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Abstract 

The goal of the thesis is to discover knowledge on large spatial databases. Specifically, it 

discusses the problem of extracting patterns and characteristics of clusters from thematic 

maps. For instance, a characteristic of an expensive housing cluster may be that the average 

household income is over 100,000 dollars. Three key issues are addressed in this thesis. The 

first issue is how to measure the interest/utility values of characteristics. In order to 

accommodate different kinds of thematic maps, two measures are proposed and analysed: one 

based on entropy, and the other on standard deviation. Both measures satisfy all the desirable 

properties, and work effectively in practice. The second issue is how to extract patterns from 

multiple clusters. Two pattern extraction operations are defined. The commonQ operation is 

able to find the common characteristics among multiple clusters. The differentQ operations is 

capable of discovering the characteristics which distinguish one cluster from another. The third 

issue is how to compute characteristics utility measures and pattern extraction operations 

efficiently. Four different methods are proposed and evaluated for the computation of utility 

measures. Complexity and experimental results indicates that a technique based on isothetic 

rectangle intersections is the most efficient, outperforming all the other techniques such as a 

technique based on R-tree technique. For the problem of how to extract patterns of multiple 

clusters efficiently. Two different methods for pattern extraction are evaluated. The technique 

based on isothetic rectangle intersections again outperforms the technique based on R-tree, and 

can extract patterns from hundreds of thematic maps in seconds of CPU time. 
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Chapter!. Introduction 

Chapter 1 

Introduction 

1.1 Data Mining 

1.1.1 Demand for Data Mining 

It has been estimated that the amount of information in the world doubles every 20 

months [1]. The corporate, government and scientific communities are overwhelmed with an 

influx of data that is routinely stored in databases. For example, even simple transactions, 

such as a telephone call, the use of a credit card, or a medical test, are typically recorded in a 

computer. This flood of raw data contains interesting and useful information. For instance, by 

analysing the database of a supermarket, one may discover certain knowledge such as people 

who buy whole wheat bread tend to buy 1% milk. This discovered knowledge may help in 

making marketing decisions and other purposes. This capacity of inducing hidden knowledge 

is beyond the scope of traditional database management systems (DBMSs). 

Traditional DBMSs not only provide procedures for storing, accessing and modifying 

the data, but also offer simple operators for the deduction of information, e.g., inferring 

information that is a logical consequence of the information in the database. For example, the 

join operator, when applied to two relational tables where the first administrates the relation 

between employees and departments and the second describes the relation between 

departments and managers, infers a relation between employees and managers. Although all 

DBMSs support deduction of information, none supports induction. 
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Chapter!. Introduction 

Data mining aims to find hidden patterns that can be induced from a database. Such 

patterns can be formulated as a rule to predict the value of an attribute in terms of other 

attributes. For example, from the employee-department table and the department-manager 

table mentioned above, it might be inferred that each employee has a manager. 

The need for data mining has been widely recognised and it is even ranked one of the 

most important topics of database research for the 90's. A combination of business and 

research interests has produced increasing demands for, as well as increased activity to 

provide, tools and techniques for mining hidden knowledge in databases. For instance, several 

banks have derived better loan approval and bankruptcy prediction methods by using patterns 

discovered in loan and credit histories. IBM has used data mining techniques to predict defects 

during the assembly of disk drives. American Airlines searches frequent flyer database to find 

its better customers, targeting them for specific marketing promotions. Some of the data 

mining applications will be briefly introduced in the next chapter. 

1.1.2 Tasks of Data Mining 

Although there are numerous data mining applications, they perform the following four 

classes of tasks: dependency analysis, class identification, concept description and deviation 

detection [2]. 

Analysing dependencies among data represents a fundamental class of discoverable 

knowledge. A dependency exists between two items if the value of one item can be used to 

predict the value of the other under certain probability. There have been many studies 
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Chapter 1. Introduction 

conducted on dependency analysis [3] [4] [5], and it has been applied to many areas, such as 

astronomy [6], and the stock market [7]. 

Class identification is to group data into meaningful classes. This problem has been 

widely investigated in AI and Statistics literatures [8] [9]. There are numerous clustering 

algorithms ranging from the traditional methods of pattern recognition [10] and mathematical 

taxonomy [11], to the conceptual clustering techniques developed in machine learning [12]. In 

the next chapter, a clustering algorithms [16], which is related to this thesis, will be introduced. 

Concept description is to summarise interesting qualities about a class [13]. There are 

two broad types of intentional descriptions: characteristic and discriminating. A characteristic 

description describes what the data in a class share in common. A discriminating description 

describes how two or more classes differ. The methods for performing concept description 

will be discussed in this thesis. 

Deviation detection is to find extreme patterns, such as anomalous instances that do not 

fit into standard classes. The main applications of deviation analysis are to filter out patterns 

which are significant enough to be of interest [14]. 

1.2 Spatial Data Mining 

Recent studies on data mining have extended the scope of data mining from alphanumeric 

data to spatial data. This section is dedicated to introduce knowledge discovery on spatial 

databases. 
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Chapter 1. Introduction 

1.2.1 Motivations for Spatial Data Mining 

Spatial data are data related to space. The space of interest can be, for example, a 

geographic space such as the surface of the earth, or a man-made space like the layout of a 

VLSL design. Just like what happened to conventional data types, i.e., alphanumeric data, 

there have also been huge amount of spatial data accumulated from satellites, medical 

equipment, etc. For instance, earth observation satellites are expected to generate one terabyte 

(1015 bytes) of data every day. At a rate of one picture each second, it would take a person 

several years just to look at the pictures generated in one day. This motivates the study and 

development of knowledge discovery mechanisms for spatial data. 

Spatial data mining is the extraction of interesting spatial patterns, general relationships 

between spatial data and non-spatial data, and other data characteristics not explicitly stored in 

spatial databases. Besides general challenges faced by data mining tasks, such as that the 

discovered knowledge should accurately portray the contents of the database, there are extra 

requirements on the spatial database mining algorithms. For example, efficiency is crucial for 

spatial database mining algorithms, due to the inherent complications of the spatial data types 

and spatial access methods. These issues will be discussed in Chapter 2. 

Spatial data mining has been a very active research area in recent years. There have been 

valuable studies on spatial data mining, ranging from spatial association rules induction, to 

spatial data clustering, spatial data generalisation, etc. While the detailed discussion will be 

conducted in Chapter 2, the following is a brief introduction of the two research works which 

motivated the study of this thesis. 
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Chapter 1. Introduction 

1.2.2 Applications of Spatial Data Mining 

According to the classification discussed in Section 1.1.2, the work developed by W. Lu, et al. 

[15] can be categorised into concept description. A generalisation-based knowledge discovery 

mechanism is proposed to perform spatial merge and generalisation on spatial data. Concept 

hierarchies must be available in advance in order to guide the spatial merge and generalisation. 

This causes the following two problems. The first is that the quality of discovered knowledge 

relies crucially on the appropriateness of the hierarchy. The second is for many applications, it 

is very difficult to know a priori which hierarchy would be appropriate. 

In [16], R. T. Ng and J. Han pointed out the problems with [15], and proposed a 

clustering algorithm CLARANS for finding interesting clusters on spatial data. The clusters 

produced by the clustering algorithms possess a very tight spatial characterisation. For 

example, the clustering structure found by CLARANS may lead to such a discovery that 80% 

of all mansions in Greater Vancouver have either a mountain or river view. 

1.3 Problem Definition 

Although CLARANS answers the question of what the clusters are, it fails to give the 

characteristic description of the clusters. While this problem can be solved by generalising the 

non-spatial attributes of the clusters as proposed in [15], again, it imposes the restriction that 

there exists pre-constructed concept hierarchies. In order to avoid the same problems bought 

by concept hierarchies , this thesis aims to provide concept description of the clusters without 

any dependence on concept hierarchies. 
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Chapter 1. Introduction 

One way of finding the characteristics of the clusters is to correlate the clusters with 

various statistical census data. Census data are released and updated frequently by statistical 

and polling agencies such as Statistics Canada. Census data are excellent source for knowledge 

discovery, because they almost cover every aspect of the society such as population, 

education, occupation, dwelling, income and so on. Since census data is always related to 

certain geographic region, it is presented in the form of a thematic map, which is the map 

showing the spatial distribution of some theme. For example, the theme of the map shown in 

Appendix A is "the percentage of female labour force in managerial and administrative 

occupations". 

Hence, this thesis works on discovering the characteristics of clusters through thematic 

maps. Furthermore, the clusters may have certain characteristics common to all clusters, or 

some characteristics discriminating from one with another. Methods are designed to extract 

common and discriminating characteristics of the clusters. The objective of this thesis is to 

solve the following three main problems. 

Q l . How to measure the characteristics of a cluster? 

Since there might be thousands of thematic maps, Measures should be designed to select 

out the maps which represent the characteristics of a cluster. How to define the measures is 

crucial. The definitions of measures determines whether the characteristics of a cluster 

captured by the measures are accurate or not. Also they set the foundation for the pattern 

extraction, which is explained in Q2. The problem of how to define the measures is not trivial, 
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Chapter 1. Introduction 

due to the fact that there are different types of thematic maps, and different maps may have 

different units. 

Q2. How to extract the common and discriminating characteristics from the multiple 

clusters? 

Measures should be defined to perform concept description task, i.e. discovering the 

common and discriminating characteristics of the multiple clusters. Similar to the measures 

required in Ql , the measures performing concept description task should also be carefully 

studied, in order to obtain "good" results, i.e. the maps truly reflecting the common or different 

characteristics of the clusters. 

Q3. How to provide scalable computation of the measures? 

In order to study the characteristics of the clusters extensively, it is desirable to process 

as many maps as possible. The number of maps may grow from hundreds to thousands. This 

gives rise to the problem of how to provide scalable computations for the measures mentioned 

in Ql and Q2. This problem is complicated by the fact that spatial indexing technique is not 

readily applicable, because the thematic maps usually do not have accompanying spatial 

indices. 

