
ALTERNATIVE HIGH-PERFORMANCE ARCHITECTURES FOR

COMMUNICATION PROTOCOLS

by

Parag Kumar Jain

B. Tech., Indian Institute of Technology, Kanpur, India, 1988

A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

D E P A R T M E N T O F C O M P U T E R S C I E N C E

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

February 1995

© Parag Kumar Jain, 1995

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

The traditional communication protocol architectures have a number of components that

present bottlenecks to achieving high performance. These bottlenecks include the way the

protocols are designed and the way protocol stacks are structured and implemented. With

the advent of high speed networks, the future communication environment is expected to

comprise of a variety of networks with widely varying characteristics. The next generation

multimedia applications require transfer of a wide variety of data such as voice, video,

graphics, and text and have widely varying access patterns such as interactive, bulk

transfer, and real-time guarantees. Traditional protocol architectures have difficulty in-

supporting multimedia applications and high-speed networks because they are neither

designed nor implemented for such a diverse communication environment.

This thesis analyzes the drawbacks of traditional protocol architectures and proposes

alternative high-performance architectures for multimedia applications and high-speed

network environments. Three protocol architectures are proposed: Direct Application

Association, Integrated Layered Logical Multiplexing, and Non-Monolithic Protocol Ar

chitectures. To demonstrate the viability of these architectures, a protocol independent

framework for each proposed protocol architecture is implemented in the context of a

parallelized version of the z-kernel. Implementation of the TCP/UDP-IP-Ethernet pro

tocol stack for each of the proposed architectures demonstrates that the performance of

these protocol architectures is comparable to that of a traditional protocol architecture.

In addition, the proposed architectures are more scalable on multiprocessor systems than

the traditional protocol architecture and enable some of the key requirements (Applica

tion specific Quality of Service, Application Level Framing) and optimizations (such as

n

Integrated Layer Processing) necessary for the future communication environment.

in

Table of Contents

Abs t rac t i i

L is t of Tables v i i i

L i s t of Figures ix

Acknowledgement x

1 Int roduct ion 1

1.1 Motivation 2

1.2 Research Contributions of this Thesis 2

1.3 Thesis Overview 4

2 Re la ted W o r k and Thesis Proposa l 6

2.1 Requirements for High-Performance Protocol Processing 8

2.1.1 Providing Wide Range of Quality of Service to Applications . . . 8

2.1.2 Integrated Layer Processing 10

2.1.3 Application Level Framing 12

2.1.4 Getting Bits Faster to Applications 13

2.1.5 Parallelization of Protocol Stacks 14

2.2 Traditional Protocol Architectures 17

2.2.1 Layered Logical Multiplexing (LLM) Protocol Architecture 17

2.3 Alternative Protocol Architectures 18

2.3.1 Direct Application Association (DAA) Protocol Architecture . . . 18

iv

2.3.2 Integrated Layered Logical Multiplexing (ILLM) Protocol Archi

tecture 20

2.3.3 Non-Monolithic Protocol Architecture 22

3 The Para l le l z-kernel 30

3.1 The z-kernel Overview 30

3.1.1 The z-kernel Support Tools 31

3.1.2 Operations on Protocol Objects 32

3.1.3 Operations on Session Objects 33

3.2 Parallelization of the ^-kernel 33

3.2.1 Locking Scheme in the z-kernel 35

3.2.2 Locking Scheme in the Protocols 35

3.3 Implementation Details of the Parallel z-kernel 36

3.3.1 Locking in the z-kernel 36

3.3.2 Locking in the Protocols 37

3.3.3 Support for Processor per Message 38

4 Design Overview 40

4.1 Design of a Framework for L L M Protocol Architecture 40

4.2 Design of a Framework for D A A Protocol Architecture 40

4.2.1 Path/Session Stacks 41

4.2.2 Networkwide Unique Demux Key 42

4.2.3 Specifying QoS 42

4.2.4 Extended Ethernet Header 43

4.2.5 Creation of Session Stack 44

4.2.6 Sending Out Packets 46

4.2.7 Processing Incoming Packets 46

v

4.3 Design of a Framework for I L L M Protocol Architecture 47

4.3.1 Processing Incoming Packets 47

4.4 Design of a Framework for Non-Monolithic Protocol Architecture 48

4.4.1 Protocol Graphs 49

4.4.2 Protocol Objects 51

4.4.3 Session Objects 51

4.4.4 Demultiplexing in the Kernel 52

4.4.5 Packet Processing at User Level 53

4.4.6 Shared State 56

4.4.7 Details of Skeleton Protocols 56

4.4.8 Protocol Configuration 57

5 Implementation Details 59

5.1 Run-time Environment Overview 59

5.2 Implementation Details of the L L M Protocol Framework 60

5.3 Implementation Details of the D A A Protocol Framework 61

5.4 Implementation Details of the I L L M Protocol Framework 65

5.5 Implementation Details of the Non-Monolithic Protocol Framework . . . 69

5.5.1 IPC Design 69

5.5.2 A n Example Non-Monolithic Protocol Implementation 76

6 Performance 79

6.1 Benchmark Tools 79

6.2 Performance of the L L M Protocol Stack 80

6.3 Performance of the D A A and I L L M Protocol Stacks 83

6.3.1 Performance Comparison of D A A with L L M 84

6.3.2 Performance Comparison of I L L M with L L M 85

vi

6.3.3 Real-time Network Traffic 86

6.4 Performance of the Non-Monolithic Protocol Stack 87

6.4.1 User-to-User Latency 87

6.4.2 Kernel Level Demultiplexing 92

6.4.3 User-to-User Throughput 94

6.4.4 T C P Connection Setup Cost 95

6.4.5 Performance on Multiprocessors 95

7 Conclusions and Future Research 99

7.1 Summary of Results 100

7.2 Future Research Directions 102

Bibliography 103

vii

List of Tables

6.1 L L M Protocol Stack: User-to-User Latency 80

6.2 L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 83

6.3 D A A Protocol Stack: User-to-User Latency 84

6.4 D A A Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 84

6.5 I L L M Protocol Stack: User-to-User Latency 85

6.6 I L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data) 85

6.7 User-to-User Latency 88

6.8 Incremental Costs per Round Trip (1 byte user data) 89

6.9 User-User Partitioned-Stack: Latency Breakdown 91

6.10 User-User Partitioned-Stack: Instruction Counts 92

6.11 T C P Throughput 94

6.12 Connection Setup Cost 95

viii

List of Figures

2.1 Layered Logical Multiplexing Protocol Architecture 17

2.2 Direct Application Association Protocol Architecture 19

2.3 Integrated Layered Logical Multiplexing Protocol Architecture 20

2.4 Non-Monolithic Protocol Architecture 27

4.5 Format of Extended Ethernet Header 43

4.6 User and Kernel Protocol Graphs 50

4.7 Incoming Message Paths 54

4.8 Outgoing Message Paths 55

5.9 Logical Relationship between D A A and L L M Protocol Stacks 62

5.10 Implementation Relationship between D A A and L L M Protocol Stacks . . 63

5.11 A n Example Implementation of xPopTcb Routine 68

5.12 An Example Implementation of xDemuxTcb Routine 70

6.13 User-User Server Stack Architecture 81

6.14 User-User Partioned Stack Architecture 82

6.15 Realtime vs. Non-realtime Latency 86

6.16 Demultiplexing Cost as a Function of Number of Open Connections . . . 93

6.17 T C P Latency as a Function of Number of Processors 96

6.18 U D P Latency as a Function of Number of Processors 97

ix

Acknowledgement

Thank you Norm and Sam for excellent supervision and encouragement throughout my

graduate program. Thank you both for encouraging me to experiment with new ideas

and to help convert them into concrete results.

Many thanks to Stuart Ritchie for helping me get familiarized with the Raven kernel

and the Motorola Hypermodule. Many thanks to Helene Wong who gladly accepted to

read preliminary drafts of this thesis and provided valuable comments. Thanks to Don

Acton and Daniel Hagimont for proofreading a paper which was the starting point of

this thesis.

Many thanks to my office mates, Ying Zhang, Runping Qi , and Sreekantaswamy,

for maintaining a friendly environment and their advice on miscellaneous things. Many

thanks to Daniel Hagimont, Sanjoy Mukherjee, Mandeep Dhami, Sameer Mulye, Nevin

Lianwen, Jinhai Yang, Helene Wong, Xiaomei Han, Catherine Leung, Sree Rajan, Stephane

Gagne, Sidi Yu, and Shi Hao for being good friends and making my stay at U B C en

joyable. Thanks to my friends from Simon Fraser University (Dayaram Gaur, Graham

Finlayson, Sanjeev Mahajan, Stephane Wehner, Sumeet Bawa, and Sanjay Gupta to

name a few) for arranging outdoor activities and numerous gettogethers.

Finally, I thank my parents, brother Pankaj, and sister Mamta for their love and

encouragement throughout my graduate studies.

Chapter 1

Introduction

Computer technology has changed rapidly during the last two decades. Processor speed

has increased from a fraction of Million Instructions Per Second (MIPS) to 1000 MIPS.

The computer network speed has increased from kilobits per second to several gigabits per

second and has the potential of going up to terabits per second. Advances in computer

technology have made the technology simple and cost effective so that it is within the

reach of a common man, making the personal computer a household commodity. The

rest of this decade is envisioned to connect every household computer on a global network

which will support services such as video on demand, video telephony/conferencing, on

line public libraries, multi-media news, home banking, home shopping. Many of these

services have high bandwidth and real-time traffic requirements.

The infrastructure for global connectivity will be provided by a high-speed net

work called The Information Superhighway facilitated by evolving global standard Asyn

chronous Transfer Mode (ATM) technology. The network speed of the information su

perhighway is expected to range from a few megabits to a few gigabits per second at

the user network interfaces and several gigabits to terabits per second on the informa

tion superhighway backbone. However, before diverse communication networks, such

as the information superhighway, become operational, there are a number of .challenges

that must be tackled. One of the major challenges is providing high performance com

puter communication protocols to support emerging time critical services on such diverse

communication networks.

1

Chapter 1. Introduction 2

1.1 Motivation

Traditional protocol architectures have been able to meet the demand of the last gener

ation of computer networks and applications because networks were quite slow and they

were used to carry only one type of data. With the advent of high speed networks, the

future communication environment is expected to comprise of a mixture of networks with

widely varying characteristics. Future networks are also expected to support multimedia

applications which transfer a wide variety of data such as voice, video, graphics, and text

and have widely varying access patterns such as interactive, bulk transfer, and real-time

guarantees. Traditional protocol architectures are not suited for multimedia applications

and high speed networks because they are neither designed nor implemented for such a

diverse communication environment.

A n ideal communication system for the future communication environment would be

the one that can provide communication over diverse networks with data transfer rates

ranging from kilobits per second to gigabits per second and network diameters ranging

from Local Area Networks (LANs) to Wide Area Networks (WANs). It would also ef

ficiently support "all" applications: connection oriented, connectionless, stream traffic,

bursty traffic, reliable transport, best effort delivery, different data sizes, and different

delay and throughput requirements, etc. To achieve the goal of such a communication

system, research work is required at all level of computer systems: starting from phys

ical transmission media, L A N interface design, C P U , memory, disk, operating systems,

protocol architectures to application design and implementation.

1.2 Research Contributions of this Thesis

This thesis analyzes the drawbacks of traditional protocol architectures and proposes

alternative high-performance protocol architectures for the next generation applications

Chapter 1. Introduction 3

and high-speed network environments. The primary contributions of this thesis are as

follows:

• Three new protocol architectures are proposed:

— Direct Application Association Protocol Architecture,

— Integrated Layered Logical Multiplexing Protocol Architecture, and

— Non-Monolithic Protocol Architecture.

• Parallelization of the z-kernel [HP88, HP91] including T C P [Pos81c] / U D P [Pos80]

- IP [Pos81b] - Ethernet [MB76] protocols stack for a shared memory multiproces

sor machine.

The hardware platform for our experiments is the Motorola MVME188 Hypermod

ule, a quad-processor 88100-based shared memory multiprocessor machine [Gro90]

with the Raven kernel [Rit93, RN93] running on the bare hardware.

• Demonstration of the viability of these protocol architectures.

Protocol independent frameworks for each of the proposed protocol architectures

are implemented in the context of the parallel ̂ -kernel.

• Demonstration of efficiency of the proposed protocol architectures.

Sample protocol stacks for each of the proposed protocol models are implemented

using the most widely used TCP/UDP-IP-Ethernet protocol stack. The perfor

mance of these models are measured and compared with that of traditional protocol

models under real network traffic conditions.

Chapter 1. Introduction 4

1.3 Thesis Overview

Chapter 2 surveys the previous work relevant to the understanding of the thesis and

presents the thesis proposal. It first summarizes the research trends in protocol architec

tures to meet the requirements of the future networks and application environments. It

then identifies and discusses in detail the requirements of future communication protocol

architectures. Finally, this chapter presents the three proposed protocol architectures:

Direct Application Association Protocol Architecture, Integrated Layered Logical Mult i

plexing Protocol Architecture, and Non-monolithic Protocol Architectures.

Chapter 3 first presents an overview of the x-kernel, which is an essential prerequisite

to understanding the rest of this thesis. It then describes the scheme used for paralleliza

tion of the z-kernel to make it run on shared memory multiprocessor machines.

Chapter 4 describes the design of the frameworks of each new protocol architecture

proposed in the thesis in the context of the ^-kernel. It first describes the framework of

Direct Application Association protocol architecture, followed by that of the Integrated

Layered Logical Multiplexing protocol architecture. It finally describes the design of the

framework of the Non-Monolithic protocol architecture.

Chapter 5 first describes the run-time environment of our experiments. It gives an

overview of the hardware platform and the Raven kernel. It then gives the implementation

details of frameworks of each of the three proposed protocol architectures. This chapter

also describes the implementation details of the sample TCP/UDP-IP-Ethernet protocol

stacks implemented for each the three protocol architectures.

Chapter 6 analyzes the performance of the example protocol stack for each protocol

architecture. It first describes the benchmark tools used for performance measurements

and then gives performance results of the round-trip latency, incremental cost per pro

tocol per round-trip, latency breakdown, throughput, and connection setup cost. Some

Chapter 1. Introduction 5

multiprocessor performance experiments and their results are also reported.

Chapter 7 presents a summary of the results. This chapter concludes with a de

scription of the research contributions of this thesis and the identification of some future

research areas.

Chapter 2

Related Work and Thesis Proposal

Traditionally, communication protocols have been implemented in a monolithic fashion.

In these implementations, the complete protocol stack is implemented either in the op

erating systems kernel [LMKQ89] or in a trusted user address space or server [GDFR90].

The monolithic protocol architectures have been quite successful in meeting the demands

of the last generation of networks because networks were quite slow and they were used

to carry only one type of data, that is, time insensitive data. With the advent of high

speed networks such as Asynchronous Transfer Mode, future communication environ

ments are expected to comprise of a mix of networks with widely varying characteristics

[CT90, Par90, Par93]. Therefore, future communication protocols not only have to sup

port a wide range of networks but also a wide variety of applications that will transfer

multimedia data (e.g. voice, video, graphics, text) and will have different access pat

terns such as interactive, bulk transfer, and real-time guarantees. Widely varying data

characteristics mixed with various access patterns will require wide range of Qualities of

Service(QoS) that are not addressed by current protocol architectures. Researchers have

taken different directions to meet these requirements1:

• Analyze the shortcomings of current protocols and extend them for future network

requirements [Cal92, CSBH91, Dee92, Fra93, JBB92].
xThe following choices are not mutually exclusive. The references given are by no means exhaustive.

6

Chapter 2. Related Work and Thesis Proposal 7

• Re-examine the overheads in the current protocol implementations [BOP94, CJRS89,

Jac88, Jac90, KP93a, KP93b, MG94, PP93, PDP93, WVT93], and adapt them for

higher performance in the future high-speed network environments [BB92, BOP94,

Jac88, Jac90, KP93b, NGB+91] .

• Develop new light-weight protocols which can guarantee high throughput, low jitter

and low latency [Che86, Che88, CLZ87, Fel93, PS93, Top90].

• Implement transport protocols in dedicated hardware [AABYB89, Che88, CSSZ90,

KC88, NIG +93] or implement some protocol functionality in hardware [BPP92,

DWB+93, TS91].

• Propose parallel protocol architectures [BG93, Dov90, GKWW89, GNI92, JSB90,

WF89, Zit89].

• Propose new techniques for the implementation of protocol stacks such as Integrated

Layer Processing(ILP) [CT90], Application Level Framing [CT90], Application-

oriented Light-weight Transport Protocols(ALTP) [PT89], Flexible Protocol Stack

[Tsc91] and Non-Monolithic Protocol Architecture [JHC94a, MRA87, MB92, MB93,

TNML93].

Traditionally, there has been little coordination between the design of the host op

erating systems and design of communication subsystem, thereby resulting in poor per

formance of the communication subsystem. The major sources of overhead that lead

to the poor performance of communication subsystem are identified as multiple data

copying, poor management of timers, buffers, interprocess communication, interrupts,

context switches, and scheduling. A lot of effort is now being expended in the direction

of coordinated design of network interfaces, structuring the protocol implementations

Chapter 2. Related Work and Thesis Proposal 8

and designing suitable operating systems primitives to minimize the host's overhead for

communication subsystems.

In this thesis, we concentrate on new protocol architectures for future gigabit network

ing environments. For this purpose, we first analyze the traditional protocol architectures

and identify their drawbacks, and then propose new protocol architectures which can po

tentially avoid these drawbacks. We believe that it will take several years before new

protocols become acceptable for commercial use, and even if they gain acceptance, tra

ditional protocols will remain in use for several years (potentially forever in some parts

of the globe). Hence, it is necessary to adapt traditional protocols to run in the future

networking environment.

2.1 Requirements for High-Performance P ro toco l Processing

Clark, Tennenhouse and Feldmeier [CT90, Fel90, Ten89] have analyzed traditional proto

col architectures and identified their key idiosyncrasies that present bottlenecks to future

high-speed network environments. This section discusses the shortcomings of traditional

protocol structures in the context of the following key requirements for future network

environments.

2.1.1 P r o v i d i n g W i d e Range of Qua l i ty of Service to Appl ica t ions

Next generation multi-media applications will require a variety of services from communi

cation protocols, such as real-time guarantees and bulk data transfer. We expect that in

systems supporting these applications, both time sensitive and time insensitive data will

compete for shared system resources. A proper sharing strategy is essential to provide

performance guarantees while maintaining high system throughput and efficiency. A T M

networks guarantee QoS negotiated on an application specific basis. However, this is not

Chapter 2. Related Work and Thesis Proposal 9

generally true for higher layer protocols that are executed in the host operating systems

and account for a large part of the protocol processing overhead.

