
Improving the Portability of
Natural Language Interfaces

Through Learning

by

Gregory John McClement

B.Sc., The University of Regina, 1989

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

November, 1993

© Gregory John McClement, 1993



In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of  Cc-AA r -ker. SCleV\C e
The University of British Columbia
Vancouver, Canada

Date ^6 (993

DE-6 (2/88)



Abstract

One major concern with natural language interfaces is dealing with the problem of porting

the system from one domain to another. Early approaches required that significant parts of

the system be rewritten. Improvements have been made to the point that a system can be

configured for a new database by a database expert who has no special knowledge of

Computational Linguistics. Unfortunately, this has not yet lead to the widespread use of

natural language interfaces. Proposed here is a natural language interface that can he

configured by a user that has no knowledge of Computational Linguistics and no

knowledge of databases ie - no knowledge of formal query languages, no knowledge of

relational databases and no knowledge about how the data is organized in the database.

Such a user merely needs to know some specific information about the domain that is

modelled by the database. For an employee database, specific information is knowledge

about a particular employee, eg - their name, address, and department.

ii



TABLE OF CONTENTS

Abstract  ^ii

Table of Contents ^  iii

List of Figures  ^viii

Acknowledgement ^  xiii

Chapter 1 Introduction  ^1

1.1 Contributions  ^3

1.2 What Follows  ^3

Chapter 2 Natural Language Interfaces ^  6

2.1 Question Answering Systems ^  6

2 1 1 ELIZA (Pattern Matching) ^  7

2.1.2 LUNAR (Linear Paradigm) ^  8

2.1.3 PLANES/LIFER (Semantic Grammars) ^  11

2.1.4 Case Frame Based ^  13

iii



2.2 Desirable Characteristics ^ 17

2.2.1 Internal Characteristics ..... . .^................... . ^ 17

2.2.1.1 Portability  ^18

2.2.1.2 Semantic Productivity ^  20

2.2.1.3 Minimum Coverage ^  21

2.2.2 User Interface ^  22

2.2.2.1 Habitable (User-friendly) ^  22

2.2.2.2 Cooperative ^  23

2.2.2.3 Robust with Respect to "Noise ^  27

2.2.2.4 Handling of Discourse Phenomena ^ 28

2.3 Learning Language ^  31

2.3.1 Syntax ^  31

2.3.2 Semantics ^  32

Chapter 3 System Overview ^  38

3.1 Objectives ^  38

3.2 Knowledge Base Components ^  38

3.2.1 Domain Independent Knowledge ^  39

3.2.2 Domain Dependent Knowledge ^  40

3.3 Processing Flow of Control ^  41

3.4 Implementation Details ^  47

3.5 Examples ^  47

iv



Chapter 4 Linguistic Knowledge ^ 57

4.1 Lexicon ^ 57

4.1.1 Word Classes ^  58

4.1.1.1 Domain Independent (Predefined) ^ 58

4.1.1.2 Domain Dependent ^  59

4.1.2 Morphing ^  60

4.1.3 Implementation of the Lexicon ^  60

4.1.3.1 Inverted index ^  60

4.1.3.2 Implementing the Inverted index ^ 62

4.2 Grammar^  64

4.2.1 Coverage ^  64

4.2.1.1 Passives ^  64

4.2.1.2 Relative Clauses ^  65

4.2.1.3 Wh-Question ^  65

4.2.1.4 Possessives ^  66

4.2.1.5 Imperatives ^  66

4.2.1.6 Noise Phrases ^  67

4.2.1.7 Semantic Grammar Based-Phrases ^ 67

4.2.2 Representation ^  69



Chapter 5 Becoming Portable Through Learning ^  71

5.1 Tokenization ^  71

5.2 Parsing ^  71

5.3 Learning Frames ^  73

5.3.1 Case Frames ^  73

5.3.2 Object Frames ^  74

5.3.3 Minimal spanning Trees ^  75

5.3.4 Ambiguity ^  110

5.4 Learning Word Meanings ^  111

Chapter 6 Question Answering ^
 

114

6.1 Example ^
 

114

6.1.1 Tokenizing ^
 

114

6.1.2 Parsing ^
 119

6.1.3 Semantic Analysis ^
 

123

6.2 Response Generation ^
 134

6.3 Learning Word Meanings ^
 134

6.4 Handling Ambiguity ^
 135

6.5 Controlling the Dialogue ^  136

v i



Chapter 7 Conclusion ^ 138

7.1 Contributions of this Thesis ^ 138

7.2 Possible Enhancements ^  140

7.2.1 Enhancements to Noun Phrase Interpretation ^ 140

7.2.2 Learning Grammatical Structures ^  146

7.2.3 Enhancements to Verb Phrase Interpretation ^ 146

7.2.4 Enhancements of the Parser ^  147

7.2.5 Enhancements Using Learning ^  147

7.2.6 Enhancements Using Frames ^  148

7.2.7 Enhancements to the Database Interface ^  149

7.2.8 Inferences ^  149

Bibliography ^  151

Appendices ^  155

A Relational Database Terminology ^
 156

B Grammar^  159

C Database Listing ^
 172

D Database Interface ^
 178

E Test Runs ^
 180

vii



List of Figures

Figure 2.1 - Match - Response Patterns  ^7

Figure 2.2 - Sample Cases ^  14

Figure 2.3 - Case Frame For Fix ^  15

Figure 2.4 - Non-passive Sentence ^  16

Figure 2.5 - Passive Sentence ^  16

Figure 2.6 - Ambiguous Question ^  26

Figure 2.7 - Paraphrases ^  26

Figure 2.8 - Simple Choices ^  27

Figure 2.9 - Ellipses ^  28

Figure 2.10 - Anaphora ^  29

Figure 2.11 - Vagueness ^  30

Figure 2.12 - Part of a Concept Hierarchy ^  34

Figure 2.13 ^  35

Figure 2.14 - Arithmetic Field Acquisition (MAP83) ^  36

Figure 3.1 Knowledge Source Diagram ^  39

Figure 3.2 - Data Flow Diagram ^  43

Figure 3.3 - Case Attachment ^  45

Figure 4.1 - Word Classes ^  59

Figure 4.2 - Part Table ^  61

Figure 4.3 - Inverted Index for the Producer Column ^  61

Figure 4.4 - Part of a TRIE ^  63

viii



Figure 4.5 - Different Tokens ^  63

Figure 4.6 - Sentence Form^  64

Figure 4.7 - Relative Clauses ^  65

Figure 4.8 - Possessives ^  66

Figure 4.9 - Imperative Sentences ^  66

Figure 4.10 - Noise Phrases ^  67

Figure 4.11 - Example Employee Frame ^  67

Figure 4.12 - Semantic Grammar for Recognizing Object and Attributes ^ 68

Figure 5.1 - Cases and Fillers for Sample Sentence ^  72

Figure 5.2 - Case Frame for Works ^  74

Figure 5.3 - Employee Object Frame ^  75

Figure 5.4 - Tables Used by Examples ^  77

Figure 5.5 - Database Graph for Table of Figure 5.4 ^  77

Figure 5.6 - Three Minimal Spanning Trees for "Smith works as a clerk for 800

dollars" ^  78

Figure 5.7 - GMST ^  80

Figure 5.8 Example minimal spanning trees connecting "Smith", "Clerk", "800",

"Research", and "Ford" ^  83

Figure 5.9 - Another Spanning Tree For "Smith", "Clerk", "800", "Research", and

"Ford" ^  84

Figure 5.10 - Generalized Minimal Spanning Tree ^  85

Figure 5.11 - 'Join' Edge Cost ^  86

Figure 5.12 - Tree Cost Calculation ^  88

ix



Figure 5.13 - Establish Value to Database Graph Node Correspondence ^ 90

Figure 5.14 - Values Queue ^  91

Figure 5.15 - First MST ^  92

Figure 5.16 - New Values Queue ^  92

Figure 5.17 - Connecting Ford ^  94

Figure 5.18 - New Values Queue ^  95

Figure 5.19 - Connecting in 800 ^  96

Figure 5.20 - New Values Queue ^  97

Figure 5.21 - Connecting "Research" to "Smith" ^  98

Figure 5.22 - Next Values Queue^  99

Figure 5.23 - Connect in "Clerk" ^  100

Figure 5.24 Pseudo-Code Which Generate GMSTs such that M <=cost(GMST)<= N ^ 101

Figure 5.25 - Choice 1 ^  102

Figure 5.26 - Choice 2 ^  102

Figure 5.27 - Value to Node Mapping ^  105

Figure 5.28 - Presenting the User with Different Interpretations ^ 107

Figure 5.29 - Search from Each New Node to GMST ^  109

Figure 5.30 - Search from GMST to all New Nodes ^  109

Figure 6.1 - Example Sentence ^  114

Figure 6.2 - Initial Position in the Sentence ^  115

Figure 6.3 - Initial Position in the TRIE ^  115

Figure 6.4 - Sentence ^  115

Figure 6.5 - Inverse Index ^  115



Figure 6.6 - Sentence After 'h' ^  116

Figure 6.7 - TRIE after 'h' ^  116

Figure 6.8 - Sentence after 'o' ^  116

Figure 6.9 - TRIE after 'o' ^  116

Figure 6.10 - Tokens of the Sentence ^  117

Figure 6.11 - Possible Sentence Structure ^  120

Figure 6.12 - Possible Syntactic Structure ^  120

Figure 6.13 - Possible Syntactic Structure ^  120

Figure 6.14 - Possible Syntactic Structure ^  121

Figure 6.15 - Cases of the Only Parse Accepted ^  121

Figure 6.16 - verbPhrase/3 ^  121

Figure 6.17 - nounPhrase/5 ^  122

Figure 6.18 - Case Frame for Earn ^  124

Figure 6.19 - Case Frame for Work ^  124

Figure 6.20 - Object Frame for Employee ^  125

Figure 6.21 - Selecting Frames ^  126

Figure 6.22 - Query Groups ^  129

Figure 6.23 - Graph 1 ^  130

Figure 6.24 - Graph 2 ^  130

Figure 6.25 - Union ^  130

Figure 6.26 - Main Query GMST ^  131

Figure 6.27 - Sub-query GMST ^  131

Figure 6.28 - SQL for the Sub-query ^  132

xi



Figure 6.29 - SQL for the Main Query ^ 133

Figure 6.30 - Possible Ambiguity ....................................^135

Figure 6.31 - Asking for Input ^  136

Figure 6.32 - Selection Option #1 ^  136

Figure 7.1 - Job Class ^  144

Figure 7.2 - Another Form of Classes ^  144

Figure 7.3 - Preposition used as Particles ^  147

Figure A1.1 - Oracle Sample Database ^  156

Figure D.1 - whereLocation/2 ^  178

Figure D.2 - where_prefix/3 ^  178

Figure D.3 - SQL Access Predicates ^  179

xii



Acknowledgements

I am indebted to my research advisor Dr. Richard Rosenberg. His initial advice helped me

to select a concrete problem to solve and his insight, patience, and supervision fostered the

development of a realistic solution. His careful editing and suggestions enhanced my work.

I would also like to thank my parents, John and Joan, who have always supported me in

my endeavours and special thanks to my wife, Dawn, who encouraged me to further my

education.



Chapter 1

Introduction

Everyday, more people begin to use databases for their work. Many of these people are not

experts on database technology and do not want to become experts, but they still want

access to the information in databases. In many cases, access to the information in the

database is obtained through a programmer who writes programs to produce report., for the

user. Many people are unhappy with both the cost of producing a report and the delay

between asking for a report and receiving the report. This has lead to the demand for user-

friendly database management systems which a naive user can employ directly.

A number of different approaches have been taken to try to achieve user friendliness. For

each approach, there is a different tradeoff between ease of use and sophistication of the

results. The two most common approaches are to provide a menu driven interface and a

formal query language. A less common approach is to use interfaces which interpret natural

language.

Most commercial database management systems (DBMS) have a menu driven interface

which allows the user to produce reports. Typically, the user is asked to select a number of



2

database tables to use in the production of the report. The system then presents the user

with a report template which can be manipulated manually to produce the final form of the

report. After the user is satisfied with the template, the report can be generated. The

disadvantages of this approach are that production of arbitrarily complicated reports is not

possible and the user must know something about the internal structure of the database.

Another approach to providing access to databases has been to provide query languages

such as SQL. Query languages are a powerful tool for generating reports quickly and

accurately. Unfortunately, query languages are not easy to master for people inexperienced

with computer programming languages. Many people do not have the background necessary

for learning query languages. Although they provide a means to produce reports quickly

and accurately, many users find query language too difficult to use. Another problem with

query languages is that users still must know about the structure of the database.

The less common approach to providing access to information in databases is to use natural

language interfaces. The goal of this approach is to allow the user to access the database in

a familiar way. This approach does not require that the user learn unnatural query

languages or that the user know how the database is structured internally. Ideally, the users

would be able to tell the natural language interface what they wanted using concepts that

are familiar. One of the problems with natural language interfaces is that a database expert

with some knowledge of Computational Linguistics must be used to transfer them from one

database to another. This thesis explores one approach that could be used to allow the users

themselves to configure the natural language interface for a database.



3

1.1 Contributions

The contribution of this thesis is to provide a simple means to translate the user's

knowledge into the knowledge of the system. The approach presented in this thesis, allows

the system to access the knowledge of the user in order to configure itself to a new

database. In order to achieve this, the user does not need to know about the internal

structure of the database or learn a formal language. The user merely describes the data in

the database using words and concepts of his or her own choosing.

The interpretations of sentences are represented with a special type of semantic net called a

minimal spanning tree. The relationship between utterances of the user and the data in the

database is determined through use of these minimal spanning trees. The minimal spanning

tree and its use in configuring a natural language interface comprise the major contributions

of this thesis. This is what allows the system to be configured so easily.

1.2 What Follows

This section briefly describes the contents of the remaining chapters of this thesis. Chapter

2 contains a review of other approaches to developing natural language interfaces. This

includes general purpose natural language interfaces as well as systems that were developed

to explore how learning could be used to enhance performance. A summary of desirable

characteristics of interfaces is included.



4

Chapter 3 contains an overview of the system. A description of the high-level control

structures of the system is presented along with information about the derivation of

knowledge. A sample run of the system concludes the chapter.

Chapter 4 contains background information about the handling of the lexicon and the

grammar. Implementation details are presented along with information about the extent of

coverage of the lexicon and grammar.

Chapter 5 describes the major contribution of this thesis - the spanning tree approach to

configuring a natural language interface. This chapter proceeds by examining a number of

examples of the analysis process in action. The algorithm is presented along with a number

of considerations related to implementing the algorithm efficiently.

Chapter 6 shows how the spanning tree data structure is used when interpreting questions.

The process of analysis is examined in detail for a sample sentence, from the initial

tokenization of the sentence to the final response to the question.

Chapter 7 contains a summary of the contributions of this thesis along with a detailed

description of a number of enhancements that could be made to the system to produce a

more robust and powerful natural language tool.

The appendixes contain information for readers unfamiliar with relational database

terminology (Appendix A), the definite clause grammar used by the parser (Appendix B), a



listing of the tables in the database used for the examples (Appendix C), a description of

the interface to ORACLE (Appendix D), and test runs of the system (Appendix E).

5



Chapter 2

Natural Language Interfaces

Many attempts to develop natural language interfaces have been made during the last 30

years. Some have been more successful than others but all serve to illustrate that natural

language analysis is a difficult problem. What follows is a description of some of these

attempts. Some well known systems are presented as examples of a particular approach to

dealing with the problem of interpreting language. After discussing these examples, general

observations about natural language interfaces will be summarized. This section concludes

with a description of natural language systems that have used learning to enhance

performance.

2.1 Question Answering Systems

During the first 30 years of computational linguistics many approaches to natural language

processing were proposed. This section reviews some approaches which are related to the

work done in the thesis.

6



2.1.1 ELIZA (Pattern Matching)

   

7

Sentence
Pattern Matching

Semantics Response

 

ELIZA is a pattern matching system developed in the mid-60's by Weizenbaum

(WEWEN66, WEIZEN67). This program attempts to maintain a conversation with a

person. The program has the role of a therapist and the person is a patient. For this system,

pattern matching provided a simple means of analyzing input sentences in order to

determine a reasonable response. No sophisticated analysis of the input was attempted,

instead the system associated a response pattern with each sentence recognition pattern.

Some typical patterns are shown in Figure 2.1.

Match Pattern Response Pattern

I am X How long have you been X?

X you Y me What makes you think I Y you?

Figure 2.1 - Match - Response Patterns

These examples illustrate that the system is not analyzing potentially large parts of the

input sentences. In order to analyze the sentence entirely, the system would have to be

provided with a large number of patterns. The need to provide large number of patterns

makes this approach impractical as a base for modern question answering system, although

pattern matching can still be used to enhance other methods of sentence analysis or to

provide sentence analysis where the number of possible responses is limited. Further work

in pattern matching approaches was explored in COLBY71.



2.1.2 LUNAR (Linear Paradigm)

 

Syntax

   

Semantics

 

Retrieval

 

Sentence

 

Structure

 

Query Response

        

LUNAR, WOODS85, is characteristic of systems which were developed according to a

linear paradigm. Under this approach, syntactic and semantic analysis were performed

separately. After initially analyzing the input using only syntactic information, the results

were analyzed by a component that used semantic information. Unlike pattern matching

approaches, the interpretation of the sentence was developed by combining the results of

analysis of the components of the sentence. The theoretical base for syntactic analysis was

Chomsky's Transformational Generative Grammars, developed in the late 1960's.

Transformational Generative Grammar is a mathematical formalism which is used to define

the mapping of the surface structure of a sentence to it's deep structure. The surface

structure is the sentence itself and the deep structure represents an equivalence class of

sentences with common meaning. One purpose of this mapping is provide a means to

ignore insignificant differences between sentences. The mapping from surface to deep

structure is defined using a grammar that generates parse trees and transformations of those

parse trees. The following sentences have the same deep structure and are related to each

other by the passive transformation.

John bought a car.
A car was bought by John.

8



9

Augmented Transition Networks (ATNs) were proposed in WOODS70 as a means to

efficiently analyze the syntax of sentences. ATNs are derived from recursive transition

networks (push down automata) by adding registers to keep track of information collected

during parsing and adding tests on the transitions of the machine. The ATN analysis

produces the "deep structure" of the sentence which is then analyzed by the semantic

component of the system.

The analysis of the deep structure of the sentence produces a domain dependent

interpretation which is used to answer questions or perform some task. Procedural

semantics (WOODS85) is a common method of providing this interpretation. For

procedural semantics, the meaning of a sentence is defined using procedures that are

evaluated to implement a command, or answer a question. The procedures are defined in

terms of the information in a particular domain.

Because syntactic and semantic analysis are separate, the syntactic information is relatively

domain independent. While this is a desirable property it has an undesirable consequence.

Since no semantic analysis is performed by the ATN during the parse of a sentence, many

parses which are not semantically sound can be generated. The ATN does not stop

analyzing the sentence as soon as a semantic inconsistency is detected, so much work can

be wasted producing parses which did not need to be produced. There are also

disadvantages which are associated with using an ATN itself.

The ATN after backtracking will reanalyse components of the sentence because it does not



10

keep track of previous work. To avoid this problem, the ATN control structure must be

modified to keep track of partial parses. Problems also arise when the input contains

deviations from expected syntax. The ATN is dependent on the current state during the

parse to control the alternatives expected and so it does not respond well to deviations.

Procedural semantics is also a source of some problems.

Under procedural semantics, the semantic information is domain dependent. Providing the

semantic information requires an expert and is time consuming. Procedural semantics is

defined in terms of the underlying database. This means that general facts such as "All

flights serve meals." and disjunctive facts such as "Flight Fl serves breakfast or lunch"

cannot be represented in the system because they must be defined in terms of the query

language of the database management system and query languages do not have such

expressive power, ALLEN87. Attempts to address this problem involve the use of an

intermediate representation language (IRL) which serves as a domain independent

representation of semantic information as well as an interface to different DBMS query

languages.

Most of the significant problems with ATNs arise from the underlying approach - the

separation of syntax and semantics. Later approaches attempted to reduce this problem by

combining these stages of analysis. Semantic Grammar-based systems represented the first

attempt to address the problem of combining syntax and semantics.



11

2.1.3 PLANES/LIFER (Semantic Grammars)

Sentence
Syntax

Semantics Response

Semantic Grammars were developed to try to deal with the problems of approaches that

separated syntactic and semantic analysis. Semantic grammars instead of using syntactic

categories of phrases such as noun phrase or verb phrase, used semantic categories such as

"plane name" or "present command". Semantic grammars provided a simple yet effective

means for applying semantic constraints during the parse. But as a result each different

domain of discourse required different semantic categories.

SOPHIE (BUBR79) is a semantic grammar-based system developed to teach debugging of

electronic circuits. For this system, measurements, voltages and parts are some of the

semantic categories. The PLANES systems (PLANES76) which accessed a database about

aircraft contained semantic categories such as plane type, flights and flight hours. The

LIFER system (LIFER77) used with a naval database had ship, attribute, and port as

semantic categories. There is a considerable variety of semantic categories among these

systems.

Semantic grammars are not a new way of representing sentence structure. They are a new

way of using existing formalisms to represent structure. Because of this, tools for producing

parse trees of inputs can be used to produce semantic grammar parses. During the parsing

process the interpretation of the input can be constructed.



12

To handle interpretation of the input, there are query templates associated with the semantic

grammar rules. During analysis of the input, components can be identified and later

inserted into a particular query template. These templates are combined to produce

procedures that are implemented as a result of the query. ATNs or DCGs provide an

environment where the construction can occur.

A number of benefits are derived from the use of semantic information during the parsing

process. The parser will not generate parses that have no meaning. A related benefit is that

there is a reduction in the total number of grammatical parses. This means that inputs that

are syntactically ambiguous will not be ambiguous using the semantic grammar, so this

system will be able to generate all parses quickly and there will be fewer parses. Spelling

checking is also more efficient because the semantic categories limit the number of

alternative words that must be checked. Not all of the benefits are related to efficiency.

These systems can handle complex discourse phenomena effectively as well. Ellipsis can be

handled by partially parsing inputs and determining their semantic categories. Once the

categories are known, previous inputs can be scanned looking for components in the same

category. Once found the old component can be replaced by the new component in order to

produce an interpretation. Semantic grammars were found to limit the number of

alternatives enough to make this approach effective.

The disadvantages of semantic grammars arise directly from the use of semantic categories.

Different domains have different semantic categories and so have different semantic



13

grammars. To move the system from one domain to another requires specifying the

grammar again. Defining the grammar is time consuming and complex. The use of

semantic categories affects the generality of semantic grammars. Other problems arise from

this lack of generality. Semantic grammars need to contain many rules in order to have

broad coverage of the language. One reason for this is that general syntactic phenomena are

stored redundantly in the grammar. For example, handling the passive form of sentences

requires that productions be added for each semantic verb type. If some verbs are missed

then the system will not always accept passive sentences. This can frustrate users.

A semantic grammar is one means to integrate syntactic and semantic analysis. However,

the problems with this approach prevent the development of general purpose natural

language interfaces. Of the other approaches developed to try to handle the problem of

integrating syntax and semantics, case frame based approaches were the most successful.

2.1.4 Case Frame Based

        

Syntax

  

Sentence

 

Response

t
Semantics

Case frame systems are based

upon case frames which contain syntactic and semantic information about a verb and

related noun phrases. The case frame has two main components, patterns for recognizing an

invocation of the frame in the input and a number of cases that are semantically related to



14
the concept the case frame represents. The case frame represents some relation between

things and the cases represent what is related.

Semantic and syntactic constraints are associated with each case of the case frames.

Semantic constraints typically are based upon the role that the case has in the relation that

the case frame represents. There have been numerous attempts to define a complete set of

roles. Such a definition is called a case system. Figure 2.2 contains some sample cases

from FILLMORE71.

Agent The instigator of the event

Object The entity that moves or whose position or existence
is in consideration

Instrument The stimulus or immediate physical cause of an event

Figure 2.2 - Sample Cases

In addition to the semantic information about roles, the case frame contains information

used to recognize cases in the input. Case markers are associated with each case. During

analysis of the input, case markers are used to identify case fillers. Case fillers are the

sentence components that fill the role of a case. Markers are simple constraints on the

position of the case in the input or they are patterns which precede the case filler. Patterns

usually recognize prepositions.

Figure 2.3 contains a case frame for the verb "fix". As mentioned earlier, associated with

each case frame there is a pattern that is used to recognize an occurrence of the case frame.

For this case frame, an occurrence of "fix" (or any variation of it) in a sentence would

indicate that this case frame should be used to interpret the sentence. This case frame has



three cases, the agent, the

instrument and the object. Each

of these cases is associated with

a pattern (called case marker)

for recognizing an occurrence

of the case, and semantic

15

Fix

Case Marker Description

AGENT Logical Subject • a person

INSTRUMENT with • a tool

OBJECT Logical Object • inanimate

Figure 2.3 - Case Frame For Fix

constraints. The first case is the agent case. The agent appears as the syntactic subject of

non-passive sentence or the filler of a case marked with 'by' for passive sentences. In other

words, this case is marked by position for non-passive sentences or with the preposition

'by' for passive sentences. There is a semantic constraint that the filler of the case be a

person and so only noun phrases that refer to people could fill this case. The second case is

the instrument. The instrument case represents the tools used to perform the act of fixing.

This case is marked by the preposition "with". That means that the case filler must be part

of a prepositional phrase beginning with the word "with". The semantic constraint on the

filler is that it must be a tool. Semantic constraints depend on the application and have

been arbitrarily chosen for this example. The last case is the object case. The object case is

marked by position. The filler appears as a syntactic object for non-passive sentence or as

the syntactic subject for passive sentences. The semantic constraint on the object is that it

must be inanimate. As seen in this example, case frames provide both syntactic and

semantic information which can be used to analyze sentences.

Consider the non-passive sentence in Figure 2.4. In the sentence, the verb "fixed" is a

marker of the case frame in Figure 2.3. Once this is realized, the system can use the case



16

frame to analyze the sentence. According to the case frame, "Jack" is taken to be the agent

because of position. The sentence is not in
Jack fixed the bench with a hammer.

passive form so the agent appears as the

syntactic subject. The semantic information in
^Figure 2.4 - Non-passive Sentence

the case frame can be used to confirm this choice. "Jack" refers to a person. Because the

sentence is not passive, the object case which appears as the syntactic object is filled by

"the bench" which is inanimate
The bench was fixed by Jack with a hammer.

according to the semantic constraints
Figure 2.5 - Passive Sentence

for the object case. The instrument case

is filled by "the hammer" which is marked by the preposition "with" according to the case

frame. For the passive form of sentence shown in Figure 2.5, the syntactic subject is not

the agent case but instead it is the object case. The agent case filler is to be found marked

with the preposition 'by'. This transposition occurs because the sentence is in passive form.

As shown, the parser can apply both syntactic and semantic constraints by using case

frames.

In addition to constraints on each individual case, there are constraints on the cases as a

whole. Constraints may require that certain cases always be present, that some cases cannot

occur together or that some cases must occur together. There is no constraint that case

frames can only represent verb relations. Case frames can be used to represent noun phrase

level structures.

Case frames are accessed during the parsing process to obtain syntactic and semantic



17

constraints. ATNs have been used to parse sentences in many case frame-based natural

language interfaces (TAYROS75, WHITE85, BOOTH83). The additional semantic

constraints brought to bear early on in the analysis were able to alleviate some problems

normally associated with ATN parsing. The problem of grammatical errors still remains.

