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Abstract 

Surface extraction from ultrasound data is challenging for a number of reasons, 
including noise and artifacts in the images and non-uniform data sampling. This thesis 
presents a new technique for the extraction of surfaces from freehand 3D ultrasound data. 

Most available 3D medical visualization methods fall into two categories: volume 
rendering and surface rendering. Surface rendering is chosen here because one of the long 
term goals of this thesis is explicit modelling of organs. Recent progress has been made 
in surface extraction for a range data or an unorganized data set, by using Radial Basis 
Functions (RBFs) to represent the whole space with a signed distance function. Instead 
of using geometric distance as in previous work, this thesis proposes to use pixel intensity 
directly as a distance function. 

A new implementation of a freehand 3D ultrasound acquisition system is also in
troduced in this thesis using a trinocular optical tracking system with light-emitting diodes 
(LEDs) attached to an ultrasound probe. 

To calibrate the transformation between the ultrasound image coordinate system and 
the LED coordinate system, an N-wire calibration phantom was designed. High accuracy 
is obtained by using multiple images to oversample the calibration points and reduce the 
level of error. To complete the calibration, geometry of the calibration phantom is measured 
using a pointing device that is also based on optical tracking. 

Once calibrated, the 3D freehand ultrasound system is used to scan an object. The 
images obtained, along with the measured positions, are the inputs of the RBF surface 
extraction algorithm. First an automatic segmentation method is used to trim extraneous 
data points to reduce computational demands. Then the data is interpolated by the RBFs, 
and a surface extracted along isovalued regions. 

Results using the direct surface extraction method with RBF are shown to success
fully extract ultrasound surfaces from thepoint cloud. Surfaces of both phantom and human 
skin are shown with high fidelity of shape and details. " 

In summary, this research is the first to represent the set of semi-structured ultra
sound pixel data as a single function. From this, we are able to extract realistic surfaces 
without first reconstructing the irregularly spaced pixels into a regular 3D voxel array. The 
main advantage of this new approach is to avoid any loss of information normally associated 
with reconstruction of voxel array. 
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Chapter 1 

Introduction 

1.1 Ultrasound Imaging 

Ultrasound is sound with frequencies higher than 20KHz - the upper limit of human hear

ing [56]. Typical ultrasound in medical applications has a frequency between 1MHz and 

15MHz. Ultrasound at these frequencies has the ability to penetrate into the human body, 

producing echoes of a sufficient resolution to create diagnostically useful images. As shown 

in Figure 1.1, the basis of medical ultrasound is the transmission of a pulse of high fre

quency sound wave into the body, followed by the reception, processing, and parametric 

display of echoes returning from structures and tissues within the body. 

An ultrasound image is the visible counterpart of an invisible object, produced by 

an electronic instrument [28]. The intensity of a pixel in the image is the digitalized value of 

energy received by the corresponding cell of the transducer. This energy is determined by 

several factors including reflected energy, travel time and signal processing. The ultrasound 

machine is adjusted such that intensities are largely a function of tissue echogenicity - the 

ability of material to reflect ultrasound. Figure 1.2 shows an example of one scanline from 

an ultrasound image. 

As stated by Fenster and Downey [22], the main advantages of ultrasound imaging 

include the following: 
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Figure 1.1: Structure of an ultrasound scanner. [56] 

• The ultrasound transducer is easy for users to operate; 

• The image resolution of an ultrasound image is sufficient to display details within the 

human body; 

• The equipment is inexpensive, compact and mobile; 

• Ultrasound imaging provides real time images of blood velocity and flow, allowing 

the physician to view vascular structures ranging in size from arteries to angiogenic 

tumour vessels. 
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Figure 1.2: One scanline of an ultrasound image. 

1.2 3D Ultrasound Imaging 

3D medical imaging can be considered as a stack of conventional 2D medical images from 

which new views are created. Research into 3D medical imaging has been ongoing for 

several decades. Considerable success has been found in visualizing 3D magnetic resonance 

(MR) and computed tomography (CT) images. Algorithms for extracting surfaces of the 

skin, bone and many organs are well developed for the relatively low noise, structured MR 

and CT data [56]. Surface extraction from 3D ultrasound (US) has been a more challenging 

problem. 

3D US has a number of peculiar properties that inhibit surface extraction. First, 

the ultrasound images contain a significant amount of speckle and artifacts [28], see Figure 

1.3. The boundary regions are normally as wide as several pixels, or more, depending on 

the probe frequency and the distance from the object to the probe. Intensity variations can 

also occur in homogenous tissue regions. The images also show strong directionality - the 

distinctiveness of boundaries depends on the viewing direction, and therefore, placement of 

the hand-held probe [43]. 3D freehand ultrasound also produces sets of irregularly spaced 

images, resulting in a non-uniform sampling of space. For these reasons, many standard 

surface extraction techniques (developed for MR and CT) cannot be applied to 3D US. 
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Figure 1.3: Ultrasound image of a finger cross section. 1 noise and speckle; 2 skin surface, 
shown as a bright boundary; 3 bone surface; 4 vein; 5 internal bone, this is a dark region in 
the image, since ultrasound can not penetrate into the bone. 

1.3 Freehand 3D Ultrasound 

Several 3D ultrasound scanning techniques attempt to acquire regularly-spaced samples 

akin to MR and CT. To do this, the probe is mounted on a mechanical structure which 

controls motion in some dimensions, and rotation or translation in the remaining dimension 

via motors. With this precisely controlled motor, the relationship of ultrasound image slices 

can be easily determined. Udupa et al. [56] describes several such mechanisms in detail. 

However, due to the constraints of the mechanical structure, it is difficult for a physician to 

look at some anatomical regions of interest (ROI) that are only visible from limited points 

of view. 

3D freehand ultrasound is based on the acquisition of a set of 2D cross-sectional 

ultrasound images under the control of the user's hand. What is required is a sensor on 

the hand-held probe to measure the probe's spatial position and orientation. With such 

a system, a sonographer moves the sensorized probe over a region of interest, while the 

motion is measured by the sensor. Typically, a single organ is scanned from tip to tail. 

The set of acquired images, together with the sensor readings, comprise a 3D US data set. 

Although each cross-sectional image is composed of regularly spaced pixels, the spacing 

between images is determined by the sonographer's hand motion. Hence the 3D US data 
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Figure 1.4: Freehand ultrasound image slices, note that images are irregularly spaced. 

can be considered semi-structured. An example of a 3D freehand US data set is shown in 

Figure 1.4. 

1.4 3D Visualization 

There are two main categories of methods available for 3D visualization: volume rendering 

and surface rendering. 

Volume rendering methods, such as ray-casting (Levoy [30]) and splatting (West-

over [58], Fattel [21]) create renderings from volumetric data by assigning brightness and 

opacity values to the elements in the volume. The products and sums of these shadow val

ues along certain lines of projection form volume renderings on a viewing plane. These 

methods are normally used on structured volumetric data, such as a voxel array. 

Surface rendering uses an explicit representation such as triangle meshes. Com

pared to volume rendering techniques, surface rendering requires fewer computations and 

lower storage size. But the surface must first be extracted from the image data. Explicit 

surfaces are also well suited for analysis, such as deformation models. However, it is a 

challenging task to extract a surface that is able to represent anatomical subjects with high 

fidelity. 

