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Abstract 

The traditional communication protocol architectures have a number of components that 

present bottlenecks to achieving high performance. These bottlenecks include the way the 

protocols are designed and the way protocol stacks are structured and implemented. With 

the advent of high speed networks, the future communication environment is expected to 

comprise of a variety of networks with widely varying characteristics. The next generation 

multimedia applications require transfer of a wide variety of data such as voice, video, 

graphics, and text and have widely varying access patterns such as interactive, bulk 

transfer, and real-time guarantees. Traditional protocol architectures have difficulty in-

supporting multimedia applications and high-speed networks because they are neither 

designed nor implemented for such a diverse communication environment. 

This thesis analyzes the drawbacks of traditional protocol architectures and proposes 

alternative high-performance architectures for multimedia applications and high-speed 

network environments. Three protocol architectures are proposed: Direct Application 

Association, Integrated Layered Logical Multiplexing, and Non-Monolithic Protocol Ar

chitectures. To demonstrate the viability of these architectures, a protocol independent 

framework for each proposed protocol architecture is implemented in the context of a 

parallelized version of the z-kernel. Implementation of the TCP/UDP-IP-Ethernet pro

tocol stack for each of the proposed architectures demonstrates that the performance of 

these protocol architectures is comparable to that of a traditional protocol architecture. 

In addition, the proposed architectures are more scalable on multiprocessor systems than 

the traditional protocol architecture and enable some of the key requirements (Applica

tion specific Quality of Service, Application Level Framing) and optimizations (such as 

n 



Integrated Layer Processing) necessary for the future communication environment. 
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Chapter 1 

Introduction 

Computer technology has changed rapidly during the last two decades. Processor speed 

has increased from a fraction of Million Instructions Per Second (MIPS) to 1000 MIPS. 

The computer network speed has increased from kilobits per second to several gigabits per 

second and has the potential of going up to terabits per second. Advances in computer 

technology have made the technology simple and cost effective so that it is within the 

reach of a common man, making the personal computer a household commodity. The 

rest of this decade is envisioned to connect every household computer on a global network 

which will support services such as video on demand, video telephony/conferencing, on

line public libraries, multi-media news, home banking, home shopping. Many of these 

services have high bandwidth and real-time traffic requirements. 

The infrastructure for global connectivity will be provided by a high-speed net

work called The Information Superhighway facilitated by evolving global standard Asyn

chronous Transfer Mode (ATM) technology. The network speed of the information su

perhighway is expected to range from a few megabits to a few gigabits per second at 

the user network interfaces and several gigabits to terabits per second on the informa

tion superhighway backbone. However, before diverse communication networks, such 

as the information superhighway, become operational, there are a number of .challenges 

that must be tackled. One of the major challenges is providing high performance com

puter communication protocols to support emerging time critical services on such diverse 

communication networks. 

1 
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1.1 Motivation 

Traditional protocol architectures have been able to meet the demand of the last gener

ation of computer networks and applications because networks were quite slow and they 

were used to carry only one type of data. With the advent of high speed networks, the 

future communication environment is expected to comprise of a mixture of networks with 

widely varying characteristics. Future networks are also expected to support multimedia 

applications which transfer a wide variety of data such as voice, video, graphics, and text 

and have widely varying access patterns such as interactive, bulk transfer, and real-time 

guarantees. Traditional protocol architectures are not suited for multimedia applications 

and high speed networks because they are neither designed nor implemented for such a 

diverse communication environment. 

A n ideal communication system for the future communication environment would be 

the one that can provide communication over diverse networks with data transfer rates 

ranging from kilobits per second to gigabits per second and network diameters ranging 

from Local Area Networks (LANs) to Wide Area Networks (WANs). It would also ef

ficiently support "all" applications: connection oriented, connectionless, stream traffic, 

bursty traffic, reliable transport, best effort delivery, different data sizes, and different 

delay and throughput requirements, etc. To achieve the goal of such a communication 

system, research work is required at all level of computer systems: starting from phys

ical transmission media, L A N interface design, C P U , memory, disk, operating systems, 

protocol architectures to application design and implementation. 

1.2 Research Contributions of this Thesis 

This thesis analyzes the drawbacks of traditional protocol architectures and proposes 

alternative high-performance protocol architectures for the next generation applications 
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and high-speed network environments. The primary contributions of this thesis are as 

follows: 

• Three new protocol architectures are proposed: 

— Direct Application Association Protocol Architecture, 

— Integrated Layered Logical Multiplexing Protocol Architecture, and 

— Non-Monolithic Protocol Architecture. 

• Parallelization of the z-kernel [HP88, HP91] including T C P [Pos81c] / U D P [Pos80] 

- IP [Pos81b] - Ethernet [MB76] protocols stack for a shared memory multiproces

sor machine. 

The hardware platform for our experiments is the Motorola MVME188 Hypermod

ule, a quad-processor 88100-based shared memory multiprocessor machine [Gro90] 

with the Raven kernel [Rit93, RN93] running on the bare hardware. 

• Demonstration of the viability of these protocol architectures. 

Protocol independent frameworks for each of the proposed protocol architectures 

are implemented in the context of the parallel ̂ -kernel. 

• Demonstration of efficiency of the proposed protocol architectures. 

Sample protocol stacks for each of the proposed protocol models are implemented 

using the most widely used TCP/UDP-IP-Ethernet protocol stack. The perfor

mance of these models are measured and compared with that of traditional protocol 

models under real network traffic conditions. 
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1.3 Thesis Overview 

Chapter 2 surveys the previous work relevant to the understanding of the thesis and 

presents the thesis proposal. It first summarizes the research trends in protocol architec

tures to meet the requirements of the future networks and application environments. It 

then identifies and discusses in detail the requirements of future communication protocol 

architectures. Finally, this chapter presents the three proposed protocol architectures: 

Direct Application Association Protocol Architecture, Integrated Layered Logical Mult i

plexing Protocol Architecture, and Non-monolithic Protocol Architectures. 

Chapter 3 first presents an overview of the x-kernel, which is an essential prerequisite 

to understanding the rest of this thesis. It then describes the scheme used for paralleliza

tion of the z-kernel to make it run on shared memory multiprocessor machines. 

Chapter 4 describes the design of the frameworks of each new protocol architecture 

proposed in the thesis in the context of the ^-kernel. It first describes the framework of 

Direct Application Association protocol architecture, followed by that of the Integrated 

Layered Logical Multiplexing protocol architecture. It finally describes the design of the 

framework of the Non-Monolithic protocol architecture. 

Chapter 5 first describes the run-time environment of our experiments. It gives an 

overview of the hardware platform and the Raven kernel. It then gives the implementation 

details of frameworks of each of the three proposed protocol architectures. This chapter 

also describes the implementation details of the sample TCP/UDP-IP-Ethernet protocol 

stacks implemented for each the three protocol architectures. 

Chapter 6 analyzes the performance of the example protocol stack for each protocol 

architecture. It first describes the benchmark tools used for performance measurements 

and then gives performance results of the round-trip latency, incremental cost per pro

tocol per round-trip, latency breakdown, throughput, and connection setup cost. Some 
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multiprocessor performance experiments and their results are also reported. 

Chapter 7 presents a summary of the results. This chapter concludes with a de

scription of the research contributions of this thesis and the identification of some future 

research areas. 



Chapter 2 

Related Work and Thesis Proposal 

Traditionally, communication protocols have been implemented in a monolithic fashion. 

In these implementations, the complete protocol stack is implemented either in the op

erating systems kernel [LMKQ89] or in a trusted user address space or server [GDFR90]. 

The monolithic protocol architectures have been quite successful in meeting the demands 

of the last generation of networks because networks were quite slow and they were used 

to carry only one type of data, that is, time insensitive data. With the advent of high

speed networks such as Asynchronous Transfer Mode, future communication environ

ments are expected to comprise of a mix of networks with widely varying characteristics 

[CT90, Par90, Par93]. Therefore, future communication protocols not only have to sup

port a wide range of networks but also a wide variety of applications that will transfer 

multimedia data (e.g. voice, video, graphics, text) and will have different access pat

terns such as interactive, bulk transfer, and real-time guarantees. Widely varying data 

characteristics mixed with various access patterns will require wide range of Qualities of 

Service(QoS) that are not addressed by current protocol architectures. Researchers have 

taken different directions to meet these requirements1: 

• Analyze the shortcomings of current protocols and extend them for future network 

requirements [Cal92, CSBH91, Dee92, Fra93, JBB92]. 
xThe following choices are not mutually exclusive. The references given are by no means exhaustive. 

6 
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• Re-examine the overheads in the current protocol implementations [BOP94, CJRS89, 

Jac88, Jac90, KP93a, KP93b, MG94, PP93, PDP93, WVT93], and adapt them for 

higher performance in the future high-speed network environments [BB92, BOP94, 

Jac88, Jac90, KP93b, NGB+91] . 

• Develop new light-weight protocols which can guarantee high throughput, low jitter 

and low latency [Che86, Che88, CLZ87, Fel93, PS93, Top90]. 

• Implement transport protocols in dedicated hardware [AABYB89, Che88, CSSZ90, 

KC88, NIG +93] or implement some protocol functionality in hardware [BPP92, 

DWB+93, TS91]. 

• Propose parallel protocol architectures [BG93, Dov90, GKWW89, GNI92, JSB90, 

WF89, Zit89]. 

• Propose new techniques for the implementation of protocol stacks such as Integrated 

Layer Processing(ILP) [CT90], Application Level Framing [CT90], Application-

oriented Light-weight Transport Protocols(ALTP) [PT89], Flexible Protocol Stack 

[Tsc91] and Non-Monolithic Protocol Architecture [JHC94a, MRA87, MB92, MB93, 

TNML93]. 

Traditionally, there has been little coordination between the design of the host op

erating systems and design of communication subsystem, thereby resulting in poor per

formance of the communication subsystem. The major sources of overhead that lead 

to the poor performance of communication subsystem are identified as multiple data 

copying, poor management of timers, buffers, interprocess communication, interrupts, 

context switches, and scheduling. A lot of effort is now being expended in the direction 

of coordinated design of network interfaces, structuring the protocol implementations 
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and designing suitable operating systems primitives to minimize the host's overhead for 

communication subsystems. 

In this thesis, we concentrate on new protocol architectures for future gigabit network

ing environments. For this purpose, we first analyze the traditional protocol architectures 

and identify their drawbacks, and then propose new protocol architectures which can po

tentially avoid these drawbacks. We believe that it will take several years before new 

protocols become acceptable for commercial use, and even if they gain acceptance, tra

ditional protocols will remain in use for several years (potentially forever in some parts 

of the globe). Hence, it is necessary to adapt traditional protocols to run in the future 

networking environment. 

2.1 Requirements for High-Performance P ro toco l Processing 

Clark, Tennenhouse and Feldmeier [CT90, Fel90, Ten89] have analyzed traditional proto

col architectures and identified their key idiosyncrasies that present bottlenecks to future 

high-speed network environments. This section discusses the shortcomings of traditional 

protocol structures in the context of the following key requirements for future network 

environments. 

2.1.1 P r o v i d i n g W i d e Range of Qua l i ty of Service to Appl ica t ions 

Next generation multi-media applications will require a variety of services from communi

cation protocols, such as real-time guarantees and bulk data transfer. We expect that in 

systems supporting these applications, both time sensitive and time insensitive data will 

compete for shared system resources. A proper sharing strategy is essential to provide 

performance guarantees while maintaining high system throughput and efficiency. A T M 

networks guarantee QoS negotiated on an application specific basis. However, this is not 
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generally true for higher layer protocols that are executed in the host operating systems 

and account for a large part of the protocol processing overhead. 

To provide different QoS to different applications requires that each application be 

treated according to its individual needs at all resource sharing points. This purpose, 

however, is defeated by the logical multiplexing that occurs at several layers in a tradi

tional protocol stack. By logical multiplexing, we refer to the mapping of multiple streams 

of layer n into a single stream at layer n — 1. The problems with layered multiplexing 

can be summarized as follows [Fel90, Ten89]: 

• Loss of individual QoS parameters of multiple higher layers at the lower layer. 

Streams with different QoS are multiplexed into a single lower layer stream. As a 

result, all upper layer streams are treated identically at the lower layer. 

• Layered logical multiplexing complicates protocols and their implementations. Sim

ilar header fields found at multiple layers may result in reduced throughput. 

• Multiple context state retrieval as a result of demultiplexing at several layers is 

slower than a single but larger context state retrieval. 

• Flow control functionality is duplicated at multiple layers. 

• In the context of multithreaded and parallel processors, layered multiplexing causes 

control data to be shared and hence, restricts the degree of parallelism. 

From the discussion in the previous paragraph, the following conclusions can be made: 

• Multiplexing/demultiplexing should be done in a single layer and in the lowest pos

sible layer. The demultiplexing at a single layer needs to determine the application 

identity and hence, there should be a one to one correspondence between the de

multiplexing key contained in the header and the application to which the packet 

is destined. 
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• QoS information should be processed and acted upon as early as possible after the 

demultiplexing point. This implies that QoS information should be contained in 

the same layer header which contains the demultiplexing information. 

We propose an architecture called Direct Application Association which addresses 

the issues raised above. 

2.1.2 Integrated Layer Processing 

Traditionally, network protocols are implemented in a layered fashion. International Stan

dard Organization (ISO), has proposed a seven-layer model. The advantage of layering is 

that it provides modularity and hides details of one protocol layer from the other layers. 

The drawback is poor performance because of the sequential processing of each data unit 

as it passes through the protocol layers2. Furthermore, multiple layers may perform data 

manipulation on the data unit. The data manipulation functions are those which read 

and modify data. Examples of these functions include encryption, compression, error 

detection/correction, and presentation conversion3 [CT90]. The data manipulation func

tions suffer from serious performance problems on modern processors because they cause 

high traffic over the CPU/memory bus in the presense of cache misses. In a traditional 

protocol implementation, data manipulation operations are performed independently of 

one another because of layering. Thus, the cache performance is seriously affected as the 

cache may be invalidated when going from one layer to another. 

Data manipulation functions of different protocol layers are similar and hence, can 

be performed in an integrated fashion so as to get maximum benefit from the cache. 
2The layers can be arranged in a pipeline to increase the performance. This purpose, however, is 

defeated because pipelining requires buffers and has overhead of synchronizing activities in adjacent 
layers. 

Presentation Conversion refers to the reformatting of data into a common or external data repre
sentation such as Sun XDR [Inc87] or ASN.l [fSIPSOSI87]. 
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This approach is termed Integrated Layer Processing (ILP) [CT90]. The ILP approach 

restructures the data manipulation operations so that most of the time, data is found 

either in the cache or in the processor registers so that there is minimum data transfer over 

the CPU/memory bus. Thus, n read and n write operations which would have resulted 

in 2n external memory operations, require only 2 external memory operations in the 

ILP approach. In an ILP approach, a protocol stack is still arranged in a logical layered 

fashion while its implementation does not follow strict layering. The ILP is an engineering 

principle which should be applied to the implementations only when performance gains 

can be achieved. 

Abbot and Peterson [AP93] propose an ILP scheme in the context of the rc-kernel. 

They arrange the data manipulation steps of the various protocols into a pipeline. Data 

is loaded into the pipeline word by word, and the data manipulation functions of the 

various layers are performed on the data while it remains in the registers, with the data 

finally being stored back in the memory when processing is complete. So, data is read and 

written over the memory bus only once instead of being read and written once for each 

function at each layer. They report substantial performance gains for data manipulation 

operations by employing the ILP technique [AP93]. The main problem with integrating 

the data manipulation functions of different protocol layers is that different layers may 

have different views of what constitutes data in a packet. A higher layer protocol header 

is typically considered as data by a lower layer protocol. For example, the IP layer views 

the T C P header as data. This complicates the integration. One solution is to integrate 

only that part of the message that each layer regards as data. This solution requires 

that the data and header boundary be known to each layer. For outgoing packets, this 

boundary is already known and hence, integration can be handled easily. For incoming 

packets, the data and header boundary can be located only after the demultiplexing 

operation has been performed at each layer in the protocol stack. Thus, it is difficult to 



Chapter 2. Related Work and Thesis Proposal 12 

achieve ILP for incoming packets. The packet filter [MRA87] has been suggested as a 

tool to peek into the headers and locate the header-data boundary before the packet is 

processed. However, this solution is inefficient for the following reasons: 

• It duplicates protocol demultiplexing: once during packet filtering and once again 

during the packet processing at each layer. 