1A Contributions 

This thesis proposed the following solutions to the problems presented above. 
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Chapter 1. Introduction 

A l . There are two kinds of thematic maps, namely ordinal and nominal thematic 

maps. While the details of the thematic maps will be introduced in Chapter 3, briefly 

speaking, that whether a thematic is ordinal or nominal depends on whether the census data 

described by the thematic map is ordinal or nominal. The existence of two different maps 

imposes the following two requirements. The first requirement is that two distinct measures 

are needed for these two different kinds of maps, due to the different nature of the two kinds 

of maps. The second requirement is that the two measures should uniformly deal with a 

mixture of two different kinds of maps, i.e. the results of the two measures should be 

normalised. After thoroughly analysing the desired properties of the measures, two measures 

based on statistical techniques are proposed. One is a entropy-based measure for nominal 

maps, and the other is a standard-deviation-based measure for ordinal maps. The two 

measures works together providing a uniform framework for knowledge discovery in the 

thematic maps. 

A2. Although the measures performing concept description task deal with multiple 

clusters, it is desirable that the definition of the characteristics for multiple clusters should be 

consistent with the one for a single cluster. Following this principle, two measures, commonQ 

and different^, are proposed for discovering the common and discriminating characteristics of 

the clusters respectively. The experiments show that the common and discriminating 

characteristics extracted by the two measures are effective. 
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A3. The main purpose of spatial indexing technique is to support spatial selection. Since 

the thematic maps usually do not have accompanying indices, there is no obvious way to 

provide efficient algorithms for the measures mentioned above. One way to solve the problem 

is to build an index for each map at run time. As complexity analysis and experimental results 

show, building an index at run time is not an efficient method. While algorithm IR, which takes 

advantage of spatial object approximations, outperforms the algorithm based on spatial 

indexing and other proposed algorithms. IR provides efficiency with the ability of processing 

hundreds of maps in seconds. 

1.5 Outline of Thesis 

Related works are introduced in chapter 2. Thematic maps and the measures of cluster 

characteristics are discussed in chapter 3. The two operators for exacting common and 

discriminating characteristics of the clusters are introduced in chapter 4. The algorithms of 

computing the characteristic measures are presented and analysed in chapter 5. The 

experimental evaluations are conducted in chapter 6. The conclusion and future work are 

discussed in chapter 7. 
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Chapter 2 

Related Work 

2.1 Data Mining and Its Relationships with Other Disciplines 

Machine learning technologies and statistical methods have been extensively used in 

knowledge discovery in database. The following two subsections will briefly discuss the 

relationships of knowledge discovery with machine learning and statistical methods. 

2.1.1 Machine Learning 

Machine learning, a field in artificial intelligence, is the automation of inductive learning 

processes [17]. During the learning phrase, the cognitive system observes its environment and 

recognises similarities among objects and events in this environment. It groups similar objects 

in classes and constructs rules that predict the behaviour of the inhabitants of such a class. 

Two types of learning techniques are of special interest: supervised learning and unsupervised 

learning. In supervised learning, an external teacher defines classes and provides the cognitive 

system with examples for each class. The system has to discover common properties in the 

examples for each class. This technique is also known as learning from examples. In 

unsupervised learning, the system has to discover the classes itself, based on common 

properties of objects. Hence, this technique is known as learning from observation. 

10 



Chapter 2. Related Work 

Machine learning sets the foundation for data mining, because the tasks of data mining 

and machine learning are very similar except that for data mining the learning in done on a 

database. In despite of their similarities, the methods of machine learning could not be directly 

applied to data mining for the following reasons. Unlike machine learning which uses a small 

set of carefully selected laboratory data, data mining deals with real-world databases which are 

dynamic, incomplete, noisy, and much larger than typical machine learning data sets. 

Therefore, it is harder to discover descriptions in such an environment than in the ideal 

conditions found in machine learning. In addition, the size of the database makes most learning 

algorithms ineffective in the general case. ' 

2.1.2 Statistical Methods 

Statistical techniques also play an important role in data mining, especially in spatial data 

mining. There are large number of algorithms in statistics which offer a strong possibility of 

detecting generalised information from databases. Until now, statistical spatial analysis has 

been one of the most common techniques for analysing spatial data [18]. Statistical analysis 

encompasses an expanding range of methods which address many different spatial problems, 

such as image enhancement, pattern recognition and spatial clustering. 

Although statistics provides the theoretical foundation for the problems of data analysis, 

a purely statistical approach is not enough. The main reason is that the results of statistical 

analysis are difficult to interpret, due to the fact that statistics is totally data driven, excluding 

the use of available domain knowledge, which can be used in all aspects of automated 
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discovery to make the discovered results more understandable. And also, the existing 

statistical algorithms become inefficient in performing data mining tasks when large data sets 

are involved. 

22 Background Work in General Data Mining 

Data mining tasks can be categorised into the following four classes, according to the data 

types they study: (1) temporal data mining; (2) transactional data mining; (3) alphanumeric 

data mining; and (4) spatial data mining. There have been many excellent studies on knowledge 

discovery in database. The following are the some representative research conducted on the 

first three categories. And the research on spatial data mining will be introduced in the next 

section. 

The data mining task performed in [19] is on time-series databases. The purpose of [19] 

is to find time-sequences that are similar to a given sequence or to find all pairs of similar 

sequences. This capability has many applications in business and scientific fields. For 

example, this technique can be used to identify companies with similar patterns of growth. 

The work in [19] is extended from the studies in [20] and [21]. In [20], an indexing structure 

was proposed for fast similarity searches over time-series databases, assuming that the data 

sequences and query sequence were of the same length. The Discrete Fourier Transform 

(DFT) is used to map a time sequence to a frequency domain. This study was generalised in 

[21], where data sequences now could be of different lengths and the query sequence could be 

smaller than any of the data sequences. In [19], a new model of time sequence similarity is 
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proposed to address the limitations of [20] and [21]. One of the improvements is that the new 

model allows the amplitude of one of the two sequences to be scaled by any suitable amount 

and its offset is adjusted appropriately. Its matching system was applied to the U. S. mutual 

funds data and discovered several interesting matches. For example, it could find funds in the 

same category that have similar price behaviour . 

Another kind of data mining tasks is performed on transaction data. Retail organisation 

are now able to collect massive amount of transaction data. Such data typically consists of the 

transaction date and other information associated with the transaction. The motivation of data 

mining on transaction data is to discover interesting patterns in this kind of data. For example, 

the study reported in [22] focuses on the problem of inining sequential patterns from a 

database, which stores video rental information. An example of a sequential pattern given in 

the paper is that customers typically rent "Star Wars", then "Empire Strike Back", and then 

"Return of the Jedi" in a video rental store. Three algorithms have been proposed to find 

sequential patterns. The algorithms guarantee that all sequential patterns of interest are 

discovered and have scale-up properties to the number of transactions on a customer sequence 

as well as the number of items on a transaction. 

DBLEARN [23] is a system that was developed to perform data mining tasks on a 

relational database. DBLEARN integrates a machine learning paradigm with set-oriented 

database operations. The fundamental part of the system is the notion of a concept hierarchy 

which is used to control data generalisation. An example of a concept hierarchy is the 
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following: {biology, chemistry, computing,...}cscience, {literature, music,...}<=art, {science, 

art}cANY(major). The system uses relational tables as knowledge structures. A tuple can be 

viewed as a logical formula, formed by the conjunction of its attribute-value pairs. A table, i.e., 

a set of tuples, can thus be viewed as a disjunction of these conjuncts. Hence, the starting 

point in the search space is a set of tables, and the aim is to generalise these tables for the 

concepts defined by the users. For example, if all the students majoring in biology and 

chemistry are excellent, it can be generalised that all students majoring in science are excellent. 

The system constructs probabilistic rules to deal with noisy data, but there is no technique to 

deal with missing attribute values. 

2.3 Background Work in Spatial Data Mining 

While all the research discussed in Section 2.2 studies non-spatial data, the following 

research, which studies spatial databases, is of special interest to this thesis. 

The study reported in [15] is the extension of system DBLEARN [23] from a relational 

database to a spatial database. It developed a generalization-based knowledge discovery 

mechanism which performs spatial merge and generalisation on spatial data. Concept 

hierarchies must be available in advance to perform the spatial merge and generalisation. For 

instance, given regional temperature data, e.g., Harrison is 65.7°c, and Hope is 63.3°c, and 

high-level concept of temperature, e.g., moderately hot if temperature is between 50°c and 

70°c, the generalisation of spatial data can be done by clustering spatial data objects according 

to their regions, e.g., Harrison and Hope are merged into south region of British Columbia. The 
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corresponding non-spatial attributes are merged until they reach the desired concept level, e.g., 

the temperature of Harrison and Hope are merged into a high-level concept of temperature 

which is moderately hot. The final result of generalisation for the above example can be that 

the temperature of south region of British Columbia is moderately hot. 

As pointed out in [16], the method proposed in [15] suffers from a serious problem. It 

is difficult to know a priori which hierarchy will be appropriate. As a matter of fact, 

discovering this hierarchy may itself be one of the reasons to apply spatial data mining. The 

following example from [16] illustrates this problem. Suppose a spatial data mining request is 

to be performed on all the expensive houses in Greater Vancouver. A default spatial hierarchy 

to use may be the one that generalises streets to communities and to cities. However, if some 

of the expensive houses are spatially located along something such as a river that runs through 

many communities and cities, then the default spatial hierarchy would generate a statement 

such as the expensive houses are scattered in all the cities, and fails to explore the true 

characteristic that expensive houses are along a nature scene. In order to deal with this 

problem, a clustering algorithm CLARANS was proposed in [16]. 