There are many surface extraction methods proposed for different kinds of data, 
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such as Marching Cubes [32] and Marching Tetrahedra [25, 52] for volume data, contour-

based methods [23] for 2D and 3D contours, Zipper techniques [54], volumetric method 

[15], a-shape [19], zero-sets method [27] and Voronoi-based methods [3] for unorganized 

data. 

Many of these have been applied successfully to MRI and CT data, but work poorly 

when applied to ultrasound data because of the noisy nature of ultrasound. New methods 

need to be developed for the visualization of surface in 3D ultrasound data. 

1.5 3D Ultrasound Surface Extraction 

In ultrasound images, organ boundaries produce higher intensity echoes than surrounding 

areas. These echoes result in pixels with higher grey-level values in the image. See Figure 

1.3 for an example of intensity distribution over a boundary. 

Figure 1.5: Ultrasound image of a rubber surface in a water bath. Note the gaps at the 
two indicated positions. The gap exists because the vertical section of the boundary cannot 
reflect ultrasound back to the transducer. 

These are the following requirements for an effective surface extraction method for 

3DUS: 

1. It should operate on scattered data in 3D. 

2. It should accomodate both smooth surface and steep vertical changes. As shown in 
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Figure 1.5, the vertical section causes a break in the continuity of the images surface. 

An effective surface extraction method should be able to smoothly interpolate across 

these breaks by using neighboring data. 

3. It should retain small details. These details are usually important for diagnostics. 

4. It should be fast enough for practical applications. 

Most conventional 3DUS methods first interpolate the freehand ultrasound data to 

fill a regular 3D voxel array. The main problem is that it often causes a loss of resolution 

and introduces artifacts [41]. This is what we will try to avoid. 

1.6 Segmentation 

The last requirement in Section 1.5 suggests that data pruning is needed. Data far from 

a real boundary has little or no effect on the estimated surface, and may be removed in a 

pre-processing segmentation step. 

The goal of the segmentation algorithm is to trim pixels far from the estimated 

boundary of the surface, leaving the pixels on or nearby the boundary. The level of accuracy 

of this segmentation step need not to be high, as long as pixels on and near the boundary 

are retained. 

A semi-automatic segmentation method is proposed in this thesis. It starts with an 

estimation by the user of the location of the boundary of interest in the image. A simple 

tracker automatically propagates the segmentation to the following frames. Using the as

sumption that there is only a slight relative movement between two consecutive scans, the 

boundary in the next image can be assumed to be nearby the boundary in the current image. 

This limits the search space of the tracker prediction, and produces fast and robust results. 

So only initial boundary estimation for the first image is done manually. 

The physics of ultrasound image creation suggests that edges are best detected along 

vertical lines. This is because pulses emanate from the transducer at the top of the probe, 
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and travel in a vertical direction. Edgels (edge elements) are identified by locations with 

the largest gradients. Isolated edgels caused by noise can be easily detected and discarded. 

1.7 3D Freehand Ultrasound Acquisition System 

Like all other 3D ultrasound acquisition systems, such as [44, 49], our system consists of 

an ultrasound machine, a position tracking device, and a computer system for processing 

and rendering. 

A PC-based open architecture ultrasound machine (Ultrasonix Medical Corpora

tion, Burnaby, Canada) is used for measurement. With this new machine, our system is 

able to directly access high quality digital images without an intermediate analog conver

sion. In addition, since the Ultrasonix machine is developed using a general-purpose PC, 

new applications can be easily developed that combine the direct access to data with other 

PC-based technology, such as graphics and networking hardware. 

We use an Optotrak 3020 (Northern Digital Incorporation, Waterloo, Canada) as 

the tracking device. It is a trinocular system with three calibrated CCD cameras arranged 

linearly. A cross with 3 infrared LEDs is attached to an ultrasound probe to establish a 

coordinate system on the probe. When each LED is illuminated, its position in the Optotrak 

coordinate system can be computed from its position in the three images. The LED's are 

illuminate rapidly and sequentially to track the probe motion in real-time. We also built a 

needle-like pointing device with three LEDs for accurate measurement of points. 

1.8 Calibration 

Calibration is done in two steps. First, the pointing device is calibrated to determine the 

location of the needle tip with respect to the LED's. This pointing device is used in the 

second step: calibrating the ultrasound image plane to the LED's on the probe. 

For the first step, this thesis shows a simple method to calibrate the vector from 

the origin of the LEDs' coordinate system to the end point of the needle. With this vector 
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known, the needle tip can be used to pinpoint the location of a point with a high degree of 

accuracy and precision. 

The second step is more complex and requires a calibration phantom. A calibration 

phantom is an object with precisely known geometry that can be imaged to produce clear 

depiction of the geometrical features. Several calibration phantoms are available [40] and 

the N-Wire phantom is used here [14]. With a wisely designed N-wire calibration phantom, 

we are able to find the correspondence between the LEDs and several reference points 

in the ultrasound image. In previous work with the N-wire phantom, a single image is 

typically used [40]. The pointing device is simply used to measure the geometry of the wire 

within the phantom. The geometrical features can then be extracted from the ultrasound 

images and equations written to express the transformations between coordinate systems. 

The solution to the equations provides the calibration parameters needed to connect LED 

positions into measurements of the ultrasound plane. 

In this thesis, multiple images are obtained to create an overdetermined set of equa

tions from which the calibration parameters can be extracted with increasing accuracy. This 

is similar to the locations used in [14] to create the set of equations. This thesis also extends 

the single scanning method in previous work with a multiple scanning method. By using a 

redundant set of equations, a high level of accuracy is obtained. 

1.9 Thesis Contribution 

In summary, the main goal of this work is to construct a surface directly from the freehand 

ultrasound data without first interpolating a regular 3D voxel array. The following are 

described in this thesis: 

1. A new 3D freehand acquisition system. 

2. A method for fitting a function to noisy ultrasound pixel data. 

3. A method to calculate an explicit surface from the function. 
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4 . The application of such methods to the human body imaged in vivo. 

5. The extraction of both exterior and interior surfaces. 

1.10 Guide to the Thesis 

This thesis is organized as follows: Chapter 2 introduces previous work in 3D surface ex

traction. Chapter 3 describes the mathematics of Radial Basis Functions, and then describes 

a direct surface extraction method. Chapter 4 describes the 3D freehand acquisition system. 

Chapter 5 describes the method of calibration for both the pointing device and ultrasound 

probe. Chapter 6 analyzes the features of ultrasound images and proposes a segmentation 

method. Results of surface extraction from 3D freehand ultrasound imaging with RBFs are 

given in Chapter 7, together with some discussion of the results. Finally, conclusions and 

suggestions for future work are included in Chapter 8. 
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Chapter 2 

3D Ultrasound Visualization 

2.1 Rendering Methods 

There are many rendering techniques that have been proposed for visualization of different 

data types and different applications. This thesis does not want to attempt to summarize all 

types of techniques, but will cover methods typical in medical imaging. Visualization of 

3D medical images continues to be an active area of research. Techniques developed from 

applications in computer graphics have been successful, especially for magnetic resonance 

images (MRI) and computed tomography (CT) images. But visualization of 3D ultrasound 

data remains a challenge. 

