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Abstract

We investigate the use Markov Decision Processes a.s a means of representing worlds

in which actions have probabilistic effects. Markov Decision Processes provide many

representational advantages over traditional planning representations. As well as being

able to represent actions with more than one possible result, they also provide a much

richer way to represent good and bad states of the world. Conventional approaches for

finding optimal plans for Markov Decision Processes are computationally expensive and

generally impractical for the large domains and real-time requirements of many planning

applications. For this reason, we have concentrated on producing approximately optimal

plans using a minimal amount of computation.

We describe two complementary methods for planning. The first is to generate ap

proximately optimal plans using abstraction. By ignoring certain features of a planning

problem, we can create a smaller problem for which an optimal plan can be efficiently

found by conventional means. The plan for this smaller problem can be directly applied

to the original problem, and also provides an estimate of the value of each possible state

of the world. Our second technique uses these estimates as a heuristic, and applies game

tree search techniques to try to determine a better action to perform in the current state

of the system. By repeatedly choosing an action to perform by searching, and executing

the action, we provide a planning algorithm which has a complexity that is independent

of the number of possible states of the world.
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Chapter 1

Introduction

The goal of research in artificial, or computational intelligence is to create an agent which,

at least in some limited sense, can be said to behave intelligently. What we mean by

the word “behave” varies widely from problem to problem, but in its most general sense,

“behaving intelligently” means carrying out some sequence of actions with a rational

intent based on information about the agent’s environment. The process of choosing

the sequence of actions to perform is planning. Informally, planning is the problem of

determining, given a set of objectives and a set of actions, a sequence of actions to perform

which will achieve some or all of the objectives.

As an example of a planning problem that we might want to solve, imagine a robot

that tries to keep its user supplied with coffee. The robot has a goal that it must achieve,

that of ensuring the user has coffee, it has a set of actions such as buying coffee, delivering

coffee, and moving to the user’s office that it can perform, and it has certain information

about the current state of the world, for example that the user wants coffee, that the

robot is at the coffee shop, and that it is sunny outside. The problem for the robot is to

plan a sequence of actions that will make the goal true.

Planning for problems of this type has been investigated in artificial intelligence for

many years. One of the earliest planning systems is STRIPS (Fikes and Nilsson 1971).

STRIPS uses goal-directed search to plan. The planner begins with the goal state, and

searches backwards through the state space until it reaches the initial state. The plan

it produces is a linear series of actions which will accomplish the goal. Although not all

1



Chapter 1. Introduction 2

classical planners fit precisely into this description for example, many produce partial

orders over actions, rather than total orders, and may find plans that will succeed from

a set of starting states, rather than a single one — most make a number of assumptions

about the problems they will be used for. In this thesis we are particularly interested in

relaxing the following assumptions, and building planning systems that can operate in

domains where they do not hold.

Agents achieve goals The definition of a classical planning problem is in terms of 1)

the initial state of the world (this need not be unique), 2) a set of actions the agent

can perform, and 3) a description of a state or states which constitute the agent’s

goal. The agent’s objective is to produce a sequence of actions which when executed

in the initial state (or any initial state if there could be more than one), will leave

the world in a goal state. While this representation of states as either goal states

or normal states is adequate for some domains, we would typically expect a much

richer way of describing how good or bad certain states are. For example, in the

coffee robot domain we described above, as well as its main objective of delivering

coffee the robot may receive rewards based on how hot the coffee is, whether it

disturbed people on its way to get the coffee, etc. Although its goal is to bring

the user coffee that is as hot as possible while disturbing as few people as possible,

the agent may find that these goals conflict, and hence must reason about which is

most important.

Actions always work Classical planning assumes that the results of all actions are

deterministic. For example, if an agent carries out the action Pickup block A, the

resulting state of the world is that in which the agent is holding block A (assuming

that it is possible for the agent to pick up the block), and this fact is known with

certainty. In many real-world situations, this is a very unreasonable assumption,
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the block might slip from the agent’s grasp, the agent might make a sensing error

and pick up block B instead of A, and so on. Although the most likely outcome may

be that the agent is left holding the block, an agent that oniy considers the most

probable result of a real-world action would he courting disaster. By considering

the probability and effects of other outcomes, and by making observations of the

world to determine the outcome that actually occurred when an action is carried

out, the agent can avoid actions with unlikely but catastrophic results, and can

also plan to achieve states which only occur rarely.

The whole world is visible Another important assumption of classical planning sys

tems is that the state of the world is completely observable. The agent always

knows exactly what is true at any given time. While this assumption may well be

true in some domains some scheduling problems are an example of this in

general it will not be. While planning systems which use this assumption can be

useful in a restricted set of problems, a general planner must still be able to operate

with partial information about the world.

This thesis examines one approach to planning which addresses at least the first two

of these issues, and makes some progress on the third,

We are particularly interested in computationally efficient planning. As we shall

see, there are already well-developed planning algorithms for the domain representations

which we are interested in, but their computational requirements are often polynomial

in the number of states in the system. Many AT planning problems are represented in

terms of propositions, and hence have exponentially many possible states (n atoms result

in 2’ possible worlds). A real-time planning algorithm for such a problem must perform

considerably better than exponentially in the number of atoms.

In summary, the motivation for this work is to build a planning system which operates
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in probabilistic worlds with a rich structure of rewards and penalties. The system should

have reasonable computational requirements, and should be designed for use in time

critical domains.

1.1 Decision Theoretic Planning

Decision-theoretic planning is an attempt to combine the artificial intelligence field of

automated planning with decision theory. Although researchers have been interested in

this idea for some time, only recently have the problems become well-posed. Decision

theory allows us to reason not only about whether a plan satisfies some goal or not,

but also about how good a plan is how quickly or cheaply it satisfies the goal, how

probable it is that the goal will have been satisfied by performing the plan, and how

valuable the particular goal achieved is, compared with other goals that can be achieved

by other plans. The ability to compare two plans and decide which one does best is a

great asset that many classical planning algorithms cannot provide.

Much of the research that has gone on in decision-theoretic planning has addressed the

class of problems associated with Markov Decision Processes (MDPs) (Howard 1971) (see

(Haddawy and Hanks 1992) for an alternative approach). MDPs are a form of stochastic

automata where every state has an associated numerical value or reward. Most recent

decision-theoretic planning algorithms use an MDP model in which there are a finite

number of states, a finite number of actions (each of which is a mapping from states

to probability distributions over the states) and a reward function (a mapping from

states to real numbers). An agent accumulates rewards as it moves through the MDP by

performing actions. Although other classes of problems can be addressed using decision

theoretic methods, MDPs provide a representation which is general enough to be used for

many interesting problems. They have been extensively studied in Operations Research,
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so a number of well understood algorithms for computing plans are available, at least for

simple forms of MDP.

Since the problems of interest in MDP planning are generally stochastic dynamical

systems, the standard approach to planning is to create a universal plan, referred to

as a policy, which indicates which action to perform in every situation that could be

encountered. For AT planning, computing an optimal policy is generally far too expensive,

so most decision-theoretic planning algorithms sacrifice optimality (although some will

converge on an optimal policy if enough computation time is available), preferring to

produce either a nearly optimal policy for a subset of the state space, or a policy that is

applicable in any state, but may be far from optimal.

Artificial intelligence research often concentrates on “tractable islands” — problems

which have additional structure that can be used to reduce the computation required

to find solutions to reasonable levels. The challenge of applying this type of approach

to Markov decision processes is a major motivation for this thesis, and has motivated a

number of other researchers in this area (Dean et al. 1993b; Nicholson and Kaelbling

1994). The following have been identified as one set of characteristics that make generat

ing approximately optimal policies easier. Although these are from (Dean et al. 1993b),

they also apply to our approach, and a number of other MDP algorithms.

• There are relatively many policies which have high (although not necessarily opti

mal) value. Since most algorithms do not produce optimal policies, some less-than

optimal policies must be reasonably good.

• From any given state, there are few states to which transitions can be made. In

other words, there are relatively few valid actions for each state, and more impor

tantly, actions have few possible outcomes.

• The value of a state can be estimated by considering the values of nearby states.
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Nearby states are those for which the expected number of steps to reach one from

the other is small.

1.2 Abstraction and Search in Markov Decision Process Planning

As Chapter 2 shows, Markov processes are extremely general, and somewhat laborious to

specify. In practice we expect most MDP planning problems not to be specified directly

as the MDP itself, but in a more compact representation which makes the structure in

the problem explicit. In Section 2.2 we suggest one such representation, other researchers

have proposed similar models. The representation we have chosen is in terms of logical

propositions. Thus a state in the MDP represents a possible world in the logical model

(an assignment of truth values to all the propositions).

A second consideration when developing our approach was the problem of planning

in real-time. Since well developed methods already exist for finding optimal policies for

MDPs, any contribution from Artificial Intelligence must be directed at taking advantage

of structure for computational gains, and at finding close-to-optimal plans efficiently.

Designing “anytime” algorithms that always produce a plan, but produce better ones if

more time is available has also motivated this thesis.

Although we are very interested in the problem of how to plan if the agent does not

know the state of the world, this is an extremely difficult problem, and for the purposes

of this thesis, we will concentrate instead on domains where the agent always knows what

the current state of the world is, even though it cannot predict exactly the outcome of its

actions. In the terminology of decision theory, we say our agents operate in completely

observable worlds.

Our approach is twofold. Before any actions are performed, we use relatively small

amounts of computation to produce a policy which we will treat as a set of default
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reactions, actions that the agent will do if there is no time to find a better plan. To do this

we use an idea from classical planning, namely abstraction. The idea of using abstraction

is to solve a large problem by constructing smaller but closely related problems, and using

the solution to a small problem as the basis for a solution to a larger problem. In the case

of our algorithm, we ignore some of the atoms in the propositional representation of the

problem to create a smaller MDP which we will refer to as the abstract MDP. Because

of the way we choose the atoms to ignore, an optimal policy for this small MDP can also

be used as a (usually sub-optimal) policy for the original problem.

The second part of our approach is performed at run-time. Since the policy we found

using abstraction is usually not optimal, we use search to try to find a better strategy

for the current state. By interleaving search with execution — search for the best action

to do now, perform it, and then search for the best action in the new state — we can

reduce the size of the search considerably, and if there is no time for searching, we still

have the default reactions we computed with the abstraction algorithm.

We can compute theoretical bounds on the difference in value between an optimal

policy for the original MDP, and a policy produced from any abstract MDP. With these

bounds a user can trade off computation time for policy accuracy by choosing an ap

propriate abstraction. Similarly, the depth of the search tree can be adjusted to fit the

available time before the next action must be performed, and actions can be cached to

avoid recalculation of the best action when revisiting a state. These properties contribute

to making the algorithm ideally suited for time-critical domains.

1.3 Organization of this Thesis

This chapter has introduced the area of decision-theoretic planning, described the moti

vation behind this work, and briefly outlined the contribution of this thesis. Chapter 2
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describes the MDP model in considerably more detail, examines the propositional rep

resentation we use for domains, and provides a summary of related work in classical

planning, search, and decision-theory as well as in decision-theoretic planning itself.

Chapter 3 is a detailed description of the abstraction algorithm, including theoretical

results concerning the value of abstract policies, and experimental results that demon

strate the algorithm in operation. Similarly, Chapter 4 describes the search algorithm.

Chapter 5 discusses how the two algorithms combine to form a complete planning system,

and describes some of the future research this thesis leads towards.



Chapter 2

Markov Decision Processes for Planning

In this chapter we will describe the basic characteristics of Markov Decision Processes

(MDPs), compact representations for them, and a standard approach from Operations

Research for planning using them. For reasons of simplicity, we will only concern ourselves

with completely observable MDPs as this research has almost entirely concentrated on

this model. Although partially observable MDPs can accurately represent many more

real world problems, and a much larger class of situations, they are computationally

much more difficult to deal with. We will leave our discussion of the partially observable

case to Chapter 5.

Finite automata provide a general way of representing problems that include an ex

plicit state space, and a set of actions each of which is a mapping from state to state. If

the actions are probabilistic mappings from a state to a probability distribution over

all states — such a model is called a stochastic automata. A Markov Decision Process

is a stochastic automata in which each state has a numerical reward or cost associated

with it (we will use the term reward to describe both rewards and costs, costs can be

considered as negative rewards). At each state, a decision is made about what action to

perform, with the objective being to maximize the total accumulated reward over a series

of such decisions. An MDP represents all possible worlds explicitly as states, represents

actions as stochastic transitions from state to state, and represents objectives or goals in

terms of rewards associated with states. Although rewards and costs can be associated

with actions as well as states, we will not consider that case here.

9
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There are many advantages to using MDPs for decision theoretic planning. They

are very general, and allow a wide variety of problems to be represented. The reward

structure is much more flexible than traditional goal representations for planning, and

MDPs are much better than classical planning at representing processes, so they can he

easily used to plan in systems that must keep some condition or conditions true as much

as possible, or deal with an infinite sequence of objectives. MDPs have long been used in

Operations Research, and well developed algorithms exist for finding optimal universal

plans or policies.

One difficulty with using MDPs for planning is that the Markov Property (see below)

must hold in the domain. Although a model that conforms to the Markov Property can

be designed for any domain, in practice this may result in a much larger state space.

Another problem is that it is generally not possible to take advantage of the structure

of a domain because it is hidden in the MDP model of it. By using more compact

representations of domains we can take advantage of certain structure when planning

(see Chapter 3).

2.1 The MDP model

For our purposes, an MDP can be defined by the tuple < 5, A, T, R >, where S is a finite

set of world states that the agent can distinguish, A is a finite set of actions the agent

can perform, T is a state transition function that describes the effects of each action, and

R is the reward function. Although this need not be the case in general, we will assume

that the set of feasible actions for any state s E S is A every action can be attempted

in any state. T is a mapping from S x A into discrete probability distributions over

S. We write Pr(s2A, Si) for the probability that state s2 results if the agent performs

action A in state s1. As we would expect, 0 Pr(tIA, s) 1 for all s,t, and for all
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C)

Bo/

to.: B 03

\A0.7

B0.8

A0.2 A0.6

Figure 2.1: An example of an MDP with 5 states and 2 actions.

s, Zs Pr(tIA, s) = 1. R is a mapping from S to which specifies the instantaneous

reward the agent gains for entering a state. ‘We will write R(s) to signify the reward for

entering state s. By our definition of T, we ensure that the Markov Property holds.

Definition 1 [Markov Property] A tuple <S, A, T, R > has the Markov Property if the

result of performing any action A e A depends only on the current state s e

not on the sequence of actions that left the world in state s.