To provide different QoS to different applications requires that each application be

treated according to its individual needs at all resource sharing points. This purpose,

however, is defeated by the logical multiplexing that occurs at several layers in a tradi

tional protocol stack. By logical multiplexing, we refer to the mapping of multiple streams

of layer n into a single stream at layer n — 1. The problems with layered multiplexing

can be summarized as follows [Fel90, Ten89]:

• Loss of individual QoS parameters of multiple higher layers at the lower layer.

Streams with different QoS are multiplexed into a single lower layer stream. As a

result, all upper layer streams are treated identically at the lower layer.

• Layered logical multiplexing complicates protocols and their implementations. Sim

ilar header fields found at multiple layers may result in reduced throughput.

• Multiple context state retrieval as a result of demultiplexing at several layers is

slower than a single but larger context state retrieval.

• Flow control functionality is duplicated at multiple layers.

• In the context of multithreaded and parallel processors, layered multiplexing causes

control data to be shared and hence, restricts the degree of parallelism.

From the discussion in the previous paragraph, the following conclusions can be made:

• Multiplexing/demultiplexing should be done in a single layer and in the lowest pos

sible layer. The demultiplexing at a single layer needs to determine the application

identity and hence, there should be a one to one correspondence between the de

multiplexing key contained in the header and the application to which the packet

is destined.

Chapter 2. Related Work and Thesis Proposal 10

• QoS information should be processed and acted upon as early as possible after the

demultiplexing point. This implies that QoS information should be contained in

the same layer header which contains the demultiplexing information.

We propose an architecture called Direct Application Association which addresses

the issues raised above.

2.1.2 Integrated Layer Processing

Traditionally, network protocols are implemented in a layered fashion. International Stan

dard Organization (ISO), has proposed a seven-layer model. The advantage of layering is

that it provides modularity and hides details of one protocol layer from the other layers.

The drawback is poor performance because of the sequential processing of each data unit

as it passes through the protocol layers2. Furthermore, multiple layers may perform data

manipulation on the data unit. The data manipulation functions are those which read

and modify data. Examples of these functions include encryption, compression, error

detection/correction, and presentation conversion3 [CT90]. The data manipulation func

tions suffer from serious performance problems on modern processors because they cause

high traffic over the CPU/memory bus in the presense of cache misses. In a traditional

protocol implementation, data manipulation operations are performed independently of

one another because of layering. Thus, the cache performance is seriously affected as the

cache may be invalidated when going from one layer to another.

Data manipulation functions of different protocol layers are similar and hence, can

be performed in an integrated fashion so as to get maximum benefit from the cache.
2The layers can be arranged in a pipeline to increase the performance. This purpose, however, is

defeated because pipelining requires buffers and has overhead of synchronizing activities in adjacent
layers.

Presentation Conversion refers to the reformatting of data into a common or external data repre
sentation such as Sun XDR [Inc87] or ASN.l [fSIPSOSI87].

Chapter 2. Related Work and Thesis Proposal 11

This approach is termed Integrated Layer Processing (ILP) [CT90]. The ILP approach

restructures the data manipulation operations so that most of the time, data is found

either in the cache or in the processor registers so that there is minimum data transfer over

the CPU/memory bus. Thus, n read and n write operations which would have resulted

in 2n external memory operations, require only 2 external memory operations in the

ILP approach. In an ILP approach, a protocol stack is still arranged in a logical layered

fashion while its implementation does not follow strict layering. The ILP is an engineering

principle which should be applied to the implementations only when performance gains

can be achieved.

Abbot and Peterson [AP93] propose an ILP scheme in the context of the rc-kernel.

They arrange the data manipulation steps of the various protocols into a pipeline. Data

is loaded into the pipeline word by word, and the data manipulation functions of the

various layers are performed on the data while it remains in the registers, with the data

finally being stored back in the memory when processing is complete. So, data is read and

written over the memory bus only once instead of being read and written once for each

function at each layer. They report substantial performance gains for data manipulation

operations by employing the ILP technique [AP93]. The main problem with integrating

the data manipulation functions of different protocol layers is that different layers may

have different views of what constitutes data in a packet. A higher layer protocol header

is typically considered as data by a lower layer protocol. For example, the IP layer views

the T C P header as data. This complicates the integration. One solution is to integrate

only that part of the message that each layer regards as data. This solution requires

that the data and header boundary be known to each layer. For outgoing packets, this

boundary is already known and hence, integration can be handled easily. For incoming

packets, the data and header boundary can be located only after the demultiplexing

operation has been performed at each layer in the protocol stack. Thus, it is difficult to

Chapter 2. Related Work and Thesis Proposal 12

achieve ILP for incoming packets. The packet filter [MRA87] has been suggested as a

tool to peek into the headers and locate the header-data boundary before the packet is

processed. However, this solution is inefficient for the following reasons:

• It duplicates protocol demultiplexing: once during packet filtering and once again

during the packet processing at each layer.

• Except for locating header-data boundary, it does not really provide any additional

support for easing the design of Integrated Layer Processing because demultiplexing

is still performed at multiple protocol layers, thereby hindering ILP.

This thesis proposes an efficient protocol architecture called Integrated Layered Logical

Multiplexing which overcomes these drawbacks.

2.1.3 A p p l i c a t i o n Level F raming

Clark and Tennenhouse [CT90] have argued that on modern processors, presentation

conversion may seriously affect the performance of protocol processing. The important

aspect of presentation conversion, in general, is that it is performed in the context of the

application. A typical example [CT90] is Remote Procedure Call (RPC) [BN84]. In an

R P C call, transferred data represents the arguments and results of the remote execution

of a procedure and are interpreted by the application. So, the presentation conversion

should also be dictated by the application for the best performance.

Another problem in supporting real-time applications is that of lost and mis-ordered

data [CT90]. In present protocol implementations (e.g. TCP-IP) , data loss and misorder-

ing blocks the application. Hence, presentation conversion also stops. This also presents

a bottleneck to the integration of data manipulation functions starting from protocol

layers up to the application. For example, applications delivering video and voice data

Chapter 2. Related Work and Thesis Proposal 13

can tolerate some loss of data and hence, can process misordered data if they can be

informed. In a traditional protocol such as T C P , this cannot be achieved because T C P is

based on a byte stream. The byte stream is meaningless for the application because the

presentation layer between T C P and the application reformats the data. An alternative

option is to have the application, and not the transport protocol layer, retransmit the

lost data.

From the above discussion, it can be concluded that for future network environments,

data units should be application specific and not protocol layer specific and protocol

layers should respect the boundaries of these data units. These data units become the

basic units of data manipulation and error recovery. This design principle is called Appli

cation Level Framing (ALF) [CT90] and the data units are termed as Application Data

Units (ADU). Application level framing is protocol stack specific and requires that some

functionality, such as recovery from lost or misordered packets which was traditionally

part of the protocol layers, be shifted to the application layer. In the traditional proto

col architecture, it is very difficult to meet the goal of application level framing [CT90].

It is simpler to implement application level framing in user-level protocol architecture

[JHC94a, MRA87, MB92, MB93, TNML93]. In user-level protocol architecture, complete

or parts of protocol stacks are linked to the application as user-level library and hence,

application has better control on the protocol processing than that available in kernel

based protocol implementations.

2.1.4 Getting Bits Faster to Applications

Multimedia applications requiring real-time guarantees must receive data from the net

work as soon as it arrives. These applications also need to be informed of the lost or

misordered data as quickly as possible. Monolithic implementations have difficulty sup

porting these applications because packets are processed in the kernel thereby delaying

Chapter 2. Related Work and Thesis Proposal 14

the delivery of data contained in the packets to applications. In user level protocol im

plementations, the kernel simply determines the application to which a packet belongs

and sends the packet to the application. The packet processing is performed in the appli

cation. Hence, user level protocol processing provides the fastest way to deliver packets

to applications. In user level protocol implementations, an application also has more

control on packet processing as required by multimedia applications.

2.1.5 Parallelization of Protocol Stacks

One of the main reasons of slower protocol processing on modern machines is more than

one order of magnitude difference between processor speed and memory speed. How does

the processor keep packet processing up with the network speed? A common solution

is to allocate a number of processors to process network packets and hence, parallelize

protocol stacks.

Parallel Protocol Models

Several models for parallel implementation of protocols have been proposed in the past

[BG93, Dov90, GKWW89, GNI92, JSB90, WF89, Zit89]. A l l these models were con

cerned with the parallelization of monolithic protocol stacks and have had little success.

The primary hindrance to parallelization comes from the fact that protocol processing

is layered and hence, serialized. In this section, we briefly describe these models4. In

Section 2.3.3, we show that Non-Monolithic protocol implementations are more paralleliz-

able than the traditional monolithic implementations and therefore, are architecturally

superior to traditional monolithic ones.

4They have also been summarized in [BG93] and [GNI92].

Chapter 2. Related Work and Thesis Proposal 15

Processor per Protocol

In the processor per protocol scheme, one or more processors are dedicated to each

protocol and the protocol stack is essentially a pipeline of processors. The packets move

from processor to processor in the pipeline in both directions. Each processor performs

protocol specific processing of packets and send them down or up the pipeline. To

reduce the interference between incoming and outgoing packets, separate unidirectional

processor pipelines can be used to form a bidirectional pipeline. However, the protocol

state still needs to be shared among multiple processors.

This scheme has the advantages and disadvantages of standard pipeline processing.

The main advantage is that this scheme fits well with the protocol layering approach. It

is natural to implement each layer on a separate processor and therefore not to share the

protocol state with processors dedicated to other protocol layers. The number of packets

processed in parallel could be as high as the number of stages in the pipeline.

The main disadvantage of processor per protocol scheme is that the pipeline perfor

mance is determined by the slowest segment in the pipeline. The slowest segment can

be subdivided into multiple segments to increase its performance but it may make the

implementation complex and introduce the overhead of synchronization between bound

aries if such divisions do not fall on natural boundaries. Another main drawback of the

scheme is that communication between the processors is required at each boundary. If

the number of processors are less than the number of layers, extra context switches for

each packet may seriously degrade the performance. Also, each packet is processed by a

different processors at different layer, so the packet will seldom be found in a processor's

cache, thereby reducing the performance. On fast processors, overhead of context switch

and cache miss is so high that it is difficult to justify using this model for supporting

high-speed networks.

Chapter 2. Related Work and Thesis Proposal 16

Processor per Connection

In the processor per connection scheme, each connection is assigned one processor imply

ing that there is no parallelism within a connection. However, packets related to multiple

connections may be processed in parallel on different processors. Synchronization is re

quired for resources that are shared by more than one connection. A l l packets belonging

to the same connections are processed serially and hence, no synchronization is required

within the data structures that are local to a connection. The main advantage of this

approach is that each packet is processed by a single processor and connection state is

not shared among processors. The main disadvantages of this scheme are as follows:

• In traditional protocol stacks which follow the Layered Logical Multiplexing model,

several upper protocol layer's connections may be multiplexed over a single lower

protocol layer's connection. In this case, all such connections are serviced by a

single processor, thereby drastically restricting the available parallelism.

• Applications which open a small number of heavily used connections do not benefit

from this model even though a large volume of data may be transmitted back and

forth.

Processor per Function

In the processor per function approach, one processor is dedicated for a specific function

within a protocol or a specific function common to more than one protocol. This scheme

takes parallelism to the extreme of fine grain parallelism. The main advantage of this

approach is that it can exploit the maximum available parallelism. The main drawback

of this scheme is that the overhead of fine grain synchronization and extra communica

tion among the processors may dominate the processing cost, thereby resulting in poor

performance.

Chapter 2. Related Work and Thesis Proposal 17

Figure 2.1: Layered Logical Multiplexing Protocol Architecture

Processor per Packet

The most promising approach is to assign one processor per packet. Each processor

shepherds the packet through the complete protocol stack. This scheme minimizes the

context switches and maximizes the cache hits resulting in better performance. There

is no extra communication overhead between adjacent layers. Synchronization is still

required for the parallel processing of packets. We adopted this approach for all our

protocol implementations.

2.2 Tradi t iona l P ro toco l Archi tectures

2.2.1 Layered Logica l M u l t i p l e x i n g (L L M) P ro toco l Arch i tec ture

In traditional protocol architectures, multiplexing and demultiplexing operations are

performed at multiple protocol layers. Such protocol architectures can be termed as

Layered Logical Multiplexing architectures. Figure 2.1 depicts the behavior of a L L M

model. Multiple streams (or sessions) of layer n are mapped to one stream (or session)

at layer n — 1. As discussed in Section 2.1, this architecture has difficulty supporting

Chapter 2. Related Work and Thesis Proposal 18

application specific QoS and implementing protocol stack in an ILP fashion.

2.3 Al te rna t ive P ro toco l Archi tectures

In this section, we describe the alternative protocol architectures proposed in this thesis

for future gigabit networking environments.

2.3.1 Di rec t A p p l i c a t i o n Associa t ion (D A A) P ro toco l Arch i tec ture

It has been argued by Tennenhouse [Ten89] and Feldmeier [Fel90] that logical multiplex

ing/demultiplexing at multiple layers in the protocol stack significantly reduces through

put and therefore should be performed only in a single layer in the protocol stack. For

user level protocol implementations, the simplest and most efficient approach would be

to have an application identifier enclosed in the M A C layer header. The device driver can

interpret the application identifier and have the packet routed directly to the application.

As its name suggests, in the D A A protocol architecture, an application specific identi

fier is encoded in the header of the lowest protocol layer to achieve a single demultiplexing

point at the lowest protocol layer in the stack. In A T M networks, a Virtual Connection

Identifier and Virtual Path Identifier pair can be associated with an application to im

plement protocols in a D A A fashion. Traditional networks do not provide such support

and require incompatible extensions.

Figure 2.2 shows a D A A protocol architecture. In the D A A protocol architecture,

demultiplexing is performed only once at the lowest protocol layer which identifies the

application that is to receive each incoming packet. An analytical study of D A A and L L M

models [Zhu92] shows that the L L M model has inherent performance bottlenecks and that

the D A A model is superior to the L L M model: These results are in agreement with the

arguments given by Tennenhouse [Ten89] and Feldmeier [Fel90]. Other advantages of

Chapter 2. Related Work and Thesis Proposal 19

Figure 2.2: Direct Application Association Protocol Architecture

having a one-to-one correspondence between applications and demultiplexing keys are as

follows:

• Extra data copies can be eliminated because the network device can directly copy

the data in the recipient application's buffer.

• The system can check whether the recipient application has sufficient resources to

receive the packet as early as possible. This is very difficult to do in a L L M protocol

stack [Pet94].

• For applications requiring real-time guarantees or other kinds of QoS, system re

sources can be allocated appropriately to the packet so that the packet can meet

its QoS.

Chapter 2. Related Work and Thesis Proposal 20

State-Change
Phase

Demultiplexing
Phase

Figure 2.3: Integrated Layered Logical Multiplexing Protocol Architecture

• In high-performance multimedia systems, the destination could be an I/O device

such as a frame buffer or a video decompression board. In the D A A scheme, the

data can be routed directly to the I/O device without processor involvement.

We design a framework for implementing a D A A architecture stack in the context

of the z-kernel [JHC94b]. We also implement an example D A A architecture protocol

stack by extending the Ethernet header to enclose an application identifier and a QoS

information field. These extensions are described in Section 4.2.

2.3.2 Integrated Layered Logical Multiplexing (ILLM) Protocol Architec

ture

In the I L L M architecture, packet demultiplexing which is normally performed at

different protocol layers, is decoupled from these protocols and is performed successively

Chapter 2. Related Work and Thesis Proposal 21

in an integrated fashion. When the final destination session5 has been determined, the

protocol specific state change processing is then performed in succession on the protocol

layers' sessions as shown in Figure 2.3.

Figure 2.3 distinguishes the sessions at different layers with different shades. In the

I L L M architecture, the processing of received packets can be divided into two phases:

a demultiplexing phase and a state-change phase. The demultiplexing phase identifies a

list of sessions of different protocol layers that the network packet will be visiting. The

state-change phase operates on the sessions identified by the demultiplexing phase to

update the state of connection represented by these sessions. This architecture achieves

the ideally expected behavior (i.e. single demultiplexing point in the complete protocol

stack) proposed by Feldmeier [Fel90] and Tennenhouse [Ten89] while still maintaining

compatibility with existing protocols.

We observe the following advantages of the I L L M architecture: the demultiplexing

operations of multiple protocol layers are decoupled from the rest of the protocol process

ing. This avoids the drawback of the traditional L L M architecture [Fel90, Ten89] where

demultiplexing is performed at multiple layers intermixed with protocol state-change op

erations. As pointed out in Section 2.1.2, this intermixing hinders ILP because data

manipulation functions (which need to be integrated) are part of protocol state-change

processing. The I L L M architecture also solves another major problem of ILP optimiza

tion for traditional protocol architectures - determining the boundary between headers

and data in network packets. As discussed in Section 2.1.2, we need to know the bound

ary between headers and data as early as possible. For outgoing packets, this boundary is

already known. For incoming packets, it is difficult to locate this boundary immediately

after the packet is received. Again, this is because in the L L M architecture, state-change

operations are sandwiched between demultiplexing operations. A simple but inefficient
5In the sense as used in the z-kernel denned in Section 4.

Chapter 2. Related Work and Thesis Proposal 22

solution suggested by Abott and Peterson [AP93] is to use a Packet Filter [MRA87] be

fore the beginning of protocol processing of the received network packet. The Packet

Filter technology essentially performs the protocol demultiplexing operation and hence,

in this solution, demultiplexing is performed twice: once to locate the boundary between

headers and data and then, to locate the sessions of the different protocol layers. In the

I L L M approach, demultiplexing is performed only once. Another interesting advantage

of the I L L M architecture is that it allows easy integration of data manipulation functions

of different protocol layers during the state-change phase and therefore, eases ILP. The

I L L M model achieves all the advantages of a D A A architecture described in Section 2.3.1.

2.3.3 N o n - M o n o l i t h i c P ro toco l Archi tec ture

Traditionally, protocols have been structured in a monolithic fashion with the protocol

stack implemented either in the operating systems kernel or in a single trusted user-level

server. In a Non-Monolithic protocol architecture, each application is linked with its own

private copy of the protocol stack. This implies that protocols are implemented as a user-

level library. However, a number of issues must be resolved before these implementations

can be made truly functional.

There have been a number of previous attempts to implement protocol stacks at user

level [MB92, MB93, TNML93, MRA87] but these implementations were ad hoc. We

propose a new approach to implement Non-Monolithic protocol architecture. In this

section, we describe the advantages of user-level protocol architectures, previous user-

level protocol implementations and their drawbacks. Finally, we propose an efficient,

structured, modular, and general framework for the implementation of Non-Monolithic

protocol architectures [JHC94a] in the context of the z-kernel.

Two previous efforts to split the implementation of communication protocols between

the kernel and user space are described by Maeda and Bershad [MB93] and Thekkath

Chapter 2. Related Work and Thesis Proposal 23

et al [TNML93]. They point out the main advantages and motivation for the user-level

implementation of protocols. These advantages can be summarized as follows:

• The protocol code is decoupled from the kernel and hence can be easily modified

and customized on an application specific basis.

