuel’s checker player was to learn an evaluation

function for board positions in a checker game. Although a straightforward simple model

for checkers exists, the size of the state space makes solving for the optimal policy difficult.

The evaluation function gives a heuristic that tells how good the position is and can be

used to constrain a search. Samuel’s learning method was to apply the current evaluation
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Figure 2.1: A MDP that cause problems for a 1-shot update

function to the current state, perform a move, apply the evaluation function to the new

state, then use the difference between the two values to adjust the evaluation of the first

state. When a sequence of moves lead to a reward, the state just before will have its

value increased. Each successive time through the sequence the increase will back up to

the earlier states (see figure 2.1).

The method of Temporal differences, although used frequently earlier, was formalized

by Sutton in 1987 [29]. Most importantly he developed a convergence theorem showing

that TD learning methods asymptotically converge to the correct values. Also it was

shown that TD methods are able to converge to optimal values with finite training. Here

optimal, refers to the best values that can be determined from the training, not optimal

in the sense of a dynamic programming solution. This idea of optimal is the maximum

likelihood estimate. Take, for example, tossing a coin. If the coin was tossed ten times and

heads turned up seven, then the prediction of getting a head on the next toss based on a

model of a fair coin would be 0.5, but asked to estimate based solely on the observations

it would be . From the observations the maximum-likelihood estimate is in a sense

the optimal prediction. Sutton proved that the TD methods, with judiciously chosen

parameters, will converge to the same predictions as a method that remembers all state
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1. Initialize Q-values.

2. While true do

(a) Find current state of world, s

(b) find a = maxaQ(s, a), the current “policy” action

(c) Decide whether to follow policy or to explore. Perform either a or a random
action. Call the action actually performed a’.

(d) Get the new state, s1, and the reward R(si)

(e) Update Q-values with the formula

Q(s, a’) = Q(s, a’) + (R(si) + 7maxaQ(si, a) — Q(s, a’))

Table 2.3: The Q-learning Algorithm

transitions that occurred and their outcomes which means that TD learning converges

to the maximum-likehood estimate.

Watkins [32] applies Suttons TD learning methods to perform incremental dynamic

programming. Watkins’s algorithm, called Q-learning because of the notation used in his

thesis, learns the optimal policy and is incrementally updated, generating the improved

policy after every step. The temporal difference methods, as used by Samuel and Sutton

above, learned an evaluation function. It was still necessary to store the actual policy as

an additional data structure which needs to be recomputed whenever the value function

changes. Another method, the one used by Samuel’s checker player, uses the value

function to control a search. The agent searches through all possible actions at a state

and picks the action that leads to the highest valued state. Where the value of the states

is determined using the value function that was learned. Q-learning learns the policy and

the evaluation function at the same time using a single data structure. A look-up table

is created with one entry in the table for each state-action pair. The table entry Q(s, a)

is the current estimate of the value of performing action a while in state s. The value of



Chapter 2. Background 17

the state is the value of the best action in that state. So the table of Q-values is able to

store the policy, the value functions, and the value of doing non-policy actions. Deciding

what is the best action to perform is done just by finding the action with the maximum

value for that state.

Q-learning (table 2.3) is a form of value-iteration describe in section 2.2.1. The

important fact to notice is that value-iteration does not require that each V be updated

in a systematic way, i.e.. V’, The method still converges, although perhaps not

as quickly, if the value of every state is updated in a arbitrary order, so long as each

state is updated often [32]. The value of the entry Q(s, a) is defined as the value of the

immediate reward for performing action a plus the (discounted) expected value of the

state reached. where the expected value of any state is just the value of that states best

action. Letting s1 be the state reached by performing action a in state s, the expected

value of performing action a then is:

Q(s,a) = r(s1)+7maxQ(s1,a)
a EA

This of course requires that the values of s and a be remembered. So that after performing

the action, the new state s1 can be observed and the table values updated. Following the

method of temporal differences, the values for the Q-table are updated by the rule:

Q(s,a) ÷— Q(s,a) + /3((r(si)+7maxQ(s1,aj)— Q(s,a))
a

The new Q-value is the error between the earlier estimate and the observation, mul

tiplied by a learning rate parameter /3, used to control the convergence rate. 3 is set in

the range (0, 1]; by setting /3 to 1, the slope given by the error term is descended to the

minimum, and the new Q-value is updated to treat the new observation as correct. This

one-shot updating of the Q-values causes problems when performing an action sometimes

results in a positive reward and sometimes results in a negative reward. For example,
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take the situation shown in figure 2.1. State B allows only one action, this action how

ever, leads to either a negative reward or a positive reward with equal probability. If the

first time the action is performed a positive reward is received, the value of that action

is given a value of about (1), making the expected value of B appear to any state that

can reach it, like A, appear to be higher then is should. If the next time the action is

tried the negative reward is received, then the value of the action is moved all the way

to around (—1). With j3 set as one, the value of such a non-deterministic action, will

never have the more appropriate value of , that using transition probabilities would

have given. Setting j3 to a value less then one causes the Q-values change slower, and

preserves more of the past observations.

Q-learning has several beneficial properties. It does not require an initial model or a

priori domain knowledge, which as explained in chapter 1, is not always available. All Q
learning requires is a reinforcement function. Q-learning, also, does not require that entire

sequence of states be saved; like all TD methods only one observation at a time needs

to be stored. Finally, Q-learning is incremental, there is no need for a separate learning

phase. This requires some method of determining if the current, possibly sub-optimal,

policy should be followed, or some other action that might improve the policy should

be performed (Exploitation or Exploration). This is usually solved by some stochastic

method.

The disadvantage of Q-learning is that it is slow to converge. Q-learning solves the

structural credit assignment the same as dynamic programming does, by actually visiting

each state. Since the model of state transitions is not known, it is not possible to know

which actions will lead to unexplored states. Q-learning relies on the fact, that by

occasionally choosing random actions, eventually the entire state space will be explored.

This is even more of a problem with robotic systems, since, they tend to have extremely

large, usually continuous, state spaces. Also, it is not possible to do the thousands of
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trials needed for Q-learning to converge on most robotic systems.

2.3.2 Structural Credit Assignment

The structural credit assignment problem is the problem of assigning a value to states and

actions that haven’t been visited, based upon some measure of similarity between states.

This is also called the input generalization problem. Dynamic programming methods, as

well as standard Q-learning, don’t solve the structural credit assignment problem: they

must either solve for, or visit, every state. The problem is less acute for dynamic pro

gramming since solving a system of equations takes less time, then random exploration.

However, in robotic domains the state spaces are extremely large, often more than 2100

states [10]. With state spaces this large even a polynomial time algorithm would take too

long. The major difficulty in assigning structural credit is knowing which unvisited states

are similar to states that have been experienced and for which an informed decision can

be made.