As mentioned in Chapter 1, techniques of scientific visualization of 3D data can be 

divided into two categories: volume rendering and surface rendering. Volume rendering 

forms an image directly from voxel data lying along the path perpendicular to the viewing 

plane. Modern volume rendering methods calculate this average as a function of opacity, 

brightness and color associated to each voxel value. Surface rendering is usually character

ized by an segmentation step where an object of intersect is extracted from the voxel data, 

and whose surface is represented usually by a set of connected triangles. 

Udupa and Herman [56] also suggest classifying the rendering methods by the struc

ture of the object. Surface rendering applies to those objects that have a clear structure, and 
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volume rendering refers to methods in which the object of interest is of an obscure structure. 

Volume rendering approaches include ray casting [30] and splatting [58, 21]. Both 

methods involve the projection between the volume data and a viewing plane, but from op

posite directions. Ray casting starts from the viewing plane side, tracing a ray from every 

pixel travelling in the direction perpendicular to the viewing plane to the object. Splat-

ting projects all voxels in the object onto the viewing plane directly. Light is modelled as 

being partially attenuated and reflected as it passes through the data volume. The images 

generated are strongly dependent on the assignment of properties such as opacity, color, 

brightness, and so forth, to the data. 

Compared to volume rendering techniques, surface rendering takes less computa

tion, less storage, and is easier to process for deformation-related applications. The last 

issue attracts a great deal of attention from scientists in the surgery simulation field. The 

main difficulty of surface rendering is generating the surface. The main focus of this thesis 

is on surface extraction. 

2.2 Surface Extraction 

A number of surface extraction methods have been proposed for different kinds of data: 

such as Marching Cubes, by Lorensen and Cline [32]; Marching Tetrahedra, by Guezie 

et al. [25]; Volume data by Treece et al. [52]; the contour-based method by Fuchs [23] 

for contours; Zipper techniques by Turk et al. [54]; the volumetric method by Curless et 

al. [15]; the a shape by Edelsbrunner [19]; the zero-sets method by Hoppe et al. [27]; 

and Voronoi-based methods by Amenta et al. [3] for unorganized points. The available 

algorithms are summarized in Fig. 2.1. 

2.2.1 Surface from Volume Data 

Volume data has the format of a regular array. Generating a surface from volume data as

sumes that the data possess tangible surfaces that can be extracted and visualized. In effect, 
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a binary classification of the data volume is made. The volume surfacing method converts 

volume data into geometric primitives (e.g., polygon mesh, contour) and then renders them 

to the screen using conventional computer graphic algorithms. 

Marching Cubes 

Marching Cubes [32] is probably the best known surface extraction algorithm from volume 

data. Marching Cubes is essentially an anti-aliasing method for a density surface connec

tion. A logical cube (hexahedron) is built from 8 neighboring voxels. There are 15 cases 

of how the surface intersects this logical cube, see Figure 2.2. The final surface can be 

obtained by quickly looking up a case table. 

9 

Figure 2.2: 15 cases of Marching Cubes [32] 

However, the Marching Cubes algorithm does not guarantee the obtained surface to 

be manifold. Many Marching Cubes variants are proposed to solve this problem. Nielson 

et al. [38] solve this ambiguity problem with a technique called Asymptotic Decider. 

Marching Tetrahedra 

The 8-voxel logical cube is still a big unit; Doi et al. [18], Guezie et al. [25], and Treece 

et al. [52, 53] instead perform the decomposition of a smaller unit tetrahedra. Guezie [25] 
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surface construction. Early contour extraction algorithms used classical edge detection al

gorithms, such as LOG by Marr [33], and Canny [10]. However, traditional low-level image 

processing techniques which consider only local information, are usually sensitive to noise 

and speckle, that are common in medical images, especially ultrasound images. 

Terzopoulos et al. [50] proposed an energy-based contour extraction algorithm 

called the Snake model. A snake is a deformable contour that moves under a variety of 

image constraints and object-model constraints. The snake is controlled by minimizing 

a function which converts high-level contour information, such as curvature and discon

tinuities and low-level image information, such as edge gradients and terminations into 

energies. The snake stops at the position that minimizes energy. 

The balloon model by Cohen and Cohen [13] extends the snake energy by including 

a balloon force — either an inflation force, or deflation force. The difference between them 

is that, for the Snake model, the initial position has to surround the intended contour. 

Mclnerney and Terzopoulos [34, 35] extend the geometric and topological adapt

ability of snakes, while retaining all the features of traditional snakes by superposing a 

simplicial grid over the image domain, and using this grid to iteratively reparameterize the 

deforming snake model. The model is able to flow into complex shapes. 

Other medical image segmentation algorithms, such as the Level Set based method 

by Leventon et al. [29] can also be used for contour extraction. The intensity distribution in 

the medical image is modelled as a function of the signed distance from the object bound

ary. The segmentation process estimates a zero set of higher dimensional functions which 

converges to the boundary of the object to be segmented. 

After outlining the 2D contours, the second step is to construct a surface from those 

contours. One early approach is the contour interpolation method by Fuchs et al. [23]. 

In their method, the surface is constructed by separately determining an optimal surface 

between each pair of consecutive contours. Many subsequent techniques that followed 

this approach define a quality measure for the particular correspondence between contours, 

and then follow this by an optimization procedure. The main difficulty with this type of 
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technique lies in dealing with the branching structure (Meyers et al. [36]). Roxborough et 

al.[42] used a progressive tetrahedron based method by subdividing the tetrahedron on its 

longest edge which guarantees a valid tetrahedrization. Treece et al. [51] used Maximal 

Disc Shape based interpolation to improve the quality of a reconstructed surface by locally 

adjusting the interpolation direction. 

2.2.3 Surface from Unorganized data 

The problem of obtaining a continuous representation of a surface described by a cloud of 

points is called the unorganized points problem. It is very challenging to extract a surface 

from a cloud of points that has no connectivity information. A successful reconstruction 

method should be able to deal with complicated topology, as well as noise; the constructed 

surface should be a good approximation of the data set and have some smoothness. 

Most available surface representation methods fall into two categories: explicit and 

implicit. Explicit surfaces directly prescribe the location of a surface, while implicit sur

faces represent a surface as a particular iso-contour of a scalar function. 

2.2.4 Explicit Methods 

Popular explicit representations include triangulated surfaces and simplex-based surfaces. 

A popular triangulated surfacing approach is based on Delaunay triangulations and Voronoi 

diagrams. Typically, the reconstructed surface is a subset of the faces of the Delaunay tri-

angulation. Boissannat [9] proposed a method for Delaunay Triangulation from 3D points, 

which computes a volume tetrahedralization from the data points and then removes the 

tetrahedra to extract the surface. Coucy and Laurendeau [47], and Turk and Levoy [54] 

use a similar idea by stitching disjointed meshes into a single surface. The a- shape by 

Edelsbrunner [19] is a parameterized construction that associates a polyhedral shape with 

unstructured points. By choosing a proper parameter a, a-shape includes simplices within 

a radius of at most a. The Crust algorithm by Amenta [3], and the Ball-Pivoting algorithm 

by Bernardini [7] also follow this track. 
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Delaunay Sculpting 

An early Delaunay-based algorithm is the Delaunay Sculpting heuristic by Boissonnat [9]. 

The Delaunay Sculpting method starts with a Delaunay triangulation process, as follows: 

1. Define the neighbors for each point. 

2. Initialize the triangulation by jointing a point with its nearest neighbor. 

3. Grow the triangulated domain by successively adding new points to the mesh. 

4. A sculpting process (see Figure 2.4) is then followed to remove the tetrahedra until 

all points are on the boundary. 