• During the protocol development phase, it is easy to debug and experiment with

new protocols.

We observe the following additional advantages:

• Reduced contention because each user has its own protocol stack. This implies that

multiple instances of the protocol need not share global state.

• Increased parallelism since user level implementations can exploit the parallelism

provided by the new generation of multithreaded environments and parallel ma

chines due to the smaller number of synchronization points in the shared protocol

state.

• For the new generation of applications that deal with video and audio data, it is

important to get the data to the applications as fast as possible after the data is

received from the network. Getting bits faster to the desktop is no longer sufficient.

• Implementation of application level framing [CT90] architecture is possible in Non-

Monolithic protocol architectures. Clark and Tennenhouse found that the imple

mentation of application level framing is extremely difficult, if not impossible, in

the traditional monolithic protocol architectures [CT90].

• Performing only demultiplexing operations in the kernel integrates the demultiplex

ing operation of different protocol layers into a single "one-shot" operation while

maintaining compatibility with existing protocols.

Chapter 2. Related Work and Thesis Proposal 24

Previous User-Level Protocol Implementations

In previous user-level protocol implementations6 [MB93, MRA87], a Packet Filter in

stalled in the kernel demultiplexes the packets to the correct recipient address space.

Examples include the CMU/Stanford Packet Filter (CSPF) [MRA87], the BSD Packet

Filter (BPF) [MJ93], and the Mach Packet Filter (MPF) [YBMM94]. Advancements in

packet filter technology have improved both the functionality and performance of packet

filters to the point that user level protocol implementations can now be constructed that

achieve better performance than previous kernel-level implementations [MB93]. However,

we observe that the packet filter technology [MJ93, MRA87, YBMM94] has a number of

limitations:

• Packet filters are based on interpreted languages. The interpreted-language ap

proach provides excellent support for the run-time installation of the packet filter.

However, demultiplexing of network packets (i.e. packet filtering) is also inter

preted. The experience of the programming language community argues that in

terpreted languages are often an order of magnitude slower than compiled ones

[Pit87].

• Interpretation of some header fields is done twice: once during packet filtering and

once again in the application to locate the correct session (e.g. protocol control

block).

• Packet filters suffer from a lack of modularity in that each packet filter must specify

every protocol in the path between the network device and the user. For example,

while the transport protocol (UDP [Pos80] or T C P [Pos81c]) installs the packet

6 In [TNML93] implementation, an application identifier is encoded in the link-level header in the case
of AN1 network[SBB+91] for demultiplexing. It is not clear how the demultiplexing is performed in the
case of Ethernet network.

Chapter 2. Related Work and Thesis Proposal 25

filter, that packet filter depends on the network protocol that will eventually deliver

the data, thus losing the modularity advantage of IP [Pos81b] which is supposed

to shield high level protocols from network protocol details.

• Packet filters are not general enough to deal elegantly with the idiosyncrasies of

current communication protocols. As an example, consider the IP [Pos81b] proto

col. It is difficult for a packet filter to handle the reassembly of IP fragments, IP

forwarding, broadcasting, IP multicasting and IP tunneling7. Of all the packet fil

ter implementations reported in literature, only the Mach Packet Filter [YBMM94]

provides a solution to IP reassembly, and we believe that not even packet filter

proponents can argue with conviction that the solution is elegant. With the packet

filter approach, IP forwarding and IP tunneling are currently supported by running

user-level servers which incur additional performance costs in the form of extra con

text switches and additional packet data copying. We believe that these operations

can be performed much more efficiently in the kernel and that a general protocol

architecture should support such an implementation.

• It is difficult for a packet filter to act on protocol specific real-time information

that may be either encoded in network packets or negotiated for particular network

connections.

Proponents of packet filter technology argue that the performance problems of packet

filters can be addressed by good engineering and that making the packet filter do more

(like handling IP fragments) is as easy as adding a few new instructions [YBMM94].

In many ways, the recent changes to the packet filter amount to a way of creating a

kernel resident protocol entity complete with support for multiple connections and even

7Tunneling implies that a complex network with its own protocols is treated like any other hardware
delivery system.

Chapter 2. Related Work and Thesis Proposal 2 6

connection specific state. Our solution takes these trends to their logical conclusion:

what is really wanted is the ability to embed in the kernel a small fragment of the

functionality of the communication protocol. Our Non-Monolithic protocol architecture

achieves exactly that.

Proposed Framework for Non-Monolithic Protocol Architecture

While recent advances in packet filter technology have addressed their performance prob

lems, they have not provided any additional structure or architectural support for proto

col implementors. What was once an unstructured kernel level protocol implementation

becomes, with the addition of a packet filter, an unstructured user level protocol imple

mentation. Our architecture takes a different approach to the problem of kernel level

demultiplexing of network packets. It is based on the z-kernel, a widely used protocol

framework for single address space protocol implementations, extending it to allow the

implementation of each protocol to be separated into a kernel resident component and a

user library component. The architecture requires that the kernel component provide at

least the efficient demultiplexing of incoming network packets. Additional functionality

can be incorporated in the kernel component as necessary on a protocol by protocol basis.

Our framework provides the following functionality [JHC94a]:

• Protocols are implemented as user-level libraries.

• There is a fast track in the kernel to route packets to the appropriate user space.

The overhead remains constant as the number of protocols in user space increases.

• The framework deals with idiosyncrasies of different protocols in a flexible way.

The user can decide what protocol functionality to configure in user space and in

the kernel. However, the design goal would be to place as much functionality as

possible in the user's address space.

Chapter 2. Related Work and Thesis Proposal 27

Application 1 Application n

State Changes

Kernel Space

Demultiplexing

Figure 2.4: Non-Monolithic Protocol Architecture

• In the extreme, it is possible to configure the same protocol in the kernel for one

application and in user space for another application.

Our Non-Monolithic protocol framework can be characterized as the logical conclu

sion of current trends in packet filter technology as more and more support for the

idiosyncrasies of particular protocols make their way into the instruction set of packet

filters.

Figure 2.4 depicts the proposed Non-Monolithic protocol architecture whereby kernel

performs at least the demultiplexing of incoming network packets and the rest of the

protocol processing is performed in appropriate applications.

Chapter 2. Related Work and Thesis Proposal 28

Parallelization of Non-Monolithic Protocol Architecture

Bjorkman et al. [BG93] report an analysis and performance of the most widely used

protocol stack, T C P / I P , on a multiprocessor machine. They report that T C P has so

much shared state that it does not scale well beyond three processors. In the Non-

Monolithic protocol architecture, each application has its own copy of the protocol stack.

For instance, in a T C P implementation for Non-Monolithic protocol architecture, each

application has a separate T C P protocol state which is not shared with any other appli

cations' T C P protocol state. Therefore, different user level instances of the T C P protocol

can be executed in parallel on different processors without any synchronization among

them. Hence, Non-Monolithic protocol architectures provide virtually unlimited paral

lelism in case of a large number of applications. If an application opens a number of

T C P connections, it can create a new T C P protocol instance for each connection so as

to get maximum benefit of available parallelism. On the other hand, parallelism may

be limited in the kernel level demultiplexing. Although demultiplexing is a read-only

operation, kernel sessions corresponding to user connections may be created or destroyed

asynchronously. Hence, for consistent demultiplexing, kernel level sessions must be locked

during kernel level demultiplexing. In a simple approach, read and write locks can be

used for this purpose. Two or more applications can hold read-read locks simultaneously

while read-write and write-write locks are mutually exclusive. This locking scheme will

result in a fairly good performance if the kernel level sessions are not created and de

stroyed rapidly. An alternative to read-write locks is to use wait-free synchronization

[Her91, Her90, MCS91] and data structures known as lock-free objects [Ber91, MP91].

With these data structures it is possible to totally parallelize the kernel level demulti

plexing.

Chapter 2. Related Work and Thesis Proposal 29

From the above discussion, it can be inferred that the Non-Monolithic protocol archi

tecture is highly scalable with the number of processors and the theoretically best (i.e.

linear) speedups can be obtained. There is no inherent limitation to parallelization of

protocol stacks implemented in Non-Monolithic fashion. The Non-Monolithic protocol

architecture is independent of the protocol complexity and shared state. Although any

of the parallelization models for protocols described before could be applied to Non-

Monolithic protocol stack implementations, the processor per packet model suits best.

We use this model for our implementation.

Chapter 3

The Para l le l z-kernel

This chapter first presents an overview of the z-kernel, which is essential in understanding

the rest of this thesis. It then describes the scheme used to parallelize the z-kernel for a

shared memory multiprocessor machine.

3.1 The z-kernel Overview

The z-kernel [HP88, HP91] is a protocol implementation architecture that defines protocol

independent abstractions thereby facilitating efficient implementation of communication

protocols. The z-kernel provides three primitive communication objects: protocols, ses

sions, and messages. Each protocol object corresponds to a communication protocol such

as IP [Pos81b], T C P [Pos81c], or U D P [Pos80]. A session object represents the local state

of a network connection within a protocol and is dynamically created by the protocol

object. Message objects contain the user data and protocol headers and visit a sequence

of protocol and session objects as they move through the z-kernel.

The z-kernel maintains a protocol graph that represents the static relationship between

protocols. Each protocol implements a set of methods which provide services to both

upper and lower layer protocols via a set of generic function calls provided by the Uniform

Protocol Inter face (VPI). With the UPI interface, protocols do not need to be aware of

the details of protocols above or below them in the protocol graph. By using a dynamic

protocol graph, the binding of protocols into hierarchies is deferred until link time. In

the z-kernel, user processes are also treated as protocols. Hence, the x-kernel provides

30

Chapter 3. The Parallel x-kernel 31

anchor protocols at the top and bottom of the protocol hierarchy. The anchor protocols

are used to define the application interface and the device driver interface. The anchor

protocols allow easy integration of the z-kernel into any host environment.

3.1.1 The z-kernel Support Tools

The z-kernel provides a set of support tools [HMPT89, HP91] to implement protocols

efficiently and quickly. These tools consist of a set of routines that are commonly used

to implement protocols. The most commonly used tools are as follows:

• Map Manager: The Map Manager provides a set of routines to translate an

external identifier1 extracted from the protocol headers (such as address and port

numbers) to the internal identifier (e.g. receiver of the packet i.e. a session) within

the protocol. The map manager consists of a set of hash tables (called maps)

and functions to add, remove, and map bindings between external and internal

identifiers. The maps cache the last key that was looked up.

• Message Manager: The Message Manager provides a message abstraction to

packets and provides a common set of operations on messages so that protocols can

add headers and trailers to the messages, strip headers and trailer from messages,

and fragment and reassemble the packets.

• Process Manager: The Process Manager provides a set of thread management,

semaphore synchronization, and spin locks routines in a system independent man

ner. This tool facilitates easy portability of the x-kernel to different environment.

• Event Manager: The Event Manager provides the ability to schedule various

events asynchronously in the future. The event manager is used for scheduling
1Also referred to as key.

Chapter 3. The Parallel x-kernel 32

procedures for execution after a specified amount of time. A good example of

this, in the context of communication protocols, is a timeout event. By registering

a procedure with the event manager, protocols are able to implement timeout

events to retransmit unacknowledged messages or to perform periodic maintenance

functions such as collection of unused sessions.

3.1.2 Operations on Protocol Objects

The two main functions of protocol objects are management of session objects and de

multiplexing of received messages to the appropriate session objects.

Protocol objects support three operations to create session objects: open, open-enable,

and open-done. A high level protocol creates a session object in a lower layer protocol by

invoking the open routine of a lower protocol. Alternatively, a high level protocol can pass

a capability to a lower level protocol for passive creation of a session at a future time

by invoking the open-enable routine of the lower protocol. The open-enable operation

creates an enable object to store the capability passed by the upper layer protocol. On

receipt of a message from the network, the lower layer protocol creates a session and

signals the creation of a session by invoking the upper layer protocol's open-done routine.

The above three routines take a participant-list as one of their arguments. The partic

ipant-list is a name for some participant in a communication and consists of a sequence

of protocol specific external identifiers such as port numbers, protocol numbers, or type

fields used by the protocols to identify the message recipient session or enable objects.

The mapping between external identifiers and internal identifiers (which are capabili

ties for session objects or enable objects) is maintained in the active and passive maps

maintained by each protocol.

In addition to managing sessions, the protocol object also demultiplexes incoming

messages to the appropriate sessions. This is accomplished by a routine called demux

Chapter 3. The Parallel x-kernel 33

which extracts certain fields from the header part of the message (e.g. source and des

tination port numbers) and constructs an external identifier to search through the two

types of maps. The active maps are searched first. If a binding to a session is found in the

active map, the message is delivered to that session. If no session is found in the active

map and search in the passive map yields an enable object, a new session is created from

the enable object and the message is passed to the newly created session. The message

is dropped if search in both type of maps fails.

3.1.3 Operat ions on Session Objects

Sessions support two primary operations - push and pop. A protocol's push routine

appends the protocol header to the message and passes the message to a lower layer

session. A protocol pop routine updates the state of the connection represented by the

session and passes the message to an upper layer protocol.

3.2 Para l le l iza t ion of the x-kernel

The standard x-kernel's release from the University of Arizona is multiprocessor safe

but does not support multiprocessing in the x-kernel. This means that every thread of

execution that needs to enter the x-kernel must synchronize on a coarse grain lock called

MasterLock. When a thread blocks in the x-kernel (e.g. while waiting on a semaphore),

the thread must release the MasterLock lock before blocking. This scheme does not allow

multiple threads execution in the x-kernel simultaneously and hence, restricts parallelism.

To enable multiple threads of execution in the x-kernel, a fine grain locking scheme is

required.

A fine grain locking scheme must take special care to avoid deadlocks because in

communication systems, multiple messages travel in upward and downward directions

Chapter 3. The Parallel x-kernel 34

at any given time. Hence, multiple threads executing in different directions through the

protocol layers may lead to cyclic waiting for locks and end up in a deadlock [Hut92].

Another requirement of the fine grain locking scheme is to make the job of protocol

writers as easy as possible from the locking point of view.

An ideal fine grain locking scheme would make locking transparent to the protocol

writer by handling locking in the x-kernel U P I library. This scheme would make locking

totally transparent to the protocol writer. Designing an ideal locking scheme has been

shown to be a difficult goal to achieve [BG93, Hut92]. On the other hand, the simplest

locking scheme would be to perform all the locking in the protocol code. This implies

that the protocol writer must do all the locking explicitly and must know the internals

of the x-kernel. This approach is also not viable because it expects too much from the

protocol writer and makes the implementation error prone. Besides, this approach may

result in poor performance of the complex x-kernel operations.

An intermediate approach, whereby the x-kernel protects its own data structures and

the protocol writer protects protocol specific data structures by locking, seems most

appropriate. This thesis adopted such an intermediate approach for the multiprocessor

implementation of the x-kernel. Bjorkman [BG93] has also taken a similar approach to

parallelization of the x-kernel.

In an intermediate locking scheme, the parallelization of the x-kernel can be divided

into two main components: parallelization of the x-kernel itself and parallelization of

the protocols. This locking scheme avoids deadlocks. A n alternative scheme would be to

detect deadlocks and take corrective action to break deadlock situations. This alternative

scheme has been used in database systems but it is too expensive for performance critical

communication systems.

Chapter 3. The Parallel x-kernel 35

3.2.1 L o c k i n g Scheme in the x-kernel

The x-kernel tools are parallelized to support fine grain parallelism. The following rules

are used to avoid deadlock within the x-kernel:

• The x-kernel does not lock protocol data structures. Similarly, protocol code does

not lock the x-kernel data structures.

• The x-kernel does not hold locks on its own data structures while calling protocol

routines.

• If more than one lock need to be obtained in the x-kernel, a predefined order of

locking is followed to avoid deadlocks.

• Thread scheduling is made non-preemptive if a thread is holding a lock. This

support is provided by the Raven kernel. In the Raven kernel, a thread holding

a lock is never preempted. A l l interrupts are queued during the critical period

activity of the thread and processed when the thread releases the last lock. This

feature is specially useful to avoid deadlocks for asynchronous event handling.

The above rules guarantee that the x-kernel is deadlock free.

3.2.2 L o c k i n g Scheme in the Protocols

Assuming that the x-kernel is deadlock free, the protocol writer must ensure that the

following conditions hold for deadlock free operation of protocol processing:

• Protocol code does not lock the x-kernel data structures.

• If more than one lock is obtained in the protocol code, a predefined order of locking

that avoids deadlocks is followed.

Chapter 3. The Parallel x-kernel 36

• The protocol writer may have to invoke a x-kernel routine while holding one or more

protocol locks. In such situations, the protocol writer should know what protocol

routine may be called as a result of the call to a x-kernel routine and make sure

that circular waiting on locks does not occur.

3.3 Implementat ion Detai ls of the Para l le l x-kernel

This section gives the implementation details of the scheme that we adopted for paral

lelization of the x-kernel.

3.3.1 L o c k i n g in the x-kernel

The x-kernel's UPI library and other x-kernel tools require locking for supporting fine

grain parallelism. In the UPI library, the reference counts of XObj data structure are

protected by locks for consistency. The stack manipulations of the Part data structure

are protected by locks.

M a p Manager

The Map manager's hash table manipulations are protected by locks.

Message Manager

Because of the processor per message model, only reference count manipulations of the

Msg data structure are protected by locks.

Process Manager

The global lock (MasterLock) has been removed to enable fine grain parallelism in the

x-kernel. The process manager inherits most of the multiprocessor support from the

Chapter 3. The Parallel x-kernel 37

underlying Raven kernel's thread management, memory management, and semaphore

library for supporting the x-kernel's routines for thread, memory, and semaphores man

agement functions.

Event Manager

Event queues are protected by proper locking. Interrupts are disabled whenever a thread

manipulates the event queue2. This feature is required to avoid deadlock due to asyn

chronous events.

3.3.2 Locking in the Protocols

We implemented the UDP, T C P , IP, ICMP, A R P , V N E T , and Ethernet protocols for mul

tiprocessor environment. The fine grain locking in T C P is not completely implemented.

We deferred the analysis of T C P to support fine grain parallelism because previous re

sults have shown that T C P does not scale well on multiprocessors [BG93]. Furthermore,

by implementing the T C P / I P stack using the non-monolithic protocol architecture, par

allelization of a complex protocol like T C P can be avoided because a separate T C P / I P

protocol stack can be allocated for each T C P connection.

UDP

U D P is a simple protocol that does not have any shared state. The reference count

manipulations of session and enable objects are protected by locks. The U D P port

management data structures are protected by locks.
2This feature is supported by the Raven kernel. A thread never gets preempted if it is holding a lock.

The interrupts are queued and serviced when the thread releases all the locks.