Other approaches to parsing using case frames have attempted to deal with these problems

(Hayes & Carbonnell - CARHAY83).

Case frames are able to effectively combine syntactic and semantic information. By using

semantic information during the parsing process, case frame systems are able to reduce

ambiguity and the parsing time but unlike semantic grammar systems the grammar remains

compact and easy to understand. Case frames are also able to handle different forms of

expression without requiring the extensive coding that semantic grammars require.

2.2 Desirable Characteristics

During the development of natural language interfaces, many design issues came to light.

These issues involve how easy the interface is to use and how easily it can be transferred

to other systems. This section examines some of these issues with respect to the systems

described earlier.

2.2.1 Internal Characteristics

If natural language interfaces are to have widespread use, they must not only be easy to use



18

but they must possess characteristics which facilitate application to different problem areas.

Many systems although easy to use, did not become popular because they were not easily

transferred. This section covers the different ways that a system can be easy to transfer as

well as some characteristics that increase the ease with which a system can be transferred.

2.2.1.1 Portability

Portability of a natural language interface is the ease with which it can be reused. There are

two aspects of portability, domain portability and database portability - actually database

management system (DBMS) portability. Domain portability is the ease with which the

interface can be used with a different database, i.e. - a different domain of discourse.

Database portability is the ease with which the interface can be used with a different

database management system (for example, transferring from a relational DBMS to a

network DBMS).

The systems described earlier had portability of varying degrees. LUNAR attained

portability by separating syntactic from semantic analysis. The syntactic analysis

component of LUNAR increased portability by using a single grammar for every domain.

The reference to the domain as well as the DBMS was contained in the procedural

semantics of the systems and in the lexicon. As a consequence, the semantic component

and the lexicon were neither domain independent nor database independent and had to be

rewritten after a change of either. LUNAR had portability of only the part of the syntactic

component that contained the grammar. In contrast to LUNAR, semantic grammar systems



19

were in no significant aspect portable. By combining syntactic and semantic information

into the grammar in order to increase parsing efficiency, semantic grammars sacrificed

portability. Changing the domain required the grammar to be reconstructed from scratch

using semantic concepts of the new domain.

One technique for increasing domain portability is to use an inverted index' of words in

the database. This approach was used successfully by Harris in ROBOT' (HARRIS77,

HARRIS84). Although still based upon the linear paradigm - syntactic parsing using an

ATN followed by semantic analysis, Harris was able to make use of information in the

database to such a degree that he reported that systems could be ported from one domain to

another by a DBA in a week to two weeks.

A technique for increasing database portability is to use an intermediate representation

language, IRL, PG87. For systems using IRLs, the result of parsing and interpreting an

input is a sentence in the IRL which can later be converted to a database query. The IRL is

an interface between the database management system and the natural language interface.

Having a clearly defined interface means that transferring the system from one DBMS to

another requires only rewriting of the component that translates IRL to the query language.

Another advantage as shown in the Natural Language Corporation's NLI, is that the system

may use the meaning in the IRL sentence to do things other than access a database.

- see section 4.1.3.1

- Later INTELLECT



20

Closely associated with the portability of a system is the ease with which it can be

maintained. During the life of a database not only will changes to the database occur but

new users with varying expectations will use the system. It is important that the cost of

maintaining the system not be too great otherwise it will not be maintained and then,

eventually, not used as it fails to keep up with changes to the database.

2.2.1.2 Semantic Productivity

In order to interpret utterances, natural language interfaces must contain syntactic and

semantic knowledge in declarative or procedural form. This knowledge determines the

utterances that the system can interpret - its coverage. Coverage can be too broad so that

incorrect interpretations are made or too narrow so that intelligible inputs will not be

interpreted. The knowledge base must be large enough to provide acceptable coverage.

Semantic (or syntactic) productivity is a qualitative measure of how effective a formalism

is in producing acceptable coverage.

Semantic productivity relates how implicit the knowledge of language is represented in the

system. The least productive systems list every allowable utterance and its interpretation.

Semantic grammars are at the low end of the productivity scale because they must contain

rules for the different forms of expression for each group of semantic categories. Case

frame based systems are more productive because the case frames provide a compact form

for representing information and yet still allow many forms of expressions to be parsed.

High productivity is closely related to high portability.



21
2.2.1.3 Minimum Coverage

The systems described earlier attained broad coverage of language by increasing the

amount of grammatical knowledge they contained. The goal was to be able to parse as

many of the inputs as possible. The systems contained a single grammar for use with many

different users who had many different styles of English. As observed in LEHMAN, if the

systems instead had different grammars for each user then they would not have to handle

such a large variety of forms of expression because each user's statements tend to have a

certain fixed style. Minimizing coverage is the problem of trying to make sure that the

parser will not accept more forms of expression than the current user will offer.

Benefits can be achieved by minimizing coverage. Sentences that were ambiguous relative

to the grammars set up to handle all user's utterances, will not be ambiguous relative to a

grammar set up for a particular user. By reducing the number of acceptable sentences, the

parsing process becomes faster. It is demonstrated in LEHMAN that using a single

grammar for all users is not as efficient as having a separate grammar for each user,

because each user has to pay for other users' different forms of expression. Minimizing

coverage is a difficult problem because it requires that the grammar be customized for each

user.



2 1

2.2.2 User Interface

The standards used to judge a natural language user interfaces are based upon the

expectations of the users. Much work has been devoted not only to developing natural

language interfaces that satisfy user expectations but also to determining what the user

expectations are. Meeting user expectations is important to ensure that the interface

becomes a valuable tool and not a source of frustration. This section attempts to provide a

summary of the characteristics that users expect a natural language interface to have.

2.2.2.1 Habitable (User-friendly)

A system is habitable if it can correctly interpret many different utterances that express the

same idea. Habitable systems seem consistent to the user. Systems that are not require that

the user search for an acceptable form of expression. With nothing to guide the user, this

search can involve several tries and lead to frustration. Systems that are not habitable force

users to learn what is acceptable and what is not acceptable. As a consequence the users

must use restricted forms of English, if they want to use the system.

Pattern matching and semantic grammar based systems are more likely to not be habitable

because general syntactic rules must be incorporated in each pattern or semantic grammar

rule. Syntactic parsers have been able to achieve broad coverage. This is demonstrated by

the commercial system of Harris, INTELLECT. He reports that one of the primary issues

that had to be dealt with to satisfy commercial expectations, was coverage of the grammar



23

(HARRIS84). Prototype versions without broad coverage were thought to be inconsistent

and annoying and were not commercially acceptable. INTELLECT did not find broad

acceptance until habitability was dealt with.

Making a system more habitable requires that the coverage of the system be increased to

handle more forms of expression. This can lead to problems because the coverage is not

minimized. There is a compromise between habitability and minimizing the coverage.

2.2.2.2 Cooperative

Human communication is a complex form of interaction which is not only performed using

language. In contrast to this, many natural language interfaces constrain interaction with the

user to be questions followed by direct answers from the system. Much work has been

done to try to increase the sophistication of natural language interfaces. Cooperative user

interfaces provide more sophisticated dialogues in an attempt to work with the user and not

just respond to the user's explicit requests. Many features have been developed to provide a

cooperative system. This section describes a few.

A system that provides cooperative responses to questions does not necessarily answer a

literal interpretation of the question. There is an attempt to anticipate follow-up questions,

to respond before being explicitly requested, and to provide more information than was

requested. Anticipating can involve simple pattern matching or complex modelling of the

user's intentions and plans.



24

One problem to deal with is responding to questions with a negative answer

(RENDEZVOUS, COOP - KAPLAN84). The question

Which of Dr. Lee's students is enroled in cs503?

could be answered "none", but there may be many different reasons that there are none.

There might be no Dr. Lee and so there are no students of Dr. Lee. There might be a Dr.

Lee but he may have no students. There might not be a class called cs503 and so there

could be no students enroled in it. Finally, Dr. Lee may have students and there may be a

class called cs503 but none of the students are enroled in it. The response "none" is

ambiguous and would probably be misinterpreted by the user. The problem of analyzing the

failure to find any students can be handled by removing part of the query and reissuing it

(ALLEN87). Analyzing the cause for the failure involves determining which

presuppositions of the question are wrong.

By not treating questions literally, the system can also become more cooperative. Questions

such as "Can you list employees working in research" could be answered by listing the

employees instead of by confirming that the system was capable of listing them. Sometimes

yes/no questions require more than just a yes or no answer.

In this case the products must be sold at a Can I sell an ace tennis net for 69 dollars?
No, the lowest price allowed is 72 dollars.price in a particular range. "No" answers the

question literally but is not satisfactory because the system in not working with the user to

solve the problem. These examples show it is important to provide a reason for a "no"



25

response.

Ambiguity is the reason for many of the problems that a natural language interface must

deal with. In the previous section, the concern was to avoid ambiguity in the responses.

Ambiguous responses can cause the user to develop misunderstandings. This section

concerns how the system can deal with input that is ambiguous. This process involves

detecting the ambiguity and interacting with the user to resolve it.

Ambiguity can arise when there is more than one choice for the interpretation of a word or

phrase. In ROBOT such a problem occurs for:

Who lives in New York?

Does "New York" refer to New York state or New York city? Harris solves this problem

by printing paraphrases of the interpretations and asking the user to select one. This is

confirmation by paraphrase. The other approach to resolving the ambiguous reference is

confirmation by effect.

The CHAMP system of LEHMAN89 is an adaptive user interface that is capable of

learning the syntax as well as the meaning of statements. For CHAMP's confirmation by

effect, when there is more than one interpretation of an input, the system will analyze the

consequences of each alternative and ask the user to select an interpretation by presenting

the potential consequences of each input. This means that the contents of the database can

affect the selection of the intended meaning of an utterance. Confirmation by effect can



26

also be used to eliminate alternatives before even asking for a selection by the user. For the

sentence

Which of the New York employees live in Buffalo?

ROBOT is able to determine whether "New York" refers to New York city or to New York

state by issuing the queries corresponding to both interpretations. For the interpretation

where "New York" is taken to be a city there is no result. ROBOT decides without asking

the user that "New York" must refer to the state because that produces a result.

When using paraphrase to resolve ambiguity it is important to avoid providing information

that is not needed to make a decision. For the ROBOT system, the request in Figure 2.6 is

ambiguous.
What is the family status of the area managers that live in New York?

Does "New
Figure 2.6 - Ambiguous Question

York" refer to

the state or the city? ROBOT characterizes the two choices with the paraphrases shown in

Figure 2.7.

Choke 1:

PRINT THE FAMILY STATUS, STATE AND CITY OF ANY EMPLOYEE WITH STATE=NY AND JOB=AREA MANAGER

Choke 2:

PRINT THE FAMILY STATUS, STATE, AND CITY OF ANY EMPLOYEE WITH CITY=NEW YORK AND JOB=AREA
MANAGER

Figure 2.7 - Paraphrases



27

More information is provided than is needed to make the

decision. A simple approach would be to provide enough

information to distinguish the alternatives as shown in

Figure 2.8.

 

Choice 1:

CITY = NEW YORK

Choice 2:

STATE = NY

Figure 2.8 - Simple Choices

2.2.2.3 Robust with Respect to "Noise"

Inevitably, a natural language interface will be forced to deal with inputs that contain errors

or unforeseen forms of expressions. Spelling errors, unknown words, missing words, extra

words, ellipsis and strange phrase orderings are all part of this problem. Simply rejecting

the input without explanation or alternatives is not acceptable. Systems that cannot deal

with simple forms of these problems will be seen as inflexible.

Spelling errors can be dealt with by searching for close matches in a list of words.

Semantic grammar and case frame grammar systems are able to offer good spelling

checking because the semantic information can be Used to reduce the size of the word list

that must be checked. This reduction is possible because the semantic information is

available during the parsing process to constrain the search.



What is the length of the Constellation
> (LENGTH 1072 feet)
of the Nautilus
> (LENGTH 319 feet)
displacement
> (STANDARD-DISPLACEMENT 4040 tons)
length of the fastest American Nuclear sub
> (LENGTH 360 feet NAME LOS ANGELES SPEED 30.0 knots)

Figure 2.9 - Ellipses

28
2.2.2.4 Handling of Discourse Phenomena

Another important issue for natural language interfaces is managing the dialogue with the

user. The scope of the interface must exceed the individual sentence if the system is to be

able to respond to the shortcuts people take when communicating. Anaphora is common

during conversations. Anaphora is the use of reduced linguistic forms such as pronouns (he,

they, it), demonstratives (that, this) or definite noun phrases for purposes of reference.

People also employ ellipsis, or sentence fragments, to ease communication. This section

briefly describes some dialogue phenomena.

2.2.2.4.1 Ellipsis

Through the use of semantic information gained during the processing of previous

sentences, case frame and semantic grammars are able to effectively deal with ellipsis. The

example

in

Figure 2.9

is taken

from

LIFER.

LIFER is able to determine the correct interpretations by partially parsing the inputs to

determine what type of phrases they are and then looking for phrases of the same type in

the originating sentence. A substitution of the new phrase for the old is used to produce an



Who manages Smith?
> Ford
What is the manager's salary?
> 3100
Who else makes at least that much?
> Jones and King.
What do they make?
> Jones makes 3100 and King makes 5000.

Figure 2.10 - Anaphora

29

interpretation. The use of semantic information during parsing makes this approach feasible.

Syntactic constraints are often not enough to correctly interpret ellipsis. Case frame

grammars can also effectively deal with this type of ellipsis because of the availability of

semantic information during the parsing process.

2.2.2.4.2 Anaphora

Handling anaphora is as important as dealing with ellipsis, and as difficult a problem.

There are many different

forms of anaphora. The

dialogue of Figure 2.10

illustrates a few of these

problems. Pronouns can be

used to reference things

mentioned not only in the previous sentence but in the current sentence or in sentences

before the previous one. As described in ALLEN87 (pp 334-365), the history list is an

effective technique for solving this problem.

The history list is a list of objects mentioned in previous sentences in reverse chronological

order. Semantic information can be associated with the objects. Upon encountering an

anaphoric reference the history list can be searched for objects with compatible semantic

information. Additional constraints can be derived from syntactic information as described

in HOBBS78.



30

2.2.2.4.3 Vagueness

In KAPLAN84 vague statements are portrayed as a means employed by the user to reduce

the size of statements as well as to provide the responder with fewer restrictions on what

the response should be. The utterer of the statement expects that the user can make

reasonable inferences and so a cooperative system must be able to respond to vagueness.

Vagueness and ambiguity are similar in that the correct interpretation cannot be

obtained from a literal reading. They are different because ambiguity arises when there is

more than one interpretation immediately available and vagueness arises when the system

must fill in unstated connections. Vagueness does not imply ambiguity.

Dealing with vagueness involves making inferences about additional unstated constraints.

These constraints can be related to how the query is to be interpreted as well as to what

response the user
Q: What is the quantity-on-hand of each size of radial tire?

expects. The^R: 125, 0, 500, 32, 40

following example^ Figure 2.11 - Vagueness

(Figure 2.11) from KAPLAN84 illustrates how literal interpretations of vague questions is

not satisfactory. A better response would include the sizes of the tires as well as the

information that was explicitly asked for.



31

2.3 Learning Language

This section briefly describes how learning has been used by natural language systems to

obtain information necessary to improve performance. Natural language systems can

enhance their performance by learning a combination of syntax and semantics as well as

lexical information. Problems that any learning system must deal with are inputs that

contain errors and so should not be learned, learning with the fewest number of examples,

being able to correct previous misunderstandings, and producing similar results if examples

are ordered differently. The systems described here solve these problems with varying

degrees of success.

2.3.1 Syntax

BERWICK85 is an example of a system which attempts to learn syntactic information only.

The goal of this system was to explore how children can learn language. It is based on the

Marcus parser [MARCUS80] and X-bar theory of grammars. The system learns X-bar

grammar rules and transformation rules by being presented with a number of grammatical

sentences. Learning arises from each input and the results of analysis immediately modify

the existing grammar.

This system has a number of problems, some of which are due to the lack of semantic

information. Words must have feature markers (+noun for example) in order for the system

to learn properly. This information is not likely to be available to a child. The ordering of



32

input sentence also affects learning. If a question such as "Is Fred a postman" is presented

first, the system would incorrectly learn that verbs come first in sentences. The system also

has no way of correcting structures that were learned but should not have been, such as the

previous example. The main advantage of the system is that it will learn quickly. This

system illustrates that there is a trade off between learning quickly and learning only

correct forms. If a system is learns too quickly then there must be some mechanism to

correct mistakes. Without such a mechanism, the system will not perform effectively.

2.3.2 Semantics

23.2.1 CHAMP

LEHMAN89 presents a technique for developing a natural language interface that can learn

syntax and simple semantics of utterances related to a table of data - an adaptive interface.

Lehman identifies three types of user interfaces, adaptable, customizable and instructible.

The difference lies in the method used to provide domain dependent information about the

syntax and semantics of the grammar and lexicon. Customizable user interfaces as

represented by INTELLECT (HARRIS84) and TEAM (MAP83) are configured by an

expert using a special facility. Instructible user interfaces such as ASK, (THOMP85),

require that the user provide customization using a simple command language. An

adaptable user interface reconfigures itself during interaction with the user. No special

command language is required. The system presented in this thesis is an example of an

adaptive user interface which doesn't learn syntax but focuses on learning semantics.



33

There are many advantages of adaptable user interfaces. The reasons for these advantages

can be seen after exploring characteristics of users of the systems. These observations are

derived from empirical research presented in (LEHMAN89). Users can be knowledgable in

command languages and database structure, or they can be relatively naive in terms of

database management system technology. The former is a sophisticated user and the latter a

naive one. These observations concern the naive users who would most benefit from natural

language interfaces. The main observation is that users tended to limit not only the words

but also the structure of their utterances. Forms of expression that are not ambiguous to a

grammar customized to the user are ambiguous to a grammar common to all users. These

observations lead to several reasons for preferring adaptive interfaces.

Most natural language interfaces have a single grammar that is to be used by everyone.

Relative to a single user, this parser would be able to analyze sentences that the user is

never going to utter. Thus parse time is spent trying to interpret utterances in a way that

the user would never employ. Users have idiosyncratic forms of expression. Extending the

parser to be able to handle each user's forms would result in a parser that ran too slowly.

The parser would also see ambiguity where relative to an individual user's form of

expression there is no ambiguity. The final problem with extending the parser is that every

user would have to pay for the extra parse time needed to handle some users' strange forms

of expression. Having an adaptive interface which is customized to each user eliminates

these problems and provides a system that is more effective for each user.

CHAMP is the system that is used by Lehman to implement an adaptive parser. CHAMP is



Figure 2.12 - Part of a Concept Hierarchy

34

a bottom up parser that selects the least deviant parse to learn from. Deviation is measured

from the current grammar of the system in terms of the number of insertions, deletions,

substitutions, or transpositions that must be performed to the utterance to allow it to be

recognized by the current grammar. Recognizing an utterance results in a database action

record. The database action record has four allowable functions, to add, delete, modify or

print a row in a table of the database. The database action record approach is a form of

procedural semantics.

CHAMP uses a combination

semantic and case frame

grammar. The grammar

contains constituents to

recognize expressions referring

to time intervals, meetings and

places, etc. These are domain

dependent structures which the

system updates as it learns. To

support recognition CHAMP

maintains a concept hierarchy.

The concept hierarchy provides information that can be used to simplify the grammar and

facilitate interpretation. The concept hierarchy is specified by an expert before system use.

Figure 2.12 depicts part of a concept hierarchy. The boxes represent concepts and the

arrows represent isa links.



35

In addition to the isa links each node of the concept hierarchy contains information that can

be used to provide default values and constraints. In the sentence of Figure 2.13, the time

or the place that the people will eat at is not
Schedule a lunch with John on June 4.

specified. The concept hierarchy can be used
Figure 2.13

to obtain additional information. In this case

the time is derived from the lunch concept and the place is derived from the meal concept.

The lexicon contains many domain dependent components as well. The words that are in

the database appear in the lexicon and are put there manually. There are words that refer to

concepts in the concept hierarchy such as arrival, meeting, and dinner in the lexicon. The

definitions for these words identify them as marking slots in the frames or as referring to a

concept in the concept hierarchy.

The end result of the parse is a database action record. The only actions allowed are to add,

delete, modify or show a row in the database table. The system is not capable of

performing any other action to the database nor can an utterance refer to more that one

table at a time. The system never learns new meanings to sentences only new ways of

referring to one of these actions or to one of the objects in the database. The new ways of

referring can be synonyms of known words or new orderings of component phrases.

Several other researchers have developed systems to investigate how children learn

language or how effective a particular approach is in learning language. CHAMP is the

only such system which actually interfaces with a database. A comprehensive review of



36

these other systems can be found in LEHMAN89.

2.3.2.2 TEAM

TEAM is an example of a customizable user interface. For this approach, a database

administrator (DBA) interacts with a menu driver interface in order to provide domain

dependent information. This section briefly describes how the system gathers information.

TEAM learns by asking a DBA, structured questions. The actual learning process of TEAM

is not as interesting as what the system is learning, however. TEAM contains domain

independent knowledge of certain concepts such as numbers, features, and measurements.

This information is stored in a hierarchy of objects called the sort hierarchy. The user

extends this hierarchy through the process of adding new concepts to the knowledge base.

Associated with each type of concept are a number of items. For an arithmetic field the

information shown in Figure 2.14 is obtained.

Value Type - DATES MEASURES COUNTS
Are the units implicit? YES NO
Enter implicit unit - DOLLAR
Abbreviation for this unit?
Measure type of this unit -
TIME WEIGHT SPEED VOLUME LINEAR AREA WORTH OTHER
Minimum and Maximum numeric values - 0. 100000.
Positive adjectives - (HIGH PAID)
Negative adjectives - (LOW PAID)

Figure 2.14 - Arithmetic Field Acquisition (MAP83)

The main disadvantage of TEAM is the process that is used to derive domain dependent



37

knowledge. The DBA must first determine which words the users will want to use. Then

the definition must be standardized. Standardization involves compromise and compromise

implies settling for less than was wanted. After that, the words must be entered into the

system along with additional information. Of course the users want new words added later.

This means the DBA must start the process all over again. A better approach would allow

users to independently configure the NLI on their own time.

2.4 Summary

Many different approaches to providing natural language interfaces have been proposed.

The more recent case frame-based approach which provides a means to combine syntactic

and semantic information seems to be the most promising. During the course of

development of natural language interfaces, a number of design principles were developed.

One of the most important was portability, i.e. - the ease with which the natural language

interface can be transferred to a new domain of discourse. Portability issues play a major

role in this thesis. A number of researchers have investigated the advantages of using

learning to enhance system performance. Recently a learning approach to configuring a

natural language interface has been developed and experimentally evaluated. This thesis

presents another aspect of the use of learning to enhance natural language interfaces. Here

learning is used as a means of increasing portability of a natural language interface.



Chapter 3

System Overview

3.1 Objectives

The goal of this system is to make it easier to transfer a natural language interface from

one domain to another. This has been a goal (not the only one) of a number of other

systems such as COOP (KAPLAN84), and TEAM (MAP83). For early natural language

systems, an expert in setting up grammars and in databases was needed to transfer a system

from one domain to another. Later work resulted in systems that could be transferred by a

database expert. This thesis advances portability by providing a means that allow naive

users to set up a natural language interface. In this case, a naive user is a user who does

not necessarily have knowledge of the database structure or formal query languages.

3.2 Knowledge Base Components

38

This section briefly describes the components used to represent knowledge and where they

are derived from.



Morpher

El Domain Independent

Ei Domain Dependent

Knowledge Transfer

Lexical Knowledge

(7)

Lexicon
(inverse
Index)

(8)

Database

Grammatical Knowledge

Semantic Knowledge

Frame
Knowledge

Function
Words

(9)

User

Dictionaries

(4)

Grammar

39

3.2.1 Domain Independent Knowledge

Figure 3.1 - Knowledge Source Diagram



40

Domain independent knowledge is knowledge that remains fixed during program execution.

For this system, domain independent knowledge includes part of the lexicon, the grammar

and part of the semantic knowledge. These are represented in Figure 3.1 by the boxes with

thicker outlines (knowledge stores (3), (4), (5), and (6)). The domain independent part of

the lexicon (knowledge store (5)) includes prepositions, auxiliary verbs, articles, and

function words (average, total). The entire grammar (knowledge store (4)) and the morpher

(knowledge store (6)) are domain independent. The grammar developed for the system

presented in this thesis is listed in DCG form in appendix B. Some of the knowledge used

to interpret sentences is also domain independent. This includes information on how to

convert questions, queries involving function such as "average", and queries involving

comparisons such as "more than", into SQL (knowledge store (3)).

3.2.2 Domain Dependent Knowledge

Domain dependent knowledge is knowledge that depends on the particular database being

used. In order to function properly with a new database, domain dependent knowledge for

that database must be given to the system. For this system, parts of the lexicon and the

semantic knowledge are domain dependent. These are marked in Figure 3.1 by boxes with

outlines of lesser thickness (knowledge stores (1), (2) and (7)). There are two different type

of words added to the lexicon (knowledge store (7)), words or phrases that are database

elements and words referring to knowledge structures that the system constructs such as

case frames or slots in case frames. The words that are database elements are derived



41

directly from the database prior to program execution. This is depicted as a transfer of

knowledge (represented by the arrow) from the database (knowledge store (8)) to the

lexicon (knowledge store (7)). Words that refer to case frames or case frame slots are

added to the lexicon as the system learns them during interaction with the user. This is

depicted in Figure 3.1 as a transfer from the user (knowledge store (9)) and the database

(knowledge store (8)) to the lexicon (knowledge store (7)) and the dictionaries (knowledge

store (1)).

The semantic information that the system learns mainly concerns the frame knowledge

(knowledge store (2)). There are two type of frames in this system, case frames for verbs

and object frames for objects. An object frame is used to keep information about case

fillers. Object frames keep track of object names, and attributes. Case frames keep track of

event dates, and cases for the verbs. Associated with the frame information is a number of

dictionaries (knowledge store (1)) that map various words and types to frames. These are

also maintained by the system and are part of the domain dependent information. As

depicted in Figure 3.1, the frame knowledge (knowledge store (2)) and the dictionaries

(knowledge store (1)) are derived from both the user (knowledge store (9)) and the

database (knowledge store (8)).

3.3 Processing Flow of Control

This section describes the flow of control through the system which is depicted in

Figure 3.2. The processing starts with reading a sentence which is then tokenized, parsed



42

and then interpreted. After interpretation, the system either updates its knowledge base for a

declarative statement or generates SQL and prints the results for a question. The following

section describe each step in more detail.



Semantic
Interpreter

(vii)
Lexicon

in
Inverse
Index

0 Process

Data Store

Data Flow

(vil.1) Updates
(g.2) LookUps

(g.1) Database Values
Lexicon
Server

(f.2) Tokens
and Meanings

(83) Utterance \

(d)

Query
Generator

Learn
Meaning

Oracle
Interface

Response
Generator

-,c.2) Frames(b.4) Productions

(a.2) Token and possible Meanings

(t.3) Utterance

tz
(c.1) 

^0.2)

Phrases^
Nodes

Modifier (d.1) terPrtilatk

(b)^
Attachments^(c)

(1.1) Response to SQL

(e.1) Response to Query

(e)

(b.1)
All

Tokenizations c3) Type Defs
4!)