• Except for locating header-data boundary, it does not really provide any additional 

support for easing the design of Integrated Layer Processing because demultiplexing 

is still performed at multiple protocol layers, thereby hindering ILP. 

This thesis proposes an efficient protocol architecture called Integrated Layered Logical 

Multiplexing which overcomes these drawbacks. 

2.1.3 A p p l i c a t i o n Level F raming 

Clark and Tennenhouse [CT90] have argued that on modern processors, presentation 

conversion may seriously affect the performance of protocol processing. The important 

aspect of presentation conversion, in general, is that it is performed in the context of the 

application. A typical example [CT90] is Remote Procedure Call (RPC) [BN84]. In an 

R P C call, transferred data represents the arguments and results of the remote execution 

of a procedure and are interpreted by the application. So, the presentation conversion 

should also be dictated by the application for the best performance. 

Another problem in supporting real-time applications is that of lost and mis-ordered 

data [CT90]. In present protocol implementations (e.g. TCP-IP) , data loss and misorder-

ing blocks the application. Hence, presentation conversion also stops. This also presents 

a bottleneck to the integration of data manipulation functions starting from protocol 

layers up to the application. For example, applications delivering video and voice data 
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can tolerate some loss of data and hence, can process misordered data if they can be 

informed. In a traditional protocol such as T C P , this cannot be achieved because T C P is 

based on a byte stream. The byte stream is meaningless for the application because the 

presentation layer between T C P and the application reformats the data. An alternative 

option is to have the application, and not the transport protocol layer, retransmit the 

lost data. 

From the above discussion, it can be concluded that for future network environments, 

data units should be application specific and not protocol layer specific and protocol 

layers should respect the boundaries of these data units. These data units become the 

basic units of data manipulation and error recovery. This design principle is called Appli

cation Level Framing (ALF) [CT90] and the data units are termed as Application Data 

Units (ADU). Application level framing is protocol stack specific and requires that some 

functionality, such as recovery from lost or misordered packets which was traditionally 

part of the protocol layers, be shifted to the application layer. In the traditional proto

col architecture, it is very difficult to meet the goal of application level framing [CT90]. 

It is simpler to implement application level framing in user-level protocol architecture 

[JHC94a, MRA87, MB92, MB93, TNML93]. In user-level protocol architecture, complete 

or parts of protocol stacks are linked to the application as user-level library and hence, 

application has better control on the protocol processing than that available in kernel 

based protocol implementations. 

2.1.4 Getting Bits Faster to Applications 

Multimedia applications requiring real-time guarantees must receive data from the net

work as soon as it arrives. These applications also need to be informed of the lost or 

misordered data as quickly as possible. Monolithic implementations have difficulty sup

porting these applications because packets are processed in the kernel thereby delaying 
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the delivery of data contained in the packets to applications. In user level protocol im

plementations, the kernel simply determines the application to which a packet belongs 

and sends the packet to the application. The packet processing is performed in the appli

cation. Hence, user level protocol processing provides the fastest way to deliver packets 

to applications. In user level protocol implementations, an application also has more 

control on packet processing as required by multimedia applications. 

2.1.5 Parallelization of Protocol Stacks 

One of the main reasons of slower protocol processing on modern machines is more than 

one order of magnitude difference between processor speed and memory speed. How does 

the processor keep packet processing up with the network speed? A common solution 

is to allocate a number of processors to process network packets and hence, parallelize 

protocol stacks. 

Parallel Protocol Models 

Several models for parallel implementation of protocols have been proposed in the past 

[BG93, Dov90, GKWW89, GNI92, JSB90, WF89, Zit89]. A l l these models were con

cerned with the parallelization of monolithic protocol stacks and have had little success. 

The primary hindrance to parallelization comes from the fact that protocol processing 

is layered and hence, serialized. In this section, we briefly describe these models4. In 

Section 2.3.3, we show that Non-Monolithic protocol implementations are more paralleliz-

able than the traditional monolithic implementations and therefore, are architecturally 

superior to traditional monolithic ones. 

4They have also been summarized in [BG93] and [GNI92]. 
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Processor per Protocol 

In the processor per protocol scheme, one or more processors are dedicated to each 

protocol and the protocol stack is essentially a pipeline of processors. The packets move 

from processor to processor in the pipeline in both directions. Each processor performs 

protocol specific processing of packets and send them down or up the pipeline. To 

reduce the interference between incoming and outgoing packets, separate unidirectional 

processor pipelines can be used to form a bidirectional pipeline. However, the protocol 

state still needs to be shared among multiple processors. 

This scheme has the advantages and disadvantages of standard pipeline processing. 

The main advantage is that this scheme fits well with the protocol layering approach. It 

is natural to implement each layer on a separate processor and therefore not to share the 

protocol state with processors dedicated to other protocol layers. The number of packets 

processed in parallel could be as high as the number of stages in the pipeline. 

The main disadvantage of processor per protocol scheme is that the pipeline perfor

mance is determined by the slowest segment in the pipeline. The slowest segment can 

be subdivided into multiple segments to increase its performance but it may make the 

implementation complex and introduce the overhead of synchronization between bound

aries if such divisions do not fall on natural boundaries. Another main drawback of the 

scheme is that communication between the processors is required at each boundary. If 

the number of processors are less than the number of layers, extra context switches for 

each packet may seriously degrade the performance. Also, each packet is processed by a 

different processors at different layer, so the packet will seldom be found in a processor's 

cache, thereby reducing the performance. On fast processors, overhead of context switch 

and cache miss is so high that it is difficult to justify using this model for supporting 

high-speed networks. 
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Processor per Connection 

In the processor per connection scheme, each connection is assigned one processor imply

ing that there is no parallelism within a connection. However, packets related to multiple 

connections may be processed in parallel on different processors. Synchronization is re

quired for resources that are shared by more than one connection. A l l packets belonging 

to the same connections are processed serially and hence, no synchronization is required 

within the data structures that are local to a connection. The main advantage of this 

approach is that each packet is processed by a single processor and connection state is 

not shared among processors. The main disadvantages of this scheme are as follows: 

• In traditional protocol stacks which follow the Layered Logical Multiplexing model, 

several upper protocol layer's connections may be multiplexed over a single lower 

protocol layer's connection. In this case, all such connections are serviced by a 

single processor, thereby drastically restricting the available parallelism. 

• Applications which open a small number of heavily used connections do not benefit 

from this model even though a large volume of data may be transmitted back and 

forth. 

Processor per Function 

In the processor per function approach, one processor is dedicated for a specific function 

within a protocol or a specific function common to more than one protocol. This scheme 

takes parallelism to the extreme of fine grain parallelism. The main advantage of this 

approach is that it can exploit the maximum available parallelism. The main drawback 

of this scheme is that the overhead of fine grain synchronization and extra communica

tion among the processors may dominate the processing cost, thereby resulting in poor 

performance. 
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Figure 2.1: Layered Logical Multiplexing Protocol Architecture 

Processor per Packet 

The most promising approach is to assign one processor per packet. Each processor 

shepherds the packet through the complete protocol stack. This scheme minimizes the 

context switches and maximizes the cache hits resulting in better performance. There 

is no extra communication overhead between adjacent layers. Synchronization is still 

required for the parallel processing of packets. We adopted this approach for all our 

protocol implementations. 

2.2 Tradi t iona l P ro toco l Archi tectures 

2.2.1 Layered Logica l M u l t i p l e x i n g ( L L M ) P ro toco l Arch i tec ture 

In traditional protocol architectures, multiplexing and demultiplexing operations are 

performed at multiple protocol layers. Such protocol architectures can be termed as 

Layered Logical Multiplexing architectures. Figure 2.1 depicts the behavior of a L L M 

model. Multiple streams (or sessions) of layer n are mapped to one stream (or session) 

at layer n — 1. As discussed in Section 2.1, this architecture has difficulty supporting 
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application specific QoS and implementing protocol stack in an ILP fashion. 

2.3 Al te rna t ive P ro toco l Archi tectures 

In this section, we describe the alternative protocol architectures proposed in this thesis 

for future gigabit networking environments. 

2.3.1 Di rec t A p p l i c a t i o n Associa t ion ( D A A ) P ro toco l Arch i tec ture 

It has been argued by Tennenhouse [Ten89] and Feldmeier [Fel90] that logical multiplex

ing/demultiplexing at multiple layers in the protocol stack significantly reduces through

put and therefore should be performed only in a single layer in the protocol stack. For 

user level protocol implementations, the simplest and most efficient approach would be 

to have an application identifier enclosed in the M A C layer header. The device driver can 

interpret the application identifier and have the packet routed directly to the application. 

As its name suggests, in the D A A protocol architecture, an application specific identi

fier is encoded in the header of the lowest protocol layer to achieve a single demultiplexing 

point at the lowest protocol layer in the stack. In A T M networks, a Virtual Connection 

Identifier and Virtual Path Identifier pair can be associated with an application to im

plement protocols in a D A A fashion. Traditional networks do not provide such support 

and require incompatible extensions. 

Figure 2.2 shows a D A A protocol architecture. In the D A A protocol architecture, 

demultiplexing is performed only once at the lowest protocol layer which identifies the 

application that is to receive each incoming packet. An analytical study of D A A and L L M 

models [Zhu92] shows that the L L M model has inherent performance bottlenecks and that 

the D A A model is superior to the L L M model: These results are in agreement with the 

arguments given by Tennenhouse [Ten89] and Feldmeier [Fel90]. Other advantages of 
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Figure 2.2: Direct Application Association Protocol Architecture 

having a one-to-one correspondence between applications and demultiplexing keys are as 

follows: 

• Extra data copies can be eliminated because the network device can directly copy 

the data in the recipient application's buffer. 

• The system can check whether the recipient application has sufficient resources to 

receive the packet as early as possible. This is very difficult to do in a L L M protocol 

stack [Pet94]. 

• For applications requiring real-time guarantees or other kinds of QoS, system re

sources can be allocated appropriately to the packet so that the packet can meet 

its QoS. 
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Figure 2.3: Integrated Layered Logical Multiplexing Protocol Architecture 

• In high-performance multimedia systems, the destination could be an I/O device 

such as a frame buffer or a video decompression board. In the D A A scheme, the 

data can be routed directly to the I/O device without processor involvement. 

We design a framework for implementing a D A A architecture stack in the context 

of the z-kernel [JHC94b]. We also implement an example D A A architecture protocol 

stack by extending the Ethernet header to enclose an application identifier and a QoS 

information field. These extensions are described in Section 4.2. 

2.3.2 Integrated Layered Logical Multiplexing (ILLM) Protocol Architec

ture 

In the I L L M architecture, packet demultiplexing which is normally performed at 

different protocol layers, is decoupled from these protocols and is performed successively 
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in an integrated fashion. When the final destination session5 has been determined, the 

protocol specific state change processing is then performed in succession on the protocol 

layers' sessions as shown in Figure 2.3. 

Figure 2.3 distinguishes the sessions at different layers with different shades. In the 

I L L M architecture, the processing of received packets can be divided into two phases: 

a demultiplexing phase and a state-change phase. The demultiplexing phase identifies a 

list of sessions of different protocol layers that the network packet will be visiting. The 

state-change phase operates on the sessions identified by the demultiplexing phase to 

update the state of connection represented by these sessions. This architecture achieves 

the ideally expected behavior (i.e. single demultiplexing point in the complete protocol 

stack) proposed by Feldmeier [Fel90] and Tennenhouse [Ten89] while still maintaining 

compatibility with existing protocols. 

We observe the following advantages of the I L L M architecture: the demultiplexing 

operations of multiple protocol layers are decoupled from the rest of the protocol process

ing. This avoids the drawback of the traditional L L M architecture [Fel90, Ten89] where 

demultiplexing is performed at multiple layers intermixed with protocol state-change op

erations. As pointed out in Section 2.1.2, this intermixing hinders ILP because data 

manipulation functions (which need to be integrated) are part of protocol state-change 

processing. The I L L M architecture also solves another major problem of ILP optimiza

tion for traditional protocol architectures - determining the boundary between headers 

and data in network packets. As discussed in Section 2.1.2, we need to know the bound

ary between headers and data as early as possible. For outgoing packets, this boundary is 

already known. For incoming packets, it is difficult to locate this boundary immediately 

after the packet is received. Again, this is because in the L L M architecture, state-change 

operations are sandwiched between demultiplexing operations. A simple but inefficient 
5In the sense as used in the z-kernel denned in Section 4. 
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solution suggested by Abott and Peterson [AP93] is to use a Packet Filter [MRA87] be

fore the beginning of protocol processing of the received network packet. The Packet 

Filter technology essentially performs the protocol demultiplexing operation and hence, 

in this solution, demultiplexing is performed twice: once to locate the boundary between 

headers and data and then, to locate the sessions of the different protocol layers. In the 

I L L M approach, demultiplexing is performed only once. Another interesting advantage 

of the I L L M architecture is that it allows easy integration of data manipulation functions 

of different protocol layers during the state-change phase and therefore, eases ILP. The 

I L L M model achieves all the advantages of a D A A architecture described in Section 2.3.1. 

2.3.3 N o n - M o n o l i t h i c P ro toco l Archi tec ture 

Traditionally, protocols have been structured in a monolithic fashion with the protocol 

stack implemented either in the operating systems kernel or in a single trusted user-level 

server. In a Non-Monolithic protocol architecture, each application is linked with its own 

private copy of the protocol stack. This implies that protocols are implemented as a user-

level library. However, a number of issues must be resolved before these implementations 

can be made truly functional. 

There have been a number of previous attempts to implement protocol stacks at user 

level [MB92, MB93, TNML93, MRA87] but these implementations were ad hoc. We 

propose a new approach to implement Non-Monolithic protocol architecture. In this 

section, we describe the advantages of user-level protocol architectures, previous user-

level protocol implementations and their drawbacks. Finally, we propose an efficient, 

structured, modular, and general framework for the implementation of Non-Monolithic 

protocol architectures [JHC94a] in the context of the z-kernel. 

Two previous efforts to split the implementation of communication protocols between 

the kernel and user space are described by Maeda and Bershad [MB93] and Thekkath 
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et al [TNML93]. They point out the main advantages and motivation for the user-level 

implementation of protocols. These advantages can be summarized as follows: 

• The protocol code is decoupled from the kernel and hence can be easily modified 

and customized on an application specific basis. 

• During the protocol development phase, it is easy to debug and experiment with 

new protocols. 

We observe the following additional advantages: 

• Reduced contention because each user has its own protocol stack. This implies that 

multiple instances of the protocol need not share global state. 

• Increased parallelism since user level implementations can exploit the parallelism 

provided by the new generation of multithreaded environments and parallel ma

chines due to the smaller number of synchronization points in the shared protocol 

state. 

• For the new generation of applications that deal with video and audio data, it is 

important to get the data to the applications as fast as possible after the data is 

received from the network. Getting bits faster to the desktop is no longer sufficient. 

• Implementation of application level framing [CT90] architecture is possible in Non-

Monolithic protocol architectures. Clark and Tennenhouse found that the imple

mentation of application level framing is extremely difficult, if not impossible, in 

the traditional monolithic protocol architectures [CT90]. 

• Performing only demultiplexing operations in the kernel integrates the demultiplex

ing operation of different protocol layers into a single "one-shot" operation while 

maintaining compatibility with existing protocols. 
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Previous User-Level Protocol Implementations 

In previous user-level protocol implementations6 [MB93, MRA87], a Packet Filter in

stalled in the kernel demultiplexes the packets to the correct recipient address space. 