Chapter 3. The Parallel x-kernel 3 8

I P

The reference count manipulations of IP session and enable objects are protected by

locks. The IP reassembly table which stores IP fragments is also protected by locks.

A R P

The A R P tables are protected by locks for consistency in multiprocessor environment.

Ethernet

The Ethernet layer in the x-kernel is divided into two parts. The top layer is the Ethernet

protocol and the bottom layer is the Ethernet driver called Simeth.

The reference count manipulations of the Ethernet session and enable objects are

protected by locks. The Simeth driver is linked to the Raven kernel's Ethernet controller

which provides fine grain locking for multiprocessors.

3.3.3 Support for Processor per Message

The multiprocessor version of the x-kernel supports the processor per message paradigm.

Each packet is assigned a processor and the processor shepherds the message through

the protocol stack. For performance reasons, a global pool of threads is maintained at

the uppermost protocol and at the lowermost protocol. Each thread in the thread-pool

is associated with its own semaphore. When a message is received from either a user or a

network device, a semaphore signal awakes a thread. The thread copies the message and

shepherds it through the protocol stack. A good example is thread-pool management at

Ethernet driver. When a receive interrupt of the Ethernet driver is received, the interrupt

handler routines awakens one of the threads waiting on the semaphore. When the thread

gets scheduled, it copies the received packet from the Ethernet driver buffer, converts it

Chapter 3. The Parallel x-kernel 39

to the x-kernel message object, and shepherds the message through the protocol stack.

When the message is delivered to the application, the thread goes back to sleep on the

semaphore again to wait for the arrival of another packet. The thread pool management

data structures are protected by locks.

In communication subsystems, a message may change its direction e.g. a T C P / U D P

message destined to another application on the same machine. In this case, the IP

protocol code detects that the message is destined for an application on the local machine

and sends the message up the protocol stack. In a naive implementation, a deadlock may

result if a thread is allowed to reverse its direction. In the x-kernel implementation, even

though a message may turn back, a thread never does. In such cases, a new thread is

created and the message is assigned to the new thread for shepherding the message in

the reverse direction.

The same convention, as used by the standard x-kernel to free message objects, is

employed in our implementation. In the standard x-kernel, a message object is destroyed

by the same entity that originally constructed it. For example, the Ethernet driver is

responsible for destroying messages after delivering them to upper protocol. Similarly,

the top layer protocols are responsible for destroying messages that have been sent out

to their destination.

Chapter 4

Design Overview

This chapter describes the design of the protocol architectures proposed in this thesis in

the context of the x-kernel. We first describe the design of the D A A protocol architecture,

followed by the design of the I L L M protocol architecture. We finally present the design

of a non-monolithic protocol architecture which allows protocol stack implementation as

user level libraries.

4.1 Design of a Framework for L L M Protocol Architecture

The standard x-kernel follows an L L M protocol architecture. We used standard T C P / U D P -

IP-Ethernet protocol stack implemented in the x-kernel and adapted it for our multi

processor environment. The locking scheme used is described in Chapter 3. Details

on standard TCP/UDP-IP-Ethernet stack implementation in the x-kernel are given by

Hutchinson and Peterson [HP88, HP91].

4.2 Design of a Framework for DAA Protocol Architecture

A number of changes are required in the x-kernel architecture to support a protocol inde

pendent framework for D A A stack. Our goal has been that these changes be transparent

to the protocol writer and compatible with the original x-kernel so that existing protocol

code need not be modified to run in the new x-kernel.

In a D A A protocol stack, demultiplexing is done only at a single layer and, thereafter,

40

Chapter 4. Design Overview 41

the received packet is simply passed to the appropriate sessions of different protocol layers

before being delivered to the application. This requires that the different layer sessions

belonging to the same connection be linked together in an upward direction. These

sessions also need to be linked downward for sending packets out efficiently. This leads

to the creation of a doubly linked session stack called a path. A path in the protocol

stack corresponds to a unique connection and contains one session from each protocol

layer that sits vertically above each other in the protocol hierarchy. We have extended

the x-kernel to support paths.

4.2.1 Path/Session Stacks

In the traditional x-kernel, different layer sessions corresponding to a connection are

linked downward by a pointer. However, there is no way to locate an upper layer session

from a lower layer session without going through the upper layer protocol object. We

provide a way to link the sessions in both directions with an additional pointer, ups, in

each session object.

Another requirement of the D A A architecture is to not share a lower layer session

among a number of upper layer sessions. Every session on a path should be physically

distinct. This requires that more than one session with the same attributes exist together

in a map of a protocol layer. In the traditional x-kernel, multiple sessions with the same

attributes cannot exist in a map. The sessions are stored in a map as internal identifiers.

The traditional map manager allows only one-to-one correspondence between external

identifier and internal identifiers. To support the new architecture, we need to modify

map management functions to support a one-to-many scheme. We modified the map

manager such that it allows more than one internal entry to be stored in the map having

same external identifier. While this scheme makes searching through the map difficult, we

do not need to search through the maps at every layer in the D A A protocol architecture

Chapter 4. Design Overview 42

as demultiplexing is performed only at the bottommost layer. However, we still need to

store sessions in the map for other purposes such as garbage collection, timeouts, etc.

Searching through the map is performed only at one layer in the D A A stack, so we only

need to guarantee that there is a one-to-one relationship between session and external

identifier in the map of that layer. We achieve this by including an Application Identifier

in the external identifier for search through the map. The application identifier must be

unique networkwide.

4.2.2 Networkwide Unique D e m u x K e y

The networkwide unique demux key is constructed by using the machine's physical ad

dress, a protocol identifier, and an application identifier. The protocol identifier is used to

support different protocol stacks (e.g., D A A stack comprising Ethernet and X.25). The

simplest way to provide systemwide unique application identifiers is that the application

identifier be assigned by a central authority. The protocol that perform the demultiplex

ing is the obvious choice for this functionality as it is the only protocol that interprets

this field. An application may prefer to have a particular application identifier assigned

to it so that it can be identified by remote applications with a known unique identifier.

This is particularly important for servers. The application identifier can be viewed as

equivalent to an IPC port identifier. In our scheme, an application can demand that

a particular application identifier be assigned to it in the open call. If the application

identifier is already in use, the open call returns an error. The user specified application

identifier is passed in the open call and propagated down the protocol stack.

4.2.3 Specifying QoS

QoS parameters can be of two types: application specific and packet specific. The packet

specific QoS service information must be contained in each packet. Examples of such

Chapter 4. Design Overview 43

Standard Ethernet Header

6 Bytes 6 Bytes 2 Bytes 2 Bytes 4 Bytes 4 Bytes

Eth Destination Eth Source Eth Ethdaa Application Priority/Deadline
Address Address type = type Identifier

ETHDAA

Figure 4.5: Format of Extended Ethernet Header

QoS information include protocol specific deadline and priority. Application specific QoS

parameters can be directly linked to the application and are not required to be included

in each packet.

For packet specific QoS, the QoS information must be enclosed in the lowest possible

protocol layer header. This requires a mechanism to pass QoS information from the

upper protocol layers to the bottommost layer. For this purpose, we exploit the notion

of message attributes provided by the x-kernel message library. We have implemented

a sample D A A architecture protocol stack consisting of the extended Ethernet, IP, and

U D P protocols.

4.2.4 Extended Ethernet Header

An extended Ethernet header is shown in Figure 4.5. Logically, we have added a new

protocol layer above the Ethernet protocol. However, the implementation is integrated

with the Ethernet layer so that it is more appropriately considered as an extension of the

Ethernet protocol. This new protocol is identified as ETHDAA in the eth type field of the

Ethernet header. The new protocol layer contains a 2-byte field ethdaa type to identify the

upper layer protocol. It may seem that demultiplexing is performed at two layers because

two fields specify the upper layer protocols. However, in the implementation, the eth type

and ethdaa type fields are combined together to form a single demux key. Two new 4-byte

fields have also been added: an application identifier field and a deadline/priority field.

Chapter 4. Design Overview 44

As argued in the Section 2.3.1, these fields are essential to obtain the best performance

from the D A A architecture protocol stack. The Application Identifier field is interpreted

as follows: if the Most Significant Bit (MSB) is 0, the Application Identifier is assigned

by the local machine. If the MSB is 1, the Application Identifier has been assigned by

the remote machine. When the key for demultiplexing is constructed at the extended

Ethernet layer, the M S B is treated as zero. The application may choose how to interpret

deadline/priority field. For our experiments, the deadline/priority field is used as the

priority of the thread that shepherds the packet through the protocol stack.

We configure IP and U D P protocols above the extended Ethernet protocol to measure

performance. IP and U D P are not well suited for the D A A architecture as some func

tionality of these protocols that are related to demultiplexing (e.g. U D P port numbers)

are not used after the first packet is transferred on a session.

4.2.5 Creation of Session Stack

The D A A stack of sessions can be created either actively and passively on behalf of

the application. In the former case, an application specifies the remote application's

coordinates it wants to communicate with. In the passive open case, an application tells

the lower layer protocol that it is ready to accept a connection from remote applications.

Active Open

An application initiates the creation of a path by calling the open routine of a protocol.

The protocol creates a session and invokes the open routine of the lower layer protocol.

This way the open propagates down the protocol stack until the bottommost protocol

layer is reached. Each open call returns the session it creates. In the traditional x-

kernel, the sessions thus created at each protocol layer are linked together in a downward

direction by downv pointer. In the D A A protocol model, sessions are also linked together

Chapter 4. Design Overview 45

in an upward direction by a ups pointer. Therefore, the active open call leads to the

creation of a doubly linked stack of sessions or a path. The open call also propagates

the application identifier supplied by the application. The bottommost protocol layer

checks whether the application identifier is already in use. If the application identifier

is not in use, the session created at the bottommost protocol layer is stored in the map

with application identifier as the key. If the application identifier is already in use, the

call fails, the sessions created at various protocol layers are destroyed, and an error is

returned to the application. If the application does not need any specific application

identifier, a unused application identifier is assigned to it.

Passive Open

In case of a passive open, a path is created when the first message is received from the

network on a connection. The lowest level protocol layer uses the application identifier

field along with the remote machine's physical address and protocol identifier to form the

key to demultiplex the packet to a session. If a session is not found, the passive map is

searched to find a corresponding enable object. If an enable object is found, a session is

created and stored in the map using the demultiplexing key. This initiates the creation

of a session stack. The message is passed to the upper protocol layer and either a session

is created or the message is dropped. The downv and ups pointers are initialized at each

protocol layer so that the message is shepherded up the protocol stack until it reaches

the topmost layer protocol and passed to the application. This completes the creation of

a path. If the message is dropped at any layer, the sessions created at the lower layers

are destroyed.

Chapter 4. Design Overview 46

4.2.6 Sending Out Packets

Once a path is created, network packets can be sent out and received on that path.

Sending out packets is similar to sending out packets in the traditional x-kernel. A series

of push operations starting from the top level session in the path results in sending out

a packet.

4.2.7 Processing Incoming Packets

For a received packet, the lowest level protocol demultiplexes the packet to a path (per

haps creates it first). Once the path is found, the packet is passed through the sessions

in the path. At each layer, headers are stripped, the connection state is updated, and

the packet is passed to the upper layer session pointed to by the ups field of the session

object.

The QoS information field is also interpreted by the demultiplexing protocol and acted

upon. This allows the implementation to provide, guaranteed QoS by acting on the QoS

information as soon as the packet is received. For example, let the QoS field of a packet

contain the deadline information of the packet. When the packet is received by the lowest

level protocol, the protocol can initiate systems scheduler to schedule the processing of

the packet so that its deadline is met. If the QoS field contains information related to

buffer space or priority, there is no need to waste network bandwidth. These type of

QoS information can be associated with the demux key at the lowest layer protocol and

processed when the demux key is formed from the information in the packet.

Chapter 4. Design Overview 47

4.3 Design of a Framework for I L L M Protocol Architecture

In the I L L M protocol framework, only the processing of incoming packets is different

from that in the L L M protocol framework (or in the traditional x-kernel). Other oper

ations, such as active/passive open, processing outgoing packets, are the same as in the

traditional x-kernel. Therefore, we describe only the modifications required for processing

incoming packets to support the I L L M protocol framework in the x-kernel.

4.3.1 Processing Incoming Packets

In the x-kernel, a protocol specific demux routine performs the demultiplexing operation

at each of the protocol layers and returns a session. Normally, a protocol specific pop

routine updates the state of the session returned by the demux routine and is invoked

immediately following the demux routine. Hence, as a packet visits different protocol

layers, the protocol specific demux and pop routines are invoked alternately at each pro

tocol layer. For example, in the TCP-IP-Ethernet protocol stack, the following sequence

of protocol specific routines is invoked: ethDemux, ethPop, ipDemux, ipPop, tcpDemux,

tcpPop. For an I L L M protocol architecture, the demux routines of all protocol layers are

invoked first followed by the pop routines of all protocol layers. Hence, the following se

quence will result for the example given above: ethDemux, ipDemux, tcpDemux, ethPop,

ipPop, tcpPop. The I L L M framework is implemented by extending the UPI interface

of the x-kernel. During the demultiplexing phase, a list of the sessions returned by the

demux routines and the message objects are stored at each protocol layer. The saved

information is used during the state-change phase. A protocol independent scheme is

designed for this purpose so that it is transparent to protocol writers.

In the I L L M architecture, it is necessary to know when to switch from the demul

tiplexing phase to the state-change phase. For this purpose, a bit called upBoundry is

Chapter 4. Design Overview 48

added to the session objects. This bit indicates the user-protocol boundary. Usually the

sessions at the top protocol layer (e.g. tcp, udp sessions) will have this bit set. At every

protocol layer, this bit is checked to see if the session is at the user-protocol boundary.

If the session is at the user-protocol boundary, the packet processing is switched from

demultiplexing phase to state-change phase.

4.4 Design of a Framework for Non-Monolithic Protocol Architecture

This section describes the design of a framework for a Non-Monolithic protocol archi

tecture in the context of the x-kernel. The architecture splits the protocols into two

separate address spaces: one sits in the kernel or trusted server and the other is linked

with each application as a communication protocol library. This decomposition is proto

col independent and at the same time it provides a mechanism to take protocol dependent

idiosyncrasies into account. This framework also gives the protocol writer the flexibility

to decide what to put in kernel and in the user level library. The design of Non-Monolithic

protocol framework is motivated by providing a Packet Filter[YBMM94, MJ93, MRA87]

mechanism in the x-kernel. Hence, the framework provides a fast path in the kernel to

demultiplex the network packets and route them to the destination address space.

Before describing our design, we shall first explain the terms kernel, user and IPC.

Kernel refers to the operating system kernel or the user level trusted server that imple

ments the kernel component of protocol functionality. By user, we mean the user level

application that links to the user level protocol libraries. The means of communication

between the kernel and the user is referred to as IPC. If the kernel is an operating system

kernel, the IPC refers to a system call or upcall. If the kernel is a trusted server, the IPC

refers to inter-process communication.

The main idea is to decompose protocol implementations into two parts: one part

Chapter 4. Design Overview 49

in the kernel and the other linked with the application as a user level protocol library.

The kernel level part implements, at a minimum, the demultiplexing of packets received

by the protocol. In an efficient implementation, the cost of demultiplexing should not

increase with the number of user level instances of protocols. In earlier implementations

based on the packet filter [MRA87], the cost of demultiplexing increased linearly with the

number of connections. The Mach Packet Filter achieves performance that is not sensitive

to the number of open connections by collapsing the common parts of different packet

filters into a single filter [YBMM94]. In our scheme, we exploit the notion of protocol

graphs to achieve this. These protocol graphs define the protocol hierarchy as explained

in the x-kernel overview in Chapter 3. In a naive user level protocol implementation,

the demultiplexing operation will be performed twice - one time in the kernel to locate

the recipient application and then again in the application to locate the recipient session

(i.e. protocol control block) because, in general, an application may open more than one

connection. In an efficient implementation, the demultiplexing in the application can be

completely avoided. Our scheme avoids demultiplexing in the user application by having

the user register the user session identifiers with the kernel.

4.4.1 Protocol Graphs

In our design, each user has its own protocol graph, as does the kernel. The kernel level

protocol graph is the union of all user level protocol graphs and is called the Universal

Protocol Graph (UPG). The user level protocol graph is registered with the kernel when

the user application starts. The kernel incorporates this graph into the U P G by the

union operation. Figure 4.6 shows the protocol graphs of three different users and the

corresponding kernel protocol graph. The entire suite of protocols which is available to

each user appears in the user's protocol graph even if some of those protocols are actually

implemented in the kernel.

Chapter 4. Design Overview 50

User 1 User 2 User 3

TCP

IP

ETH

UDP

IP

ETH

User Space

Kernel Space

Figure 4.6: User and Kernel Protocol Graphs

Chapter 4. Design Overview 51

Each protocol's demultiplexing routine is also registered with the kernel. This routine

is protocol specific and not user (or protocol instance) specific. This implies that although

there are a number of copies of the same protocol at the user level, the kernel will use a

single demultiplexing routine for this protocol. This is equivalent to combining different

packet filters (e.g. Mach Packet Filter [YBMM94]).

4.4.2 Protocol Objects

The protocol objects reside in the kernel as well as in the user space. However, the

kernel level protocol objects in most cases are skeletons of user level protocol objects

and implement only that portion of the protocol functionality that the user decides to

move to the kernel. They are called skeleton protocols. The minimum functionality of

a protocol that resides in the kernel is demultiplexing. However, a user may decide to

move more functionality to the kernel, and in the extreme, our design allows a user to

move the complete protocol stack to the kernel. This flexibility is achieved by adding

new data structures to the protocol and session objects.

4.4.3 Session Objects

In a user level implementation of protocols, sessions need to reside in the application

because they store all the protocol state information of the application's connections.

Since demultiplexing of incoming packets is done in the kernel, sessions must also be

present in the kernel. The kernel level sessions are proxies for their user level counterparts

and are called shadow sessions.

In the x-kernel, an open call leads to the creation of a session at each protocol layer.

These sessions are linked by pointers and form a session stack. Every user level open call

is registered with the kernel in a RegisterOpen IPC message which leads to the creation of

a shadow session stack in the kernel. The user level also sends the user IPC port and user

Chapter 4. Design Overview 52

level session identifier list in the IPC message. This information is stored in the shadow

session at the user-kernel boundary and is passed to the user along with each received

network packet. Thus, extra demultiplexing in the user space to locate the appropriate

session is avoided.

User level passive opens (e.g. a server waiting on a port for connections) are also

registered with the kernel by using a RegisterOpenEnable IPC message. This enables the

kernel to create a shadow session stack when a packet is received for such a server.

4.4.4 Demultiplexing in the Kernel

Demultiplexing in the kernel is performed in a similar fashion as it is performed in the

traditional x-kernel. However, there are no pop routines in the kernel. The UPI library's

xPop routine is modified so that instead of calling the protocol specific pop routine, it

registers the protocol specific header information for playback later at the user level.