5. After this, the object is represented by a set of non-eliminated tetrahedra, and the 

boundary of this set is the polyhedra approximation of the object surface. 

Mesh Merging 

There are some mesh merging algorithms originally designed for range data work in a 

polygonal domain. Soucy and Laurendeau [47] described a method using Venn diagrams. 

They first partition the points into a number of sets that are called common surface sets. 

Figure 2.4: Example of Delaunay Sculpting (Boissonnat [9]) 
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A grid of triangles are created, whose positions are guided by a weighted average of the 

points in the set. Subsets of these grids are stitched together by a constrained Delaunay 

Triangulation into a plane. 

Turk and Levoy [54] proposed a similar idea by merging the triangles into a com

mon region. The difference lies in the order in which the two methods perform integration 

and geometry averaging. Turk and Levoy use the zippering of triangle meshes, followed 

by the refinement of surface geometry to build a detailed model. As shown in Figure 2.5, 

the zippering method first discard the intersection portion of triangles, then clip one mesh 

against another, and finally, removes the small triangles introduced during clipping. 

Mesh A Mesh B Retain 

Figure 2.5: Mesh Zippering (Turk [54]) 

a-shape 

The a-shape technique by Edelsbrunner et al. [19] consists of three steps. The first step is 

triangulating the point set using the Delaunay Triangulation algorithm. This step generates 

the tetrahedra, and the resulting shape is the convex hull of the point set. In the second step, 

an a is selected as the radius of the ball-shape eraser (called a ball). The third step uses 

this a ball to move along the convex hull, and removes all simplices whose circumscribing 

sphere is larger than the ball. The output of the a-shape is a collection of simplicial com

plexes that approximates the 3D shape, but is not manifold. The a-shapes for all possible 

values of a forms the spectrum of a-shapes, which gives an idea of the overall shape and 
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natural dimensionality of the point set. 

Crust Algorithm 

The Crust algorithm by Amenta et al. [3] overcomes the main drawback of the a-shape 

algorithm, that is, the experimental selection of the parameter a, and in many cases, no 

ideal a value is available due to variations in the sampling density. The Crust algorithm 

consists of the following four steps: 

1. As in the a-shape method, create the initial mesh with the Delaunay triangulation of 

the point set; 

2. Second, add the vertices of the Voronoi diagram into the point set; 

3. Third, perform another Delaunay triangulation with the new point set; 

4. Fourth, categorize edges as boundaries if their circumscribing circle is empty. 

The Voronoi vertices in 2 dimensions approximate the medial axis of the curve, 

however this is not quite true for 3 dimensions. To rectify this problem, only the two 

farthest Voronoi vertices are added to the point set to be retriangulated. In the final result, 

only those triangles with all three vertices are sample points and no Voronoi vertices are 

kept. 

Ball-Pivoting Algorithm 

The Ball-Pivoting algorithm by Bernardini et al. [7] is a region-growing method. It starts 

from an initial seed triangle, and then grows into a manifold mesh. A ball of a specified 

radius is pivoted across the edge of each triangle of the growing mesh. Any vertices that hit 

the ball which are not yet part of the mesh are included, with a new triangle added into the 

growing mesh. The reconstructed surface is guaranteed to be homeomorphic to and within 

a bounded distance from the original manifold. 

As shown in Figure 2.6, some details are lost with an improper radius of the ball. 
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Figure 2.6: Ball Pivoting Algorithm in 2D. Notice that when the curvature of the manifold 
is larger than ^, some of the sample points will be missed, where p is the radius of the ball. 
Bernardini et al. [7] 

2.2.5 I m p l i c i t M e t h o d s 

Though explicit surfacing techniques can represent the data set precisely, the main draw

back is their ability to deal with noise. In addition, the tracking of large deformations is 

difficult with explicit surfacing. Implicit surfacing is recently attracting more and more at

tention. The main advantage of implicit surfaces include topological flexibility, in which 

many surface operations, such as ray casting become simpler. Animation and deformation 

are sometimes easier to generate too. 

Hoppe et al. [27] first proposed the zero-set algorithm by defining a signed distance 

function on R 3 , and then polygonalizing its zero-set to extract the surface. The algorithm 

of Curless et al. [15] derives the error and tangent plane from points, and combines the 

samples into a continuous volumetric function. Bajaj et al. [5] used a-shapes to form the 

surface with a divide and conquer algorithm. The level set method by Zhao et al. [61] 

represents the surface as a zero iso-surface of the zero level set of a higher dimension. 

More recently, Radial Basis Functions (RBFs) methods have also been successfully applied 

in this area. By minimizing the energy which measures the quality of a single interpolation 

function that matches the given data set, Dinh et al. [16, 17], and Carr et al. [11] used a fast 

method which makes it possible to solve the Radial Basis Function with a large data set. 
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Z e r o Set A l g o r i t h m 

Hoppe et al. [27] use a graph traversal technique to help construct a signed distance function 

/ from the points set, which is a geometric distance measurement from any point in R 3 to 

the data points. The points that satisfy / = 0 lie on an iso-surface with a value equal to 

zero. They first determine an approximate tangent plane at each sample point using least 

square fitting on k nearest neighbors. Then the signed distance value is the distance to the 

nearest point's tangent plane. After generating the signed distance function the next stage 

is to use the Marching Cubes algorithm to extract a triangulated mesh from the function. 

The algorithm of Curless and Levoy [15] first derives error and tangent plane infor

mation from the point set. They generate a continuous volumetric signed distance function 

using the ray casting method, and resample the point set to align with the voxel grid. Under 

certain assumptions, the iso-surface, which is optimal in the least squares sense, is extracted 

from the volumetric grid. A subsequent hole-filling step uses problem-specific information. 

Their implementation is especially fast and robust, and is capable of handling a very large 

data set. 

Bajaj et al. [5] use a-shape as the first step of their algorithm. They generate 

a tetrahedra from the point set with the Delaunay triangulation, then each a is formed 

by fitting a Bernstein-Bezier polynomial to the data points within each tetrahedron. The 

tetrahedra are classified as either internal or external based on parameter a, and their sign 

of distance function is determined, accordingly, as ±1. In addition, the value of the distance 

function equals the distance from one point in the data set to its closest point in the Voronoi 

diagram. 

Leve l Set A l g o r i t h m 

Recently Zhao et al. [61] proposed a fast surface reconstruction algorithm using a level set 

method. The level set method was devised by Osher and Sethian [39, 45] as a simple and 

versatile method for computing and analyzing the motion of an interface in two or three 

dimensions. The original idea of the level set method is quite simple. A closed simplex (a 
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Figure 2.7: Level Sets of an embedding function u for a closed curve C in R 2 [29] 

curve in 2D, and a surface in 3D) is the zero level set of a higher dimension function. Lev-

enton et al. [29] successfully applied the level set method in segmentation for 3D medical 

images. Zhao et al. [61] constructed a weighted minimal surface-like model using differ

ential geometry and partial differential equations, and optimize its level set formulation. 

They also developed a simple physically motivated convection model and a fast tagging 

algorithm to construct a good initial approximation of minimal surface reconstruction. 