The BOXES algorithm[21] used the most obvious method of assigning structural

credit. Boxes’s purpose was to learn the classic problem of balancing a pole. The problem

is to balance a pole on top of a car. A negative reward is given if the pole falls over.

In the simplest case the car has two possible actions: move forward or move back. The

state space is defined by four continuous variables: the position of the car x, the angle

O of the pole from the vertical, and the rate of change of these two variables over time,

dx, dO. The boxes algorithm divides up each of the dimensions into fixed sized intervals,

arbitrarily chosen by the programmer. With four dimensions this discretises the state

space into boxes (thus the name). Every value that falls within the boundaries of the

box is treated as a member of one state. The obvious problem is knowing beforehand

how many boxes are needed, and where the boundaries should be.

Dividing up the space uniformly along each dimension results in the hypercubes,
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or the boxes used above (see figure 2.2). When the actual Q-values are not uniformly

distributed through the space, then many of the boxes will be nearly empty; not only is

this a waste of space but the number of states can grow exponentially. Certain areas of

state space need to be divided up finely to correctly partition the spaces where Q-values

are tightly grouped, but areas where Q-values are sparse should not be divided up as

fine. The adaptive grid (figure 2.2) is more flexible then the regular grid; rather than

uniformly partitioning each dimension, the location of the boundaries of boxes can vary

along each dimension. Adaptive grids still suffer from the “curse of dimensionality”. Each

partition is global, in effect partitioning every state along its path. Recursive partitioning

schemes, (Figure 2.2 recursive grids, KD-trees, Arbitrary Hyperplanes), don’t have the

global partitioning problem, further partitions only effect the subspace in which they are

applied.

The other common way to assign values to unexplored states is to use Neural networks.

The backpropagation algorithm[24] is an extension of the percepetron[22], that allows

multilevel networks with hidden nodes to be trained. Backpropagation uses gradient

descent to adjust the weights of connections in the network. A supervised learning

method, the network is presented with a training (input,output) pair. The current net is

applied to the input vector, and the result vector is compared to the correct output. The

error between the output the net generated and the actual output is used to adjust the

weights. The adjustments are propagated backwards through the net from output nodes

to input nodes. Backpropagation is primarily orientated to solving the structural credit

problem. Each node can be considered as performing a test if the weighted sum of its

inputs is greater than a threshold. Essentially this is just a partition of the input space by

a hyperplane, with multilevel networks allowing recursive partitioning. Backpropagation

suffers from the lack of a good theory explaining when it should work, how many nodes

are needed, and how they should be arranged. Lin[17] and others have had success
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coupling NN and Q-learning, still others like Chapman and Kaelbling [10] have had poor

results.

Chapman and Kaelbling [10] developed another type of generalization algorithm,

called the G algorithm. The G algorithm grows a tree, the internal nodes which test

selected input bits and follow either the left or right branches of the tree according to

the results. The leaves of the tree each contain a single Q-value. This Q-value represents

the Q-values for all the states that have the same value for the bits tested in the internal

nodes. By testing only the most important bits the leaves of the tree can represent a

large number of states, states that have similar Q-values, with a single Q-value. This

saves both space and time (see figure 2.3).

Initially the algorithm considers all the bits to be irrelevant, clustering the entire state

space into one state. Statistical evidence is collected for the relevance of bits. When a

bit is discovered, by the t-test, to be significant the node is split into two leaves, one for

when the bit is off and one for when the bit is on. Then more statistics are gathered

within the leaves, which themselves can be split if necessary. The G algorithm has one

major drawback, that is the testing is done at the bit level. If the sensor information is

not presented such that it makes sense to test individual bits, then the method will not

be efficient. Consider again the pole balancing problem, here the sensors give four real

values. Testing real numbers a single bit at a time would give a rather large tree, larger

then might really be necessary. Also it needs the bits to be individually relevant.

The other alternative, to clustering based upon dividing up the state space into sub

spaces, is to cluster based upon similarity in the states response vectors. This enables

states, that might not be nearby in the state space, to be clustered together simply

because they produce “similar” responses. One such method used by Mahadevan and

Connell [19] clusters states together solely on the basis of a similarity metric. Each ob

servation is compared to all the clusters and if it matches a cluster it is added to it. If
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it does not match any clusters a new cluster is formed with only one member. A cluster

description is a vector of probabilities, < Pi, P2, ...p > where each p. is the probability

that the ih bit is on given that a state matches the cluster. From this, the probability

that a state matches a cluster can be found, if this probability is greater then a threshold,

then the state is said to match the cluster. Clusters can be merged together if the “dis

tance” between clusters is less then the threshold p and the Q-values of the cluster agree

in sign and the difference in magnitude is less then the threshold ö. The best action is

selected by maximizing the combination of the probability of matching the cluster, and

that clusters Q-value.

All methods that solve structural credit assignment work by defining a similarity

metric across the state space defined by the sensors. This similarity metric is used to

interpolate between known states and states that have not been visited yet. The hope is

that given a good metric the entire space will not have to be explored, and the learning

method will converge to an adequate policy in a reasonable amount of time. Methods

are usually based on some variation on dividing up the state space or maximizing some

measure of similarity of points in a cluster.
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The Dynamite Testbed

The Dynamite testbed is a platform for testing theories about controlling mobile robots

in dynamic domains, in particular mobile robots in the soccer domain. This provides a

common task for comparison of different control strategies. It consists of several radio

controlled cars that share a common vision system, and play a version of soccer on a

dining table sized field.

3.1 System Overview

The Dynamite testbed, see figure 3.4, consists of a small playing field, about 224 cm long

and 122 cm wide.Unlike a real soccer field it has boards around the outside to prevent the

ball from going out of bounds. The field provides a playing surface for multiple soccer

playing agents. The agents are made from off the shelf remote controlled cars retrofitted

to work with the vision system. Each car is fitted with two circular colour markers that

allows the vision system to determine position and orientation of the car. Each car also

has small bumpers enabling them to push the ball, since cars cannot kick.

The vision system consists of a single overhead camera that transmits full colour video

to special purpose datafiow computer, named the Data Cube. The Datacube is able to

perform rapid filtering of colours, classifying pixels into colour groups, or blobs. The

colour information is then given to some transputer nodes for additional processing. The

transputer nodes are able to output the world coordinates for the center of each colour

blob. With the two circles on each car, the vision system is able to produce real-valued

25
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Figure 3.4: The dynamite soccer playing testbed

coordinates and orientation for each car, and the ball, sixty times a second. The accuracy

of the values are within millimeters of the real position. The agents operate on the remote

brain concept: all sensing, reasoning and control is done on a remote computer. The cars

can receive commands from a transputer controlled radio transmitter, fifty times a second.

The entire team, for both sides, can be controlled on the same set of transputers, since

each of the n transputers nodes in figure 3.4 can control an agent independent of the

rest. Complete details of the system are given in [25, 26, 3, 4].