Motivated by existing statistical clustering algorithms, CLARANS is based on 

randomised search to find the best clusters. A cluster is represented by its medoid, which is 

the most centrally located object within the cluster. CLARANS starts with a random node, 

and checks a specified number of neighbouring nodes. If it can not find a better node which has 

a lower cost, then the current node is declared to be a "local" minimum. CLARANS repeats to 
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search for other local minima, until a specified number of local minima are found. In [16], two 

algorithms, SD(CLARANS) and NSD(CLARANS), are proposed to enhance the data mining 

ability of [15] and [23]. In algorithm SD(CLARANS), CLARANS is first applied to find 

clusters, then DBLEARN is used to find the generalised characteristics of clusters through 

non-spatial attributes. While in algorithm NSD(CLARANS), DBLEARN is first performed to 

find a number of generalised tuples, then CLARANS is applied to find the clusters in the those 

generalised tuples. In the final step, the clusters are checked to determine whether they 

overlap with each other, if so, they can be merged, causing the corresponding tuples further 

generalised. 

In [34], Ester et. al. developed a focusing technique which is able to extend CLARANS 

to cluster objects residing on disks. In [32], Zhang et. al. presented an algorithm, BIRCH 

(Balanced Iterative Reducing and Clustering) to improve the efficiency of clustering algorithms, 

including CLARANS. 

As mentioned before, although CLARANS answers the question of what the clusters are, 

it does not determine the characteristics of these clusters . The study reported in [35] was 

intended to solve this problem. In [35], two tasks are achieved. First, it developed an 

algorithm CRH to discover the relationships between CLARANS clusters and geographic 

features, such as schools, golf courses, etc. Second, it proposed an algorithm GenCom, making 

use of concept hierarchies, to derive commonalities among the clusters. The work in [35] is 
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extended in [36], where an additional algorithm GenDis is provided, which is to find the 

features which discriminate one cluster from another. 

Although the problem of discovering the characteristics of clusters is solved in [35][36], 

the methods requires a concept hierarchy. The solution proposed in this thesis is to discover 

the characteristics of the clusters by correlating the location of the clusters with thematic maps 

without the use of a concept hierarchy. A detailed description will be given in Chapter 3 and 

4. 

2.4 Spatial Data and Its Access Methods 

Spatial database systems have become more and more important for industry and 

research. There are two fundamental problems associated with a spatial database system. The 

first problem is how to model real-life spatial objects, such as mountains and rivers. The 

second problem is how to efficiently access spatial data in a spatial database. 

There are two major methods of representing spatial objects: raster and vector. In a 

raster representation, an object is represented by the pixels it occupies. In a vector 

representation, an object is specified by its geometry. For example, in a raster representation, 

a mountain is represented by all the pixels it covers. While in a vector one, it is specified as 

sequence of points at the boundary. 

There have been many studies on the design of efficient spatial access methods. Most of 

the research show that efficient spatial access can be achieved by spatial indexing. Spatial 
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indexing organises space and the objects in such a way that only parts of the space and a 

subset of the objects need to be considered. Among the various indexing structures, the most 

well-known spatial indexing structures are Quadtree [37] and R-tree [28]. While Quadtree is 

used for raster data, which is usually applied in image processing area, the interest of this 

thesis is on R-tree and its variants. 

An R-tree is a generalisation of a B-tree [30] to higher dimensions. The R-tree, shown in 

Figure 1, is a height-balanced tree, with each of its leaf node containing a point to a data object, 

and each internal node containing an isothetic rectangle, a rectangle encompassing all the 

rectangles in the level below. An R-tree has an upper and lower bound for the number of 

children of an interior node. The lower bound prevents the degeneration of trees and leads to 

an efficient storage utilisation. The upper bound can be derived from the fact that each tree 

node corresponds to exactly one disk page. Furthermore, the sibling nodes, i.e., nodes whose 

parent node is identical, may correspond to overlapping intervals. 

The property of the R-tree facilitates the insertion and deletion of data objects, but it 

may lead to performance losses during search operations. In the case of range searches, the 

number of nodes to be inspected tends to be higher with overlaps. This problem led to the 

development of those techniques, R-tree variants, to minimise the overlap [38], the R+-tree 

[39], where no overlaps are allowed unless the intervals are data intervals, and R*-tree [40], the 

most efficient member in the R-tree family. R*-tree requires fewer disk accesses for queries 

and less storage space for indexing structures than any other variants. 
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Figure 1 An R-tree with data in the leaves 

Although using a spatial indexing structure is beneficial for general tasks performed on 

spatial objects, for particular tasks, spatial indexing may not be the most efficient method. For 

example, the divide-and-conquer algorithm developed in [41], is efficient in finding all pairwise 

intersections in a set of isothetic rectangles. The time required by the algorithm is 

0(n\ogn+ky, where n is the number of given objects and k is the number of reported pairs. 

While in the case of R-tree method, the time of a tree construction is 0(«log«), and the time for 

searching the intersected rectangles for n objects takes an additional 0(«log«) steps. 

All logarithms in this thesis log to base 2. 
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Chapter 3 

Characteristic Utility Measures 

The main emphasis of this chapter is on how to discover the characteristics of a cluster 

though a large number of thematic maps. The variety of maps makes this problem 

complicated. As shown in the following section, the domain of the maps can be different, and 

even within the same domain, the unit of the maps can be different. In order to accommodate 

the various maps, different measures are needed to calculate the characteristics of a cluster. 

3.1 Basics of Thematic Maps 

"A map is a graphic representation of the milieu" [24], where milieu is used to broadly 

include all aspects of the physical and cultural environment. The variety of maps is extremely 

wide. In general, maps may be classified as either reference maps, or thematic maps. 

Reference maps are used to display both natural and man-made objects from geographical 

environment, such as the maps of landscape. A thematic map, as its name implies, explores 

the distribution of a certain subject, such as age, income, educational level, etc. Every thematic 

map is composed of two essential elements: a base map and a thematic overlay. 

The base map defines the geographical region covered by the map. For example, the base 

map shown in Appendix A is the St. John's region of Canada. In order to represent a thematic 

map in a computer, the base map is regarded as a collection of polygons, each of which 

represents a sub-region of the base map. The polygons are not necessarily convex. 

20 



Chapter 3. Characteristic Utility Measures 

The thematic overlay describes the thematic data related to the base map. The thematic 

overlay is related to the base map by associating each polygon with a label, which is the 

thematic data of the corresponding sub-region. It is obvious that many polygons may have the 

same label. For instance, the thematic overlay in Appendix A describes the distribution of the 

labour force. And there are altogether seven labels in this map. 

In general, the label of a thematic map are elements of either the ordinal or nominal 

domain. A domain is nominal if the elements in the domain are unordered. A domain is ordinal 

if the elements of the domain can be ordered. For example, the domain of political parties is 

nominal, while the domain of household income is ordinal. 

An ordinal thematic map can be further categorised as either single-value or interval. A 

thematic map is single-value if each label of the map consists of a single value of the domain. 

In an interval thematic map, each label is a "sub-range" of the domain. For example, the labels 

of a single-value map describing education level can be "6years, 12years, 16years, 20years". 

The labels of an interval map describing household income can be "<$20K, $20-40K, $40-60K, 

>$100K". 

There are two kinds interval ordinal maps: open range and closed range. The range of an 

interval map is open if there is at least one label whose range boundary is undefined. The range 

of an interval is closed if the boundaries of all the labels are closed. While the map shown in 

Appendix A is an example of a closed range thematic map, the above example of household 
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income is an open range map, because it has two labels,"<$20K" and ">$100K", whose range 

boundary are not defined: 

3.2 Characteristics of Clusters 

A cluster, produced by some clustering algorithms such as CLARANS, is a collection of 

2-D points. The points of a cluster are located in one or more polygons of the map. Since 

each polygon has a label, each point is correlated to a label. 

The characteristics of a cluster are those maps where the distributions of the cluster's 

points are centralised with respect to the labels. The more centralised the distributions, the 

stronger the characteristic of the cluster will be. Suppose there is a thematic map which 

displays the information of household income. There are five labels in the map, which are 

{$10K, $20K, $30K, $40K, $50K}. The following three examples will explain the definition 

of the characteristics of the clusters. 

Example 1. 

If all the points have the same labels, this distribution is most centralised and the map is 

a characteristic of the cluster. On the other hand, if all the points of a cluster are evenly 

distributed in all five labels, i.e., 20% of points is $10K, 20% of the points is $20K, etc., this 

distribution is most chaotic, so that this map is not a characteristic of the cluster. 
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Example 2. 

Consider the following two cases: in the first, 100% of the points are labelled 50K; in the 

second, 50% of the points are labelled $30K, and 50% are labelled $50K". It is desirable to 

say that the map is a stronger characteristic of the cluster in the first case than the second one, 

because the distribution of the cluster in the first case is more centralised than the one in the 

second case. 

Example 3. 

Compare the following two situations: the first is "50% of the points are labelled $40K 

and 50% are labelled $50K", the second is "50% of the points are labelled $10K, and the rest 

are labelled $50K". Because the domain of this map is ordinal, there exists an ordering between 

the elements. Thus, since $40K is closer to $50K than $10K to $50K, the distribution of the 

cluster in the first case is more centralised than the one in the second case. So, it is desirable to 

say that the map is a stronger characteristic of the cluster in the first case than the second one. 

Note that if the domain of the map is nominal, i.e., there is not ordering between the elements, 

the utility value for these two situations should be the same. 

In order to facilitate the description of the relationship between a cluster CI and a 

thematic map M, the following notation is defined: 
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A characteristic set, denoted by chr{Cl, M), is a collection of triplets: <POh Lhpt>, 

<POn, Ln,pn>, where: 

• PO], POn are polygons inM; 

• Lj, ...,L„ are the labels of POh POn respectively and 

• for all 1 < i < n,pi is the fraction of points in CI that are contained in PO\, 0< pf < 1, and 

(Pi+ •~Pn)£ 1-

3.3 U t i l i t y Measures 

In order to discover the maps which are the characteristics of a cluster, measures are 

needed to calculate the distribution of the cluster with respect to the labels of a thematic map. 

The measures assign a utility value to each of the thematic maps. The higher the utility value 

of a thematic map, the stronger the map is a characteristic of the cluster. These measures are 

referred to as utility measures. 