Dictionaries
(I)

Case
Frames

Object
Frames

(LI) 
Asking User for Decisions

(4.1) Utterance

(1.2) Query Results

(e.2)
Sentence

Interpretation

(v)

Database

(vi)
Data

Dictionary

43

Figure 3.2 - Data Flow Diagram



44

3.3.1 Tokenizing

Tokenization occurs at process (a) of Figure 3.2 where the utterance (flow (a.1)) arrives

from the user (process (i)). The tokenizer (process (a)) passes the utterance (flow (f.3)) to

the ORACLE interface (process (0) which in turn passes the utterance to the lexicon server

(process (g)) along flow (g.3). The lexicon server uses the inverted index (data store (vii))

to break the utterance up into tokens (words or phrases). Associated with each token is

possible meanings which may indicate that the token is in a fixed word class (preposition,

article, etc), that the token refers to a case frame or a slot in a case frame, or that the token

appears in the database. There may be more than one way to break the sentence into

tokens. After the lexicon server (process (g)) determines all tokenizations, the results are

passed back to the tokenizer (process (a)) along flows (f.2) and (a.2) through the ORACLE

interface (process (0).

3.3.2 Parsing

The parser (process (b)) receives the tokenizations from the tokenizer (process (a)) along

flow (b.1). The parser then uses the grammatical information obtained from the grammar

(data store (iv)) along data flow (b.4), to analyze the sentence. The grammar is in the form

of a definite clause grammar (DCG) as described in PERWARR80. In order to avoid

producing non-sense parses, the parser accesses semantic information. The information

from the dictionaries (data store (iii)) is used to determine which case frames are associated

with which words. The case frames (data store (i) and (ii)) are accessed along data flow



45

(b.3) to help resolve^
Who earns over the average salary of a person working in research.

attachments of cases^Figure 3.3 - Case Attachment

to verbs. For the

sentence of Figure 3.3, this information is used to help determine whether "in research" is a

case of "working" or of "earns".

3.3.3 Interpretation

The semantic interpreter (process c) receives the partial parses of the utterance from the

parser (process b) along data flow c.l. Each parse contains information about noun phrases

and verb phrases mentioned and constraints on modifier attachments. The semantic

interpreter (process c) accesses the dictionaries (data store iii) along dataflow c.3, and the

frames (data stores i and ii) along data flow c.2. This information is used to produce an

interpretation of the utterance. During this process, the system will detect that some of the

parses are unintelligible and discard them. At this point there are two major alternatives for

the processing flow of control depending on whether the sentence is declarative or

interrogative.

33.3.1 Declarative Sentence

This part of the processing is described in detail in chapter 5. Declarative sentences are

used to define new concepts. The 'learn meaning' process (process (j)) is invoked after the

semantic interpreter (process (c)), if the utterance is declarative. The 'learn meaning'



46

process (process (j)) receives the interpretation from the semantic interpreter (process (c))

along data flow (j.1). At this point, interaction occurs with the user to determine a correct

interpretation for the meaning of the concept that the user is describing in the sentence.

Interaction occurs with the user (process (i)) along data flows (i.1) and (j.3). During the

process of interacting with the user, the database and the inverted index are accessed along

data flows (f.4) and (j.2). This interaction occurs as long as the user has not helped to

determine a meaning for the utterance. At some point, if the user is satisfied with the

interpretation, the system updates the dictionaries (data store (iii)) along data flow (iii.1)

and the frames (data store (i) and (ii)) along data flow (i.1) and (ii.1). Processing of the

utterance is now complete.

3.3.3.2 Questions

This part of the processing is described in detail in chapter 6. This processing stream is

invoked after the semantic interpreter (process (c)) if the utterance is a questions. The

query generator (process (d)) receives the sentence interpretation from the semantic

interpreter (process (c)) along data flow (d.1). The interpretation is converted into an SQL

query which is passed to the ORACLE interface (process (0) along data flow (f.3). The

ORACLE interface (process (0) then passes the SQL query to the DBMS (process (h)) for

processing along data flow (h.1). The results of the SQL query are returned from the

DBMS (process (h)) along data flow (f.1) to the ORACLE interface (process (0) which

passes them on to the response generator (process (e)) along data flow (e.1). The response

generator (process (e)) also receives the sentence interpretation from the query generator



47

(process (d)) along data flow (e.2). The response generator presents the results to the user

(process (i)) along data flow (i.2). The response generator for. this system merely prints out

the data returned by the DBMS rather than producing a more elaborate display. This end

the processing of the utterance.

3.4 Implementation Details

This system currently accesses the ORACLE RDBMS only. Because the systems is written

mainly in Prolog and ORACLE does not support access with Prolog, a C server was set up

to access ORACLE (process (f) of Figure 3.2). The C server makes use of ORACLE's

PRO*C compiler that contains extensions for accessing the database. The lexicon server

(process (g)) (an inverted index - see section 4.1.3.1) was set up in C++ as a separate

process accessed only through the ORACLE interface (process (f)). The reason for a

separate process was that the C++ compiler used BSD Unix and the ORACLE PRO*C

libraries required UNIX System V libraries and so could not be compiled together. Due to

licensing agreements the Prolog interpreter ran on one platform and the Oracle server ran

on another so communication between the Prolog process and the C server occurred though

a TCP package in Prolog and with TCP in C.

3.5 Examples

What follows is a brief example of how the system works. A more complete session can be



48

found in appendix E. For this system, the user is a person who has little or no knowledge

of DBMS. This means little or no knowledge of relational database theory, formal query

languages and the structure of the database that he or she will be using. It is assumed that

the user knows about the data in the database. For example, if the database was an

employee database the user must know about some particular employees (perhaps

themselves). For a movie database, the user must know about some particular movies. What

the user lacks in knowledge can be obtained from more traditional sources such as reports,

data collection forms, or other people.

smith works for ford.

 

To configure the system for a new
database, the user (in bold) enters
sentences that describe data in the
database. By using these sentences and
accessing the database the system can
determine the meaning of nouns and verbs.
(Users tend to know a lot about some of
the data in the database).

EMPO.ENAME EMPLENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

 

Do these examples seem
reasonable?

 

: yes.

    



49

: smith works in research.

EMPO.ENAME DEPTO.DNAME

 

Examples are presented to provide feedback
CLARK^ACCOUNTING
KING^ACCOUNTING
MILLER^ACCOUNTING
SMITH^RESEARCH

   

Do these examples seem reasonable?

: yes.
I : smith is managed by ford.

EMPO.ENAME EMPLENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

Do these examples seem reasonable?

: yes.
: smith's salary is 800.

EMPO.ENAME EMPO.SAL

ALLEN^1600
JONES^2975
SMITH^800
WARD^1250

Do these examples seem reasonable?

I : yes.
: the manager of smith is ford.

EMPO.ENAME EMPl.ENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

Do these examples seem reasonable?

: yes.



: the salary of smith is 800.

EMPO.ENAME EMPO.SAL

50

ALLEN
JONES
SMITH
WARD

1600
2975
800
1250

Do these examples seem

: yes.
: smith earns 800.

EMPO.ENAME EMPO.SAL

ALLEN
^

1600
JONES
^

2975
SMITH
^

800
WARD
^

1250

Do these examples seem
reasonable?

I : yes.
I : what is smith's salary.

EMPO.SAL

reasonable?

That's it. System configuration is
complete (for now). Questions can now
be asked about the database. Note that
questions can be asked as soon as the
user has defined the words that will
appear in the question. After asking some
questions, more words can be defined if
desired.

First an easy question to get warmed u

800

I : which person's manager's salary is 2975.

EMPl.ENAME

 

SCOTT
FORD

   

: which person's salary is over ford's salary.

  

Possessives and comparison.
EMPl.ENAME

    

KING

  



   

51

 

I : who earns over an employee's average salary.

  

Functions such as average, total,
highest, and lowest are provided.EMPO.ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

   

I : who earns over an employee working in research's average salary.

EMPO.ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

: what is the lowest salary of the people who earn over the average salary of an
employee.

MIN(EMPO.SAL)

2450

I : how many people earn over the average salary of an employee.

COUNT(EMPO.ENAME)

6

can you list the name manager and salary of the employees working in research.

EMPO.ENAME EMPO.SAL EMPLENAME

SCOTT^3000^JONES
FORD^3000^JONES
SMITH^800^FORD
JONES^2975^KING
ADAMS^1100^SCOTT



 

52

: tkb sport shop paid 58 for ace tennis net.

 

Let's teach the system a word
with a complicated meaning.
This one has ambiguity and
requires 4 table joins. The
user is presented with a
choice of two meanings.

2 Interpretations. They Are:
Option #1

"58" refers to ACTUALPRICE in the
ITEM table

Option #2
"58" refers to ITEMTOT in the

ITEM table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition

: can you show me some more options.
[moreOptions]

3 Interpretations (1 are new).
They Are:

Option #1
"58" refers to

ACTUALPRICE in the ITEM table
Option #2

"58" refers to ITEMTOT in
the ITEM table

Option #3 (New)
"58" refers to STDPRICE in the PRICE table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition
I: more.

[moreOptions]

There are no more alternative
interpretations.
All alternatives have been listed.3
Interpretations. They Are:

Option #1
"58" refers to ACTUALPRICE in the

ITEM table
Option #2

"58" refers to ITEMTOT in the ITEM table
Option #3

"58" refers to STDPRICE in the PRICE table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition

: i like option number 1.
[pickAnOption(1)]

Asking for more options gets the user an
additional interpretation which is less
likely to be the correct one.

There are no more
options so the user must
select an interpretation
or give up.



    

53

 

: who has paid under 58 for ace tennis net.

  

Let's try a couple questions.
CUSTOMERO.NAME

     

JOCKSPORTS

: what did jocksports pay for ace tennis net.

ITEMO.ACTUALPRICE

 

50

   

I added another database about movies. Let's try using it for a while.

: steven spielberg directed jurassic park.

MVDIRO.DIRNAME^MVMOVIEO.MVNAME

PENNY MARSHALL^LEAGUE OF THEIR OWN
SPIKE LEE^MALCOLM X
STEVEN SPIELBERG JURASSIC PARK

Do these examples seem reasonable?

: yes.
: who directed malcolm x?

MVDIRO.DIRNAME

SPIKE LEE

: league of their own starred torn hanks.

MVMOVIEO.MVNAME

 

MVSTARO.STNAME

JURASSIC PARK
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN

JEFF GOLDBLOOM
GEENA DAVIS
MADONNA
TOM HANKS

Do these examples seem reasonable?

1: yes.



: who did jurassic park star?

54

MVSTARO.STNAME

JEFF GOLDBLOOM

: steven spielberg directed jurassic park.

MVDIRO.DIRNAME^MVMOVIEO.MVNAME

PENNY MARSHALL^LEAGUE OF THEIR OWN
SPIKE LEE^MALCOLM X
STEVEN SPIELBERG JURASSIC PARK

Do these examples seem reasonable?

Now well try defining two
different senses for the
verb direct. Let's start with
director directing movie.
Notice that we defined this
earlier. The system can
handle such mistakes.

: yes.
: steven spielberg directed jeff goldbloom.

Now we'll define the other
sense of the verb direct -
director directing star.

MVDIRO.DIRNAME

PENNY MARSHALL
PENNY MARSHALL
PENNY MARSHALL
STEVEN SPIELBERG

MVSTARO.STNAME

GEENA DAVIS
MADONNA
TOM HANKS
JEFF GOLDBLOOM

Do these examples seem reasonable?

: yes.
I : who directed malcolm x.

MVDIRO.DIRNAME

SPIKE LEE

: who directed tom hanks.

MVDIRO.DIRNAME

PENNY MARSHALL



I : smith works for ford.

EMPO.ENAME EMPLENAME

ALLEN
FORD
SCOTT
WARD

BLAKE
JONES
JONES
BLAKE

55

Let's try two different senses of the verb works.
One will relate to the employee database and one
will relate to the movie database. Will start with
employee works for manager.

Do these examples seem reasonable?

: yes.
: tom hanks works for penny marshal!.

MVSTARO.STNAME MVDIRO.DIRNAME

GEENA DAVIS
^

PENNY MARSHALL
JEFF GOLDBLOOM STEVEN SPIELBERG
MADONNA
^

PENNY MARSHALL
TOM HANKS

^
PENNY MARSHALL

Now we'll define the 'movie star
works for director' sense.

Do these examples seem reasonable?

 

: yes.
: who works for king.

  

A couple of test questions.

EMPO.ENAME

   

JONES
CLARK
BLAKE

    

I : who works for steven spielberg.

 

MVSTARO.STNAME

 

JEFF GOLDBLOOM

 



56

3.6 Summary

The main objective of this system is to provide a means to increase the portability of

natural language interfaces. This has been facilitated by separating the components of the

system based upon whether or not they are domain dependent (change with the domain of

discourse) or domain independent (constant over all domains of discourse). An overview of

the control structures of the system has been presented to provide the reader with an

understanding of how and what information is used during the analysis process. The

chapter concluded with a brief session with a program implemented to demonstrate the

configuration process.



Chapter 4

Linguistic Knowledge

This chapter discusses the components of the system that contain linguistic knowledge - the

lexicon and the grammar. The purpose is to provide the reader with a feel for the extent of

the coverage of the grammar.

4.1 Lexicon

In order to analyze utterances, knowledge about words is needed. This knowledge does not

only comprise knowledge about the possible meanings of words. Words also have structure

which encodes meaning. For example, 'cow' refers to a single cow and 'cows' refers to

more than one cow. Morphology is the study of the internal structure of words. In order to

avoid storing many different forms of a word, morphological analysis is used to extract

additional meaning from the structure of words. Words obviously have a function in an

utterance. The function of the word affects how it can be used. For example, words used as

a conjunction cannot appear at the end of a sentence. "I bought some eggs, cheese and", is

not a well formed sentence. In order to effectively analyze utterances, knowledge about the

57



58

function of words is also necessary. A more detailed discussion of the function of words

and morphology can be found in WINOGRAD83.

The lexicon is used to store information about the function and meaning of words. The

lexicon is a dictionary which associates meanings with each word. In most cases, the root

form of a word is the only form stored in the lexicon. Exceptions are made for words with

irregular forms which the morpher cannot analyze. The irregular forms are stored in the

lexicon in addition to the root forms.

The lexicon contains entries that are derived from many sources. Some sources are domain

dependent and some are not. This section considers all of the information sources needed to

break the utterance into tokens and assign interpretations to those tokens. Tokens, in this

case, may be individual words or complex phrases.

4.1.1 Word Classes

The word classes used by the system are based upon common functional categories. For the

purposes of this discussion, the domain independent classes will be presented first, followed

by the domain dependent classes.

4.1.1.1 Domain Independent (Predefined)

Domain independent words are defined before the system is used. Figure 4.1, contains the



59

word classes used by this system. The lexicon marks words as belonging to the classes

listed in this table where appropriate.

Class Examples Notes

Prepositions of, out of • used as markers for cases of
the case frames

Auxiliary Verbs had, been • includes tense, person, number
and root verb

Irregular Verbs seek/sought • includes irregular form and root
form

Determiners the, a, which • marked as definite or indefinite
• marked as question word

Relative Clause Markers that, which, who • can mark start of relative
clauses

Function Word Modifiers average, total • includes SQL function name

Figure 4.1 - Word Classes

4.1.1.2 Domain Dependent

Verbs and nouns comprise a major part of the domain dependent part of the lexicon. Verbs

are learned during interaction with the user. They are defined in terms of case frames

which describe the meaning of the verb. Nouns that refer to frames or case frame slots such

as "employee" or "salary" are also learned during interaction with the user. After they are

discovered by the system, the morphological analyzer produces a root form which is then

added to the lexicon.



60

4.1.2 Morphing

Morphology is the study of the structure of words and how that structure is used to affect

the meaning of words. Structure changes that affect word features, such as changing 'cow'

(singular) to 'cows' (plural), are called inflections. Structure changes that affect the

meaning of words, such as changing 'logical' to 'illogical', are called derivations. The

morpher, which is based upon an algorithm presented in WINOGRAD72 on page 72, can

analyze a large number of morphological structures but the system itself will only interpret

a limited number of features marked by these structures (inflections). The system will not

interpret derivations. The morpher is employed during tokenization of the sentence. For

verbs, it is used to determine the verb tense (the difference between kill and killed). The

code for the morpher is listed in the appendix.

4.1.3 Implementation of the Lexicon

This section describes the data structures used to implement the lexicon. The first section

describes the data structure used to organize the lexicon, an inverse index, and the second

section describes the data structure used to implement the inverted index.

4.1.3.1 Inverted index

Figure 4.2 depicts a file containing information about the parts produced by a fictitious

company. The top row of the table contains the names of each column. The address column

contains a physical address of each row. This column is not an explicit part of the table. It



61
i-1.1^Address P# PNAME COLOR PRODUCER

100

1101
120

, 210'L^

P1

P2

P3

P4

Widget

Gizmo

Gadgit

Thing

Red

Blue

Red

Blue

Acme

Acme

Parts Inc.

Acme

Figure 4.2 - Part Table

is shown to be referenced by the example. The P# column contains the number of each part

produced. The names of the parts are in the PNAME column. The remaining two columns

provide information about each part. The COLOR column contains the color of the parts

and the PRODUCER column contains the name of the company that produces the part.

Producer Address Address Address ...

Acme

Parts Inc.

100

120

110 210

Figure 4.3 - Inverted Index for the Producer Column

An inverted index is constructed on a particular column of a table of data. Typically not all

of the columns are indexed due to the cost of setting up an inverted index. For this

example, an inverted index on the PRODUCER column will be described. The inverted

index is depicted in Figure 4.3. For each distinct value in the PRODUCER column of the

table of Figure 4.2, there is a row in the inverted index. In this case, there are only two

values, "Acme" and "Parts Inc." in the inverted index. The inverted index associates row

addresses with each value. The addresses are of rows that have the same value for the

column that the inverted index is set up on. So for the 'Acme' row in the inverted index,

the address of all the rows in the parts table that contain 'Acme' in the PRODUCER

column are listed. These are rows 100, 110, and 210. This example illustrate that the



62

number of addresses associated with each value in the inverted index varies.

The main reason for using an inverted index is to decrease processing time. For example, if

a list of red parts produced by Acme was desired and there was no inverted index, then a

linear search must be performed on the parts table. However by using the inverted index,

all the rows containing parts produced by Acme can be quickly accessed and then just

these rows can be searched linearly for red parts. Results could be even faster if the

COLOR column also was inverted. Then to find red parts produced by ACME, the list of

red parts and the list of parts produced by ACME could be intersected. The inverted index

is a means to produce results faster. A more detailed description of inverted indexing can

be found in BRADLEY82.

4.1.3.2 Implementing the Inverted index

The lexicon is an inverted index implemented using a TRIE data structure as described in

SEDGE90. It is constructed by first loading the predefined words of the domain

independent part of the lexicon (knowledge store 5 of Figure 3.1) and then accessing the

database (knowledge store 8) of the user to load the domain dependent values. All columns

of the database are added to the inverted index. During the interaction with the user new

nouns and verbs are added to the index.

A TRIE is short for reTRIEval tree. The TRIE is an m-degree tree. Each record stored in

the tree has a key with a number of levels. In this case each level is a character. At a given



63

 

• •^•^• Entry for Smith

•^• Entry for to

N).^
• Entry for the

Figure 4.4 - Part of a TRIE

Input: The man shop is ....
Output: (The) (man) (shop) (is) ...

(The man shop) (is) ...

Figure 4.5 - Different Tokens

node there is one

branch out for each

character value at

the current level in

the key (see

Figure 4.4). In other

words, each edge corresponds to a character. Techniques were employed to compress the

TRIE. Due to compression, the TRIE for the test database had a depth of 7 although the

longest key in the TRIE was over 30 characters in length.

The TRIE has an advantage over hashing for this application. When the sentences are

tokenized prefixes of characters are pulled off and treated as a single token. There might be

more than one way to do this as

shown in Figure 4.5. For the first case

"the", "man" and "shop" are treated as

individual token in this domain. "The

man shop" is also a token, perhaps a store in a customer database. A TRIE allows the

system to make use of the current position in the TRIE after processing the first alternative,

in order to process output two. Under a hash table approach, the prefixes would have to be

picked off individually and have separate hash values computed. There is no reuse of

computation. For other flavours of trees the prefixes would also have to be picked off and

searched for individually. The TRW is able to reuse computation where the others do not.



64

4.2 Grammar

Effective natural language systems must analyze the structure of sentences. A grammar is a

definition of the structure of sentences that can be analyzed. There are a number of

syntactic phenomena which a grammar must handle in order to be acceptable. The

following sections outline which structures are in the coverage of the grammar of this

system and the means used to represent and apply the grammar.

4.2.1 Coverage

4.2.1.1 Passives

The subject and objects of a case frame are marked by position in a sentence. This position

can be affected by the form of the sentence. If it is passive, then the syntactic subject, if it

appears, must follow the verb and an object must precede it. This is the distinction between

the active and passive form of a sentence. Figure 4.6 lists some examples.

Active Sentence Passive Sentence

Sally took the pen The pen was taken by Sally

The seals will raise the pups The pups will be raised by the seals

I closed the door The door was closed

Figure 4.6 - Sentence Form



4.2.1.2 Relative Clauses

Relative clauses are a simple means for qualifying referents in a statement. They are

marked by function words such as that, who or which. A reduced relative clause is a

relative clause that is not marked by one of those words. In Figure 4.7, examples from

ALLEN87 3 , the relative clauses are underlined.

The man who hit Mary with a book has disappeared
The man who(m) Mary hit with a book has disappeared.
The man hitting Mary with a book is angry.
The man Mary is hitting with a book is angry.
The man Mary hit John with has disappeared.
The man whose book was used to hit John has disappeared.
The man with whom Mary disappeared wore a red hat.

Figure 4.7 - Relative Clauses

4.2.1.3 Wh-Question

Wh-questions are questions in which the wh-phrase has been moved to the start of the

sentence such as

Who does Smith manage.
Who(m) does smith work for.
For who(m) does smith work.

The parser will handle only the cases where the phrase moved to the start of the sentence is

not marked (by a preposition). It will not accept the third example. This form of expression

65

3 see page 136



66

is described in detail in ALLEN87.

4.2.1.4 Possessives

Possessive noun phrases are marked with ' or 's after the final word of the phrase. This

system will accept multi-word possessive noun phrases with embedded relative clauses. It

will also accept recursive embeddings of possessive markers. It will not recognise 'whose'

as a possessive marker. Figure 4.8 lists some examples. The interpretation of the possessive

marker (described in section 4.2.1.7), is limited.

Who is Smith's manager?
What is the person working in research's average salary?
What is Smith's manager's salary?

Figure 4.8 - Possessives

4.2.1.5 Imperatives

Imperatives are sentences in which the subject is the hearer and so is not stated explicitly

in the sentence. The parser will accept all imperatives although the system will only

interpret imperatives whose main verb is 'print', 'list', or 'show'. Figure 4.9 contains some

examples of imperative sentences that the system will accept.

List employees working in research for Ford.
Print the name, manager and salary of employees working in research.

Figure 4.9 - Imperative Sentences



67

4.2.1.6 Noise Phrases

Noise phrases are phrases that can be ignored when interpreting the sentence because they

cannot be represented in the system's interpretation. The grammar will accept only some

polite sentence introductions as are shown in Figure 4.10. Although they are accepted, they

will not be interpreted.

Would you please ...
Can you ...
I would like you to ...
Please ...

Figure 4.10 - Noise Phrases

4.2.1.7 Semantic Grammar Based-Phrases

Another aspect of the grammar is the use of productions that are defined in terms of the

semantic categories of phrases. This approach was only briefly explored and would benefit

greatly from more work.

The system keeps track of frames that represent objects. The object frames have cases for

object names, and attributes. In

this way, these objects are similar

to the objects represented in

object-oriented languages although

the objects of this system have no

Case Class Case Filler

Names Last Name EMPLOYEE.NAME

Attributes Salary EMPLOYEE.SAL

Commission EMPLOYEE.COMM

Figure 4.11 - Example Employee Frame

methods. Figure 4.11 shows an example of a frame for employee information. This frame



68

contains one name for the employee, the employee's last name, and it can be found in the

NAME column of the EMPLOYEE table. There are two attributes of the employee

represented in the frame, the employee's salary which is found in the SAL column of the

EMPLOYEE table and the employee's commission which is found in the COMM column

of the EMPLOYEE table. The object frames also contain information that ties the

individual cases together in terms of the database (described in detail in chapter 5).

In order to use these object frames, special productions were set up to recognize references

to these categories. The productions are defined in terms of phrases that represent

references to attributes and objects as opposed to noun phrases and so in this sense this part

of the grammar can be regarded as a semantic grammar. The following DCG productions

(Figure 4.12) which are simplified for illustration purposes recognize phrases referring to

objects. The actual productions which are integrated with the syntactic analysis for

efficiency, are listed in appendix B.

AttributeReference --> Determiner, AttributeWord, "OF", ObjectWord

PossessiveObjectWord AttributeWord.

AttributeList -->^Attribute, (",",!1[]), AttributeListl, "OF", ObjectWord, !
(].

AttributeListl -->
"AND", Attribute, !

1 
Attribute, (",",!1(]), AttributeListl
H.

Sentence -->
AttributeReference BEVerbPhrase, AttributeValue

PrintVerbPhrase, AttributeList.

Figure 4.12 - Semantic Grammar for Recognizing Object and Attributes



69

The AttributeReference production recognizes references to the attributes of objects

such as, "the salary of Smith", or "Smith's salary". In both these examples, "Smith" is the

object and salary is the attributes. The AttributeList production recognizes a list of

attributes of an object such as "the name, age and salary of Smith". For this example,

"Smith" is the object and "name", "age" and "salary" are attributes of Smith. The last

production Sentence recognizes the use of attribute phrases in sentences such as

"Smith's salary is 800", or "Print the name, salary, and department of Smith". The former

sentence is used to define salary and the latter is used to get a list of employee information.

4.2.2 Representation

The previous section described the grammar of the system. In order to be employed, the

grammar must be encoded in a computational mechanism. For this system a definite clause

grammar (DCG) formalism is used. A detailed discussion of DCG can be found in

PERWARR80. Appendix B contains a listing of the definite clause grammar of this system.

4.3 Summary

Linguistic knowledge consists of knowledge about words and knowledge about phrases. In

addition to being associated with a concept, the structure of a word can contain meaning. A

lexicon is used to associate words with concepts and morphological knowledge is used to



70

analyze the structure of words to derive additional meaning. The lexicon is implemented

using an inverse index which provides a number of advantages over other techniques. A

grammar is used to contain knowledge about phrases. There are a number of different type

of phrases that the grammar must be able to recognize in order to function effectively. The

range of phrases that can be recognized by a grammar is called its coverage. The grammar

of this system is implemented using the definite clause grammar notation.



Chapter 5

Becoming Portable Through Learning

This section describes the main knowledge representation structure of this system and how

it is constructed. A brief introduction is given in order to help the reader understand where

this structure fits into the overall system.

5.1 Tokenization4

After a sentence is read in, the system tokenizes it. The result is a sequence of words and

phrasess referring to case frames, unknown words and words and phrases that appear in the

database. Some lexical information is produced as well. After tokenization, parsing occurs.

5.2 Parsing4

The parser produces a list of phrases. For each verb mentioned, there is a list of the cases

for that verb, and for each object there is a list of the attributes of that object. The table of

4 - see Chapter 6 for a detailed example

5 - such as 'The Body Shop' which appears in the database as a store name

71



72

Figure 5.1 illustrates this information for the following sentence

Which t mane working 3 in4 research5 works6 for, under8 Ford' s9 salary lo?