At each protocol layer in the kernel, the protocol specific demux routine is invoked,

the header information is stored in an IPC buffer, and the message is passed to the upper

layer protocol. At the user-kernel boundary layer protocol (e.g. T C P , UDP, etc), the

demultiplexing determines the identity of the destination user level application for the

current message. The session returned by the demultiplexing routine at the user-kernel

boundary protocol contains the user level IPC port number and the user session identifier

list. The message is then transferred to the destination user space along with the user

session identifier list and the bookkeeping information recorded by the kernel level xPop

routine in a ReceivePacket IPC call.

At each protocol layer, the protocol specific demultiplexing routine is invoked. There

is no header processing in between the demultiplexing routines as is the case in a tradi

tional implementation. This is equivalent to combining the demultiplexing operation of

multiple protocol layers into a single "one-shot" operation. This integration also makes

Chapter 4. Design Overview 53

it possible to take an Integrated Layer Processing approach to the data manipulation

[Fe-190, Ten89, CT90].

4.4.5 Packet Processing at User Level

The user level receives the incoming packets along with bookkeeping information and

the user session identifier list from the kernel. The connection specific protocol state is

updated by invoking a series of pop routines and finally the user data is passed to the

application. A user may passively wait for connections. In this case, when the first packet

is received on a connection, the user level sessions are created. The user level session

stack thus created is then registered with the kernel.

Sending packets out is straightforward. For outgoing messages, protocol headers are

appended to the message at each protocol layer by invoking a series of push routines. At

the user-kernel boundary protocol, the message is transferred to the kernel level protocol

in a SendPacket IPC message. The kernel level protocol to which the message is sent is

the one that logically sits just below the bottom user level protocol in the protocol graph

hierarchy. This information is readily available from the user level protocol graph. The

kernel is free to make any checks required for security reasons in the header portion of

the outgoing message.

Figures 4.7 and 4.8 depict the receive and send paths for incoming and outgoing

messages respectively. In the figures, T C P , UDP, and IP protocols are configured in the

user space and have corresponding skeleton protocols in the kernel. The Ethernet [MB76]

protocol is configured in the kernel, but a skeleton Ethernet protocol is also configured

in the user space to improve the performance of outgoing packets. Figures 4.7 and 4.8

also illustrate that the kernel level sessions that are not at the user-kernel boundary (e.g.

IP and Ethernet) may be shared by more than one user level protocol belonging to the

same or different applications.

Chapter 4. Design Overview

TCP

IP

TCP

Eth

UDP

IP

User Space

Kernel Space

UDP

Legend
(^) Session

(^) Shadow Session

Figure 4.7: Incoming Message Paths

Chapter 4. Design Overview

Figure 4.8: Outgoing Message Paths

Chapter 4. Design Overview 56

4.4.6 Shared State

One of the problems that must be addressed in any protocol implementation that allows

multiple implementations of protocols is that of shared protocol state. Examples of shared

protocol states include IP routing information and A R P tables. Our framework supports

a simple but general protocol independent mechanism to manage such information with

the assumption that one address space (typically the kernel) maintains the master copy

of such information and that other address spaces (typically the user applications) wish

to maintain caches of subsets of the information. In this mechanism, an IPC broadcast

between the kernel implementation of a protocol and all of the user level implementations

of that same protocol is made whenever the shared state changes. This facility is also

required to handle IP broadcast and multicast packets.

4.4.7 Details of Skeleton Protocols

Skeleton protocols must manage kernel sessions for demultiplexing incoming network

packets. It is possible to provide a set of generic routines such as open, open-enable,

close, and open-disable to perform these connection management functions in the kernel

but the demux routine is protocol specific and must therefore, be implemented by the

protocol writer 1. In the most common case, this is all that is necessary to construct

the skeleton protocol in the kernel. If the protocol writer decides to move additional

functionality of the protocol to the kernel, he/she must provide protocol specific routines

that supersede the generic routines whenever necessary.

We describe the generic open/open-enable routines to illustrate how the skeleton pro

tocols function, The close and open-disable routines are similar. The open/open-enable

routines take a participant list as one of their arguments. The participant list is supplied
1It is difficult to provide a generic demux routine because protocol header length is not always constant

(e.g. TCP and IP).

Chapter 4. Design Overview 57

by the user in the RegisterOpen/'Register OpenEnable IPC calls and is created during the

open/open-enable call in the user level protocols. As the user level active open call (i.e

open routine) propagates down the user protocol stack, each protocol records the key it

used to identify the newly created session object. When the user level open call com

pletes, the topmost level protocol has the list of keys each protocol used for identifying its

sessions. The topmost layer protocol passes this list to the kernel to initiate the creation

of a shadow session stack in the kernel. The kernel level protocols treat this list as a

stack - each protocol pops a key from the stack, creates a shadow session, and passes the

rest of the stack to the next lower layer protocol to initiate creation of shadow sessions

at lower layers2. A passive open (i.e open-enable) is similar to an active open except that

a passive open does not propagate down the protocol stack.

4.4.8 P ro toco l Configurat ion

Each protocol, session, and enable object contains an additional bit called the ukBound-

aryBit which specifies whether the object resides at the user-kernel boundary. The user

level protocols that are at the bottom of the user level protocol graphs will have this

bit set to indicate that there is no lower user level protocol. Similarly, the kernel level

shadow sessions at the topmost protocol in the kernel protocol graph have this bit set to

indicate that there is no upper kernel level session implying that the packet should be

transferred to the user. The shadow session's state data structure stores the user level

port and user session identifier list.

Similarly, an apBoundaryBit is defined for user level objects. This bit indicates

whether a user level protocol or session object is at the application-protocol boundary.
2Sorne protocols such as TCP and UDP use the lower layer protocol session (e.g. IP session)

to form the keys for demultiplexing a received packet into a session. We define a special symbol
USE-LOWERSESSION as a flag to indicate to the kernel level protocol that the lower layer session is
to be used as the key.

Chapter 4. Design Overview 58

The application-protocol boundary is defined by the topmost user level protocol regis

tered in the kernel protocol graph for the application (i.e. the protocol hierarchy ends

at this boundary for the user protocol stack). The combination of ukBoundaryBit and

apBoundaryBit allows different applications to register different parts of their protocol

graphs with the kernel.

Currently, protocol configuration is done statically. The kernel resident active and

passive maps for each protocol are created at the system startup time. The key size

information required to create these maps is stored in the protocol graph thereby making

it readily available. Our architecture would easily accommodate dynamic protocol con

figuration, but our environment does not provide a mechanism for the dynamic addition

of code to the kernel (such as loadable device drivers).

Chapter 5

Implementat ion Detai ls

This chapter first describes the run-time environment for our implementation and gives

an overview of the Raven kernel that runs on the bare hardware. It then presents the

implementation details of the frameworks for each of the three proposed protocol ar

chitectures. These frameworks are protocol independent and implemented in the the

context of the x-kernel. This chapter also describes the implementation details of sam

ple TCP/UDP-IP-Ethernet protocol stacks as implemented in the context of the three

proposed architectures.

5.1 Run - t ime Envi ronment Overview

The hardware platform for our experiments is the Motorola MVME188 Hypermodule, a

25 MHz quad-processor 88100-based shared memory machine [Gro90]. A light weight,

multi-threaded kernel called Raven [Rit93, RN93] is developed in the Computer Science

department at U B C and is the microkernel running on the bare hardware. The three

proposed protocol architectures are implemented in the context of a parallel x-kernel:

the x-kernel [HP88, HP91] has been ported as a user level server in this environment and

has been parallelized to take full advantage of parallel processing.

The Raven K e r n e l Overview

The Raven kernel is a lightweight operating system for a shared memory multiprocessor

machine. In the Raven kernel environment, several traditional kernel level abstractions

59

Chapter 5. Implementation Details 60

have been implemented at the user level. Such abstractions include thread management,

semaphores, device drivers, interprocess communications (IPC) [RN93]. Task manage

ment, virtual memory management, and low level interrupt dispatching are implemented

in supervisor mode. The Raven kernel makes extensive use of shared memory between

user/kernel and user/user to avoid kernel mediation. One of the interesting features of

the Raven kernel is that interrupts are handled at user level. This facilitates the complete

implementation of device drivers in user space, thereby eliminating the costs of moving

device data between kernel and user. The user level IPC library provides synchronous

send/receive/reply interface as well as an asynchronous send/receive interface. Both

kinds of interfaces use shared memory between clients and server and a task signaling

facility to avoid kernel mediation as much as possible. However, IPC call semantics are

not general. For our purposes, we would have liked to get a pointer to a shared buffer

between client and server so that we could fill the buffer ourselves. But the IPC library

does not provide such a facility. The IPC library assumes that a contiguous buffer is

supplied by the user as an argument to the library function call and the library routine

copies the data from the user supplied buffer to the shared buffer area. This results in

an extra copy of the data if the user data is not in a contiguous buffer. Such cases are

common in communication protocol processing.

5.2 Implementation Details of the L L M Protocol Framework

The standard implementation of the x-kernel follows the L L M protocol architecture. The

implementation of the standard x-kernel release is described in the x-kernel manual [1093]

and papers [HP88, HP91]. The standard x-kernel is parallelized for our multiprocessor en

vironment. Our sample L L M protocol implementation consists of the parallelized version

of the standard TCP/UDP-IP-Ethernet protocol stack which is available in the x-kernel

Chapter 5. Implementation Details 61

release from the University of Arizona. Details on the standard TCP/UDP-IP-Ethernet

stack implementation in the x-kernel can be obtained from the x-kernel manual [1093].

5.3 Implementation Details of the DAA Protocol Framework

The sample UDP-IP-Ethernet protocol stack implementation for the D A A architecture

is derived from the UDP-IP-Ethernet protocol stack for L L M architecture. The logical

relationship between the UDP-IP-Ethernet protocol stack in the L L M model and the

UDP-IP-Ethernet protocol stack in the D A A model is depicted in Figure 5.9. However,

the two models are implemented in an integrated fashion as depicted in Figure 5.10. The

application specifies the protocol model it wishes to use at open time. The Part data

structure is extended for this purpose. The application includes the desired application

identifier field in the Part data structure at the open time. The default value of this field

is zero to imply that the open is on a L L M protocol model 1. This provides compatibility

with the standard protocol code that comes with the standard x-kernel release. The

standard code need only be recompiled in our environment and it will run in the L L M

protocol model without any modification.

If the application identifier field in the Part data structure is set to a non-zero value,

the open call will result in the creation of a session stack in the D A A protocol model.

Every active open on U D P will result in a creation of a new session at every protocol

in the UDP-IP-Ethernet stack i.e. a new session is created at UDP, IP and extended

Ethernet protocol layer. The application can set the application identifier field to a

desired value if it wishes to use a specified application identifier. Otherwise, it uses a

special symbol ANY.APPLICATIONJDENTIFIER in the application identifier field and

the system assigns a systemwide unique application identifier. Since only the Ethernet
1The standard z-kernel follows the LLM protocol model.

Chapter 5. Implementation Details 62

User 1 User n User 1 User n

Application Identifier = 0 Application Identifier != 0

UDP UDPdaa

IPdaa

Ethdaa

Ethernet

Ethernet Driver (Simeth)

Figure 5.9: Logical Relationship between D A A and L L M Protocol Stacks

Chapter 5. Implementation Details 63

User 1 User n User 1 User n

Application Identifier = 0 Application Identifier != 0

UDP UDPdaa

IP
•

IPdaa

Eth
•

Ethdaa

Ethernet Driver (Simeth)

Figure 5.10: Implementation Relationship between D A A and L L M Protocol Stacks

protocol layer needs,to interpret the application identifier field, the Ethernet protocol

layer is responsible for assigning this field.

The Map data structure is extended to allow for two kind of maps: traditional x-

kernel maps that do not allow multiple entries with the same attributes and maps to

support D A A architectures which allow multiple entries for the same attributes. A bit

field has been added to the Map data structure to distinguish between the two kind of

maps. The mapCreate routine is modified to initialize this bit at creation time. The

mapBind routine that stores a binding in the map is modified to allow multiple entries

Chapter 5. Implementation Details 64

- with the same attributes for D A A type maps. Similarly, a bit field is added to the XObj

data structure to distinguish the protocol/session objects belonging to the L L M protocol

model and the D A A protocol model. The xCreateXobj routine is modified to initialize

this bit field at protocol/session creation time. For all of the new fields added to various

data structures, new macros or routines have been defined to set, initialize, and return

the values of these fields. Again, to keep the extended x-kernel compatible with the old

x-kernel, all these new fields assume a default value so that no modifications are required

for the standard protocol code to run in the L L M model.

UDP, IP, and Ethernet protocol code is modified to support the D A A protocol model.

In fact, we have extended the protocol code of these protocols to support both the L L M

and D A A models simultaneously. Each protocol now maintains two types of active maps:

one for the L L M protocol model and the other for the D A A protocol model. The sessions .

objects are stored in appropriate maps. The information whether an open is on the L L M

or D A A protocol model is readily available from the application identifier field of the

Part data structure which is passed as an argument in the open call. For the passive

open, when a session is created from an enable object as a result of a packet arrival for

which no session object is found in the active map, the Eth type field in the received

packet's Ethernet header is used to determine if the packet is a D A A type or L L M type.

A special value ETHDAA is reserved for the Eth type field of the Ethernet header for

identifying the D A A type packets. The Ethernet protocol is extended to accomodate the

new fields added to support the D A A protocol model.

In our implementation, the Priority/Deadline field of the extended Ethernet header is

interpreted as the priority of the thread that shepherds the packet through the protocol

stack. A scheduling action is taken based on the Priority /Deadline field to dynamically

change the priority of the thread at the Ethernet protocol layer. The Raven kernel's

thread data structure is modified to support dynamic priority changes. Every thread

Chapter 5. Implementation Details 65

is assigned a base priority and a current priority. The current priority is the priority

at which the thread is running at any instant. For a normal thread, i.e. one which

does not require a dynamic change of its priority, the base priority is equal to the current

priority. For a thread belonging to the communication thread pool, the current priority is

initially set to the base priority. The priority of the thread is changed while shepherding

the packets belonging to the D A A protocol model as a result of the scheduling action

taken at the Ethernet layer. When the packet has been delivered to the application,

the thread's priority is changed back to the base priority. Two routines are defined for

changing the priority of the executing thread at run time: ChangeToCurrentPriority
and ChangeToBasePrioirty.

5.4 Implementation Details of the ILLM Protocol Framework

This section describes the implementation details of the framework for the I L L M protocol

architecture in the x-kernel. As described in Section 4.3, in the I L L M framework, demul

tiplexing phase is decoupled from the state-change phase and precedes the state-change

phase. This requires that the information necessary to perform state-change processing

be stored during the demultiplexing phase at each protocol layer. For this purpose, each

thread in the x-kernel thread pool that is responsible for shepherding a received packet

up through the protocol stack is allocated a buffer to store this bookeeping information.

This buffer is uniquely associated with each thread and is globally accessible to the code

executing in the thread context. The thread control block data structure is extended to

accommodate a pointer to this buffer. The buffer is treated to contain the following data

structure:

typedef struct {
int proto_id; /* Protocol id */
XObj s; /* Pointer to this layer session */
XObj l i s ; /* Pointer to lower layer session */

Chapter 5. Implementation Details 66

Msg msg; /* Pointer to this layer message */
int hdr_len; /* hdr length */
char hdr[MAX_HDR_SIZE]; /* hdr i t s e l f */

}• phdr_t;

typedef struct RecvPacketBuffer {
int num_phdr; /* header count in phdr array */
phdr_t phdr[MAX_PR0T0C0L_STACK]; /* Headers information */
int cur_phdr_ndx; /* index into the phdr array */
int packet_len; /* packet length */
char packet[MAX_PACKET_SIZE]; /* packet */

} RecvPacketBuffer_t;

The RecvPacketBuf fer structure stores the received packet in the packet data struc

ture. To avoid multiple copies, the thread copies the received packet from the Ethernet

board directly into the packet field and initializes the packet _1 en field to the length of

the received packet. At each protocol layer, the phdr data structure is filled with the

necessary information so that the state-change processing can be performed later. This

information is captured in the phdr_t data structure. Pointers to each of the following

entities are stored in the phdr_t data structure for each protocol layer: protocol layer ses

sion, lower layer protocol session, session, and message object. The protocol layer header

that is stripped from the received packet during the demultiplexing phase is stored in

the hdr field of the phdr_t data structure by the protocol specific demux routine. The

num_phdr field reflects the count of protocol headers stored in the phdr array during the

demultiplexing phase. The protocol_id field stores the current protocol identifier for

any sanity checks that may be performed later during the state-change phase. The msg

field pointer points to what the protocol layer considers as data in the received packet.

As the packet is shepherded through the protocol stack, the phdr array is filled at each

protocol layer until the packet reaches the user-protocol boundary. This boundary is

indicated by the upBoundary bit in the XObj data structure. At user-protocol boundary

protocol, the state-change phase is started.

Chapter 5. Implementation Details 67

In the standard x-kernel, each protocol's demux routine calls the xPop routine which,

in turn, calls the protocol specific pop routine. The protocol specific pop routine performs

the state-change processing for that protocol. The protocol specific demux routine in the

I L L M framework is the same as that in the L L M framework except that the former calls

xPopTcb instead of xPop. Figure 5.11 gives a sample implementation of xPopTcb routine.

The xPopTcb routine performs the following operations:

• Stores the sessions object, lower layer session object and message object pointers

in the phdr buffer.

• Checks to see if upBoundary bit of the current session is set. If the bit is not set,

it calls the xDemux routine with the current session and message objects as argu

ments. If the bit is set, the routine initiates the protocol state-change processing

by extracting the session, lower layer session, and message object pointers of the

appropriate protocol from the RecvPacketBuf f er data structure and invokes the

xPop routine.

In the standard x-kernel, the protocol specific pop routine normally calls the xDemux

routine after it completes the protocol state-change processing. In the I L L M framework,

the protocol specific pop routine calls the xDemuxTcb routine. Figure 5.12 gives a sam

ple implementation of the xDemuxTcb routine. The xDemuxTcb routine performs the

following functions:

• It performs sanity checks to ensure that the various fields of the RecvPacketBuf fer
data structure are valid.

• It extracts the session, lower layer session, and the message pointers from the

RecvPacketBuf fer data structure using cur_phdr_ndx as index into the phdr ar

ray.