Radial Basis Functions 

The Radial Basis Functions (RBFs) method has been more successfully introduced in sur

face reconstruction recently. Dinh et al. [16, 17], Carr et al. [11], Yngve and Turk [59], and 

Turk and O'Brien [55] represent the data set a single twice-differentiable function. The ra

dial basis function technique uses energy-minimizing basis functions to construct a smooth 

surface, and does not assume that the topology and/or shape are known. The surface pro

duced is continuous, seamless and manifold. Radial Basis Functions can also smoothly and 

reasonably interpolate the surface across gaps. Also, it can either approximate or interpolate 

the data. Carr et al. [11] used a fast method by Beatson et al. [6] which makes it possible 

to solve the Radial Basis Function with a large data set. 

The details of the Radial Basis Functions are covered in more detail in Chapter 3. 
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2.3 3D Ultrasound Rendering 

Volume rendering techniques, such as ray casting, are still the most popular methods used 

in 3D ultrasound. Sakas and Walter [43] first apply a BLTP (binarize, low-pass, threshold, 

propagate) filtering technique and a multi-resolution volume pyramid to remove the noise 

and speckle from the volume of interest (VOI), followed by contour filtering with a 3D 

edge detector to improve the appearance of the contours within the VOIs. The final step 

is to apply an improved version of the ray casting method. Recently Fattal and Lischinski 

[21] proposed an opacity classification algorithm based on a variational principle. With 

a set of simultaneous requirements, an opacity function is designed for explicit geometric 

surface extraction. They also developed a new splatting algorithm particularly suited for 

this opacity function. However, the weights for the individual requirements are still to be 

experimentally determined. 

Like general 3D ultrasound, most freehand 3D ultrasound systems are also voxel-

based [37, 51]. This implies that a 3D voxel array is interpolated from the set irregular 

image slices. Interpolation algorithms that work for parallel slices such as shape-based in

terpolation by Herman [26] do not work well for freehand 3D ultrasound images because 

the slices are not necessarily parallel. Many algorithms have been proposed to solve this 

problem, such as RBF interpolation by Rohling [41], and some other shape-based algo

rithms like maximal disc Treece [52, 53]. In any case, the interpolation step almost always 

loses some resolution in the priginal data and can also introduce subtle artifacts [41]. Ide

ally, a surface should be extracted directly, from the set of non-parallel freehand ultrasound 

images. 
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Chapter 3 

Direct Surface Extraction 

3.1 Surface Modelling 

If the 3D data is represented with a single function f(x, y, z), then the surface is implicitly 

described as the set of points (x, y, z) where the function attains a constant level equal to the 

echo intensity at the organ boundary. An explicit representation - in the form of a mesh of 

polygons - can also be extracted by an iso-surfacing algorithm (such as Marching Cubes). 

More formally, we express the problem as follows:: given function values fi at 

N distinct points *i(xi, yi, Zi), find the function f(x, y, z) such that f(xi,yi, Zi) = fi for 

i = 1,.., N. This is a classic interpolation problem. 

Then, a surface is desired where f(x, y, z) attains a level of k - the echo intensity at 

the organ boundary. The surface is obtained by an iso-surfacing algorithm that fits a mesh 

of polygons to the surface where f(x, y, z) = k. 

3.2 Radial Basis Function Interpolation 

Radial basis functions (RBF's) are proposed for f ( x , y , z ) . There are several reasons for 

this choice: 

• The compact description of a single function. 
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• These can interpolate sparse, non-uniformly spaced data. 

• These can both interpolate and approximate data. 

• These can be evaluated anywhere to generate meshes of the desired resolution. 

• Gradients and higher derivatives can be calculated analytically. These are also con

tinuous and smooth depending on the choice of basis functions. 

• Surface normals are easily computed. 

• Iso-surfaces extracted from RBF's are manifold (i.e., non self-intersecting). 

3.2.1 Radial Basis Functions 

Consider a set of 3D points X j , i = 1,..,N, that have associated intensity values pi. The 

basic idea of Radial Basis Function interpolation is to find a spline 5(x) that fits the data 

points as smoothly as possible. With this constraint, we find the S(x) that minimizes the 

following: 
JV 

V ^ | P i - 5 ( x i ) | 2 + w/(s) (3.1) 
i=i 

The first term is the deviation of the spline from the data points, which represents the in

terpolation error. The second term, I(s), is a smoothness function of surface s, normally 

chosen to minimize one or more partial derivatives of the function. u> is the weight which 

determines the relative cost of these two components, ui = 0 means that the RBF solution 

fits the given centers perfectly, without any smoothing. 

The general solution can be expressed as follows: 
iv 

5(x)=i(x) + ^ A ^ ( | x , X i | ) (3.2) 
i=l 

where | x , X i | is the Euclidean distance, i(x) is a polynomial of a low degree called the 

trend function, R(x, Xj) is a radial basis function, and Xi are the centers of the RBF. There 

are several choices for the basis function. The format depends on the choice of I(s). The 

biharmonic spline R(r) = r , (r — |x, Xj |) is well suited to the representation of 3D objects. 
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It can be characterized as the smoothest interpolation of data, in the sense that it is the 

interpolant which minimizes the integral of the 2nd derivative. 

The solution can be written in matrix form as follows: 

( A T 

TT 0 V 
(3.3) 

where 

T. 

R(\xi,x.j\), 'i,j = l,...,N 

L j j — tj (xj), i — 1,..., iV, j 1,..., I 

p is the vector of intensity of the pixels pi, {t\,..., ti) is a basis for polynomials, and A is 

a vector of the coefficients A; in Equation 3.2. 

In 3D, the biharmonic spline case gives the following: 

C = (C1,C 2,C3,C 4) 

is a vector of coefficients, which gives the trend function t(x) = c\ + c2x + c3y + c±z. T 

is the matrix with ith row (1, Xi, yi, Zi), and I - the degree of this polynomial - equals 4. 

When we take weight LU into consideration in Equation 3.1, Equation 3.3 can be 

modified as follows 
A + uI T 

V 
(3.4) 

For our experiments, co is adjusted to smooth the speckle components of the ultrasound 

images. 

3.2.2 Fast Algorithm of RBFs 

Traditional RBF's require 0(N3) arithmetic operations for fitting, so the computational 

complexity rapidly increases as the data set size increases. Also, the system of equations is 

not always well conditioned. For these two reasons, the direct solution of this equation is 

impractical for any data set larger than a few thousand points. New fast methods for RBF's 

are feasible for this problem [11]. 
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Fast RBF methods were developed recently for surface reconstruction from laser 

range scanned data. For that problem, surface points (xi,yi,Zi) are given and a function 

f(x, y, z) is desired, such that f(x, y, z) = 0 on the surface. To solve that problem (for non 

trivial solutions), off surface points are introduced artificially, along with a signed-distance 

function. This results in the expanded problem:/(a:;, yi, zi) — 0 for on-surface points, and 

f(xi,yi,Zi) — di (not equals to 0) for off surface points, where ck is the estimate of the 

signed distance to the surface. We adopt this formulation to our problem of fitting RBF's 

to the pixel data. However, instead of using di as the "off-surface distance", we substitute 

the intensity of the pixel. Then, instead of iso-surfacing at zero, we iso-surface at the mean 

intensity of the boundary. 