Frame Marker

Case

Marker Filler

WORK3 Syntactic Subject MAN2 (question)

IN4 RESEARCH5

WORK6 Syntactic Subject MAN2

FOR, RANGE OVER
SALARY 1 ,3

FORD9 (marked by type) Attribute SalarYlo

Figure 5.1 - Cases and Fillers for Sample Sentence

There are two case frame markers shown in the table, WORK 3 and WORK6. These

correspond to the different occurrences of "work" in the example sentence. For each of

these case frame markers there are two cases present which are shown in the table. The

table also contains one object frame marker, FORD 9. Type information that is known about

"Ford" is used to determine which object frame should be used for interpretation. Only one

case is associated with "Ford", the salary attribute. The parse also contains other

information. Associated with each noun phrase is determiner information if there is any.

Each verb phrase (case frame marker) has tense, number, auxiliary verbs and main verb

information.



73

5.3 Learning Frames

The systems learns the meaning of words by analyzing the relationship between statements

that the user makes about the database and the data in the database. The results of this

analysis are stored in frames - case frames for verbs and object frames for objects.

5.3.1 Case Frames

A case frame is used to store information about object relationships. The case frame is

marked by a verb. The system will not perform inferencing using case frames and so the

only way to access a case frame is to explicitly mention the marker.

Case frames contain a number of cases which are determined through interaction with the

user. Each case has a marker. The marker is either a position number or a preposition.

Position numbers are ordinals which indicate the surface position of the phrase in the

sentence. A case can have more than one marker, and a case marker may mark more than

one case.

The system supports multiple senses for a verb. This corresponds to a verb that is a marker

for more than one case frame. There is currently no way to tell the system that a new verb

is a marker for a known case frame. Figure 5.2 is a sample case frame for works. It was

produced from the sentences "Smith works for Ford", "Allan works for 1100" and "Ford

works in Research". In order to produce it, the values "Smith" and "Ford", "Allan" and



1100, and "Ford" and "Research" were

independently connected and later

combined into one frame.

74

Marker Meaning

Syntactic Subject (1) EMPLOYEE.ENAME

For MANAGER.ENAME

EMPLOYEE.SAL

In DEPT.DNAME

Figure 5.2 - Case Frame for Works
As described earlier, a case frame

contains a number of cases - roles that

are played in the event corresponding to the case frame. In Figure 5.2, there are four cases

which are shown along with their markers. The first case is the subject case which is filled

by an employee. The employee is referenced by the name which appears in the ENAME

column of the EMPLOYEE table. This case is marked by position. There are two cases

which are marked by the preposition "for". One case is the role of manager of the

employee who fills the subject case. The manager case is filled by a name in the ENAME

column of the MANAGER table. The other case marked by "for" is the employee's salary

which is filled by a value in the SAL column of the EMPLOYEE table. The final case is

the department that the employee works in. This is marked by the preposition "in". In

addition to this information, there is a data structure which describes how these cases are

related. This data structure (which is not shown) is the spanning tree which is described in

detail in section 5.3.3.

5.3.2 Object Frames

Object frames are used to keep track of information about objects. The only information

that the system currently has about objects are names, and attributes. Attributes must be



Class Marker Filler

Name "Name" EMPLOYEE.ENAME

Attribute "Salary" EMPLOYEE.SAL

"Manager" EMPLOYEE.MGR

"Department" DEPT.DNAME

Figure 5.3 - Employee Object Frame

75

defined in terms of the database information. There is no object hierarchy. Object frames

are marked by the object frame names, such as employee, or by the type of an object

mentioned such as "Fred"'s type which is EMP table - ENAME column. As described

earlier, some grammar productions exist especially for recognizing references to object

frames.

Attributes of an object are marked by words such as salary or manager (the system does

not calculate manager from manage). The following object frame (Figure 5.3) was

produced from the sentences

"Smith's manager is Ford", "The

department of Smith is research",

and "Allen's salary is 800" which

were independently analyzed and

combined. The filler information

actually references the spanning trees described later in this section and not the database

directly. The fillers are shown for illustration only.

5.3.3 Minimal spanning Trees

The knowledge structure used in the frames of the system is a type of semantic net. The

semantic net is viewed as a spanning tree over a database graph. The semantic net in this

context is called a generalized minimal spanning tree of the database graph for the set of

database graph nodes, N. The next section defines these terms and presents an algorithm



76

for calculating these spanning trees.

5.3.3.1 Definitions

5.3.3.1.1 Database Graph

The database graph (DBG) is implicitly represented by the database. Each node in the

database graph is the entry at a particular row and column of a table in the database 6 .

There is an edge between two database graph nodes if they are in the same row or if they

have the same value' (used for joins). Associated with each edge between nodes that have

the same value is the join condition required to connect the tables corresponding to each of

the nodes. Figure 5.5 depicts the database graph for the portion of the database shown in

Figure 5.4. In the graph in Figure 5.5, the thicker edges connect nodes of the same value

and the thinner edges connect nodes in the same row. The observant reader will note that

not all of the thinner edges have been shown. For each pair of nodes in the same row, there

should be a thin edge incident. All of these thin edges are not shown because the drawing

would need to contain 212 thin edges to accurately reflect the connections among nodes in

the same row. The algorithm will act as though all of these edges are present.

6 - See appendix A for a brief description of relational database terminology

7 - Exceptions:
• nodes cannot be in the same column of the same table
• no reflexive edges (edge from a node to itself)



77

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 RESEARCH

EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7902 FORD ANALYST 7566 03-DEC-81 3000 20

Figure 5.4 - Tables Used by Examples

5.3.3.1.2 Minimal spanning Tree

A minimal spanning tree (MST) is a sub-tree of the database graph. The minimal spanning

tree is defined relative to a set of database graph nodes, N. Spanning means that the tree

contains the set of database graph nodes, N. The tree is minimal in the sense that there is

no proper sub-tree of the tree which spans the given database graph nodes, N. The database

graph nodes correspond to phrases mentioned in the defining sentences. Figure 5.6 contain

minimal spanning trees for the connecting the values "Smith", "Clerk", and "800".



Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col:
DEPTNO
Row: 2
Value: 20

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH

Table: EMP
Col: EMPNO
Row: 1
Value: 7876

Table: EMP
Col: ENAME
Row: 1
Val: SMITH

Table: EMP
Col: JOB
Row: 1
Value:CLERK

Table: EMP
Col: MGR
Row: 1
Value: 7902

Table: EMP
Col: SAL
Row: 1
Value: 800

Table: EMP
Col:
DEPTNO
Row: 1 ^-
Value: 20

Table: EMP
Col: EMPNO
Row: 2
Value: 7369

Table: EMP
Col: ENAME
Row: 2
Val: ADAMS

Table: EMP
Col: JOB
Row: 2
Value:CLERK

Table: EMP
Col: MGR
Row: 2
Value: 7788

Table: EMP
Col: SAL
Row: 2
Value: 1100

Table: EMP
Col:
DEPTNO
Row: 2
Value: 20

Table: EMP
Col: EMPNO
Row: 3
Value: 7902

Table: EMP
Col: ENAME
Row: 3
Val: FORD

Table: EMP
Col: JOB
Row: 3
Val:Analyst

Table: EMP
Col: MGR
Row: 3
Value: 7566

Table: EMP
Col: SAL
Row: 3
Value: 3000

Table: EMP
Col:
DEPTNO
Row: 3
Value: 20

Figure 5.5 - Database Graph for Table of Figure 5.4

5.3.3.1.2.1 Formal Definition of MSTs

For the following definitions, G is a database graph, Values are a set of values that appear

78

in the database, and Nodes is a set of database graph nodes that correspond to the values in



79

Table: EMP •• Table: EMP
Col: EMPNO _ 04:1(10- ,1•1^Col: MGR
Row: I .^...... ROsk Row: I
Value: 7876 -1. • Vik.:310811:•::.:: VaiteLlitt Value: 7902 ValtiO1•800?: . :

Table: EMP
Col:
DEPTNO
Row: 1
Value: 20

Table: EMP
Col: EMPNO
Row: I
Value: 7876

Table; EIWP
CO JOB
Row: I
VataBRK

Table: EMP
Col: MGR
Row: I
Value: 7902

Table: EMP
Cot SAL
Row: I
Value: 800

Table: EMP
Col:
DEPTNO
Row: 1
Value: 20

Table: EMP Tale RAP:: Table: EMP TOW EMP Table: EMP
Col: EMPNO •C .:•.:R.014E• Col: MGR CSC::: Col:
Row: 1 Row: I Row; I DEPTNO
Value: 7876 . V*:$/filFra::; • Value: 7902 %duel 800 . Row: 1

Value: 20

Figure 5.6 - Three Minimal Spanning Trees for "Smith works as a clerk for 800 dollars"

the set of values, Values.

SpanningTreesG(Nodes) - STG(Nodes) - {tit QG A isTree(t) A Nodes zNodes(t)} (1)

MinSpanTreesG(Nodes) - MSTG(Nodes) - {tit ESTG(Nodes) A 3(t i ESTG(Nodes)) t/ ct
(2)



Table: EMP
Row: 1

ENAME
SMITH
JOB• CLERIC
SALARY: 800

Figure 5.7 - GMST

80

Meaning of Values is select one of^U^MSTG(Nodes)
Each Set of Nodes

for Values

(3)

As seen in equation (3), the meaning is an arbitrarily selected tree of a set of MSTs. The

goal was to try to avoid using structural properties of the tree as the sole criteria for

selecting the meaning. In some cases, interaction with the user is necessary to determine

the correct interpretation (WHITE85). By providing this leeway, the system is able to

impose other selection constraints automatically or to interact with the user in order to

select a meaning.

5.3.3.1.3 Generalized Minimal spanning Tree

5.3.3.1.3.1 A Problem with MST

Although minimal spanning trees effectively capture meaning, they are not efficient. Large

numbers of equivalent trees can be produced for a given set

of values. As shown for the sentence, "Smith works as a

clerk for 800 dollars", there are three equivalent spanning

trees (see Figure 5.6). By using a generalized minimal

spanning tree (GMST), the number of alternatives is reduced

to one (see Figure 5.7).

These problems with the MSTs arise because the nodes in the same row form a complete



81

sub-graph of the database graph. Each of the different minimal spanning trees select a

different path through this sub-graph. The generalized minimal spanning tree (GMST) was

defined to avoid this.

5.3.3.1.3.2 GMST Definition

The GMST is an equivalence class of MSTs. The nodes of the GMST are sets of columns

in the same table and row. There is an edge between GMST nodes iff there is an edge in

the MST between columns in each GMST node. For example, the GMST in Figure 5.10

corresponds to the MST in Figure 5.8 (and Figure 5.9). Notice that there is a node in the

GMST for each row in the MST and the edges in the GMST corresponds to the 'join'

edges of the MST. The algorithm is given in terms of the MST because that is easier to

understand and changing the algorithm to work with GMSTs only requires converting the

data structure that represents the MST to a data structure that represent the GMST

equivalence class.

5.3.3.2 Examples

The following example illustrates the various definitions for the sentence "Smith works as

clerk in research under Ford for 800 dollars". This sentence is hard to process because

there is a lot of ambiguity about how the database is encoding this information. The

purpose of using this sentence is to generate a complicated example.



82

5.3.3.2.1 Values to DBG Node Mappings

The first step in the process of generating trees is to associate values in the sentence with

nodes in the trees. This will be shown in detail in a later example (section 5.3.3.3.2).

5.3.3.2.2 MSTs

Figure 5.8 and Figure 5.9 depict two MSTs for the example. The thick line marks the

MST. Nodes that are in the MST are darkened. There are many others which are not shown

for the sake of brevity.



Table: EMP
Col: EMPNO
Row: 1
Value: 7876

Table: EMP
Col: EMPNO
Row: 2
Value: 7369

Table: EMP
Col: ENAME
Row: 2
Val: ADAMS

Table: EMP
Col: JOB
Row: 2
Value:CLERK

Table: EMP
Col: MGR
Row: 2
Value: 7788

Table: EMP
Col: SAL
Row: 2
Value: 1100

Table: EMP
Col:
DEPTNO
Row: 2
Value: 20 

Table: EMP
Col: JOB
Row: 3
Val:Analyst

Table: EMP
Col: MGR
Row: 3
Value: 7566

Table: EMP
Col: SAL
Row: 3
Value: 3000

Table: EMP
Col:
DEPTNO
Row: 3 —
Value: 20

Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

83

Figure 5.8 Example minimal spanning trees connecting "Smith", "Clerk", "800",
"Research", and "Ford"



84

Figure 5.9 - Another Spanning Tree For "Smith", "Clerk", "800", "Research", and "Ford"

5.3.3.2.3 GMSTs

Figure 5.10 depicts one of the GMSTs for the sentence. Another possibility, not shown, is

to associate "Research" with "Ford". Each box in the diagram marks a GMST node which

is identified by the table name and the row number. The edges connecting the nodes mark



        

85

 

Table: EMP
Row: 1

   

Table: DEPT
Row: 2

            

ENAME
SMITH
JOB: CLERK
SALARY: 800
MGR: 7902
DEPTNO: 20 ♦

   

DEPTNO: 20
DNAME:
RESEARCH

     

Table: Emp
Row: 3

       

EMPNO: 7902
ENAME: FORD

             

Figure 5.10 - Generalized Minimal Spanning Tree

the columns which are used to join the tables corresponding to the nodes which are being

connected.

5.3.3.3 Algorithm

This section presents the algorithm for calculating the GMSTs. A number of heuristics are

described, first followed by an example and then by the definition of the algorithm. The

approach is based upon well known graph algorithms for calculating spanning trees.

5.3.3.3.1 Heuristics

According to the definition of the MSTs, the meaning is selected from one of a number of



86

trees. No additional criteria for selection is given. This section describes some additional

constraints that are used in order to select a MST.

5.3.3.3.1.1 Produce the Best Guesses First (Solution Space Ordering)

One common approach used to enhance search is to use a cost function. A cost function is

used here but it should be stressed that the cost function is used to affect the order in

which solutions are generated and is not used to eliminate GMSTs from consideration but

only to possibly postpone their consideration. The goal is to produce the best guesses first

and avoid presenting the user with too many choices at once.

5.3.3.3.1.1.1 Tree Cost

According to Occam's Razor the simplest approach

may be the best. In this case, simple was taken to

mean the fewest number of table joins (ie MST

edges) and the fewest number of nodes. The cost of

a tree is defined in such a way that ideally the

Type Cost

Key 1

Foreign Key 2

Other 20

Figure 5.11 - 'Join' Edge Cost

simplest trees will have lowest costs. The cost of a MST is the 'join' edge cost plus the

'same row' edge cost. Currently the 'same row' edge cost is 4. The 'join' edge cost

depends on the type of nodes joined. These nodes can be keys', foreign keys or other. The

cost of a 'join' edge is the sum of the node type cost of the incident nodes. Currently the

8 - See appendix A



87

cost of a key node is 1, foreign key is 2, and other 20. These values were determined by

trial and error. Figure 5.12 illustrates a tree cost calculation. In this example, the cost of

connecting the EMPNO node of the EMP table at row 3 to the MGR node of the EMP

table at row 1 is 3 because the former is a key which has cost 2 and the latter is a foreign

key which has cost 1.

5.3.33.2 Example

The algorithm used for calculating the spanning tree of a given set of values combines a

slight generalization of Prim's algorithm for calculating spanning trees of a graph with a

best first search (TARJAN83). The basic approach is to start with a tree that spans one of

the values. This is a tree with only the node corresponding to the value in it. Then for each

other value to be connected, a path is sought from the node for that value to a node in the

current spanning tree. The following example illustrates the generation of a minimal

spanning tree for the values "Smith", "Clerk", "800", "Research", and "Ford". Note that the

example is generating a MST not a GMST in order to better illustrate important points. The

example is a depth first search that makes correct decisions at all points. The algorithm

defined later is a best first search.

5.3.33.2.1 Establish Value to Node Mapping

The first step is to establish a correspondence between the values mentioned in the sentence

and the database graph nodes. At this point morphing and spell checking could cause the



Join Cost 3

Table: EMP
Col: EMPNO
Row: I
Value: 7876

Table: EMP
Col: EMPNO
Row: 2
Value: 7369

Table: EMP
Col: ENAME
Row: 2
Val: ADAMS

Table: EMP
Col: JOB
Row: 2
Value:CLERK

Table: EMP
Col: MGR
Row: 2
Value: 7788

Table: EMP
Col: SAL
Row: 2
Value: 1100

Table: EMP
Col:
DEPTNO
Row: 2 m
Value: 20 

oin Cost 3
Table: DTP^Table: Else
Col: JOB^Col: MGR
Row: 3^Row: 3
Val:Analyst^Value: 7566

Table: EMP^Table: EMP
Col: SAL^Col:
Row: 3^DEPTNO
Value: 3000^Row: 3

Value: 20

..BMIPNC)

Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

r-'`)

88

Total Cost is 30

Figure 5.12 - Tree Cost Calculation



89

value to be mapped to a node that does not have exactly the same value. However this has

not been implemented. Figure 5.13 depicts the mapping of values to nodes. The values are

listed at the top of the figure and dotted arrows are used to indicate their corresponding

nodes.



90

Figure 5.13 - Establish Value to Database Graph Node Correspondence



91

After determining the correspondence, a priority queue of node groups is set up. The queue

contains one set of nodes for each value to be connected. The smaller sets are listed first in

arbitrary order. Figure 5.14 contains the initial values queue. The front of the queue is to

the left.

Smith^Ford^800^Research

Clerk

Table: EMP
Col: JOB
Row: I
Val:CLERKTable: EMP

Col: ENAME
Row: 1
Val: SMITH

Table: EMP
Col: ENAME
Row: 3
Val: FORD

Table: EMP
Col: SAL
Row: 1
Value: 800

Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH Table: EMP

Col: JOB
Row: 2
Val:CLERK

Figure 5.14 - Values Queue

After the queue is set up, the frontier is created. The first MST contains one of the

database graph nodes in the first set of database graph nodes from the priority queue. There

is one MST for each node in the set. In this case there is only one MST. Figure 5.15

depicts the first MST with one node in it (nodes in the current MST are marked by grey

shading) and Figure 5.16 shows the values queue after the first entry is removed.



92

Figure 5.15 - First MST



93

Ford^800^Research

Clerk

Table: EMP
Col: JOB

Table: DEPT Row: I
Val:CLERK

Table: EMP Table: EMP Col: DNAME
Col: ENAME Col: SAL Row: 2
Row: 3 Row: 1 Value:
Val: FORD Value: 800 RESEARCH Table: EMP

Col: JOB
Row: 2
Val:CLERK

Figure 5.16 - New Values Queue

The next step is to connect the node for "Ford" to the current MST. This is done by

searching for paths from each node for "Ford" (marked by box with diagonal line shading)

to the MST. In Figure 5.17 the dashed line marks the path found from "Ford", the new

node, to the current MST. All nodes along this path including the first are shaded with

diagonal lines. Figure 5.18 shows the values queue after adding "Ford".



Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH

("Th

I
I
I
I
I
I
I

• Mir • •
Table: EMP
Col: EMPNO
Row: 1
Value: 7876

Coh-ENAME

Ara1:314TIV •

Table: EMP
Col: JOB
Row: 1
Value:CLERK

Table: EMP
Col: SAL
Row: I
Value: 800

Table: EMP
Col:
DEPTNO
Row: 1 -
Value: 20

Table: EMP
Col: EMPNO
Row: 2
Value: 7369

Table: EMP
Col: ENAME
Row: 2
Val: ADAMS

Table: EMP
Col: JOB
Row: 2
Value:CLERK

Table: EMP
Col: MGR
Row: 2
Value: 7788

Table: EMP
Col: SAL
Row: 2
Value: 1100

Table: EMP
Col:
DFPTNO
Row: 2^--r•
Value: 20

• ' • •■&, s'^•

Table: EMP
Col: JOB
Row: 3
Val:Analyst

Table: EMP
Col: MGR
Row: 3
Value: 7566

Table: EMP
Col: SAL
Row: 3
Value: 3000

Table: EMP
Col:
DEPTNO
Row: 3
Value: 20

Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

/Th

Table: DEPT
Col:
DEPTNO
Row: 2
Value: 20

94

Figure 5.17 - Connecting Ford



Table: EMP
Col: SAL
Row: I
Value: 800

Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH

800 ^Research
Table: EMP
Col: JOB
Row: 1
Val:CLERK

Table: EMP
Col: JOB
Row: 2
Val:CLERK

Clerk

Figure 5.18 - New Values Queue

95

Now we add 800 (Figure 5.19). Figure 5.20 contains the queue after adding 800.



TiA: Ei4P. T^.MCPTable: EMP Table: EMP
Col: EMPNO COI:MAME —^Col: JOB ^ MGR
Row: 1 Row: Row: 1 . I  ^
Value: 7876 Vot.14011/ Value:CLERK 7902

Table: EMP
Col:
DEPTNO
Row: 1 -
Value: 20

♦♦

Table: EMP
Col:
DEPTNO
Row: 2 -
Value: 20

Table: EMP
Col:
DEPTNO
Row: 3 -
Value: 20

Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

Table: DEPT
Col:
DEPTNO
Row: 2
Value: 20

Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH

Table: EMP Table: EMP Table: EMP Table: EMP Table: EMP
Col: EMPNO Col: ENAME Col: JOB Col: MGR Col: SAL
Row: 2 Row: 2 Row: 2 Row: 2 Row: 2
Value: 7369 Val: ADAMS Value:CLERK Value: 7788 Value: 1100

Table: EMP
Col: JOB
Row: 3
Val:Analyst

Table: EMP
Col: MGR
Row: 3
Value: 7566

Table: EMP
Col: SAL
Row: 3
Value: 3000

96

Figure 5.19 - Connecting in 800



          

97

       

Clerk

      

Research

             

Table: EMP
Col: JOB
Row: 1
Val:CLERK

                

Table: DEPT
Col: DNAME
Row: 2
Value:
RESEARCH

                      

Table: EMP
Col: JOB
Row: 2
Val:CLERK

                                                                  

Figure 5.20 - New Values Queue

"Research" is connected now (Figure 5.21). At this point there is ambiguity about whether

or not to connect it to "Ford" or to "Smith". The real algorithm would allow both. Here, we

will arbitrarily choose "Smith".



98

Table: DEPT
Col:
DEPTNO
Row: I
Value: 10

Table: DEPT
Col: DNAME
Row: I
Value:
ACCOUNTING

Table: EMP
Col: EMPNO
Row: 1
Value: 7876

Table: EMP
Col: JOB
Row: 1
Value:CLERK

Table: EMP
Col: EMPNO
Row: 2
Value: 7369

Table: EMP
Col: SAL
Row: 2
Value: 1100

Table: EMP
Col: MGR
Row: 2
Value: 7788

Table: EMP
Col: JOB
Row: 2
Value:CLERK

Table: EMP
Col:
DEPTNO
Row: 2
Value: 20

Table: EMP
Col:
DEPTNO
Row: 3
Value: 20

Figure 5.21 - Connecting "Research" to "Smith"



99

Clerk

Table: EMP
Col: JOB
Row: 1
Val:CLERIC

Table: EMP
Col: JOB
Row: 2
Val:CLERK

Figure 5.22 - Next
Values Queue

The last step is to connect "Clerk" (Figure 5.23). Here we must choose a database graph

node to represent "Clerk" from the two choices. We will arbitrarily select the correct one.

The real algorithm which does a best first search would try the other node for "clerk" and

then immediately give up due to cost. It would try that node again later if the user insisted

on seeing more alternative interpretations.



SIP Table:^PTable: EMP .•:: Table. AV::: •••
Col: EMPNO
Row: 1

'-•::•.(WESA141.90 MDR COLS/4',
RD*

Value: 7876 <Nat SiaTff.•' .. : Va1e::•.800

Table: EMP Table: EMP Table: EMP Table: EMP Table: EMP
Col: EMPNO Col: ENAME Col: JOB Col: MGR Col: SAL
Row: 2 Row: 2 Row: 2 Row: 2 Row: 2
Value: 7369 Val: ADAMS Value:CLERK Value: 7788 Value: 1100

Table: EMP
Col:
DEPTNO
Row: 3
Value: 20

Table: EMP
Col: JOB
Row: 3
Val:Analyst

Table: EMP
Col: MGR
Row: 3
Value: 7566

ORM

TaisloX
CAlk
Reeitel 3
Vat EOM

Table: EMI'
Cot:
DEPTNO
Row: I
Value 20

Table: EMP
Col:
DEPTNO
Row: 2
Value: 20

Table: EMP
Col: SAL
Row: 3
Value: 3000

Table: DEPT
Col:
DEPTNO
Row: 1
Value: 10

Table: DEPT
Col: DNAME
Row: 1
Value:
ACCOUNTING

Table: nin
Cot
DEMO ^
Raw 2
Vahie: ^

• Table. DEPT
CUtDitlAtilE:

•••

.:.RESEARCW

100

Figure 5.23 - Connect in "Clerk"

At this point the queue is empty and so the tree is complete. This example left out a

number of implementation details which are discussed in later sections. The next section

presents a pseudo-code definition of the best first search implementation of this algorithm.



101

5.3.3.3.3 Definition

gmsts( [M, N], Frontier, Solutions )

IF Frontier is Empty THEN
RETURN

get best GMST-ValuesQueue from Frontier

IF cost(GMST) > N THEN
RETURN

IF ValuesQueue is empty THEN
IF cost(GMST) >= M THEN

Add GMST to Solutions
ELSE

get next NodesList from ValuesQueue
FOR EACH node IN NodesList

find path, P from node to GMST
IF P union GMST is a Tree

add (P union GMST)-ValuesQueue to the Frontier
NEXT node

gmsts( [M, N], Frontier, Solutions )

Figure 5.24 Pseudo-Code Which Generate GMSTs such that M <= cost(GMST) <= N

Frontier is a priority queue with the lowest cost GMSTs listed first. Values queue is a

priority queue with the smallest list of nodes first. As mentioned earlier this is a best first

search implementation of the approach demonstrated by the example.

5.3.3.4 Implementation Notes

5.3.3.4.1 Cycle Check

The implementation of the algorithm takes advantage of the fact that the frontier contains



102

only trees. So when a new node is connected to a tree in the frontier, the resulting graph is

connected. Since the graph is connected then it is well knoWn that the graph is a tree if and

only if the number of edges is equal to the number of nodes minus one. This provides an

efficient test for performing a cycle check after a node is connected to a tree in the frontier.

5.3.3.4.2 Extension of Tree Isomorphism

The GMSTs are used to eliminate redundant MSTs. However it was realized late in the

development stage that there is another form of redundancy the GMSTs do not eliminate.

Consider the following GMSTs for the sentence "TKB Sport shop bought an ace tennis net

for 58 dollars".

Figure 5.25 - Choice 1 Figure 5.26 - Choice 2



103

The transitivity property of equality (arising from the join conditions) implies that these

two GMSTs are equivalent. To see this, consider the join conditions that are represented by

the graphs in Figure 5.25 and Figure 5.26. There is only one difference between these two

trees. In Figure 5.25, the PRICE table is connected to the PRODUCT table by the dashed

edge. In Figure 5.26, the PRICE table is not connected to the PRODUCT table but is

instead connected to the ITEM table. Each dashed edge corresponds to a join condition in

the SQL. For the first graph (Figure 5.25), the join condition is PRICE.PRODID =

PRODUCT.PRODID and for the second graph (Figure 5.26), the join condition is

PRICE.PRODID = ITEM.PRODID. For both graphs there is an edge connecting the

PRODUCT and the ITEM nodes. This edge corresponds to the join condition

ITEM.PRODID = PRODUCT.PRODID. This implies that the join condition of the two

graphs are logically equivalent. To see this, consider the graph of Figure 5.25, the join

condition includes PRICE.PRODID = PRODUCT.PRODID and PRODUCT.PRODID =

ITEM.PRODID. From this, one can deduce that PRICE.PRODID = ITEM.PROD (ie -

(A - B A B - C) D A -C). This is the join condition for the other graph as well. So the two

graphs describe logically equivalent interpretations.