Examples include the CMU/Stanford Packet Filter (CSPF) [MRA87], the BSD Packet 

Filter (BPF) [MJ93], and the Mach Packet Filter (MPF) [YBMM94]. Advancements in 

packet filter technology have improved both the functionality and performance of packet 

filters to the point that user level protocol implementations can now be constructed that 

achieve better performance than previous kernel-level implementations [MB93]. However, 

we observe that the packet filter technology [MJ93, MRA87, YBMM94] has a number of 

limitations: 

• Packet filters are based on interpreted languages. The interpreted-language ap

proach provides excellent support for the run-time installation of the packet filter. 

However, demultiplexing of network packets (i.e. packet filtering) is also inter

preted. The experience of the programming language community argues that in

terpreted languages are often an order of magnitude slower than compiled ones 

[Pit87]. 

• Interpretation of some header fields is done twice: once during packet filtering and 

once again in the application to locate the correct session (e.g. protocol control 

block). 

• Packet filters suffer from a lack of modularity in that each packet filter must specify 

every protocol in the path between the network device and the user. For example, 

while the transport protocol (UDP [Pos80] or T C P [Pos81c]) installs the packet 

6 In [TNML93] implementation, an application identifier is encoded in the link-level header in the case 
of AN1 network[SBB+91] for demultiplexing. It is not clear how the demultiplexing is performed in the 
case of Ethernet network. 



Chapter 2. Related Work and Thesis Proposal 25 

filter, that packet filter depends on the network protocol that will eventually deliver 

the data, thus losing the modularity advantage of IP [Pos81b] which is supposed 

to shield high level protocols from network protocol details. 

• Packet filters are not general enough to deal elegantly with the idiosyncrasies of 

current communication protocols. As an example, consider the IP [Pos81b] proto

col. It is difficult for a packet filter to handle the reassembly of IP fragments, IP 

forwarding, broadcasting, IP multicasting and IP tunneling7. Of all the packet fil

ter implementations reported in literature, only the Mach Packet Filter [YBMM94] 

provides a solution to IP reassembly, and we believe that not even packet filter 

proponents can argue with conviction that the solution is elegant. With the packet 

filter approach, IP forwarding and IP tunneling are currently supported by running 

user-level servers which incur additional performance costs in the form of extra con

text switches and additional packet data copying. We believe that these operations 

can be performed much more efficiently in the kernel and that a general protocol 

architecture should support such an implementation. 

• It is difficult for a packet filter to act on protocol specific real-time information 

that may be either encoded in network packets or negotiated for particular network 

connections. 

Proponents of packet filter technology argue that the performance problems of packet 

filters can be addressed by good engineering and that making the packet filter do more 

(like handling IP fragments) is as easy as adding a few new instructions [YBMM94]. 

In many ways, the recent changes to the packet filter amount to a way of creating a 

kernel resident protocol entity complete with support for multiple connections and even 

7Tunneling implies that a complex network with its own protocols is treated like any other hardware 
delivery system. 
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connection specific state. Our solution takes these trends to their logical conclusion: 

what is really wanted is the ability to embed in the kernel a small fragment of the 

functionality of the communication protocol. Our Non-Monolithic protocol architecture 

achieves exactly that. 

Proposed Framework for Non-Monolithic Protocol Architecture 

While recent advances in packet filter technology have addressed their performance prob

lems, they have not provided any additional structure or architectural support for proto

col implementors. What was once an unstructured kernel level protocol implementation 

becomes, with the addition of a packet filter, an unstructured user level protocol imple

mentation. Our architecture takes a different approach to the problem of kernel level 

demultiplexing of network packets. It is based on the z-kernel, a widely used protocol 

framework for single address space protocol implementations, extending it to allow the 

implementation of each protocol to be separated into a kernel resident component and a 

user library component. The architecture requires that the kernel component provide at 

least the efficient demultiplexing of incoming network packets. Additional functionality 

can be incorporated in the kernel component as necessary on a protocol by protocol basis. 

Our framework provides the following functionality [JHC94a]: 

• Protocols are implemented as user-level libraries. 

• There is a fast track in the kernel to route packets to the appropriate user space. 

The overhead remains constant as the number of protocols in user space increases. 

• The framework deals with idiosyncrasies of different protocols in a flexible way. 

The user can decide what protocol functionality to configure in user space and in 

the kernel. However, the design goal would be to place as much functionality as 

possible in the user's address space. 
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Figure 2.4: Non-Monolithic Protocol Architecture 

• In the extreme, it is possible to configure the same protocol in the kernel for one 

application and in user space for another application. 

Our Non-Monolithic protocol framework can be characterized as the logical conclu

sion of current trends in packet filter technology as more and more support for the 

idiosyncrasies of particular protocols make their way into the instruction set of packet 

filters. 

Figure 2.4 depicts the proposed Non-Monolithic protocol architecture whereby kernel 

performs at least the demultiplexing of incoming network packets and the rest of the 

protocol processing is performed in appropriate applications. 
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Parallelization of Non-Monolithic Protocol Architecture 

Bjorkman et al. [BG93] report an analysis and performance of the most widely used 

protocol stack, T C P / I P , on a multiprocessor machine. They report that T C P has so 

much shared state that it does not scale well beyond three processors. In the Non-

Monolithic protocol architecture, each application has its own copy of the protocol stack. 

For instance, in a T C P implementation for Non-Monolithic protocol architecture, each 

application has a separate T C P protocol state which is not shared with any other appli

cations' T C P protocol state. Therefore, different user level instances of the T C P protocol 

can be executed in parallel on different processors without any synchronization among 

them. Hence, Non-Monolithic protocol architectures provide virtually unlimited paral

lelism in case of a large number of applications. If an application opens a number of 

T C P connections, it can create a new T C P protocol instance for each connection so as 

to get maximum benefit of available parallelism. On the other hand, parallelism may 

be limited in the kernel level demultiplexing. Although demultiplexing is a read-only 

operation, kernel sessions corresponding to user connections may be created or destroyed 

asynchronously. Hence, for consistent demultiplexing, kernel level sessions must be locked 

during kernel level demultiplexing. In a simple approach, read and write locks can be 

used for this purpose. Two or more applications can hold read-read locks simultaneously 

while read-write and write-write locks are mutually exclusive. This locking scheme will 

result in a fairly good performance if the kernel level sessions are not created and de

stroyed rapidly. An alternative to read-write locks is to use wait-free synchronization 

[Her91, Her90, MCS91] and data structures known as lock-free objects [Ber91, MP91]. 

With these data structures it is possible to totally parallelize the kernel level demulti

plexing. 
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From the above discussion, it can be inferred that the Non-Monolithic protocol archi

tecture is highly scalable with the number of processors and the theoretically best (i.e. 

linear) speedups can be obtained. There is no inherent limitation to parallelization of 

protocol stacks implemented in Non-Monolithic fashion. The Non-Monolithic protocol 

architecture is independent of the protocol complexity and shared state. Although any 

of the parallelization models for protocols described before could be applied to Non-

Monolithic protocol stack implementations, the processor per packet model suits best. 

We use this model for our implementation. 
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The Para l le l z-kernel 

This chapter first presents an overview of the z-kernel, which is essential in understanding 

the rest of this thesis. It then describes the scheme used to parallelize the z-kernel for a 

shared memory multiprocessor machine. 

3.1 The z-kernel Overview 

The z-kernel [HP88, HP91] is a protocol implementation architecture that defines protocol 

independent abstractions thereby facilitating efficient implementation of communication 

protocols. The z-kernel provides three primitive communication objects: protocols, ses

sions, and messages. Each protocol object corresponds to a communication protocol such 

as IP [Pos81b], T C P [Pos81c], or U D P [Pos80]. A session object represents the local state 

of a network connection within a protocol and is dynamically created by the protocol 

object. Message objects contain the user data and protocol headers and visit a sequence 

of protocol and session objects as they move through the z-kernel. 

The z-kernel maintains a protocol graph that represents the static relationship between 

protocols. Each protocol implements a set of methods which provide services to both 

upper and lower layer protocols via a set of generic function calls provided by the Uniform 

Protocol Inter face (VPI). With the UPI interface, protocols do not need to be aware of 

the details of protocols above or below them in the protocol graph. By using a dynamic 

protocol graph, the binding of protocols into hierarchies is deferred until link time. In 

the z-kernel, user processes are also treated as protocols. Hence, the x-kernel provides 

30 
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anchor protocols at the top and bottom of the protocol hierarchy. The anchor protocols 

are used to define the application interface and the device driver interface. The anchor 

protocols allow easy integration of the z-kernel into any host environment. 

3.1.1 The z-kernel Support Tools 

The z-kernel provides a set of support tools [HMPT89, HP91] to implement protocols 

efficiently and quickly. These tools consist of a set of routines that are commonly used 

to implement protocols. The most commonly used tools are as follows: 

• Map Manager: The Map Manager provides a set of routines to translate an 

external identifier1 extracted from the protocol headers (such as address and port 

numbers) to the internal identifier (e.g. receiver of the packet i.e. a session) within 

the protocol. The map manager consists of a set of hash tables (called maps) 

and functions to add, remove, and map bindings between external and internal 

identifiers. The maps cache the last key that was looked up. 

• Message Manager: The Message Manager provides a message abstraction to 

packets and provides a common set of operations on messages so that protocols can 

add headers and trailers to the messages, strip headers and trailer from messages, 

and fragment and reassemble the packets. 

• Process Manager: The Process Manager provides a set of thread management, 

semaphore synchronization, and spin locks routines in a system independent man

ner. This tool facilitates easy portability of the x-kernel to different environment. 

• Event Manager: The Event Manager provides the ability to schedule various 

events asynchronously in the future. The event manager is used for scheduling 
1Also referred to as key. 
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procedures for execution after a specified amount of time. A good example of 

this, in the context of communication protocols, is a timeout event. By registering 

a procedure with the event manager, protocols are able to implement timeout 

events to retransmit unacknowledged messages or to perform periodic maintenance 

functions such as collection of unused sessions. 

3.1.2 Operations on Protocol Objects 

The two main functions of protocol objects are management of session objects and de

multiplexing of received messages to the appropriate session objects. 

Protocol objects support three operations to create session objects: open, open-enable, 

and open-done. A high level protocol creates a session object in a lower layer protocol by 

invoking the open routine of a lower protocol. Alternatively, a high level protocol can pass 

a capability to a lower level protocol for passive creation of a session at a future time 

by invoking the open-enable routine of the lower protocol. The open-enable operation 

creates an enable object to store the capability passed by the upper layer protocol. On 

receipt of a message from the network, the lower layer protocol creates a session and 

signals the creation of a session by invoking the upper layer protocol's open-done routine. 

The above three routines take a participant-list as one of their arguments. The partic

ipant-list is a name for some participant in a communication and consists of a sequence 

of protocol specific external identifiers such as port numbers, protocol numbers, or type 

fields used by the protocols to identify the message recipient session or enable objects. 

The mapping between external identifiers and internal identifiers (which are capabili

ties for session objects or enable objects) is maintained in the active and passive maps 

maintained by each protocol. 

In addition to managing sessions, the protocol object also demultiplexes incoming 

messages to the appropriate sessions. This is accomplished by a routine called demux 



Chapter 3. The Parallel x-kernel 33 

which extracts certain fields from the header part of the message (e.g. source and des

tination port numbers) and constructs an external identifier to search through the two 

types of maps. The active maps are searched first. If a binding to a session is found in the 

active map, the message is delivered to that session. If no session is found in the active 

map and search in the passive map yields an enable object, a new session is created from 

the enable object and the message is passed to the newly created session. The message 

is dropped if search in both type of maps fails. 

3.1.3 Operat ions on Session Objects 

Sessions support two primary operations - push and pop. A protocol's push routine 

appends the protocol header to the message and passes the message to a lower layer 

session. A protocol pop routine updates the state of the connection represented by the 

session and passes the message to an upper layer protocol. 

3.2 Para l le l iza t ion of the x-kernel 

The standard x-kernel's release from the University of Arizona is multiprocessor safe 

but does not support multiprocessing in the x-kernel. This means that every thread of 

execution that needs to enter the x-kernel must synchronize on a coarse grain lock called 

MasterLock. When a thread blocks in the x-kernel (e.g. while waiting on a semaphore), 

the thread must release the MasterLock lock before blocking. This scheme does not allow 

multiple threads execution in the x-kernel simultaneously and hence, restricts parallelism. 

To enable multiple threads of execution in the x-kernel, a fine grain locking scheme is 

required. 

A fine grain locking scheme must take special care to avoid deadlocks because in 

communication systems, multiple messages travel in upward and downward directions 
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at any given time. Hence, multiple threads executing in different directions through the 

protocol layers may lead to cyclic waiting for locks and end up in a deadlock [Hut92]. 

Another requirement of the fine grain locking scheme is to make the job of protocol 

writers as easy as possible from the locking point of view. 

An ideal fine grain locking scheme would make locking transparent to the protocol 

writer by handling locking in the x-kernel U P I library. This scheme would make locking 

totally transparent to the protocol writer. Designing an ideal locking scheme has been 

shown to be a difficult goal to achieve [BG93, Hut92]. On the other hand, the simplest 

locking scheme would be to perform all the locking in the protocol code. This implies 

that the protocol writer must do all the locking explicitly and must know the internals 

of the x-kernel. This approach is also not viable because it expects too much from the 

protocol writer and makes the implementation error prone. Besides, this approach may 

result in poor performance of the complex x-kernel operations. 

An intermediate approach, whereby the x-kernel protects its own data structures and 

the protocol writer protects protocol specific data structures by locking, seems most 

appropriate. This thesis adopted such an intermediate approach for the multiprocessor 

implementation of the x-kernel. Bjorkman [BG93] has also taken a similar approach to 

parallelization of the x-kernel. 

In an intermediate locking scheme, the parallelization of the x-kernel can be divided 

into two main components: parallelization of the x-kernel itself and parallelization of 

the protocols. This locking scheme avoids deadlocks. A n alternative scheme would be to 

detect deadlocks and take corrective action to break deadlock situations. This alternative 

scheme has been used in database systems but it is too expensive for performance critical 

communication systems. 
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3.2.1 L o c k i n g Scheme in the x-kernel 

The x-kernel tools are parallelized to support fine grain parallelism. The following rules 

are used to avoid deadlock within the x-kernel: 

• The x-kernel does not lock protocol data structures. Similarly, protocol code does 

not lock the x-kernel data structures. 

• The x-kernel does not hold locks on its own data structures while calling protocol 

routines. 

• If more than one lock need to be obtained in the x-kernel, a predefined order of 

locking is followed to avoid deadlocks. 

• Thread scheduling is made non-preemptive if a thread is holding a lock. This 

support is provided by the Raven kernel. In the Raven kernel, a thread holding 

a lock is never preempted. A l l interrupts are queued during the critical period 

activity of the thread and processed when the thread releases the last lock. This 

feature is specially useful to avoid deadlocks for asynchronous event handling. 

The above rules guarantee that the x-kernel is deadlock free. 

3.2.2 L o c k i n g Scheme in the Protocols 

Assuming that the x-kernel is deadlock free, the protocol writer must ensure that the 

following conditions hold for deadlock free operation of protocol processing: 

• Protocol code does not lock the x-kernel data structures. 

• If more than one lock is obtained in the protocol code, a predefined order of locking 

that avoids deadlocks is followed. 
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• The protocol writer may have to invoke a x-kernel routine while holding one or more 

protocol locks. In such situations, the protocol writer should know what protocol 

routine may be called as a result of the call to a x-kernel routine and make sure 

that circular waiting on locks does not occur. 

3.3 Implementat ion Detai ls of the Para l le l x-kernel 

This section gives the implementation details of the scheme that we adopted for paral

lelization of the x-kernel. 

3.3.1 L o c k i n g in the x-kernel 

The x-kernel's UPI library and other x-kernel tools require locking for supporting fine 

grain parallelism. In the UPI library, the reference counts of XObj data structure are 

protected by locks for consistency. The stack manipulations of the Part data structure 

are protected by locks. 

M a p Manager 

The Map manager's hash table manipulations are protected by locks. 

Message Manager 

Because of the processor per message model, only reference count manipulations of the 

Msg data structure are protected by locks. 

Process Manager 

The global lock (MasterLock) has been removed to enable fine grain parallelism in the 

x-kernel. The process manager inherits most of the multiprocessor support from the 
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underlying Raven kernel's thread management, memory management, and semaphore 

library for supporting the x-kernel's routines for thread, memory, and semaphores man

agement functions. 