The essential requirement for a utility measure is that it should correctly reflect the 

definition of the characteristics of a cluster. This implies that the utility value of a thematic 

map calculated by the measures should correctly reflect the phenomena described in section 

3.2. 

The measures should also work with all the categories of maps discussed in Section 3.1, 

namely nominal maps, single-value maps, open range and closed range interval maps. 
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Furthermore, even within the same category, different maps may have different units. It is 

impossible to have a single utility measure for all maps. Different measures should be 

proposed to suit different kinds of maps. In addition, the utility values assigned by the 

measures should be normalised, so that the utility values of the different maps can be 

compared with each other. 

In the next few sections, utility measures are proposed and analysed for each kind of 

thematic maps. 

3.4 An Entropy-based Measure for Nominal Thematic Maps 

In information theory, entropy is a measure of the disorder of a system. The definition 

of entropy is following [25]: for a random variable I(x,), its expected value is: 

M 

E{I(xi)} = H(X) = ̂ p(xi)\ogp(xi) (1) 

where p(xj) is the probability of system in ith state, M is the number of states of the system. 
M 

H(X) is the entropy of the probability distribution of pixj, where 2 J - 1-

From the definition, entropy has the following properties [33]: 

1. H(X)>0. 

2. H(X) =0 if and only if all of the probabilities are zero except for one, which must be unity. 

3. H(X)<\ogM. 
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4. H(X) = logM if and only if all the probabilities are equal so that p(Xj)=\IM for all i. 

As a moderate modification to the standard entropy measure, the following is the 

proposed entropy-based measure. 

Definition 1. Let the Characteristic set be {<POJ,LJ, pj>, <PO„, L„,pn>}, the entropy-

based measure is: 

C U e n , = l _ HjP- l Qg ^ ( 2 ) 

log(l^l) 

where D is the domain of the thematic map, \D\ is the cardinality of D. 

From the properties of entropy, the following are true about Clfnt: 

1. 0 < C £ T " < 1 . 

2. Clfn,= 1 if and only if #i=l and p,=l; 

3. Clf"' =0 if and only if n= \D\ and for all 1 < i < n, p,=l/n. 

If the characteristic set is {<PO\, LX, 1>}, it means that all the points in the cluster 

correspond to the same label L \ . Thus, as discussed in Section 3.2, this utility value of the 

map should have the highest value, one. If the characteristic set is {< PO],L}, l/n>, <PON, 

L„, l/ri>}, which corresponds to the most chaotic distribution of the points, the utility value 

deserves to be the lowest, which is zero. Thus, the measure correctly reflects the phenomenon 

described in Example 1 of Section 3.2. It can be easily verified that the measure also correctly 

depicts the phenomenon in Example 2. For Example 3, the utility values for both cases are the 
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same. As discussed in Example 3, this result is correct of nominal maps, but fails for ordinal 

maps. 

Thus, the entropy-based measure is applicable only for nominal maps. In order to deal 

with the problem with the ordinal maps, the following standard-deviation-based measure 

(referred to as STD-based measure hereafter) is proposed. 

3.5 A STD-Based Measure for Ordinal Thematic Maps 

As mentioned in Section 3.1, there are two kinds of ordinal thematic maps: single-value 

and interval. In this section, a STD-based measure is proposed to suit the single-value maps. 

How to deal with interval maps will be discussed latter. 

The standard deviation [26] is the most frequently used measure of variability. It can be 

considered as the average of the absolute deviations of observations from the mean. The 

standard deviation of n variables v, is: 

where pt is the probability of variables v„ and fi is the mean of the n variables, which is 

(3) 

n 

1=1 
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From the definition, the standard deviation has the following properties: 

1. (7>0. 

2. cr = 0 if and only if the probabilities are zero except for one, which must be unity. 

3. o < (max( v,.) - min(v.)) / 2 2 . 

As a moderate modification to the standard deviation measure, the following is 

proposed standard deviation measure. 

Definition 2. Let the characteristic set be {< PO\, L\, p\>, <PO„, Ln, p„>). For 

\<i<n,Lj consists of a single value v,. The STD-based measure is: 

JX,.(v,-/x)2*A 
1- V ' r—L-^— ifmax(D)±min(D) 

CUstd = \ [max(D)-min(£>)]/2 J v ' v ' ^ 
1 if max( D) = min(£)) 

where D is the domain of the thematic map. 

From the property of standard deviation, the following are true about Clftd: 

1. 0<Clftd<\. 

2. Clftd =1 if and only if n=l, max(D)=min(D). 

3. Clftd =0 if and only if n=2, v/=min(Z)), v2=max(D), andp} = p2 =0.5. 

2 From the definition of STD, the most chaotic situation happens when the points evenly distributed in the two 
extremes. In this case, the value of STD is (max(v,)-main(v,))/2. 

28 



Chapter 3. Characteristic Utility Measures 

The second property occurs when all the cluster points give a uniform value. In this 

case, the map is assigned to the highest utility value, one. The third property corresponds to 

the most "chaotic" situation, where the utility value is zero. For Example 2 and Example 3 

discussed in Section 3.4, the utility value for the first case is now higher than the value for the 

second case. Thus, this STD-measure is applicable to ordinal maps. 

3.6 A STD-Based Measure for Interval Thematic Maps 

So far, the utility measure defined in Equation (4) can only be applied to ordinal thematic 

maps whose labels consist of single values. The labels of interval thematic maps are numerical 

ranges. Techniques for closed and open range interval maps will be discussed in the next two 

sub-sections. 

3.6.1 Closed Range Interval Maps 

Given a characteristic set {< PO}, Lhpi>, <POn, L„, p„>} where Lt is the range [ah 

bj], the problem is to find appropriate single value v, to represent the mean and standard 

deviation of [at, bt]. There exists a standard strategy to generalise standard deviation from 

single values to range values [26]. The standard strategy is to treat all the values v, as if they 

were the average value of the range, i.e., (a+b)/2. More specifically, the following adjustment 

is needed to adapt Equation (4): 
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Definition 3. Given a characteristic set {< PO,, L,,p{>, <PO„, L„, pn>), for all closed 

interval labels L-. 

where Lt is the closed range of \at, bt] for all l< i< n. 

Thus the combination Equation (5) with Equation (4) is the utility measure for a closed 

range interval maps. 

Aside: An improved estimate can be obtained by subtracting the Sheppard's correction 

from the standard deviation as calculated by the above standard strategy [26]. However, the 

Sheppard's correction is not included for the following two reasons. The first reason is that 

Sheppard's correction is defined for ranges with equal width which is not always true for the 

thematic maps. The second reason is that the Sheppard's correction may not be applicable for 

distributions that are not normal. 

3.6.2 Open Range Interval Maps 

The open range interval maps are the maps whose two end-points of the labels are not 

specified. For example, ">100K" may be one end of the labels for the map describing average 

household income. Heuristic algorithms will be proposed to estimate the average value of an 

open range map. 
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Since a majority of phenomena described by thematic maps is normally distributed [27], 

it is reasonable to assume that the observed distribution of a thematic map is a normal 

distribution. The observed distribution of a map can be easily obtained by using the area 

covered by each label in the map. 

Once the observed distribution is available, the following heuristic algorithm can be used 

to estimate the average of an open range label of the form '<c'. 

Heuristic Algorithm 1 Let X denote the random variable of the observed distribution and Z 

denote a standard-normal random variable. 

1. Set the mean (Jt of X to be the median of the observed distribution. 

2. S et the standard deviation of X to: 

where iq denotes the interquartile range of the observed distribution 

3. From the observed distribution, find the probability p such that p = prob(X < c). 

4. By using the standard normal curve, find Zp such that: 

jq_ 
135 (6) 

5. Set the average value vc of the open range label '<c' to: 

D otherwise (8) 
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where D denotes a reasonable value that should be used, if the estimated value p. — Zp * o is 

inappropriate. 

For a normal distribution, its mean is exactly the same as its median. This explains Step 

(1) of the algorithm. The interquartile range is used to find the standard deviation o~. The 

interquartile is defined as the difference between the first quartile Q\ and the third quartile Q^, 

where prob{X<Qx)=Q..25 andprob(X<Q3)=0.75 [26]. For a standard normal distribution, it is 

true that prob(Z < (p. - 0.675tr)) = 025 andprob(Z - (u + 0.675cr)) = 0.75 . In other words, 

the interquartile range is the same as (ji + 0.675o~) -{pi-0.615a) = 135o~ . This explains 

Equation (6). Step (3) is to find the percentile that corresponds to X< c. The average of the 

label X< c is approximated by the median of the label, which is the value that splits the 

percentile corresponding toX<c in two halves. In a standard normal curve, this value is Zp as 

defined in Equation (7). In Equation (8), the average value vc is obtained by translating the Zp 

value from the standard normal distribution to the actual normal distribution with the 

parameters fi and o~. If the value of p-Zp*o is negative or is larger than c, then vc is simply 

set to D which is a reasonable estimate, such as c/2. 

This following is an example. Consider the average household income example again. 

Suppose the first quartile, the mean/median and the third quartile are 40K, 60K and 80K 

respectively. Then o"is 29.6K. Suppose further that probiincome < 20K)=0.1. From the 

standard normal curve, the Zp value is found to be 1.64. Thus, the average value of vc is 

estimated to be 11.5K. 
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A similar algorithm, Heuristic Algorithm 2, can be used to estimate the average value of 

the open label '> c', The modifications to Heuristic Algorithm 1 are Step (3), (4) and (5). The 

following is Heuristic Algorithm 2: 

Heuristic Algorithm 2 Let X denote the random variable of the observed distribution and Z 

denote a standard-normal random variable. 