3.2 The Reactive Deliberation Controller

The Reactive Deliberation Controller is a robot control architecture proposed by Michael

Sahota [25]. It consists of two basic parts, the Executor and the Deliberator (see figure

3.5). The main idea is that the two halves run asynchronously — in this case they each get

one transputer node. This allows the executor to keep up with the environment, always

Soccer Field
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monitoring the environment and sending control signals. The deliberator however, is able

to become more involved in deciding what to do.

3.2.1 Executor

The lowest level of the controller’s hierarchy is the Executor. It consist of behaviors

that can be executed rapidly, with the sensor to actuator ioop being as short as possible.

Lengthy computations cannot be performed at this level. These behaviors, which Sahota

calls action schemas, perform the low-level control of the robot, receiving raw sensor data,

and action selection with parameters then sending out low-level controls to the actuators.

It also sends filtered sensor and status data to the next higher level. For example, one of

the behaviours from the soccer agent is “follow path.” Follow path is activated and given

a path to follow by the deliberator. The behaviour then compares the world coordinates

from the sensors to the path data and sends directional controls to the robot. The higher

levels of the controller can actually have crashed and the robot won’t notice until the

behaviour is finished.

3.2.2 Deliberator

The Deliberator is similar in structure to the executor. The main difference is that

it is allowed to spend more time between actions, thus the name, and it cannot sense

or control the environment directly. The Deliberator is forced to receive all its sensor

information from the executor. This could be simply the raw sensor data passed through,

or some more complex filtering could be done. For the soccer playing robot, the sensor

data is filtered to provide accelerations and status of the executor. Each behaviour of the

deliberator uses the sensor information given by the executor to compute which of the

executor actions should be selected. It then computes the run time parameters for that

action, and produces a bid based upon the results of the planning and how appropriate
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that action is thought to be. The behaviour with the highest bid then gets to select the

action that gains control of the executor. Unlike the executor, each behaviour is running

in parallel with the others. However, only the behaviour that produces the highest bid

get control of the executor. If one of the other behaviours, one not currently in control,

produces a bid greater then the current bid, then the active behaviour is interrupted and

the new behaviour is put in control.

3.2.3 Adapting Reactive Deliberation to do learning

Adaption of the Reactive Deliberation Controller such that it is able to learn requires

that the voting system of the Deliberator be removed and arbitration be performed by

a higher level. Originally the arbitration is very simple, simply a comparison ioop to

find the highest bid then select that behaviour. This simple selection will be changed.

No longer will bids be sent to the next level, rather the full sensor data will be sent.

This sensor data defines the state space, the arbitrator then performs Q-learning. The

set of actions for the Q-learning algorithms is the set of behaviours of the deliberator.

Q-learning requires that the states and actions be discrete. Both of these conditions are

violated with this architecture, for the state space is continuous and the actions persist

through state boundaries. The continuous state space can be divided into discrete spaces,

but that cannot be done with the actions. Actions are given an inertia, so that when

an action crosses a state boundary, the executor is allowed the chance to continue the

action it had started earlier.

In the spirit of behavioral control only one behavior per level is allowed to send

actuator control commands at one time. Unlike subsumption[9], the decision of which

behaviour is in control is not fixed. Instead, the decision is made at the next higher level

of the controller. This scheme allows greater flexibility, since unlike subsumption, the

priority between behaviours is not hardwired at compile time.
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Experiments: Learning to play Soccer

The game of soccer that the agent is required to learn is a simplified version of the real

game. The major simplification is in the number of players: in this version there are only

two players. The state of each object in the game is given by the vector < x, y, 8, v >.

This vector is made up out of the position of the object on two dimensional field x, y,

the orientation of that object 0, and the object’s velocity v. The ball’s orientation is

found by tracking it over time, unlike the cars the ball’s orientation corresponds to the

direction its moving, not which way it’s pointing. In the one-on-one version of soccer

played here, there are only three objects on the field at one time, this gives a total of

twelve dimensions for the agent to partition and explore. It would be easy to create

more input dimensions (like acceleration), but the twelve given here would seem to be

the reasonable dimensions for the task.

Each agent was trained on a simulator, where a large number of games can be played

easier then they can on the real robots. The agent receives a +1 reward for scoring a goal,

and a -1 reward when the opponent scores a goal. After training the agents were tested

in pure exploitation mode with no learning. In other words they are tested following the

policy that was learned, both in simulation and on the real robots.

The visual system is easily able to resolve the position of each object to the nearest

half-centimeter and smaller [25]. As a result the discrete state space, defined by dividing

up each input dimension at the resolution of the sensors, is extremely large. The playing

surface being 244cm long and 122cm wide can be resolved into nearly 120,000 states,

30
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velocity and angular orientation contribute about 100 states each. In total each object

in the game can be accurately positioned into about 1.2 billion different states. Since

the state of any object in the game is potentially important, following all three objects

in the game would require a state space of about 1.7 * 1027 or 291 states. It would be

impractical to create a look-up table of this size, let alone explore the states adequately

and find a good policy. Furthermore, if the game is scaled up, the state space is going

to be multiplied about 1.2 billion times for every new player added. Even a linear time

algorithm would have problems exploring that many states in a reasonable amount of

time. Reinforcement algorithms are at best polynomial time algorithms [31, 16] and

would be completely unreasonable. The first job of any learning agent in this domain

is to define a similarity metric over the states, grouping similar states together until the

number of states is small enough to explore in a reasonable amount of time.

4.1 Different Algorithms

Each of the learning agents have a similar structure. The only major difference is the

strategy they use to divided up the state space. They all perform Q-learning with exactly

the same parameters. Any differences between the different learning algorithms should

be entirely due to the way the state space was subdivided.

The first step for every learning agent tested is to determine which state it is currently

occupying. This is done by taking the input vector <TO, o, o, V0,. . . , x3, y, O, v3 > and

determining into which bucket this places the agent. When one of the 12 input dimensions

has changed enough so that a bucket boundary is crossed, or when 10 milliseconds has

passed, the agent “changes state” and a new action will be selected.

At each state an agent is to select one of the following nine actions for the deliberator

to perform:
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1. Wait: This is the simplest behaviour. In short it waits for the situation to improve.

2. Shoot: This is the behaviour responsible for planning and following a path that will

cause the ball to go into the opponent’s goal.

3. Clear: This behaviour finds and follows a path that will cause the ball away from

the home goal. This is a weaker requirement then shoot which requires a path that

causes the ball to reach the opponent’s goal.

4. Go Home: A simple behaviour that follows a path back to the agents own net.

5. Defend Home: Take up goalie position and keep the car situated between the ball

and the net.