Figure 2.1 shows an example MDP depicted as a directed graph. Each arrow repre

sents a possible state-to-state transition, and is labeled with the action that could cause

the transition to be used, and the probability that it will be used given that action is

performed. For example, from state u, if action B is performed, the transition from u

to itself will take place with probability 0.3. Here S is {s, t, u, v, w}, 1? is {A, B}. T for

action A is:
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From To s t u v w

s 0 0.3 0 0.7 0

t 0.10.90 0 0

u 0.6 0 0 0.4 0

v 0 00.40.60

w 0 0 0 0.80.2

One possible reward function for the MDP is: R(s) = R(t) = R(u) = R(v) =

—1, R(w) = 0. This produces an MDP where the best actions to take are those that

put the world in state w with the minimum number of actions, and then keep it there.

The optimal policy for this MDP is to perform action A in states u and w, and action B

otherwise.

2.2 Propositional Domains

In many planning problems, we describe the state of the world using a set of propositional

atoms. For example, we might say that Raining is false in the current world, but that

Cloudy is true. This section discusses the propositional model of actions that we have

chosen to use. In translating such a scheme into a MDP, we make each state in the

network correspond to a possible world, so for a world represented by n propositional

atoms, the resulting MDP contains 2 states.

2.2.1 The extended STRIPS model

The representation described here is based on that used in BURIDAN (Kushmerick, Hanks

and Weld 1993) with the addition of a method for representing independence between

different aspects of the outcome of an action.
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In the classical STRIPS (Fikes and Nilsson 1971) representation, actions are repre

sented with a list of preconditions and a list of effects made up of literals which will

become true or false if the action is executed. If the preconditions are true, and the

action is performed, then the effects list is applied to the current world to determine

the new world. In BURIDAN, this is extended by adding multiple mutually exclusive and

exhaustive preconditions which we will refer to as discriminants (, and by making the

effects probabilistic. For each action and discriminant, there is a set of effects lists with

associated probabilities. The probabilities sum to one, and represent the probability

that the corresponding effects actually occur given that the action is performed with the

discriminant true. Table 2.1 shows a problem represented in this way. If we look at

the BuyCoffee action, we see that it has two discriminants. If Office is true, the with

probability 1, there will be no changes to the state, while if Office is false, then with

probability 0.8 HRC will be true after executing the action, regardless of the previous

value of HRC, and with probability 0.2, there will be no effect. If s is the current state

(represented as the set of literals true in that state), and is the effect list to be applied,

then the new state that results is:

We have extended the BURIDAN representation slightly in two ways. Firstly, we have

added what we call action aspects. These are designed to represent the fact that in some

of the effects of an action are dependent on only some of the preconditions. For example,

in Table 2.1, the Move action has two aspects. The first represents the fact that when

the agent performs a Move, the resulting location depends on the agent’s current location

only. It is independent of the values of Rain and Umbrella. The second aspect deals with

whether the agent becomes wet or not. Since this is independent of where the agent is,

the precondition only contains Rain and Umbrella. Actions with multiple action aspects
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Table 2.1: An example domain presented as STRIPS-style action descriptions. (a) is the
action description for the problem, while (b) is the reward function. Note that HUC and
HRC are HasUserCoffee and HasRobotCoffee respectively. UserlsThirsty* is a random
event.

Action Discriminant Effect Prob.
Move Office -‘Office 0.9

0.1
-‘Office Office 0.9

0.1
Move Rain,—’Umb Wet 0.9

0.1
BuyCoffee -‘Office HRC 0.8

0.2
Office 1.0

GetUmbrella Office Umbrella 0.9
0.1

DelCoffee Office,HRC HUC,HRC 0.8
HRC 0.1

0.1
-‘Office,HRC -HRC 0.8

0.2
-HRC 1.0

UserlsThirsty* —HUC 0.01
0.99

(a)
Sentence Value Sentence Value

FIIUC, —‘Wet 1.0 -iHUC, -‘Wet 0.2
HUC, Wet 0.8 -‘HUC, Wet 0.0

(h)
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Table 2.2: Translating action aspects and random events into single actions. (a) is a
summary of both aspects of the Move action, while (b) is the combination of the random
event UserlsThirsty* with the Get Umbrella action.

Action Discriminant Effect Prob.
Move Office,Rain,—iUmb -‘Office,Wet 0.81

Wet 0.09
—iOffice 0.09

0.01
Office,-i(Rain,-iUmb) -‘Office 0.9

0.1
—iOffice,Rain,—iUmb Office,Wet 0.81

Wet 0.09
Office 0.09

0.01
-Office,-(Rain,--iUmb) Office 0.9

0.1
(a)

Action Discriminant Effect Prob.
GetUmbrella Office Umbrella 0.891

Umbrella,-’HUC 0.009
—HUC 0.001

0.099
-‘Office -HUC 0.01

0.99
(b)

can be translated into actions with a single aspect by forming the “cross-product” of their

effects. Table 2.2 (a) shows the translated form of the move action from the example.

The second extension of the BURIDAN model is the addition of random events. These

are actions over which the agent has no control and which (in our rather naive model)

occur randomly at the same time as some action of the agent. If we imagine a situation

where an agent must keep some process running smoothly, random events represent things

that occur during the process that the agent must deal with. As with action aspects,

random events can be combined with normal actions by forming the “cross-product” of
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Table 2.3: Parts of two actions to be translated into a single action. A1 is a normal
action, A* is a random event, arid A is the new action produced by combining them.
Discriminants D1 and D2 are combined into a single new discriminant. The o operator
is defined on two sets of literals E and F such that E F E U {F \ {l : —11 E}}

Action Discriminant Effect Prob.
A1 D1 E1,1 P1,1

E1,2 P1,2

E1, P1,n

A* 2 2,1 P2,1
E2,2 P2,2

E2,m P2,m

A D1 A D2 E1,1 E,1 Pi,i P2,1
E1,1 E2,2 P1,1 P2,2

E1,1 D’ E2,m P1,1 P2,m
E1,2 E2,1 P1,2 P2,1

E1, E2,m P1,n P2,m

their outcomes. If an action of the agent and one or more random events would have a

conflicting effect on some atom (for instance if the agent delivered coffee to the user just

as the user became thirsty), we arbitrarily assume that the action written first in the

representation of the problem takes precedence. Table 2.2 (b) shows the result of adding

the random event UserlsThirsty* to the Get Umbrella action. The complete translation

of Table 2.1 can be found in the appendix.

Table 2.3 gives a formal definition of the result of combining two discriminants in the
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process of translating a regular action and a random event into the compiled form. To

compile a sequence of n actions A1,A2,. .. , A, (one of which is assumed to be a regular

action, and the rest random events) into a single action, we proceed by compiling A1 and

A2, then compile the result with A3, and so on. To compile two actions A and B, for

each discriminant of A and for each discrirninant of B we produce a new rule (here we

refer to a discriminant and its set of effects and probabilities as a rule) as in Table 2.3.

The new rule will have the conjunction of the two discrirninants as its discriminant, and

will contain a probability and effect for every pair of effects in the original rules. If E

and F are effects from A and B with probabilities p and q respectively, then the new rule

will contain an effect E U {F \ {l : -11 E E}} which has probability p• q. Obviously, if the

actions have discriminants D1 and D2 where D1 A D2 I— L then no new discriminant is

created for their combination. Similarly, there may be a large number of identical effects

in the new rule that can be combined by summing their probabilities, and there may be

effects that include literals that appear in the corresponding discriminants. These literals

which the action makes true, but which are already known to be true can be deleted from

any effects lists they appear in.

We will use a slightly different way of writing the extended STRIPS rules when we

are talking about effects. In our alternate representation, a problem consists of a list

of rules. Each rule is a tuple consisting of an effect E, the probability of it occurring

p, the discrirninant D that makes it possible, and the action A it relates to. This

representation is identical to the standard representation given above the elements of

each tuple are identical but is a more convenient way to talk about effects lists and

their associated actions and discriminants. We will also occasionally want to talk about

the set of atoms that appear in the logical sentence that is a discriminant. We will write

Df for the set of all atoms that appear either negated or unnegated in discriminant D.

For example, if D is p V -q, then D = {p, q}.
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We have represented actions in terms of propositions, but we would also like a com

pact representation of the reward function. There are two simple representations for

rewards that we have considered. In the first, each atom is assigned rewards for its truth

or falsehood and rewards for states in the MDP are the sum of the rewards for each

atom’s value in that state. A more general approach (in fact any reward function can be

represented by this method) is to assign rewards to some set of mutually exclusive and

exhaustive sentences so that the reward for any state in the MDP is the reward for the

sentence that is true of that state. Our algorithms work equally well with either of these,

so we will generally prefer the second as it can describe a strictly larger class of reward

functions.

2.2.2 Using Bayesian networks

Nicholson and Kaelbling (1994) use a representation of actions as time dependent Bayesian

networks. They use a two-slice network to represent each action. The first slice represents

the values of (possibly multi-valued) variables before the action is performed, while the

second slice represents the value after the action. In addition there is a value node which

represents the instantaneous reward for the new state of the world. Arcs in the diagram

represent probabilistic dependence between variables. As with conventional Bayesian

networks, each node contains a table of conditional probabilities over all the nodes with

arcs leading to it.

The Bayesian Network representation for actions is more expressive than the extended

STRIPS approach in that nodes in the network may have more than two possible values.

However, for propositional domains the two are equivalent. Figure 2.2 shows our example

domain from Table 2.1 represented with Bayesian Networks.
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Move

BuyCoffee

DeliverCoffee

GetUmbrella

Figure 2.2: The influence diagram representation of the actions for the coffee robot
example.
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2.3 Goals and Rewards

In classical planning, the objective of the agent is to make some goal true. A planning

problem typically consists of a set of actions and a goal, with the agent’s task being

to find a sequence of actions that make the goal true. Note that for most classical

planners, the objective is to find any plan that satisfies the goal, without considering

how efficient the plan is. Decision theoretic planning allows a more general description of

the aims of the agent. As we have already described, it allows us to think about agents

as continuing processes, but we can also use a decision theoretic framework to represent

domains where there are multiple goals with different priorities, and goals with more

interesting structures. As an example of this, the agent may want to achieve one of two

things, but achieving both would be undesirable.

How can we represent classical goals in the framework of MDPs? The standard

approach used by (Dean et al. 1993b) is to create a reward function such that R(s) = 0

if s is a state in which the goal is satisfied and R(s) = —1 otherwise, and to make all

states in which the goal is satisfied absorbing (an absorbing state is one in which the

result of every action is to leave the state unchanged). This reward function will cause

the agent to seek out goal states using as few actions as possible. In contrast with a

classical planner, it finds a minimal plan, not just any plan that will achieve the goal.

2.3.1 Why use rewards?

As we have already said, rewards provide a more flexible representation of an agents

aims, and also allow more complex goals to be represented, but there are other reasons

for using the full power of a reward function in decision theoretic planning.

In many situations, producing optimal plans in probabilistic domains is computation

ally infeasible. The cost of calculating an optimal plan in a time-critical domain may be
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greater than the improvement in performance gained. If approximate plans are useful,

the reward function can be a very valuable aid in determining the most important tasks

for the agent. For example, consider the example domain in Table 2.1. The reward

function shows us that the most important goal to achieve is that the user has coffee.

In making a plan for this domain, it may well be worth ignoring the small reward for

keeping the agent dry, and concentrate on delivering coffee. Classical goals are unable to

represent information of this kind.

2.4 Policy Iteration and Planning

A control policy r is a mapping from S to A. If an agent adopts some policy r, then ir(s)

is the action the agent will perform whenever it finds itself in state s. Thus r is a universal

plan, an action to perform in every possible circumstance. An agent that adopts policy

K can also be thought of as a reactive system. Given an MDP, an agent ought to adopt

a policy that maximizes the expected rewards for states visited. Such a policy is called

an optimal policy. We will concentrate on discounted infinite horizon problems where the

actions of the agent continue infinitely, and the value of a reward received n actions in the

future is discounted by some factor /3n(O </3 < 1). We do this for a number of reasons.

Even though in many situations we can expect the agent to have a finite lifetime, we

rarely know in advance how long it will be. We can approximate a long finite horizon

process with an infinite horizon one. Discounting is used in Operations Research MDP

problems where a dollar earned today is worth more than a dollar earned tomorrow, or

where the agent has some probability 1
— /3 of “dying” at each time step. While this

may not be the case in many planning problems, discounting encourages short plans,

and is much easier to compute than alternative methods such as average reward criteria

(Puterman 1994). As well as an action to perform in each state, we are also interested
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in the value of that state. While the total reward received by an agent will diverge over

an infinite lifetime, the discounted reward will converge on a finite value (assuming finite

rewards). The agent’s objective is to maximize the expected accumulated discounted

reward for all future states over an infinite time period. One way to look at a problem

in decision theoretic planning is as finding a good — or preferably optimal — policy, at

least for all states that the agent actually visits.

Given some policy ir and a reward function R, we can compute the value of any state

s e S (V.(s)) by the following formula due to Howard (1960):

V.(s) = R(s) + Pr(tir(s), s)V(t)
teS

Since the value of each state is dependent on the values of all others, we can find the

value of r for all states by solving the set of simultaneous linear equations V(s)Vs E S.

A policy r is optimal if:

(Vs E S)(Vir’)(V(s) > V’(s))

2.4.1 Calculating optimal policies

There are two commonly used algorithms for calculating optimal policies in discounted

infinite horizon problems. Value iteration (Bellman 1961) converges on an optimal policy

by considering the effects of states further and further from each state. It is guaranteed

to converge on an optimal policy, but only approximates the value of states in the policy.

The algorithm we have used is policy iteration, first presented by Howard (1960). Policy

iteration converges on both an optimal policy and accurate values for states under that

policy. Althollgh its computation time is exponential in the number of states in the worst

case, policy iteration tends to converge quickly in practice.
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The policy iteration algorithm begins with some arbitrary policy, and repeatedly

improves on it until no more improvement is possible. At that point it is guaranteed to

produce an optimal policy. The algorithm in detail is given below:

1. Let r’ be any policy on S

2. While K ‘‘r’ do

(a) K =

(b) For all s e 8, calculate V,,.(s) by solving the set of SI linear equations given

by the equation above.

(c) For all s S, if there is some action a E A such that R(s)+/3 ies Pr(tla, s)V7,.(t) >

V(s) then ir’(s) = a;

otherwise 7r’(s) = K(s)

3. Return ‘ir

The algorithm begins with an arbitrary policy (a good choice is a greedy approach

that chooses the action with the greatest immediate reward), and repeatedly improves

on the policy until no more improvement is possible. The improvement step is performed

by first constructing a vector containing the value of each state by solving the set of 181
linear equations in SI unknowns given above in the equation for the value of a state.