Chapter 5. Implementation Details

xkern_return_t xPopTcb(s, l i s , msg)
XObj s;
XObj l i s ;
Msg *msg;

{
int return_status;
RecvPacketBuffer_t *st =

(RecvPacketBuffer_t *)(this_thread()->dstate);
int ndx;

xAssert(st != NULL);

/*
* save msg, s, and l i s for pop later;
*/

ndx = st->num_phdr;
msgConstructCopy(&(st->phdr[ndx].msg), msg);
st->phdr[ndx].lis = l i s ;
st->phdr[ndx].s = s;
st->phdr[ndx].proto.id = getProtocolId(s);
st->num_phdr++;

i f (s->upBoundary){

/*
* Reached upBoundary. So switch to state-change phase.
*/

int ndx = st->cur_phdr_ndx;
Msg *msg = &(st->phdr[ndx].msg);
XObj s = st->phdr [ndx].s;
XObj l i s = st->phdr[ndxl].lis;

st->cur_phdr_ndx++;
return_status = xPop(s, l i s , msg);

} else {
/*
* Continue, demultiplexing at upper layer protocol.
*/

return_status = xDemux(s, msg);
}

msgDestroy(&(st->phdr[ndx].msg));

return return_status;

Figure 5.11: An Example Implementation of xPopTcb Routine.

Chapter 5. Implementation Details 69

• It checks the upBoundary bit. If the bit is set, the state-change phase processing

is completed for the packet. Therefore, the routine sends the data in the message

to the user. If the bit is not set, it calls the xPop routine with session, lower layer

session, and message as arguments to perform protocol state-change processing.

5.5 Implementation Details of the Non-Monolithic Protocol Framework

5.5.1 IPC Design

In this section, we describe the IPC scheme used for communication between applica

tion level communication library and the kernel. The IPC scheme uses shared memory

between each application and kernel pair. The use of shared memory also helps reduce

the data copying and number of kernel interventions required. To maximize the use of

available parallelism, there are two sets of shared buffers - one set for outgoing packets

and one set for incoming packets.

We use Raven's light-weight synchronous IPC library which associates a shared buffer

with each communication port. In order to achieve pairwise shared buffers, each appli

cation initializes by going through a registration process with the kernel in which each

side creates a communication port and an appropriate number of communication threads

and sends the port identifier to the other side. The application stores the kernel port

identifier in the protocol objects at the bottom of its protocol graph and directs all but

its first request to the newly created kernel port. Likewise, the kernel stores the port

identifier of the application in the shadow session and enable objects that are created on

behalf of the application at the user-kernel boundary. The following set of IPC calls have

been defined:

Chapter 5. Implementation Details

xkern_return_t xDemuxTcb(sesn)
XObj sesn;
{

RecvPacketBuf!er_t *st =
(RecvPacketBuffer_t *)(this_thread()->dstate);

int ndx;
XObj s, l i s ;
Msg *msg;

xAssert(st != NULL);
xAssert(st->cur_phdr_ndx <= st->num_phdr);

ndx = st->cur_phdr_ndx;
s = st->phdr [ndx].s;
l i s = st->phdr[ndx].lis;
msg = &(st->phdr[ndx].msg);
st->cur_phdr_ndx++;

xAssert(xIsSession(s));
xAssert(xIsXObj(lis));

i f (s->upBoundary){

/*
* Send data to the application
*/

return xDemux(s, msg);
} else

/*
* Do the state-change processing at this protocol layer
*/

return xPop(s, l i s , msg);
}

Figure 5.12: A n Example Implementation of xDemuxTcb Routine.

Chapter 5. Implementation Details 71

RegisterOpen:

An active open on a user level protocol is registered with the kernel using RegisterOpenReq

IPC call.

typedef struct RegOpenReq{
int type; /* type of IPC Message */
int proto_id; /* destination protocol id */
int uport_id; /* user ipc port i d */
int uhlp_type; /* i d of hlp_type argument */
int uhlp_recv; /* i d of hlp_recv argument */
int part_len; /* length of the part array */
char part[MAX_PART_LEN]; /* participant l i s t */
int num_sessn; /* size of v a l i d usessn */
unsigned long usessn[MAX_NUM_SESSN]; /* session i d l i s t */

} RegOpenReq_t;

The proto_id field is set to the kernel level protocol identifier to which the IPC

call is directed for processing. The uhlp_type, uhlp_recv, and part fields contain the

arguments of the Open call and they are used by the kernel level protocol to register a user

level open. The user level protocol encodes the participants list in the part data structure

in an externalized form that the kernel can interpret to reconstruct the participant list

suitable for the kernel level open routine. This is achieved by using the partExternalize

routine at the user level and the partlnternalize routine at the kernel level. The user

level session identifier list is stored in the usessn array.

The response of the register open call is returned in the RegOpenRep IPC call. If the

request is successful, the status is set to O K by the kernel. Otherwise, the status is set

to the error code indicating the reason of the failure.

typedef struct RegOpenRep{
int type; /* type of IPC Message */
int status; /* status of the request */

} RegOpenRep_t;

Chapter 5. Implementation Details 72

RegisterOpenEnable:

The passive open is registered with the kernel using the RegOpenEnableReq IPC call. The

fields of this call are used in a way similar to the one described for the Register Open

IPC call.

typedef struct RegOpenEnableReq{
int type;
int proto_id;
int uport_id;
int uhlp_type;
int uhlp_recv;
int part_len;
char part[MAX_PART_LEN];

} RegOpenEnableReq_t;

typedef struct RegOpenEnableRep{
int type;
int status;

} RegOpenEnableRep_t;

DeregisterOpenEnable:

The user level passive open is unregistered with the kernel by using the DeregOpenEnableReq

IPC call. The contents of the part, uhlp.type, and uhlp_Recv fields must be the same

as the ones supplied to RegisterOpenEnable at the time a passive open was registered

with the kernel.

typedef struct DeregOpenEnableReq{
int type; /* type of IPC Message */
int proto_id; /* destination protocol i d */
int uport_id; /* user ipc port i d */
int uhlp_type; /* i d of hlp_type argument */
int uhlp_recv; /* i d of hlp_recv argument */
int part_len; /* length of the part array */
char part[MAX_PART_LEN]; /* participant l i s t */

} DeregOpenEnableReq_t;

typedef struct DeregOpenEnableRep{

/* type of IPC Message */
/* destination protocol id */
/* user ipc port i d */
/* i d of hlp_type argument */
/* i d of hlp_recv argument */
/* length of the part array */
/* participant l i s t */

/* type of IPC Message */
/* status of the request */

Chapter 5. Implementation Details 73

int type; /* type of IPC Message */
int status; /* status of the request */

} DeregOpenEnableRep_t;

SendPacket:

The user level sends a packet out on the network through the kernel using the SendPacket
IPC call. The buf field stores the user data along with all the protocol headers that are

appended by the protocol processing at the user level. The proto_id field is set to the

driver identifier that sends the packet over the network. The other fields of this call are

self explanatory.

typedef struct SendPacketReq{
int type; /* type of IPC Message */
int proto_id; /* destination protocol i d */
int buf_len; /* size of the buf */
char buf[EMAX_PACKET_SIZE]; /* packet with headers */

} SendPacketReq_t;

typedef struct SendPacketRep{
int type; /* type of IPC Message */
int status; /* status of the request */

} SendPacketRep_t;

ReceivePacket:

The kernel sends the packets received from the network to the appropriate application

using the RecvPacketReq IPC call. The proto_id field is set to the user level protocol

identifier to which the received packet is sent for processing. The usessn array stores

the list of user level sessions. This list is supplied by the user either at the time of an

active open registration or in reply to the first RecvPacketReq IPC request i.e. in the

passive open case when the first packet is transferred to the user. The num_sessn stores

the count of the number of the sessions in the usessn. Therefore, in the latter case,

the usessn field is set to zero indicating that the kernel does not yet have the user-level

Chapter 5. Implementation Details 74

session identifier list. The phdr array stores the bookkeeping information related to the

demultiplexing performed at each protocol layer in the kernel. The buf data structure

stores the complete packet received from the network.

typedef struct {
int proto_id;
int hdr_len;
int hdr_offset;

} phdr_t;

typedef struct RecvPacketReq {
int "type;
int proto_id;
int num_sessn;
unsigned long usessn[MAX_NUM_SESSN]; /* session ids */
int num_phdr; /* header count */
phdr_t phdr[MAX_NUM_SESSN]; /* Headers information */
int buf_len; /* packet length */
char buf[MAX_PACKET_SIZE]; /* packet */

} RecvPacketReq_t;

/* Protocol i d */
/* hdr length */
/* offset from beginning of buf */

/* type of IPC Message */
/* destination protocol i d */
/* number of sessions */

For performance reasons, each thread belonging to the kernel level demultiplexing

thread pool is allocated a buffer to store the RecvPacketReq structure. This buffer is

globally accessible to the code executing in the thread context. The Ethernet driver copies

the received packet in the buf array directly from the Ethernet board and initializes the

buf _len field to the length of the packet.

The user level sends the reply to the RecvPacketReq IPC call in the RecvPacketRep

data structure. The status field is set to indicate any error that occurred during the

protocol processing at the user level. The user level also registers the user-level session

identifier list by filling the list in the usessn array and setting the num_sessn field to

the number of session identifiers in the list.

typedef struct RecvPacketRep{
int type;
int status;
int num_sessn;

/* type of IPC Message */
/* status of the request */
/* number of sessions */

Chapter 5. Implementation Details 75

unsigned long usessn[MAX_NUM_SESSN]; /* session ids */
} RecvPacketRep_t;

ProcessControl:

The ProcessCntlReq IPC call is used for sending user level control messages to the

kernel. Although, we did not find it necessary to send any user level control messages

to the kernel in our implementation, it may be required in general. The cntl_req_id
field is set to indicate the type of control request. The result of the processing of the

ProcessCntlReq IPC call is sent back to the user level in the ProcessCntlRep IPC

message. The status field indicates the status of the processing of the control message

call. This field must be set to OK to indicate that the call was successfully processed and

that the results are in the rep_data field.

typedef struct ProcessCntlReq{
int type; /* type of IPC Message */
int proto_id; /* destination protocol i d */
int cntl_req_id; /* Id of the control request */

} ProcessCntlReq_t;

typedef struct ProcessCntlRep{
int status; /* status of the request */
int rep_len; /* length of the reply data */
char rep_data[MAX_CNTL_DATA_LEN]; /* reply */

} ProcessCntlRep_t;

AssignPort:

The AssignPortReq IPC call is currently used by T C P and U D P protocols to obtain the

local port number for a connection. Port numbers are assigned by the kernel for correct

functioning of user level protocols. The port_num field of the AssignPortReq call is set

to the desired port number by the user and the proto_id field is set to the protocol

identifier for which the port number is desired. The kernel checks whether the port is

Chapter 5. Implementation Details 76

a reserved port or is already in use. If so, the kernel sends a reply indicating an error.

Otherwise, the kernel assigns the requested port number and sends the reply. In case, a

user does not need a specific port number assigned to it, the user can set port_num to

ANY-PORT and the kernel assigns a unused port.

typedef struct AssignPortReq{
int type; /* type of IPC Message */
int proto_id; /* destination protocol i d */
int port_num; /* desired port number */

} ProcessCntlReq_t;

The kernel sends the results of the AssignPortReq IPC call in the AssignPortRep

structure. The status field is set to indicate status of the results of processing of the IPC

request. The port_num field contains the port number assigned by the kernel.

typedef struct AssignPortRep{
int type; . /* type of IPC Message */
int proto_id; /* destination protocol i d */
int status; /* return value */
int port_num; /* assigned port number */

} ProcessCntlRep_t;

5.5.2 An Example Non-Monolithic Protocol Implementation

We have implemented the split protocol stack for U D P [Pos80]/TCP [Pos81c], IP [Pos81b],

A R P [Plu82], ICMP [Pos81a], and Ethernet [MB76] protocols. UDP, T C P , and most of

IP, A R P , ICMP protocols are in the user library while the remaining parts of IP, A R P ,

and Ethernet protocols are in the kernel. Some IP functions are implemented in the

kernel as will be explained later. A R P is implemented at the user level as well as in the

kernel. As described in Section 4.4.6, the kernel level A R P is the master and periodically

broadcasts the A R P table changes to the user level instances of A R P .

T C P and U D P port assignment must be centralized for correct functioning. In our

scheme, kernel is the only central point, so port assignment is done by the kernel. To

Chapter 5. Implementation Details 77

improve the performance of outgoing packets, we configure a skeleton Ethernet protocol

in the user space library. This caches the Ethernet header information from the real

Ethernet driver located in the kernel.

When a user level application wants to set up a T C P connection to a remote machine,

it calls tcp-open with the appropriate set of participants. The tcp-open routine creates a

T C P session and calls open on the IP protocol. IP creates a new session or returns an

already existing session. IP also links to the appropriate network interface (in our case

Ethernet). This completes the creation of a user level session stack. The user session

id list is then registered with the kernel by sending a RegisterOpen IPC request to the

kernel which creates a shadow session stack in the kernel. The kernel stores the user level

session id list in the newly created shadow T C P session's state data structure. Next,

tcp-open tries to establish a connection with the remote machine. If the connection is

successfully established, tcp-open returns success. Otherwise it destroys the user level

session stack that has just been created and sends a DeregisterOpen IPC request to the

kernel to destroy the kernel level shadow session stack.

On the remote machine, the server waits passively for new connections after having

registered a RegisterOpenEnable with the kernel. When the connection message is re

ceived on the remote machine, the kernel demultiplexes the packet and ultimately creates

the shadow session stack in the kernel. It then passes the packet to the server via the

ReceivePacket IPC message. The protocol library in the server creates the user level

session stack as the message flows up the protocol stack. At the T C P level, after the

T C P session is created, the user level session id list is registered with the kernel in the

IPC reply message to the ReceivePacket IPC call. The kernel stores the user session id

list in the corresponding T C P shadow session. This completes the creation of the user

level session stack as well as the kernel level shadow session stack on the remote machine.

Chapter 5. Implementation Details 78

Hereafter, packets can be efficiently exchanged between the two machines with demulti

plexing done only in the kernel and protocol specific connection state processing only in

user space.

IP Services Decomposition

The IP protocol implementation has been split between the kernel and user space

such that the services that are difficult to handle in user space are implemented in the

kernel. These services are IP reassembly of fragments, IP routing table management,

IP packet forwarding, IP broadcasts, and IP multicast packet processing. The kernel

thus maintains enough of the IP protocol context so that it can handle these services.

IP routing tables are maintained in the kernel and periodically broadcast to the user

level instances of IP. The kernel maintains maps for collecting IP fragments and when a

message is reassembled, it is passed to the upper layer protocol (in our case, to UDP) .

The upper level protocol transfers the complete message to the appropriate user space.

This implies that the user level IP never has to deal with reassembly issues. Similarly, the

kernel maintains the IP forward map which stores the session corresponding to packets

that need to be forwarded.

Chapter 6

Performance

In this chapter, we describe the performance of the sample D A A , I L L M , and Non-

monolithic protocol stacks implemented in the z-kernel and compare it with the per

formance of a sample L L M implementation. We first describe the hardware and software

platform for our experiments and the benchmark tools used. We then report on the

round trip latency, incremental cost per round trip, latency breakdown for receive and

send paths, the kernel level demultiplexing cost, T C P throughput, and connection setup

cost in the context of the sample protocol stacks for all three architectures. Finally, we

present the effect of parallel processing on the round trip latency by using more than one

processor.

The performance measurements are made by connecting two Motorola MVME188

Hypermodules through a 10 Mb/sec Ethernet network in light network traffic conditions.

6.1 Benchmark Tools

We analyzed the performance of our implementation in two ways.

• Time measurements of the various components of the implementation have been

taken using an on-board Z8536 Counter/Timer configured as a 32-bit timer with

microsecond resolution.

• Instructions have been counted by using the instruction tracing facility of a hard

ware simulator.

79

Chapter 6. Performance 80

Protocol Stack
Round-Trip Time(ms)

Protocol Stack User Data Size (bytes) Protocol Stack
1 100 500 1000 1400

Server-Server
E T H 0.88 0.95 2.09 3.44 4.51

IP -ETH 1.04 1.20 2.27 3.64 4.71
U D P - I P - E T H 1.21 1.42 2.49 3.80 4.87
T C P - I P - E T H 1.74 2.17 3.63 5.47 6.92

User-User Server-Stack
E T H 1.86 1.94 3.12 4.56 5.77

IP -ETH 2.06 2.27 3.44 4.96 6.25
U D P - I P - E T H 2.26 2.54 3.70 5.18 6.43
T C P - I P - E T H 2.89 3.46 5.01 7.00 8.64

Table 6.1: L L M Protocol Stack: User-to-User Latency

Before giving the performance results, we briefly describe the difference in the various

implementations. We describe three versions: Server-Server, User-User Server-Stack and

User-User Partitioned-Stack. A Server-Server implementation is the traditional x-kernel

running as a user level server. There is no boundary crossing between the user and

the x-kernel server. In User-User Server-Stack, there is a boundary crossing between

the x-kernel server and applications. However, all the protocol processing is done in

the x-kernel server. The User-User Partitioned-Stack version is our new implementation

of protocols as a user level library. Figures 6.13 and 6.14 depict the architectures of

User-User Server-Stack and User-User Partitioned-Stack implementations respectively.

6.2 Performance of the L L M Pro toco l Stack

Tables 6.1 and 6.2 show the round trip times and the incremental cost per protocol

respectively for the L L M protocol stack. The latency test used is a simple ping-pong

test between two applications called client and server. The client sends data to the

server and the server sends the same amount of data back. To eliminate the delay

Chapter 6. Performance

User 1 User n

Protocol Stack

IPC
System call/
Upcall

Figure 6.13: User-User Server Stack Architecture

Chapter 6. Performance 82

User 1 User n

Protocol Stack

* IPC

System call/
Upcall

Figure 6.14: User-User Partioned Stack Architecture

Chapter 6. Performance 83

Protocol
Incremental Costs (ms)

Protocol Server-Server User-User Server-Stack
IP 0.16 0.20

U D P 0.17 0.20
T C P 0.70 0.83

Table 6.2: L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data)

variance introduced by the network, the latency figures reported are measured for a

single processor averaged over 10,000 transactions. The U D P session is configured to

neither compute nor verify the checksum. The incremental cost is calculated by taking the

difference between the measured round trip latency for pairs of appropriate protocol stack

for 1 byte of user data transfer. For example, U D P latency is computed by subtracting

the latency of the IP -ETH stack from the latency of the U D P - I P - E T H stack for 1 byte

of user data.

The performance is measured for Server-Server and User-User Server-Stack. The

latency difference between the two implementations gives the overhead of IPC between

applications and the server.

It can be observed that the incremental cost of each protocol in User-User Server-

Stack case is higher than that of the corresponding protocol in Server-Server case. This,

we suspect, is due to unfavorable cache performance since two address spaces are involved

in User-User Server-Stack case.