The fast fitting and evaluation algorithm proposed by Beatson et al. [6] is based 

on the Fast Multipole Method (FMM) [24]. For an evaluation point, FMM computes an 

approximate evaluation for those points far from it, while using a direct evaluation for those 

near it. A predefined evaluation accuracy can be selected to divide all points into the two 

categories. Fitting accuracy is another parameter we can adjust in this formulation. It 

is specified as the maximum allowed deviation of RBF values at the interpolation points. 

Both storage and computation can be significantly decreased with suitable values for fitting 

accuracy and evaluation accuracy. Table 3.1 shows the comparison of direct methods and 

fast methods. 

Direct methods Fast methods 
Fitting 
storage required 
flops to solve system 

JV(JV + l)/2 
N3/6 + 0{N2) 

0(N) 
0(N log N) 

Evaluation 
flops per evaluation O(N) 0(1) after 

0(N log N) setup 

Table 3.1: Comparison of direct and fast methods. [11] 

As an additional way to speed computation, the number of data points can be re

duced selectively. In most cases, a small subset of centers is able to produce the same 

approximation as the original input data points. Though it adds additional computation, 
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center reduction brings the benefit of smaller memory requirements and faster evaluation 

time without losing accuracy. In our experimental approach, we also perform an automatic 

pre-processing step to further trim the data and improve computational performance. 

3.3 Direct Surface Extraction with RBFs 

3.3.1 RBFs Interpolation with Intensity 

Unlike previous algorithms for surface extraction using RBFs, this thesis proposes to use 

intensity values directly as a distance function for Radial Basis Function interpolation. It is 

also the first to apply RBF surface extraction to 3D ultrasound. 

u 

Figure 3.1: Intensity distribution of one ultrasound scanline. 

In our experiments, objects are put in a water bath to avoid direct contact between 

the ultrasound probe and the object. Figure 3.2 shows one ultrasound image of a human 

finger, and on the right side is the intensity distribution of one vertical scanline. If we aim at 

the external skin surface, its location lies somewhere between the low intensity background 

at 1, and the high intensity at peak at 2. Unlike other edge-finding applications, we take into 

consideration not only points exactly on the surface, but also other points in neighboring 

regions. Radial Basis Functions are then used to interpolate the intensity distribution in 
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space. 

3.3.2 Isosurface Extraction 

l,= 127 

l0=45 

89 

I s o s u r f a c e 
I, =105 

Figure 3.2: RBF interpolation of intensity distribution 

After fitting with RBFs, the next step is to create an explicit surface along iso-

values. Also, unlike other RBF-based methods, such as [11], what we are looking for is not 

the zero value isosurface of the signed distance function, but a non-zero value between the 

background intensity and boundary intensity. 

The first step is to find the criteria of an explicit surface. As mentioned in the 

introduction, conventional surface extraction methods, such as Marching Cubes [32], are 

optimized for visualizing a complete volume of data, which creates a large number of poor 

aspect ratio triangles. Some mesh simplification algorithms, such as Vertex Clustering, can 

significantly reduce the number of triangles, but can not, in general, maintain the topol

ogy. Treece [52] proposes a Regularized Marching Tetrahedra algorithm which combines 

Marching Tetrahedra and Vertex Clustering to generate an iso-surface with fewer trian

gles of improved aspect ratio, and still keep the topology consistent. Treece's method was 

adopted by J.Carr et al[l 1] from a RBF representation, and is also used here. 
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Chapter 4 

3D Freehand Ultrasound Acquisition 

System 

4.1 Introduction 

The simplest way for acquiring 3D ultrasound is to acquire a stack of 2D images covering a 

region of space. To avoid overlaps the 2D images can be acquired while the operator moves 

the probe steadily from the tip to the tail of an organ. To stack the images properly, each 2D 

image must be registered; in other words, there must be a mechanism to detect the position 

and orientation information of individual 2D ultrasound images. 

Early 3D ultrasound acquisition systems used various kinds of mechanical devices 

to constrain the set of 2D images to a predefined motion. Three such scanning machines are 

shown in Figure 4 . 1 . The movement of the probe is usually performed via motors because 

even spacing can be easily obtained by a precisely controlled motor. In this manner, the 

transducer rotates or translates over the region being examined. 

There are several limitations of these acquisition systems: movement of a motor 

can only cover a limited range, the probe mechanisms are usually of too large a size to be 

held freely by the operator, and it is complicated to precisely control the motion. 

Freehand 3DUS uses a conventional 2D ultrasound machine as the basis. The only 
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modification is usually the addition of a position tracker on the probe. In this way, freehand 

3DUS allows the user to control the motion of the probe by hand. Wider ranges of motions 

are possible compared to mechanical system, but the spacing is irregular. 

(a) translation (b) oscillation (c) rotation 

Figure 4.1: 3 scanning modes of motor-driven systems [41] 

Although some freehand systems attempt to calculate probe motion from the images 

themselves, most freehand approaches use a positioning device attached to the ultrasound 

probe. The most popular are optical tracking 1 (e.g., Welch et al. [57]), 6-degree-of-freedom 

magnetic positioning 2 ' 3 (e.g., Invivo-ScanNT by G.Sakas [44]), and mechanical tracking 

(e.g., Robot-assist [1]) . 

Fenster and Downey [22] summarized two criteria that must be met to reconstruct 

the 3D geometry properly: "The exact relative angulation and position of the ultrasound 

transducer must be known accurately and precisely for each acquired image; and the oper

ator must ensure that no significant gaps are left between acquired images when scanning 

the anatomy." 

Each of the different approaches has drawbacks. Magnetic positioning devices in

volve a magnetic field which is sensitive to metal equipment around it, and the fields may 

'Optotrak by Northern Digital Ltd., Waterloo, Canada 
2FastTrak by Polhemus Ltd.,Colchester, USA 
3 Bird by Ascension Technology Corporation, Burlington, USA 
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also affect medical equipment in near proximity. Mechanical tracking devices are normally 

bulky and intrusive. Optical tracking devices require the LEDs to always be visible to the 

cameras. Currently optical tracking offers the most robust and accurate tracking abilities. In 

the following sections, a new optically tracked freehand 3D ultrasound acquisition system 

is introduced. 

4.2 System Setup 

We propose a new 3D freehand ultrasound acquisition system. As shown in Figure 4.2, the 

system is based on a new PC-based ultrasound machine and an optical LED tracker. 

Figure 4.2: 3D freehand acquisition system 
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4.3 PC-based Ultrasound Machine 

For image acquisition, we use a new ultrasound machine recently developed by Ultrasonix 

Medical Corporation. One reason for this choice is its open architecture. Instead of the 

conventional, closed-architecture, of a stand-alone ultrasound machine, a machine with an 

open architecture allows researchers to access data and parameters internal to the machine, 

as well as closely couple new software applications and hardware to the ultrasound system. 

A second reason is the direct access to high quality digital images without an intermediate 

analog conversion stage. 

The Ultrasonix machine consists of a standard ultrasound probe that is connected 

to a generic PC through programmable hardware. The PC contains software for ultrasound 

signal processing and a high-quality monitor for displaying the resulting images. With an 

open architecture, the various stages of image formation can be directly accessed. Using 

this access to the digital data, advanced applications can be written using conventional tools 

for the PC, and downloaded directly to the Ultrasonix machine. New applications can also 

be developed that combine the direct access to data with other PC-based technology such 

as graphics and networking hardware. The open architecture also allows for the integration 

of a set of applications into a single comprehensive application. In this way, solutions to 

individual problems can be combined to solve more complex problems. The visualization 

work described in this thesis is the first project to be undertaken on the Ultrasonix machine. 