1. Set the mean fx of Xto be the median of the observed distribution. 

2. Set the standard deviation of Xto: 

where iq denotes the interquartile range of the observed distribution 

3. From the observed distribution, find the probability p such that p = prob(X > c). 

4. By using the standard normal curve, find Zp such that: 

prob{Z<Zp) = \-P/2 (11) 

5. Set the average value vc of the open range label '<c' to: 

[u+Z*o if c<u + Z*G 
v H (12) c [ D otherwise 

where D denotes a reasonable value that should be used, if the estimated value ii + Zp*o is 

inappropriate. 
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The explanation for Heuristic Algorithm 2 is omitted for brevity, due to the fact that the 

principles of the two algorithms are just the same. Although the observed distribution 

assumed in the algorithms is not the same as the distribution of the characteristic set, the 

experimental results discussed in Chapter 5 show that the algorithms work well in practice. 

3.7 Summary 

In this chapter, the characteristics of a cluster and its computation are discussed. The 

characteristics of a clusters are defined to be those maps where the distribution of the cluster 

are centralised. The utility value of a thematic map is the measure of the centrality of the 

distribution, i.e., the strongness of the characteristic of cluster. The higher the utility measure, 

the stronger the map is a characteristic of the cluster. In order to accommodate different kinds 

of maps, two basic measures are proposed to compute the utility values of the maps. An 

entropy-based measure works for nominal maps, while a standard-deviation-based measure is 

applied to ordinal maps. Some extra steps should be taken before employing the STD-based 

measure to interval maps. The results of the two utility measures are comparable, because the 

utility value produced by the two measures are all in the range of [0,1]. Thus, all the 

requirements imposed to the utility measures are all satisfied. 
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Chapter 4 

Pattern Extraction Operations 

In the previous chapter, the utility measures have been discussed. In this chapter, two 

pattern extraction operations commonQ and different^) will be introduced. The operation 

common(Cl\,..., Cln) is to find strong characteristics that are common to all n clusters Cl\,..., 

Cl„. The operation different(Cl\, Cl2) is to find the characteristics that distinguish Cl\ from C72. 

4.1 Find Common Characteristics of Multiple Clusters 

The commonQ operation is intended for the extraction of common characteristics 

exhibited by multiple clusters. But if only one cluster is provided as input to the operation, 

the operation can be used to select maps whose utility values exceeded a user-defined 

threshold. In this section, the operation on one cluster will be first discussed. 

4.1.1 Finding Strong Characteristics of One Cluster 

As defined in Chapter 3, a characteristic set is defined as chr(Cl, M)={<POj, Lh pi>,..., 

<POn, L„,p„>}. As shown in Equation (2) and Equation (4), the polygons POi,.. .PO„ are not 

required in the computation of utility values. Here, a new notion is introduced to simplify the 

notation of chr(Cl, M) by the following two steps. The first is to remove the notation of the 

polygons, the second is to group classes that have the same label together. Thus, the new 

notation, chr_sum(ClM), summarises the information carried in chr(ClM) into the form: 

{<D!,q]>,...<Dm,qm>}, where for all 1 < j <m<n and 1 < k < n : 
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• groupj={k | Ck=Dj), and 

* ^/~X^g groupjPk-

For example: If chr{ClM)^{<POj, [0, 50K], 0.2>, <P02, [50K, 80K], 0.3>, <P05, [0, 

50K], 0.5>}, then chr_sum(OJvI) is the set {<[0, 50K], 0.7>, <[50K, 80K], 0.3>}. 

The end-users may determine whether the characteristic of a cluster exhibited in a map is 

strong or not by providing a threshold. If the utility value of a map exceeds the threshold, the 

map is considered to be a strong characteristic of the cluster. Thus, the common^) operation 

takes two inputs: a cluster CI, and a user-defined threshold ITh, which is in the range of [0,1]. 

The output is the set {chr_sum{ClM) \ M is a thematic map and the characteristic-utility of 

chr_sum{Cl,M)> ITh). From now on, Mis said to be a strong characteristic of CI if the utility 

value of chr_sum{Cl,M) exceeds the threshold ITh. 

The following is a sample run of the common(Clh ITh) operation on a collection of 

thematic maps. The input threshold is 0.9. 
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** There are 2 maps that passed the threshold 0.9. The maps are arranged in the 
descending order of their utility values. 

* Map 1 
* Content of map: Average gross rent 
* Utility: 1.000 
* Distribution: 

100% of all points are in range [$700, $900]. 

* Map 2 
* Content of map: Unemployment rate 
* Utility: 0.938 
* Distribution: 

90% of all points are in [5%, 7%]. 
10% of all points are in [9%, 11%]. 

Figure 2: Finding Strong Characteristics of One Cluster 

4.1.2 Finding Strong Characteristics Common to Multiple Clusters 

The strong characteristics common to all input clusters have two meanings. The first one 

is that if a map is a strong characteristic of all the clusters, it is a strong characteristic of each 

cluster. In other words, only the maps representing strong characteristics for each and every 

cluster will be processed by common(Clh ...Cln). A map Mis discarded if there exists a cluster 

C7, such that the characteristic-utility of chr_sum{CliJs/t) is below the user-defined threshold 

ITh. 

The second meaning is that a map is a strong characteristic common to all input clusters. 

Although there are many ways to define the common characteristic of multiple clusters, in this 

thesis, it is defined as the map which is a strong characteristic of the cluster formed by merging 

all clusters together. The benefit of such a definition is that it is consistent with the definition 

of the characteristic for a single cluster. 

37 



Chapter 4. Pattern Extraction Operations 

To merge the clusters, first all classes with the same label in each chr_sum(CljJvf) are 

grouped together by adding up their percentages weighted by the number of points in the 

clusters. Next, the percentages acquired from the first step are re-scaled so that they sum to 

100. 

More specifically, let the characteristic summaries for all n clusters be: chr_sum(Clj, M) 

= {<Di,i, qi,i>,---,<Dltmp qj,m >},-•., chr_sum(Cln, M)={<DnJ, qn,i>,...,<Dn/r>n, q»,m>}. The 

combined characteristic for all clusters, denoted by com_chr_sum({Cli,...,Cln}, M), is the set: 

{<Di, q]>,...,<Dm, qm>}, where for all l<j<m, l<u<n, and l<v</n„: 

• groupf={<u,v> | Z)uv=Z)j}, and 

where Sj,.. .s„ represent the number of points in cluster Cl],...,Cl„ respectively. 

The following example illustrates the merging procedure. Suppose 

• chr_sum(Clh M)={<C,, 0.8>, <C2, 0.2>}, 

• chr_sum(Cl2, M)={<Ch 0.1>, <C2, 0.6>, <C3, 0.3>}, and 

• chr_sum(Cl3, M)= {<C2, 0.4>, <C3, 0.6>}. 

Assume that the three clusters Cl\, Cl2 and C/ 3 have 10, 20 and 30 points respectively. 

Then com_chr_sum({CluCl2,Cl3}, M) is {<C,, (0.8* 10+0. l*20)/(10+20+30)>, <C2, 

(0.2*10+0.6*20+0.4*30)/(10+20+30)>, <Q,(0.3*20+0.6*30)/(10+20+30)>}. 
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Having computed the combined characteristic, the appropriate utility measure can be 

used. For the example above, if the classes Cj, C2, C3 are nominal, then Equation (2) of the 

entropy-based measure should be used. Otherwise Equation (4) of the standard-deviation-

based measure, combined with Equation (5) if necessary, should be applied. 

In determining whether a combined characteristic is strong or not, there is no particular 

reason why ITh for individual characteristics can not be used. Nevertheless, it is more flexible 

to allow the end-users providing a different threshold, CTh, for combined characteristics. 

Thus, formally speaking, a map M is a strong characteristic of all n clusters, if it satisfies the 

following conditions: 

• for all 1 $ u < n, the utility of chr_sum{CluJfA)>ITh, and 

• the utility of com_chr_sum({Clh.. .,Cln}, M) >CTh. 

Figure 3 shows the output of a sample run of the common(Clx,Cl2) operation, with the 

individual threshold, ITh=0.S, and the combined threshold, CTh=0.6. Two maps are the 

common characteristics in this example, they are displayed in descending order of their 

combined utility values. 
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** There are 2 map that passed the individual threshold 0.8 and the 
** combined threshold 0.6. 

Map 1 
Content of Map: Annual Household Income 
Combined Utility: 0.8 
Distribution of the first cluster: 

100% of all points are in [$20,000, $50,000]. 
Distribution of the second cluster: 

90% of all points are in [$20,000, $50,000]. 
10% of all points are in [$50,000, $10,000]. 

Map 2 
Content of Map: Average Education Level 
Combined Utility: 0.65 
Distribution of the first cluster: 

30% of all points are in [6years, 12years]. 
70% of all points are in [12years, 16years]. 

Distribution of the Second Cluster: 
75% of all points are in [12years, 16years]. 
25% of all points are in [16years, 21 years]. 

Figure 3: Finding Common Characteristics of Two Clusters 

4.2 Finding Discriminating Characteristics of Two Clusters 

The different{Clh Cl2) operation finds characteristics of Cl} and Cl2 that distinguish one 

cluster from the other. In order to be a discriminating characteristic of two clusters, a map 

should satisfy the following two requirements. First, the map must be a strong characteristic 

of both clusters. The second one is that the strong characteristics derived from the same 

thematic map for both clusters are sufficiently different. For nominal and ordinal maps, the 

meanings of sufficient different are not the same, which will be given in the next section. 

For maps with nominal domains, because there is no ordering relationships between the 

classes, it is enough to say that two clusters are sufficiently different if the two sets of class 

labels for the two clusters do not intersect. More formally, if the characteristic summaries of 
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the two clusters are: chr_sum(Clu M)={<C\, qx>,...,<Cm, qm>}, and chr_sum(Cl2, M)={<DX, 

px>,...,<Dk,pk>}, a nominal map Mis a strong discriminating characteristic of Cl\ and Cl2, if 

• for u = 1 or 2, the utility of chr_sum(CluJvf)>ITh, and 

• {C\,.. .,Cm}n{Dx,.. .,£>k}=0, i.e., the sets of class labels do not intersect,. 