Event Manager 

Event queues are protected by proper locking. Interrupts are disabled whenever a thread 

manipulates the event queue2. This feature is required to avoid deadlock due to asyn

chronous events. 

3.3.2 Locking in the Protocols 

We implemented the UDP, T C P , IP, ICMP, A R P , V N E T , and Ethernet protocols for mul

tiprocessor environment. The fine grain locking in T C P is not completely implemented. 

We deferred the analysis of T C P to support fine grain parallelism because previous re

sults have shown that T C P does not scale well on multiprocessors [BG93]. Furthermore, 

by implementing the T C P / I P stack using the non-monolithic protocol architecture, par

allelization of a complex protocol like T C P can be avoided because a separate T C P / I P 

protocol stack can be allocated for each T C P connection. 

UDP 

U D P is a simple protocol that does not have any shared state. The reference count 

manipulations of session and enable objects are protected by locks. The U D P port 

management data structures are protected by locks. 
2This feature is supported by the Raven kernel. A thread never gets preempted if it is holding a lock. 

The interrupts are queued and serviced when the thread releases all the locks. 
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I P 

The reference count manipulations of IP session and enable objects are protected by 

locks. The IP reassembly table which stores IP fragments is also protected by locks. 

A R P 

The A R P tables are protected by locks for consistency in multiprocessor environment. 

Ethernet 

The Ethernet layer in the x-kernel is divided into two parts. The top layer is the Ethernet 

protocol and the bottom layer is the Ethernet driver called Simeth. 

The reference count manipulations of the Ethernet session and enable objects are 

protected by locks. The Simeth driver is linked to the Raven kernel's Ethernet controller 

which provides fine grain locking for multiprocessors. 

3.3.3 Support for Processor per Message 

The multiprocessor version of the x-kernel supports the processor per message paradigm. 

Each packet is assigned a processor and the processor shepherds the message through 

the protocol stack. For performance reasons, a global pool of threads is maintained at 

the uppermost protocol and at the lowermost protocol. Each thread in the thread-pool 

is associated with its own semaphore. When a message is received from either a user or a 

network device, a semaphore signal awakes a thread. The thread copies the message and 

shepherds it through the protocol stack. A good example is thread-pool management at 

Ethernet driver. When a receive interrupt of the Ethernet driver is received, the interrupt 

handler routines awakens one of the threads waiting on the semaphore. When the thread 

gets scheduled, it copies the received packet from the Ethernet driver buffer, converts it 
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to the x-kernel message object, and shepherds the message through the protocol stack. 

When the message is delivered to the application, the thread goes back to sleep on the 

semaphore again to wait for the arrival of another packet. The thread pool management 

data structures are protected by locks. 

In communication subsystems, a message may change its direction e.g. a T C P / U D P 

message destined to another application on the same machine. In this case, the IP 

protocol code detects that the message is destined for an application on the local machine 

and sends the message up the protocol stack. In a naive implementation, a deadlock may 

result if a thread is allowed to reverse its direction. In the x-kernel implementation, even 

though a message may turn back, a thread never does. In such cases, a new thread is 

created and the message is assigned to the new thread for shepherding the message in 

the reverse direction. 

The same convention, as used by the standard x-kernel to free message objects, is 

employed in our implementation. In the standard x-kernel, a message object is destroyed 

by the same entity that originally constructed it. For example, the Ethernet driver is 

responsible for destroying messages after delivering them to upper protocol. Similarly, 

the top layer protocols are responsible for destroying messages that have been sent out 

to their destination. 



Chapter 4 

Design Overview 

This chapter describes the design of the protocol architectures proposed in this thesis in 

the context of the x-kernel. We first describe the design of the D A A protocol architecture, 

followed by the design of the I L L M protocol architecture. We finally present the design 

of a non-monolithic protocol architecture which allows protocol stack implementation as 

user level libraries. 

4.1 Design of a Framework for L L M Protocol Architecture 

The standard x-kernel follows an L L M protocol architecture. We used standard T C P / U D P -

IP-Ethernet protocol stack implemented in the x-kernel and adapted it for our multi

processor environment. The locking scheme used is described in Chapter 3. Details 

on standard TCP/UDP-IP-Ethernet stack implementation in the x-kernel are given by 

Hutchinson and Peterson [HP88, HP91]. 

4.2 Design of a Framework for DAA Protocol Architecture 

A number of changes are required in the x-kernel architecture to support a protocol inde

pendent framework for D A A stack. Our goal has been that these changes be transparent 

to the protocol writer and compatible with the original x-kernel so that existing protocol 

code need not be modified to run in the new x-kernel. 

In a D A A protocol stack, demultiplexing is done only at a single layer and, thereafter, 

40 
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the received packet is simply passed to the appropriate sessions of different protocol layers 

before being delivered to the application. This requires that the different layer sessions 

belonging to the same connection be linked together in an upward direction. These 

sessions also need to be linked downward for sending packets out efficiently. This leads 

to the creation of a doubly linked session stack called a path. A path in the protocol 

stack corresponds to a unique connection and contains one session from each protocol 

layer that sits vertically above each other in the protocol hierarchy. We have extended 

the x-kernel to support paths. 

4.2.1 Path/Session Stacks 

In the traditional x-kernel, different layer sessions corresponding to a connection are 

linked downward by a pointer. However, there is no way to locate an upper layer session 

from a lower layer session without going through the upper layer protocol object. We 

provide a way to link the sessions in both directions with an additional pointer, ups, in 

each session object. 

Another requirement of the D A A architecture is to not share a lower layer session 

among a number of upper layer sessions. Every session on a path should be physically 

distinct. This requires that more than one session with the same attributes exist together 

in a map of a protocol layer. In the traditional x-kernel, multiple sessions with the same 

attributes cannot exist in a map. The sessions are stored in a map as internal identifiers. 

The traditional map manager allows only one-to-one correspondence between external 

identifier and internal identifiers. To support the new architecture, we need to modify 

map management functions to support a one-to-many scheme. We modified the map 

manager such that it allows more than one internal entry to be stored in the map having 

same external identifier. While this scheme makes searching through the map difficult, we 

do not need to search through the maps at every layer in the D A A protocol architecture 



Chapter 4. Design Overview 42 

as demultiplexing is performed only at the bottommost layer. However, we still need to 

store sessions in the map for other purposes such as garbage collection, timeouts, etc. 

Searching through the map is performed only at one layer in the D A A stack, so we only 

need to guarantee that there is a one-to-one relationship between session and external 

identifier in the map of that layer. We achieve this by including an Application Identifier 

in the external identifier for search through the map. The application identifier must be 

unique networkwide. 

4.2.2 Networkwide Unique D e m u x K e y 

The networkwide unique demux key is constructed by using the machine's physical ad

dress, a protocol identifier, and an application identifier. The protocol identifier is used to 

support different protocol stacks (e.g., D A A stack comprising Ethernet and X.25). The 

simplest way to provide systemwide unique application identifiers is that the application 

identifier be assigned by a central authority. The protocol that perform the demultiplex

ing is the obvious choice for this functionality as it is the only protocol that interprets 

this field. An application may prefer to have a particular application identifier assigned 

to it so that it can be identified by remote applications with a known unique identifier. 

This is particularly important for servers. The application identifier can be viewed as 

equivalent to an IPC port identifier. In our scheme, an application can demand that 

a particular application identifier be assigned to it in the open call. If the application 

identifier is already in use, the open call returns an error. The user specified application 

identifier is passed in the open call and propagated down the protocol stack. 

4.2.3 Specifying QoS 

QoS parameters can be of two types: application specific and packet specific. The packet 

specific QoS service information must be contained in each packet. Examples of such 
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Standard Ethernet Header 

6 Bytes 6 Bytes 2 Bytes 2 Bytes 4 Bytes 4 Bytes 

Eth Destination Eth Source Eth Ethdaa Application Priority/Deadline 
Address Address type = type Identifier 

ETHDAA 

Figure 4.5: Format of Extended Ethernet Header 

QoS information include protocol specific deadline and priority. Application specific QoS 

parameters can be directly linked to the application and are not required to be included 

in each packet. 

For packet specific QoS, the QoS information must be enclosed in the lowest possible 

protocol layer header. This requires a mechanism to pass QoS information from the 

upper protocol layers to the bottommost layer. For this purpose, we exploit the notion 

of message attributes provided by the x-kernel message library. We have implemented 

a sample D A A architecture protocol stack consisting of the extended Ethernet, IP, and 

U D P protocols. 

4.2.4 Extended Ethernet Header 

An extended Ethernet header is shown in Figure 4.5. Logically, we have added a new 

protocol layer above the Ethernet protocol. However, the implementation is integrated 

with the Ethernet layer so that it is more appropriately considered as an extension of the 

Ethernet protocol. This new protocol is identified as ETHDAA in the eth type field of the 

Ethernet header. The new protocol layer contains a 2-byte field ethdaa type to identify the 

upper layer protocol. It may seem that demultiplexing is performed at two layers because 

two fields specify the upper layer protocols. However, in the implementation, the eth type 

and ethdaa type fields are combined together to form a single demux key. Two new 4-byte 

fields have also been added: an application identifier field and a deadline/priority field. 
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As argued in the Section 2.3.1, these fields are essential to obtain the best performance 

from the D A A architecture protocol stack. The Application Identifier field is interpreted 

as follows: if the Most Significant Bit (MSB) is 0, the Application Identifier is assigned 

by the local machine. If the MSB is 1, the Application Identifier has been assigned by 

the remote machine. When the key for demultiplexing is constructed at the extended 

Ethernet layer, the M S B is treated as zero. The application may choose how to interpret 

deadline/priority field. For our experiments, the deadline/priority field is used as the 

priority of the thread that shepherds the packet through the protocol stack. 

We configure IP and U D P protocols above the extended Ethernet protocol to measure 

performance. IP and U D P are not well suited for the D A A architecture as some func

tionality of these protocols that are related to demultiplexing (e.g. U D P port numbers) 

are not used after the first packet is transferred on a session. 

4.2.5 Creation of Session Stack 

The D A A stack of sessions can be created either actively and passively on behalf of 

the application. In the former case, an application specifies the remote application's 

coordinates it wants to communicate with. In the passive open case, an application tells 

the lower layer protocol that it is ready to accept a connection from remote applications. 

Active Open 

An application initiates the creation of a path by calling the open routine of a protocol. 

The protocol creates a session and invokes the open routine of the lower layer protocol. 

This way the open propagates down the protocol stack until the bottommost protocol 

layer is reached. Each open call returns the session it creates. In the traditional x-

kernel, the sessions thus created at each protocol layer are linked together in a downward 

direction by downv pointer. In the D A A protocol model, sessions are also linked together 
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in an upward direction by a ups pointer. Therefore, the active open call leads to the 

creation of a doubly linked stack of sessions or a path. The open call also propagates 

the application identifier supplied by the application. The bottommost protocol layer 

checks whether the application identifier is already in use. If the application identifier 

is not in use, the session created at the bottommost protocol layer is stored in the map 

with application identifier as the key. If the application identifier is already in use, the 

call fails, the sessions created at various protocol layers are destroyed, and an error is 

returned to the application. If the application does not need any specific application 

identifier, a unused application identifier is assigned to it. 

Passive Open 

In case of a passive open, a path is created when the first message is received from the 

network on a connection. The lowest level protocol layer uses the application identifier 

field along with the remote machine's physical address and protocol identifier to form the 

key to demultiplex the packet to a session. If a session is not found, the passive map is 

searched to find a corresponding enable object. If an enable object is found, a session is 

created and stored in the map using the demultiplexing key. This initiates the creation 

of a session stack. The message is passed to the upper protocol layer and either a session 

is created or the message is dropped. The downv and ups pointers are initialized at each 

protocol layer so that the message is shepherded up the protocol stack until it reaches 

the topmost layer protocol and passed to the application. This completes the creation of 

a path. If the message is dropped at any layer, the sessions created at the lower layers 

are destroyed. 
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4.2.6 Sending Out Packets 

Once a path is created, network packets can be sent out and received on that path. 

Sending out packets is similar to sending out packets in the traditional x-kernel. A series 

of push operations starting from the top level session in the path results in sending out 

a packet. 

4.2.7 Processing Incoming Packets 

For a received packet, the lowest level protocol demultiplexes the packet to a path (per

haps creates it first). Once the path is found, the packet is passed through the sessions 

in the path. At each layer, headers are stripped, the connection state is updated, and 

the packet is passed to the upper layer session pointed to by the ups field of the session 

object. 

The QoS information field is also interpreted by the demultiplexing protocol and acted 

upon. This allows the implementation to provide, guaranteed QoS by acting on the QoS 

information as soon as the packet is received. For example, let the QoS field of a packet 

contain the deadline information of the packet. When the packet is received by the lowest 

level protocol, the protocol can initiate systems scheduler to schedule the processing of 

the packet so that its deadline is met. If the QoS field contains information related to 

buffer space or priority, there is no need to waste network bandwidth. These type of 

QoS information can be associated with the demux key at the lowest layer protocol and 

processed when the demux key is formed from the information in the packet. 
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4.3 Design of a Framework for I L L M Protocol Architecture 

In the I L L M protocol framework, only the processing of incoming packets is different 

from that in the L L M protocol framework (or in the traditional x-kernel). Other oper

ations, such as active/passive open, processing outgoing packets, are the same as in the 

traditional x-kernel. Therefore, we describe only the modifications required for processing 

incoming packets to support the I L L M protocol framework in the x-kernel. 

4.3.1 Processing Incoming Packets 

In the x-kernel, a protocol specific demux routine performs the demultiplexing operation 

at each of the protocol layers and returns a session. Normally, a protocol specific pop 

routine updates the state of the session returned by the demux routine and is invoked 

immediately following the demux routine. Hence, as a packet visits different protocol 

layers, the protocol specific demux and pop routines are invoked alternately at each pro

tocol layer. For example, in the TCP-IP-Ethernet protocol stack, the following sequence 

of protocol specific routines is invoked: ethDemux, ethPop, ipDemux, ipPop, tcpDemux, 

tcpPop. For an I L L M protocol architecture, the demux routines of all protocol layers are 

invoked first followed by the pop routines of all protocol layers. Hence, the following se

quence will result for the example given above: ethDemux, ipDemux, tcpDemux, ethPop, 

ipPop, tcpPop. The I L L M framework is implemented by extending the UPI interface 

of the x-kernel. During the demultiplexing phase, a list of the sessions returned by the 

demux routines and the message objects are stored at each protocol layer. The saved 

information is used during the state-change phase. A protocol independent scheme is 

designed for this purpose so that it is transparent to protocol writers. 

In the I L L M architecture, it is necessary to know when to switch from the demul

tiplexing phase to the state-change phase. For this purpose, a bit called upBoundry is 
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added to the session objects. This bit indicates the user-protocol boundary. Usually the 

sessions at the top protocol layer (e.g. tcp, udp sessions) will have this bit set. At every 

protocol layer, this bit is checked to see if the session is at the user-protocol boundary. 

If the session is at the user-protocol boundary, the packet processing is switched from 

demultiplexing phase to state-change phase. 

4.4 Design of a Framework for Non-Monolithic Protocol Architecture 

This section describes the design of a framework for a Non-Monolithic protocol archi

tecture in the context of the x-kernel. The architecture splits the protocols into two 

separate address spaces: one sits in the kernel or trusted server and the other is linked 

with each application as a communication protocol library. This decomposition is proto

col independent and at the same time it provides a mechanism to take protocol dependent 

idiosyncrasies into account. This framework also gives the protocol writer the flexibility 

to decide what to put in kernel and in the user level library. The design of Non-Monolithic 

protocol framework is motivated by providing a Packet Filter[YBMM94, MJ93, MRA87] 

mechanism in the x-kernel. Hence, the framework provides a fast path in the kernel to 

demultiplex the network packets and route them to the destination address space. 

Before describing our design, we shall first explain the terms kernel, user and IPC. 