Algorithms for solving linear equations of this kind are typically 0(n3) where n is the

number of unknowns. Once the value of every state under the current policy is known,

the algorithm attempts to find a better action for each state if one exists. To find a

better action for a given state, the algorithm holds the rest of the policy and the value

vector constant, and checks every action to see if it has a higher value than the current

one, using the same equation as before. Although this won’t be the true value of that
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Table 2.4: The optimal policy for the sample domain.

HUC,HRC HUC,HRC HUC,HRC I-IUC,HRC
Office BuyCoffee Move BuyCoffee Move

Office,Rain, BuyCoffee Move BuyCoffee BuyCoffee
Umbrella, Wet

Office Move DeliverCoffee Move BuyCoffee
Office,Rain, GetUmbrella DeliverCoffee GetUmbrella GetUmbrella

Umbrella, Wet

action (the value of this state will differ from that in the vector), it is still an indication

that the policy is not yet optimal. The algorithm stops performing improvement steps

when no better action than the one in the current policy can be found for any state.

For the example problem in Table 2.1, there are 64 states in the MDP. The optimal

policy discovered by policy iteration (using = 0.95) is shown in Table 2.4. As the table

shows, if the robot doesn’t have coffee and is in the office, it will get the umbrella if there

is rain, the robot is dry, and it doesn’t have it already, and will then move to the coffee

shop. If the robot is at the coffee shop it will buy coffee if it doesn’t have any, and will

then move to the office unless the user has coffee and it is likely to get wet, in which case

it does nothing (by buying more coffee). If the user wants coffee and the robot has some

in the office then it will deliver it, but if the user doesn’t want any, the robot will get the

umbrella if that might be useful, and then does nothing (by trying to buy coffee in the

office). The fact that the robot may repeatedly buy coffee while waiting until the user

becomes thirsty is a good example of why an MDP model with rewards (or in this case

costs) on actions as well as states would be useful.

The values of states in this policy range from 12 to just under 20, with the lowest

values (12—14) for states where the robot is (or will probably become) wet and the user

has no coffee. States where the robot is dry, or the user has coffee but not both have
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intermediate values (15—18), while the highest values (19—20) are for states where the

robot is dry and the user has coffee. Computing this policy required 0.48 seconds.

2.5 Related Work

Decision-theoretic planning is a relatively new field. Consequently, there is little closely

related previous work. However, the abstraction procedure is related to other such algo

rithms from classical planning, and the search algorithm bears similarities to a number

of search procedures, especially from game playing, and decision analysis.

2.5.1 MDP planning

This section describes a selection of important papers that are directly related to this

thesis in that they are performing decision-theoretic planning using explicit MDP models

in domains with many of the same characteristics we are assuming.

Dean, Kaelbling, Kirman and Nicholson — Planning Under Time Constraints

in Stochastic Domains

Dean, Kaelbling, Kirman and Nicholson (1993b; 1993a) produced two papers which pro

vided the motivation for a lot of the recent interest in using MDPs for decision-theoretic

planning, including this thesis. Although MDPs and algorithms for them were already

well known in operations research, these two papers first suggested examining time

critical applications where optimal policies cannot be computed from an AT perspective.

The approach taken in these papers is to use information about the starting state of

the system, the reward function, and the transition probabilities for actions in order to

restrict the planner’s attention to only those states which are likely to be encountered

in the process of reaching the goal. By planning in this smaller envelope of states, the
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agent can find a policy with much less computation than the original domain. The size

of the envelope can be tailored to the amount of computation time available, although

if the agent leaves the envelope, replanning will be required. These papers also consider

the question of when computation should be performed. In their precursor deliberation

model all computation is performed before any actions are taken, while the recurrent

deliberation model plans and acts in parallel.

Nicholson and Kaelbling Toward Approximate Planning in Very Large

Stochastic Domains

Nicholson and Kaelbling (1994) are also interested in automatically generating abstrac

tions. As with our approach, Nicholson and Kaelbling assume a compact representation

of the domain in terms of domain attributes, although they allow theirs to have more

than two possible values, and represent actions as two-slice Bayesian networks. They

also perform abstraction by ignoring domain attributes, although their abstraction pro

cedure is rather more general as abstractions can always be created. Unfortunately, with

this generality comes a great deal of computation, as the effects of actions must all be

recomputed by assuming a uniform distribution over the values of the ignored attributes.

To decide which domain attributes to ignore, Nicholson and Kaelbling use sensitivity

analysis. Their approach is to generate an abstraction and an envelope, and continually

refine these by extending the envelope, building a policy for it (in the abstract MDP),

and expanding the abstraction to be more fine-grained if necessary, until the agent must

act.

Tash and Russell Control Strategies for a Stochastic Planner

Tash and Russell (1994) use a rather different form of the envelope approach of Dean et

al. Their system begins with an heuristic which estimates the value of each state, and
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through a number of iterations, improves this heuristic to more accurately represent the

true value of each state. Tash and Russell describe an algorithm whereby an envelope is

created around the current state, the states just outside the envelope (the fringe) have

their values fixed to the heuristic values, and a local form of policy iteration is performed

on the envelope and fringe. The result of the local policy iteration algorithm is an action

to perform for every state in the envelope, and new heuristic values for each of those

states. As with the search algorithm we present in Chapter 4, the agent in Tash and

Russell’s planner executes each action as soon as it has computed it, and then rebuilds

its envelope to choose the next action. The relationship between our search algorithm,

and the approach of Tash and Russell is analogous to that between value iteration and

policy iteration except that we make no changes to our heuristic function, preferring to

save computation time when revisiting states.

Tash and Russell also present an introspective planner which not only takes into

account the problem domain it is working in, but also its knowledge of the domain when

planning. The introspective planner is designed to expend extra computational effort

in areas where it currently has little information, and to use well-known paths through

the state space when little computation time is available. They present results which

show the introspective planner finding optimal plans more quickly than their standard

algorithm when computation time is relatively cheap, but more slowly if computation

time is expensive.

2.5.2 Other decision-theoretic planning algorithms

In this section we will examine a few other decision-theoretic planning algorithms that

do not directly use MDPs as their underlying model of the world. Unlike the MDP

planners which generally use dynamic programming techniques and find universal plans

(at least for a restricted part of the state space), these systems are much closer to classical
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planners.

Feldman and Sproull (1977) were among the first researchers to investigate the use

of decision theory for AT. They suggested using bounds on utility to guide the planning

process, but they left their utility model relatively undeveloped, focusing instead on

representational issues for reasoning with uncertainty.

Haddawy and Hanks — Representations for Decision-Theoretic Planning:

Utility Functions for Deadline Goals

Haddawy and Hanks (1992) made one of the earliest attempts to couple decision theory

with AT planning. In particular, they were interested in using representations of goals

to determine plan quality. Although they make no effort to model actions, either proba

bilistically or otherwise, they have a detailed model of planning goals, and examine ways

that the utility of a plan will vary depending on whether all goals are achieved, and

on whether there is only partial achievement. Unlike our approach, they also examine

temporal aspects of planning. Their goal description language is rich enough to capture

requirements such as “Make G true by noon” or “Make sure that H is true between

lOam and 1pm,” allowing them to reason about goals that are partially completed from

a temporal point of view (for example if H is true only between 11am and noon).

Kushmerick, Hanks and Weld — An Algorithm for Probabilistic Planning

Kushmerick, Hanks and Weld (1993) developed the BURIDAN planner, a method for

performing probabilistic planning with uncertainty about both state and the effects of

actions in a classical planning framework. BURIDAN uses a classical partial-order planner,

for example SNLP (McAllester and Rosenblitt 1991) for plan creation, and a probabilistic

reasoning system to evaluate the partial plans. The system requires a set of probabilistic

actions, a probability distribution over initial states of the world, a goal expression, and
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a probability threshold. A solution consists of a partial ordering of actions which will

accomplish the goal with probability greater than the threshold given the distribution of

initial states. Note that the notion of a goal here is of a set of states that must be reached.

BURIDAN is unable to make use of the rich variety of goals that can be represented in

MDP planners.

The BURIDAN planner builds a complete plan to reach the goal based on its initial

information about the initial state, without executing a single action. One characteristic

of the plans it makes is that actions are frequently repeated in order to increase their

probability of success. A modification of the BURIDAN algorithm, where the agent can

perform actions and gather information to avoid this behaviour, is the C-BURIDAN planner

presented in (Draper, Hanks and Weld 1994). Here, actions not only change the world,

they also give the agent messages about the state of the world (some actions may oniy

observe the state of the world), by building conditional plans based on these messages,

C-BURIDAN can produce plans where an action is repeatedly performed until a message

that shows it has succeeded is received.

Haddawy and Doan Abstracting Probabilistic Actions

Haddawy and Doan (1994) use an action model very similar to that of the BURIDAN

planner, although it can handle a much larger class of rewards and costs, including re

wards that vary over time. Their DRIPS system attempts to use abstraction to reduce the

number of possible plans the agent must generate and evaluate. While we are interested

in abstracting states while leaving the actions unchanged, Haddawy and Doan build ab

stract actions by combining possible outcomes of one or more actions. For example, if

the system contains two actions ‘drive on the mountain road” and “drive on the valley

road”, the abstraction might abstract them into a single action which combines the out

comes and preconditions of both. The DRIPS system searches for a plan that maximizes
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expected utility by first building abstract plans, and then only refining those with the

highest expected utility. Although this technique greatly reduces the number of plans

that DRIPS evaluates, it is not clear how much computation would be required to find

optimal plans in real-world domains by this approach.

2.5.3 Abstraction in classical planning

In this section we examine the use of abstraction in classical planning. Using abstract

versions of a problem in order to solve it efficiently is by no means new. The first formal

description and application of this idea to planning is in the ABSTRIPS planner described

below.

Sacerdoti — Planning in a Hierarchy of Abstraction Spaces

Sacerdoti (1974) described the earliest use of abstraction in his ABSTRIPS planning sys

tem. Many of the ideas from this system have influenced our abstraction procedure.

Along with a description of the actions and the goal, ABSTRIPS must also be provided

with an abstraction hierarchy which is used to automatically assign criticalities (a mea

sure of how difficult a literal is to achieve) to the preconditions of each action. The

system uses this to form a hierarchy of problems with the topmost level containing only

the literals in the goal that are the hardest to satisfy, since the actions that make them

true are the most likely to be clobbered by the effects of other actions, and the lowest

level is the original problem. ABSTRIPS builds a plan at the topmost level of the hi

erarchy, where only the most critical propositions are reasoned about, and then refines

the plan level by level by including more preconditions, and operators to satisfy them,

until a complete plan has been constructed. Our approach is closely related to this as

we form abstract problems by only including the most important propositions. Although

we generally don’t construct more refined plans from the abstract ones in the same way
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ABSTRIPS does, Chapter 3 mentions the possibility of using abstract policies to seed the

policy iteration algorithm in the original domain to find optimal policies more efficiently.

Knoblock — Generating Abstraction Hierarchies: An Automated Approach

to Reducing Search in Planning

Knoblock (1993) extends the ABSTRIPS approach to abstraction with the ALPINE sys

tem, which automatically learns the abstraction hierarchy that ABSTRIPS requires. The

approach is to construct a partial ordering of the literals in the system by finding con

straints between literals, building a graph of the constraints, and topologically ordering

the graph. A constraint from one literal to another represents the fact that achieving the

first might interfere with achieving the second, and hence the first should be at least as

high in the abstraction hierarchy. This procedure is very similar to and inspired —

the abstraction algorithm we describe in Chapter 3.

Smith and Peot — Postponing Threats in Partial-Order Planning

Partial-order planners, such as SNLP (McAllester and Rosenblitt 1991), operate by con

structing plans where two actions are ordered (one must take place before the other)

only if one has an effect which threatens the preconditions of the other. Ordering two

actions is known as resolving a threat. Smith and Peot (1993) describe an algorithm

for avoiding having to resolve some threats during the planning process by postponing

the threat until the plan is complete. In order to do this, they introduced the concept

of operator graphs, a generalized form of the graphs constructed by the ALPINE system

for total-order planning. Operator graphs represent the fact that certain actions make

the preconditions of other actions true: there is a path (sequence of arcs) in the graph

between two literals if performing the actions along that path will make the second literal

true if the first one is. These graphs show the deterministic equivalent of the relationships



Chapter 2. Markov Decision Processes for Planning 32

we discover for probabilistic actions when we automatically construct abstractions (see

Chapter 3). Although the uses we put them to is rather different, the graphs Smith and

Peot construct represent exactly the relationships we are interested in when we construct

abstractions.

2.5.4 Markov decision processes and Decision Theory

There is a huge body of work in the area of Markov decision processes, most of it in

the field of operations research. There are two well known algorithms for constructing

optimal policies for MDPs where rewards are discounted over time. We have already

described the most commonly used, policy iteration, described by Howard (1960). The

other commonly used algorithm is value iteration(Bellman 1961). Value iteration begins

with a vector of estimated values for each state, and repeatedly updates the value of each

state until the vector converges on the optimal value. To perform each update, the value

iteration algorithm finds the action which gives the highest expected immediate value

(using the values from the previous iteration), and sets the new value of this state to be

the immediate reward plus the discounted expected value of performing that action. If

V is the value vector at the ith iteration, the (i + 1)th iteration value for state s is:

= R(s) + 3 max{ Pr(ta, s)V(t) : a E A}
teS

This function is guaranteed to converge in the limit to the optimal policy, and in practice,

often converges quite quickly. The search procedure we describe in Chapter 4 resembles

a local form of policy iteration in that deeper and deeper search will converge on the

correct value for a state in the same way that value iteration does.

For a more recent survey of policy construction in MDPs, including discussion of

partially observable MDPs, semi-Markov processes, non-discounted MDPs where the

average reward earned per action must be maximized, and more efficient algorithms such
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as modified policy iteration for computing optimal policies, see (Puterman 1994). This

also describes work on finding optimal policies by aggregating states. However, rather

than taking advantage of the way the problem is represented as our abstraction algorithm

does, these algorithms use the MDP directly when deciding when to aggregate states.

Although we have yet to implement many of its suggestions, we were greatly influenced

in this research by (Russell and Wefald 1991). Russell and Wefald discuss decision

making in general, and in particular, deciding whether to perform further sensing and/or

computation in order to improve a decision, or whether to act now with the current

information. Adding the ability to reason introspectively about the value of further

computation is an important capability of any planner, and one we would very much like

to add to our system.