This consideration was incorporated in the definition of GMSTs isomorphism used in the

program but not directly in the GMST data structure. It should also be noted that the costs

of these two graphs are not the same. In one case the join is between two keys

(PRICE.PRODID and PRODUCT.PRODID) and in the other the join is between a key and

a foreign key (PRICE.PRODID and ITEM.PRODID).



104

5.3.3.4.3 Can't Join Table to itself by the Same Column (Directly or Indirectly)

Another constraint put on the implementation is to not allow a table to be joined to itself

by the same column. This can happen directly or indirectly as a result of joining a number

of tables. For example

Join: Customer 1 to Order 1 by Customer 1.CustID = Order 1.CustID
Join: Order 1 to Customer2 by Order 1.CustID = Customer2.CustID

Due to the transitivity of equality, the effect of these joins is to connect the customer table

to itself by the CustID column. The leeway given in selecting a meaning has been used

here to eliminate a special case which has no value.

5.3.3.4.4 Avoiding Combinatorial Explosion

53.3.4.4.1 Value to node mappings

Another problem that can arise in searches is combinatorial explosion. This is where the

number of alternatives becomes very large through the effect of making a number of non-

deterministic choices. In this context, the problem can arise when mapping values to

database graph nodes (as in Figure 5.13). For the test database, "1" has over 30 mappings.

If the user enters "TKB Sport Shop bought 1 ace tennis net", there would be three values to

connect but the "1" value has more than one possible mapping to a database graph node.

The mapping of these values to database graph nodes is shown in Figure 5.27. Only three



105

of the mappings of "1" are shown.

Value

Database Graph Nodes

Table Column Row Value

TKB Sport Shop CUSTOMER NAME 2 TKB Sport Shop

Ace Tennis Net PRODUCT DESCRIPT 5 Ace Tennis Net

1 ITEM QUANTITY 1 1

ITEMID 2 1

QUANTITY 2 1

Figure 5.27 - Value to Node Mapping

By ordering the selection of which of these node to consider, the system can try to avoid

considering the nodes for "1" until it has considered the nodes for the other two values.

This will increase the number of constraints on the solution which may help reduce the

number of alternative mappings of "1" that are kept. Producing the solutions in order of

cost also helps to minimize this problem.

5.3.3.4.5 Graph Isomorphism

For general graphs, checking isomorphism is time consuming. In this case, the nodes of the

graph are typed by the table and column. This means that the bijection that maps nodes in

one graph to nodes in the other has an additional constraint. The matched nodes must be in

the same table at the same column. There is only one such bijection between two graphs

whenever a table is not joined in more than once. The number of bijections is no more than

the product of the number of times each table is joined in. So if the employee table is



106

joined in twice and the department table once, then there are at most two times one

bijections. In order to cause graph isomorphism to be time consuming, several tables would

have to be joined together many times. However this would cause problems for the

database as well.



107

53.3.4.6 Producing the Most Reasonable Tree First

I: tkb sport shop paid 58 for ace tennis net.

2 Interpretations. They Are:

Option #1
"58" refers to ACTUALPRICE in the ITEM table

Option #2
"58" refers to ITEMTOT in the ITEM table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition

1: can you show me some more options.
[moreOptions]

3 Interpretations (1 are new). They Are:
Option #1

"58" refers to ACTUALPRICE in the ITEM table
Option #2

"58" refers to ITEMTOT in the ITEM table
Option #3 (New)

"58" refers to STDPRICE in the PRICE table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition
I : more.

[moreOptions]

There are no more alternative interpretations.
All alternatives have been listed.3 Interpretations. They Are:

Option #1
"58" refers to ACTUALPRICE in the ITEM table

Option #2
"58" refers to ITEMTOT in the ITEM table

Option #3
"58" refers to STDPRICE in the PRICE table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition

: i like option number 1.

[pickAnOption(1)]

Figure 5.28 - Presenting the User with Different Interpretations

In order to seem intelligent to the user, the system will select only some of the alternative

trees which can connect a set of values and present them to the user (Figure 5.28). The

system presents a summary of the differences between the choices if there is more than one



108

choice, or a number of examples if there is only one choice. The user can confirm a choice

or ask for more alternatives. The system uses the tree cost to determine the order that the

solutions will be presented. The tree cost is most effective when the keys and foreign keys

have been identified; however, the system does not require that they be identified. In fact

they can even be incorrectly identified. A number of heuristics can be used by the system

in order to determine keys and foreign keys.

5.3.3.4.6.1 Recognizing Keys and Foreign Keys

In some DBMS, such as DBase, joins can be specified directly in the system and so no

investigation is necessary. Other DBMS provide means to directly define columns as being

keys or foreign keys. Some systems, however, have no such facilities. For these systems

some simple rules of thumb can be used.

Columns with a large number of unique values are probably keys. Columns with a large

number of rows but a small number of values are probably foreign keys. The keys can be

searched for the parent key of the foreign key. All of these tests can be done with simple

SQL commands and remember that the system does not require that the analysis be correct.

It should be noted that the system does not currently determine which columns are keys

and which are foreign keys.



Figure 5.29 - Search from Each New Node to GMST

Figure 5.30 - Search from GMST to all New Nodes

109

5.3.3.5 Improvements

There are a number of improvements that could be made to the algorithms. Some make

them faster and some make them more general.

5.3.3.5.1 Search Direction Choice

A search occurs when

a new node is to be

connected to the best

GMST. Starting at

the new node, paths

to the GMST are

sought. This is

efficient when the number of new nodes is small. However if there are many new nodes it

would be better to

search from the GMST

to the new nodes. To do

this the algorithm must

chose the direction of

search dynamically. The

direction of search

choice would be made

using branching factors



1 10

in each direction. This could be estimated with the number of nodes in the GMST and the

number of new nodes to be connected.

5.3.3.5.2 More Sophisticated Joins

This system allows only simple joins to occur. Single columns are joined using equality. It

is possible to extend the system to multi-column joins that use only equality tests. This

would be done on the join conditions of the 'same value' edges in the database graph.

When such a join was desired, the additional nodes in the join condition would need to be

added to the GMST. Other type of joins might be also required.

Tables might be joined by using calculated values or tests that are not equality. Another

possibility is multi-column joins using only a subset of the columns of another multi-

column join. Of course it is possible to imagine many strange ways of joining tables. Most

of which are not realistic. No attempt was made to handle these types of joins because it

was unclear how realistic they are.

5.3.4 Ambiguity

In some cases the user's example sentence can have a number of interpretations. For these,

the system interacts with the user in order to determine which selection is intended. Unlike

other systems which produce paraphrases of the interpretations, this system performs some

analysis of the alternatives to determine what is the difference between them. The user is



111

only presented with descriptions which distinguish between the alternatives'. The analysis

is performed using an identification tree which is a type of decision tree (WINSTON91).

A number of other approaches that would provide a better environment in which to resolve

this ambiguity, are considered here. The first approach is to provide examples of the

interpretation using data from the database. When there is only one interpretation the

system does show examples but the user has no control over the selection of examples.

Control over the example generation could be provided by allowing the user to ask

questions using the different possible interpretations. Another nice feature would be to

allow the user to ask questions about the objects mentioned in the examples. Providing

information about how things are being connected would also be an interesting extension

but some work would have to be done to determine a clear form for presentation. It would

also be reasonable to allow the sophisticated user to ask for an SQL paraphrase of the

interpretations. All of these features but the 'show how they are connected' one would be

straightforward to implement.

5.4 Learning Word Meanings

Aside from learning frames the system also learns which words mark which frames or

frame slots. The first way this learning occurs is obvious but the second is more subtle.

When the user presents example sentences such as "Smith works for Ford", "works" is

9 for an example see Figure 5.28.



112

recognized as a verb marking the "work" case frame. For the sentence "Smith's salary is

800", the system learns that the word "salary" marks the "salary" attribute slot of the

employee object frame. The system also learns type information about "Ford" which used

to mark the object frame. It is obvious that the learning of words is occurring here.

The second place where word meanings is learned is from user questions. When the user

asks "Which employees work for Ford", the system has learned that "employee" 1° marks

the subject slot of the "work" case frame. When the user asks "Which employee's salary is

800", the system has learned that the word "employee" marks the "employee" object frame.

There are probably many other places where unintrusive learning can occur. This is but one

which was investigated.

5.5 Summary

This chapter described the spanning tree approach to database configuration. By viewing

the database as a graph, called the database graph, relationships among elements in the

database can be found by using straightforward spanning tree algorithms derived from

graph theory. The minimal spanning tree is used to represent these relationships through its

structure. It was found that the minimal spanning tree represented information redundantly

and so the generalized minimal spanning tree was defined to eliminate this problem. In

addition to presenting a pseudo-code algorithm for calculating the generalized minimal

spanning trees a detailed example was presented. The chapter concluded with notes about

10 - The morpher is used



implementing an efficient version of the algorithm.

113



Chapter 6

Question Answering

The tree structures described in the previous chapter are used during question answering to

interpret sentences. During the process of question answering, the system can also learn the

meanings of some words. This section describes this process through an example.

6.1 Example

The example proceeds by examining the process of analyzing a question using the sentence

in Figure 6.1. The stages of processing are described according to the data flow diagram of

Figure 3.2.

Who earns over the average salary of an employee working in research?

Figure 6.1 - Example Sentence

6.1.1 Tokenizing

The first stage of analysis of a sentence is the stage where the sentence is broken down

into tokens (Tokenizer - process a of Figure 3.2). The lexicon (inverted index) is accessed

in order to determine which sequences of characters should be treated as a single token.

The basic idea is to select prefixes of the input string which appear in the lexicon. If a

114



 

through the
Who earns ...

index for

Figure 6.2 - Initial prefixes of
Position in the
Sentence^the sentence.

t • (What)

a/ rh e •
• •

X y \NS. s•
• (Who) •

(Why)

• e • (Where)

e
• (Whose)

 

The next

step is to

move one

position to

Who earns ...

Figure 6.4 -
Sentence

the left in the sentence

(Figure 6.4). The letter" that is

traversed (in this case 'w') is used

1 15

prefix does not appear in the lexicon then spaces and punctuation are used as delimiters in

order to create a token. A search is conducted

Figure 6.3

contains the inverted index in the

form of a TRIE. The initial Figure 6.3 - Initial Position in the TRIE

position (at the root) is marked by the arrow. Figure 6.2 contains the sentence that is being

tokenized. The initial position is before the first letter of the sentence.

t • (What)

e^(Where)h^e^

• 

•
•xt

Y ^s••• (Who)^

• 

• (Whose)
(Why)

Figure 6.5 - Inverse Index

to select the arc in the TRIE to traverse (Figure 6.5).

11 - not case sensitive



The

traversal
Who earns ...

4

successful

Figure 6.6 - was

Sentence After 'h'

Figure 6.8

contains the

sentence

after

Who earns ...

4

Figure 6.8 -
Sentence after 'o'

• e • (Where)r

e• • (Whose)

so processing continues. If the

traversal were not successful then

spaces and punctuation would be

used as delimiters in order to determine a prefix. The next step in the input sentence

(Figure 6.6) traverses 'h' and so in the TRIE the 'h' branch in selected (Figure 6.7).

traversing 'o' in the input

sentence. At this point in the TRIE

(Figure 6.9), the current position is Figure 6.9 - TRIE after 'o'

a node that contains the meaning for "who". Because the next character in the input string

is a delimiter, the first prefix for the sentence is taken to be "Who". If "Who earns"

happened to be in the inverted index then processing would continue and there would be

two different choices for the first prefix of the sentence. The tokenizer produces all

alternatives which are shown with their meanings in Figure 6.10 (in this case there is only

one alternative).

116

Figure 6.7 - TRIE after 'h'

t • (What)
a--"'"----

h a/ e •
a^a

ay
^

Y V 3 ••
(Why)

s

e• • (Whose)
• 17.^)y \::' I.

, (Why)
• (Who)

a t a (What)

h Ve ^r
• •

• ea (Where)



117

Token Interpretation Alternatives

"WHO" • questionWord

"EARNS"

"OVER" •
•

rangeMarker(compare(>))
preposition(over)

"THE" • article(definite)

"AVERAGE" • groupFunctionModifier("AVG")

"SALARY" • attribute

"OF" • preposition(of)

"AN" • article(indefinite)

"EMPLOYEE" • word not in index is delimited by spaces

"WORKING"

"IN" • preposition(in)

"RESEARCH" • node(location(DEPT,DNAME,00000250.0001.0004),value(1,raw(RES
EARCH)),cost(other))

.,.„

Figure 6.10 - Tokens of the Sentence

Figure 6.10 presents the only tokenization that is produced. Some information about the

interpretation of words is associated with the tokens at this point. This information is

derived from the lexicon entry. Each alternative interpretation in the table is marked by a

bullet. The meanings listed in the table will be briefly described. The word "Who" is

marked as a questionWord which tells the system that the referents of the word are to be

listed in the response. "Earns" has no interpretation at this point. The morpher was to be

added to the indexing process but this was not done and so morphing occurs later.

"Over" has two different interpretations. For one interpretation, "over" is merely a



118

preposition that marks a case of some verb. This is indicated by preposition(over) in the

meaning. For the other interpretation, "over" marks a range of values. In this case, the

range is salaries greater than the average salary of an employee working in research.

"Over", "more than", "under" and "less than" are treated as markers for ranges of values. In

the lexicon, they are marked as rangeMarkers/l. The compare/1 argument contains the type

of comparison that is to be used. For "over" the comparison is greater than (>).

"The" and later "an" are marked as articles. This is part of the domain independent

knowledge of the system. "Average" is one of a number of group function words which

includes "total", "highest", "lowest" and "how many". Group function words correspond to

functions performed on sets of values. The group functions that are interpreted by this

system correspond directly to the SQL group functions (AVERAGE, COUNT, MIN, MAX,

and TOTAL). The lexicon marks these words with the groupFunctionModifier/1 predicate.

The argument of the predicate is the name of the SQL function that is to be used to do the

calculations. In Figure 6.10, the word "average" is a group function word which is

calculated by the SQL AVG function.

"Of' is marked in the lexicon as a preposition. Prepositions, as discussed earlier, serve as

markers for cases of case frames. "Employee" is a word that is not in the lexicon. The

system decides that "employee" is a word because it is delimited by spaces. For this

sentence, the system later learns that "employee" is a noun which marks the subject case

for the case frame of "work" and marks the object frame for employees. The lexicon will

be updated to reflect this. "Working" is not in the lexicon directly but through morphing



119

the system determines that "working" marks a case frame. "In" is in the lexicon marked as

a preposition.

The last word, "research", is a word that is in a field of the database. For each field that the

value appears in, there is a node/3 predicate in the lexicon entry for the word. In this case,

"research" appears in only one position in the database and so there is only one node/3

predicate in the lexicon entry of "research". The first term of the node/3 is the location/3

term of the node. location/3 contains the table, column and row address of the position that

contains the word "research", ie - location(TABLE, COLUMN, ROW_ADDRESS 12). The

second term is the value/2 term. The value/2 term contains information about the value -

the data type and the actual data value, ie - value( Type, Value ). There are two options for

the data value - raw(RawValue) where RawValue is the data in the database, or null which

marks a null value. It is possible that through morphing or spell checking" that the word

in the sentence would not be the same as the RawValue in the node/3 predicate.

6.1.2 Parsing

Parsing breaks the sentence up into phrases and produces restrictions on the structure of the

sentence. The parser (process b of 3.3) is implemented using definite clause grammars"

(DCG). A description of definite clause grammars can be found in PERWARR80, and

12 - Row address is determined by ORACLE

13 - Not Implemented

14 - Listed in appendix B



120

details on how to implement DCG based parsers can be found in ALLEN87. The following

figures (Figure 6.11, Figure 6.12, Figure 6.13 and Figure 6.14) illustrate four different

parses that could be produced if only syntactic information is used. Semantic information is

used to reject non-meaningful parses and so there is only one parse that will be accepted

for interpretation 15 . Note Figure 6.13 and Figure 6.14 which show "the average salary" as

being associated with "employee" as an attribute. This is the result of the semantic

grammar productions which were described in section 4.2.1.7.

(Who) earns(over (the average salary)) (of ((an employee) working)) (in research)?

Figure 6.11 - Possible Sentence Structure

Adr'l
(WC)earns (over (the average salary)) (of ((an employee) working (in research))?

Figure 6.12 - Possible Syntactic Structure

Attribute

(Who)earns (over (the average salary) (of an employee) working)) (in research)?

Figure 6.13 - Possible Syntactic Structure

- Shown in Figure 6.14



121

Attribute

(Who) earns(over (the average salary) (of ( an employee) working (in research)))?

Figure 6.14 - Possible Syntactic Structure

Case Frame Marker: verbPhrase(2,auxiliaries([]),verb("EARNS",[]))

Case Marker Case Filler

1 nounPluase(1,"WHO",[questionWord],[],[question])

2 range("OVER",compare(>),nounPluase(3,"SALARY",[attribute],
[groupFunctionModifier("AVG")],[definite]))

Case Frame Marker: verbPhrase(5,auxiliaries(0),verb("WORKING",[]))

Case Marker Case Filler

1 nounPhrase(4,"EMPLOYEE",[],[],[indefinite])

prep("IN") nounPhrase(6,"RESEARCH",[node(location(DEPT,DNAME,00000250.0001.0004),
value(1,raw(RESEARCH)), cost(other))],[],[])

Case Frame Marker: nounPhrase(4,"EMPLOYEE",[],[],[indefinite])

Case Marker Case Filler

Attribute nounPhrase(3,"SALARY",[attribute],[groupFunctionModifier("AVG")],[definite])

Figure 6.15 - Cases of the Only Parse Accepted

Figure 6.15 presents detailed information on the parse that is finally accepted for

interpretation. In this table, there are three
verbPhrase( Position, Auxiliaries, Verb )

frame markers. The first two markers are case^
Figure 6.16 - verbPhrase/3

frame markers which are represented by

verbPhrase/3 predicates (Figure 6.16). The first term (Position) of this predicate is a



122

number indicating the position of the case frame marker in the input sentence. The position

is not based upon the position of the word in the sequence of words but rather the position

of the phrase in the sequence of phrases. In the example, the first verb phrase is in the

second position after "who" and the second verb phrase is in the fifth position after "who",

"earns", "over the average salary", and "of an employee". The second term of the

verbPhrase/3 predicate is a list of the auxiliary verbs in the verb phrase. Currently this

information is only used for detecting passives. The last term in the verbPhrase/3 predicate

is the main verb information. This is stored in the verb/2 predicate. The first term of this

predicate contains the verb found in the sentence and the second term is not used.

The last frame marker in the
nounPhrase(Position, Noun, Meanings, Adjectives, Quantifiers)

table is the nounPhrase/5^Figure 6.17 - nounPhrase/5
predicate (Figure 6.17). The

first term is the position of the phrase in the sentence as described earlier. The second term

is the head noun as it appears in the sentence. The third term, Meanings, is a list of

different interpretations of the noun. This list could indicate that the noun appears in the

database (using the node/3 predicate described), that the noun marks an object frame, or

that the noun marks a case of some frame. No interpretation of the word "employee" is

currently known and so the list of interpretations for employee is empty. The fourth term of

nounPhrase/5, Adjectives, is a list of adjectives which were applied to the noun. The only

adjectives allowed are group function modifiers such as "average", or "total". The last term

contains quantifier information. The only quantifiers currently allowed are definite,

indefinite, or questionWord markers.



123

Figure 6.15 also contains information about the cases recognized for each of the frames.

For the first case frame (for "earns"), there are two cases which are both marked by

position. The subject is represented by the nounPhrase/5 for "who". The object is filled by

a range/3 predicate. The range/3 predicate is used to mark a range of values. In this case,

the range of values are defined using a comparison ('>') to a value, the nounPhrase/3 for

salary. Range/3 phrases arise when there are rangeMarker/1 words in the sentence.

The second case frame (for "working") also has two cases. The first case which is marked

by position is filled by the nounPhrase/5 for "employee". The second case is marked by the

preposition "in". This case is filled by the nounPhrase/5 for "research". The last frame,

which is marked by "employee", has only one case, "salary". Salary is an attribute of the

object frame which is marked by the word "employee". In this case, the nounPhrase/5 for

salary has information that indicates that the average of salary is to be used. The

information in Figure 6.15 is passed along to the semantic interpreter (process (c) of 3.3).

6.1.3 Semantic Analysis

The semantic analysis stage of processing (process c of 3.3) begins after parsing. This

section describes how this analysis proceeds for questions. The analysis of declarative

sentences was described earlier in chapter 5.

For each parse that is produced, the system attempts an interpretation. Interpretation

involves selecting frames for the frame markers and combining the results into a number of



EMP - RowA

Case Filler
1
2

•
• "---

ENAME
SALARY

Figure 6.18 - Case Frame for Earn

124

interrelated GMSTs. This section illustrate this process for the one successful interpretation

of the example sentence.

6.1.3.1 Applying the Frames

For the example, assume that the frames in

Figure 6.18, Figure 6.19, and Figure 6.20 are

in the dictionary. The case frame of

Figure 6.18 could have been produced using

the sentence, "Smith earns 800". The case

frame of Figure 6.19 could have been produced with "Ford works in research". The frame

in Figure 6.20 could have been produced from two sentences such as "Smith's manager is

Ford" and "The salary

of smith is 800".

Figure 6.19 - Case Frame for Work

These frames are different from the frames which were illustrated in earlier chapters

because they contain the GMST data structure which is linked to the case information. The

earlier diagrams did not contain the GMST data structure because when the diagrams were

presented the GMSTs had not yet been defined. For these diagrams, the case fillers (nodes

in the GMST) are marked by an arrow from the filler entry to the corresponding node. This

EMP - RowA DEPT - RowD

Case Filler
ENAME
DEPTH(

EPTNO
NAME1 • ►

in



Case  Filler
^Name^•

Salary

^

Manager^•

125

Figure 6.20 - Object Frame for Employee

information provides

the means to connect

the components of the

sentence to the GMST.

The first step in the

process is to analyze the sentence using the information in the frames. This involves

selecting a frame for each of the frame markers and then ensuring that the cases for the

frame are compatible with the frame (Figure 6.21). Consider "earns". The systems knows

that "earns" marks the "earn" case frame of Figure 6.18 so this frame is used for

interpretation. Next, the case fillers must be considered. According to the parse information

in the table of Figure 6.15, there are two case fillers for "earns". The first one is "who"

which fills the subject case. According to the case frame information in Figure 6.18, the

subject, "Who", is mapped to the ENAME node of the database graph. "Who" is allowed to

refer to any type of node so this case filler is allowed by this case frame (indicated in

Figure 6.21 by an arrow from "Who" in the sentence to the ENAME column in the

GMST). The next filler is for the object case. According to the parse information

(Figure 6.15), the object of "earns" is a comparison marked by "over". The system in this

case does some type checking in order to determine compatibility of the case and the filler.

The type information used is merely the data type of the filler (text, number or date). Only

things of the same type may be compared (eg - numbers to numbers). More sophisticated

type checking can be applied also (described later on in this section for the case marker

"working"). For the object case, there is no filler in the sentence. The filler is left



126

unspecified. Instead a constraint is used. In this case, the SALARY node which is the

object case, must be greater than the average salary". This is represented in Figure 6.21 by

the constraint SALARY > SALARY SUBQUERY. After determining the case fillers of the

case frame the case to filler table is discarded.

Figure 6.21 - Selecting Frames

The application of the object frame for employees presents an interesting variation in the

analysis. The mapping of sentence elements to the case frame occurs as just described. In

this case however, the system does not yet know that the word "employee" marks the case

frame for employees. The case frame for employees is selected using the knowledge that

"salary" marks a case of the employee case frame. Additional support for this decision is

that "employee" is also filling the subject frame of "working". In order to do this,



127

"employee" must refer to something in the ENAME column of the EMP table. But this is

exactly what the object name in the object frame for employee (Figure 6.20) must refer to.

This is an example of the second form of type information. The first form is the data type

(text, number, or date) and the second form is the table and column that the data occurs in.

The third form was to be the object frame and the fourth form was the be cases filled but

these were not implemented. Arrows are used in Figure 6.21 to indicate that "salary" refers

to SALARY column and "employee" refers to the ENAME column.

There is another wrinkle in the analysis. Notice that the GMST for the frame in Figure 6.20

contains more nodes than the object frame used in the interpretations for "employee" shown

in Figure 6.21. The GMST used to interpret "the average salary of an employee"

(Figure 6.21) is smaller than the GMST in the case frame (Figure 6.20). This happens

because the system uses the GMST, (relative to the cases present in the sentence) of the

GMST2 in the frame. The difference is that the GMST 2 is minimum relative to all of the

cases mention in the case list for the frame. In Figure 6.20, there are three cases mentioned

(the employee name, salary and manager) so GMST 2 must span nodes for all of these

value. In the sentence (Figure 6.21), however, only the employee name and salary are

mentioned so the system selects the subset of the GMST of the frame (GMST 2) that spans

the values mentioned in the sentence. This amounts to using the GMST of the GMST.

"Working" is the last case marker to be analyzed. The analysis occurs as before. The

system accesses the case frame information for work (Figure 6.19). The case to case filler

table is used to associate fillers from the parse table (Figure 6.15) with nodes in the GMST.



128

Again, the type information is used to verify that correct decisions are being made. The

interpretation of "working" illustrates what occurs when the sentence contains phrases that

occur in the database. For this example, "research" occurs in the DEPT table. To handle

this, a constraint is added to the constraint list (Figure 6.21). The constraint is that the node
..■

corresponding to the appropriate case (DNAME) in the GMST must be equal to the value

mentioned in the sentence ("research"), ie - DNAME = "Research". A better approach

would be to constrain the case filler (DNAME) to be one of the nodes referred to by the

word in the sentence ("research"). This would allow the system to function properly for

words spelt incorrectly or morphological variations of words.

6.1.3.2 Combining the Frames

After using frame information to interpret the components of the sentence, the system

combines the interpretations into one interpretation consisting of a number of GMSTs and

constraints. There is one GMST for each group of GMSTs which have a node modified by

a group function adjective. After determining how to group the GMSTs, the GMSTs in

each group are combined into one GMST.

The first step of combining the GMSTs into one GMST is to form groups of GMSTs. The

groups are determined based upon the words modified by group function adjectives (eg -

"average", or "total"). For this example, there are two groups (Figure 6.22). One group

contains the GMST and constraints for the "earns" case frame (main query group), and the

other group contains the GMST and constraints for the "employee" case frame and the



129

Figure 6.22 - Query Groups

"working" case frame (sub-query group).

For each sub-query group there is a phrase with a group function adjective in the sentence.

In this example, there is only one phrase with a group function adjective ("the average

salary"). Corresponding to each phrase with a group function adjective ("the average

salary") there is a node in a GMST, (the SALARY node in the EMP table - Figure 6.22).