6. Go Red: Drives the car to the centre of the playing surface.

7. Defend Red: Similar to Defend Home except it occurs at the centre line.

8. Servo: Equivalent to “kicking the ball”. This drives the car at the ball.

9. Unwedge: Tries to drive the car out of a stuck position.

After selecting an action anew the agent must also check which action is currently active at

the deliberator level a0ld. If anew is different from a0zd then the deliberator is interrupted

and started on the new task. Since actions are not discrete in this model, when anew is

the same as a0zd the agent must decide if this means that the deliberator is to continue

performing its current action, or if the deliberator is to replan and start the same action

again. The method used here is to give the actions “inertia”. The idea of inertia is that

an action automatically is assumed to continue into the next state (unless the action

happened to have already stopped). Another way of solving this would be to add one

bit per action to the input vector so that the agent learns at each state if is should
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continue or re-select the action. This would probably be more robust but would add

extra dimensions to an already large state space.

Q-learning has three tunable parameters (/3 = 0.9, -y = 0.5, PBEST = 0.9) which

control the learning rate, the discount for future rewards and the exploration strategy

respectively. Since all the agents have exactly the same values for these parameters any

detrimental effects of using suboptimal values should be similar for each agent.

The choice for -y is some what arbitrary. Setting 70.9 would be more realistic. How

ever, because rewards are only a 1 or a 0 and goal states are self-absorbing, this means

that if one Q-value is higher then means that the action with the higher Q-value leads

to a goal state more quickly. The choice of ‘y only effects the magnitude of the Q-values,

not their relative size

Semi-uniform exploration was chosen for the exploration strategy. This is the simplest

strategy for deciding when to follow the current policy and when to try new actions to

gain better information. The method is very simple, at point 2(c) of table 2.3 there

is a fixed probability PBEST of choosing the current policy action and 1 — PBEST

of choosing a random action. A more intuitive approach is for PBEST to start at a

small value to encourage more exploration and slowly increase. Other strategies involve

adjusting this probability according to how often the state has been visited, or according

to the magnitude of change between Q-value estimates [31]. Adjusting PBEST only

effects the convergence rate.

Each different agent was tested first on the simulator and then the best of those were

tested on the real robots. On the simulator the robot play until a goal is scored, than the

robots and the ball are automatically positioned at the centre for a new trial. A game

for a fixed interval of time, about 5 minutes. The only change required for games run on

the physical robots is that the robots and the ball must be repositioned by hand after

every goal.
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4.1.1 The Hand Coded controller

The hand-crafted, non-adaptive controller created by Sahota [25] provides the standard

agent that all the other agents use as the standard opponent for training and evaluation.

Since, the optimal policy is not known, this hand coded controller plays the part of the

optimal policy for evaluation purposes, therefore to converge to the “optimal” perfor

mance is to perform as well as the hand-coded controller (i.e. to tie or perhaps beat this

controller).

The Hand-coded agent uses more information than the learning agents. The learning

agents are limited to the four variables <x, y, 8, v > for each object. In the Hand-coded

agent, however, the controller at the top, does not need to know positional information.

Each of the lower behaviours decides for itself how important it is. They do this using

a series of heuristic rules of the form “If I am already selected then add 2 to my value”

and “If I can’t find a path then make my value 0”. The arbitrator receives a value for

how important each behaviour thinks it is, and selects the behaviour with the highest

value. Since, each behaviour has access to its internal state, it uses more information in

generating its bid than just the four the learning agents use.

4.1.2 Regular Grid

This is the first of the learning agents. This agent uses the BOXES [21] approach to

learning. First state space is divided up a priori into a fixed grid and the Q-learning

performed on this discrete state space. The purpose of including this controller is to

compare learning with a fixed similarity metric versus a adaptive similarity metric.

The inherent problem with dividing up each dimension globally versus recursively is

that when fine resolution is needed the entire state space must be divided up finely. This

gives a huge number of states, with twelve dimensions dividing up each dimension into
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four boxes would give 412, about 17 million, total states. Each state requires one real

number for each action. Assuming 32bit floating point numbers, 224 states require about

226 bytes of memory, an excessive amount for a mobile robot. Four boxes per dimension

is probably not fine enough resolution, BOXES used about 256, but it only had two

dimensions and two actions.

The boxes for this soccer player were created by dividing up the four dimensions of

each object in the same way. The x coordinate value was divided into four equally sized

boxes, same with the y coordinate. The orientation of each object was given two possible

boxes, either towards the goal or away from it. The velocity of the object was given only

one possible value. This gives a total of 215 states occupying about l28Kbytes. It would

be better if velocity and orientation also were divided into four boxes, but the size of the

Q-table would be enormous.

Deciding how many buckets each dimension should be divided into and where the

boundaries of the buckets should be are problems that are difficult to solve without

extensive experience with the problem. The usual approach is to divide up the state

space test to see how well it performs. Then the state space is divided up again using

the information learned from the first test. This generate, test and generate again cycle

is repeated until either satisfactory performance is reached or the programmer gives up

in despair!

4.1.3 Random Agent

This agent is included as a means of comparing the how the agents improve over time.

It performs no learning merely chooses a random action at each state. Using the same

state space partition as the regular grid agent. The performance of the random agent is

due entirely to the inherent information of the deliberator’s behaviours.
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4.1.4 Adaptive KD-tree

This algorithm adaptively divides up the state space, rather then learning on a fixed

partition. It is based upon Chapman and IKaelbling’s G-algorithm. However, rather then

testing individual bits of the perceptual inputs and growing a binary tree that tests the

relevant bits, a KD-tree is grown that tests multidimensional real valued inputs.

A KD-tree [28, 6] is a binary tree that branches on all dimensions rather then the

branching on just one dimension like a normal binary tree. A normal binary tree organizes

records based upon the “index” dimension, as a result queries based on other dimensions

are very inefficient. A KD-tree allows multivariate queries, like those needed in nearest

neighbour searches, to be performed in logarithmic time [6]. Bentley’s algorithm for

creating a KD-tree (table 4.4), is to first identify the best dimension to split. Next a

partition plane is chosen, perpendicular to the dimension, such that the records are split

into roughly equal subsets, each record being either above or below the partition plane.

This procedure is continued recursively until the leaves of the tree contain only one

record. This process has been extended to arbitrary planes that are not perpendicular

to a dimension [28].

Repeat until all each leaf contains one record:
For each leaf do:

1. Compute the variance of the records for each dimension. The partition dimension
is the one with the greatest variance.

2. Erect a partition plane perpendicular to the partition dimension, that passes
through the point dm, the median value of the records.

3. Partition the records into the high child if they are above the plane, or into the low
child if they are below the plane.

Table 4.4: KD-Tree Algorithm

The KD-tree algorithm needs to be changed slightly to solve the structural credit
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1. Initialize Tree

2. While true do

(a) Use sensor input s to find current leaf of the tree L(s)

(b) Find the best action: a = maxaiQ(L(s) , a1) Decide either to follow the current
policy or to try a random action. Let a be the action performed.