2.5.5 Search algorithms

The search algorithm described in Chapter 4 is closely related to a number of classic AT

search algorithms. Although the algorithm is in essence a decision-tree search, its use of

heuristics and pruning techniques is based in game-tree searches.

A decision tree is an explicit representation of all the possible scenarios that could

occur following a decision. The root of the tree represents the initial situation, while

each path through the tree represents a series of decisions, outcomes of actions, and

events that might occur, terminating in a consequence node which contains the utility

of the situations that would result from following that path. The search trees which

we construct are very similar to this, they contain action nodes, where the agent must

decide which action to perform, and chance nodes where all the possible outcomes of some

action are investigated. The main difference between our search procedure and decision

tree analysis is that we cannot produce a complete tree due to the nature of our problems,

so we produce a partial decision tree and use the heuristic to estimate the utility of the
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final nodes in each path. However, the algorithm we use to determine which action

to perform is essentially identical to the exp-max algorithms used in analyzing decision

trees. For more detail on decision trees and their uses, see (Pearl 1988) and (Howard,

Matheson and Miller 1976).

Ballard — The *...Minimax Search Procedure for Trees Containing Chance

Nodes

(Ballard 1983) describes an extension of alpha-beta search for game trees. The *minimax

search algorithm selects game moves in games which have probability nodes whose value

is defined to be the weighted average of their successors’ values. The class of games

that can be played by this algorithm are those with random elements, but no hidden

information. The treatment of the probability nodes in *minimax search is essentially

identical to that of the AVERAGE nodes of the search procedure we describe in Chapter

4. In fact, the trees we construct during the heuristic search procedure are equivalent to

*.minimax trees which contain no MIN nodes (moves by the opposing player). There is

a similar relationship between the pruning techniques used in *1ninim search and our

utility pruning technique. The decision trees we construct during the search process can

be seen as game trees for a game played against a randomized opponent, so many of the

results shown for trees also hold for our problem.

Korf — Real-time Heuristic Search

Korf (1990) presents a single-agent heuristic search procedure adapted from game-tree

search. The RealTimeA* (RTA*) algorithm combines a limited search horizon and

commitment to moves in a constant time to produce a search procedure which is the

deterministic equivalent of the one we present in Chapter 4. Using the property that

the heuristic evaluation of nodes is monotonic (that is, the heuristic value of any node
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is at least as high as that of its parents), Korf provides a form of pruning for these trees

which he calls alpha pruning. Alpha pruning is similar to the expectation pruning that

we perform, although the properties of the heuristic that we make use of are different.

Paradoxically, Korf finds that as the branching factor of the domains he has examined

increases, the search space actually reduces as a result of the effectiveness of alpha

pruning.

Korf also presents a learning form of RTA* which, over a series of runs, will improve

its heuristic function, and will eventually converge on the true values of states. Some of

the same ideas can be applied to the search procedure we present, but we have not yet

had the opportunity to investigate them.



Chapter 3

Creating Approximate Policies Using Abstraction

As we described in Chapter 2, computing the optimal policy for a Markov Decision

Process using policy iteration is usually polynomial in the size of the state space. While

this might seem to be a reasonable computational cost, in practice the state space may

be extremely large. For example, in a propositional domain made up of n atoms, the

size of the state space is 2. Given that the state space is often too large to compute an

optimal policy for, we need a way to produce approximately optimal policies in less than

polynomial time.

To produce “good” policies efficiently, we will use a process of abstraction. By ab

straction, we mean the creation of a smaller problem which contains the most significant

details of the original problem while ignoring some of the less important properties. A

solution to the simpler problem can then serve as the outline for a solution to the original

problem which will considerably reduce the total computation required. In the case of

this work, abstraction provides a mechanism for reducing the size of the problem to be

solved to manageable proportions, and allows us to cheaply compute a (probably less

than optimal) solution to the original problem directly from an optimal solution to the

smaller problem.

The most obvious use for the abstraction process is to supply a close-to-optimal

policy for use in the original domain, but this is not the only possible use. We also

use the abstract policy to construct a heuristic estimate of the value of each state. By

performing a heuristic search from states that are visited in the course of carrying out

36
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actions, we can hope to find better actions than the ones provided directly by abstraction

(if better actions exist). See Chapter 4 for the details of this approach. Since the policy

iteration algorithm described in Chapter 2 requires an initial policy, we can also use the

abstract policy as this “seed” for constructing an optimal policy in the original domain.

By first computing a policy in an abstract state space, and then using it to compute a

true optimal policy, we can hope for computational savings because fewer iterations of

policy iteration should be required before an optimal policy is reached.

3.1 Abstract MDPs and Policies

In overview, our approach to abstraction is to build an exponentially smaller abstract

MDP which captures the most significant details of the original concrete MDP, use pol

icy iteration to compute an optimal policy for the abstract MDP, which we call the

abstract policy, and then apply the abstract policy to the concrete MDP to produce an

approximately optimal policy. The key to this approach is to generate the abstraction

automatically. Rather than requiring the user to specify the abstraction, the algorithm

will provide a set of possible abstractions each with a bound on the difference between

the abstract and optimal policies, and will let the user select an acceptable value. In this

way the user can trade off computation time for policy quality.

The abstract MDP must have a number of properties in order to be useful. The

first of these is that the structure we produce in the process of abstraction must be

a MDP. In particular, the Markov Property (see Section 2.1) must hold. The most

important property of the abstract MDP is that the cost of constructing it should be

quite small. Producing an abstraction and then computing its optimal policy must require

considerably less computation than computing an optimal policy for the original MDP.

If this is not the case, the time is better spent computing the optimal policy.
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Not only must the construction of the abstract policy be inexpensive, the policy

discovered for the abstract domain should be easily applicable in the original MDP as

well. Since we want to use the abstract policy to tell the agent what to do in the concrete

domain, each abstract action must correspond to some concrete action or sequence of

concrete actions. For example, in a navigation domain, the abstract action GoNorth

might translate to the sequence of concrete actions TurnRight, Advance if the agent

had been facing west to begin with. If the abstract actions do not correspond directly

to concrete actions then they also must be computationally inexpensive to produce or

discover.

When constructing the abstract MDP, we want to use as much domain information as

possible, whether or not that information is explicitly represented in the concrete MDP.

This domain information may take a variety of forms. For example, we may be able to

use the fact that the domain is a navigation problem and that certain states are geo

graphically related to each other when producing the abstract state space. As we said in

Section 2.2, domains will usually not be represented directly as Markov Networks. Rep

resentations such as the extended STRIPS model (see Section 2.2.1) provide additional

domain information that can be used to construct more useful abstractions.

The final requirement for the abstraction process is that the abstract policy generated

is actually useful in the concrete MDP. Time spent on abstraction is only of value if the

resulting policy is fairly close to optimal. As we discuss in Chapter 4, we can perform

local search — when sufficient computation time is available — to improve on the policy

generated by abstraction so we do not require an optimal policy. However, we do need the

abstract policy to be a reasonable approximation to the optimal policy for local search

to provide any improvement.
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1. Using the STRIPS representation of the domain, decide which atoms are most
important for constructing a good policy.

2. Build the abstract state space 8 by clustering together all the states in S which
agree on the values of the important atoms.

3. For each action, build an abstract transition function T by deleting all reference
to unimportant atoms from the action description and translating the extended
STRIPS representation of the action into an MDP transition function. Note that
an explicit transition matrix need not be built for each action as the extended
STRIPS rules can be used to generate the linear equations required for policy
iteration directly.

4. Construct R, the reward function for the abstract problem.

5. Use policy iteration to find the optimal policy for the MDP <8, A, T, R>.

6. Construct the policy K such that for each state s e S e 5, K(s) = i(S). K is an
approximately optimal policy for the original MDP.

Figure 3.3: Constructing an approximately optimal policy using Abstraction

3.2 Constructing Abstract Policies in Propositional Domains

While abstraction can be used in any domain (see (Nicholson and Kaelbling 1994) for

an example of a different approach to abstraction), we have concentrated on domains

represeilted in terms of propositions. In particular, we shall use the extended STRIPS

representation described in Section 2.2. For these types of domain, the process of using

abstraction to produce an approximately optimal policy is described in Figure 3.3.

3.2.1 Choosing relevant atoms

In order to construct an abstract MDP, we need to select some subset of the atoms which

will form the basis of the abstraction. The quality of the policy and the effectiveness of

the abstraction process are both closely dependent on the atoms chosen. If too many
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atoms are selected, the policy created may be very close to optimal, but the computational

savings may not be large enough to justify the loss of optimality. On the other hand, if the

set of atoms chosen is small, then the computation required to produce the approximate

policy will also be small, but the policy may be quite poor.

As well as choosing an appropriate number of atoms to construct an abstraction, we

must consider which atoms should be selected. Obviously, if the reward for each state

depends solely on the value of a single atom in that state, it would be foolish to ignore

that atom when constructing the abstract state space. However, this is not the only

consideration — atoms that have relatively little effect on the reward for a state may be

able to be ignored, and an atom which indirectly affects reward should be included in

the set of relevant atoms.

In order to construct a set of atoms which meets the criteria described above, we

first identify a set I7? of immediately relevant atoms. 17?. is formed by examining the

propositional model of the reward structure, and selecting only those atoms which have

the greatest impact on the reward for each state. The larger this set is, the more fine

grained the abstraction will be, so by varying the size of I??, we can find a balance

between the quality of the abstraction, and the computation time required.

Although the set 17?. contains some of the relevant atoms we would like to use for

abstraction, it does not yet include all relevant atoms. For example, in a domain where

the reward is large if atom A is true and small otherwise, 17?. would be {A}. But if an

action that made A true required B to be true as a precondition, then clearly B is a

relevant atom as well. To capture this formally, we define 7?., the set of relevant atoms

as the smallest set such that 7?. contains every atom in 17?., and if some atom A E 7?.

appears in the effects list of some action aspect, then every atom that appears in the

corresponding discriminant is also in 7?.. The set 7?. is defined as follows:
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1. 17?.C7Z.

2. if q e 7?. and for some effects list E, either q E E1 or —‘q E E, then D C 7?..

Notice that only the atoms in a discriminant that might probabilistically lead to

a relevant effect are deemed relevant; we will call this a relevant discriminant. Other

conditions associated with the same action aspect are ignored, unless these are also rele

vant. Furthermore, although 7?. is defined recursively, it can be easily and automatically

computed as a fixed point of the function R. given below:

7?. =17?

= R. U {qI(j)(q D’andE fl 7? O)}

The only decision required from the user of the system is that of which atoms should be

placed in 17?.. As we shall see, this fact allows the user to specify the degree of accuracy

required of the abstraction, and to have an abstract policy and heuristic function for

search calculated automatically.

Having calculated 7?., we have completed step 1 of the algorithm in Figure 3.3. To

achieve step 2, we must use 7?. to create the abstract state space 8. We do this by

clustering together all the states in the original MDP which agree on the values of the

atoms in 7?.. By treating each cluster as a state in the abstract MDP, we ignore the

irrelevant details of atoms that do not appear in 7?..

Definition 2 The abstract state space generated by 7? is S = {,... , }, where:

1.

2. U{} = S.

3. fl,=Oifij.
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4.

For an example of how to construct an abstract MDP by this method, see Section

3.2.3.

3.2.2 Building abstract actions and rewards

If an optimal policy is to be constructed over the abstract state space 8, we require actions

and a reward function that are applicable to the new states. In general, computing the

transition probabilities for actions associated with an arbitrary clustering of states is

computationally prohibitive. It requires that one consider the effect of each action on

each state in the cluster. Furthermore, computing the probability of moving from one

cluster to another when performing a given action requires some prior distribution over

the worlds in the initial cluster. With the information we have, it is impossible to

calculate such a distribution. To do so would require a distribution over initial states of

the system, and a fixed policy.

The abstraction mechanism we have described is designed to avoid exactly these prob

lems. Our intention in creating 7? as described above is to make the problem of building

abstract actions and rewards as computationally inexpensive as possible. The following

theorems demonstrate the significant characteristics of the abstraction. Theorems 1 and

2 ensure that all the states clustered into one abstract state will behave the same when an

abstract action is performed. This justifies using the abstract problem to reason about

the concrete problem because it shows that the concrete states in a cluster will behave

the same as the corresponding abstract state. If an action is performed on a cluster for

which the action has a relevant discriminant, then all the states in the cluster will be

mapped to the same probability distribution over clusters, and if the cluster is contained

in an irrelevant discriminant, then all the states will be mapped into other states in the
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same cluster.

Theorem 1 If is an abstract state, and s, t E s, then s satisfies a relevant discriminant

for some action aspect if t does.

Proof: Assume not, then without loss of generality, there exist s, t € and a relevant

discriminant D, such that D, is true in s but not in t. Hence s and t must disagree on

the value of some atom in Df, but since Df C 7? by the definition of 7?., s and t cannot

be in the same cluster , which contradicts our assumption.

Theorem 2 If E is an effect of some action, and s, t e as above, then i) If E is

associated with an irrelevant discriminarit, then E(s) E ; and ii) Eq(s) E i iffE(t) E ii.

Proof: i) If E is associated with an irrelevant discriminant, then E fl 7? = 0 since if E

contained an atom in 7?, the discriminant would be relevant. Since E contains no atoms

in 7?., E(s) must agree with s on the value of all atoms in 7?., and hence E(s) e as

required.

ii) Since s and t agree on the values of all atoms in 7?., Ei(s) and E(t) must also (because

E changes the same atoms in both), so Ed(s) é ü iff E(t) E ii. U

The two theorems show that when any action is performed, the effects of that action

will be to map all the states in a cluster to the same new cluster. This allows us to

construct the abstract actions by simply deleting all reference to irrelevant atoms from

the actions in the original problem. This may cause some simplification of the action

specification as discriminants and effects which were different in the original problem

become the same in the abstract problem. For example, if an action has a discriminant

with several effects, none of which contains a relevant atom, they will all collapse into a

single empty effects list. The probability of this effect occurring will be the sum of the

probabilities of the concrete effects which combined to form it.
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To associate a reward with each cluster, we use the midpoint of the range of rewards

for the states in that cluster. For example if a cluster contained states with rewards 0, 1

and 10, we would select 5 as the reward for the cluster. Formally, if min() and max()

denote the minimum and maximum values of the set {R(s) : s } respectively, then

the abstract reward function is defined as:

rnax() + min(’)
2

This choice of R() minimizes the possible difference between R(s) and (‘) for any

S E , and is adopted for reasons explained in Section 3.3. Although using the average

of the rewards in the cluster as the abstract reward for the cluster might result in better

average-case behavior, it can lead to much worse bounds on the difference between the

abstract and optimal policies.