Kernel refers to the operating system kernel or the user level trusted server that imple

ments the kernel component of protocol functionality. By user, we mean the user level 

application that links to the user level protocol libraries. The means of communication 

between the kernel and the user is referred to as IPC. If the kernel is an operating system 

kernel, the IPC refers to a system call or upcall. If the kernel is a trusted server, the IPC 

refers to inter-process communication. 

The main idea is to decompose protocol implementations into two parts: one part 
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in the kernel and the other linked with the application as a user level protocol library. 

The kernel level part implements, at a minimum, the demultiplexing of packets received 

by the protocol. In an efficient implementation, the cost of demultiplexing should not 

increase with the number of user level instances of protocols. In earlier implementations 

based on the packet filter [MRA87], the cost of demultiplexing increased linearly with the 

number of connections. The Mach Packet Filter achieves performance that is not sensitive 

to the number of open connections by collapsing the common parts of different packet 

filters into a single filter [YBMM94]. In our scheme, we exploit the notion of protocol 

graphs to achieve this. These protocol graphs define the protocol hierarchy as explained 

in the x-kernel overview in Chapter 3. In a naive user level protocol implementation, 

the demultiplexing operation will be performed twice - one time in the kernel to locate 

the recipient application and then again in the application to locate the recipient session 

(i.e. protocol control block) because, in general, an application may open more than one 

connection. In an efficient implementation, the demultiplexing in the application can be 

completely avoided. Our scheme avoids demultiplexing in the user application by having 

the user register the user session identifiers with the kernel. 

4.4.1 Protocol Graphs 

In our design, each user has its own protocol graph, as does the kernel. The kernel level 

protocol graph is the union of all user level protocol graphs and is called the Universal 

Protocol Graph (UPG). The user level protocol graph is registered with the kernel when 

the user application starts. The kernel incorporates this graph into the U P G by the 

union operation. Figure 4.6 shows the protocol graphs of three different users and the 

corresponding kernel protocol graph. The entire suite of protocols which is available to 

each user appears in the user's protocol graph even if some of those protocols are actually 

implemented in the kernel. 
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Figure 4.6: User and Kernel Protocol Graphs 
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Each protocol's demultiplexing routine is also registered with the kernel. This routine 

is protocol specific and not user (or protocol instance) specific. This implies that although 

there are a number of copies of the same protocol at the user level, the kernel will use a 

single demultiplexing routine for this protocol. This is equivalent to combining different 

packet filters (e.g. Mach Packet Filter [YBMM94]). 

4.4.2 Protocol Objects 

The protocol objects reside in the kernel as well as in the user space. However, the 

kernel level protocol objects in most cases are skeletons of user level protocol objects 

and implement only that portion of the protocol functionality that the user decides to 

move to the kernel. They are called skeleton protocols. The minimum functionality of 

a protocol that resides in the kernel is demultiplexing. However, a user may decide to 

move more functionality to the kernel, and in the extreme, our design allows a user to 

move the complete protocol stack to the kernel. This flexibility is achieved by adding 

new data structures to the protocol and session objects. 

4.4.3 Session Objects 

In a user level implementation of protocols, sessions need to reside in the application 

because they store all the protocol state information of the application's connections. 

Since demultiplexing of incoming packets is done in the kernel, sessions must also be 

present in the kernel. The kernel level sessions are proxies for their user level counterparts 

and are called shadow sessions. 

In the x-kernel, an open call leads to the creation of a session at each protocol layer. 

These sessions are linked by pointers and form a session stack. Every user level open call 

is registered with the kernel in a RegisterOpen IPC message which leads to the creation of 

a shadow session stack in the kernel. The user level also sends the user IPC port and user 
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level session identifier list in the IPC message. This information is stored in the shadow 

session at the user-kernel boundary and is passed to the user along with each received 

network packet. Thus, extra demultiplexing in the user space to locate the appropriate 

session is avoided. 

User level passive opens (e.g. a server waiting on a port for connections) are also 

registered with the kernel by using a RegisterOpenEnable IPC message. This enables the 

kernel to create a shadow session stack when a packet is received for such a server. 

4.4.4 Demultiplexing in the Kernel 

Demultiplexing in the kernel is performed in a similar fashion as it is performed in the 

traditional x-kernel. However, there are no pop routines in the kernel. The UPI library's 

xPop routine is modified so that instead of calling the protocol specific pop routine, it 

registers the protocol specific header information for playback later at the user level. 

At each protocol layer in the kernel, the protocol specific demux routine is invoked, 

the header information is stored in an IPC buffer, and the message is passed to the upper 

layer protocol. At the user-kernel boundary layer protocol (e.g. T C P , UDP, etc), the 

demultiplexing determines the identity of the destination user level application for the 

current message. The session returned by the demultiplexing routine at the user-kernel 

boundary protocol contains the user level IPC port number and the user session identifier 

list. The message is then transferred to the destination user space along with the user 

session identifier list and the bookkeeping information recorded by the kernel level xPop 

routine in a ReceivePacket IPC call. 

At each protocol layer, the protocol specific demultiplexing routine is invoked. There 

is no header processing in between the demultiplexing routines as is the case in a tradi

tional implementation. This is equivalent to combining the demultiplexing operation of 

multiple protocol layers into a single "one-shot" operation. This integration also makes 
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it possible to take an Integrated Layer Processing approach to the data manipulation 

[Fe-190, Ten89, CT90]. 

4.4.5 Packet Processing at User Level 

The user level receives the incoming packets along with bookkeeping information and 

the user session identifier list from the kernel. The connection specific protocol state is 

updated by invoking a series of pop routines and finally the user data is passed to the 

application. A user may passively wait for connections. In this case, when the first packet 

is received on a connection, the user level sessions are created. The user level session 

stack thus created is then registered with the kernel. 

Sending packets out is straightforward. For outgoing messages, protocol headers are 

appended to the message at each protocol layer by invoking a series of push routines. At 

the user-kernel boundary protocol, the message is transferred to the kernel level protocol 

in a SendPacket IPC message. The kernel level protocol to which the message is sent is 

the one that logically sits just below the bottom user level protocol in the protocol graph 

hierarchy. This information is readily available from the user level protocol graph. The 

kernel is free to make any checks required for security reasons in the header portion of 

the outgoing message. 

Figures 4.7 and 4.8 depict the receive and send paths for incoming and outgoing 

messages respectively. In the figures, T C P , UDP, and IP protocols are configured in the 

user space and have corresponding skeleton protocols in the kernel. The Ethernet [MB76] 

protocol is configured in the kernel, but a skeleton Ethernet protocol is also configured 

in the user space to improve the performance of outgoing packets. Figures 4.7 and 4.8 

also illustrate that the kernel level sessions that are not at the user-kernel boundary (e.g. 

IP and Ethernet) may be shared by more than one user level protocol belonging to the 

same or different applications. 
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Figure 4.7: Incoming Message Paths 
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Figure 4.8: Outgoing Message Paths 
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4.4.6 Shared State 

One of the problems that must be addressed in any protocol implementation that allows 

multiple implementations of protocols is that of shared protocol state. Examples of shared 

protocol states include IP routing information and A R P tables. Our framework supports 

a simple but general protocol independent mechanism to manage such information with 

the assumption that one address space (typically the kernel) maintains the master copy 

of such information and that other address spaces (typically the user applications) wish 

to maintain caches of subsets of the information. In this mechanism, an IPC broadcast 

between the kernel implementation of a protocol and all of the user level implementations 

of that same protocol is made whenever the shared state changes. This facility is also 

required to handle IP broadcast and multicast packets. 

4.4.7 Details of Skeleton Protocols 

Skeleton protocols must manage kernel sessions for demultiplexing incoming network 

packets. It is possible to provide a set of generic routines such as open, open-enable, 

close, and open-disable to perform these connection management functions in the kernel 

but the demux routine is protocol specific and must therefore, be implemented by the 

protocol writer 1. In the most common case, this is all that is necessary to construct 

the skeleton protocol in the kernel. If the protocol writer decides to move additional 

functionality of the protocol to the kernel, he/she must provide protocol specific routines 

that supersede the generic routines whenever necessary. 

We describe the generic open/open-enable routines to illustrate how the skeleton pro

tocols function, The close and open-disable routines are similar. The open/open-enable 

routines take a participant list as one of their arguments. The participant list is supplied 
1It is difficult to provide a generic demux routine because protocol header length is not always constant 

(e.g. TCP and IP). 
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by the user in the RegisterOpen/'Register OpenEnable IPC calls and is created during the 

open/open-enable call in the user level protocols. As the user level active open call (i.e 

open routine) propagates down the user protocol stack, each protocol records the key it 

used to identify the newly created session object. When the user level open call com

pletes, the topmost level protocol has the list of keys each protocol used for identifying its 

sessions. The topmost layer protocol passes this list to the kernel to initiate the creation 

of a shadow session stack in the kernel. The kernel level protocols treat this list as a 

stack - each protocol pops a key from the stack, creates a shadow session, and passes the 

rest of the stack to the next lower layer protocol to initiate creation of shadow sessions 

at lower layers2. A passive open (i.e open-enable) is similar to an active open except that 

a passive open does not propagate down the protocol stack. 

4.4.8 P ro toco l Configurat ion 

Each protocol, session, and enable object contains an additional bit called the ukBound-

aryBit which specifies whether the object resides at the user-kernel boundary. The user 

level protocols that are at the bottom of the user level protocol graphs will have this 

bit set to indicate that there is no lower user level protocol. Similarly, the kernel level 

shadow sessions at the topmost protocol in the kernel protocol graph have this bit set to 

indicate that there is no upper kernel level session implying that the packet should be 

transferred to the user. The shadow session's state data structure stores the user level 

port and user session identifier list. 

Similarly, an apBoundaryBit is defined for user level objects. This bit indicates 

whether a user level protocol or session object is at the application-protocol boundary. 
2Sorne protocols such as TCP and UDP use the lower layer protocol session (e.g. IP session) 

to form the keys for demultiplexing a received packet into a session. We define a special symbol 
USE-LOWERSESSION as a flag to indicate to the kernel level protocol that the lower layer session is 
to be used as the key. 
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The application-protocol boundary is defined by the topmost user level protocol regis

tered in the kernel protocol graph for the application (i.e. the protocol hierarchy ends 

at this boundary for the user protocol stack). The combination of ukBoundaryBit and 

apBoundaryBit allows different applications to register different parts of their protocol 

graphs with the kernel. 

Currently, protocol configuration is done statically. The kernel resident active and 

passive maps for each protocol are created at the system startup time. The key size 

information required to create these maps is stored in the protocol graph thereby making 

it readily available. Our architecture would easily accommodate dynamic protocol con

figuration, but our environment does not provide a mechanism for the dynamic addition 

of code to the kernel (such as loadable device drivers). 



Chapter 5 

Implementat ion Detai ls 

This chapter first describes the run-time environment for our implementation and gives 

an overview of the Raven kernel that runs on the bare hardware. It then presents the 

implementation details of the frameworks for each of the three proposed protocol ar

chitectures. These frameworks are protocol independent and implemented in the the 

context of the x-kernel. This chapter also describes the implementation details of sam

ple TCP/UDP-IP-Ethernet protocol stacks as implemented in the context of the three 

proposed architectures. 

5.1 Run - t ime Envi ronment Overview 

The hardware platform for our experiments is the Motorola MVME188 Hypermodule, a 

25 MHz quad-processor 88100-based shared memory machine [Gro90]. A light weight, 

multi-threaded kernel called Raven [Rit93, RN93] is developed in the Computer Science 

department at U B C and is the microkernel running on the bare hardware. The three 

proposed protocol architectures are implemented in the context of a parallel x-kernel: 

the x-kernel [HP88, HP91] has been ported as a user level server in this environment and 

has been parallelized to take full advantage of parallel processing. 

The Raven K e r n e l Overview 

The Raven kernel is a lightweight operating system for a shared memory multiprocessor 

machine. In the Raven kernel environment, several traditional kernel level abstractions 

59 



Chapter 5. Implementation Details 60 

have been implemented at the user level. Such abstractions include thread management, 

semaphores, device drivers, interprocess communications (IPC) [RN93]. Task manage

ment, virtual memory management, and low level interrupt dispatching are implemented 

in supervisor mode. The Raven kernel makes extensive use of shared memory between 

user/kernel and user/user to avoid kernel mediation. One of the interesting features of 

the Raven kernel is that interrupts are handled at user level. This facilitates the complete 

implementation of device drivers in user space, thereby eliminating the costs of moving 

device data between kernel and user. The user level IPC library provides synchronous 

send/receive/reply interface as well as an asynchronous send/receive interface. Both 

kinds of interfaces use shared memory between clients and server and a task signaling 

facility to avoid kernel mediation as much as possible. However, IPC call semantics are 

not general. For our purposes, we would have liked to get a pointer to a shared buffer 

between client and server so that we could fill the buffer ourselves. But the IPC library 

does not provide such a facility. The IPC library assumes that a contiguous buffer is 

supplied by the user as an argument to the library function call and the library routine 

copies the data from the user supplied buffer to the shared buffer area. This results in 

an extra copy of the data if the user data is not in a contiguous buffer. Such cases are 

common in communication protocol processing. 

5.2 Implementation Details of the L L M Protocol Framework 

The standard implementation of the x-kernel follows the L L M protocol architecture. The 

implementation of the standard x-kernel release is described in the x-kernel manual [1093] 

and papers [HP88, HP91]. The standard x-kernel is parallelized for our multiprocessor en

vironment. Our sample L L M protocol implementation consists of the parallelized version 

of the standard TCP/UDP-IP-Ethernet protocol stack which is available in the x-kernel 
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release from the University of Arizona. Details on the standard TCP/UDP-IP-Ethernet 

stack implementation in the x-kernel can be obtained from the x-kernel manual [1093]. 

5.3 Implementation Details of the DAA Protocol Framework 

The sample UDP-IP-Ethernet protocol stack implementation for the D A A architecture 

is derived from the UDP-IP-Ethernet protocol stack for L L M architecture. The logical 

relationship between the UDP-IP-Ethernet protocol stack in the L L M model and the 

UDP-IP-Ethernet protocol stack in the D A A model is depicted in Figure 5.9. However, 

the two models are implemented in an integrated fashion as depicted in Figure 5.10. The 

application specifies the protocol model it wishes to use at open time. The Part data 

structure is extended for this purpose. The application includes the desired application 

identifier field in the Part data structure at the open time. The default value of this field 

is zero to imply that the open is on a L L M protocol model 1. This provides compatibility 

with the standard protocol code that comes with the standard x-kernel release. The 

standard code need only be recompiled in our environment and it will run in the L L M 

protocol model without any modification. 

If the application identifier field in the Part data structure is set to a non-zero value, 

the open call will result in the creation of a session stack in the D A A protocol model. 

Every active open on U D P will result in a creation of a new session at every protocol 

in the UDP-IP-Ethernet stack i.e. a new session is created at UDP, IP and extended 

Ethernet protocol layer. The application can set the application identifier field to a 

desired value if it wishes to use a specified application identifier. Otherwise, it uses a 

special symbol ANY.APPLICATIONJDENTIFIER in the application identifier field and 

the system assigns a systemwide unique application identifier. Since only the Ethernet 
1The standard z-kernel follows the LLM protocol model. 
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Application Identifier = 0 Application Identifier != 0 
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Ethernet 

Ethernet Driver (Simeth) 

Figure 5.9: Logical Relationship between D A A and L L M Protocol Stacks 
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Application Identifier = 0 Application Identifier != 0 

UDP UDPdaa 

IP 
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Ethernet Driver (Simeth) 

Figure 5.10: Implementation Relationship between D A A and L L M Protocol Stacks 

protocol layer needs,to interpret the application identifier field, the Ethernet protocol 

layer is responsible for assigning this field. 