Other GMST are added to the group containing this node by considering reachability from

this node. In this case nodes are neighbours if they are reachable from within the same

GMST or if there is a phrase in the sentence that refers to both nodes (the ENAME node

in the EMP-RowB table and the ENAME node in the EMP-RowC table are both referred to

by the word "employee" and so one is reachable from the other). This definition of



2

4

Figure 6.24 -

0000. 2 .%%,

1^ 4
1/4„44.

3

Figure 6.25 -
Union

130

reachability implies that the GMSTs for "employee" and for "working" are connected and

so they belong to the sub-query group for the "the average salary" phrase (diagonal lines

box of Figure 6.22). All of the GMST that are not put in a sub-query group in this manner

are put in the main query group (wiggly lines in Figure 6.22).

After the trees are divided into groups, the trees in each group are combined separately. A

special case of graph union is used to combine them. In
2

general, graph union is performed by combining the sets
3

Figure 6.23 
of nodes of the graphs and the sets of edges of the graph. Graph 2

- Graph 1 The graph in Figure 6.25 is the result of combining the graphs in Figure 6.23

and Figure 6.24. In these graphs, each node is represented by a number.

Nodes with the same number are the same nodes. Node 2 in

Figure 6.23 is the same node as node 2 in Figure 6.24 and they are

represented by node 2 in Figure 6.25. Union of the GMST occurs in

this manner with one exception.

The exception is that the system must determine which nodes in the GMSTs should be

treated as the same nodes. In the example of graph union, the labelling of the nodes was

used to immediately determine which nodes were the same. For GMSTs, the system must

determine which nodes should be the- same. This is done by considering the relation

between the phrases in the sentence and the nodes in the GMSTs. Consider the phrase, "an

employee". This phrase refers to two different database graph nodes in two different

GMSTs (Figure 6.22). Because one phrase refers to both these database graph nodes, the



EMP - RowA

ENAME
SALARY

Figure 6.26 - Main
Query GMST

ENAME^EPTNO
DEPTNO
SALARY

EMP-RowE^DEPT-RowD

Figure 6.27 - Sub-query GMST

131

system decides that they should become the same database graph node. In order to make

them the same database graph node, the symbolic row values which are used to distinguish

to different occurrences

of a GMST node

(RowB and RowC) are

replaced by one

symbolic row value (in

this case RowE). As a result the two GMST

nodes (EMP - RowB and EMP - RowC) become one. The result of combining the GMSTs

for the "average salary" sub-query group (Figure 6.22) is shown in Figure 6.27. The

EMP - RowB and EMP - RowC GMST nodes have been combined into one node marked

by EMP - RowE 16 . This is the only way that nodes are combined during this analysis. By

combining nodes in this manner, the system can determine that an interpretation is incorrect

and the SQL that is generated can be more efficient. No work needs to be done to the main

query group because there is only one GMST in it. The GMST for the main query is

shown in Figure 6.26.

6.1.3.3 Producing the SQL Query

After the groups are combined, the SQL query can be formulated. Each group is converted

separately to an SQL query. Consider the sub-query group corresponding to the phrase, "the

average salary of an employee working in research" (Figure 6.27). For each GMST node

16 - Arbitrarily chosen unique value



132

(identified by a table and row) mentioned in the GMST there is a table alias in the SQL

(see FROM list of Figure 6.28). For this case, there are two GMST nodes, EMP-RowE and

DEPT-RowD. Each of the symbolic rows (RowE and RowD) are mapped to a unique

number. This number is appended to the table name to form an alias for the table. In this

case RowE is mapped to zero and RowD is mapped to zero. The resulting aliases are

DEPTO and EMPO.

SELECT AVG(EMPO.SAL)
FROM DEPT DEPTO, EMP EMPO

WHERE DEPTO.DNAME = 'RESEARCH' AND DEPTO.DEPTNO = EMPO.DEPTNO

Figure 6.28 - SQL for the Sub-query

During the analysis of the sentence, a number of constraints arose. For the sub-query group,

there was only one constraint, DNAME = "Research" (Figure 6.22). This constraint is

placed in the WHERE list of the SQL. Notice that the alias corresponding to the correct

GMST node is used to identify the DNAME column properly (Figure 6.28). The join

conditions are also put into the WHERE list of the SQL. Remember from chapter 5 that the

join edges in the GMST represent the join condition of two tables. For this system, the join

condition is that the nodes connected by the "join" edge must have the same value. In the

GMST for the sub-query (Figure 6.27), there is only one "join" edge which connects the

DEPTNO column of the EMP table to the DEPTNO column of the DEPT table. In the

SQL, the join condition is represented by the constraint that

DEPTO . DEPTNO = EMPO . DEPTNO. Notice that the correct table aliases have been

applied.



133

The last component of the SQL query to describe is the SELECTION list. For sub-queries,

the column(s) (SAL) that the function word modifies is placed in the SELECTION list. For

this case, "average" modifies "salary" and so EMPO.SAL is placed in the SELECTION list

with the appropriate SQL function (Figure 6.28).

The process of producing the SQL for the main query is essentially the same as for the

sub-query. There is one exception. During the analysis of the sentence, a list of nodes that

are to be printed as an answer is produced (the list contains all words that are marked as

questionWords 17). In this case, the list only contains the node referred to by "Who". This

list is used when producing the main query. All of the nodes in the list are put in the

SELECTION list of the main query. As with the sub-query, the constraints and join

conditions are placed in the WHERE clause. For this main query, there is a comparison

that references the sub-query. The SQL for the sub-query is inserted in the appropriate

place at this time. The final form of the SQL for the main query is shown in Figure 6.29.

SELECT EMPO ENAME
FROM EMP EMPO

WHERE EMPO.SAL >
any ( SELECT AVG (EMPO . SAL)

FROM DEPT DEPTO, EMP EMPO
WHERE DEPTO .DNAME = 'RESEARCH' AND DEPTO . DEPTNO = EMPO .DEPTNO)

Figure 6.29 - SQL for the Main Query

The query is sent to Oracle for processing and the results are printed by the system.

17 - see section 6.1



134

6.2 Response Generation

There is no sophisticated response generation. Tuples that satisfy the SQL command are

merely listed.

6.3 Learning Word Meanings

Word meanings can be learned when the system is interpreting questions. This was shown

in the example for the word "employee". There are other types of words that the system

can learn during question answering. For the sentence, "Which employees work in

Research?", the system learns that "employee(s)" is an noun marking the subject case for

the "Work" case frame. After the question "Which employee's salary is 800", the system

knows that the object frame referenced in this sentence is marked by the noun "employee".

Attribute names can be learnt as well. The system determines what the words refer to

during sentence analysis as described earlier. If the system did not know that the word

could have such a referent then this information is added to the lexicon for use later.

Extensions to the system based upon exploiting this type learning are presented in the final

chapter.



Who works for 800?
Who works for Ford?

Figure 6.30 - Possible
Ambiguity

135

6.4 Handling Ambiguity

Type information is used by the system to resolve ambiguity. Currently type information is

the ORACLE data type (numbers, dates or text), and the table and column that the data

appears in. The object frames and the case markers were to be used as type information but

this was not developed. Type information is used to mark object frames and can be used to

resolve ambiguity when syntactic and case markers do not.

As an example of this, imagine that the works case frame

has two cases marked by "for", one is a manager and the

other is a salary. The type information can be used in

Figure 6.30 to determine which case is appropriate. For the

first sentence, 800 is a number. Only the salary case marked by "for" can be filled by a

number. For the second sentence, "Ford" is known to be in the ENAME column and to be

text. There is only one case marked by the preposition "for" that allows such a filler. The

type information has been used here to eliminate ambiguity. If the words "manager" and

"salary" were known to mark the cases then these words could be used to eliminate

ambiguity (implemented for object frames but not for case frames).



There are no more alternative interpretations.
All alternatives have been listed.3 Interpretations. They
Are:

Option #1
"58" refers to ACTUALPRICE in the ITEM table

Option #2
"58" refers to ITEMTOT in the ITEM table

Option #3
"58" refers to STDPRICE in the PRICE table

You may select an option as a correct interpretation,
ask for more options, or decide to stop this definition

Figure 6.31 - Asking for Input

136

6.5 Controlling the Dialogue

The dialogue is maintained using a control structure patterned after an ATN. The dialogue

manager does

not handle

ellipsis or

anaphora. It

only controls

the

presentation

and selection of alternatives. In some situations, a fixed number of responses from the user

is expected. For these, the system uses a pattern matching approach to analyze the

sentences. This provides a more robust way of analyzing sentences when the number of

different interpretations is limited. At the following point in the dialogue (Figure 6.31),

pattern matching is used to interpret the

user's response. The pattern matcher will

accept a large number of sentences that

the parser will not (Figure 6.32).

Figure 6.32 - Selection Option #1

gimme 1.
1.
of these choices the only good one
is 1.
number 1.
numbr 1
no 1.
l's the best.



137

6.6 Summary

The chapter described the use of spanning trees during the question answering process by

presenting a detailed example. Tokenization of the question is performed taking advantage

of the TRIE structure of the inverted index which contains the lexicon. The result of

parsing is a number of cases and associated fillers which are analyzed by the semantic

interpreter. Semantic analysis has two main stages. For the first stage, the spanning trees in

the case frames are accessed and related to phrases in the sentence. The second stage is to

combine the spanning trees. After the semantic analysis, the interpretation is converted to

SQL and the results of the SQL query are presented to the user.



Chapter 7

Conclusion

7.1 Contributions of this Thesis

This paper describes a method that can be used to obtain a higher degree of domain

portability for natural language interfaces. Early natural language interfaces required a

domain and natural language expert in order to be configured. Later systems increased

domain portability by providing facilities that a DBA could use in order to configure the

natural language interface. The approach presented in this paper produces a system that

could be almost entirely configured by a naive user (no knowledge of linguistics or

database management systems). This represents a significant increase in the portability of

natural language interfaces. A number of benefits arise because each user configures the

system for himself or herself.

The first benefit is for the DBA. One can imagine that when the DBA configures the

interface, there is a great deal of work to be done. First, meetings must be held with all the

users to determine which words they will want to use. These words must be compiled and

defined in terms of the database. Problems will arise if different users have different

138



139

interpretations of the same word. This will require compromise on the part of the users or

there will be words whose interpretation is ambiguous relative to the grammar of all the

users. After the system is configured by the DBA, new users will want to use new words.

Then the DBA will have to combine these new words with the old and iron out any

conflicts. A number of these problems can be avoided when the users configure the system

for themselves.

Each user will have his or her own grammar. This will mean that words that are ambiguous

relative to everyone's grammar will not necessarily be ambiguous to a particular user's

grammar. As a result, the user will not be asked to select from alternative interpretations

when relative to the user's grammar there is only one interpretation. This will also increase

the processing speed of the system by reducing the size of the dictionaries. If the users

discover that they have not configured the system for a word that they want to use, then

configuration can be done immediately without having to wait for the DBA to get around

to doing it. For the DBA, the main advantage is that very little time need be spent helping

the users configure the systems. This can amount to a great reduction in work if you

consider that, for some applications, users are only allowed to access the database through

a set of customized views. In this case, the NLI would have to be set up once for each of

the users' different views of the database. This could be a time consuming process

depending on how different the views are and how much is transferrable between them.

A program was written to demonstrate that the method of configuration described in this

paper is effective. The program was not developed to be a sophisticated natural language



140

interface. The system has a rudimentary question answering facility whose purpose was to

show that the system had, in fact, correctly configured itself. When looking at the program

demonstrations, one should not ask whether or not the program is a sophisticated natural

language interface but rather one should ask does the program adequately demonstrate that

the approach described in this paper is effective. We believe so.

Although the system was not developed to the point of being a sophisticated natural

language interface, it could serve as a basis for one. The remainder of this chapter

describes enhancements that could be made to the system in order to produce a powerful

NLI. These enhancements include descriptions on improvements to the methods used to

configure the system.

7.2 Possible Enhancements

The enhancements presented here are not described in great detail. The purpose is to

provide brief notes indicative of straightforward directions for improvements.

7.2.1 Enhancements to Noun Phrase Interpretation

7.2.1.1 Adjectives

The system currently does not handle adjectives. This section describes a number of special

cases that could be added to the system.



141

7.2.1.1.1 Related Adjective - "red ford"

Sometimes adjectives are nouns that refer to something related to the noun being modified.

For "red Ford", red is the color of a Ford. The relation could be represented as a GMST in

the object frame for "ford". Alternatively, inference could be performed using the object

frames and case frames to find a connection between "red" and "ford" that already exists.

For example, "red" could be the color attribute in the object frame for "Ford".

7.2.1.1.2 Explicitly Defined - "Rich employees earn over 20000"

Another type of adjective is one that is defined explicitly by the user. The approaches used

to handle other problems in the system could be used to handle this one. The first step after

getting a sentence that is used to define an adjective, would be to produce the GMST for

the sentence. The adjective whose meaning is not known could be ignored. After the

GMST is produced, the adjective ("rich") would be defined by noting that it ("rich")

referred to the same database graph node that is referred to by the noun ("employee") it

modified. Later when the adjective is used in a sentence, the system could access the

GMST associated with the adjective. This GMST would be combined with the GMST for

the head noun of the sentence using the GMST union 18 operation. For this union, the node

referred to by the adjective in the adjective's GMST would be set to be the same node as

the node referred to by the head noun in the head noun's GMST. Thus, application of the

meaning of the adjective would occur through graph union.

18 - see section 6.1.3.2



142

7.2.1.1.3 Anaphora - "part number A37"

Anaphora is another form of expression employed by users that should be handled. For

anaphora, a noun that marks an object frame and a noun referring to something in the

database are listed one after the other. The first noun could be interpreted as a marker for

an object frame (or a case of a case frame). The second noun could then be interpreted

using the marked frame.

7.2.1.2 Semantic Grammar Categories

In this system, the only semantic categories that were used are attribute, and object. The

system's performance could be improved greatly if more semantic categories were used.

Names is one example of a useful category. Sometimes objects have a number of names

(first, middle or last name). Names can also be abbreviated (I.B.M.). Object can also have

more than one distinct name. In order to function effectively, a natural language system

must be able to work with names. Another semantic category that is useful is units. Units

have a hierarchy of different type of units. Examples of units include measurements

(temperatures, distances, weights) and counts (currency). The TEAM system provides a

good source for useful semantic categories. Once new categories are defined, the grammar

could be extended to recognize them.



143

7.2.1.3 Pronouns

The system would be enhanced greatly by being able to handle pronouns and more

complicated forms of anaphora.

7.2.1.4 Words not in the Database

Words that are not in the database are not handled properly by the system. The system

should be extended to handle this in order to provide intelligible feedback to questions

involving unknown words.

7.2.1.5 Learning Object Class

An object class is a semantically defined set of objects. This is commonly represented in

systems using the isa relation. In order to handle a wide range of questions the system

should be extended to cover isa relations. This section describes the different ways that the

isa hierarchy can be implicitly represented in the database.

7.2.1.5.1 Column Membership

Case fillers and objects must be represented by values that appear in the same columns. For

example, for "Smith works in research", the subject is allowed to be any word in the

ENAME column of the EMP table. This works well for most cases. However, there are



S.I.N. Name Jobl Job2 Job3

989-776-090 Jones MGR776 PGR700

334-987-909 Smith CLK223

Figure 7.2 - Another Form of Classes

144

several ways of representing data in the database which this will not work for.

Sometimes classes of objects are marked by constraints on other columns. For example, in

Figure 7.1, the clerks are objects in the EMP table which have JOB = "Clerk". This is

not an unreasonable way to represent data but the system as it is set up will not handle

this.

EMP

EMPNO ENAME JOB MGR HIREDATE SAL DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7902 FORD ANALYST 7566 03-DEC-81 3000 20

Figure 7.1 - Job Class

7.2.1.5.2 Groups of Columns - (Job1, Job2, ... )

Another way of representing

groups of objects is by having

a number of columns with the

same prefix and a different

number for a suffix. For

examples one could imagine a table where the employees could have up to three jobs and

the different jobs would be listed in columns called JOB1, JOB2, and JOB3 (Figure 7.2).

The program set up does not recognize groups such as these.



145

7.2.1.5.3 Through Joins and Restriction

Another way of representing groups is by using table joins to restrict the values selected.

This is closely related to the discussion in section 7.2.1.5.1 for the representation of clerks.

In this case, a table join must be performed first before the value that defines the group can

be accessed.

7.2.1.5.4 Information contained in file name or paths

For some systems, filenames and directory paths are used to encode information which the

system must access in order to function properly. For example, data for different years

could be stored in different directories or filenames could be used to encode the name of

different sites from which data is collected. Access to the directory paths and file names is

sometimes necessary.

7.2.1.6 Plural Nouns

The system does not handle plural nouns. Extending the system to handle them is relatively

straightforward since the morpher will provide information about whether or not a noun in

plural.



146

7.2.2 Learning Grammatical Structures

An interesting extension to the system would be to have it learn semantic grammar rules.

The semantic grammar rule itself could be used as a marker for a case frame that the

system learned. The meaning of the semantic grammar rule could be determined by using

the spanning tree approach. The grammar could be extended to include the new semantic

grammar rule and the corresponding spanning tree.

7.2.2.1 "Voltage across part is 29" instead of Attribute of Object is Value

The system currently does not allow prepositional phrases (other than 'of' phrases) to

modify a noun directly. Adding them would be relatively straightforward. The object frame

could be used to store information about prepositional phrases that are allowed to modify

each object. The parser would have to be extended to allow such modifier structure to be

recognized.

7.2.3 Enhancements to Verb Phrase Interpretation

7.2.3.1 Employer/Employee

A simple improvement to the system would be to calculate employer and employee from

the verb employ. The GMST from employ could be used and the word (employer or

employee) could be set to refer to one of the database graph nodes in the GMST. Then the



Look out below.
Bill picked up the book.
Bill picked the book up.

Figure 7.3 - Preposition
used as Particles

GMST could be combined with the rest of GMSTs of the sentence as described earlier.

147

7.2.3.2 Particles

Sometimes verbs can be combined with a particle to yield a

verb with a new meaning. The role of particle is filled by

prepositions. When used as particles, preposition do not

mark cases of the verb but instead are part of the verb.

Figure 7.3 contains examples of sentences where the preposition is used as a particle.

Notice that the particle immediately follows the verb or the object of the verb. The system

does not currently handle particles.

7.2.4 Enhancements of the Parser

The parser does not take advantage of the fact that the system is based on case frames. A

parser that was constructed to analyze sentences using the case frames directly might be

more robust and flexible (HAYMOU80, and TAYROS75).

7.2.5 Enhancements Using Learning

It is possible to set the system up so that is can learn the meaning of words from sentences

that do not directly reference the database. For example, the system could learn the

meaning of "earns" from the sentence "Smith's manager earns 3000". This can be done



148

because the algorithms for calculating GMSTs expect a list of nodes that are referred to by

the values in the sentence. In order to handle these type of sentences, the step that

calculates the mapping of the values in the sentence to the database graph nodes must be

extended.

7.2.5.1 Correcting things that were learned incorrectly

There is currently no way to correct things that have been learned incorrectly. Handling this

elegantly is a non-trivial problem.

7.2.6 Enhancements Using Frames

7.2.6.1 Meta-Questions - "What is in the database"

For meta-questions such as "What is in the database?" or "Tell me about employees", the

frames that the system has could be used to provide a reasonable answer.

7.2.6.2 Report Frames

The system currently responds to questions. This is not enough. A facility for dealing with

reports should be added. Frames could be used to keep track of different types of reports

and different instances of reports created by the user. The report frames could be used to

answer meta-question or to help the system understand how the user conceptualizes the



149

domain. The second use would be interesting to investigate.

7.2.7 Enhancements to the Database Interface

7.2.7.1 What if underlying database structures are changed?

One problem, not dealt with here, is what happens when the underlying database structures

are changed (eg - new tables, new columns, deletion of tables). Is there a way to automate

the conversion of the system?

7.2.8 Inferences

Adding inference to the system would enhance the performance of the system in a number

of ways. This section describes a few.

7.2.8.1 Filling in the Blanks - "average salary in research"

Sometime when people speak they leave information out of the sentence when they believe

it can be reasonably inferred. For example, one might ask for "the average salary in

research" and expect the system to infer that one is talking about "the average salary of an

employee who works in research". This could be performed by using the frames that the

system has to determine connections among the frames (or cases) that are mentioned.



150

7.2.8.2 Ellipsis

It was hoped that by having many types of information in the system and by using

semantic grammars that the system would be able to handle ellipsis as effectively as

semantic grammars of the 1970's. Unfortunately, no work was done on ellipsis in this

system.

7.3 Summary

The goal of this thesis is to provide a means to increase the portability of natural language

interfaces. This has been achieved by using the spanning tree approach. A system was

implemented to demonstrate the effectiveness of this configuration method. The system

allows a naive end user to configure the interface in a simple and straightforward way.

There is much room left for development of this approach to configuration as well as to the

program itself.



151

Bibliography

ALLEN87 Allen, J., Natural language understanding, The Benjamin/Cummings Publishing
Company, Inc., Menlo Park, California 1987.

BERWICK85 Berwick, R, The Acquisition of Syntactic Knowledge, MIT Press,
Cambridge, MA, 1985

BOOTH83 Booth, D. A., Designing a Portable Natural Language Database Interface,
M.Sc. Thesis, University of British Columbia, Vancouver, 1983.

BRADLEY82 Bradley, J., File and data base techniques, CBS College Publishing, New
York, NY, 1982.

BROWSE77 Roger Browse, A Knowledge Identification Phase of Natural Language
Analysis, M.Sc. Thesis, University of British Columbia, Vancouver, 1977.

BUBR79 Burton, R. R. and Brown, J. S., "Toward a Natural-Language Capability for
Computer-Assisted Instruction," reprinted in Readings in Natural Language Processing,
editors Grosz, B. J., Sparck Jones, K., and Webber, B. L., Morgan Kaufmann Publishers,
1986 pp 605-626.

CARHAY83 Carbonell, J. G., and Hayes, P. J., "Recovery Strategies for Parsing
Extragrammatical Language," American Journal of Computational Linguistics, Vol 9, No 3-
4, 1983.

COLBY71 Colby, K., Weber, S., and Hilf, F., "Artificial Paranoia,", Artif. Intell 2, 1, pp 1-
25 (1971)

DATE86 Date, C.J., An introduction to database systems, Addison-Wesley Publishing
Company, Inc., Reading, MA, 1986.

FILLMORE71 Fillmore, C., "Types of lexical information," in Semantics: An
Interdisciplinary Reader, Steinber and Jakobovits, eds., Cambridge University Press,
London, 1971



152

HARRIS77 Harris, L. R., "User oriented data base query with the ROBOT natural
language query system," Int. J. Man-Machine Studies 9, 1977, pp 697-713

HARRIS84 Harris, L. R., "Experience with INTELLECT," The Al Magazine, Vol. V, No.
2, 1984

HAYMOU80 Hayes, P.J., and Mouradian, G.V., "Flexible Parsing.", in Proceedings of 18'
Annual Meeting of the Assoc. for Comput. Ling, Philadelphia, June 1980, pp 97-103.

HOBBS78 Hobbs, J. R., "Resolving Pronoun References," in Readings in Natural
Language Processing, editors Grosz, B. J., Sparck Jones, K., and Webber, B. L., Morgan
Kaufmann Publishers, Inc. 1986, pp 339-352

KAPLAN84 Kaplan, S. J., "Designing a Portable Natural Language Database Query
System," ACM Transactions on Database Systems, Vol 9, No. 1, March 1984, Pages 1-19.

LEHMAN89 Lehman, J. F., Adaptive Parsing: Self-extending Natural Language Interfaces,
Kluwer Academic Publishers, MA, 1989

LIFER77 Hendrix, G., Sacerdoti, E., Sagalowicz, D., and Slocam, J., "Developing a
Natural Language Interface to Complex Data," ACM Trans. Database Sys, #(2), 1978, pp
105-147

MAP83 Martin, P., Appelt, D., and Pereira, F., "Transportability and Generality in a
Natural-Language Interface System," in Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany, Los Altos:William
Kaufmann Inc., 1983, pp 573-581.

MARCUS80 Marcus, M., A Theory of Syntactic Recognition for Natural Language, MIT
Press, Cambridge, MA, 1980

PERWARR80 Pereira, F., Warren, D., "Definite Clause Grammars for Language
Analysis", Artificial Intelligence 13, North-Holland Publishing Company, 1980



153

PG87 Perrault, C. R., and Grosz, B. J., "Natural Language Interfaces" in Exploring
Artificial Intelligence: Survey Talks from the National Conferences on Artificial
Intelligence, editor, Shrobe, H. E., Morgan Kaufmann Publishers, 1987, pp 133-172

PLANES76 Waltz, D. L., Finin, T., Green, F., Conrad, F., Goodman, B., and Hadden, G.,
"The Planes System: Natural Language Access to a Large Data Base,", Technical Report T-
34, University of Illinois, Urbana Illinois, November 1976

SEDGE90 Sedgewick, R., Algorithms in C, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1990

TARJAN83 Tarjan, R. E., Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1983.

TAYROS75 Taylor, B. H., and Rosenberg, R. S., "A Case-Driven Parser for Natural
Language", American Journal for Computational Linguistics, AJCL Microfiche 31.

THOMP85 Thompson, B. H., and Thompson, F. B., "ASK is Transportable in Half a
Dozen Ways," ACM Trans. Off. Inf. Syst, 3, 2 (April 1985), pp 185-203

WEIZEN66 Weizenbaum, J., "ELIZA - A Computer Program For the Study of Natural
Lnaguage Communication Between Man and Machine," Communications of the ACM, Vol
9, No 1, January 1966

WEIZEN67 Weizenbaum, J., "Contextual Understanding by Computers," Communications
of the ACM, Vol 10, No 8, August 1967

WHITE85 White, S.J., A Portable Natural Language Database Query System, M.Sc.
Thesis, University of British Columbia, Vancouver, 1985.

WINOGRAD75 Winograd, T., Understanding Natural Language, Academic Press,
NewYork, NY, 1972.

WINOGRAD83 Winograd, T. Language as a Cognitive Process. Vol 1: Syntax., Addison-
Wesley Reading, MA, 1983



154

WINSTON91 Winston, P. H., Artificial intelligence 3rd ed., Addison-Wesley Pub. Co.,
Reading, MA, 1992

WOODS70 Woods, W. A., "Transition Network Grammers for Natural Language
Analysis," Commun. ACM, 13, pp 591-602

WOODS85 Woods, W. A., "Semantics and Quantification in Natural Language Question
Answering," reprinted in Readings in Natural Language Processing, editors Grosz, B. J.,
Sparck Jones, K., and Webber, B. L., Morgan Kaufmann Publishers, 1985.



Appendices
155



A Relational Database Terminology

This appendix briefly describes some aspects of relational database theory. For a detailed

discussion see DATE86.

"A relational database is a database that is perceived by its users as a collection of tables

(and nothing but tables)" 19 . A table is a data structure made up of columns each of which

has a name. A table also contains a number of rows of data. Two tables are shown in

Figure A1.1.

DEPT

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

EMP

EMPNO ENAME JOB MGR HIREDATE SAL DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7902 FORD ANALYST 7566 03-DEC-81  3000 20

Figure A1.1 - Oracle Sample Database

156

19 - CODD86, page 96



157

The department table contains information about departments. It has three columns -

DEPTNO, DNAME, and LOC. A value that uniquely identifies each department is stored

in the DEPTNO column. The name of the department is contained in the DNAME column

and the city that the department is located in is stored in the LOC column. Each row

contains information describing a single department.