3.2.3 An example domain

To demonstrate the abstraction algorithm, we will use the example from Table 2.1 (Page

14). In this example, there are two atoms that affect the reward for a given state,

Has UserCoffee, and Wet, but since the effect of Has UserCoffee is far greater, we will

set I??. = { Has Usercoffee}. Two actions affect the value of Has UserCoffee, the relevant

effect of UserlsThirsty* has no preconditions, and can be ignored, while DeliverCoffee

has discriminant {Office,HasRobotCoffee}, so these two atoms must be included in 1?.

Similarly, the Move action affects the value of Office, and the BuyCoffee and DeliverCoffee

actions affect the value of HasRobotCoffee, but no new atoms appear in the relevant

discriminants of these actions, so = {HasUserCoffee, HasRobotCoffee, Office}.

Note that if we had chosen 17?. to include Wet, then 7?. would also have included

Rain and Umbrella from the second aspect of the Move action, so all the atoms from the

original problem appear in I??., and the abstract state space is identical to the concrete
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Table 3.5: The STRIPS representation of the abstract MDP.

one.

Action Discriminant Effect Prob.
Move Office -‘Office 0.9

0.1
-‘Office Office 0.9

0.1
BuyCoffee Office HRC 0.8

0.2
Office 1.0

GetUmbrella 1.0
DelCoffee Office,HRC HUC,HRC 0.8

HRC 0.1
0.1

-‘Office,HRC -‘HRC 0.8
0.2

-‘HRC 1.0
UserlsThirsty* -HUC 0.01

0.99
Sentence Value

HUC 0.9
HUC 0.1

Having constructed 1?., we now have an abstract MDP with a STRIPS representation

as given in Table 3.5. We can then treat the abstract MDP as any other MDP and

compute an optimal policy for it using policy iteration. This gives us the policy shown

in Table 3.6. When this policy is translated into a policy in the original domain, it

differs from the optimal policy for oniy three of the 64 states (although in states where

Office, Has UserCoffee, and HasRobotCoffee are all true, it substitutes Get Umbrella for

BuyCoffee, neither of which has any effect in those states) and — as we would expect

given the method of its construction — is optimal whenever Rain is false or Umbrella is

true. The values for states in this abstract policy are around the midpoints of the ranges
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Table 3.6: The policy computed using the abstract MDP.

HUG Val. HUC Val.
HRC, Office GetUmbrella 17.8 DelCoffee 16.5

HRC,—iOffice Move 17.8 Move 15.7
-‘HRG,Office Move 17.7 Move 14.1

-iHRC,-iOffice BuyCoffee 17.7 BuyCoffee 14.8

of values for the states in each cluster according to the optimal policy. Moreover, the

time required to compute the abstract policy was 0.01 seconds, only 2.1 percent of the

optimal policy (both using policy iteration).

3.2.4 Properties of the abstract MDP

The most important property that the domain formed by the abstraction process must

have is the Markov property. The Markov property states that the probabilistic outcome

of every action depends only on the current state, not on any previously visited states,

or previous actions.

Theorem 3 The Markov property holds in the abstract domain (and hence it is an

MDP).

Proof: Since the Markov property holds in the original MDP, it is sufficient to show

that for a given abstract action, the result of performing that action on two states in the

same cluster will be the same probability distribution over clusters. Formally, if S and

T are clusters and 8 is the abstract state-space, we must show that:

(VS,T e )(Vs,s’ e S)(Pr(tA,s) = Pr(tIA,s’) = Pr(TIA,S))
teT

Consider two such states s and s’, both in cluster S. Since they are in the same

cluster, s and s’ must differ only on the values of atoms not in 7? (the set of relevant
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atoms).

Now consider some action A such that Pr(tJA, s) $ teT Pr(tIA, s’). For this

to be the case there must be (at least) one atom p e 7?. which appears negated and

unnegated respectively in the effects lists of the discriminants containing s and s’ for A.

Since p E 1?, the discriminants of S and s’ for A must also be in 7?. (by the definition of

7?.), 50 s and s’ must differ on the values of atoms in 7?. and this contradicts the statement

made in the previous paragraph, so no such action can exist. D

Since the Markov property holds, we know that the abstract domain is an MDP, so

policy iteration will produce an optimal policy (for the abstract domain). If the Markov

property does not hold, a policy produced using policy iteration is no longer guaranteed

to be optimal. The proof shows that for any action and any two states in a single cluster,

the sum of the transition probabilities from the two states to all the states in any other

cluster is the same.

3.3 Properties of the Abstract Policy

We are interested in two properties of the abstract domain. The time required to compute

a policy using abstraction compared with the time required to find an optimal policy,

and how close to optimal the policy is.

As to the first question, since the time required for policy iteration is a function of

the size of the state space, and the size of the state space is exponential in the number

of underlying atoms, any reduction in the cardinality of 7?. will result in an exponential

reduction in the size of the state space and hence in computation time. Even reducing

the domain by a single atom will halve the size of the state space, and produce a large

computational saving when performing policy iteration.

This speed-up comes at the cost of generating possibly less-than-optimal policies.
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However, we can at least bound the difference in value between an optimal policy r*

and the policy for the concrete domain r derived from the optimal abstract policy as

in step 6 of Figure 3.3. Along with , policy iteration will produce an abstract value

function V;. We can treat V; as an estimate of the true value of policy ; that is, V()

approximates the value of Vs(s) where s e is any state. The difference between V()

and V.(s) is a measure of the accuracy of policy iteration over the abstract state space

in estimating the value of the induced policy in the concrete state space. To find this

bound, we will need to use the discounting factor j3, and the reward span of each cluster

S.

Definition 3 The reward span of a cluster , span() is the maximum range of possible

rewards for that cluster. That is; span() = max() — min().

The reward span for a cluster is the maximum degree to which the estimate (‘) of

the immediate reward associated with a state s E differs from the true reward R(s) for

that state. Let 6 denote the maximum reward span over all the clusters in S.

Theorem 4 For any s e
‘ c S,

V) - V(s)
2(1

-

Proof: Let p be the expected (undiscounted) reward the agent will receive for performing

its ith action from policy ir starting in state s (p is just the reward received at that single

step). Hence

V(s) = R(s) + Pi + 2P2 +

Let s e , then R(s) — <R(s) R(s) + , so

6 6 6
V(s) <R(s) + + /(p + ) +32(p2+ ) +
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and

V) R(s) - + (pi - +2(p - +

6 6 26
V(s)—V(s)I +/3+/3 +...

=

____

- 2(l-/3)

D

A more useful bound is on the difference between the generated policy r and an

optimal policy r*. As above, we will use the value function V associated with the

optimal policy. The true measure of the optimality of the abstract policy is the difference

between V71.(s) and V(s) for any state s.

Theorem 5 For any s E

IV(s)-V(s)

Intuitively, this bound results in the same way as the previous one. The difference in

value is simply the sum of all the bounds at each step. In this case, the first state bound is

zero since both values are in the concrete domain. The value of the state one step ahead

could be in error by at most 6 since the true reward can be at most 6/2 greater than the

abstract reward for the optimal action, and at most 6/2 less for the action selected by

policy ir. This value must be discounted by /3. A similar argument shows that at each

future step the bound on the reward received at that step is at most 6, so the sum is

as required. To formally prove the theorem, we make use of the following lemmata:
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Lemma 6 Let V denote the (optimal) value function for the abstract MDP (Hence ()
is the value given to by any optimal policy for the abstract MDP). Let V denote the

value function for the concrete MDP. Let s E S, e S, and s e , then

V(s)
- 2(1

-

Proof: Define Vo(s)

Va(s) =

tS

This is the discounted finite horizon formulation of V. Similarly, define V0() =

= R()
tES

Then

V(s) = urn Va(s)
n—

= lim )n—*oo

And since

‘ _+3.+a2.+
2(1—3)2 2 2

We must show that:

V(s)
-

Base Case: By the construction of R it follows that

Vo(s)
-

= R(s)
-

E)

Inductive Hypothesis: Assume for all s that

V1(s)
- -i()
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Lemma 7 Assuming the inductive hypothesis, we have for any action A,

—‘ 6> Pr(tA, s)V_1(t) — Pr(A, )—() >
tES i=O

Proof: By Theorem 3, if s E , then for all A we have

Pr(]A, ) = > Pr(tjA, s)
tEt

So

Pr(tA, s)V1(t) - Pr(A, = Pr(tIA, s) IVi(t) -

tES tinS

Pr(tIA,s)
tES i=O

—‘ 6/3z_as required
i=O 2

Let A be the action that maximizes V(’), let B maximize Va(s). Then

Va(s) = R(s)+4lPr(tB,s)V_i(t)
teS

= + ,6 Pr(A, )_)
tES

Let f = ‘Z /36/2, let

A = Pr(tIB,s)Vi(t)
tES

B = Pr(tA,s)V_i(t)
tES

C =

tES

D =

tES

Then by the definitions of A and B, we have A B, and C D, and by Lemma 7,

— C f, and A — DI f.
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If C B, then C—A f. From C D and A—D fit follows that A—C <f,so

— Al f. Similarly, if C <B, then A > C, and since C D and A — D f, we

have that IA — CI f. In full,we have

Pr(tB, s)Vi (t) - Pr(A,
tES _E’_ i=O

From the definitions given above,

V(s)
-

= R(s) +Pr(tIB,s)Vi(t) -

tES tES

R(s)
- + Pr(tB, s)Vi(t) - Pr(A, )V1()

tES

(5 n.

i=O
n

as required.
i=O 2

C

Corollary 8 The preceding lemma states that

V(s)
- 2(1

-

Since V(s) is the value of state s for any optimal policy in the concrete MDP, and ()
is the value of ‘ for any optimal policy in the abstract MDP, the same relationship applies

to the values of specific optimal policies, namely for all s,

IV*(s)-V;(s)I
2(1-a)

Proof: (of Theorem 5). From Corollary 8, we have that for all s

V(s)-V;(s)I
2(1-a)
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Now, from Theorem 4, we have that for all state s,

V(s)
- V(s)I

2(1
-

So

V*(s)-V(s)I

The first term in each series is 6/2. This is the term for the difference between R(s)

and but since V(s) and V(s) both have R(s) as their first term, they must agree

on this value, so

V*(s)—V(s)I
1/3

as required.

3.4 Results

We examined two domains in our investigation of the abstraction algorithms. Since we

have yet to apply these algorithms in any real-world domains, both have been created

by hand, and the first was designed specifically with this abstraction scheme in mind.

This should result in the first domain performing particularly well as an example of

abstraction. The second domain was adapted from (Smith and Peot 1993), and was

specifically chosen as a typical planning problem for other planners. It is not particularly

well suited for abstraction as there is only a single possible set I?? that results in a state

space smaller than the concrete problem (a second possible Ii? exists, but has a larger

state space, and worse reward span than the one we use here). See Appendix A for the

details of both these domains and their abstractions.

The COFFEE domain, is an extension of the example in Chapter 1. It contains nine

propositions and nine actions, producing a 512 state MDP. There are three possible
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Table 3.7: Results of abstraction for the COFFEE domain.

abstractions for this domain, with five, six and eight propositions respectively. Policy

iteration on the complete problem required 254.33 seconds on a Sun 4/60. State values

ranged from -7.0 to 30.0. The results of the abstractions are summarized in Table 3.7.

As the table shows, the more fine-grained the abstraction, the better the resulting

policy is. The number of errors in the action to select drops until over 90 percent of

states have their correct action in the eight proposition domain, and the errors in the

estimates of state values drop as well. Requiring very little computation time, the five

proposition abstraction still produces quite a reasonable policy. Although state values

can be anywhere from zero to twenty, the policy produced from five propositions will

differ from the optimal policy by an average value of just 4.12, only an eleven percent

Abstract value vs. 5 Proposition 6 Proposition 8 Proposition
true policy value domain domain domain
No. of errors in 512 512 512
value of state
Average error 5.00 2.59 1.00

Standard Deviation 2.71 0.89 0.00
Maximum Error 8.5 3.5 1.0
Predicted Bound 8.5 3.5 1.0
Time required to 0.14s 0.89s 35.55s
compute_policy

true abstract policy
value vs. optimal policy

No. of errors in 187 85 39
action to choose 36.5% 16.6% 7.6%
No. of errors in 348 256 192
value of state 68.0% 50.0% 37.5%
Average error 4.12 0.91 0.48

Standard Deviation 3.80 1.39 0.76
Maximum Error 14.17 5.93 1.89
Predicted Bound 16.15 6.65 1.90
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Table 3.8: Results of using optimal abstract policies as initial policies when computing
an optimal policy for the concrete MDP.

(a) Time to find optimal policy
MDP to solve Initial policy Time Iterations

32 state None 0.89s 6
64 state None 4.93s 7

32 state 5.59s 8
256 state None 214.71s 8

32 state 214.68s 8
64 state 84.71s 3

512 state None 1531.67s 8
32 state 1564.14s 8
64 state 643.58s 3

256 state 472.53s 2

Use 256 state Use 64 state Use 32 state Total time
Yes Yes Yes 563.72
Yes Yes No 562.17
Yes No Yes 688.10
Yes No No 687.24
No Yes Yes 650.06
No Yes No 648.51
No No Yes 1565.03
No No No 1531.67

error for a 99 percent reduction in computation time. The eight proposition abstraction

performs even better, producing a 1.3 percent average error in the value of a state for an

86 percent reduction in computation time.

We can also examine the possibility of computing an optimal policy by using the result

of an abstract policy as the initial policy for applying policy iteration to the concrete

(or a less abstract) policy. The results for this experiment, again in the COFFEE domain

are given in Table 3.8. As the table shows, there can be considerable savings by using a

series of abstractions to calculate the optimal value for the concrete domain. The fastest

(b) Total time to find optimal policy for 512 state MDP
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way to compute the optimal value for the concrete domain is to compute the optimal

value for the 64 state domain, use that to compute the 256 state optimal value, and then

use that to find the optimal policy. This requires only 37 percent of the computation

time of computing the optimal policy directly. Perhaps surprisingly, computing the 32

state optimal policy is o help at all for computing more fine-grained policies, and in the

case of the 64 state domain, actually slows the process of policy iteration. At present,

we have no way of predicting when this will occur.

In order to use these results for efficient computation of the optimal policy, the results

suggest that using as many levels of abstraction as possible is a good strategy. Although

it isn’t the best possible series of abstractions in this case, it is very close, and informal

arguments suggest that using all available abstractions should be the best strategy in most

cases. If multiple processors are available, all the possible permutations of abstractions

could be run in parallel, and computation halted as soon as any processor computed an

optimal policy. This method allows us to guarantee that computing the optimal policy

using abstractions will be no worse than computing it directly.