(c) Find the new state reached s1 and immediate reward R(si)

(d) calculate the New Q-value for the leaf,L(s) using:

Q(L(s), a) = Q(L(s), a) + (R(si) + y max Q(L(s1),a) — Q(L(s), a))

(e) Push the pair < s, Q(L(s)) > on the history stack for L(s)

(f) Decide if the tree should updated. For each leaf with a history do:

i. Compute the variance of all the records in the history stack. Let D be
the input dimension with the greatest variance.

ii. Sort the records into two subsets based on which side of the plane, per
pendicular to D passing through Med(D), they are on.

iii. Perform a t-test to decide if it is a good split.

Table 4.5: Adaptive KD-tree algorithm

assignment problem. First, Bentley’s algorithm assumes that all the records exist, so

the KD-tree is just a method of organizing them. For learning applications this is not

true, the records (i.e. the Q-values) do not exist. The reason for clustering the states

is that there is not enough time to collect all the q-values. The algorithm needs to be

adapted to work without having all the records available for classification. Second, the

termination condition needs to be changed. Rather then stopping when each record is

uniquely classified, the algorithm should terminate when all the Q-values in a leaf are

sufficiently similar, or like the 1D3 algorithm, when information gained by splitting is

small [23].

The algorithm tested here (table 4.5) solves the first problem, the problem of not
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having the Q-values to build the tree with, by keeping a history queue. Whenever the

Q-value of a node is updated, a tuple is created consisting of the Q-value and the input

vector that caused the update, and is pushed on the queue. When the queue fills up the

oldest observation is discarded and replaced with the new one. This allows statistics on

how the Q-values within the cluster vary. From these statistics the best dimension and

location for a partition plane can be calculated.

Initially the entire state space is considered one cluster. Q-values are collected and

stored in the history queue. The variance of each dimension is calculated in two steps:

1. Calculation of the mean value for a dimension k:

Qt * S
mk :

where (si, Qt) is the jth pair in a history queue of length n. Sk is the value of the

kt dimension of observation s.

2. Calculation of variance for a dimension k:

d2 —

Q(sk — mk)2
Sk—

The dimension with the greatest variance is identified and a partition plane is created

and the q-values in the queue are sorted onto one side of the plane or the other. A

t-test is performed to see if continued splitting is required. The sample means x1,x2, the

sample variances S?, S, and the sample sizes n1, n are calculated for each of the two

subsets. A t-test is computed using the equation:

If the t-value is above a threshold the original leaf is replaced with the two new leaves,

otherwise the original leaf is kept. This threshold corresponds to a fixed probability that
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the two subsets are actually distinct and not just two groups of samples on the same set.

The exact value of this threshold depends upon the data set and the number of clusters

desired, and should be tuned for maximum performance.

An example of a KD-tree generated using a fixed depth update strategy, updating

every 7.5 seconds to a fixed depth of 5 nodes, is shown in appendix D. It shows the

dimensions that are split, where they are split, and the best action for each cluster.

4.2 Evaluation

4.2.1 Measures of Performance

The performance of each agent is judged on the final score of each game played. The

score is transformed into a reward measure by taking the goals the agent scores and

subtracting the number of goals the opponent scored. This gives a good estimate of how

well the agent does in each game with a single integer. A tie game would be zero, a win

would be a positive integer and a loss a negative integer. The performance of the agent

over time is calculated by taking the moving average over the last 100 games played.

The criteria for comparing agents is done on three measures [15]:

Correctness is conceptually the simplest measure of performance. A agent is correct

if for a given input it selects the same outputs as the agent following the optimal policy

would select. The problem with this measure is it can be hard to define, as it is in this

case, since the optimal policy may not be known. For this domain the hand coded agent

plays the part of the optimal agent, therefore the the agent can be said to be correct if

it receives continued positive rewards, i.e. it always wins. To measure the correctness

of the agent all learning parameters are turned off, and the agent follows the policy it

learned in pure exploitation mode.

Convergence is another important measure of performance. The fact that a learning
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system converges to the optimal policy is not always sufficient, especially if the agent has

poor performance over most of its lifetime, only improving after hundreds of thousands

of trials. An agent that improves rapidly is usually better then one that does it slowly,

although the slower converging agent may eventually be more correct. This distinction is

very important for agents that operate in the real world, where finding an approximate

solution quickly can have better results (win more games) over time.

Complexity is not directly related to the reward the agent receives. The time taken for

computations and the space required should be bounded. Agents that take unbounded

time to compute, might not keep up changes in the environment, and as a result will

tend to achieve fewer rewards. Similarly, if the memory requirements can increase without

bound then it might outgrow the memory available. The faster an agent can compute

and determine the best action the better. Again, there might be a tradeoff between a

slower more complex agent that is more correct and a simpler faster algorithm that is

less correct.

4.2.2 Simulation results

Q-learning has several parameters that can be tuned to maximize performance. However,

for these tests the only parameters of interest are not those of the Q-learning algorithm

but the two parameters of the KD-tree algorithm, namely the threshold for the t-test,

and the frequency with which tree is updated.

Figure 4.6 shows the best results for convergence for all the algorithms tested, after

all the parameters were tuned. The sine like shape of the fixed grid agent is probably due

to the fact that it does not have enough information. The limitations of memory only

allowed a very coarse grid to be created. It is also important to note the performance of

the random agent. This agent only loses by an average of 3 to 4 goals in 100 games. This

quality of performance is due entirely to the “domain information” implicitly contained
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Figure 4.7 shows the effect of adjusting the threshold for the t-test. A low threshold

causes the algorithm to more susceptible to noise and it divides up the state space poorly.

A high threshold causes the state space not to be divided up at all. Choosing the threshold

at about 0.7 or 0.75 seems to give the best performance.

After fixing the threshold for splitting states at 0.7, the update schedule is adjusted.

This the parameter that selects when a trial split on the tree should be performed. Since

it is a rather lengthy calculation it cannot be performed at every update. Three methods
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were tested, each with the same t-threshold (figure 4.8). A fixed update interval, where

the the tree was tested at every n second interval, was tested for 5, 7.5 and 10 second

intervals. This method worked great initially, the best results were achieved with a

interval of 7.5 seconds. The 5 second interval was too short, the agent quickly started

spending more time growing the tree then selecting actions. The 10 second interval was

too long allowing the relevant history to be pushed out of the buffer. As the tree grows

larger, however, the amount of computation that must be performed at each interval

grows. The agent begins to spends more and more time trying to split the tree and

ignoring what is happening on the soccer field and performance declines.

The second method tried was to increase the interval as the tree increased in size.

Initially the tree was checked every 7.5 seconds, this interval was increased by 7.5 seconds

everytime a new state was added. This method had the best performance but the state

space was not divided up as well as it could have been. This is because as the delay

between testing the tree increases the history buffer tends to contain more similar values

and the t-values decrease.