The employee table contains information about each employee. It has eight columns which

are called EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, and DEPTNO. As with the

department table, there is a column (EMPNO) which contains values that uniquely identify

each employee. The name of each employee is stored in the ENAME columns. The

employee's job description is in the JOB column. The MGR column contains the EMPNO

of the manager of the employee. The HIREDATE, and SAL columns contain the date of

hiring, and salary of the employee, respectively. The last column, DEPTNO, contains the

department number of the employee. Each row in the employee table contains information

about one employee.

Under the relational model, information is not only derived directly from each table but

also from the relationships that exists among tables. Consider the employee table. There is

a column that contains the department number of the employee's department (DEPTNO)

but the employee table does not contain the department name. The name can be accessed

by looking in the department table at the row with the corresponding department number.

For example, the first employee, SMITH, is in department number 20. By looking up

department number, 20 in the DEPT table, the department name can be found, ie -



158

RESEARCH. This approach of connecting rows in different tables by matching columns

values is a common method of accessing information in relational databases. This method

of connecting tables is called a (natural) join.

Key columns are important in order to join tables effectively. The key of a table is a

column or number of columns that are guaranteed to contain a unique value or combination

of values for each row in a table. For example, the EMPNO column of the employee table

is a key. Note that the relational model does not require that each table have a key. When a

column of a table can contain only values that are in the key of another table than this

column is called a foreign key. For example, the DEPTNO column of the employee table is

a foreign key of the employee table because all of the values in the column are in the

DEPTNO key column of the department table.

A number of other important concepts associated with the relational database model can be

found in DATE86.



B Grammar

This appendix contains a listing of the grammar taken directly from the source code. The

grammar is implemented using the DCG feature of Quintus Prolog.

sentence(parseInfo(PIIn,PIOut), CaseMappings) -->
noiseWords, (PI1^PIIn, CM1^CM1T-CM1T),
present(parseInfo(PI1,PI2), CM2 ),

parseInfo_send( position, PI2, SubjPosition, PI3 ),
parselnfo_send( position, PI3, VPPosition, PI4 ),
parselnfo_send( mood, PI4, question, PI5 )

),
unmarkedCase(parseInfo(PI5,PI6),Case,CM3),
terminator(parseInfo(PI6,PI7)),

% fake a what is <np> question
VerbPhrase =

verbPhrase(VPPosition, auxilliaries(M), verb( "BE", [] )),
parselnfo_send( marker(VPPosition), PI7, Markerl, PI8 ),
CM4 = (noun(SubjPosition,"WHAT",[questionWord],[],[question])-(Markerl-VerbPhrase)1T41-T4,
case_object( Case, Object ),
parselnfo_send( marker(VPPosition), PI8, Marker2, PI9 ),
parselnfo_send( mainVerb, PI9, VerbPhrase, PIOut ),
CM5 = [Object-(Marker2-VerbPhrase)IT5]-T5,
diffList_appends( [CM1,CM2,CM3,CM4,CM5], CaseMappings )

sentence(parselnfo(PIIn,PIOut), H-T) -->
noiseWords,
(PI1 = PIIn),
unmarkedCase(parseInfo(PI1, PI2), Case, LO),^% What does questions
(parselnfo_send(level(carry), PI2, Case, PI3)),

auxilliary(parseInfo(PI3,PI4)),

parselnfo_send( mood, PI4, question, PI5 ),
parseInfo_send( mainVerbDefined, PI5, yes, PI6 )

},
unmarkedCase(parseInfo(PI6,PI7), Subject, L1),
vp(parseInfo(PI7,PI8), VerbPhrase)

parselnfo_send( level(takeCarry), PI3, Subject, P14 ),
Ll = L1T-L1T

),
vp(parseInfo(PI4,PI8), VerbPhrase)

verbPhrase_position( VerbPhrase, VPPos ),
parselnfo_get( voice(VPPos), PI8, Voice ),

Voice = passive
-> parselnfo_send( marker(VPPos), PI8,^PI10 ); % Skip Subject

Voice = possiblePassive
-> (

parselnfo_send( voice( VPPos ), PI8, passive, PI9 ),
parselnfo_send( marker(VPPos), PI9,^PI10 ); % Skip Subject
PI10 = PI8

);
PI10 = PI8

) ,
parselnfo_send( marker(VPPos), PI10, Marker, PIll ),
case_object( Subject, SObject ),
L2 = [SObject-(Marker-VerbPhrase)1L2T]-L2T

159



),
unmarkedObjects(parseInfo(PI11,PI12), VerbPhrase, L3 ),
markedObjects(parseInfo(PI12,PI13), VerbPhrase, L4 ),
terminator(parseInfo(PI13,PI14)),

parselnfo_send( level(takeCarry), PI14, Carry, PI15 )
-> (

verbPhrase_position( VerbPhrase, VPPOS ),
parselnfo_send( marker(VPPos), PI15, ObjMarker, PI16 ),

verbPhrase_verb( VerbPhrase, Verb ),
(Verb="BE"• Verb="HAVE"; Verb="DO")
-> ObjMarker < 3;

true
),
case object( Carry, CarryObject ),
L5 = [CarryObject-(ObjMarker-VerbPhrase)IL5T]-L5T

);
L5 = L5T-L5T, P116 = PI14

),
diffList_appends( (LO, Ll, L2, L3, L4, L5], H -T ),
parseInfo_send( mainVerb, PI16, VerbPhrase, PI17 ),
PIOut = PI17

terminator( parselnfo(PIIn,PIOut) ) -->
[" " -_ -_l, I, {PIOut = PIIn}

{parselnfo_send( mood, PIIn, question, PIOut )}.

auxilliary(parseInfo(PIIn,PIOut)) -->
  MODAL  
[_Modal-ModalAlts-_],

memberchk( auxilliary(modal,_,_,_), ModalAlts ),
parseInfo_send( auxilliary(ModalAlts), PIIn, PIOut )

1

^  HAVE ^
[_Have-HaveAlts-_],

memberchk( auxilliary(have,^tense(_HaveTense)), HaveAlts ),
parselnfo_send( auxilliary(HaveAlts), PIIn, PIOut )

^  BE 1 ^
[_-BelAlts-_],

memberchk( auxilliary(be,tense(_BelTense)), BelAlts ),
parselnfo_send( level(up(be)), PIIn, PI1 ),
parselnfo_send( auxilliary(BelAlts), PI1, PIOut )

},

DO
[_-DoAlts-_],

memberchk( auxilliary(do,^tense(_DoTense)), DoAlts ),
parseInfo_send( auxilliary(DoAlts), PIIn, PIOut )

vp(parseInfo(PIIn,PIOut), verbPhrase(Position, auxilliaries(Auxs), verb( Verb, VerbInfo )) )

MODAL

[_Modal-ModalAlts-_],
{
memberchk( auxilliary(modal,^_), ModalAlts ),
parselnfo_send( auxilliary(ModalAlts), PIIn, PI1 )

}

[], (PI1 = PIIn)
1,
^  HAVE

(_Have-HaveAlts-_],

memberchk( auxilliary(have,^tense(_HaveTense)), HaveAlts ),
parselnfo_send( auxilliary(HaveAlts), PI1, P12 )

160



[], (P12 = PI1)

BE 1

[_-BelAlts-_],

memberchk( auxilliary(be,^tense(_BelTense)), BelAlts ),
parseInfo_send(level(up(be)), PI2, PI3),
parselnfo_send( auxilliary(BelAlts), PI3, PI4 )

}

[],(PI4=PI2}
),

BE 2

[_-Be2Alts-_],

memberchk( auxilliary(be,^tense(_Be2Tense)), Be2Alts ),
parselnfo_send(level(up(be)), PI4, PI5),
parselnfo_send( auxilliary(Be2Alts), PI5, PI6 )

(],{PI8=PI4}
),
verb(Verb, VerbInfo),
{
parselnfo_send( position, P16, Position, PI7 ),

parselnfo_get( level(be), PI7, BeCount )
-> true; BeCount = 0

parselnfo_get( auxilliaries, PI7, Auxs ),

BeCount > 0
-> (

BeCount = 2
-> parselnfo_send( voice(Position), PI7, passive, P18 )

morph_irregular( Verb, [_Root-MorphlnfolTail] )
-> true

morph_roots( Verb, [_Root-MorphInfolTaill )

Tail =
member( tense(Tenses), Morphlnfo )

memberchk( pastpart, Tenses )
-> parseInfo_send( voice(Position), PI7, passive, PI8 );

P18 = PI7
);
parselnfo_send( voice(Position), PI7, possiblePassive, PI8 )

);
PI8 = PI7

),
% Example sentences do not need the main verb defined but
% questions do

parselnfo_get( mainVerbDefined, P18, _ )
-> (

Verb = "BE"
-> Roots = ["BE"-[]];

Verb = "HAVE'
-> Roots = ["HAVE"-(]];

Verb = "DO"
-> Roots = ["DO"-[]];

r_get( caseFrameDictionary, entry( Verb ), _ )
-> Roots^[Verb-[]]:

morph_irregular( Verb, Roots ),
someChk( Root-_ in Roots,

r_get( caseFrameDictionary, entry( Root ), _ ) )
-> true;

morph_roots( Verb, Roots ),
someChk( Root-_ in Roots,

r_get( caseFrameDictionary, entry( Root ), _ ) )
-> true

161

);
true



),
% some simple tense checking stuff for the main verb

Auxs =
parseInfo_get(^level(embedded),^PI8,^_ ),

^

r_get( caseFrameDictionary,^entry(^Verb ), _ )
-> Roots^=^[Verb-[]];

morph_irregular( Verb, Roots ),
someChk( Root-_ in Roots,

^

r_get( caseFrameDictionary,^entry( Root ), _ )^)
-> true;

morph_roots( Verb, Roots ),
someChk( Root-_ in Roots,

^

r_get( caseFrameDictionary,^entry( Root ), _ )^)
-> true

-> (
mapList( _-Morphlnfo in Roots,

memberchk( tense(Tenses), MorphInfo ),
(member( prespart, Tenses );member( pastpart, Tenses ))

)^)
-> fail;

true
);
true

),
% For Reduced Relative Clauses

P19 = PI8
),
PIOut = PI9

).

objects(parselnfo(PIIn,PIOut), VerbPhrase, CaseMappings) -->
object(parseInfo(PIIn,PI1), Case, CMO),

verbPhrase_position( VerbPhrase, VPos ),

case_type( Case, marked )
-> (

PI2 = PI1,
case_marker( Case, Markerl ),

parselnfo_get( voice(VPos), PI1, passive ),
Markerl = prep("BY")

-> Marker = 1;
Marker = Markerl

);
parselnfo_send( marker(VPos), PI1, Marker, PI2 )

),
case_object( Case, CObject ),
CM1 = [CObject-(Marker-VerbPhrase)ICM11]-CM1T,
diffList_appends( [CMO, CM1, CM2), CaseMappings )

),
objects(parseInfo(PI2,P/Out), VerbPhrase, CM2);
H. {CaseMappings = T-T, PIIn=PIOut}.

markedObjects(parseInfo(PIIn,PIOut), VerbPhrase, CaseMappings) -->
markedCase(parseInfo(PIIn,PI1), Case, CMO),

verbPhrase_position( VerbPhrase, VPos ),
P12 = PI1,
case_marker( Case, Markerl ),

parselnfo_get( voice(VPos), PI1, passive ),
Markerl = prep("BY")

-> Marker = 1;
Marker = Markerl

),
case_object( Case, CObject ),
CM1 = [CObject-(Marker-VerbPhrase)ICM1T]-CM1T,
diffList_appends( [CMO, CM1, CM2], CaseMappings )

),
markedObjects(parseInfo(PI2,PIOut), VerbPhrase, CM2);
[1, {CaseMappings = T-T, PIIn=PIOut}.

unmarkedObjects(parseInfo(PIIn,PIOut), VerbPhrase, CaseMappings) -->
unmarkedCase(parseInfo(PIIn,PI1), Case, CM0),

162



verbPhrase_position( VerbPhrase, VPos ),
parseInfo_send( marker(VPos), PI1, Marker, PI2 ),

verbPhrase_verb( VerbPhrase, Verb ),
(Verb="BE"; Verb="HAVE"; Verb="DO")
-> Marker < 3;

true
),
case_object( Case, CObject ),
CM1 = [CObject-(Marker-VerbPhrase)ICM1T]-CM1T,
diffList_appends( [CMO, CM1, CM2], CaseMappings )

}

(case_object( Case, range(^_ ) )}
-> [], {CM2 = T-T, PIOut=PI2};

unmarkedObjects(parseInfo(PI2,PIOut), VerbPhrase, CM2)
);
[], (CaseMappings = T-T, PIIn=PIOut).

object(parseInfo(PIIn,PIOut), Case, CaseMappings) -->
markedCase(parseInfo(PIIn,PIOut), Case, CaseMappings), !;
unmarkedCase(parseInfo(PIIn,PIOut), Case, CaseMappings).

unmarkedCase(parseInfo(PIIn,PIOut),
case(unmarked, 'NA', Nounlnfo),
CaseMappings )

--> nounPhrase(parseInfo(PIIn,PIOut), Nounlnfo, CaseMappings);
nounPhrase_range(parseInfo(PIIn,PIOut), Nounlnfo, CaseMappings).

markedCase( parseInfo(PIIn,PIOut), Case, CaseMappings ) -->
preposition(Preposition),

nounPhrase(parseInfo(PIIn,PIOut), Nounlnfo, CaseMappings),

Case = case(marked, prep(Preposition), Nounlnfo)

)^I

nounPhrase_range(parseInfo(PIIn,PIOut), Range, CaseMappings),

Case = case(marked, prep(Preposition), Range)

)^I

nounPhrase(parseInfo(PIIn,PIOut), Nounlnfo, CaseMappings);
nounPhrase_range(parseInfo(PIIn,PIOut), Range, CaseMappings)

-> {fail};

parseInfo_send( level(takeCarry), PIIn, case(unmarked, _Marker, Nounlnfo ),

->
Case = case(marked,prep(Preposition),NounInfo)

);
PI1 = PIIn

),
PIOut = PI1,
CaseMappings = T-T

% Possessive = possessive then head noun must be possessive
% Possessive = anything else for not possessive

nounPhrase( parseInfo(PIIn,PIOut), HeadNounlnfo, CaseMappings ) -->

questionWord( parseInfo(PIIn, PI1), HeadNounlnfo ),
nounPhrase_qualifiers(parseInfo(PI1,PIOut),HeadNounInfo,CaseMappings)

nounPhrase_other( parseInfo(PIIn, PI1), Nounlnfol, CM1 ),

[possessiveMarker],
nounPhrase possessive( parseInfo(PI1,PIOut), Nounlnfol, HeadNounlnfo, CM2 ),
(diffList_appends( [CM1, CM2], CaseMappings )};

163



{HeadNounInfo = Nounlnfol, CaseMappings = CM1, PIOut = PI1}

nounPhrase_qualifiers( parselnfo( PIIn, PIOut ), Nounlnfo, CaseMappings ) -->

nounPhrase_relativeClause(parseInfo( PIIn, PIOut ), Nounlnfo, CaseMappings)

% Followed by a marked Case (OF for attributes)
markedCase( parseInfo(PIIn,PI1), ObjectCase, CM1 ),

case_marker( ObjectCase, ()Marker ),
OMarker = prep("OF"),
case_noun( ObjectCase, ObjectNoun ),
CM2 = [Nounlnfo-(OMarker-ObjectNoun)1CM2T]-CM2T,

%nounPhrase(position(OPos),0Word,OMeanings))1CM2T]-CM2T,
diffList_appends( [CM1, CM2], CaseMappings ),
PIOut = PI1

1^% Just not followed by anything directly related
[], {CaseMappings^T-T, PIOut=PIIn}.

nounPhrase_relativeClause( parselnfo( PIIn, PIOut ), Nounlnfo, CaseMappings ) -->

parselnfo_send( push, PIIn, PI1 ),
parselnfo_send( level(carry), PI1, case(unmarked, 'NA', Nounlnfo), PI2 )

),

relativeIntro( parseInfo(PI2,PI3) )
-> {true};

[1,
% not quite right because plural form counts as
% a determiner

noun_determiner( Nounlnfo, [_] ),
% Unmarked relative clause must be for
% things with determiners

parselnfo_send( level embedded), PI2, yes, PI3 )
%PI3 = PI2

),
relativeClause( parseInfo(PI3,PI4), CaseMappings ),

parselnfo_send( pop, P14, PIOut )

nounPhrase_other( parselnfo(PIIn,PIOut), Nounlnfo, CaseMappings ) -->

determiner(parselnfo(PIIn, PI1), _Determiner, Modifiersl, Determinerinfo);
(],{PI1=PIIn, Determinerinfo^[], Modifiersl = [])

),
( % Modifiers
nounModifiers(parseInfo(PI1,PI2), Modifiers2, CM1 ),
{append( Modifiersl, Modifiers2, Modifiers )}

),

parselnfo_send( position, PI2, Position, PI3 ),
Nounlnfo = noun( Position, Noun, Meanings, Modifiers, Determinerinfo )

},

commonNoun( not_possessive, parseInfo(PI3,PI5), Noun, Meanings );

parselnfo_get( and, PI3, AndCount ),
AndCount > 0

-> (
attributes( parseInfo(PI3, PI4), Attributes, Meanings ),

Noun = Attributes,
parselnfo_send( down(and), PI4, PIS )

}

),
nounPhrase_qualifiers( parselnfo( PI5, PIOut ), Nounlnfo, CM2 ),

diffList_append( CM1, CM2, CaseMappings )

nounNodifiers3( parseInfo(PI,PI), Modifiers, CM-CM ) -->

164



[_Word-Meanings-_Lex],

member(groupFunctionModifier(Mod), Meanings)
-> Modifiers = [groupFunctionModifier(Mod)]

(1, (Modifiers = []).

nounModifiers( PI, Modifiers, CM-CM )

andList( PI,
(Parse,TheWord,TheMeaningsl-nounModifier(Parse,TheWord,TheMeanings),
_Words, Modifiers )

nounModifier( PI, _Word, Modifier ),
{Modifiers = [Modifier]}

[1, {PI = parselnfo(P,P), Modifiers = []).

nounModifier( parselnfo(PI,PI), Word, Modifier )
[Word-Meanings-_Lex],

member(groupFunctionModifier(Mod), Meanings)
-> Modifier = groupFunctionModifier(Mod)

andList(parseInfo(PIIn,PIOut), Component, Words, Meanings) -->

parselnfo_get( and, PIIn, AndCount ),
AndCount > 0,
parselnfo_send( down(and), PIIn, PI1 )

),
andList( parseInfo(PI1,PIOut), Component, Words-fl, Meanings-[], first ).

andList(parseInfo( PIIn, PIOut ),Component,Comp,Mean,First ) -->
PAND"-[] - (]], (\+ First = first)
-> {

copy_term( Component, CompForm ),
[parselnfo( PIIn, PIOut ),Compl, Mean1]-CompCall^CompForm

),
CompCall,

Comp = [Compl CT]-CT,
Mean = [Meanl M1]-M1

);
-> (true) (true))

-> {
copy_term( Component, CompForm ),
[parselnfo( PIIn, PI1 ),Compl, Mean1]-CompCall^CompForm

),
CompCall,

diffList_append( (ComplIC1T]-C1T, Comp2, Comp ),
diffList_append( [MeanlIM1T]-MiT, Mean2, Mean )

),
andList(parseInfo( PI1, PIOut ), Component, Comp2, Mean2, notFirst).

% range = range( Marker, Compare, NounPhrase )

nounPhrase_range( Parselnfo, range(Marker,Compare,HeadNoun), CaseMappings ) -->
rangeMarker( Marker, Compare ),
nounPhrase( Parselnfo, HeadNoun, CaseMappings ).

rangeMarker( Marker, Compare ) -->
[Marker-WordMeanings-_LexInfo],

memberchk( rangeMarker(Compare), WordMeanings )
}

nounPhrase_possessive( parseInfo(PIIn,PIOut), LastPossessiveNoun,
HeadNoun, CaseMappings ) -->

% Possessives
nounPhrase_other( parseInfo(PIIn,PI1), NounInfo, CM1 ),

CM2 = [NounInfo-(possessive-LastPossessiveNoun)ICM2T]-CM2T,
diffList_appends( [CM1, CM2, CM3], CaseMappings )

/,

[possessiveMarker]
-> nounPhrase_possessive( parselnfo( PI1, PIOut 1,

Nounlnfo, HeadNoun, CM3 );

165



166

{
NounInfo = noun( IPosition, INoun, IMeanings, IMods, IDeterminerinfo ),
HeadNoun = noun( IPosition, INoun, IMeanings, IMods, (possessivelIDeterminerInfo]

CM3 = CM3T-CM3T,
PIOut = PI1

determiner( parselnfo(PIIn,PIOut), Determiner, Modifiers, Info ) -->
determiner_questionWord( parseInfo(PIIn,PI1), Determiner, Modifiers, Info )

-> {parselnfo_send( mood, PI1, question, PIOut )};
determiner_article( parselnfo(PIIn, PIOut), Determiner, Modifiers, Info ).

determiner_article( parselnfo( PI, PI ), Word, (], Info ) -->
[Word-_-_],

atom_chars( Atom, Word ),
article( Atom, Info )

article( 'A', [indefinite] )•
article( 'AN', [indefinite] ).
article( 'THE', [definite] ).

relativelntro(parselnfo(PI,PI)) -->
[Word -_-_],

atom_chars( Atom, Word ),
relativeIntro( Atom )

relativeIntro( 'WHO' ).
relativelntro( 'WHICH' ).
relativeIntro( 'THAT' ).

determiner_questionWord( parselnfo(PIIn,PIOut), Word, Modifiers, [question] ) -->
[Word-WordMeanings-_],

member( determiner_questionWord(Modifiers), WordMeanings ),
parselnfo_send( mood, Plin, question, PIOut )

relativeClause(parseInfo(PIIn,PIOut), CaseMappings) -->

unmarkedCase(parseInfo(PIIn,PI1), Subject, L1),
vp(parseInfo(PI1,PI2), VerbPhrase)

{parselnfo_send( level(takeCarry), PIIn, Subject, PI1 ), Ll = L1T-L1T},
vp(parseInfo(PI1,PI2), VerbPhrase)

),

verbPhrase_verbInfo(VerbPhrase,VPInfo),
\+ member( auxilliary(  , ^, ^), VPInfo )

},

verbPhrase_position( VerbPhrase, VPPos ),
parselnfo_get( voice(VPPos), PI2, Voice ),
P13 = PI2,

Voice = passive
-> parselnfo_send( marker(VPPos), PI3,^PI5 ); % Skip Subject

Voice = possiblePassive
-> (

parselnfo_send( voice( VPPos ), PI3, passive, PI4 ),
parseInfo_send( marker(VPPos), PI4,^PI5 ); % Skip Subject
PI5 = PI2

);
P15 = PI2

),
parseInfo_send( marker(VPPos), PI5, Marker, PI6 ),
case_object( Subject, SObject ),
L2 = [SObject-(Marker-VerbPhrase)IL2T]-L2T

),
unmarkedObjects(parseInfo(PI6,PI7), VerbPhrase, L3),
markedObjects(parseInfo(PI7,PI8), VerbPhrase, L4),



parselnfo_send( level(takeCarry), PI8, Carry, PI9 )
-> (

verbPhrase_position( VerbPhrase, VPP0s ),
parseInfo_send( marker(VPP0s), PI9, ObjMarker, PI10 ),
case_object( Carry, CarryObject ),
L5 = [CarryObject-(ObjMarker-VerbPhrase)1L5T]-L5T

);
L5 = L5T-L5T, PI10 = PI8

diffList_appends( [L1, L2, L3, L4, L5], CaseMappings ),
PIOut = PI10

questionWord( parseInfo(PIIn,PIOut),
noun( Position, Word, [questionWord], [], [question] ) ) -->

[Word-WordMeanings-_LexInfo],

parselnfo_send( position, PIIn, Position, PI1 ),
memberchk( questionWord, WordMeanings )

-> parselnfo_send( mood, PI1, question, PIOut )

% Meaning = attributes( ["Word", "Word", "Word", ... ], OfObjects )

attributes(PI, Attributes, attributes(Attributes, OfObjects)) -->
attributesl( PI, Attributes-[], OfObjects-[], first ).

attributesi(parselnfo( PIIn, PIOut ), Attributes, OfObjects, First ) -->
([","- -_] -> (true); (["AND"-_-_] -> (fail); (true)))
-> attribute( parselnfo( PIIn, PI1 ), Attributel, OfObjectsl),

diffList_append( [Attributel A1T]-A1T, Attributes2, Attributes ),
diffList_append( [OfObjectsl 01T]-01T, OfObjects2, OfObjects )

},
attributesl(parselnfo( PI1, PIOut ), Attributes2, OfObjects2, notFirst);

("AND"-[]-[]], (\+ First = first)
-> attribute( parselnfo( PIIn, PIOut ), Attribute, OfObjectsi),

Attributes = [Attribute AT]-AT,
OfObjects = [OfObjectsl O1]-01

attribute( parselnfo( PIIn, PIIn ), Word, OfObjects) -->
[Word-_-_],

r_get( attributeToObjectFrame_Dictionary, entry(Word), OfObjectsl )
-> true;

OfObjectsl = []
),

morph_roots( Word, Roots )
-> mapSome( Root-_ in Roots, OfObjects2 in OfObjectssl,

r_get( attributeToObjectFrame_Dictionary, entry(Root), OfObjects2 )
);

OfObjectssl = []
),
OfObjects = [-1—],
ord_union( [OfObjectsl 1 OfObjectssl], OfObjects )

).

commonNoun(Possessive, parseInfo(PI,PI), Word, WordMeanings) -->
[Word-WordMeanings-LexInfo],

Possessive = possessive
-> memberchk( possessive, LexInfo );

\+ memberchk( possessive, Lexlnfo )
),

memberchk( questionWord, WordMeanings )
-> (

member( questionWord, WordMeanings )
-> fail;

true
;

member( Alt, WordMeanings ),

167



functor( Alt, auxilliary, _ );
functor( Alt, preposition, _ );
Alt = groupFunctionModifier(_);
Alt = determiner_questionWord(_);
morph_roots( Word, Roots ),
member( _Root-LexI, Roots ),

member( prespart, LexI );
member( pastpart, LexI )

);

^WordMeanings^[],
\+ ( \+ ascii_isPunctuation(Word),

atom_chars( Atom, Word ),

^

\+ Atom^'WHICH',
\+ Atom = 'THAT',
\+ Atom = 'MANY',
\+ Atom = 'AND',
\+ article( Atom, _ ),
\+ member( preposition(_), WordMeanings ),
\+ member( possessive, Lexlnfo ) )

) -> fail;true

),
Word = [Chi_], \+ is_punct( Ch )

% jan 12 93
% january 12 93
% ? 12th
% year = 93 1993 none
% month jan 1-12 january
% day 1 1st
% separated by -, /, "

^

% order mmm dd yyyy^dd mmm yyyy
%date( Parselnfo, Date-{] ) -->

%[Word],

verb(_Verb, _) --> preposition( _ ), !, (fail).
verb(VerbOut, Info) -->

[Verb-Info-Lexlnfo],

\+ ascii_isPunctuation(Verb),
\+ ascii_isNumber(Verb),
atom_chars( Atom, Verb ),
\+ relativelntro( Atom ),
\+ determiner_questionWord( Atom ),

\+ member( determiner_questionWord( _ ), Info ),
\+ Atom = 'MANY',
\+ Atom^'AND',
\+ article( Atom, _ ),
\+ member( preposition(_), Info ),
\+ member( possessive, Lexlnfo )

),

Info = [], VerbOut = Verb, !;
member( VerbInfo, Info ),
\+ auxilliarY_Modal( VerbInfo ),
auxilliary_root( VerbInfo, VerbOut ),

% auxilliary( RootAtom, RootWord, AtomForm, PerNo, Tense )

auxilliary_root(auxilliary(_RootAtom,RootWord,_Form,_PerNo,_Tense),RootWord ).
auxilliary_modal( auxilliary(modal, _RoiotWord, _AtomForm, _Type) ).

preposition( Preposition ) -->
[Preposition-Meanings-_Lexlnfo],
(member(preposition(_), Meanings)).

sentence_yes -->
[_-Meanings-_], (memberchk( yesWord(_), Meanings )}

(_], sentence_yes.

sentence_no -->
[_-Meanings-_], (memberchk( noWord(_), Meanings )}

168



[_], sentence_no.

parser_anything -->
[_], !, parser_anything

[ I .