The second domain, the BUILDER domain involves an agent that must join two objects

together. For maximum reward, the objects must be machined to the correct shape, clean,

painted, and joined together. The reward for any given state is simply the sum of the

individual rewards for all of these attributes. The state contains nine propositions (512

states) and ten actions. Policy iteration on the entire state space required 201.86 seconds.

State values range from 0.0 to 20.0. The results are summarized in Table 3.9.

As the table shows, the abstraction was again good, especially considering the small

size of the abstraction (only 32 states). The average error in the value of a state is 5.99,

which is quite large at 30 percent of the possible range of values, but the abstract policy

required less than one percent of the computation time of the optimal policy. For this

domain, since the abstract state space is so much smaller than the concrete one, some
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Table 3.9: Results of abstraction for the BUILDER domain.

Abstract value vs true policy value
No. of errors in value of state 478 = 93.4%

Average error 2.69
Standard Deviation 1.86

Maximum Error 6.0
Predicted Bound 6.0

Time required to compute policy 0.lls = 0.05%
true abstract policy value vs. optimal policy

No. of errors in action 309 = 60.4%
No. of errors in value 512

Average error 5.99
Standard Deviation 2.16

Maximum Error 10.00
Predicted Bound 11.40

local way of improving the policy, such as the search procedure described in the next

chapter, may be very valuable. Since there is no abstraction that is more fine-grained

than this, we cannot choose another abstraction if the bound on the difference between

the abstract and optimal policies of 11.4 is unacceptable.



Chapter 4

Planning by Heuristic Search

The abstraction scheme described in the previous chapter produces an approximately

optimal policy for a relatively small investment of computation time. This computation

must be performed before any actions are carried out, but if time is available as the

plan is executed, extra computations could be used to make local improvements to the

policy. This chapter introduces the idea of treating the abstract policy as a set of default

reactions, and using heuristic search to try to improve on these at run time if computation

time is available. A major advantage to be gained by using search is that its computation

time generally does not depend on the size of the state space, only on its connectivity

(the number of states that can be reached by performing a single action from some state).

Although the abstraction process of Chapter 3 is an obvious place to obtain a heuristic

from, the algorithm described in this chapter can be (and has been) used with heuristics

obtained from other sources. In many domains, a heuristic may already be provided by

the user. In others, such as high-level robot navigation, a domain specific heuristic —

for example, one based on geographic relationships may be easy to construct by hand.

We will assume throughout this chapter that a heuristic function V is available, without

concerning ourselves with its source.

If a heuristic exists which is a fairly reliable estimate of the value of each state, we

can use it to select a good action to perform in each state in a way analogous to minimax

search. A simple search algorithm will tend to be greedy, selecting actions which lead

to the greatest immediate reward, but by using a heuristic we can hope to increase the

58
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importance of long-term gains, and hence produce a better planner.

In general, the more computation time is spent generating the heuristic, the more

accurate it will be, and similarly, if deeper search is performed, we can typically expect

a better decision to he made — this may not always be the case (see (Pearl 1984) for

a proof of this for minimax search). In practice, searching deeper generally leads to

better performance. There is an obvious tradeoff between initial computation time while

constructing the heuristic and computation time spent searching. At one extreme, we

can compute a perfect valuation function for states initially, and then perform no search,

while at the other, we have a greedy search with no heuristic information to guide it.

Classical planning makes use of search as well, but there are important differences

between the classical approach, and our search algorithm. Classical planning is typically

goal directed, which is impossible with the complex reward structures we are interested

in; but even when the search isn’t goal directed, classical planning algorithms search

until a goal state is found. Even ignoring the fact that, like game playing problems, the

real-time nature of our approach prohibits exhaustive searches, the fact that we have no

explicit goal states, and are planning for the infinite horizon case, means that there is

no final state where search stops. Our use of partial decision tree search and game-like

heuristic techniques is dictated by this inability to perform complete searches.

4.1 Interleaving Search and Execution

Time-critical domains provide a minimum of computation time in which to plan, hence

it is important to restrict the space to be searched as much as possible. To this end,

we propose an algorithm where actions are executed as soon as they have been selected.

Because of the stochastic nature of the domains we are interested in, this results in a

considerable saving in computation. Performing an action in a certain state can leave the
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system in a number of different states, so a planning algorithm that constructs a sequence

of actions would need to find an action to perform for each of the possible outcomes of the

action it selects first. By executing actions as soon as they are selected, we know (since

the MDP is completely observable) which of the possible outcomes actually occurred, and

only need search for the next action to perform from a single state, rather than many.

As we would expect, the saving in computation gained by interleaving execution with

planning is considerable. Let b be the maximum number of outcomes each action could

have. In a search for a sequence of a actions, search without execution will require

an action to be selected for bz states compared with only a states for search with

execution.

4.2 Planning in MDPs by Searching

As we described in the previous section, there is a great deal to be gained in terms

of computational savings by interleaving planning with execution. In view of this, the

planning algorithm can be viewed at the highest level as follows:

1. Calculate the best action to perform in the current state, using the heuristic func

tion if necessary.

2. Execute the selected action.

3. Observe the new state of the system and return to step 1.

Steps 2 and 3 require little explanation. Although the algorithm as it stands never

terminates, this is consistent with the process-like domains that the MDP representation

is ideally suited for. If the domain contains goal states in which the agent has no more

to do or other self-absorbing states, the algorithm might terminate when such a state is

reached. In general, however, the agent will continue planning and acting indefinitely.
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4.3 The Search Algorithm

This section deals with Step 1 of the algorithm described above. The first point to make

is that the algorithm we will present makes no changes to the heuristic function — it

doesn’t learn more accurate estimates of the values of states — so for any given state, the

action chosen to execute for that state will be the same every time. To take advantage

of this, the algorithm caches the action chosen for each state it computes so that should

the state be visited again, no extra computation need be performed.

The search algorithm constructs a partial decision tree rooted at the current state

to determine the best action to perform. The decision tree is built to a fixed depth,

and the heuristic function is used to estimate the value of the leaf nodes. Although

fixed-depth search is not necessary for the algorithm to function, it allows the use of

depth-first search, which is computationally efficient. Using breadth-first search (or one

of its variations) would make some of the pruning algorithms more efficient, but these

techniques often require considerable extra book-keeping costs. If certain information

about the heuristic function is available, then pruning of the search tree is possible, and

as the results below show, can be quite effective. The cached values of previously selected

actions provide an even more effective form of pruning.

4.3.1 Action selection

Let s and t be states, let / be the discounting factor as before, and let V(t) be the value

of the heuristic function at state t. Then the estimated expected utility of action A in

state s is:

U(AIs) = Pr(tA, s)17(t)
tES
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Where V(s), the value (estimated by the search process) of a state is:

I V(s) if s is a leaf node
V(s) =

R(s) + 7(max{U(AIs) : A € A}) otherwise

As we would expect, the utility of an action is simply the weighted average of the value

of every state reachable by performing the action. The value V(s) of state s is computed

as follows: if s is at the bottom of the search tree (s is a leaf node), then we use the

heuristic to approximate its value. Otherwise we add the immediate reward for state s

to the discounted value of the best action to perform in that state. Figure 4.4 gives the

algorithmic description of the basic search algorithm.

Figure 4.5 illustrates the search process with a partial tree of actions two levels deep,

and a discounting factor i of 0.9. From the initial state s, if the agent performs action A,

state t will result with probability 0.8 and state u with probability 0.2. When the tree is

expanded again to include states reachable from these, the set of second states result. At

this point, the heuristic is used to estimate the values of the second states as they are leaf

nodes in the tree. Given that V(x) = 2 and V(y) = 3, the utility of action A if the agent

were in state t, is 0.9 x 2 + 0.1 x 3 = 2.1, and since U(Bt) = 0.3, A is the better action

from statet, and V(t) = R(t)+,@xU(AIt) = 0.5+0.9x2.1 = 2.39. Inasimilarfashion,we

can compute the value of state u, which is 1.58. Given this, we determine the estimated

utility of action A if the agent is in states. U(As) = 0.8 x 2.39+ 0.2 x 1.58 = 2.23, and

similarly, U(BIs) = 2.94. Since the estimated utility of action B is higher than action

A, we select B as the best action to perform in state s, record that fact in the cache of

previously calculated best actions, and execute action B. By observing the outcome of

the action, we now know which of states v and w actually resulted, and can hence avoid

searching for a best action for the one that did not.

In Figure 4.5, the tree is expanded to depth two, but this does not need to be the

case. As available computation time varies, the depth of the search tree can also vary.
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search-state(s, depth) — Returns the best action and its value for state s

1. If depth > 0 (this isn’t a leaf node)

(a) Set MaxVaiue to be lower than any possible value of an action

(b) Set BestAction to be null

(c) for each action a e A

i. Let value be search-action(a, s, depth), the (estimated) value of action
a in state s.

ii. If value > MaxValue (this is the best action so far), let MaxValue be
value, let BestAction be a

(d) Return BestAction, R(s) +7 x MaxValue

2. otherwise (s is a leaf node of the search tree) return V(s), the heuristic value of
state s

search-action(a, s, depth) Returns the value of action a in state s

1. Let value be 0

2. For each state t that could result from performing a in s do

(a) Let value be value + Pr(tla, s) x search-state(t, depth — 1), the probability
of reaching state t times the computed value of t.

3. Return value

Figure 4.4: The search algorithm. To begin search from state s to depth d,
search-state(s, d) is called. The action that is returned is the estimate of the best action
to perform.
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Figure 4.5: An example of a two-level search for the best action from state s.
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In practice, an interruptible search using an iterative deepening technique may well be

used, so that at any time, the algorithm can be interrupted, and the current best action

can be performed. We cannot guarantee that deeper search will produce better results,

in general however, the deeper the tree is expanded, the more accurate the estimates of

action utility will tend to be, and the more confidence we should have that the action

selected approaches optimality. One can view this search process as a form of directed

value iteration (Bellman 1961). A search to depth n will result in exactly the same

action for each state as performing n iterations of the value iteration algorithm with the

heuristic as the initial vector of state values. Hence we can use the result that value

iteration converges on an optimal policy to show that deep enough search will also find

optimal actions, but such a search is too expensive to be performed in practice.

There is also a close relationship between the search algorithm and Ballard’s *-

minimax search (Ballard 1983). Determining the value of a state is analogous to the

MAX step for minimax search, while calculating the utility of an action is an AVER

AGE step and is analogous to a move made by a randomized opponent in Ballard’s

game-playing search.

4.3.2 Pruning algorithms

As we said above, there is a close relationship between our search algorithm and minimax

search. Just as alpha-beta search is a version of minimax with pruning of irrelevant

subtrees, we can perform two different forms of pruning on our search trees. To make

our description of these pruning techniques clearer, we will treat a single ply of search

as consisting of two steps, MAX in which all the possible actions are considered, and the

best is chosen, and AVERAGE where the outcomes of a particular action are combined

to determine the expected value of that action.

Two type of pruning are possible. The first, utility pruning, is very similar to a- and
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States

MAX step

Actions

AVERAGE step

States

Figure 4.6: Two kinds of pruning where V(s) 10 and is accurate to ±1. In (a), utility
pruning, the trees at U and V need not be searched, while in (b), expectation pruning,
the trees below T and U are ignored, although the states themselves are evaluated.

3-cuts in minimax search, and requires knowledge of the maximum and minimum values

of the heuristic function. For heuristics produced by the abstraction algorithm described

in Chapter 3, if R+ and R are the maximum and minimum rewards for any state in

the MDP, then the maximum and minimum expected values for any state are bounded

by R/(1 — /3) and R/(1
—

/3) respectively. For the second type of pruning, expectation

pruning, we require bounds on the error associated with the heuristic function. Again,

for heuristics based on our abstraction algorithm, these bounds can be computed using

the result of Corollary 8 (see Section 3.3).

Utility Pruning We can prune the search at an AVERAGE step if we know that no

matter what the value of the remaining outcomes of this action, we can never exceed

the utility of some other action at the preceding MAX step. For example, consider

the search tree in Figure 4.6 (a). We assume that the maximum value that the

heuristic function can take is 10. When evaluating action b, since we know that

Vai=3

(a) (b)
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the value of the subtree rooted at T is 5, and the best that the subtrees below

U and V could be is 0.1 x 10 + 0.2 x 10 = 3, the total cannot be larger that

3.5 + 3 = 6.5, so neither of nodes U and V need be expanded. This type of pruning

requires knowledge of the maximum value of the heuristic. Although we haven’t

implemented it, we can use the minimum value in a more restricted fashion. If,

for example, the value of action a was 3, and the minimum value of the heuristic

was 0, then the value of b must be at least 0.7 x 5 + 0.3 x 0 = 3.5, so we can tell

that b is the best action without searching nodes U and V. This process will only

work if b is the last action to be evaluated, and we are at the topmost level of the

search tree, so the value of b is unimportant. For the maximum amount of pruning

to be performed, the possible outcomes of each action should be searched in order

of their probability of occurring, with outcomes of high probability searched first.

To implement Utility pruning, we need to modify the algorithm in Figure 4.4 as

follows:

We need a new constant, MaximumStateValue, which is the maximum expected

value of any state.

search-state(s, depth)

The only change needed is in the call to search-action in 1(a)i. The function call

becomes search-action(a, s, depth, MaxValue).

search-action(a, s, depth, a) — Find the value of action a in state s by

searching to depth depth. The value is irrelevant if it is less that a.

1. Let value be 0

2. Let RernainingProb be 1

3. For each state t that could result from performing a in s do
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(a) Let value be value+Pr(tla, s) x search-state(t, depth—i), the probability

of reaching state t times the computed value of t.

(b) Let RemainingProb be RemainingProb — Pr(ta, s)

(c) If value+RemainingProbxMaximumStateValue <a then return a—i.

‘We can stop searching, this cannot be the best action.

4. Return value

Expectation Pruning For this type of pruning we need to know the maximum error

associated with the heuristic function. If the search is at a maximizing step, and,

even taking into account the error in the heuristic function, the action we are

investigating cannot have as high a utility as some other action for which a utility

is already known, then we do not need to expand this action further. For example,

consider Figure 4.6 (b), where we assume that for all states s, V(s) is within ±1

of the true (optimal) value of s. Having determined that U(aS) = 7, we know

that any potentially better action must have a heuristic value of at least 6. Since

Pr(Tb, S)V(T) + Pr(UIb, S)V(U) <4, even if b is as good as possible, it cannot be

better than a, so there is no need to search the subtrees below states T and U.