The third method is to update on a fixed interval but only over a selected area of

the tree. The agent tested, checks the tree every 7.5 seconds, but only to a fixed depth

of 5 levels. This corresponds to checking 32 leaf nodes to see if they can be split which

takes about the 10 milliseconds before a new action is selected. In this way the Q-values

of the history buffer are not lost, and the agent does not spend an increasing amount of

time growing the tree. However it tends to build smaller but more balanced trees. This

would explain why it does not perform as well.

Updating the tree means the agent stops paying attention to the task at hand. This

is why the convergence curves of figure 4.8 have a sinusoidal shape, particularly the

increasing interval method. Here the tree may not be updated for scores of games and

then it may have to update the whole tree at once. This allows the opponent to win
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several games and brings down the average score.

To test the quality of the trees created by the different parameters. The KD-tree

algorithm was turned off, and Q-learning was performed on the fixed tree that had been

generated. The results are shown in figure 4.9. This only makes it more obvious that the

increasing interval update method has built a better tree.

Testing the correctness of the agents required that all learning parameters be turned

off and the agents act in pure exploitation mode. The results are shown in Figure 4.10.

Both KD-tree algorithms perform about the same, averaging about —0.5 reward overall.
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The regular grid learner performs about the same level as the random agent around an

average reward of —3. Notice that the KD-tree created using the fixed depth update

initially does extremely well, a reversal from its performance in the training phase.

4.2.3 Real Robot results

Doing all the training and testing on a simulator has some serious drawbacks. The

biggest being that the simulator is never the same as the physical system. The agents

should always be tested on the physical robots. Ideally they should be trained on the

physical system as well but because of logistics this would have been impractical. Instead

only the pure exploitation performance was tested on the robots and only for the two

KD-tree agents. The results for the increasing interval KD-tree algorithm, were similar

to those achieved in simulation. After playing for 5 minutes the score was 6 to 5 for the

hand-coded agent. The fixed depth KD-tree agent performed very poorly on the real

robots, loosing spectacularly 5 to nothing. This only shows that the results achieved in

simulation are not directly transposable to real robots.



Chapter 5

Conclusion

5.1 Summary

In many systems where it would be beneficial to have a learning agent, the agent is

ineffective because of the curse of too many inputs. In order for an agent to learn in a

reasonable amount of time some method of identifying the important characteristic of the

inputs must be used. In this thesis a methods of automatically identifying the important

areas of the inputs was explored. Previous methods surveyed were able to cluster large

state spaces but depended upon having continuous state spaces discretized, and having

discrete actions.

The Adaptive KD-tree Algorithm was designed to work with continuous real valued

inputs of high dimension and persistent actions. The algorithm does this by:

• Collecting statistics on the previous effects of actions. Then using those statistics

to identify if and where a cluster should be further divided.

• Giving an “inertia” to actions, so that they can exist through different states; If

an action is selected in two states in sequence. Then the action knows that this

second selection is a continuation of the action started in the first state (unless the

action happened to already have finished its task).

In general the Adaptive KD-tree algorithm works better then learning with a naive

hand divided state space, although not as well as the non-adaptive agent that has been

tuned by hand. To be fair the hand-coded controller does use more information than any

48
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of the learning agents. It also remains to be seen how well other clustering algorithms,

like neural nets, work on this domain.

The one drawback of the adaptive KD-tree algorithm is its complexity. Having a

history buffer is very memory intensive, and imposes a limits on the type of trees that

can be built. This can be partly rectified by choosing a good strategy for deciding when

to test clusters. Testing at a fixed interval just does not work because the agent starts

to neglect selecting actions and spends all of its time testing the tree. Increasing the

interval as the tree grows works better, but it means the relevant history may be missed.

A better approach might be to keep a measure of the relative error at each cluster and

update at fixed intervals only the nodes with large errors.

Further testing is also needed to determine the effect of the various Q-learning pa

rameters and to see how varying them effects convergence rates and optimality. The two

main tests that need to be done in this area are to vary the learning rate /3 and the

exploration parameter PBEST. Using the Boltzmann model [31] for adjusting PBEST

so that more exploration occurs earlier in trials but once information is learned the best

action is more often chosen. Changing these parameters shouldn’t effect the relative

performance between the various algorithms only cause them to all improve.

5.2 Future Work

One extension to the adaptive RD-tree algorithm is to replace the history buffer with a

spatial buffer. Keeping a buffer that only stores the last n decisions at the cluster makes

the assumption that those n decisions will be randomly distributed through the entire

volume of the cluster. This assumption is often incorrect. A buffer that stores decisions

based upon where in the cluster they occurred would probably work better. This requires

that some method of ensuring that all the samples in the buffer are of a similar age if



Chapter 5. Conclusion 50

one area is much older then another, it may appear as if the state should be split, when

in fact it would not be split if the samples were all the same age.

The next step would be to get rid of the buffer altogether. The buffer is uses a lot of

space and imposes limits on the size of the tree that can be built. To remove the buffer

would require that the best dimension to split and the location of the split be found

without using statistics.

5.2.1 Adding existing knowledge

One observation about learning agents is that the more knowledge they have built in the

faster they are to learn a task. The disadvantage is that they usually have to assume

that the knowledge is correct. The multi-level learning system used in this thesis allows

knowledge to be included into the system in such a way that the agent is able to override

the knowledge if it seems irrelevant.

Knowledge can be included in the system in the form of behaviours. Each behaviour

represents a skill or concept the programmer has explicitly written into the system. If the

information is incorrect or irrelevant the agent will determine that through the course of

normal reinforcement learning.

A similar method of adding information is through the creation of sensor behaviours.

The standard reactive-deliberation controller as it is tested in this thesis uses only control

behaviours. A controller behaviour is primarily concerned with the question: “This is

the current inputs; what should the output at the lower level be?” A sensor behaviour

answers the question: “This the raw sensor information (from the lower level), what does

this mean?” For example, in soccer a typical sensor behaviour that might be useful is

the Closer behaviour. This behaviour simply looks at the x, y coordinates of each object

and sends a 0 or a 1 to the higher level, a 1 if the agent is closer to the ball, or a 0 if the

opponent is closer. This simple function provides a new measure on the state space, a
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measure that would have been hard for the agent to develop with only a lookup table.

Adding in sensor behavours is more costly then control behaviour. Each new control

behaviour linearly increase the size of the lookup table. A sensor behaviour adds an new

dimension to the state space, potentially an exponential growth in the size of the table.

Of course if the agent uses a good clustering algorithm this is not a major problem.

However, learning could be done by converting all raw sensor data into sensor behaviours

and learning only over the space of sensor behaviours, discarding raw data in the learning

process. Through judicious choice of sensor behaviours, a programmer can drastically

reduce the size of the learning space.