For ordinal maps, requiring the non-overlapping of the two sets of class labels may not 

be sufficient. For example, suppose M is the thematic map about average household income 

with the domain from 10K to 200K. Let chr_sum(Clx, M) be {<[80K, 90K], 0.9>, <[90K, 

100K], 0.1>}, and chr_sum(Cl2, M) be {<[70K, 75K], 1>}. The set of class labels for the first 

cluster corresponds to the range [80K, 100K], while the set of labels for the latter corresponds 

to [70K, 75K]. Even though the two ranges do not overlap, it is questionable whether the two 

ranges are sufficiently different, given that the domain is the much larger range of [0,200K]. 

The above example suggests that for ordinal domains, it is reasonable to consider two 

factors in determining whether two ranges are sufficiently different. They are the gap between 

the two ranges, and the size of the domain of the map. As for the definition of the gap, there 

are at least two options. One way is to define the gap by the end-points of the ranges that 

correspond to the sets of class labels. The problem with this definition is that it ignores the 

distribution of the cluster points in the ranges. Thus, similar to the use of standard deviation 

in defining utility values, the gap is determined by the difference between the mean values of 

the cluster points. Formally, if the characteristic summary is {<CX, px>,...,<Cm, pm>}, then 

the mean value is H = ^lpi* v,, where v, the value of class C,. For a given ordinal map M 
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with domain D, and two clusters Cl\ and Cl2 with means fi\ and \i2 respectively, the 

discriminating utility of M for Cl{ and Cl2 is given by: 

DU = Uh—bl (13) 
r r m ( D ) - m i n ( £ > ) v ' 

The numerator give the gap between the ranges, while the denominator specifies the size 

of the domain. The larger the ratio between the gap and the size of the domain, the stronger 

the discriminating characteristic will be. 

The end-users may determine whether a map is a discriminating characteristic or not by 

providing a gap threshold, GTh. Thus, an ordinal map M is a strong discriminating 

characteristic of Cl\, Cl2, i f it satisfies the following three conditions: 

• for u -1 or 2, the utility of chr_sum(CluJrf)>ITh, 

• {C\,.. . , C m } n { D l v . . ,£> k }=0 3 , i.e., the sets of class labels do not intersect, and, 

• DU>GTh, i.e., the discriminating utility of M for CI], Cl2 exceeds a gap threshold GTh. 

where DU is defined in Equation (13) and 0<GTh< 1. 

Figure 4 shows the output of a sample run of the different^Clx,Cl2) operation, with the 

individual threshold 0.9 and the gap threshold 0.6. Average gross rent is the only 

discriminating characteristic in this example. If multiple discriminating characteristics are 

found, they are displayed in descending order of their discriminating utility values. 

3 If C-andDy are intervals, the formula should be (uC,)n(uDy)=0, where l<*'<m, l<j<k. 
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** There are 1 map that passed the individual threshold 0.9 and the 
** discriminating threshold 0.6. 

Map 1 
Content of Map: Average gross rent 
Discriminating Utility: 0.65 
Distribution of the first cluster: 

100% of all points are in [$500, $700]. 
Distribution of the second cluster: 

90% of all points are in [$1200, $1400]. 
10% of all points are in [$1000, $1200]. 

Figure 4: Finding Discriminating Characteristics of Two Clusters 

4.3 Summary 

In this chapter, two operations for pattern extraction have been defined. CommonQ 

extracts the common characteristics of a cluster set. A map is a common characteristic of the 

multiple clusters, if it is a strong characteristic for each of the clusters and the cluster formed 

by merging the clusters together. Different^) extracts the discriminating characteristics of two 

clusters. A map is a discriminating characteristic of the two clusters, if the map is a strong 

characteristic of each of the two clusters, and the characteristics of the two clusters shown in 

the map are sufficiently different. 
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Chapter 5 

Computation of Utility Measures and 

Pattern Extraction 

In the previous chapters, the methods of computing the characteristics of clusters and 

the pattern extraction operations were discussed. In this chapter, the problem of how to 

efficiently compute these methods will be discussed. 

5.1 Computation of Utility Measures 

According to the two utility measures defined in Chapter 3, for a characteristic set 

chr(Cl, M)={<POi, Li,pi>,...,<POn, Ln,pn>}, the key point in computing the measures is to 

calculate the percentage pt of points in a cluster CI that are contained in polygon POt. In other 

words, the problem is to find all the polygons that contain at least one point of the cluster. 

Note, the polygons are not necessarily convex. 

Retrieving the desired polygons is typically a spatial selection problem which could be 

efficiently computed by a spatial indexing method, such as R-trees [28]. However, in practice, 

thematic maps are not likely to have accompanying indices. In the absence of spatial indices, 

the problem encountered here is how to compute the measures efficiently. In the remainder of 

this chapter, four different methods are proposed and analysed. 
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5.2 An algorithm Based on Pointvvise Containment 

In order to find all the polygons that contain at least one point of a cluster, the most 

obvious way is to check every point of the cluster with every polygon in a map for 

containment. This idea is reflected in the following algorithm, algorithm PC (standing for 

"Point Containment"). 

Algorithm PC 

1. For each point pt in a cluster CI, 

2. For each polygon PO in map M, 

3. If point-in-polygon(£tf, PO) is true, increment the counter for PO. 

In PC, the procedure point-in-polygon(£tf, PO) [31] is to test whether the given point pt 

is contained in a specified polygon PO. If PO is a non-convex polygon with k edges, the time 

complexity of the above procedure is 0(k) [31]. Thus, if there are n points in cluster CI and m 

polygons in map M, the computational complexity of PC is 0(kmri). 

5.3 An Algorithm Based on Convex Hull Intersections 

In PC, if the number of polygons that overlap with CI is much less than the total number 

of polygons in a map, then most of the computations of point-in-polygon(j ,̂ PO) are 

unnecessary. In this section, algorithm CH (standing for "Convex Hull") is proposed to 

improve the efficiency of PC by applying a filtering step before testing every point in a 

cluster. 
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First, a convex hull is constructed to contain all the points in a cluster. Those polygons 

whose convex hulls do not intersect with the convex hull containing the points of a cluster can 

be safely removed, because a polygon's convex hull always contains the polygon. Algorithm 

CH is the following: 

Algorithm C H 

1. Compute the convex hull Hd of cluster CI, and initialise set S to empty. 

2. For each polygon PO in map M: 

(a) Compute its convex hull Hpo; 

(b) If convex-hull-intersect(//c;, Hpo) is true, add PO to S. 

3. Apply PC to the polygons in S. 

Step (1) of CH uses 0(n\ogri) steps to compute the convex hull of n points [31]. 

Similarly, Step (2a) takes 0(k\ogk) for each polygon with k edges. In Step (2b), convex-hull-

intersect() takes time linear to the number of edges of the hulls in the worst case [31]. Thus, 

the complexity of Step (2b) is 0(k+n). By combining Step (2a) and (2b), the time complexity 

of Step (2) is 0(mn+km+mk\ogk)=0(mn+mk\ogk), where m is number of polygons in M. 

Finally, if fiH is the fraction of polygons that overlap with Hd, then, as shown in Section 5.1.1, 

the complexity of Step (3) is 0(PHkmn). 

It follows from the above analysis, the complexity difference between CH and PC is 

0(nlogn+mn+mk\ogk) to 0((l-PH)kmn). For larger n or smaller (5H, the time for computing PC 

increases faster than that for computing CH. Indeed, the experimental results shown in 

Chapter 6 show that CH outperforms PC in those cases. 
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5.4 An Algorithm Based on Isothetic Rectangle Intersections 

Although the filtering step is effectual, the disadvantages of CH is that convex hull 

operations are not trivial to compute. Another common approach is to approximate a polygon 

by its Minimum Bounding Rectangle (MBR), rather than its convex hull. The Minimum 

Bounding Rectangle of a spatial object is the smallest axis-parallel rectangle which encloses the 

spatial object. The motivation of performing MBR approximation is that, from the 

complexity point of view, it is more efficient to deal with rectangles than convex hulls. 

The only difference between the following algorithm IR and CH is that an isothetic 

rectangle is used instead of its convex hull. 

Algorithm IR 

1. Compute the isothetic rectangle Bd of cluster CI, and initialise set S to 0. 

2. For each polygon PO in map M: 

(a) Compute its isothetic rectangle Bpo. 

(b) If isothetic-rectangle-intersect(5c/, Bpo) is true, add PO to S. 

3. Apply PC to the polygons in S. 

In RT (standing for "Isothetic Rectangles"), it takes 0(n) to compute the isothetic 

rectangle of n points. Similar, Step (2a) takes 0(k) for each polygon with k edges. Due to the 

simplicity of isothetic rectangles, the procedure isothetic-rectangle-intersect() only takes 

constant time 0(1). Thus, the combined time complexity of Step (2) is 0(bri), where m is the 

number of polygons in M. Finally, similar to Step (3) of CH, the complexity of Step (3) of 

IR is 0(n+km+pBkmn), where j3s is the fraction of polygons that overlap with Bct. 
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The complexity of IR with CH can be compared step by step. In Steps (1) and (2a), it 

is 0(n) and 0(k) for IR versus 0(nlogn) and 0(klogk) for CH. In Step 2(b), it is 0(1) for IR 

versus 0(k+ri) for CH. The only part that CH can outperform IR is Step (3), where the 

difference is between the fraction fiH and j3B. Given any set of points, it can be shown that the 

isothetic rectangle always contains the convex hull. In other words, it is necessary that for any 

polygon PO, if the convex hull Hd and Hpo overlap, then their corresponding isothetic 

rectangles Bc! and Bpo must also overlap. The converse is not true though. Thus, it is 

necessary that PH</3B. But unless fiB is significantly larger than f}H, IR is expected to be more 

efficient than CH. 

5.5 An Algorithm Based on R-Tree Searches 

The disadvantage of all the algorithms discussed so for is that all the polygons in a map 

must be checked for possible intersection with the given cluster. This problem can be solved if 

there is spatial indexing available. 