To implement Expectation pruning, we make the following further modifications to

Figure 4.4:

Again, we need a new global variable HeuristicError, which is the maximum

possible difference between the heuristic value of a state and its value in an optimal

policy.

search-action(a, s, depth, a)

The following additional steps must be included at the beginning of the algorithm

(before step 1. in Figure 4.4).
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1. Let Val’ueEstimate be 0

2. For each state t that could result from performing a in s do

(a) Let ValueEstimate be ValueEstimate+Pr(tla, s) x V(t), the probability

of state t times its heuristic value.

3. If ValueEstimate+ HeuristicError <c then return cv —1, we need not look

any deeper into this action.

As we have implemented it above, utility pruning is very simple to perform. It requires

very little extra computation, and as our results below indicate, can result in quite a

respectable improvement in computation time. Expectation pruning requires a more

significant modification of the search algorithm to check all the outcomes of an action to

see if they justify searching the tree below that action, but in domains where the heuristic

function is quite accurate, it can still offer a substantial performance improvement, as

the results in the next section will show. Expectation pruning is quite closely related

to what Korf (1990) calls alpha-pruning. The difference is that while Korf relies on a

property of the heuristic that it is always increasing, we rely on an estimate of the actual

error in the heuristic.

The comments in the previous paragraph are specific to the implementation of the

search algorithm as a depth-first search. Using an iterative deepening search seriously

limits the applicability of utility pruning since the final value of an action is only known

when the last round of deepening is performed. On the other hand, iterative deepening

removes the additional computation requirements that make expectation pruning more

expensive to perform.
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4.4 Results

As before, let n = I-4 be the number of actions. Let b be the maximum number of

possible outcomes for any action and state. We will assume that we are constructing a

search tree without pruning to a fixed depth d. The number of nodes (states) expanded

while calculating the best action for a single state is 1 + bn + (bn)2 + ... + (bn)d =

((bn)4— 1)/(bn — 1). Over a series of such calculations, the cost is slightly less than this

because we can reuse previous calculations, but the complexity is O((bn)d). The actual

size of the state space has no effect on the algorithm; rather it is the number of states

visited that determines the cost. In most domains this number should be considerably

less than the total number of states. More importantly, the complexity of the algorithm

is constant (with regard to the number of states), and execution time per action can be

bounded for a fixed search depth and branching factor.

We have performed experiments to test the effectiveness of the searching algorithm in

a number of different domains. Figure 4.7 shows how both the time required for searching

and the value of the induced policy (the policy that results if searching is conducted on

every state) tends to increase with the search depth. The experiments were performed

on a Sun 4/60, with no pruning of the search tree.

We also examined in detail the way the induced policy changes as search depth

increases for three different problems. The first two are the COFFEE domain, with a

heuristic computed using the 32 state abstract MDP, and the 256 state abstract MDP

respectively. The third problem we examined was the BUILDER domain, using the 32

state abstract MDP to compute the heuristic. The results are presented in Table 4.10.

As the table shows, the effects of searching vary widely from domain to domain.

In the first problem, the heuristic is quite poor, and the policy produced by searching

converges quite slowly to the optimal one. Even though the number of states for which
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Table 4.10: Comparison of the induced policy as search depth increases for three different
search problems.

COFFEE domain, coarse-grained heuristic
Optimal 1 step 2 step 3 step 4 step
policy search search search search

Average state value 22.607 18.686 19.961 20.363 20.509
Percentage of optimal 100.0 82.7 88.3 90.1 90.7

Maximum error 0 14.169 10.607 10.607 10.607
Average error 0 3.921 2.646 2.245 2.098

No. of non-zero errors 0 320 288 288 288
Average non-zero error 0 6.274 4.704 3.991 3.730

COFFEE domain, fine-grained_heuristic
Optimal 1 step 2 step 3 step 4 step
policy search search search search

Average state value 22.607 21.928 22.607 22.607 22.607
Percentage of optimal 100.0 97.0 100.0 100.0 100.0

Maximum error 0 1.890 0 0 0
Average error 0 0.679 0 0 0

No. of non-zero errors 0 224 0 0 0
Average non-zero error 0 1.553 0 0 0

BUILDER domain
Optimal 1 step 2 step 3 step 4 step
policy search search search search

Average state value 18.173 12.227 18.112 18.008 18.021
Percentage of optimal 100.0 67.3 99.7 99.1 99.2

Maximum error 0 10.003 0.702 5.050 5.050
Average error 0 5.947 0.062 0.166 0.152

No. of non-zero errors 0 512 207 141 91
Average non-zero error 0 5.947 0.153 0.602 0.857
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Figure 4.7: Graphs of (a) search time, and (b) policy quality against search depth for
the COFFEE domain.

the optimal policy has not been found1 remains relatively constant, the expected value

of states continues to rise, which shows that the optimal action is being selected for a

greater and greater number of states, although a few pathological ones with high errors

remain, even after searching four steps deep.

In the second problem, the heuristic is already very accurate. Searching to one step

is essentially equivalent to selecting the same actions as the abstract policy, and even

one step search performs very well (better than four step search with the coarse-grained

abstraction). This illustrates the trade-off between abstraction complexity and search

depth. By spending 35 seconds initially rather than 0.14 seconds, we can spend only

0.003 seconds computing each action, rather than five seconds, and still perform better.

In fact, since the search procedure converges on the optimal policy when searching to

depth two in this domain, we can guarantee an optimal policy, and still only spend 0.03

‘A non-zero error means that some state that could be visited by following the policy has a less-than
optimal action.
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seconds per action in the search process.

The third search problem illustrates an important point; the search procedure doesn’t

always perform better as search depth increases. In this domain, we once again have

a coarse-grained abstraction, which makes searching to depth one perform quite poorly.

However, a two-step search increases performance dramatically, and in fact is better than

searching to three or four steps, at least in terms of the average value of a state. More

detailed analysis of the policies produced by each depth of search reveals that for almost

all states the value of the policy continues to improve as search depth increases, but there

are a small number of pathological states for which the search algorithm performs very

badly.

4.4.1 Execution and caching of values

We have also performed experiments to investigate the value of caching previously com

puted best actions for state, and the value of interleaving execution with search. Table

4.11 summarizes our results. The columns where execution is interleaved with search

show the standard algorithm as we presented it. For search without execution, the agent

performs the standard search, determines the best action, and then rather than execut

ing it, searches again to find the best action to perform for all possible outcomes of the

action.

Unsurprisingly, cached search interleaved with execution is the most efficient method.

The size of the domain will have a considerable effect on the value of caching. In this

case, the domain contains 256 states but we are only performing ten actions, so caching

has relatively little effect. However, since in most cases more searches will be performed,

if the space is available to cache values, it is a worthwhile tradeoff against the time

required to recompute previously computed values. One surprise from this table is how

well the cached search without execution performs. This is due to the small number
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Table 4.11: A comparison of time to search for ten actions both with and without caching
of previous best actions, and execution.

Search Execution Interleaved No Execution
depth Caching No cache Caching No cache

1 0.01 0.02 5.19 26.7
2 0.04 0.06 5.41 281
3 0.42 0.51 ‘7.14 2780
4 4.48 5.68 15.4 -

5 55.9 56.9 102 -

6 219 230 272 -

of states. Because the algorithm caches the action whenever it computes for a state,

the interleaved execution algorithm will oniy cache values for at most ten states. In

comparison, if each action has n possible outcomes, the no-execution algorithm can cache

up to 1 + n + n2 + ... + n9. In practice this means that for a domain of this size,

the algorithm quickly finds itself looking for actions for states it has already evaluated,

and hence not performing any computation. The column for search without caching or

execution gives an idea of how badly search without execution but with caching would

perform if the state space was big enough that it more rarely got to reuse its calculations.

4.4.2 Effectiveness of pruning

Figure 4.8 shows the performance of the pruning algorithm in both the COFFEE and

BUILDER domains. The two graphs illustrate the large differences in the performance of

the pruning algorithms on different domains. For the COFFEE domain, utility pruning is

ineffective it requires more time than no pruning at all — while expectation pruning

performs remarkably well, saving over 60 percent of the computation time for deep search

trees. For the BUILDER domain, utility pruning is extremely effective, pruning more than

40 percent of all states for depth five search, and required only half the computation
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Figure 4.8: Pruning effectiveness for (a) the COFFEE, and (b) the BUILDER domains.
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Table 4.12: Expectation pruning when only the top of the search tree is pruned. Values
are percentage of value with no pruning.

____________ ____________

Search depth Prune depth Percentage of Percentage of
states pruned search time

3 3 89.3 80.6
2 92.6 89.0

4 4 85.7 97.3
3 88.3 88.9
2 92.4 94.5

5 5 82.3 89.8
4 84.3 84.8
3 87.4 89.5
2 91.2 95.6

time of search without pruning. The coarse-grained abstraction scheme of the BUILDER

domain results in quite large errors being possible in the heuristic function, so expectation

pruning is ineffective in this domain. We used the heuristic produced from the 256 state

abstract MDP for the COFFEE domain, and the error bound of +1 is low enough that

expectation pruning works particularly well. This suggests that the pruning algorithms

applied in various different problems should be tailored to the quality of the heuristic

function. The two pruning algorithms will often prune the same nodes, so using utility

pruning when the heuristic is poor, and expectation pruning when it is good may prove

to be a good strategy.

In many domains, the gains due to expectation pruning in term of states expanded

are not matched in terms of time to search because of the additional cost of pruning. We

have run some experiments in a smaller (256 state) domain which show that for maximal

savings of computation time, expectation pruning should not be performed all the way

to the bottom of the search tree. These results are summarized in Table 4.12.

In this domain, expectation pruning is much less effective than in the COFFEE domain
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given above. This emphasizes the computational requirements. As we would expect, as

the depth to which pruning is performed decreases, the number of states which must be

examined in the search increases, but the time required to perform the search tends to

decrease at first as the cost of attempting to prune the large numbers of states at bottom

of the tree is reduced, and then increases again as the lack of pruning means that more

nodes must be searched. At least for this search problem, the optimal pruning depth

seems to be one level earlier than the bottom of the tree, but we have no way at present

of estimating this value in advance for a given domain and heuristic.



Chapter 5

Conclusions

This thesis has presented two components of a planning system for domains represented

as Markov decision processes. Chapter 3 describes a way of creating close to optimal

policies using abstraction, while Chapter 4 demonstrates the use of heuristic search to

plan and execute actions at run-time. Putting the two together to build a complete

planning system produces the following high-level algorithm:

1. Prior to run-time: Use abstraction to produce 1) an abstract policy that can be

used as a set of default reactions, and 2) an estimate of the value of each state, to

he used as a heuristic function.

2. At run-time: If there is sufficient computation time, use the search algorithm to

compute the best action for the current state, and execute the action. Otherwise,

execute the default reaction provided by the abstraction process.

3. If a goal state has been reached (if such states exist), end. Otherwise, observe the

new state, and return to step 2.

This algorithm is designed for use in domains where time is critical. The accuracy of

the heuristic can be tailored to the amount of start-up computation time available, and

the depth of the search can be varied from action to action in order to take advantage

of the time available before the next action must be performed, or an anytime search

algorithm such as iterative deepening can be used. However, because the plans produced

78
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are only approximately optimal, the domain should have the following characteristics if

the algorithm is to work effectively.

• Structure: The abstraction algorithm relies on a great deal of structure existing

in the domain. We expect other methods for creating heuristics to require similar

structure.

• Time criticality: As we have said before, the approach is designed for use in domains

where reaction time is significant. If there is no restriction on the computation time

available, then a better approach would be to use policy iteration (Howard 1971)

or a similar algorithm to find an optimal policy, and execute actions according to

the policy.

• Recoverability: By recoverability, we mean that performing a poor action is gener

ally not fatal. For example, if the connectivity of some parts of the state space is

particularly low (there are very few transitions between certain classes of states),

the fact that actions are executed as planning proceeds may become a liability. The

agent may select an action and execute it, only to discover later that its choice has

made reaching certain desirable states very difficult. An algorithm that plans more

thoroughly may well be much more effective in such a domain.

• Complete Observability: As we have observed before, we have only applied these

techniques in completely observable domains. Unfortunately, many interesting real

world domains do not have this characteristic.

• Stable goals: Over a series of planning tasks, the agent will work especially well if

the reward function remains constant. If the start state changes, only the search

need be redone, while making any significant change to rewards requires creating a

new abstraction.
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• Few actions: The abstraction and search algorithms are both very sensitive to

the number of actions in the domain. Even a small reduction in the number of

actions to be considered can result in a significant reduction in the performance of

the search algorithm. Action elimination techniques (see Section 6.7 of (Puterman

1994)) may be a useful addition to the approach, as may the work of Dean and

Greenwald (1994) on applying MDP techniques to scheduling problems.

The tradeoff between the two parts of the algorithm is also important. If a large

amount of initial computation time is available, or actions must be executed very quickly

once planning has begun, a more accurate heuristic can be constructed, and the search

can be correspondingly less deep. There are a number of other factors that affect this

balance.

• Continuity: if actions have similar effects in large classes of states and most of the

goal states are fairly similar, we can use a less detailed heuristic function ( a more

abstract policy).

• Fan-out: if there are relatively few actions, and each action has a small number of

outcomes, we can afford to increase the depth of the search tree.

• Extreme probabilities: with extreme probabilities it may be worth only expanding

the tree for the most probable outcomes of each action. This seems to bear some re

lationship to the envelope reconstruction phase of the recurrent deliberation model

of (Dean et al. 1993a).

5.1 Real World Domains

As we said above, there are relatively few real world domains which are completely

observable. This considerably restricts the real world applicability of the work as it now
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stands. Although we have not investigated it as yet, one promising class of real problems,

scheduling, has been proposed in which our techniques can be applied. We describe two

such domains.

Airline Gate Scheduling The problem is, given a set of gates at an airport, and a

set of incoming and outgoing flights, to allocate gates to each flight in order to

minimize deviation from the published schedule. The domain is stochastic since

flights can be delayed, or canceled altogether, and gates may be unavailable for

various reasons. Actions in this domain are assignments of gates to flights, and

rewards (and penalties) are received depending on whether flights leave on time,

and are delayed on the ground because no gate is available. Rewards may also be

received for allocating nearby gates to flights with a large number of connecting

passengers.

One difficulty with this domain is the very large number of actions — each assign

ment of a flight to a gate is a distinct action. The techniques discussed above for

reducing the action space will have a critical part to play in applying our algorithms

in many scheduling domains, as will schematic descriptions of actions, and their

exploitation.