Another way of adding information to the learner is through more detailed reward

functions. In the experiments performed here, the reward function is very sparse, widely

spread in time. This make learning difficult, a real soccer player don’t learn this way;

rather they receive intermediate rewards by coaches. When an soccer player performs

a good action, like clearing the ball out of his own end, they are given an immediate

evaluation of their action by the coach. This leads to (subjectively) good behaviour

which can speedup the learning process by leading to “ultimate rewards” or goals more

quickly.
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Appendix A

Main Reinforcement algorithm

**************************************

DECIDEC)

This is the arbritrator between the behaviors

void decide()

{

double pri;

static mt old_behaviourO;

static mt old_time;

static mt R_time;

static Object old_obj [MAX_OBJECTS];

mt i;

Ktree *state,*old_state;

new_exec = FALSE;

if (program == PROGRAM_NORMAL_PLAY) {

command_f lag=TRUE;

evaluate_f lag=TRUE;

stateget_state(obj);

old_stateget_state(old_obj);

i=reward(obj);

if((state!old_state) I I(current_time*TYME_TO_MS>(old_time+iO)))

/* Oont select a new action */

/* until state changes or times out*/

if(state—>high!=NULL) printf(”Error \n”);

behaviourselect_action(state);

old_time=current_time*TYME_TO_MS;

update_Qvalues(old_state,state,i,old_behaviour,old_obj);

}

if((current_time*TYME_TO_MS)>(R_tmme+7500)) /*milliseconds*/
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{

/* decides how often to rebuild the tree ms*/

/* 5.0,7.5,10.0 seconds*/

K=rebuild_tree(Jfl;

R_time=current_time*TYNE_T0_MS;

}

if((behaviour==old_behaviour)fl(car.exec = EXEC_IDLE))

/* INERTIA for actions: only replan if new action or executor is idle*/

return_of _control=TRUE;

else

return_of_control=FALSE;

prifn[behaviour]O; /* Do the behaviour*/

for(i0; i<NAX_OBJECTS ; i++)

{

old_obj [ii .xobj[il .x;

old_obj [ii .y=obj Ii] .y;

old_obj Ii) .headobj Fi] .head;

old_obj [ii .speedobj Li] .speed;

}

old_behaviour=behaviour;

}

/*****************************************************************************/

Ktree *get_state(Object *o)

return(search_tree (K, o));

I**************************************************************4c**************I

mt select_action(Ktree *s)

{

/*select the maximum behaviour*/

mt i,j,k;

float PBESThO.9; /* the prob. that the best action is chosen */

mt actiono; /4’ the best action */

bit best[MAX_BER]; /* All the best actions */

imt nbest=0;



Appendix A. Main Reinforcement algorithm 57

/* find the Best Action(s) */

if((((float) (randO7.lOO))/iOO.O)< PBEST)

{

/* randomly select one of the best */

actionresponse Cs);

}

else

{

1* select any randomly */

action=(randO7.MAX_BEH);

J.

return(action);

}



Appendix B

Update Q-values algorithm

/*****************************************************************************/

mt update_Qvalues(Ktree *s,Ktree *sl,int r,int b,Object *o)

{

/* Qvalues q, state s, reward r, action b */

mt i,j;

float E,Ei,error,resp[MAX_BEHJ ,BETAO.9,GAMMAO.5;

El0;/* find the expected utility E *1

if(sl!NULL)

{

iresponse(sl); /9’ i is the best action */

E10;

for(j=O;j<(sl—>d);j++)

E1E1+(sl—>bucket [j] .response Ii]);

if((si—>d) =0)

E1E1/(float)(sl—>d);

1* avg reward for best action action */

else

El0;

}

E0;

for(i0; i<HAX_BEH;i++) resp[il=0;

if Cs! =NULL)

/* the top of the stack is the current Qvalue for this state*/

for(i=0; i<MAX_BEH; i++)

resp[ilCs—>bucket[Cs—>d)—ll .response[i]);

E=resp[bJ;

error(r+GAMMA*Ei-E);

resp [hi E+BETA*error;

update(s,o,resp);

}
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KD-tree algorithms

tinclude “ktree .h”

Ktree *search_tree(Ktree *kt, Object *o)

{

float m[DIMEN1;

if(oNULL) return(NULL);

else

{

1*12 dimensions */

/* BALL*/

m[O]o[0J .x;

m[1]o[0J .y;

m [21=0 [0) . head2;

m[31 0 [01 . speed=3;

/* CAR 1 */

m[4]o[1) .x;

m[5)o[1] .y;

m[6]o[1] .head;

m[7]o[1] .speed;

/* CAR 2 */

n[8)=o[2) .x;

m[9]o[2] .y;

m[10)o[2) .head;

m[111o[21 .speed;

}

if(kt==NULL) return(NULL);

if (kt->bucketNULL)

/*check uhere to split. kt—>d is the dimension and kt—>k is the value*/

if(m[(kt—>d)]>(kt—>k))

if(kt—>high=NULL) printf(’Error in tree (search)\n’);
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else return(search_tree(kt—>high, o));

else

if(kt—>low=NULL) printf(”Error in tree(search)\n”);

else return(search_tree(kt—>low, o));

else

/* return the correct model */

if((kt->bucket!NULL)&&((kt->high!=NULL)I I (kt->low!=NULL)))

printf (“Error in get state\m”);

return(kt);

}

/*****************************************************************************

procedure: split

description: finds the best dimension and location to split. Does a trial

split and performs a t—test.

Ktree *split(Ktree *kt)

{

Ktree *nl,*n2,*n3;

float t,k,m[DIMENJ;

float N1,N2,ml,m2,df,s,si,s2;

mt d,i;

if((n1(Ktree *) malloc(sizeof(Ktree)))==NULL)

{kt—>c0; printf(”Err: Malloc\n”); return(kt) ;}

if((n2(Ktree *) malloc(sizeof(Ktree)))==NULL){kt—>c=D; return(kt);}

if((n3(Ktree *) malloc(sizeof(Ktree)))==NULL){kt->c=O; return(kt) ;}

nl->high=n2;

ni—>lown3;

nl->bucketNULL;

n2—>d0;

n2—>cl;

n2->highNULL;

n2->1owNULL;

if((n2—>bucket(sample *)malloc(SAMPLES*(sizeof(sample))))==NULL)

kt—>c0;

return(kt);
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}

m3->d0;

n3—>c1;

n3->high=NULL;

n3->lowNULL;

if((n3—>bucket(sample *)malloc(SAMPLES*(sizeof(sample))))==NULL)

kt—>c0;

return(kt);

}

/* find the dimension with the*/

/* maximum variance */

var(kt->d,kt->bucket ,m);

k0;d0;

for(i0 ; i<DINEN ; i++)

if(m[iJ>k){km[i] ;di;}

nl->dd;