6.3 Performance of the DAA and ILLM Protocol Stacks

We measured the round trip time of the sample D A A and I L L M protocol stacks

and compare it to that of the corresponding L L M implementation to determine the

relative overhead of the protocol architectures. The D A A and I L L M architectures do not

Chapter 6. Performance 84

Round-Trip Time(ms)
Protocol Stack User Data Size (bytes)

1 100 500 1000 1400
Server-Server

E T H D A A 0.92 1.06 2.14 3.47 4.53
I P - E T H D A A 1.07 1.25 2.33 3.70 4.76

U D P - I P - E T H D A A 1.20 1.40 2.49 3.86 4.94
User-User Server-Stack

E T H D A A 1.90 2.01 3.17 4.58 5.78
I P - E T H D A A 2.09 2.32 3.49 5.01 6.29

U D P - I P - E T H D A A 2.24 2.51 3.68 5.23 6.49

Table 6.3: D A A Protocol Stack: User-to-User Latency

Protocol
Incremental Costs(ms)

Protocol Server-Server User-User Server-Stack
IP

U D P
0.15
0.13

0.19
0.15

Table 6.4: D A A Protocol Stack: Incremental Costs per Round Trip (1 byte user data)

implement ILP optimization. The latency test used is a simple ping-pong test described in

Section 6.2. The U D P session is configured to neither compute nor verify the checksum.

Tables 6.3 and 6.5 show the round trip times for the D A A and I L L M protocol stacks

respectively. Tables 6.4 and 6.6 show the incremental cost per protocol for D A A and

I L L M protocol stacks respectively.

6.3.1 Performance Compar i son of D A A w i t h L L M

The cost of E T H D A A is higher than that of E T H . This is because E T H D A A has an

extended Ethernet header and hence takes more processing time. U D P in the D A A pro

tocol architecture performs marginally better than in the traditional L L M architecture.

This performance gain can be attributed to the fact that demultiplexing is performed

Chapter 6. Performance 85

Round-Trip Time(ms)
Protocol Stack User Data Size(bytes)

1 100 500 1000 1400
Server-Server

E T H 0.89 0.95 2.03 3.39 4.47
IP-ETH 1.14 1.29 2.37 3.73 4.80

UDP- IP -ETH 1.27 1.49 2.57 3.89 4.97
User-User Server-Stack

E T H 1.87 1.94 3.04 4.51 5.73
IP-ETH 2.15 2.36 3.51 5.01 6.34

U D P - I P - E T H 2.31 2.60 3.79 5.27 6.52

Table 6.5: I L L M Protocol Stack: User-to-User Latency

Protocol
Incremental Costs(ms)

Protocol Server-Server User-User Server-Stack
IP

U D P
0.25
0.13

0.28
0.16

Table 6.6: I L L M Protocol Stack: Incremental Costs per Round Trip (1 byte user data)

only at one layer in the D A A protocol architecture. The latency figures of IP and U D P

protocols also indicate that the D A A stack performs better when there are more number

of layers in the protocol stack.

The incremental costs of IP and UDP in the D A A protocol architecture are smaller

than that in the L L M architecture. This is because no demultiplexing is performed for

these protocols in the D A A protocol architecture.

6.3.2 Performance Comparison of ILLM with L L M

The I L L M performance is marginally worse than that of the L L M protocol stack. The

additional 60 microseconds of U D P latency for 1-byte user data in I L L M can be attributed

Chapter 6. Performance 86

Figure 6.15: Realtime vs. Non-realtime Latency

to saving (or storing) the session and message object pointers during the demultiplexing

phase at the Ethernet, IP and UDP layers and reading them again during the state-

change phase at each layer. The saving and reading operations require a few instructions

and are independent of the protocol complexity. Hence, their overhead is small and is

constant for each protocol layer. The performance of the I L L M stack can be improved by

appropriate customization. For example, if a protocol does not do any useful processing in

the state-change phase (e.g. Ethernet), it is not necessary to save the protocol's session

and message objects. For such protocols, the state-change phase can be eliminated

altogether. However, the real performance gains in I L L M implementations will come

from optimizations such as ILP which I L L M enables.

6.3.3 Real-time Network Traffic

Chapter 6. Performance 87

Figure 6.151 shows the latency of U D P D A A and U D P stacks for 1-byte of user data in

the presence of background U D P network traffic. The background U D P network traffic is

increased by running more threads which send data simultaneously. The measurements

are made for two data sizes for background network traffic: 1 byte and 1000 bytes. In

U D P D A A , the priority field in the E T H D A A header is interpreted as the priority of the

thread processing the packet. As can be seen in Figure 6.15, the increase in latency of

U D P D A A is much slower than that in U D P as the background network traffic is increased

for both data sizes.

6.4 Performance of the Non-Monolithic Protocol Stack

6.4.1 User-to-User Latency

We measured the round trip time of various user level protocols and compared it with

the corresponding Server-Stack implementation. The latency test is a simple ping-pong

test between two user level applications called client and server. The client sends data

to the server and the server sends the same amount of data back. The average round-

trip time is measured over 10000 such transactions. The figures reported are measured

for single processor case. The U D P protocol processing time does not include U D P

checksum overhead. Table 6.7 gives the latency of the various schemes. The latency

difference between Server-Server and User-User Server-Stack is due to the overhead of

moving the data between the two address spaces involved. The difference between User-

User Server-Stack and User-User Partitioned-Stack gives the overhead of our scheme.

The latency of the Ethernet stack is approximately the same in the Server-Stack and

the Partitioned-Stack cases because their implementations are very similar. We observe

that the latency of the Partitioned-Stack is smaller than that of the Server-Stack for user
1The number in the brackets indicates the data size of the background network traffic.

Chapter 6. Performance 88

Protocol Stack
Round-Trip Time(ms)

Protocol Stack User Data Size(bytes) Protocol Stack
1 100 500 1000 1400

Server-Server
E T H 0.88 1.01 2.09 3.44 4.51

IP -ETH 1.04 1.20 2.27 3.64 4.71
U D P - I P - E T H 1.21 1.42 2.49 3.80 4.87
T C P - I P - E T H 1.74 2.17 3.63 5.47 6.92

User-User Server-Stack
E T H 1.86 1.94 3.12 4.56 5.77

IP -ETH 2.06 2.27 3.44 4.96 6.25
U D P - I P - E T H 2.26 2.54 3.70 5.18 6.43
T C P - I P - E T H 2.89 3.46 5.01 7.00 8.64

User-User Par t i t ioned-Stack
E T H 1.88 1.98 3.13 4.51 5.65

IP -ETH 2.17 2.35 3.47 4.88 6.08
U D P - I P - E T H 2.39 2.63 3.78 5.17 6.31
T C P - I P - E T H 3.02 3.51 5.05 6.93 8.47

Table 6.7: User-to-User Latency

Chapter 6. Performance 89

Protocol
Incremental Costs (ms)

Protocol Server-Server User-User Server-Stack User-User Partitioned-Stack
IP 0.16 0.20 0.29

U D P 0.17 0.20 0.22
T C P 0.70 0.83 0.85

Table 6.8: Incremental Costs per Round Trip (1 byte user data)

data size larger than 1000 bytes. This, we suspect, is due to the difference in the cache

performance for the two implementations.

The following list describes in detail the overhead of our implementation:

• Overhead of recording bookkeeping information at each skeleton protocol layer. The

information stored consists of a protocol identifier and the length of the protocol

header.

• Longer IPC messages are exchanged because the bookkeeping information must be

included in the IPC messages.

• Constructing and interpreting the different types of IPC messages to pass them to

the appropriate protocol. This applies to both the kernel as well as the user.

• Preparing the x-kernel message object from the IPC message received from the

kernel to invoke the series of pops routines in the user space.

A l l of the above overheads are small, requiring only a few instructions, and are indepen

dent of packet length.

Table 6.8 lists the incremental cost of a round trip of each protocol for each imple

mentation. The incremental cost is calculated by subtracting the measured round trip

latency for pairs of appropriate protocol stacks that transfer 1 byte user data. For ex

ample, T C P latency is computed by subtracting latency for the IP -ETH stack from the

Chapter 6. Performance 90

latency for the T C P - I P - E T H stack. In the Partitioned-Stack case, the IP protocol has

a much higher incremental cost. This is mainly due to the overhead of preparing an

x-kernel message object from the IPC message. This cost is incurred only by protocols

that are at the user-kernel boundary. The incremental cost of T C P and U D P in the

Partitioned-Stack case is 20 microseconds higher than that in Server-Stack case. This

can be attributed to the small overhead of bookkeeping information and the larger IPC

messages that are exchanged.

Latency Breakdown

Table 6.9 gives the time spent in various protocol layers in the kernel and the user

space for both send and receive paths. Tables 6.9 and 6.10 also list the overheads in

volved in recording and playback of bookkeeping information2. The IP PopTcb and

TCP'/UDP PopTcb components reflect the cost of recording bookkeeping information

while IP DemuxTcb and TCP'/UDP DemuxTcb components reflect the cost of the play

back of bookkeeping information. As can be seen, the number of instructions executed for

these functions is extremely small. The user-kernel boundary protocols spend more time

in recording the bookkeeping information because they also store the user level session

list in the IPC message. The Other Overheads component reflects the cost of function

calls and x-kernel UPI library function calls. The User IP Preprocessing component re

flects the cost of converting an IPC message back into an x-kernel message object. This

component is the largest single overhead of our Partitioned-Stack implementation over

the Server-Stack implementation.

In the send path, the cost of the Ethernet layer increases dramatically with the size

of the user data because the message is copied to a contiguous buffer before making each
2It is possible to get rid of the bookkeeping overhead in a customized implementation. In that case,

the number of instructions taken for kernel demultiplexing is further reduced.

Chapter 6. Performance

Protocol Component
TCP(microseconds) UDP (microseconds)

Protocol Component Length(Bytes) Length (Bytes) Protocol Component
1 1400 1 1400

Send P a t h
TCPtest/UDPtest 24 26 15 15

T C P / U D P layer 179 561 45 47
IP layer 30 30 30 30

Other Overheads 6 6 6 6
Ethernet Layer 70 235 65 225
IPC to Kernel 294 391 285 355

Ethernet Driver 66 275 62 270
Tota l Send P a t h 669 1524 508 948

Receive P a t h
Interrupt Dispatch and Handling 96 89 96 91

Ethernet read 67 361 63 351
Ethernet demultiplexing 17 17 17 17

IP demultiplexing 21 21 21 21
IP PopTcb 4 4 4 4

TCP/UDP demultiplexing 18 17 18 18
TCP/UDP PopTcb 8 8 8 8

Other Overheads 13 13 13 13
IPC to User 246 309 238 306

User IP Preprocessing 46 46 46 47
User IP layer 47 45 47 47

User T C P / U D P layer 186 565 46 47
TCPtest/UDPtest 6 6 6 6

Other Overheads 16 16 16 16
Tota l Receive P a t h 791 1517 639 992
Network Transit Time 50 1215 50 1215

Tota l 1510 4256 1197 3155

Table 6.9: User-User Partitioned-Stack: Latency Breakdown

Chapter 6. Performance 92

TCP UDP
Protocol Component # Instructions # Instructions

Ethernet demultiplexing 154 154
IP demultiplexing 230 230

IP PopTcb 13 13
TCP/UDP demultiplexing 172 171

TCP/UDP PopTcb 33 33
Other Overheads 85 85

Total Kernel Demultiplexing 687 686
User IP DemuxTcb 7 7

User T C P / U D P DemuxTcb 7 7

Table 6.10: User-User Partitioned-Stack: Instruction Counts

IPC call. This extra copy could be avoided by modifying the IPC library. The IPC cost

from user to kernel is more than the IPC cost from the kernel to the user. Again, we

suspect this is due to the poor cache performance in the former.

6.4.2 Kernel Level Demultiplexing

The kernel demultiplexing takes between 61 to 98 microseconds. The large variation in

the demultiplexing cost is related to cache performance3. Therefore, we give a breakup of

the number of Motorola 88100 instructions executed in each kernel level protocol layer's

demultiplexing routine and the total number of instructions executed for demultiplexing

in the kernel. Table 6.10 lists the number of instructions taken by various components

of the kernel demultiplexing and user level processing. The demultiplexing cost for the

T C P - I P - E T H stack is the same as that of the U D P - I P - E T H stack and they take 687 and

686 instructions respectively. Given this low cost of kernel level demultiplexing, we could

perform the complete demultiplexing function in the interrupt handler. This would avoid

one extra copy of the data as we would be able to copy each packet directly to the IPC

3 T h e cache size on our machine is 16KB instruction and 16 KB data cache per processor.

Chapter 6. Performance 93

microseconds
90

80

70

60
CD
| 50
x
E 40
CD
Q

30

20

10

1 Active

SZ3 All Active

10 20 30 40 50 60 70

Open connections
80 90 100

Figure 6.16: Demultiplexing Cost, as a Function of Number of Open Connections

buffer shared between the recipient address space and the kernel.

Figure 6.16 shows the cost of kernel level demultiplexing as the number of open T C P

connections is varied from 1 to 100. The solid line indicates the cost of demultiplexing

when the data is sent to only one connection. This is the best case demultiplexing

scenario and it costs 66 microseconds. The session entry, in this case, is always found

in the cache of the T C P active map. The dotted line depicts the demultiplexing cost in

the worst case scenario in that data message is sent to each open connection in a round

robin fashion. In the latter, the session entry is guaranteed not to be in the cache of the

T C P map and a search in the map has to be carried out. This results in an extra 14

microseconds of overhead. Another important point to note is that the demultiplexing

Chapter 6. Performance 94

Protocol Stack Throughput(Mb /'sec)
Server-Server

User-User Server-Stack
User -User Par t i t ioned-Stack

6.15
4.74
4.30

Table 6.11: T C P Throughput

cost is totally insensitive to the number of open connections. This is similar to the result

achieved in traditional kernel based protocol implementations and Mach Packet Filter

based implementation [MB93].

6.4.3 User- to-User Throughput

Table 6.11 lists the throughput in Mb/sec for T C P for various implementations. T C P

throughput is measured over the T C P - I P - E T H protocol stack by measuring the time

taken to send 1 megabytes from the client to a server. T C P uses a 4096 bytes window

and fragments the data into 1460 byte data messages. The throughput differences among

the three implementations are as expected. In the Server-Server implementation, there is

no boundary crossing from the server to the application and hence, its performance is the

best. In the Server-Stack implementation there are two boundary crossings on each side,

per packet, and a corresponding performance reduction is observed. In the Partitioned-

Stack implementation, extra overhead over the Server-Stack implementation is incurred

because of longer IPC messages that are exchanged, converting each IPC message to

the x-kernel message object, and recording and playback of bookkeeping information.

This overhead results in a 9% slowdown over the Server-Stack implementation. In the

Partitioned-Stack implementation, there is one extra data copy on the send path over

the Server-Stack implementation which could be eliminated by changing the IPC library

interface. This elimination would result in performance closer to that of the Server-Stack

implementation.

Chapter 6. Performance 95

Protocol Stack TCP Connection Setup time(ms)
Server-Server

User-User Server-Stack
User-User Partitioned-Stack

5.81
7.42
11.01

Table 6.12: Connection Setup Cost

6.4.4 TCP Connection Setup Cost

Table 6.12 indicates the relative connection setup time of the three implementations.

The connection setup cost is an important measure of performance for applications that

periodically connect to a peer entity, send a small amount of data, and close the connec

tion. The connection setup cost for the Server-Stack implementation incurs IPC overhead

over the Server-Server implementation. The 3.59 milliseconds extra for the connection

setup cost for the Partitioned-Stack implementation is incurred over the Server-Stack

implementation because of the following overheads:

• Extra IPC messages exchanged to register the user level session id list with the

kernel.

• Creation of a shadow session stack in the kernel.

6.4.5 Performance on Multiprocessors

Figures 6.17 and 6.18 show the effect of active multiprocessors on the T C P and U D P

round trip latencies respectively for all three implementations. A n interesting point

to note is that the latency of the Partitioned-Stack implementation is smaller than the

Server-Stack latency for more than one active processor. This shows that the Partitioned-

Stack implementation is potentially more parallelizable than the Server-Stack or Server-

Server implementations. This is an important result because we believe that for high

speed networking, shared memory multiprocessor machines will be the most successful.

Chapter 6. Performance

msec
4

2 3
Processors

trd Server-Server

E3 Server-Stack

E3 Partitioned-Stack

Figure 6.17: T C P Latency as a Function of Number of Processors

Chapter 6. Performance 97

msec

Server-Server

H Server-Stack

EE3 Partitioned-Stack

Processors

Figure 6.18: UDP Latency as a Function of Number of Processors

Chapter 6. Performance 98

Another interesting point to note is that the latencies of T C P and U D P drop when we

go from a single active processor to two active processors and remain constant as the

number of active processors is further increased. This is because there is not enough

concurrency in the latency tests which are of a stop and wait nature.

Chapter 7

Conclusions and Future Research

In this thesis, three protocol architectures for future high-speed multi-media communi

cation environment have been proposed. This chapter concludes the thesis by presenting

a summary of the major results and some future research directions.

This thesis examined the drawbacks of traditional protocol architectures and proposed

new protocol architectures which overcome some of the limitations of traditional protocol

architectures. These limitations include the following:

• Traditional protocol architectures do not support application specific quality of

service due to their use of layered logical multiplexing.

• Traditional protocols do not provide support for real-time guarantees and low la

tency because there is no provision in the Media Access Control (MAC) layer

protocols such as Ethernet and X.25 to accommodate a priority/deadline field.

• New generation multimedia applications require that part of the protocol function

ality reside in the applications itself. This goal requires splitting protocol function

ality between the kernel and applications on an application basis.

• The performance of traditional protocols has not scaled well with the increase in

processor speed because of the increased gap between processor speed and memory

speed. ILP has been proposed as a means to minimize data transfer over the

memory bus. However, it is difficult to implement traditional protocol stacks using

ILP.

99

Chapter 7. Conclusions and Future Research 100

• Parallelization of traditional protocols and in particular, that of T C P has been

difficult because T C P has a lot of shared state and requires extensive locking.

7.1 Summary of Results

This thesis proposed three new architectures which overcome the above limitations of

traditional protocol architectures. These new architectures are D A A , I L L M , and Non-

Monolithic.

The D A A protocol model essentially provides low latency and high throughput to

applications. In the D A A protocol architecture, an application identifier and the dead

line/priority of a message is enclosed in the lowest protocol layer. The application iden

tifier field is the only demultiplexing point in the protocol stack. This field provides a

direct channel to the remote application. The priority/deadline field provides proper

scheduling of the packet to meet its deadline as soon as the packet is received. The

application identifier field can be processed in the network interrupt handler itself, and

the data can be copied directly to the application buffer, thereby minimizing the number

of data copies. Application resources can also be checked in the interrupt handler and

packets can be dropped in the interrupt handler if the application does not have enough

resources to receive the packet.