4.4 Position Tracking System 

4.4.1 Optotrak 

The Optotrak 3020 we use in our system (Figure 4.3) is a trinocular system, consisting three 

calibrated CCD cameras arranged linearly. When an infrared LED lights up, its position in 

the Optotrak coordinate system can be computed from its position in the three images. 

The trinocular system uses multiple stereo pairs with various baselines generated by 

the cameras to obtain precise distance estimates The trinocular cameras can achieve better 
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Figure 4.3: Optotrak 3020 

results than a typical two camera stereo system because the second pair of cameras can 

resolve situations that are ambiguous to the first pair. The LEDs are alternately illuminated 

so that cameras only see one LED at a time. The LED appears as a small patch in each 

camera, and the centroid of the patch is an estimate of position. The LED is a very small 

patch in the image, which makes matching between correspondent points easier and more 

accurate. 

The Optotrak 3020 used in our acquisition system can handle as many as 256 mark

ers at a time, with an RMS accuracy to 0.1mm, and resolution to 0.01mm, and calculated 

in real-time. 

4.4.2 Coordinate System 

We designed a 3-LED cross to construct a coordinate system for the ultrasound probe - see 

Figure 4.4(a). 

Here, we choose O as the origin of the coordinate system, and vector OA as the x 

axis. The z axis is chosen as the vector perpendicular to the plane defined by three LEDs. 

Then, the y axis can be determined by the cross-product of the x and z axes. 

~x* = OA (4.1) 

= OA x OB (4.2) 
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(a) LED cross (b) LED cross is at
tached to the ultra
sound probe. 

Figure 4.4: LED cross and ultrasound probe. 

~$ = ~x* x !? (4.3) 

The transform matrix from the LED coordinate system to the Optotrak coordinate 

system can be derived straightforwardly, as follows: 

?M = Xn Vn Zn O 

V o o o 1 ; (4.4) 

where x^, y%, zZ are normals of x\ if and it vectors, and ~ct = (ox,oy,oz)T is the 

coordinate of point O in the Optotrak coordinate system. All are 3 x 1 vectors. 

Another way of building a coordinate system from a few LEDs is described in An 

et al.[4], which finds axes from a least square fit of two straight lines to the set of LEDs. 
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This LED cross is attached to the ultrasound probe, see Figure 4.4. As the probe 

moves, the Optotrak detects the precise 3D position for each marker. The maximum sam

pling frequency for a 3-LED cross is 700Hz. The maximum inaccuracy of the 3D markers' 

positions is less than 0.1mm, but the overall system accuracy is determined mainly by cali

bration. 

4.4.3 Measurement Tool 

Figure 4.5 shows the measurement tool custom-built to aid calibration. It is used 

to measure the position of a point on the calibration phantom in the Optotrak coordinate 

system. The measurement tool is composed of a needle attached to another 3-LED cross. 

The LED panel builds a coordinate system in which the position of the end point of the 

needle LS = (LSX,L Sy,L SZ)T is fixed, where LSX,L Sy and LSZ represent the x, y and z 

coordinates of point S in the LED coordinate system respectively. 

As shown in Figure 4.6, the coordinate of the end point of the needle can be deter-

Figure 4.5: Measurement tool 
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Figure 4.6: Measurement with needle 

mined by the following: 

°S =°L TLS (4.5) 

where £T is the transformation matrix of the current LED coordinate system with respect 

to the Optotrak coordinate system as stated in Equation 4.4; °S is the position of the end 

point of the needle in the Optotrak coordinate system, and LS = [LSX,L Sy,L SZ)T is the 

position of the end point of the needle in the LED coordinate system, which is a constant 

vector that needs to be precisely calibrated. Details about calibration are given in Chapter 

5. 
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Chapter 5 

Calibration 

5.1 Part I Measurement Tool Calibration 

5.1.1 Principles 

As shown in Figure 5.1, the LEDs attached to the needle form a coordinate system using 

the same method described in Section 4.4.2. 

Figure 5.1: Coordinate system of a measurement tool 
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Figure 5.2: Method to calibrate the measurement tool 

US is calculated using the method shown in Figure 5.2. We rotate the measurement 

tool arbitrarily, while keeping the end point of the measurement tool pointing at a fixed 

point S in the Optotrak coordinate system as °S = (°SX,° Sy,° SZ)T. 

Figure 5.3 is another representation of Figure 5.2. L 0 and L\ are the origins of the 

LED coordinate system and P is the origin of the Optotrak coordinate system. Both LQ and 

L\ lie on the sphere surface with S as the sphere center. This gives the following: 

Then, in the Optotrak coordinate system, we have the following: 

(Lo,x-Sx)2+(Lo,ySy)2+(Lo,z-S2)2 = (LltX-Sx)2+(Lhy-Sy)2+(Lhz-Sz)2 (5.2) 

where L^x, L^y and L^z represent x, y and z coordinates of point Li. 

Suppose there is another LED origin at position L2, then we get the following: 

(Lo,xSx)2+(L0,y-Sy)2+(Lo,z-Sz)2 = (L2<x-Sx)2+(L2,ySy)2+(L2tZ-Sz)2 (5.3) 
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Figure 5.3: Determine the needle end point 

By subtracting (5.3) from (5.2), we get the following: 

( L h x - S x ) 2 - { L 2 , x - S x ) 2 + ( L h y - S y ) 2 - ( L 2 t V - S y ) 2 + { L u - S z ) 2 - ( L 2 t Z - S z ) 2 = 0 

(5.4) 
5.4 can be rewritten as follows: 

( L i , x - L 2 , x L i t V - L 2 , y L i , * - L 2 ) 2 1 

S x 

2^Ll,x + L l , y + L l , z ~ L2,x ~ Ll,y ~ L \ z ) (5.5) 

With N (where N > 2) origins, we have N - 1 equations with the same form as 5.5, as 

follows: 
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Ll,z — 1/2,; 

\ LN-2,X — Lflr-l,x LN-2,v — LN-l,y LN-2,Z ~ A / V - l . z ) 

(5.6) 

J 

Therefore, Equation 5.6 includes N — 1 equations for 3 unknowns. If N > 4, we can use the 

least squares method to solve Equation 5.6. Remember that the solution °S from Equation 

5.6 is in the Optotrak coordinate system. What we want is the position of the end point S 

in the LED coordinate system, thus we use the following: 

LS =%T-° S (5.7) 

where QT is the transform matrix from the Optotrak coordinate system to the LED coordi

nate system. Once calibration is complete, we can then use the measurement tool to measure 

the position of a point in the Optotrak coordinate system, using the following transform of 

Equation 5.7: 

°S = ? T - L S (5.8) 

So, with this measurement tool, we are now able to measure the position of the reference 

points on the calibration phantom. Details of this are covered in section 5.2 part II. 

5.1.2 Results 

Table 5.1.2 shows the result of 20 measurements of a single point S, where each measure

ment is calculated from 50 sampling positions with the point S as the center of the sphere. 