^

% [DayName] Year^[ 1 - 1/] Month^[ I-1/] Day
Month^Day^[Year]

^

Day^[Month^[Year]]
% Today
% Yesterday
% Tommorrow
% 1st Saturday in Month
% Time Units Hfromlbeforelafter] Date
% units = Month I Day 1 Year

% Year = yyyy 1 yy
% Month = mm 1 mmm 1 mmmmmmmm
% Day = dd 1 dd_th

parser date( Date ) -->
yymmdd( Date ) 1 mmddyy( Date ) 1 ddmmyy( Date ).

^

% [DayName] Year^[ 1-1/] Month^[ 1-1/] Day
%^Month^Day^[Year]
%^Day^[Month^[Year]]

datel( Date ) -->
yymmdd( Date )

mmddyy( Date )
1
ddmmyy( Date ).

yymmdd( date( Year, Month, Day ) ) -->
year( Year ),
separator( Sep ),
month( Month ),
separator( Sep ),
day( Day ).

mmddyy( date( Year, Month, Day ) ) -->
month( Month ),
separator( Sep ),
day( Day ),

separator( Sep ),
year( Year )

-> [];
{Year=none}

)•

ddmmyy( date( Year, Month, Day ) ) -->
day( Day ),
separator( Sep ),
month( Month ),

separator( Sep ),
year( Year )

-> [] ;
{Year=none}

separator( Sep ) -->
[Sep],

Sep =
-> true;

Sep = "/"
-> true

-> {true};
spaces.

spaces -->
. . -> spaces; [].

% A.D. or B.C.
year( Year ) -->

parser_number( Ascii, Number ),

169



mapList( A in Ascii, is_digit( A ) ), % integer test

Number = [_,_]
-> Year is Number;

Year is Number - 1900

month( Month )^-->
monthAbbrev( Month )

->^{true);
parser_number( Ascii, Month

->
mapList( A in Ascii,
Month =< 12, Month >=

monthAbbrev( Month )^-->

^

"JAN"^-> {Month = 1};

^

"FEB"^->^{Month^2);

^

"MAR"^-> {Month = 3);

^

"APR"^-> {Month = 4);

^

"MAY"^-> {Month = 5};

^

"JUN"^-> {Month = 6);

^

"JUL"^-> {Month^7);

^

"AUG"^->^{Month = 8);

^

"SEP"^-> {Month = 9);

^

"OCT"^-> (Month = 10);

^

"NOV"^-> {Month = 11};

^

"DEC"^-> {Month = 12)

)

is_digit(A)^),^% integer test
1

),
([Char],{is_alpha(Char)} -> (fail); {true)).

day( Day ) -->
parser_number( Ascii, Day ),

mapList( A in Ascii, is_digit(A) ),
Day >= 0, Day =< 31

},
(["ST"-_-_] -> {true);^-> {true};^-> {true); M.

dateVerify( date(_Year, Month, Day) ) .-
monthDays( Month, DaysInMonth ),
Day =< DayslnMonth.

monthDays( 1, 31 ).
monthDays( 2, 28 ).
monthDays( 3, 31 ).
monthDays( 4, 30 ).
monthDays( 5, 31 ).
monthDays( 6, 30 ).
monthDays( 7, 31 ).
monthDays( 8, 31 ).
monthDays( 9, 30 ).
monthDays( 10, 31 ).
monthDays( 11, 30 ).
monthDays( 12, 31 ).

% show to me show me show
% list for me list
% give to me give me give
% print for me print
% display for me display
present(parseInfo(PI,PI),C-C ) -->

(["LIST"-_-_]I["PRINT"-_-_]1["DISPLAY"-_-_]),

(((["TO" -_-_];[]), ["ME" -_-_]); (1)

% This structure derived from Steven John White - A Portable Natural
% Language Database Query System (1980) pp 142
% i want you to ....

170

noiseWords -->



(["WOULD"-_-_] 1 ["COULD"-_-_] 1 PCAN"-_ -_]), [^YOU"-_-_]
1

([^WANT"-_-_]1[^WOULD"-_-_],["LIKE"-_-_]),^["TO"-_-_]

1
[]

),
noise_please,

noise_please -->
["PLEASE"-_-_], noise_please;

noise_like;
(PTELL" -_-_]1PLETfl-noise_tell;

noise_mia;
H.

noise_like -->

noise_tell -->
(["ME"-_-_]1["US"-_-_]),
noise_mid.

noise_mid -->
(PPLEASE" -_-_l1[ ^ KNOW" -_ -_]),noise_mid

(PIF"-_-_];["WHETHER_____]), []

[].

171



C Database Listing

DEPT

DEPTNO DNAME^LOC

10 ACCOUNTING^NEW YORK
20 RESEARCH^DALLAS
30 SALES^CHICAGO
40 OPERATIONS^BOSTON

EMP

EMPNO ENAME JOB MGR^HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 09-DEC-82 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 12-JAN-83 1100 20
7900 JAMES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

172



ORD

ORDID ORDERDATE C CUSTID SHIPDATE TOTAL

610 07-JAN-87 A 101 08-JAN-87 101.4
611 11-JAN-87 B 102 11-JAN-87 45
612 15-JAN-87 C 104 20-JAN-87 5860
601 01-MAY-86 A 106 30-MAY-86 2.4
602 05-JUN-86 B 102 20-JUN-86 56
604 15-JUN-86 A 106 30-JUN-86 698
605 14-JUL-86 A 106 30-JUL-86 8324
606 14-JUL-86 A 100 30-JUL-86 3.4
609 01-AUG-86 B 100 15-AUG-86 97.5
607 18-JUL-86 C 104 18-JUL-86 5.6
608 25-JUL-86 C 104 25-JUL-86 35.2
603 05-JUN-86 102 05-JUN-86 224
620 12-MAR-87 100 12-MAR-87 4450
613 01-FEB-87 108 01-FEB-87 6400
614 01-FEB-87 102 05-FEB-87 23940
616 03-FEB-87 103 10-FEB-87 764
619 22-FEB-87 104 04-FEB-87 1260
617 05-FEB-87 105 03-MAR-87 46370
615 01-FEB-87 107 06-FEB-87 710
618 15-FEB-87 A 102 06-MAR-87 3510.5
621 15-MAR-87 A 100 01-JAN-87 730
610 07-JAN-87 A 101 08-JAN-87 101.4
611 11-JAN-87 B 102 11-JAN-87 45
612 15-JAN-87 C 104 20-JAN-87 5860
601 01-MAY-86 A 106 30-MAY-86 2.4
602 05-JUN-86 B 102 20-JUN-86 56
604 15-JUN-86 A 106 30-JUN-86 698
605 14-JUL-86 A 106 30-JUL-86 8324
606 14-JUL-86 A 100 30-JUL-86 3.4
609 01-AUG-86 B 100 15-AUG-86 97.5
607 18-JUL-86 C 104 18-JUL-86 5.6
608 25-JUL-86 C 104 25-JUL-86 35.2
603 05-JUN-86 102 05-JUN-86 224
620 12-MAR-87 100 12-MAR-87 4450
613 01-FEB-87 108 01-FEB-87 6400
614 01-FEB-87 102 05-FEB-87 23940
616 03-FEB-87 103 10-FEB-87 764
619 22-FEB-87 104 04-FEB-87 1260
617 05-FEB-87 105 03-MAR-87 46370
615 01-FEB-87 107 06-FEB-87 710
618 15-FEB-87 A 102 06-MAR-87 3510.5
621 15-MAR-87 A 100 01-JAN-87 730

173

SALGRADE

GRADE LOSAL HISAL

1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999



ITEM

ORDID ITEMID PRODID ACTUALPRICE QTY ITEMTOT

610 3^100890 58 1 58
611 1 100861 45 1 45
612 1^100860 30 100 3000
601 1 200376 2.4 1 2.4
602 1 100870 2.8 20 56
604 1^100890 58 3 174
604 2^100861 42 2 84
604 3^100860 44 10 440
603 2^100860 56 4 224
610 1^100860 35 1 35
610 2^100870 2.8 3 8.4
613 4 200376 2.2 200 440
614 1^100860 35 444 15540
614 2^100870 2.8 1000 2800
612 2^100861 40.5 20 810
612 3^101863 10 150 1500
620 1 100860 35 10 350
620 2 200376 2.4 1000 2400
620 3^102130 3.4 500 1700
613 1 100871 5.6 100 560
613 2^101860 24 200 4800
613 3 200380 4 150 600
619 3^102130 3.4 100 340
617 1 100860 35 50 1750
617 2 100861 45 100 4500
614 3 100871 5.6 1000 5600
616 1 100861 45 10 450
616 2 100870 2.8 50 140
616 3^100890 58 2 116
616 4 102130 3.4 10 34
616 5 200376 2.4 10 24
619 1 200380 4 100 400
619 2 200376 2.4 100 240
615 1 100861 45 4 180
607 1 100871 5.6 1 5.6
615 2 100870 2.8 100 280
617 3^100870 2.8 500 1400
617 4 100871 5.6 500 2800
617 5 100890 58 500 29000
617 6 101860 24 100 2400
617 7^101863 12.5 200 2500
617 8 102130 3.4 100 340
617 9 200376 2.4 200 480
617 10 200380 4 300 1200
609 2 100870 2.5 5 12.5
609 3 100890 50 1 50
618 1 100860 35 23 805
618 2 100861 45 11 50
618 3 100870 45 10 450
621 1 100861 45 10 450
621 2 100870 2.8 100 280
615 3 100871 5 50 250
608 1 101860 24 1 24
608 2 100871 5.6 2 11.2
609 1 100861 35 1 35
606 1 102130 3.4 1 3.4
605 1 100861 45 100 4500
605 2 100870 2.8 500 1400
605 3 100890 58 5 290
605 4 101860 24 50 1200
605 5 101863 9 100 900
605 6 102130 3.4 10 34
612 4 100871 5.5 100 550
619 4 100871 5.6 50 280

174



=============================================================================
PRODUCT=============================================================================

PRODID DESCRIP

100860 ACE TENNIS RACKET I
100861 ACE TENNIS RACKET II
100870 ACE TENNIS BALLS-3 PACK
100871 ACE TENNIS BALLS-6 PACK
100890 ACE TENNIS NET
101860 SP TENNIS RACKET
101863 SP JUNIOR RACKET
102130 RH: "GUIDE TO TENNIS"
200376 SB ENERGY BAR-6 PACK
200380 SB VITA SNACK-6 PACK

PRICE

PRODID STDPRICE MINPRICE STARTDATE ENDDATE

100871 4.8 3.2 01-JAN-85 01-DEC-85
100890 58 46.4 01-JAN-85
100890 54 40.5 01-JUN-84 31-MAY-84
100860 35 28 01-JUN-86
100860 32 25.6 01-JAN-86 31-MAY-86
100860 30 24 01-JAN-85 31-DEC-85
100861 45 36 01-JUN-86
100861 42 33.6 01-JAN-86 31-MAY-86
100861 39 31.2 01-JAN-85 31-DEC-85
100870 2.8 2.4 01-JAN-86
100870 2.4 1.9 01-JAN-85 01-DEC-85
100871 5.6 4.8 01-JAN-86
101860 24 18 15-FEB-85
101863 12.5 9.4 15-FEB-85
102130 3.4 2.8 18-AUG-85
200376 2.4 1.75 15-NOV-86
200380 4 3.2 15-NOV-86

175



CUSTOMER

CUSTID NAME ADDRESS CITY ST ZIP AREA PHONE REPID CREDITLIMIT

100 JOCKSPORTS 345 VIEWRIDGE BELMONT CA 96711 415 598-6609 7844 5000
101 TKB SPORT SHOP 490 BOLI RD. REDWOOD CITY CA 94061 415 368-1223 7521 10000
102 VOLLYRITE 9722 HAMILTON BURLINGAME CA 95133 415 644-3341 7654 7000
103 JUST TENNIS HILLVIEW MALL BURLINGAME CA 97544 415 677-9312 7521 3000
104 EVERY MOUNTAIN 574 SURRY RD. CUPERTINO CA 93301 408 996-2323 7499 10000
105 K + T SPORTS 3476 EL PASEO SANTA CLARA CA 91003 408 376-9966 7844 5000
106 SHAPE UP 908 SEQUOIA PALO ALTO CA 94301 415 364-9777 7521 6000
107 WOMENS SPORTS^ VALCO VILLAGE^SUNNYVALE CA 93301 408 967-4398 7499 10000
108 NORTH WOODS HEALTH AND FITNESS SUPPLY CENTER 98 LONE PINE WAY ^HIBBING MN 55649 612 566-9123 7844 8000



MVDIR

DIRNO DIRNAME

DO1 STEVEN SPIELBERG
D02 PENNY MARSHALL
D03 SPIKE LEE

MVSTAR

STNO STNAME

SO1 MADONNA
SO2 TOM HANKS
S03 GEENA DAVIS
SO4 JEFF GOLDBLOOM
S05 DENZEL WASHINGTON

MVMOVIE

MVNO MVNAME

MO1 JURASSIC PARK
MO2 LEAGUE OF THEIR OWN
M03 MALCOLM X

MVSTARSIN

MVNO STNO

MO2 SO1
MO2 SO2
MO2 S03
MO1 SO4
M03 S05

MVDIRECTS

MOVIENO DIRNO

MO1^DO1
MO2^002
M03^DO3

177



D Database Interface

The interface of the Prolog part of the system to the C server is contained in one small

Prolog module (where.pl). The interface is implemented in the form of four predicates.

The first predicate is whereLocation/5 (Figure D.1) The purpose of this predicate is to

determine the database graph node at a particular table, row, and column position in the

database. The first term of the predicate (location/3) specifies the table, column and row

that identifies the database graph node. The system accesses the database through ORACLE

in order to determine the second term, (the node/3 predicate). This predicate is used when

the system is producing the spanning trees to access nodes in the database graph that are in

the same row.

whereLocation( +location(Table,Column,Row), ?node( Location, Value, cost(Cost) )-)

Figure D.1 - whereLocation/2

The second predicate, where_prefix/3, is used during tokenization of a sentence (see

section 6.1.1). The first term,
where_prefix( String, Prefix-Alternatives, Suffix )

String, is the list of ascii codes

that comprise the input string".
^Figure D.2 - where_prefix/3

The second and third terms are bound by the predicate. Prefix is a prefix of the string,

20 - In Prolog "strings" are implemented as a list of ascii codes

178



179

String. Alternatives is a list of the possible interpretations' of the string Prefix, and

Suffix is the portion of String after Prefix is removed, ie - append( Prefix, Suffix, String ).

The inverted index is used to implement this predicate.

The final two predicates are used to send SQL
oracleServer_send( Command ).

commands to ORACLE and receive the results of^oracleServer_read( Results ).

the SQL. These predicates are shown in Figure D.3. Figure D.3 - SQL Access Predicates

The first predicate, oracleServer_send/1, is used to send an SQL command to ORACLE.

Only three commands are currently supported, login(userid/password), logoff, and

sql(SQL). The login/1 and logoff are used to log on and off of a database. sql/1 is used to

send an SQL command directly to the DBMS. SQL is a Prolog atom that is an SQL

command. The results of the SQL command can be obtained using the

oracleServer_read/1 predicate. The first term of this predicate is a list (possibly empty) of

tuples that are returned by the SQL command.

21 - see the Interpretation Alternatives column in Figure 6.10 for examples



E Test Runs

180

smith works for ford.

EMPO.ENAME EMPLENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

Do these examples seem
reasonable?

yes.
: smith works in research.

EMPO.ENAME DEPTO.DNAME

CLARK^ACCOUNTING
KING^ACCOUNTING
MILLER^ACCOUNTING
SMITH^RESEARCH

To configure the system for a new
database, the user (in bold) enters
sentences that describe data in the
database. By using these sentences and
accessing the database the system can
determine the meaning of nouns and verbs.
(Users tend to know a lot about some of
the data in the database).

Examples arepresented to provide feedback

Do these examples seem reasonable?

I : yes.
: smith is managed by ford.

EMPO.ENAME EMPl.ENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

Do these examples seem reasonable?

I : yes.



: smith's salary is 800.

EMPO.ENAME EMPO.SAL

ALLEN^1600
JONES^2975
SMITH^800
WARD^1250

Do these examples seem reasonable?

: yes.
: the manager of smith is ford.

EMPO.ENAME EMP1.ENAME

ALLEN^BLAKE
FORD^JONES
SCOTT^JONES
WARD^BLAKE

Do these examples seem reasonable?

: yes.
: the salary of ford is 3000.

EMPO.ENAME EMPO.SAL

ALLEN^1600
JONES^2975
SMITH^800
WARD^1250

Do these examples seem reasonable?

I : yes.

181



182

I : smith earns 800.

EMPO.ENAME EMPO.SAL

ALLEN^1600
JONES^2975
SMITH^800
WARD^1250

Do these examples

: yes.

: what is smith's salary.

EMPO.SAL

800

That's it. System configuration is
complete (for now). Questions can
now be asked about the database.
Note that questions can be asked as
soon as the user has defined the
words that will appear in the
question. After asking some
questions, more words can be
defined if desired.

First an easy question to get warmed up.

seem reasonable?

: which person's salary is 800.

EMPO.ENAME

SMITH

I : the salary of which person is 800.

EMPO.ENAME

SMITH

: what is the salary of the person who manages the person who manages smith.

EMPO.SAL

2975

: what is the salary of the person who manages the person managing smith.

EMPO.SAL

2975



   

183

 

I : which person's manager's salary is 2975.

  

Possessives and comparison.

EMPl.ENAME

 

SCOTT
FORD

  

I : who does the person managing scott manage.

EMPl.ENAME

SCOTT
FORD

I : which person's salary is over ford's salary.

EMPl.ENAME

KING

I : who earns over what smith earns.

EMPLENAME EMPO.SAL

ALLEN 800
WARD 800
JONES 800
MART IN 800
BLAKE 800
CLARK 800
SCOTT 800
KING 800
TURNER 800
ADAMS 800
JAMES 800
FORD 800
MILLER 800



184

: who earns over smith's salary.

EMPl.ENAME

ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER
ADAMS
JAMES
FORD
MILLER

: who earns over the money ford earns.

EMPLENAME

KING

: who is the person managing scott.

EMP1.ENAME

JONES

   

: who earns over an employee's average salary.

  

Ft" such as average,
totak highest, and lowest are
ptovided..EMPO.ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

   



185

: who earns over an employee working in research's average salary.

EmpO.ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

: who earns over the average salary of an employee working in research.

EMpO.ENAME

JONES
BLAKE
CLARK
SCOTT
KING
FORD

I : what is the average salary of an employee working in research.

AVG(EMPO.SAL)

2175

I : what is the lowest salary of the people who earn over the average salary of an
employee.

miN(EMPO.SAL)

 

OtayI adz& that the. response generation is very
ander hut letipeillit generation is another thesis2450

 

: list the name and salary of people earning over the average salary of an employee.

r3s3: No Parses not implemented yet



186

:^list the name and salary of the people earning over the average salary of an
employee.

EMPO.ENAME EMPO.SAL

JONES 2975
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000
FORD 3000

I : how many people earn over the average salary of an employee.

COUNT(EMPO.ENAME)

6

: can you list the salary and manager of employees working in research.

r3s3: No Parses not implemented yet

I : can you list the salary and manager of the employees working in research

EMPO.SAL EMPl.ENAME

3000^JONES
3000^JONES
800^FORD
2975^KING
1100^SCOTT

I : can you list the name salary and manager of the employees working in research.

EMPO.ENAME EMPO.SAL EMPLENAME

SCOTT^3000^JONES
FORD^3000^JONES
SMITH^800^FORD
JONES^2975^KING
ADAMS^1100^SCOTT

: print the average salary of the employees working in research.

AVG(EMPO.SAL)

2175



187

: list the name and salary of the employees earning over 800.

EMPO.ENAME EMPO.SAL

ALLEN 1600
WARD 1250
JONES 2975
MARTIN 1250
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000
TURNER 1500
ADAMS 1100
JAMES 950
FORD 3000
MILLER 1300

: can you list the name manager and salary of the employees working in research.

EMPO.ENAME EMPO.SAL EMPLENAME

SCOTT^3000^JONES
FORD^3000^JONES
SMITH^800^FORD
JONES^2975^KING
ADAMS^1100^SCOTT

I : who works in research.

EMPO.ENAME

SMITH
ADAMS
FORD
SCOTT
JONES



188

Let's teach the system a
word with a
complicated meaning.
This one has ambiguity
and requires 4 table
joins. The user is
presented with a choice
of two meanings.

: tkb sport shop paid 58 for ace tennis net.

2 Interpretations. They Are:
Option #1
"58" refers to ACTUALPRICE in the ITEM

table
Option #2
"58" refers to ITEMTOT in the ITEM

table

You may select an option as a correct
interpretation, ask for more options, or
decide to stop this definition

I : i like number 1.
[pickAnOption(1)]

: what is the average price a customer has paid for ace
tennis net.

AVG(ITEMO.ACTUALPRICE)

56.6666666666666666666666667

: who paid under 58 for ace tennis net.

Let's try some
questions.

CUSTOMERO.NAME

JOCKSPORTS

: who has paid less than 58 for ace tennis net.

CUSTOMERO.NAME

JOCKSPORTS

: what did jocksports pay for ace tennis net.

ITEMO.ACTUALPRICE

50

I : what is the lowest highest and average salary of employee working in research.

r6s4: No interpretation not implemented



189

: what is the lowest highest and average salary of the employees working in
research.

MIN(EMPO.SAL),MAX(EMPO.SAL),AVG(EMPO.SAL)

800
^

3000 2175

I added another database about movies. Let's try using it for a while.

: steven spielberg directed jurassic park.

MVDIRO . DIRNAME^MVMOVIEO.MVNAME

PENNY MARSHALL^LEAGUE OF THEIR OWN
SPIKE LEE^MALCOLM X
STEVEN SPIELBERG JURASSIC PARK

Do these examples seem reasonable?

: yes.
I : who directed malcolm x.

MVDIRO.DIRNAME

SPIKE LEE

: league of their own starred tom hanks.

MVMOVIEO.MVNAME

JURASSIC PARK
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN

MVSTARO.STNAME

JEFF GOLDBLOOM
GEENA DAVIS
MADONNA
TOM HANKS

Do these examples seem reasonable?

: yes.
: who did jurassic park star.

MVSTARO.STNAME

JEFF GOLDBLOOM



: steven spielberg directed jeff goldbloom.

190

MVDIRO.DIRNAME

PENNY MARSHALL
PENNY MARSHALL
PENNY MARSHALL
STEVEN SPIELBERG

MVSTARO.STNAME

GEENA DAVIS
MADONNA
TOM HANKS
JEFF GOLDBLOOM

Do these examples seem reasonable?

: yes.
I : who was tom hanks directed by.

MVDIRO.DIRNAME

PENNY MARSHALL

: denzel washingtone is t he star of malcolm x.

MVMOVIEO.MVNAME
^

MVSTARO.STNAME

JURASSIC PARK
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN

JEFF GOLDBLOOM
GEENA DAVIS
MADONNA
TOM HANKS

Do these examples seem reasonable?

: yes.
: who is the star of league of their own.

MVSTARO.STNAME

MADONNA
TOM HANKS
GEENA DAVIS



I : steven spielberg directed jurassic park.

MVDIRO.DIRNAME
^

MVMOVIEO.MVNAME

PENNY MARSHALL
^

LEAGUE OF THEIR OWN
SPIKE LEE
^

MALCOLM X^.
STEVEN SPIELBERG JURASSIC PARK

Do these examples seem reasonable?

191

Now we'll try defining
two different senses for the
verb direct. Let's start with
director directing movie.
Notice that we defined this
earlier. The system can
handle such mistakes.

: yes.
I : steven spielberg directed jeff goldbloom.

Now we'll define the other sense of
the verb direct - director directing
star.

MVDIRO.DIRNAME

PENNY MARSHALL
PENNY MARSHALL
PENNY MARSHALL
STEVEN SPIELBERG

MVSTARO.STNAME

GEENA DAVIS
MADONNA
TOM HANKS
JEFF GOLDBLOOM

Do these examples seem reasonable?

 

I : yes.
: who directed jeff goldbloom.

  

Now a couple of question to check things out.

MVDIRO.DIRNAME

    

STEVEN SPIELBERG

: who directed jurassic park.

 

MVDIRO.DIRNAME

  

STEVEN SPIELBERG

  

: who directed malcolm x.

 

MVDIRO.DIRNAME

  

SPIKE LEE

    

: who directed tom hanks.

 

MVDIRO.DIRNAME

  

PENNY MARSHALL

  



: smith works for ford.

EMPO.ENAME EMPl.ENAME

ALLEN
FORD
SCOTT
WARD

BLAKE
JONES
JONES
BLAKE

192

Let's try two different senses of the verb works.
One will relate to the employee database and one
will relate to the movie database. We'll start with
employee works for manager.

Do these examples seem reasonable?

I : yes.
: tom hanks works for penny marshall.

MVSTARO.STNAME MVDIRO.DIRNAME

GEENA DAVIS
^

PENNY MARSHALL
JEFF GOLDBLOOM STEVEN SPIELBERG
MADONNA
^

PENNY MARSHALL
TOM HANKS

^
PENNY MARSHALL

Now we'll define the 'movie
star works for director' sense.

Do these examples seem reasonable?

 

yes.
: who works for ford.

  

A couple of test questions.

EMPO.ENAME

   

SMITH

    

: who works for king.

 

EMPO.ENAME

  

JONES
CLARK
BLAKE

    

: who works for steven spielberg.

 

MVSTARO.STNAME

 

JEFF GOLDBLOOM

 



: smith works in research.

EMPO.ENAME DEPTO.DNAME

193

CLARK
KING
MILLER
SMITH

ACCOUNTING
ACCOUNTING
ACCOUNTING
RESEARCH

Do these examples seem reasonable?

: yes.
I : geena davis works in league of their own.

MVSTARO.STNAME MVMOVIEO.MVNAME

GEENA DAVIS
JEFF GOLDBLOOM
MADONNA
TOM HANKS

LEAGUE OF THEIR OWN
JURASSIC PARK
LEAGUE OF THEIR OWN
LEAGUE OF THEIR OWN

Do these examples seem reasonable?

I : yes.
: who works in accounting.

EMPO.ENAME

CLARK
KING
MILLER

: who works in Jurassic park.

MVSTARO.STNAME

JEFF GOLDBLOOM

The purpose of this wpm is to demonstrate that the claims made in my thesis are
computationally effective. The thesis makes claims only about the poblem of portability
of a natural language interfaces and so only minimal effort was directed towards creating
a general purpose natural language interface.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207