The Map data structure is extended to allow for two kind of maps: traditional x-

kernel maps that do not allow multiple entries with the same attributes and maps to 

support D A A architectures which allow multiple entries for the same attributes. A bit 

field has been added to the Map data structure to distinguish between the two kind of 

maps. The mapCreate routine is modified to initialize this bit at creation time. The 

mapBind routine that stores a binding in the map is modified to allow multiple entries 
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- with the same attributes for D A A type maps. Similarly, a bit field is added to the XObj 

data structure to distinguish the protocol/session objects belonging to the L L M protocol 

model and the D A A protocol model. The xCreateXobj routine is modified to initialize 

this bit field at protocol/session creation time. For all of the new fields added to various 

data structures, new macros or routines have been defined to set, initialize, and return 

the values of these fields. Again, to keep the extended x-kernel compatible with the old 

x-kernel, all these new fields assume a default value so that no modifications are required 

for the standard protocol code to run in the L L M model. 

UDP, IP, and Ethernet protocol code is modified to support the D A A protocol model. 

In fact, we have extended the protocol code of these protocols to support both the L L M 

and D A A models simultaneously. Each protocol now maintains two types of active maps: 

one for the L L M protocol model and the other for the D A A protocol model. The sessions . 

objects are stored in appropriate maps. The information whether an open is on the L L M 

or D A A protocol model is readily available from the application identifier field of the 

Part data structure which is passed as an argument in the open call. For the passive 

open, when a session is created from an enable object as a result of a packet arrival for 

which no session object is found in the active map, the Eth type field in the received 

packet's Ethernet header is used to determine if the packet is a D A A type or L L M type. 

A special value ETHDAA is reserved for the Eth type field of the Ethernet header for 

identifying the D A A type packets. The Ethernet protocol is extended to accomodate the 

new fields added to support the D A A protocol model. 

In our implementation, the Priority/Deadline field of the extended Ethernet header is 

interpreted as the priority of the thread that shepherds the packet through the protocol 

stack. A scheduling action is taken based on the Priority /Deadline field to dynamically 

change the priority of the thread at the Ethernet protocol layer. The Raven kernel's 

thread data structure is modified to support dynamic priority changes. Every thread 
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is assigned a base priority and a current priority. The current priority is the priority 

at which the thread is running at any instant. For a normal thread, i.e. one which 

does not require a dynamic change of its priority, the base priority is equal to the current 

priority. For a thread belonging to the communication thread pool, the current priority is 

initially set to the base priority. The priority of the thread is changed while shepherding 

the packets belonging to the D A A protocol model as a result of the scheduling action 

taken at the Ethernet layer. When the packet has been delivered to the application, 

the thread's priority is changed back to the base priority. Two routines are defined for 

changing the priority of the executing thread at run time: ChangeToCurrentPriority 
and ChangeToBasePrioirty. 

5.4 Implementation Details of the ILLM Protocol Framework 

This section describes the implementation details of the framework for the I L L M protocol 

architecture in the x-kernel. As described in Section 4.3, in the I L L M framework, demul

tiplexing phase is decoupled from the state-change phase and precedes the state-change 

phase. This requires that the information necessary to perform state-change processing 

be stored during the demultiplexing phase at each protocol layer. For this purpose, each 

thread in the x-kernel thread pool that is responsible for shepherding a received packet 

up through the protocol stack is allocated a buffer to store this bookeeping information. 

This buffer is uniquely associated with each thread and is globally accessible to the code 

executing in the thread context. The thread control block data structure is extended to 

accommodate a pointer to this buffer. The buffer is treated to contain the following data 

structure: 

typedef struct { 
int proto_id; /* Protocol id */ 
XObj s; /* Pointer to this layer session */ 
XObj l i s ; /* Pointer to lower layer session */ 
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Msg msg; /* Pointer to this layer message */ 
int hdr_len; /* hdr length */ 
char hdr[MAX_HDR_SIZE]; /* hdr i t s e l f */ 

}• phdr_t; 

typedef struct RecvPacketBuffer { 
int num_phdr; /* header count in phdr array */ 
phdr_t phdr[MAX_PR0T0C0L_STACK]; /* Headers information */ 
int cur_phdr_ndx; /* index into the phdr array */ 
int packet_len; /* packet length */ 
char packet[MAX_PACKET_SIZE]; /* packet */ 

} RecvPacketBuffer_t; 

The RecvPacketBuf fer structure stores the received packet in the packet data struc

ture. To avoid multiple copies, the thread copies the received packet from the Ethernet 

board directly into the packet field and initializes the packet _1 en field to the length of 

the received packet. At each protocol layer, the phdr data structure is filled with the 

necessary information so that the state-change processing can be performed later. This 

information is captured in the phdr_t data structure. Pointers to each of the following 

entities are stored in the phdr_t data structure for each protocol layer: protocol layer ses

sion, lower layer protocol session, session, and message object. The protocol layer header 

that is stripped from the received packet during the demultiplexing phase is stored in 

the hdr field of the phdr_t data structure by the protocol specific demux routine. The 

num_phdr field reflects the count of protocol headers stored in the phdr array during the 

demultiplexing phase. The protocol_id field stores the current protocol identifier for 

any sanity checks that may be performed later during the state-change phase. The msg 

field pointer points to what the protocol layer considers as data in the received packet. 

As the packet is shepherded through the protocol stack, the phdr array is filled at each 

protocol layer until the packet reaches the user-protocol boundary. This boundary is 

indicated by the upBoundary bit in the XObj data structure. At user-protocol boundary 

protocol, the state-change phase is started. 
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In the standard x-kernel, each protocol's demux routine calls the xPop routine which, 

in turn, calls the protocol specific pop routine. The protocol specific pop routine performs 

the state-change processing for that protocol. The protocol specific demux routine in the 

I L L M framework is the same as that in the L L M framework except that the former calls 

xPopTcb instead of xPop. Figure 5.11 gives a sample implementation of xPopTcb routine. 

The xPopTcb routine performs the following operations: 

• Stores the sessions object, lower layer session object and message object pointers 

in the phdr buffer. 

• Checks to see if upBoundary bit of the current session is set. If the bit is not set, 

it calls the xDemux routine with the current session and message objects as argu

ments. If the bit is set, the routine initiates the protocol state-change processing 

by extracting the session, lower layer session, and message object pointers of the 

appropriate protocol from the RecvPacketBuf f er data structure and invokes the 

xPop routine. 

In the standard x-kernel, the protocol specific pop routine normally calls the xDemux 

routine after it completes the protocol state-change processing. In the I L L M framework, 

the protocol specific pop routine calls the xDemuxTcb routine. Figure 5.12 gives a sam

ple implementation of the xDemuxTcb routine. The xDemuxTcb routine performs the 

following functions: 

• It performs sanity checks to ensure that the various fields of the RecvPacketBuf fer 
data structure are valid. 

• It extracts the session, lower layer session, and the message pointers from the 

RecvPacketBuf fer data structure using cur_phdr_ndx as index into the phdr ar

ray. 
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xkern_return_t xPopTcb( s, l i s , msg ) 
XObj s; 
XObj l i s ; 
Msg *msg; 

{ 
int return_status; 
RecvPacketBuffer_t *st = 

(RecvPacketBuffer_t *)(this_thread()->dstate); 
int ndx; 

xAssert(st != NULL); 

/* 
* save msg, s, and l i s for pop later; 
*/ 

ndx = st->num_phdr; 
msgConstructCopy(&(st->phdr[ndx].msg), msg); 
st->phdr[ndx].lis = l i s ; 
st->phdr[ndx].s = s; 
st->phdr[ndx].proto.id = getProtocolId( s ); 
st->num_phdr++; 

i f ( s->upBoundary ){ 

/* 
* Reached upBoundary. So switch to state-change phase. 
*/ 

int ndx = st->cur_phdr_ndx; 
Msg *msg = &(st->phdr[ndx].msg); 
XObj s = st->phdr [ndx].s; 
XObj l i s = st->phdr[ndxl].lis; 

st->cur_phdr_ndx++; 
return_status = xPop( s, l i s , msg ); 

} else { 
/* 
* Continue, demultiplexing at upper layer protocol. 
*/ 

return_status = xDemux( s, msg ); 
} 

msgDestroy(&(st->phdr[ndx].msg)); 

return return_status; 

Figure 5.11: An Example Implementation of xPopTcb Routine. 
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• It checks the upBoundary bit. If the bit is set, the state-change phase processing 

is completed for the packet. Therefore, the routine sends the data in the message 

to the user. If the bit is not set, it calls the xPop routine with session, lower layer 

session, and message as arguments to perform protocol state-change processing. 

5.5 Implementation Details of the Non-Monolithic Protocol Framework 

5.5.1 IPC Design 

In this section, we describe the IPC scheme used for communication between applica

tion level communication library and the kernel. The IPC scheme uses shared memory 

between each application and kernel pair. The use of shared memory also helps reduce 

the data copying and number of kernel interventions required. To maximize the use of 

available parallelism, there are two sets of shared buffers - one set for outgoing packets 

and one set for incoming packets. 

We use Raven's light-weight synchronous IPC library which associates a shared buffer 

with each communication port. In order to achieve pairwise shared buffers, each appli

cation initializes by going through a registration process with the kernel in which each 

side creates a communication port and an appropriate number of communication threads 

and sends the port identifier to the other side. The application stores the kernel port 

identifier in the protocol objects at the bottom of its protocol graph and directs all but 

its first request to the newly created kernel port. Likewise, the kernel stores the port 

identifier of the application in the shadow session and enable objects that are created on 

behalf of the application at the user-kernel boundary. The following set of IPC calls have 

been defined: 
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xkern_return_t xDemuxTcb( sesn ) 
XObj sesn; 
{ 

RecvPacketBuf!er_t *st = 
(RecvPacketBuffer_t *)(this_thread()->dstate); 

int ndx; 
XObj s, l i s ; 
Msg *msg; 

xAssert(st != NULL); 
xAssert(st->cur_phdr_ndx <= st->num_phdr); 

ndx = st->cur_phdr_ndx; 
s = st->phdr [ndx].s; 
l i s = st->phdr[ndx].lis; 
msg = &(st->phdr[ndx].msg); 
st->cur_phdr_ndx++; 

xAssert(xIsSession(s)); 
xAssert(xIsXObj(lis)); 

i f ( s->upBoundary ){ 

/* 
* Send data to the application 
*/ 

return xDemux(s, msg); 
} else 

/* 
* Do the state-change processing at this protocol layer 
*/ 

return xPop( s, l i s , msg ); 
} 

Figure 5.12: A n Example Implementation of xDemuxTcb Routine. 
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RegisterOpen: 

An active open on a user level protocol is registered with the kernel using RegisterOpenReq 

IPC call. 

typedef struct RegOpenReq{ 
int type; /* type of IPC Message */ 
int proto_id; /* destination protocol id */ 
int uport_id; /* user ipc port i d */ 
int uhlp_type; /* i d of hlp_type argument */ 
int uhlp_recv; /* i d of hlp_recv argument */ 
int part_len; /* length of the part array */ 
char part[MAX_PART_LEN]; /* participant l i s t */ 
int num_sessn; /* size of v a l i d usessn */ 
unsigned long usessn[MAX_NUM_SESSN]; /* session i d l i s t */ 

} RegOpenReq_t; 

The proto_id field is set to the kernel level protocol identifier to which the IPC 

call is directed for processing. The uhlp_type, uhlp_recv, and part fields contain the 

arguments of the Open call and they are used by the kernel level protocol to register a user 

level open. The user level protocol encodes the participants list in the part data structure 

in an externalized form that the kernel can interpret to reconstruct the participant list 

suitable for the kernel level open routine. This is achieved by using the partExternalize 

routine at the user level and the partlnternalize routine at the kernel level. The user 

level session identifier list is stored in the usessn array. 

The response of the register open call is returned in the RegOpenRep IPC call. If the 

request is successful, the status is set to O K by the kernel. Otherwise, the status is set 

to the error code indicating the reason of the failure. 

typedef struct RegOpenRep{ 
int type; /* type of IPC Message */ 
int status; /* status of the request */ 

} RegOpenRep_t; 



Chapter 5. Implementation Details 72 

RegisterOpenEnable: 

The passive open is registered with the kernel using the RegOpenEnableReq IPC call. The 

fields of this call are used in a way similar to the one described for the Register Open 

IPC call. 

typedef struct RegOpenEnableReq{ 
int type; 
int proto_id; 
int uport_id; 
int uhlp_type; 
int uhlp_recv; 
int part_len; 
char part[MAX_PART_LEN]; 

} RegOpenEnableReq_t; 

typedef struct RegOpenEnableRep{ 
int type; 
int status; 

} RegOpenEnableRep_t; 

DeregisterOpenEnable: 

The user level passive open is unregistered with the kernel by using the DeregOpenEnableReq 

IPC call. The contents of the part, uhlp.type, and uhlp_Recv fields must be the same 

as the ones supplied to RegisterOpenEnable at the time a passive open was registered 

with the kernel. 

typedef struct DeregOpenEnableReq{ 
int type; /* type of IPC Message */ 
int proto_id; /* destination protocol i d */ 
int uport_id; /* user ipc port i d */ 
int uhlp_type; /* i d of hlp_type argument */ 
int uhlp_recv; /* i d of hlp_recv argument */ 
int part_len; /* length of the part array */ 
char part[MAX_PART_LEN]; /* participant l i s t */ 

} DeregOpenEnableReq_t; 

typedef struct DeregOpenEnableRep{ 

/* type of IPC Message */ 
/* destination protocol id */ 
/* user ipc port i d */ 
/* i d of hlp_type argument */ 
/* i d of hlp_recv argument */ 
/* length of the part array */ 
/* participant l i s t */ 

/* type of IPC Message */ 
/* status of the request */ 
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int type; /* type of IPC Message */ 
int status; /* status of the request */ 

} DeregOpenEnableRep_t; 

SendPacket: 

The user level sends a packet out on the network through the kernel using the SendPacket 
IPC call. The buf field stores the user data along with all the protocol headers that are 

appended by the protocol processing at the user level. The proto_id field is set to the 

driver identifier that sends the packet over the network. The other fields of this call are 

self explanatory. 

typedef struct SendPacketReq{ 
int type; /* type of IPC Message */ 
int proto_id; /* destination protocol i d */ 
int buf_len; /* size of the buf */ 
char buf[EMAX_PACKET_SIZE]; /* packet with headers */ 

} SendPacketReq_t; 

typedef struct SendPacketRep{ 
int type; /* type of IPC Message */ 
int status; /* status of the request */ 

} SendPacketRep_t; 

ReceivePacket: 

The kernel sends the packets received from the network to the appropriate application 

using the RecvPacketReq IPC call. The proto_id field is set to the user level protocol 

identifier to which the received packet is sent for processing. The usessn array stores 

the list of user level sessions. This list is supplied by the user either at the time of an 

active open registration or in reply to the first RecvPacketReq IPC request i.e. in the 

passive open case when the first packet is transferred to the user. The num_sessn stores 

the count of the number of the sessions in the usessn. Therefore, in the latter case, 

the usessn field is set to zero indicating that the kernel does not yet have the user-level 
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session identifier list. The phdr array stores the bookkeeping information related to the 

demultiplexing performed at each protocol layer in the kernel. The buf data structure 

stores the complete packet received from the network. 

typedef struct { 
int proto_id; 
int hdr_len; 
int hdr_offset; 

} phdr_t; 

typedef struct RecvPacketReq { 
int "type; 
int proto_id; 
int num_sessn; 
unsigned long usessn[MAX_NUM_SESSN]; /* session ids */ 
int num_phdr; /* header count */ 
phdr_t phdr[MAX_NUM_SESSN]; /* Headers information */ 
int buf_len; /* packet length */ 
char buf[MAX_PACKET_SIZE]; /* packet */ 

} RecvPacketReq_t; 

/* Protocol i d */ 
/* hdr length */ 
/* offset from beginning of buf */ 

/* type of IPC Message */ 
/* destination protocol i d */ 
/* number of sessions */ 

For performance reasons, each thread belonging to the kernel level demultiplexing 

thread pool is allocated a buffer to store the RecvPacketReq structure. This buffer is 

globally accessible to the code executing in the thread context. The Ethernet driver copies 

the received packet in the buf array directly from the Ethernet board and initializes the 

buf _len field to the length of the packet. 