The following algorithm, RT (standing for "R-Tree), is proposed to take advantage of 

the R-tree method. Due to fact that there is no prepared indexing for the thematic maps, R-

trees must be constructed for each map during the run-time. 
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Algorithm R T 

1. For each polygon PO in Map M 

(a) Compute its isothetic rectangle, and 

(b) Insert the rectangle into a R-tree. 

2. Compute the isothetic rectangle Bd of cluster CI. Retrieve all isothetic rectangles in the R-

tree that overlap with Bcl, Let all the polygons that correspond to these isothetic rectangle be 

the elements of a set S. 

3. Apply PC to the polygons in S. 

In Step (1), it takes 0(k) to find a isothetic rectangle of a polygon with k vertices. Thus, 

for m polygons, Step (la) takes 0(km). For Step(lb), since there are m isothetic rectangle to 

be inserted, a total time of 0(m\ogm) is required. Thus, Step (1) takes 0(km+m\ogm). Step 

(2) takes 0{n) to construct the isothetic rectangle of CI. The complexity of search for all the 

required isothetic rectangles from the tree depends on whether multiple paths of the tree are 

needed. For simplicity of analysis, suppose only one path is needed, in which case the search 

takes O(logm). Finally, if fiB is the fraction of polygons whose isothetic rectangle overlap with 

that of the cluster, then the complexity of Step(3) is 0(PBkmri). Hence, the complexity of RT 

is 0(n+km+mlogm+Pskmn). 

From the complexity analysis shown above, although RT saves time on spatial 

searching, which takes 0(logm) time, the construction of the R-tree is costly, requiring 

O(mlogw). If the R-tree will be searched repeatedly, it is possible that the time saved by the 

subsequent searches exceeds the complexity of building a R-tree. 
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5.6 Brief Summary 

A comparison of the complexity of each of the four algorithms is shown in Table 1. As 

discussed in Section 5.3, as long as fiH is small, and n is large, the complexity of CH is less then 

PC. As for the comparison between IR and CH, as illustrated in Section 5.4, IR is more 

efficient than CH, unless fiB is significantly larger than f5H. It is clear that IR outperforms RT 

from the complexity point of view. The key is that although IR computes the intersection 

between each polygon and a cluster, checking whether two isothetic rectangles intersect or not 

is a constant time operation. In contrast, in RT, inserting the isothetic rectangles into the index 

takes O(mlogm). 

Algorithm Time Complexity 

PC 0(kmri) 

CH 0(j3Hkmn+mklogk+mn+nlogn) 

RT 0((3Bkmn+mk+mlogm+n) 

IR 0(PBkmn+mk+n) 

Table 1: Complexities of the Computations of Utility Measures 
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5.7 Computation of Two Pattern Extraction Operations 

As mentioned in Section 5.5, the initial cost of the R-tree construction can be amortised, 

if the index can be re-used in the following searches. This is exactly the case for pattern 

extraction operations, where a map is searched by several clusters. Although IR is the best for 

the computation of the characteristic-utility measures, it is questionable whether IR will still 

be superior to RT in the computation of pattern extraction. In order to investigate this 

problem, algorithms based on both IR and RT are proposed in this section. 

5.7.1 Algorithms for Common() 

The following algorithm Com(7i?), based on IR, computed the strong common 

characteristics of n clusters. 

Algorithm Com(IR) 

1. For each Map M; 

(a) Set u to 1. 

(b) Call IR. 

(c) If the utility is less than ITh, go to Step 1. 

(d) Otherwise, if u<n, increment u by 1 and go to Step(lb). 

(e) Otherwise, compute Common({Cl],...Cl„),M). 

(f) if the utility of Common({Cl1,...Cln), M}>CTh, output this value. 

The purpose of Step(lc) is to exclude a map M as soon as there is a cluster whose 

characteristic-utility measure for M is below the threshold ITh. No further processing of the 
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map M with the rest of the clusters is necessary. The higher the threshold value ITh, the 

higher the percentage of maps are filtered. 

For RT, two modifications, Step 1(a) and 1(b), are needed to the above algorithm. The 

modification are made, because for each map, once the R-tree is created, each of all n cluster 

can use the same tree. 

Algorithm Com(RT) 

1. For each Map M; 

(a) Call Step (1) of RT. Set u to 1. 

(b) Call Step (2) and (3) of RT. 

(c) If the utility is less than Ith, go to Step 1. 

(d) Otherwise, If u<n increment u by 1 and go to Step(lb). 

(e) Otherwise, compute Common({Cl1,...Cl„},M). 

(f) If the utility of Common({Cl1,...Cln}, M}>CTh, output this value. 

There are two main factors that influence the performance comparison of Com(RT) and 

Com(IR). The first is the number of the clusters n. The run-time of Com(IR) linearly 

increases with n. The run-time of Com(RT) only partially increases with n, because Step(la) 

of Com(RT) only executes once. However, how large n should be in order for Com(RT) to 

outperform Com(IR) remains a question. The second factor is the value of threshold ITh. 

When ITh is high, a map is likely be eliminated before it will be examined by all the clusters. 

This situation is disadvantageous for Com(RT), because the R-tree will not be fully used. The 

effort of ITh on Com(RT) is also a question. The experimental results to be presented in 

Chapter 6 sheds light on these questions. 
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5.7.2 Computation of Discriminating Characteristics of Two Clusters 

It is easy to modify both Com(IR) and Com(RT) to compute discriminating 

characteristics of two clusters. The key difference is instead of computing the combined 

characteristic, the algorithm should compute the discriminating utility as defined in Section 4.3. 

The following algorithm, based on IR, computes of the discriminating characteristics of 

two clusters. 

Algorithm Diff(IR) 

1. For each Map M; 

(a) Set u to 1. 

(b) Call IR. 

(c) If the utility is less than ITh, go to Step 1. 

(d) Otherwise, if u<2, increment u by 1 and go to Step(lb). 

(e) Otherwise, compute differ-ent({Cli, Cl2}, M). 

(f) if the utility of differ ent({Cl,, Cl2), M) >GTh, output this value. 

An algorithm based on RT is not proposed, because it only involves two clusters in the 

computation of different{Cli, Cl2). In the next chapter, experimental results will show that 

since the efficiency of IR is usually several times than of RT, it is impossible for DifftT?J) to 

outperform Diff(/i?). 
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5.8 Summary 

In this chapter, the algorithms of how to compute the utility measures have been 

proposed. From the complexity analysis, IR is the best among the four algorithms with 

respect to efficiency. For the computation of pattern extraction operations, algorithms based 

on both IR and RT are proposed, which of them is more efficient will be discussed in the next 

chapter. 
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Chapter 6 

Experimental Evaluation 

In this chapter, the following algorithms are experimentally evaluated: the two heuristic 

algorithms, the four algorithms for computing characteristic sets, and the two algorithms for 

pattern extractions. All the experiments were carried out in a time-sharing SPARC-LX 

workstation running SunOS 5.5. The reported execution figure, obtained by the UNIX time 

command, is the time averaged over 15 runs. 

6.1 Details of Thematic Maps 

In order to make the experimental results as realistic as possible, thematic maps, 

provided by Statistics Canada of Greater Vancouver area in 1990, were used. Among the 

available 90 categories/theme of census, 50 were randomly chosen for the purpose of 

experiments, including household income, unemployment rate, average value of dwellings, 

education level, etc. As illustrated in Chapter 5, the run-times of the algorithms are linearly 

proportional to the number of maps. Thus, to test for the run-time scalability, there is no need 

to try with thousands of maps, it is sufficient to obtain the average run-time of a map, as long 

as the maps represent a typical mix. 

As discussed in Chapter 3.1, the base map of a thematic map is regarded as a collection 

of polygons which represent the sub-regions of the map. Greater Vancouver region is divided 

into 88 sub-regions by Statistics Canada. Thus, the number of polygons of a Vancouver 

thematic map is 88. In order to represent a typical mix of the maps, one third of the maps are 
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reconstructed by merging neighbouring polygons with the same class labels together, so that 

they contain around 20 polygons if possible. And another one third of the maps are 

processed using the same merging method, so that they contain around 50 polygons if 

possible. Thus, of the 50 thematic maps, one third contain 20 polygons, one third contain 50 

polygons and the rest have 88 polygons. Note that although the maps in a typical 

geographical information system (GIS) may easily contain tens of thousands of 

"topographical" polygons, a typical thematic map contains fewer polygons, e.g., at most 88 

polygons in Vancouver thematic maps. 

Due to the constraint of the census data domain, all of the 50 thematic maps belong to 

open or closed range numerical maps. The number of classes for all the maps varies from 5 to 

20. 

Another implementation detail for the maps is that, though the polygons do not overlay 

in a thematic map, it is common to encounter the situation that a polygon is completely 

contained in another polygon, which is called a complex polygon. In the implementation, to 

simplify the computation, the complex polygons are always divided into simple polygons 

which contain no holes. 

6.2 Details of Clusters 

Although in practice, the clusters should be generated by clustering algorithms, such as 

CLARANS, for the purpose of extensive experimentation, clusters are a mixed collection of 

various sizes, densities and locations. 
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The size of a cluster is described by an area ratio, which is the actual size of the cluster 

divided by the actual size of the region covered by the map. The area ratio 0.01 represents an 

area of roughly 9 blocks by 9 blocks for the Vancouver region. The area ratio conducted in the 

experiments ranges from 0.01 to 0.1. Area ratio is an important parameter because the larger 

the area ratio, the more likely that a larger number of polygons are intersected with the cluster. 

The density of a cluster measures the average number of points in the cluster within a 4 

block by 4 block area. The density of the clusters conducted in the experiments ranges from 1 

to 5. Multiplying the area ratio with density gives the total number of points in the clusters. 

To diminish the influence of the location of the clusters to the experimental results, for 

each cluster, 3 experiments are done at 5 different locations of a map. And the average of these 

experimental results is taken to be the run-time of the cluster. 

6.3 Validity of Open Class Average Value Approximation 

In Chapter 3, Heuristic Algorithm 1 and 2 were proposed to estimate the average value 

of open range classes. The assumption of the algorithms is that there is an underlying normal 

distribution. In this experiment, the validity of this assumption is evaluated. 