Oil Pipeline Management Here the problem is to supply a number of customers with

various petroleum products. Actions are opening and closing valves, while rewards

are received for delivering correct shipments on time, and minimizing oil spoilage

due to leaks and contamination of one product with another. The system is stochas

tic since pumps may fail, pipes may leak, etc.

One open research question is whether the abstraction procedure described in Chapter

3 will be applicable in real world domains. Although we have not investigated any real
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domains to test this, we have reason to be optimistic, as we would expect a number of

irrelevant or only slightly relevant propositions to be present in any such domain. The

fact that Bayesian networks can be applied in real-world domains suggests that there is

a great deal of independence that can be exploited.

5.2 Future Work

There are a great many possible lines of research that present themselves. A major

one, which we have already discussed, is extending the approach to partially observable

MDPs. The major difficulty in the partially observable case is that the current state of the

system is a probability distribution over all states, rather than a single state. Although

partially observable MDPs can be translated into completely observable ones (Sondik

1978), the resulting MDP has an uncountably infinite state space. One naive approach

to this problem is to perform heuristic search as described in Chapter 4 from each state

with a non-zero probability (assuming that there are relatively few such states) or with

probability above some threshold, and then calculate the weighted average of the utility of

each action over all such states. For complex probability distributions, such a procedure

may be very expensive to perform, but there are currently no other computationally

efficient ways of computing even close-to-optimal plans in partially observable MDPs.

From an Al perspective, it is important to consider sensor models to determine what kinds

of probability distribution are possible when considering planning in partially observable

domains.

A fairly easy extension to this work would be to add rewards and costs associated with

actions as well as states. This would involve a relatively small change to the algorithms,

and would provide an increase in representational power.

In both the abstraction and planning algorithms as we have presented them, the agent
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is aiming to maximize its discounted total reward over an infinite horizon. However, this

is not the only value the agent might be interested in. Without considering the finite

horizon case, the agent might also be interested in the undiscounted reward. In the

MDP literature, this is referred to as average reward criteria, where the agent aims to

maximize its average reward per action (or per unit time). In many of the domains we

are interested in, it is difficult to justify discounting, so an agent using average reward

criteria may well perform better. Average reward criteria considerably complicates policy

iteration, and other methods of finding optimal policies, and we have not yet investigated

the difficulties involved in applying it with our algorithms.

Extending our approach to operate in infinite domains is another area we have yet to

investigate. Nor have we looked at the possibility of planning with semi-Markov processes

(Howard 1971).

The areas we have mentioned so far are all general problems that we would like to

see investigated. There are also a series of extensions that could be made to both the

abstraction and planning algorithms individually.

5.2.1 Abstraction

As it stands, the abstraction algorithm is rather restricted in some ways. We have

tended to be very conservative when producing the abstract state space — every atom

that could possibly affect the eventual reward is deemed relevant. There are a number

of possible ways to relax this requirement. The first is to ignore atoms which make only

a very small difference to the outcome of some action. For instance, in the example

presented in Table 2.1, if carrying the umbrella made a very slight difference to the

probability of delivering the coffee successfully, then the abstraction described in Section

3.2.3 would have included Umbrella as a relevant atom. If the difference in the probability

of DeliverCoffee was sufficiently small, we would prefer to ignore Umbrella, and perform
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the same abstraction as in the example. There are two difficulties with this. The first is

that the Markov property no longer holds if these atoms are ignored, and the second is

determining which atoms should be ignored, and which need to be included.

A second relaxation of our requirements is to use logical sentences in the place of

atoms when constructing the abstract state space. This makes the construction rather

more difficult, but could result in equally good abstract policies produced from even

smaller abstract state spaces.

One area that would greatly benefit by further investigation is ways of expanding the

abstraction process to operate with variables that can take more than two values. For

instance, a robot’s position in some navigation problem might be represented by two

variables, one giving the room that the robot is currently in, and the other the robot’s

heading (north, south, etc.). An abstraction process that could decide which values of a

given variable could be grouped together would be very valuable. Michael Horsch (Horsch

1994) has been looking at this problem as a way of using abstraction to evaluate influence

diagrams.

Another interesting way to improve the abstraction, although only in certain domains,

is to take advantage of knowledge of the initial state when constructing the abstract state

space. For example, if we knew that in our example domain from Table 2.1 that Rain

was false in the initial state, and since the value of Rain can never change, we would like

the abstraction procedure to treat Rain as an irrelevant atom even if it has a large effect

on reward.

An important research area that we have yet to explore is the question of how the

abstraction algorithm we describe can be combined with the envelope method of finding

policies described in (Dean et al. 1993b). To some extent, this is related to the idea

of using the start state to eliminate atoms from the abstraction, but Dean’s approach

goes further, ignoring states that are possible but very unlikely to be reached from the
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initial state. Nicholson and Kaelbling (1994) have already investigated one form of ab

straction using sensitivity analysis. Combining their approach with ours might provide

a very powerful approach which might well go some way towards some of the other open

problems described in this section.

5.2.2 Search

We have tried to describe the search algorithm in a fairly general way, making little

mention of implementation details such as whether to use depth first search or iterative

deepening. As it stands, the algorithm searches to a fixed depth. However, this need not

be the case. Searching to variable depth depending on the utility of the current action,

or some other criteria, would be an interesting area to investigate.

If there is little time to perform search, an agent may want to plan to take advantage

of previous computation. For example, an agent might want to reject an apparently

superior action in favor of a slightly worse one which leads to an area of the state space

where the agent has already cached many actions, thus saving the agent computation

time.

Another fruitful area for research is the idea of learning a better heuristic while

searching to select actions. We have deliberately shied away from an investigation of this

area because of our interest in producing as efficient a planning procedure as possible.

The idea is that as the agent computes values for states in the search process, it updates

the heuristic with these new values. Over time, the heuristic should approach the true

value of each visited state. However, if the value of the heuristic changes during the

planning procedure, then the agent needs to replan every time it reaches a certain state,

rather than using the previously computed action. As state spaces become larger, the

probability of reaching a particular state many times will in general decrease, so this

caching of values will be of less value. In these situations, an agent that constantly
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attempts to improve its heuristic may well perform better.
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Appendix A

Experimental Domains

Wet,-’Office,-’HUC
Wet,—iOffice
Wet,HUC

Wet
-‘Office,-’HUC

-‘Office
-‘HUC

0.0081
0.8019
0.0009
0.0891
0.0009
0.0891
0.0001
0.0099

The fully compiled form of the coffee-making domain from
Chapter 2

Move
Action Discriminant Effect Prob.

-iUmbrella,Rain,Office

Umbrella,Rain,Office —iOffice,-’HUC 0.0090
-‘Office 0.8910
-HUC 0.0010

0.0990
-‘Rain,Office -‘Office,-’HUC 0.0090

—‘Office 0.8910
-‘HUC 0.0010

0.0990
—‘TJmbrella,Rain,-’Office Wet,Office,-’HUC 0.0081

Wet,Office 0.8019
Wet,—’HUC 0.0009

Wet 0.0891
Office,-’HUC 0.0009

Office 0.0891
-‘HUe 0.0001

0.0099
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Action Discriminant Effect Prob.
Move Umbrella,Rain,-’Office Office,-iHUC 0.0090

Office 0.8910
-‘HUC 0.0010

0.0990
-,Rain,-iOffice Office,-’HUC 0.0090

Office 0.8910
-HUC 0.0010

0.0990
BuyCoffee -‘Office HRC,-’HUC 0.0080

HRC 0.7920
-HUC 0.0020

0.1980
Office -iHUC 0.0100

0.9900
GetUmbrella Office Umbrella 0.8910

Umbrella,-’HUC 0.0090
-1HTJC 0.0010

0.0990
-‘Office -HUC 0.0100

0.9900
DeliverCoffee Office,HRC -‘HRC,HUC 0.8000

-HRC,-iHUC 0.0010
-HRC 0.0990
-HUC 0.0010

0.0990
-iOffice,HRC -HRC,-HUC 0.0080

-,HRC 0.7920
-HUC 0.0020

0.1980
-HRC -HUC 0.0100

0.9900

The value function for this domain is exactly the one presented on Page 14.
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The COFFEE domain from the results sections of Chapters
3 and 4

Action Discrinilnant Effect Prob.
GoBarn umb,-’la la,-’lb 0.9000

0.1000
-‘umb,-’la wet,la,-’lb 0.8100

wet 0.0900
la,—ilb 0.0900

0.0100
la 1.0000

GoOffice —‘la la,lb 0.9000
0. 1000

la 1.0000
GoAlLab -‘umb,Ia,-’lb wet,dist,-’la,lb 0.8100

dist,-ila,lb 0.0900
wet 0.0900

0.0100
umb,la,-’lb dist,—ila,lb 0.9000

0.1000
la,lb dist,—ila,lb 0.9000

0.1000
-ila 1.0000

GoGraphicsLab -‘umb,la,-’lb wet,-ila,-’lb 0.8 100
-‘la,-’lb 0.0900

wet 0.0900
0.0100

umb,la,-ilb —da,-ilb 0.9000
0. 1000

la,lb —ila,-ilb 0.9000
0. 1000

-‘la 1.0000
BuyCoffee hrs,la,-’lb —ihrs,hrc 0.5000

0.5000
—‘hrs,la,-’lb hrc 0.8000

0.2000
la,lb 1.0000
-‘la 1.0000

DeliverCoffee hrc,la,lb huc,—ihrc 0.8000
—‘hrc 0.1000

0. 1000
-‘hrc,la,lb 1.0000

la,—ilb 1.0000
-‘la 1.0000
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Sentence Value
huc,hus,wet,dist 1.15

huc,hus,wet,—idist 1.25
huc,hus,—iwet,dist 1.4

huc,hus,—iwet,--dist 1.5
huc,-ihus,wet,dist 0.65

huc,—ihus,wet,--idist 0.75
huc,—ihus,--iwet,dist 0.9

huc,—ihus,--iwet,-,dist 1.0
—ihuc,hus,wet,dist 0.15

—ihuc,hus,wet,--idist 0.25
—‘huc,hus,-’wet,dist 0.4

-‘huc,hus,--’wet,-’dist 0.5
—ihuc,—ihus,wet,dist -0.35

—ihuc,-,hus,wet,-,dist -0.25
-,huc,--ihus,-,wet,dist -0.1

—ihuc,—ihus,-,wet,---idist 0.0

Action Discriminant Effect Prob.
BuySnack hrc,la,-ilb hrs,-’hrc 0.5000

0.5000
—‘hrc,la,---’lb hrs 0.8000

0.2000
la,lb 1.0000
—ila 1.0000

DeiSnack hrs,la,lb hus,—’hrs 0.8000
—ihrs 0.1000

0.1000
—‘hrs,la,lb 1.0000

la,—’lb 1.0000
—ila 1.0000

GetUmbrella la,lb umb 0.9000
0.1000

la,-’lb 1.0000
—ila — 1.0000
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The BUILDER domain from Chapters 3 and 4

Action Discriminant Effect Prob.
PaintA AClean APainted 0.75

-‘AClean 0.20

0.05
—iAClean 1.00

PaintB BClean BPainted 0.75
—‘BClean 0.20

0.05
-iBClean 1.00

ShapeA -‘Joined -‘APainted,AShaped 0.80
—iAPainted,-’AClean,-iAShaped,-’ADrilled 0.10

—‘APainted 0.10
Joined -iBPainted,-,APainted 1.00

ShapeB —‘Joined —BPainted,BShaped 0.80
—iBPainted,-iBClean,-iBShaped,-iBDriIled 0.10

-‘BPainted 0.10
Joined -BPainted,-’APainted 1.00

DrillA —‘Joined ADrilled 0.90

0.10
Joined 1.00

DriiB -‘Joined BDrilled 0.90

0.10
Joined 1.00

WashA AClean 0.90

0.10
WashB BClean 0.90

0.10
Bolt BShaped,AShaped, Joined 0.80

BDrilled,ADrilled 0.20
-‘ADrilled 1.00

—iBDrilled,ADrilled 1.00
-iAShaped,BDrilled,ADriled 1.00

-‘BShaped,AShaped, 1.00
BDrilIed,ADriIled
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Action Discriminant Effect Prob.
Glue BShaped,AShaped -iBClean,-’AClean,Joined 0.35

Joined 0.35
—‘BClean,-’AClean 0.15

0.15
-‘AShaped -‘BClean,-’AClean 0.50

0.50
-‘BShaped,AShaped -iBClean,-’AClean 0.50

0.50
Sentence Value

AClean,BClean,APainted,BPainted,Joined 1
—‘AClean,BClean,APainted,BPainted,Joined .9
AClean,—iBClean,APainted,BPainted,Joined .9

—iAClean,-iBClean,APainted,BPainted,Joined .8
AClean,BClean,—iAPainted,BPainted,Joined .8

-iAClean,BClean,-’APainted,BPainted,Joined .7
AClean,-,BClean,-iAPainted,BPainted,Joined .7

-‘AClean,-’BClean,-iAPainted,BPainted,Joined .6
AClean,BClean,APainted,-’BPainted,Joined .8

-iAClean,BClean,APainted,-’BPainted,Joined .7
AClean,—’BClean,APainted,-iBPainted,Joined .7

-‘AClean,--iBClean,APainted,-iBPainted,Joined .6
AClean,BClean,-iAPainted,-’BPainted,Joined .6

-iAClean,BClean,—iAPainted,-iBPainted,Joined .5
AClean,-’BClean,-’APainted,-’BPainted,Joined .5

—iAClean,-iBClean,-,APainted,-iBPainted,Joined .4
ACIean,BClean,APainted,BPainted,-Joined .6

—iAClean,BClean,APainted,BPainted,--iJoined .5
ACIean,-iBClean,APainted,BPainted,-’Joined .5

—‘AClean,-’BClean,APainted,BPainted,--’Joined .4
AClean,BClean,-’APainted,BPainted,—’Joined .4

-‘AClean,BClean,-’APainted,BPainted,-iJoined .3
ACIean,—’BClean,-’APainted,BPainted,-’Joined .3

-iAClean,-’BClean,-iAPainted,BPainted,-’Joined .2
AClean,BClean,APainted,-iBPainted,-’Joined .4

—iAClean,BClean,APainted,--iBPainted,--,Joined .3
AClean,—’BClean,APainted,--iBPainted,-’Joined .3

AClean,-iBC1ean,APainted,-iBPainted,-iJoined .2
AClean,BClean,-iAPainted,-’BPainted,-iJoined .2

-iAClean,BClean,--iAPainted,-iBPainted,-iJoined .1
AClean,BC1ean,-’APainted,--’BPainted,Joined .1

-‘AClean,-’BClean,-iAPainted,-’BPainted,-’Joined 0
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