The user level sends the reply to the RecvPacketReq IPC call in the RecvPacketRep 

data structure. The status field is set to indicate any error that occurred during the 

protocol processing at the user level. The user level also registers the user-level session 

identifier list by filling the list in the usessn array and setting the num_sessn field to 

the number of session identifiers in the list. 

typedef struct RecvPacketRep{ 
int type; 
int status; 
int num_sessn; 

/* type of IPC Message */ 
/* status of the request */ 
/* number of sessions */ 
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unsigned long usessn[MAX_NUM_SESSN]; /* session ids */ 
} RecvPacketRep_t; 

ProcessControl: 

The ProcessCntlReq IPC call is used for sending user level control messages to the 

kernel. Although, we did not find it necessary to send any user level control messages 

to the kernel in our implementation, it may be required in general. The cntl_req_id 
field is set to indicate the type of control request. The result of the processing of the 

ProcessCntlReq IPC call is sent back to the user level in the ProcessCntlRep IPC 

message. The status field indicates the status of the processing of the control message 

call. This field must be set to OK to indicate that the call was successfully processed and 

that the results are in the rep_data field. 

typedef struct ProcessCntlReq{ 
int type; /* type of IPC Message */ 
int proto_id; /* destination protocol i d */ 
int cntl_req_id; /* Id of the control request */ 

} ProcessCntlReq_t; 

typedef struct ProcessCntlRep{ 
int status; /* status of the request */ 
int rep_len; /* length of the reply data */ 
char rep_data[MAX_CNTL_DATA_LEN]; /* reply */ 

} ProcessCntlRep_t; 

AssignPort: 

The AssignPortReq IPC call is currently used by T C P and U D P protocols to obtain the 

local port number for a connection. Port numbers are assigned by the kernel for correct 

functioning of user level protocols. The port_num field of the AssignPortReq call is set 

to the desired port number by the user and the proto_id field is set to the protocol 

identifier for which the port number is desired. The kernel checks whether the port is 
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a reserved port or is already in use. If so, the kernel sends a reply indicating an error. 

Otherwise, the kernel assigns the requested port number and sends the reply. In case, a 

user does not need a specific port number assigned to it, the user can set port_num to 

ANY-PORT and the kernel assigns a unused port. 

typedef struct AssignPortReq{ 
int type; /* type of IPC Message */ 
int proto_id; /* destination protocol i d */ 
int port_num; /* desired port number */ 

} ProcessCntlReq_t; 

The kernel sends the results of the AssignPortReq IPC call in the AssignPortRep 

structure. The status field is set to indicate status of the results of processing of the IPC 

request. The port_num field contains the port number assigned by the kernel. 

typedef struct AssignPortRep{ 
int type; . /* type of IPC Message */ 
int proto_id; /* destination protocol i d */ 
int status; /* return value */ 
int port_num; /* assigned port number */ 

} ProcessCntlRep_t; 

5.5.2 An Example Non-Monolithic Protocol Implementation 

We have implemented the split protocol stack for U D P [Pos80]/TCP [Pos81c], IP [Pos81b], 

A R P [Plu82], ICMP [Pos81a], and Ethernet [MB76] protocols. UDP, T C P , and most of 

IP, A R P , ICMP protocols are in the user library while the remaining parts of IP, A R P , 

and Ethernet protocols are in the kernel. Some IP functions are implemented in the 

kernel as will be explained later. A R P is implemented at the user level as well as in the 

kernel. As described in Section 4.4.6, the kernel level A R P is the master and periodically 

broadcasts the A R P table changes to the user level instances of A R P . 

T C P and U D P port assignment must be centralized for correct functioning. In our 

scheme, kernel is the only central point, so port assignment is done by the kernel. To 
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improve the performance of outgoing packets, we configure a skeleton Ethernet protocol 

in the user space library. This caches the Ethernet header information from the real 

Ethernet driver located in the kernel. 

When a user level application wants to set up a T C P connection to a remote machine, 

it calls tcp-open with the appropriate set of participants. The tcp-open routine creates a 

T C P session and calls open on the IP protocol. IP creates a new session or returns an 

already existing session. IP also links to the appropriate network interface (in our case 

Ethernet). This completes the creation of a user level session stack. The user session 

id list is then registered with the kernel by sending a RegisterOpen IPC request to the 

kernel which creates a shadow session stack in the kernel. The kernel stores the user level 

session id list in the newly created shadow T C P session's state data structure. Next, 

tcp-open tries to establish a connection with the remote machine. If the connection is 

successfully established, tcp-open returns success. Otherwise it destroys the user level 

session stack that has just been created and sends a DeregisterOpen IPC request to the 

kernel to destroy the kernel level shadow session stack. 

On the remote machine, the server waits passively for new connections after having 

registered a RegisterOpenEnable with the kernel. When the connection message is re

ceived on the remote machine, the kernel demultiplexes the packet and ultimately creates 

the shadow session stack in the kernel. It then passes the packet to the server via the 

ReceivePacket IPC message. The protocol library in the server creates the user level 

session stack as the message flows up the protocol stack. At the T C P level, after the 

T C P session is created, the user level session id list is registered with the kernel in the 

IPC reply message to the ReceivePacket IPC call. The kernel stores the user session id 

list in the corresponding T C P shadow session. This completes the creation of the user 

level session stack as well as the kernel level shadow session stack on the remote machine. 
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Hereafter, packets can be efficiently exchanged between the two machines with demulti

plexing done only in the kernel and protocol specific connection state processing only in 

user space. 

IP Services Decomposition 

The IP protocol implementation has been split between the kernel and user space 

such that the services that are difficult to handle in user space are implemented in the 

kernel. These services are IP reassembly of fragments, IP routing table management, 

IP packet forwarding, IP broadcasts, and IP multicast packet processing. The kernel 

thus maintains enough of the IP protocol context so that it can handle these services. 

IP routing tables are maintained in the kernel and periodically broadcast to the user 

level instances of IP. The kernel maintains maps for collecting IP fragments and when a 

message is reassembled, it is passed to the upper layer protocol (in our case, to UDP) . 

The upper level protocol transfers the complete message to the appropriate user space. 

This implies that the user level IP never has to deal with reassembly issues. Similarly, the 

kernel maintains the IP forward map which stores the session corresponding to packets 

that need to be forwarded. 



Chapter 6 

Performance 

In this chapter, we describe the performance of the sample D A A , I L L M , and Non-

monolithic protocol stacks implemented in the z-kernel and compare it with the per

formance of a sample L L M implementation. We first describe the hardware and software 

platform for our experiments and the benchmark tools used. We then report on the 

round trip latency, incremental cost per round trip, latency breakdown for receive and 

send paths, the kernel level demultiplexing cost, T C P throughput, and connection setup 

cost in the context of the sample protocol stacks for all three architectures. Finally, we 

present the effect of parallel processing on the round trip latency by using more than one 

processor. 

The performance measurements are made by connecting two Motorola MVME188 

Hypermodules through a 10 Mb/sec Ethernet network in light network traffic conditions. 

6.1 Benchmark Tools 

We analyzed the performance of our implementation in two ways. 

• Time measurements of the various components of the implementation have been 

taken using an on-board Z8536 Counter/Timer configured as a 32-bit timer with 

microsecond resolution. 

• Instructions have been counted by using the instruction tracing facility of a hard

ware simulator. 

79 
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Protocol Stack 
Round-Trip Time(ms) 

Protocol Stack User Data Size (bytes) Protocol Stack 
1 100 500 1000 1400 

Server-Server 
E T H 0.88 0.95 2.09 3.44 4.51 

IP -ETH 1.04 1.20 2.27 3.64 4.71 
U D P - I P - E T H 1.21 1.42 2.49 3.80 4.87 
T C P - I P - E T H 1.74 2.17 3.63 5.47 6.92 

User-User Server-Stack 
E T H 1.86 1.94 3.12 4.56 5.77 

IP -ETH 2.06 2.27 3.44 4.96 6.25 
U D P - I P - E T H 2.26 2.54 3.70 5.18 6.43 
T C P - I P - E T H 2.89 3.46 5.01 7.00 8.64 

Table 6.1: L L M Protocol Stack: User-to-User Latency 

Before giving the performance results, we briefly describe the difference in the various 

implementations. We describe three versions: Server-Server, User-User Server-Stack and 

User-User Partitioned-Stack. A Server-Server implementation is the traditional x-kernel 

running as a user level server. There is no boundary crossing between the user and 

the x-kernel server. In User-User Server-Stack, there is a boundary crossing between 

the x-kernel server and applications. However, all the protocol processing is done in 

the x-kernel server. The User-User Partitioned-Stack version is our new implementation 

of protocols as a user level library. Figures 6.13 and 6.14 depict the architectures of 

User-User Server-Stack and User-User Partitioned-Stack implementations respectively. 

6.2 Performance of the L L M Pro toco l Stack 

Tables 6.1 and 6.2 show the round trip times and the incremental cost per protocol 

respectively for the L L M protocol stack. The latency test used is a simple ping-pong 

test between two applications called client and server. The client sends data to the 

server and the server sends the same amount of data back. To eliminate the delay 
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Figure 6.13: User-User Server Stack Architecture 
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Figure 6.14: User-User Partioned Stack Architecture 
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Protocol 
Incremental Costs (ms) 

Protocol Server-Server User-User Server-Stack 
IP 0.16 0.20 

U D P 0.17 0.20 
T C P 0.70 0.83 

Table 6.2: L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 

variance introduced by the network, the latency figures reported are measured for a 

single processor averaged over 10,000 transactions. The U D P session is configured to 

neither compute nor verify the checksum. The incremental cost is calculated by taking the 

difference between the measured round trip latency for pairs of appropriate protocol stack 

for 1 byte of user data transfer. For example, U D P latency is computed by subtracting 

the latency of the IP -ETH stack from the latency of the U D P - I P - E T H stack for 1 byte 

of user data. 

The performance is measured for Server-Server and User-User Server-Stack. The 

latency difference between the two implementations gives the overhead of IPC between 

applications and the server. 

It can be observed that the incremental cost of each protocol in User-User Server-

Stack case is higher than that of the corresponding protocol in Server-Server case. This, 

we suspect, is due to unfavorable cache performance since two address spaces are involved 

in User-User Server-Stack case. 

6.3 Performance of the DAA and ILLM Protocol Stacks 

We measured the round trip time of the sample D A A and I L L M protocol stacks 

and compare it to that of the corresponding L L M implementation to determine the 

relative overhead of the protocol architectures. The D A A and I L L M architectures do not 
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Round-Trip Time(ms) 
Protocol Stack User Data Size (bytes) 

1 100 500 1000 1400 
Server-Server 

E T H D A A 0.92 1.06 2.14 3.47 4.53 
I P - E T H D A A 1.07 1.25 2.33 3.70 4.76 

U D P - I P - E T H D A A 1.20 1.40 2.49 3.86 4.94 
User-User Server-Stack 

E T H D A A 1.90 2.01 3.17 4.58 5.78 
I P - E T H D A A 2.09 2.32 3.49 5.01 6.29 

U D P - I P - E T H D A A 2.24 2.51 3.68 5.23 6.49 

Table 6.3: D A A Protocol Stack: User-to-User Latency 

Protocol 
Incremental Costs(ms) 

Protocol Server-Server User-User Server-Stack 
IP 

U D P 
0.15 
0.13 

0.19 
0.15 

Table 6.4: D A A Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 

implement ILP optimization. The latency test used is a simple ping-pong test described in 

Section 6.2. The U D P session is configured to neither compute nor verify the checksum. 

Tables 6.3 and 6.5 show the round trip times for the D A A and I L L M protocol stacks 

respectively. Tables 6.4 and 6.6 show the incremental cost per protocol for D A A and 

I L L M protocol stacks respectively. 

6.3.1 Performance Compar i son of D A A w i t h L L M 

The cost of E T H D A A is higher than that of E T H . This is because E T H D A A has an 

extended Ethernet header and hence takes more processing time. U D P in the D A A pro

tocol architecture performs marginally better than in the traditional L L M architecture. 

This performance gain can be attributed to the fact that demultiplexing is performed 
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Round-Trip Time(ms) 
Protocol Stack User Data Size(bytes) 

1 100 500 1000 1400 
Server-Server 

E T H 0.89 0.95 2.03 3.39 4.47 
IP-ETH 1.14 1.29 2.37 3.73 4.80 

UDP- IP -ETH 1.27 1.49 2.57 3.89 4.97 
User-User Server-Stack 

E T H 1.87 1.94 3.04 4.51 5.73 
IP-ETH 2.15 2.36 3.51 5.01 6.34 

U D P - I P - E T H 2.31 2.60 3.79 5.27 6.52 

Table 6.5: I L L M Protocol Stack: User-to-User Latency 

Protocol 
Incremental Costs(ms) 

Protocol Server-Server User-User Server-Stack 
IP 

U D P 
0.25 
0.13 

0.28 
0.16 

Table 6.6: I L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 

only at one layer in the D A A protocol architecture. The latency figures of IP and U D P 

protocols also indicate that the D A A stack performs better when there are more number 

of layers in the protocol stack. 

The incremental costs of IP and UDP in the D A A protocol architecture are smaller 

than that in the L L M architecture. This is because no demultiplexing is performed for 

these protocols in the D A A protocol architecture. 

6.3.2 Performance Comparison of ILLM with L L M 

The I L L M performance is marginally worse than that of the L L M protocol stack. The 

additional 60 microseconds of U D P latency for 1-byte user data in I L L M can be attributed 
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Figure 6.15: Realtime vs. Non-realtime Latency 

to saving (or storing) the session and message object pointers during the demultiplexing 

phase at the Ethernet, IP and UDP layers and reading them again during the state-

change phase at each layer. The saving and reading operations require a few instructions 

and are independent of the protocol complexity. Hence, their overhead is small and is 

constant for each protocol layer. The performance of the I L L M stack can be improved by 

appropriate customization. For example, if a protocol does not do any useful processing in 

the state-change phase (e.g. Ethernet), it is not necessary to save the protocol's session 

and message objects. For such protocols, the state-change phase can be eliminated 

altogether. However, the real performance gains in I L L M implementations will come 

from optimizations such as ILP which I L L M enables. 

6.3.3 Real-time Network Traffic 
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Figure 6.151 shows the latency of U D P D A A and U D P stacks for 1-byte of user data in 

the presence of background U D P network traffic. The background U D P network traffic is 

increased by running more threads which send data simultaneously. The measurements 

are made for two data sizes for background network traffic: 1 byte and 1000 bytes. In 

U D P D A A , the priority field in the E T H D A A header is interpreted as the priority of the 

thread processing the packet. As can be seen in Figure 6.15, the increase in latency of 

U D P D A A is much slower than that in U D P as the background network traffic is increased 

for both data sizes. 

6.4 Performance of the Non-Monolithic Protocol Stack 

6.4.1 User-to-User Latency 

We measured the round trip time of various user level protocols and compared it with 

the corresponding Server-Stack implementation. The latency test is a simple ping-pong 

test between two user level applications called client and server. The client sends data 

to the server and the server sends the same amount of data back. The average round-

trip time is measured over 10000 such transactions. The figures reported are measured 

for single processor case. The U D P protocol processing time does not include U D P 

checksum overhead. Table 6.7 gives the latency of the various schemes. The latency 

difference between Server-Server and User-User Server-Stack is due to the overhead of 

moving the data between the two address spaces involved. The difference between User-

User Server-Stack and User-User Partitioned-Stack gives the overhead of our scheme. 