/* Find the location for the partion plane */

k=median(d,kt—>d,kt—>bucket);

ni->kk;

/* split the samples high or low */

for(i0;i<(kt—>d) ;i++)

if((kt—>bucket[i] .inputs[dl)>k)

{

n2—>bucket [n2—>d] kt—>bucket [ii;

(n2—>d) ++;

}

else

{

n3—>bucket [n3—>d] kt—>bucket [ii;

(m3—>d)++;

}

siO;s20;t0;

if(((n2—>d)>5)&&((n3—>d)>S)) /* need at least S samples each */

{

/* Do a t—test to see if the split is valid */

/* Null hypothesis means are equal */

mean(n2—>d,n2->bucket ,m);
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mlm[d];

mesn(n3—>d,n3—>bucket ,nO;

m2m[d];

var(n2—>d,n2—>bucket ,m);

slm[d];

var(n3->d,n3->bucket ,m);

s2m[d];

N10;

for(i0;i<(n2—>d) ;j++)

N1N1+max(n2—>bucket [i] .response);

N20;

for(i0;i<(n3—>d) ;i++)

N2N2+max(n3—>bucket [ii .response);

t((sl*si)/Ni)+((s2*s2)/N2);

if (t<O) t—1*t;

tsqrt(t);

t(mi—m2)/t;

}

if((t<—O.7O)I I(t>O.70)) /* threshold???*/

{

/* reject Null hypothesis */

/* Split the node */

free(kt);

nl—>c0;

return(ni);

}

else

{

/* accept Null hypothesis */

free(nl);

free(n2);

free(n3);

kt—>c0;

if(kt—>high!=O) printf(ttError in split\n”);

return(kt);

}

}
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/**********.******************************************************************

mt response(Ktree *kt)

‘C

mt N,i,j;

sample *B;

float r[MAX_BETI];

if(kt==NIJLL){ prmntf (“Error in tree(response)\n”);}

else

{

N=kt->d;

Bkt->bucket;

if((N>SAMPLES) II (B==NULL)) printf(”Error in Bucket\n”);

for(j0;j<MAX_BEH;j++) r[j]=O;

use the top element */

i0;

for(j0 j<MAX_BEH;j++)

‘C

r[j]B[N—1] .response[j]

if(rCj]>rti])i=j;

}

return(r [i]);

}

}

/*****************************************************************************

void update(Ktree *kt,Object *o,float *r)

mt i,j;

kt—>cl;

if((kt—>bucketfrNuLL)&&((kt—>high!NULL)I I(kt—>low!NULL)))

printf (“Error in Update\n”);

if ( (kt->d) <SAMPLES)

{

for(i0; i<MAX_BEH; i++)
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kt—>bucket [kt—>d] response [i] =r [i]

kt—>bucket[kt—>dl inputs[01o[0] .x;

kt—>bucket[kt—>dl .inputs[1)o[0] .y;

kt—>bucket [kt—>dl inputs 12) =0 [0] .head;

kt—>bucket [kt—>dl inputs [3] =0 [0] speed;

kt—>bucket[kt—>d) .inputs[4]o[1] .x;

kt—>bucket [kt—>d] inputs [5] =0 [1] y;

kt—>bucket[kt—>d] .inputs[6]o[11 .head;

kt—>bucket [kt—>d] inputs [7] o [11 speed;

kt—>bucket [kt—>d] inputs [81=0 [21 x;

kt—>bucket [kt—>dI inputs [91=012)

kt—>bucket [kt—>dl inputs [101=012] .head;

kt—>bucket [kt—>dl inputs [111=012] speed;

kt->d++;

}

else

{

/*push down like a queue*/

for(i0;i<(SAMPLES—2) ;i++)

{

for(j=0;jGIAX_BEU;j++)

kt—>bucket[i] .response[j]kt—>bucket[i+1] .response[j];

for(j=0;j<DIMEN;j++)

kt—>bucket[i] .inputs[jlkt—>bucket[i+1] .inputs[j]

}

j=(SAHPLES—1);

for(i0; i<11AX_BEH; i++)

kt—>bucket[j] .response[i]r[il

kt—>bucket[j] .inputs[0]=o[0] .x;

kt—>bucket[j] .inputs[l]o[0] .y;

kt—>bucket [j] inputs [2] =0 [0] .head;

kt—>bucket [j] inputs [31=0 [0] speed;

kt—>bucket[jl .inputs[41=o[11 .x;

kt—>bucket[j] .inputs[51=o[1] .y;

kt—>bucket [j] inputs [61=0111 .head;

kt—>bucket [j] inputs [71=0111 speed;

kt—>bucket[jl .inputs[81o[21 .x;

kt—>bucket[jl .inputs[9]o[21 .y;

kt—>bucket [ii inputs [101=0 [2] .head;
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kt—>bucket[j] inputs [1i]o [21 speed;

}

if((kt->bucket!=NULL)tc&((kt—>high!=NULL)I I(kt—>low!NULL)))

printf (“Error in Update\n”);

}

/***********************************************************‘n******’ic*********

Ktree *rebuild_tree(Ktree *kt)

{

mt MAXJ)EPTH6;

static mt depthO;

/* oct2. modified to only split to a fixed depth.*/

if (depth<MAX_DEPTH)

if ( (kt—>bucket) NULL)

printf(”depthY.d\n” ,depth);

if((kt—>c)1) ktsplit(kt);

}

else

{

depthdepth+l;

if((kt—>high) !=NULL) (kt->high)rebuild_tree(kt—>high);

if ( (kt—>low) NULL) (kt—>low) rebuild_tree (kt—>low);

depthdepth-l;

}

if((kt—>bucket !NULL)&&(kt—>low!NULL)) prmntf(”Error in Rebuild tree\n”);

return(kt);

}
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A KD-tree

10,0.8

8,132

7,59 7,39

A KD-tree generated after 360 games. The RD-tree is grown using a fixed depth update

schedule, testing all the nodes less then a depth of 5 every 7.5 seconds.

Each internal node of the tree contains the number of the dimension that is split and

the location of the partition plane. For example the root node contains the pair (0, 121)

which means that the balls x-dimension was split at the value 121. If the balls x-value

is greater then 121 the right path is followed, otherwise the left branch is followed. The

numbers of each dimension are:

66
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0 The balls x-dimension.

1 The balls y-dimension.

2 The balls orientation 0.

3 The balls speed.

4 The opponents x-dimension.

5 The opponents y-dimension.

6 The opponents orientation.

7 The opponents speed.

8 The agents x-dimension.

9 The agents y-dimension.

10 The agents orientation.

11 The agents speed.

The leaf nodes contain the number of the action that was learned for that cluster.

The list of possible actions and their corresponding numbers are:

0 wait

1 Shoot

2 Clear

3 Go Home

4 Defend Home
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5 Go Red

6 Defend Red

7 Servo

8 Unwedge