In the I L L M framework, protocol demultiplexing is decoupled from the rest of the

protocol functionality and it is performed in an integrated fashion for the complete proto

col stack. The rest of the protocol processing for each protocol in the stack is performed

after the demultiplexing phase. There are several advantages of the I L L M protocol model

over the traditional protocol model. The demultiplexing phase is a read-only operation

and constitutes only a small fraction of the total protocol computation. Hence, it can be

Chapter 7. Conclusions and Future Research 101

performed very fast. Besides, after the demultiplexing phase, the identity of the destina

tion application is known. Hence, the I L L M protocol model essentially achieves all the

advantages of the D A A protocol architecture. In addition, the I L L M remains compatible

with existing protocols. The I L L M protocol model also facilitates the ILP implementa

tion which is considered essential for high performance protocol processing on modern

processors. After the demultiplexing phase, the header-data boundary is known and this

eases ILP implementation.

The Non-Monolithic protocol architecture provides a flexible way to decompose pro

tocol services between a trusted kernel address space and user address spaces and gives

the protocol implementer the flexibility to decide how the services should be decomposed.

The primary functionality that must be included in the kernel portion of the protocol

implementation is the efficient demultiplexing of incoming data to the appropriate re

cipient address space. Additional functionality, such as IP reassembly and routing table

management, may be added to the kernel implementation. The Non-Monolithic protocol

architecture is scalable to thousands of processors. There is no inherent limitation to

parallelization because each connection can be allocated its own protocol stack, thereby

having no protocol state shared with other connections. In addition, the Non-Monolithic

protocol model enables application level framing which is a key requirement of multime

dia applications. In multimedia applications, part of protocol processing is required to

be performed in the application itself. This model also achieves all the advantages of

D A A and I L L M protocol models.

Another contribution of this research is the implementation of protocol independent

frameworks for each of the proposed protocol models in the context of the parallel x-

kernel. The TCP/UDP-IP-Ethernet protocol stack is implemented and parallelized in

each of the three frameworks for performance measurements. The same protocol stack

is also parallelized in standard L L M protocol architecture for performance comparison

Chapter 7. Conclusions and Future Research 102

purposes. The performance of these models was measured under real network traffic con

ditions on two separate machines communicating with each other. Each of the proposed

models achieved performance comparable to that of the traditional L L M protocol model

without employing any key optimizations such as ILP. In addition, these protocol models

achieve all the advantages described above.

Another contribution of this research is the parallelization of the x-kernel for shared

memory multiprocessor machines. Fine grain parallelism is incorporated in the x-kernel

to maximize its performance for multithreaded and multiprocessor environments. The

TCP/UDP-IP-Ethernet protocol stack is also parallelized.

7.2 Future Research Directions

There are a number of important issues that are left unaddressed in the thesis. They are

listed as follows:

• Implementation of a sample protocol stack in each of the three protocol archi

tectures using Integrated Layer Processing optimization and demonstrating the

performance gains for each of the three protocol models.

• Experimentation with Application Level Framing using the Non-Monolithic proto

col architecture for sample multimedia applications.

• Demonstration of the scalability of the Non-Monolithic protocol architecture on

larger multiprocessor machines.

• Implementation of the demultiplexing operation in I L L M and Non-Monolithic pro

tocol architectures using wait-free data structures. This will parallelize the demul

tiplexing phase totally, thereby giving better performance than that of the L L M

protocol model under the same conditions.

Bibliography

[AABYB89] H . Abu-Amara, T. Brazilai, Y . Yemini, and T. Balraj. PSi: a silicon
compiler for very fast protocol processing. In Proceedings of First IFIP
Workshop on Protocols for High-Speed Networks, May 1989.

[AP93] M . Abbot and Larry L. Peterson. Increasing network throughput by inte
grating protocol layers. IEEE/ACM Transactions on Networking, 1993.

[BB92] J .C. Brusrtoloni and Brian N . Bershad. Simple protocol processing for
high-bandwidth low-latency networking. Cmu-cs-93-132, Carnegie-Mellon
University, September 1992.

[Ber91] Brian N . Bershad. Practical considerations for lock-free concurrent objects.
Cmu-cs-91-183, Carnegie-Mellon University, September 1991.

[BG93] Mats Bjorkman and Per Gunningberg. Locking effects in multiprocessor
implementations of protocols. In Proceedings of ACM SIGCOMM'93 Con
ference on Communications, Architecture and Protocols, September 1993.

[BN84] A . D . Birrell and B . J . Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39—59, February 1984.

[BOP94] L.S. Brakmo, S.W. O'Malley, and L . L . Peterson. T C P vegas: New tech
niques for congestion detection and avoidance. In Proceedings of ACM
SIGCOMM'94 Conference on Communications, Architecture and Proto
cols, September 1994.

[BPP92] M . L . Bailey, M . A . Pagels, and Larry L. Peterson. The x-Chip: An experi
ment in hardware multiplexing. In Proceedings of IEEE Workshop on the
Architecture and Implementation of High Performance Communications
Subsystems, Feb 1992.

[Cal92] R. Callan. TCP and UDP with Bigger Addresses (TUBA), a simple pro
posal for internet addressing and routing. Request For Comments 1347,
June 1992.

[Che86] D. Cheriton. V M T P : a transport protocol for the next generation of com
puter systems. In Proceedings of ACM SIGCOMM'86 Conference on Com
munications, Architecture and Protocols, August 1986.

103

Bibliography 104

[Che88] Greg Chesson. X T P / P E overview. In Proceedings of the 13th conference
on local computer networks, pages 292-296. IEEE Computer Society Press,
Silver Spring, M D , October 1988.

[CJRS89] D. Clark, V . Jacobson, J. Romkey, and H . Salwen. An analysis of T C P pro
cessing overhead. IEEE Communications, 27(6):23-29, September 1989.

[CLZ87] David D. Clark, M . L . Lambert, and L. Zhang. N E T B L T : A high through
put transport protocol. In Proceedings of ACM SIGCOMM'87 Conference
on Communications, Architecture and Protocols, pages 353-359, August
1987.

[CSBH91] D. Clark, V . Serf, R. Braden, and R. Hobby. Towards the Future Internet
Architecture. Request For Comments 1287, December 1991.

[CSSZ90] E .C. Cooper, P.A. Steenkiste, R.D. Sansom, and B.D. Zi l l . Protocol imple
mentation of the nector communication processor. In Proceedings of ACM
SIGCOMM'90 Conference on Communications, Architecture and Proto
cols, September 1990.

[CT90] David D. Clark and David L. Tennenhouse. Architectural considerations
for new generation of protocols. In Proceedings of ACM SIGCOMM'90
Conference on Communications, Architecture and Protocols, pages 200-
208, September 1990.

[Dee92] S.E. Deering. Simple Internet Protocol(SIP) Specifications. Internet Draft,
November 1992.

[Dov90] Ken Dove. A high capacity T C P / I P in parallel streams. In Proceedings of
UKUUG Summer 1990, pages 233-235, July 1990.

[DWB +93] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A . Edwards, and J . Lum-
ley. Afterburner: A network-independent card provides architectural sup
port for high-performance protocols. IEEE Network, 7(4):36-43, July 1993.

[Fel90] David C. Feldmeier. Multiplexing issues in communication systems design.
In Proceedings of ACM SIGCOMM'90 Conference on Communications,
Architecture and Protocols, pages 209-219, September 1990.

[Fel93] David C. Feldmeier. An overview of the TP++ transport protocol project.
In Ahmed Tantawy, editor, High Performance Communication. Kluwer
Academic Publishers, 1993.

[Fra93] Paul Francis. A near-term architecture for deploying PIP. IEEE Networks,
7(3):30-37, May 1993.

Bibliography 105

[fSIPSOSI87] International Organization for Standardization - Information Processing
Systems - Open Systems Interconnection. Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.l). International Standard
Number 8825, ISO, Switzerland, May 1987.

[GDFR90] D. Golub, R. Dean, A . Forin, and R. Rashid. Unix as an application
program. In Proceedings of the 1990 Summer USENIX Conference, pages
87-95, June 1990.

[GKWW89] Dario Giarrizzo, Matthias Kaiserswerth, Thomas Wicki , and Robin C.
Williamson. High-speed parallel protocol implementation. In Proceedings
of First IFIP Workshop on Protocols for High-Speed Networks, pages 165-
180. H . Rudin editor, North Holland Publishers, May 1989.

[GNI92] Murray W. Goldberg, Gerald W. Neufeld, and Mabo R. Ito. A parallel
approach to OSI connection-oriented protocols. In Proceedings of third
IFIP Workshop on Protocols for High-Speed Networks, May 1992.

[Gro90] Motorola Computer Group. MVME188 VMEmodule RISC Microcomputer
User's Manual. Motorola, 1990.

[Her90] Maurice Herlihy. A methodology for implementing highly concurrent data
structures. Second ACMSIGPLANSymposium on Principles and Practice
of Parallel Programming, March 1990.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro
gramming Languages, January 1991.

[HMPT89] Norman C. Hutchinson, Shivakant Mishra, Larry L. Peterson, and V i -
craj T. Thomas. Tools for implementing network protocols. Software -
Practice and Experience, 19(9):895-916, 1989.

[HP88] Norman C. Hutchinson and Larry L. Peterson. Design of the x-kernel. In
Proceedings of ACM SIGCOMM '88, pages 65 - 75, 1988.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architec
ture for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64—76, January 1991.

[Hut92] Norman C. Hutchinson. Protocols vs. parallelism. Proceedings of the 1992
x-kernel Workshop, 1992.

[Inc87] Sun Microsystems Inc. XDR: External Data Representation Standard. Re
quest For Comments 1014, Network Information Center, SRI International,
June 1987.

Bibliography 106

[1093] Edwin F. Menze III and Hilary K . Orman. x-Kernel Programmer's Manual
(Version 3.2). Department of Computer Science, University of Arizona,
Tucson, Feb 1993.

[Jac88] Van Jacobson. Congestion avoidance and control. In Proceedings of ACM
SIGCOMM'88 Conference on Communications, Architecture and Proto
cols, pages 314-329, August 1988.

[Jac90] V . Jacobson. 4.3 BSD header prediction. ACM SIGCOMM Computer
Communication Reviews, 20(2):13—15, 1990.

[JBB92] V . Jacobson, R. Braden, and D. Borman. TCP Extensions for High-
Performance. Request For Comments 1326, Cray Research, May 1992.

[JHC94a] Parag K . Jain, Norman C. Hutchinson, and Samuel T. Chanson. A frame
work for the non-monolithic implementation of protocols in the x-kernel.
In Proceedings of the 1994 USENIX Symposium on High Speed Networking,
pages 13-30, August 1994.

[JHC94b] Parag K . Jain, Norman C. Hutchinson, and Samuel T. Chanson. Pro
tocols architectures for delivering application specific quality of service.
Submitted for publication, 1994.

[JSB90] Niraj Jain, Mischa Schwartz, and Theodore R. Bashkow. Transport pro
tocols processing at GBPS rates. In Proceedings of ACM SIGCOMM'90
Conference on Communications, Architecture and Protocols, pages 188—
199, September 1990.

[KC88] H . Kanakia and D. Cheriton. The V M P network adapter board (NAB):
High-performance network communication for multiprocessors. In Proceed
ings of ACM SIGCOMM'88 Conference on Communications, Architecture
and Protocols, August 1988.

[KP93a] Jonathan Kay and Joseph Pasquale. The importance of non-data touching
processing overheads in T C P / I P . In Proceedings of ACM SIGCOMM'93
Conference on Communications, Architecture and Protocols, pages 259-
268, September 1993.

[KP93b] Jonathan Kay and Joseph Pasquale. Measurement, analysis, and improve
ment of U D P / I P throughput for the DECstation 5000. In Proceedings of
the Winter USENIX Conference, pages 249-258, January 1993.

[LMKQ89] S. J . Leffler, M . McKusick, M . Karels, and J . Quarterman. The Design
and Implementation of the 4-3 BSD UNIX Operating Systems. Addison-
Wesley, 1989.

Bibliography 107

[MB76] Robert M . Metcalfe and David R. Boggs. Ethernet: Distributed packet
switching for local computer networks. Communications of the ACM,
19(7):395-404, July 1976.

[MB92] C. Maeda and Brian N . Bershad. Networking performance for microker
nels. In Proceedings of the fourth WWOS, 1992.

[MB93] C. Maeda and Brian N . Bershad. Protocol service decomposition for high-
performance networking. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, December 1993.

[MCS91] J . M . Mellor-Crummey and M . L. Scott. Synchronization without con
tention. In PROC of the Fourth ASPLOS, pages 269-278, Santa Clara,
C A , 8-11 April 1991. In CAN 19:2, OSR 25 (special issue), and ACM
SIGPLAN Notices 26A.

[MG94] Kjersti Moldeklev and Per Gunningberg. Deadlock situations in T C P over
A T M . In Proceedings of Fourth IFIP Workshop on Protocols for High-
Speed Networks. H . Rudin editor, North Holland Publishers, August 1994.

[MJ93] S. McCanne and V . Jacobson. The BSD packet filter: A new architecture
for user-level packet capture. In Proceedings of the 1993 Winter USENIX
Conference, pages 259-269, January 1993.

[MP91] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical
Report CUCS-005-91, Department of Computer Science, Columbia Uni
versity, February 1991.

[MRA87] J .C. Mogul, R .F . Rashid, and M . J . Accetta. The packet filter: A new
architecture for user-level network code. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles, pages 39-51, November 1987.

[NGB+91] A. Nicholson, J . Golio, D.A. Borman, J . Young, and W. Roiger. High speed
networking at Cray research. ACM SIGCOMM Computer Communication
Reviews, 21(1):99-110, 1991.

[NIG+93] G. Neufeld, M.R. Ito, M . Goldberg, M . J . McCutcheon, and S. Ritchie.
Parallel host interface for an A T M network. IEEE Network, 7(4):24-34,
July 1993.

[Par90] G . M . Parulkar. The next generation of internetworking. ACM SIGCOMM
Computer Communications Reviews, 20(l):18-43, 1990.

[Par93] Craig Partridge. Protocols for high-speed networks: some questions and a
few answers. Computer Networks and ISDN Systems, 25:1819-1028, 1993.

Bibliography 108

[PDP93] M . A . Pagels, P. Druschel, and Larry L. Peterson, cache and T L B effective
ness in the processing of network data. Technical Report 93-4, Department
of Computer Science, University of Arizona, Tucson, 1993.

[Pet94] Larry L. Peterson. Resource allocation in the x-kernel. Personal Communi
cation, Department of Computer Science, University of Arizona, Tucson.,
1994.

[Pit87] Thomas Pittman. Two-level hybrid interpreter/native code execution for
combined space-time program efficiency. In Proceedings of the SIGPLAN
'87 Symposium on Interpreters and Interpretive Techniques, pages 150—
152, St. Paul, M N , June 1987. A C M .

[Plu82] D. Plummer. An Ethernet Address Resolution Protocol. Request For Com
ments 826, DCP@MJ.T-MC, November 1982.

[Pos80] J . B . Postel. User Datagram Protocol. Request For Comments 768, USC
Information Science Institute, Marina Del Ray, C A . , August 1980.

[Pos81a] J . B. Postel. Internet Control Message Protocol Request For Comments
792, USC Information Science Institute, Marina Del Ray, C A . , September
1981.

[Pos81b] J . B . Postel. Internet Protocol. Request For Comments 791, USC Infor
mation Science Institute, Marina Del Ray, C A . , September 1981.

[Pos81c] J . B. Postel. Transmission Control Protocol. Request For Comments 793,
USC Information Science Institute, Marina Del Ray, C A . , September 1981.

[PP93] C. Papdopoulos and G . M . Parulkar. Experimental evaluation of SUNOS
IPC and T C P / I P protocol implementation. IEEE/ACM Transactions on
Networking, 1(2):199-216, april 1993.

[PS93] T .F . Porta and M . Schwartz. A feature-rich transport protocol: functional
ity and performance. IEEE Journal on Selected Areas in Communications,
11, May 1993.

[PT89] G . M . Parulkar and J.S. Turner. Towards a framework for high speed com
munication in a hetrogeneous networking environment. IEEE, pages 665-
667, 1989.

[Rit93] D. Stuart Ritchie. The Raven Kernel: A microkernel for shared mem
ory multiprocessors. Technical Report 93-36, Department of Computer
Science, University of British Columbia, Apri l 1993.

mailto:DCP@MJ.T-MC

Bibliography 109

[RN93] D. Stuart Ritchie and Gerald W. Neufeld. User level IPC and device
management in the Raven kernel. In Proceedings of the USENIX Workshop
on Micro-kernels and Other Kernel Architectures, September 1993.

[SBB+91] M . D . Schroeder, A . D . Birrell, M . Burrows, H . Murray, R . M . Needham,
T.L. Rodeheffer, E . H . Satterthwaite, and C P . Thacker. Autonet: A high
speed, self configuring local area network using point-to-point links. IEEE
Journal on Selected Areas in Communications, 9(8):1318-1335, October
1991.

[Ten89] David L. Tennenhouse. Layered multiplexing considered harmful. In Pro
ceedings of First IFIP Workshop on Protocols for High-Speed Networks. H .
Rudin editor, North Holland Publishers, May 1989.

[TNML93] C. A . Thekkath, T .D. Nguyen, E. Moy, and E. D. Lazowska. Implementing
network protocols at user level. IEEE/ACM Transactions on Networking,
l(5):554-565, 1993.

[Top90] C. Topolcic. Experimental Internet Stream Protocol, Version 2 (ST-II).
Request For Comments 1190, CIP Working Group, October 1990.

[TS91] B .C . Traw and J . Smith. A high-performance host interface for A T M
networks. In Proceedings of ACM SIGCOMM'91 Conference on Commu
nications, Architecture and Protocols, pages 317-325, September 1991.

[Tsc91] C. Tschudin. Flexible protocol stacks. In Proceedings of ACM SIG-
COMM'91 Conference on Communications, Architecture and Protocols,
pages 197-204, September 1991.

[WF89] C M . Woodside and R .G . Franks. A comparison of some software archi
tectures for parallel execution of protocols. Telecommunications Research
Institute of Ontario, Department of Systems and Computer Engineering,
Carleton University, Ottawa., July 1989.

[WVT93] A. Wolman, G. Voelker, and C A . Thekkath. Latency analysis of T C P on
an A T M network. Technical report, University of Washington, 1993.

[YBMM94] M . Yuhara, Brian N . Bershad, C. Maeda, and J . Eliot B . Moss. Efficient
packet demultiplexing for multiple endpoints and large messages. In Pro
ceedings of the 1994 Winter USENIX Conference, pages 153-165, January
1994.

[Zhu92] Wenjing Zhu. Effect of layered logical multiplexing protocol architecture.
Personal Communication, Department of Computer Science, University of
British Columbia, 1992.

Bibliography 110

[Zit89] Martina Zitterbart. High-speed protocol implementation based on a mul
tiprocessor - architecture. In Proceedings of First IFIP Workshop on Pro
tocols for High-Speed Networks, pages 151-163. H . Rudin editor, North
Holland Publishers, May 1989.