The latency of the Ethernet stack is approximately the same in the Server-Stack and 

the Partitioned-Stack cases because their implementations are very similar. We observe 

that the latency of the Partitioned-Stack is smaller than that of the Server-Stack for user 
1The number in the brackets indicates the data size of the background network traffic. 
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Protocol Stack 
Round-Trip Time(ms) 

Protocol Stack User Data Size(bytes) Protocol Stack 
1 100 500 1000 1400 

Server-Server 
E T H 0.88 1.01 2.09 3.44 4.51 

IP -ETH 1.04 1.20 2.27 3.64 4.71 
U D P - I P - E T H 1.21 1.42 2.49 3.80 4.87 
T C P - I P - E T H 1.74 2.17 3.63 5.47 6.92 

User-User Server-Stack 
E T H 1.86 1.94 3.12 4.56 5.77 

IP -ETH 2.06 2.27 3.44 4.96 6.25 
U D P - I P - E T H 2.26 2.54 3.70 5.18 6.43 
T C P - I P - E T H 2.89 3.46 5.01 7.00 8.64 

User-User Par t i t ioned-Stack 
E T H 1.88 1.98 3.13 4.51 5.65 

IP -ETH 2.17 2.35 3.47 4.88 6.08 
U D P - I P - E T H 2.39 2.63 3.78 5.17 6.31 
T C P - I P - E T H 3.02 3.51 5.05 6.93 8.47 

Table 6.7: User-to-User Latency 
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Protocol 
Incremental Costs (ms) 

Protocol Server-Server User-User Server-Stack User-User Partitioned-Stack 
IP 0.16 0.20 0.29 

U D P 0.17 0.20 0.22 
T C P 0.70 0.83 0.85 

Table 6.8: Incremental Costs per Round Trip (1 byte user data) 

data size larger than 1000 bytes. This, we suspect, is due to the difference in the cache 

performance for the two implementations. 

The following list describes in detail the overhead of our implementation: 

• Overhead of recording bookkeeping information at each skeleton protocol layer. The 

information stored consists of a protocol identifier and the length of the protocol 

header. 

• Longer IPC messages are exchanged because the bookkeeping information must be 

included in the IPC messages. 

• Constructing and interpreting the different types of IPC messages to pass them to 

the appropriate protocol. This applies to both the kernel as well as the user. 

• Preparing the x-kernel message object from the IPC message received from the 

kernel to invoke the series of pops routines in the user space. 

A l l of the above overheads are small, requiring only a few instructions, and are indepen

dent of packet length. 

Table 6.8 lists the incremental cost of a round trip of each protocol for each imple

mentation. The incremental cost is calculated by subtracting the measured round trip 

latency for pairs of appropriate protocol stacks that transfer 1 byte user data. For ex

ample, T C P latency is computed by subtracting latency for the IP -ETH stack from the 
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latency for the T C P - I P - E T H stack. In the Partitioned-Stack case, the IP protocol has 

a much higher incremental cost. This is mainly due to the overhead of preparing an 

x-kernel message object from the IPC message. This cost is incurred only by protocols 

that are at the user-kernel boundary. The incremental cost of T C P and U D P in the 

Partitioned-Stack case is 20 microseconds higher than that in Server-Stack case. This 

can be attributed to the small overhead of bookkeeping information and the larger IPC 

messages that are exchanged. 

Latency Breakdown 

Table 6.9 gives the time spent in various protocol layers in the kernel and the user 

space for both send and receive paths. Tables 6.9 and 6.10 also list the overheads in

volved in recording and playback of bookkeeping information2. The IP PopTcb and 

TCP'/UDP PopTcb components reflect the cost of recording bookkeeping information 

while IP DemuxTcb and TCP'/UDP DemuxTcb components reflect the cost of the play

back of bookkeeping information. As can be seen, the number of instructions executed for 

these functions is extremely small. The user-kernel boundary protocols spend more time 

in recording the bookkeeping information because they also store the user level session 

list in the IPC message. The Other Overheads component reflects the cost of function 

calls and x-kernel UPI library function calls. The User IP Preprocessing component re

flects the cost of converting an IPC message back into an x-kernel message object. This 

component is the largest single overhead of our Partitioned-Stack implementation over 

the Server-Stack implementation. 

In the send path, the cost of the Ethernet layer increases dramatically with the size 

of the user data because the message is copied to a contiguous buffer before making each 
2It is possible to get rid of the bookkeeping overhead in a customized implementation. In that case, 

the number of instructions taken for kernel demultiplexing is further reduced. 
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Protocol Component 
TCP(microseconds) UDP (microseconds) 

Protocol Component Length(Bytes) Length (Bytes) Protocol Component 
1 1400 1 1400 

Send P a t h 
TCPtest/UDPtest 24 26 15 15 

T C P / U D P layer 179 561 45 47 
IP layer 30 30 30 30 

Other Overheads 6 6 6 6 
Ethernet Layer 70 235 65 225 
IPC to Kernel 294 391 285 355 

Ethernet Driver 66 275 62 270 
Tota l Send P a t h 669 1524 508 948 

Receive P a t h 
Interrupt Dispatch and Handling 96 89 96 91 

Ethernet read 67 361 63 351 
Ethernet demultiplexing 17 17 17 17 

IP demultiplexing 21 21 21 21 
IP PopTcb 4 4 4 4 

TCP/UDP demultiplexing 18 17 18 18 
TCP/UDP PopTcb 8 8 8 8 

Other Overheads 13 13 13 13 
IPC to User 246 309 238 306 

User IP Preprocessing 46 46 46 47 
User IP layer 47 45 47 47 

User T C P / U D P layer 186 565 46 47 
TCPtest/UDPtest 6 6 6 6 

Other Overheads 16 16 16 16 
Tota l Receive P a t h 791 1517 639 992 
Network Transit Time 50 1215 50 1215 

Tota l 1510 4256 1197 3155 

Table 6.9: User-User Partitioned-Stack: Latency Breakdown 
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TCP UDP 
Protocol Component # Instructions # Instructions 

Ethernet demultiplexing 154 154 
IP demultiplexing 230 230 

IP PopTcb 13 13 
TCP/UDP demultiplexing 172 171 

TCP/UDP PopTcb 33 33 
Other Overheads 85 85 

Total Kernel Demultiplexing 687 686 
User IP DemuxTcb 7 7 

User T C P / U D P DemuxTcb 7 7 

Table 6.10: User-User Partitioned-Stack: Instruction Counts 

IPC call. This extra copy could be avoided by modifying the IPC library. The IPC cost 

from user to kernel is more than the IPC cost from the kernel to the user. Again, we 

suspect this is due to the poor cache performance in the former. 

6.4.2 Kernel Level Demultiplexing 

The kernel demultiplexing takes between 61 to 98 microseconds. The large variation in 

the demultiplexing cost is related to cache performance3. Therefore, we give a breakup of 

the number of Motorola 88100 instructions executed in each kernel level protocol layer's 

demultiplexing routine and the total number of instructions executed for demultiplexing 

in the kernel. Table 6.10 lists the number of instructions taken by various components 

of the kernel demultiplexing and user level processing. The demultiplexing cost for the 

T C P - I P - E T H stack is the same as that of the U D P - I P - E T H stack and they take 687 and 

686 instructions respectively. Given this low cost of kernel level demultiplexing, we could 

perform the complete demultiplexing function in the interrupt handler. This would avoid 

one extra copy of the data as we would be able to copy each packet directly to the IPC 

3 T h e cache size on our machine is 16KB instruction and 16 KB data cache per processor. 
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Figure 6.16: Demultiplexing Cost, as a Function of Number of Open Connections 

buffer shared between the recipient address space and the kernel. 

Figure 6.16 shows the cost of kernel level demultiplexing as the number of open T C P 

connections is varied from 1 to 100. The solid line indicates the cost of demultiplexing 

when the data is sent to only one connection. This is the best case demultiplexing 

scenario and it costs 66 microseconds. The session entry, in this case, is always found 

in the cache of the T C P active map. The dotted line depicts the demultiplexing cost in 

the worst case scenario in that data message is sent to each open connection in a round 

robin fashion. In the latter, the session entry is guaranteed not to be in the cache of the 

T C P map and a search in the map has to be carried out. This results in an extra 14 

microseconds of overhead. Another important point to note is that the demultiplexing 



Chapter 6. Performance 94 

Protocol Stack Throughput(Mb /'sec) 
Server-Server 

User-User Server-Stack 
User -User Par t i t ioned-Stack 

6.15 
4.74 
4.30 

Table 6.11: T C P Throughput 

cost is totally insensitive to the number of open connections. This is similar to the result 

achieved in traditional kernel based protocol implementations and Mach Packet Filter 

based implementation [MB93]. 

6.4.3 User- to-User Throughput 

Table 6.11 lists the throughput in Mb/sec for T C P for various implementations. T C P 

throughput is measured over the T C P - I P - E T H protocol stack by measuring the time 

taken to send 1 megabytes from the client to a server. T C P uses a 4096 bytes window 

and fragments the data into 1460 byte data messages. The throughput differences among 

the three implementations are as expected. In the Server-Server implementation, there is 

no boundary crossing from the server to the application and hence, its performance is the 

best. In the Server-Stack implementation there are two boundary crossings on each side, 

per packet, and a corresponding performance reduction is observed. In the Partitioned-

Stack implementation, extra overhead over the Server-Stack implementation is incurred 

because of longer IPC messages that are exchanged, converting each IPC message to 

the x-kernel message object, and recording and playback of bookkeeping information. 

This overhead results in a 9% slowdown over the Server-Stack implementation. In the 

Partitioned-Stack implementation, there is one extra data copy on the send path over 

the Server-Stack implementation which could be eliminated by changing the IPC library 

interface. This elimination would result in performance closer to that of the Server-Stack 

implementation. 
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Protocol Stack TCP Connection Setup time(ms) 
Server-Server 

User-User Server-Stack 
User-User Partitioned-Stack 

5.81 
7.42 
11.01 

Table 6.12: Connection Setup Cost 

6.4.4 TCP Connection Setup Cost 

Table 6.12 indicates the relative connection setup time of the three implementations. 

The connection setup cost is an important measure of performance for applications that 

periodically connect to a peer entity, send a small amount of data, and close the connec

tion. The connection setup cost for the Server-Stack implementation incurs IPC overhead 

over the Server-Server implementation. The 3.59 milliseconds extra for the connection 

setup cost for the Partitioned-Stack implementation is incurred over the Server-Stack 

implementation because of the following overheads: 

• Extra IPC messages exchanged to register the user level session id list with the 

kernel. 

• Creation of a shadow session stack in the kernel. 

6.4.5 Performance on Multiprocessors 

Figures 6.17 and 6.18 show the effect of active multiprocessors on the T C P and U D P 

round trip latencies respectively for all three implementations. A n interesting point 

to note is that the latency of the Partitioned-Stack implementation is smaller than the 

Server-Stack latency for more than one active processor. This shows that the Partitioned-

Stack implementation is potentially more parallelizable than the Server-Stack or Server-

Server implementations. This is an important result because we believe that for high

speed networking, shared memory multiprocessor machines will be the most successful. 
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Figure 6.17: T C P Latency as a Function of Number of Processors 
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Figure 6.18: UDP Latency as a Function of Number of Processors 



Chapter 6. Performance 98 

Another interesting point to note is that the latencies of T C P and U D P drop when we 

go from a single active processor to two active processors and remain constant as the 

number of active processors is further increased. This is because there is not enough 

concurrency in the latency tests which are of a stop and wait nature. 
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Conclusions and Future Research 

In this thesis, three protocol architectures for future high-speed multi-media communi

cation environment have been proposed. This chapter concludes the thesis by presenting 

a summary of the major results and some future research directions. 

This thesis examined the drawbacks of traditional protocol architectures and proposed 

new protocol architectures which overcome some of the limitations of traditional protocol 

architectures. These limitations include the following: 

• Traditional protocol architectures do not support application specific quality of 

service due to their use of layered logical multiplexing. 

• Traditional protocols do not provide support for real-time guarantees and low la

tency because there is no provision in the Media Access Control (MAC) layer 

protocols such as Ethernet and X.25 to accommodate a priority/deadline field. 

• New generation multimedia applications require that part of the protocol function

ality reside in the applications itself. This goal requires splitting protocol function

ality between the kernel and applications on an application basis. 

• The performance of traditional protocols has not scaled well with the increase in 

processor speed because of the increased gap between processor speed and memory 

speed. ILP has been proposed as a means to minimize data transfer over the 

memory bus. However, it is difficult to implement traditional protocol stacks using 

ILP. 

99 
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• Parallelization of traditional protocols and in particular, that of T C P has been 

difficult because T C P has a lot of shared state and requires extensive locking. 

7.1 Summary of Results 

This thesis proposed three new architectures which overcome the above limitations of 

traditional protocol architectures. These new architectures are D A A , I L L M , and Non-

Monolithic. 

The D A A protocol model essentially provides low latency and high throughput to 

applications. In the D A A protocol architecture, an application identifier and the dead

line/priority of a message is enclosed in the lowest protocol layer. The application iden

tifier field is the only demultiplexing point in the protocol stack. This field provides a 

direct channel to the remote application. The priority/deadline field provides proper 

scheduling of the packet to meet its deadline as soon as the packet is received. The 

application identifier field can be processed in the network interrupt handler itself, and 

the data can be copied directly to the application buffer, thereby minimizing the number 

of data copies. Application resources can also be checked in the interrupt handler and 

packets can be dropped in the interrupt handler if the application does not have enough 

resources to receive the packet. 

In the I L L M framework, protocol demultiplexing is decoupled from the rest of the 

protocol functionality and it is performed in an integrated fashion for the complete proto

col stack. The rest of the protocol processing for each protocol in the stack is performed 

after the demultiplexing phase. There are several advantages of the I L L M protocol model 

over the traditional protocol model. The demultiplexing phase is a read-only operation 

and constitutes only a small fraction of the total protocol computation. Hence, it can be 
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performed very fast. Besides, after the demultiplexing phase, the identity of the destina

tion application is known. Hence, the I L L M protocol model essentially achieves all the 

advantages of the D A A protocol architecture. In addition, the I L L M remains compatible 

with existing protocols. The I L L M protocol model also facilitates the ILP implementa

tion which is considered essential for high performance protocol processing on modern 

processors. After the demultiplexing phase, the header-data boundary is known and this 

eases ILP implementation. 

The Non-Monolithic protocol architecture provides a flexible way to decompose pro

tocol services between a trusted kernel address space and user address spaces and gives 

the protocol implementer the flexibility to decide how the services should be decomposed. 

The primary functionality that must be included in the kernel portion of the protocol 

implementation is the efficient demultiplexing of incoming data to the appropriate re

cipient address space. Additional functionality, such as IP reassembly and routing table 

management, may be added to the kernel implementation. The Non-Monolithic protocol 

architecture is scalable to thousands of processors. There is no inherent limitation to 

parallelization because each connection can be allocated its own protocol stack, thereby 

having no protocol state shared with other connections. In addition, the Non-Monolithic 

protocol model enables application level framing which is a key requirement of multime

dia applications. In multimedia applications, part of protocol processing is required to 

be performed in the application itself. This model also achieves all the advantages of 

D A A and I L L M protocol models. 

Another contribution of this research is the implementation of protocol independent 

frameworks for each of the proposed protocol models in the context of the parallel x-

kernel. The TCP/UDP-IP-Ethernet protocol stack is implemented and parallelized in 

each of the three frameworks for performance measurements. The same protocol stack 

is also parallelized in standard L L M protocol architecture for performance comparison 



Chapter 7. Conclusions and Future Research 102 

purposes. The performance of these models was measured under real network traffic con

ditions on two separate machines communicating with each other. Each of the proposed 

models achieved performance comparable to that of the traditional L L M protocol model 

without employing any key optimizations such as ILP. In addition, these protocol models 

achieve all the advantages described above. 

Another contribution of this research is the parallelization of the x-kernel for shared 

memory multiprocessor machines. Fine grain parallelism is incorporated in the x-kernel 

to maximize its performance for multithreaded and multiprocessor environments. The 

TCP/UDP-IP-Ethernet protocol stack is also parallelized. 

7.2 Future Research Directions 

There are a number of important issues that are left unaddressed in the thesis. They are 

listed as follows: 

• Implementation of a sample protocol stack in each of the three protocol archi

tectures using Integrated Layer Processing optimization and demonstrating the 

performance gains for each of the three protocol models. 

• Experimentation with Application Level Framing using the Non-Monolithic proto

col architecture for sample multimedia applications. 

• Demonstration of the scalability of the Non-Monolithic protocol architecture on 

larger multiprocessor machines. 

• Implementation of the demultiplexing operation in I L L M and Non-Monolithic pro

tocol architectures using wait-free data structures. This will parallelize the demul

tiplexing phase totally, thereby giving better performance than that of the L L M 

protocol model under the same conditions. 
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