The thematic map that describes the average value of dwellings is chosen for the 

evaluation. The average value of dwellings for each of the 88 polygons of the map is obtained 

for the purpose of comparison with the estimation. The thematic has 5 classes with an open 

class of the form "<c". 

57 



Chapter 6. Experimental Evaluation 

mean 371,297 

interquartile range 278,078 

standard deviation 205,984 

p=prob(value>580K) 0.106 

Zp 1.62 

Table 2 Observed distribution 

Table 2 gives the key figures from the observed distribution. Thus, by Equation (8), the 

estimated average of the open range class is 704K. The actual average, computed based on the 

exact statistical figures, is 686K. Furthermore, to evaluate the effect of the estimated average 

on the final utility value, as defined by Equation (4), experiments are done with clusters with 

varying percentages of points in the open range class. Table 3 gives the results of the three 

percentages. 

20% 50% 90% 

using estimated average 0.746 0.683 0.81 

using actual average 0.76 0.7 0.82 

Table 3 Comparison of actual and estimated values 

The utility values obtained from the estimated average (704,000) are lower than those 

based on the actual average (684,000). This is because the estimated average is higher than the 
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actual average, and the points in the cluster that are not in the open range class are all from 

classes with lower values. In any case, the difference between the actual and estimated utility 

values is below 2.5 percent, showing that the heuristic algorithm provides valid 

approximations. 

6.4 Efficiency of Computing Characteristic Sets 

In this series of experiments, the four algorithms for computing characteristic sets are 

implemented for the purpose of performance comparison. The computational geometry 

procedures, namely point-in-polygon(), convex-hull-generationO, convex-hull-intersect(), and 

isothetic-rectangle-intersect(), are implemented based on [31]. The code for the R-tree 

implementation are developed and kindly provided by Christos Faloutsos and his group at the 

University of Maryland, College Park. Though the R-tree code may not be as optimised as 

other implementations such as the R*-tree, given that a thematic map typically does not have a 

huge number of polygons, the conclusions drawn based on the R-tree code should still be valid. 

For the purpose of extensive studies, experiments are conducted on clusters with various 

sizes and densities. As mentioned before, the area ratio of a cluster to a map gives the 

geographical size of a cluster. And the density of clusters together with the area ratio gives the 

total number of points in a cluster. Figure 5 shows the CPU time taken by the four algorithms 

on low density clusters whose area ratios range from 0.01 to 0.1. And Figure 6 shows the 

CPU time taken on the high density clusters with the same area ratio range. The CPU time in 

the two figures is the average of 50 maps. 
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Figure 5. Low Density Clusters 

In Figure 5, the density of the cluster is 1. Figure 5 shows that the run-times of all 

algorithms are not too dependent on the cluster sizes. The reason is that even if the area ratio 

increases, the actual number of points does not increase much due to the low density value. 

Figure 5 shows that the algorithm IR is at least 3 times faster than RT. 

In Figure 6, the density value is 5. The run-time of all algorithms do increase with the 

growing size of the clusters. PC is the most affected. But in any case, IR still outperforms the 

other algorithms. 

Figure 5 and 6 clearly show that characteristic sets can be computed very efficiently. 

For instance, for medium sized clusters, i.e., ratio=0.05, of low density, the time taken by IR 

for one map is about 10 milliseconds. For medium-sized clusters of high density, the time 

taken is about 30 milliseconds. 
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Area Ratio 

Figure 6. High Density Clusters 

6.5 Efficiency of Pattern Extraction Operation 

In this series of studies, experiments are done on Com(IR) and Com(RT). The number 

of clusters ranges from 1 to 6. Figure 7 and 8 show the CPU time for the two algorithms with 

a high and low threshold value input respectively. The CPU time in the two figures is the 

average of 50 maps. 

Figure 7 shows the situation where 10% of all thematic maps are strong characteristics 

for all the 6 clusters. The run-time of both Com(IR) and Com(RT) flatten off as the number of 

clusters increases. This is because each cluster represents a filter that removes non-qualified 

maps. Thus, as n becomes larger and larger, the extra effort incurred in increasing the number 

of clusters from n to n+l becomes smaller and smaller. This trend is significant because it 

implies that it will take very large values of n for Com(RT) to approach Com(IR). For n=6 

clusters, Com(RT) requires 3 times as long to compute common(Cl],...Cln) as Com(IR) does. 
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Even when the percentage of maps passing threshold is much higher, like 60% in Figure 8, 

Com(RT) still takes twice as much time as Com(IR) for 6 clusters. It can be concluded that 

Com(RT) may come closer to Com(IR), only when n is very large. 
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Figure 7. Large ITh: 10% Passing Rate 

Figure 8 also shows that strong common characteristics can be found very efficiently. 

Even with a small passing rate such as 10%, it only takes about 70 ms per map for 6 clusters 
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Figure 8. Very Small ITh: 60% Passing Rate 

6.6 Summary 

In this chapter, it has been shown that the heuristic algorithms provide valid 

approximations. Experiments also show that IR is a promising algorithm. It is able to provide 

efficient computation for both characteristic sets and pattern extraction operations, even when 

processing thousands of maps. 
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Chapter 7 

Discussions 

7.1 Summary 

This thesis studies how to discover strong, common and discriminating characteristics of 

clusters. Previous works solved this problem by relying on pre-constructed concept 

hierarchies. Since concept hierarchies have their own limitations, this thesis aimed to solve the 

problem by correlating clusters with statistical census data. Census data are excellent sources 

for knowledge discovery, because they cover a variety of information such as population, 

education, occupation, dwelling, income and so on. Census data usually exist in the form of 

thematic maps. Thus, this thesis works on discovering strong, common and discriminating 

characteristics of clusters from thematic maps. Specifically, there are three main issues 

addressed in the thesis. 

The first issue is how to discover those maps which represent the characteristics of a 

cluster. Mainly, there are two different kinds of thematic maps, ordinal and nominal thematic 

maps. Ordinal maps include single-value and interval maps. Interval maps can further be 

classified into open and closed range maps. In order to accommodate different kinds of maps, 

two basic measures are proposed to assign utility values to the thematic maps. The higher the 

utility measure, the stronger the map is a characteristic of the cluster. An entropy-based 

measure works for nominal maps, while a standard-deviation-based measure is applied to 

single-value ordinal maps. Some extra steps should be taken before employing the STD-based 
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measure to interval ordinal maps. The utility values produced by the two measures are 

normalised in the range of [0,1], so that the results from different maps are comparable. 

The second issue is to define measures which perform concept description task, i.e. 

discovering the common and discriminating characteristics of the multiple clusters. Though 

there could be many ways to define them, the concern is that the definitions of common and 

discriminating characteristics for the multiple clusters should be consistent with the one for 

individual clusters. Therefore, the common characteristics of the clusters are specified to be 

those maps, which are not only strong characteristics of each of the clusters, but also strong 

characteristics of the cluster formed by merging the clusters together. This specification 

indicates that the utility measure for a common characteristic is exactly the same as the one for 

individual clusters. An operation, commonQ, is defined to carry out this specification. In 

order for a map to be a discriminating characteristic of two clusters, it must be a strong 

characteristic of each of the two clusters, and characteristics which the two clusters displayed 

in the map should be "sufficiently different". The operation different^) measures the difference 

of characteristics exhibited by the two clusters. 

The last issue is how to provide scalable computations for the above tasks. It is obvious 

that the more the maps are processed, the better the characteristics of the clusters will be 

captured. Usually, there are hundreds and thousands of maps needing to be handled. Four 

algorithms have been proposed for computing the characteristics of the clusters. Both 

complexity analysis and experimental results show that algorithm IR, which takes advantage of 
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spatial object approximations, outperforms the algorithm based on spatial indexing and other 

proposed algorithms. IR is capable of processing a hundred of maps in about 5 seconds. To 

extract patterns efficiently, algorithm Com(IR) and Com(RT) are proposed, which are based 

on IR and RT respectively. Experimental results show that Com(IR) always outperforms 

Com(RT). 

7.2 Future Work 

7.2.1 Efficiency Improvement 

Although the algorithm IR, provides satisfactory computational efficiency, it still has 

some drawbacks. The first is that all the polygons in the space must be searched for possible 

intersection with a given cluster. The spatial indexing method, R-tree, is an obvious way to fix 

this problem, but is inapplicable for thematic maps. The reason is that a thematic map usually 

does not contain a large number of polygons for the cost of R-tree construction to be 

amortised. 

The study reported in [37] explores a spatial join method that dynamically constructs 

index trees, called seeded tree, at join time. Seeded trees are R-tree-like structures, and are 

divided into the seed levels and the grown levels. The characteristics of the input data sets are 

utilised to build the seeded levels. A tree is dynamically constructed on the basis of the seed 

level. 

66 



Chapter 7. Discussions 

It is possible that the seeded tree method is more efficient than algorithm IR. Since all 

the thematic maps are based on a common base map, constructing a common seed level for all 

the maps is possible. Unlike R-tree where the entire tree is constructed for each of the maps, 

only grown levels will be constructed in the case of a seeded tree. This could dramatically 

reduce the construction time. 

The second problem with algorithm IR is that it is a memory-based method. It assumes 

that all thematic maps are all stored in main memory. This assumption may not be valid, if the 

number of maps is extremely large. Also this drawback of IR can be solved by the seeded tree, 

which is a disk-based method. 

7.2.2 Effectiveness Improvement 

This thesis answered the question of what the characteristics of clusters are. But it 

would be more interesting to give the answer of why the clusters with such characteristics are 

there. Usually, the characteristics of a cluster is highly related to its geographical 

circumstances. For example, a cluster which has the characteristic of high income may close to 

a park. Ng and Knorr [35] [36] have investigated algorithms to determine the relationship with 

the clusters and their geographical surrounding. By combining their work with the study of 

this thesis, the comprehensive properties of the clusters can be discovered. 
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