42 



X y z 
1 -297.486145 -137.375992 -2285.231445 
2 -297.573425 -137.381805 -2285.235352 
3 -297.498779 -137.357544 -2285.246338 
4 -297.703094 -137.293610 -2285.173340 
5 -297.546478 -137.342010 -2285.174072 
6 -297.905243 -137.406204 -2285.185059 
7 -297.765045 -137.318390 -2285.177979 
8 -297.620850 -137.347992 -2285.176025 
9 -297.858246 -137.379929 -2285.163818 
10 -297.609283 -137.373032 -2285.201416 
11 -297.776398 -137.344696 -2285.161865 
12 -297.855499 -137.339874 -2285.166504 
13 -297.685699 -137.324875 -2285.179199 
14 -297.727173 -137.309998 -2285.163574 
15 -297.831116 -137.261566 -2285.274170 
16 -297.664490 -137.339813 -2285.247559 
17 -297.887146 -137.279205 -2285.117432 
18 -297.777618 -137.325241 -2285.213623 
19 -297.791229 -137.286102 -2285.124756 
20 -297.822968 -137.311050 -2285.113770 

Average -297.7192962 -137.3349464 -2285.186365 
Stdev 0.129405994 0.038082514 0.044035693 
Range 

(max-min) 0.419098 0.144638 0.160400 

Table 5.1: Statistics of the measurement tool calibration. (Unit: mm) 
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5.2 Part II Probe Calibration 

5.2.1 Principles 

In order to extract a surface from a set of 2D ultrasound images, the relative 3D coordinates 

of each pixel in the 2D ultrasound images must be known. Yet, the LEDs provide only 

the position and orientation of the ultrasound probe. A transformation matrix is needed 

to convert the 2D position in the Ultrasound image coordinate system into 3D position in 

the LED (i.e. Probe) coordinate system. It is a constant transformation matrix once the 

LEDs are attached to the probe and remain fixed. The objective of probe calibration is to 

determine this transformation matrix from the 2D Ultrasound image coordinate system to 

the 3D LED coordinate system. 

In order to compute this transformation matrix, a few reference points are needed 

where their positions in both the 2D Ultrasound image coordinate system and their positions 

in the Phantom coordinate system are known. It is relatively easy to determine the 2D 

position Px and Py of a certain point P in image coordinate system because they can be 

computed from the position of the pixel (px,py) multiplied by the scale factors (sx, sy) into 

the units of mm. The difficulty lies in determining the corresponding 3D position of the 

reference points in the LED coordinate system. 

We designed a calibration phantom to solve this problem. As shown in Figure 5.4, 

there are 4 coordinate systems altogether in our system setup: the LED coordinate system, 

the Optotrak coordinate system, the Ultrasound image coordinate system, and the Phantom 

coordinate system. We denote the transforms between different coordinate systems as ^T, 

which form the transform matrix from B coordinate system into A coordinate system. From 

Figure 5.4, we have the following: 

gT=° L T-\ jT =°PT -IT (5.9) 

The transform matrix from the LED coordinate system to the Optotrak coordinate £ T can 

be obtained from the 3D positions of the LED markers. pT can be obtained from the LED 

markers attached to the calibration phantom. In addition, yT can be computed from mea-
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Figure 5.4: Transformations between coordinate systems, L —> LED coordinate system, 
O —• Optotrak coordinate system, U —• Ultrasound image coordinate system 

suring those reference points on the calibration phantom. Once matrix \jT is determined, 

the pixels in an ultrasound image can be transformed into the Optotrak coordinate system 

using Equation 5.9. If we represent f}T in homogenous coordinates, we get the following: 

^ ^00 toi t02 t03 ^ 

(5.10) 
ho hi h2 h3 

ho hi h2 h3 

\ 0 0 0 1 J 

The first 3 columns of matrix \jT are the unit projections of the x, y and z axes, and the 

last column is the coordinates of the ultrasound image origin in the LED coordinate system. 

Generally, we choose the native x and y axes of the ultrasound image as the x and y axes 

of the Ultrasound image coordinate system. The z axis is chosen to form a right-handed 

Euclidean coordinate system. As described later this chapter, the elements of the first 3 
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rows of the third column of Equation 5.10 can be freely chosen in this 

5.2.2 N-Wire Phantom 

Figure 5.5: N-Wire calibration phantom 

We calibrate our probe with a N-Wire phantom [14, 40]. Figure 5.5 is a picture of 

the N-Wire phantom and Figure 5.6 is a 2D drawing of one layer of an N-Wire phantom. 

The N-Wire phantom consists of a set of nylon wires crossed in N-shapes between 

two parallel pieces of plexiglass board (A, B) There are several layers of holes in the 

boards. Nylon wire is threaded through the holes, to form a set of N-shapes, as shown 

in Figure 5.6. An ultrasound image (/) intersect the nylon wires with a series of points 

Cj, Xj, i = 0,.., iV. Figure 5.7 shows one of the N-fiducials. Since line A;Bj is paral

lel to line Aj+iBi+i, triangle AjC;Xj is similar to triangle B ; + iC; + iX; . Suppose we 

have the coordinates Ai(A i j X , A^y, AiiZ) and Bi+i(Bi+i,x, Bi+1,y, Bi+1,z), according to 

the property of similar triangles, we have the following: 

||CjXj|| ||AjXj|| ^ ||CjXj|| ||AjXj| 

|ci+lXi|| ||Bi+1x,|| a i ~ foĉ rj - m ( 5 - n ) 
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A A. 

i Q i 

B, B, B, B: B, 

Figure 5.6: 2D drawing of one layer of the N-Wire phantom 

Then, we get the following: 

X , = A i + at • (Bj+i - Ai) 

In the Optotrak coordinate system, Equation 5.12 can be rewritten as follows: 

°Xi = °Ai + ^ • ( ° B i + i - °Ai) 

note that points C», X i and C i + i lie on one single line, giving the following: 

| | °Ci 0 Xi | | | l u C i U X i | | 
a,- = 

(5.12) 

(5.13) 

(5.14) | |°CiOCi + 1 | | | | u C i U C i + 1 | | 

As shown in Figure 5.8, | | u C i U X i | | and | | u C i U C i + i | | can be measured from the 

ultrasound image of the phantom. The ultrasound image intersects N-fiducials at points Q 

and X i , which results in small bright spots. The positions of Q in the Ultrasound image 

coordinate are the centers of the bright spots. 

5.2.3 Calibration from a Single Scan 

Suppose there is a set of reference points Xij(xij,yitj),i — 0 , M — 1, j — 0 , N i — 1 

in ultrasound image f of the calibration phantom, corresponding to points with coordi-
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Figure 5.7: N-fiducials 

nates Xij(xij,yij,Zij),i = 0,...,M — l,j — 0,...,Ni — 1 in the Optotrak coordinate 

system, where i denotes the frame number of the image, and j denotes the index of the 

corresponding points. We have the following: 

g r - f T i - ^ T ^ X i ^ X i (5.15) 

where £Ti is the transform matrix from the LED coordinate to Optotrak coordinate of the 

current image frame, and \jT is the transform matrix from the Ultrasound image coordinate 

to the LED coordinate. ^X^ is a position of one reference point in the ultrasound image, 

and p\i as its corresponding coordinates in calibration the Phantom coordinate system. 

To simplify the computation, the Ultrasound image coordinate system is usually set 

up in the following way: the origin lies on the ultrasound image plane; the x axis orientation 

along the horizontal direction of the ultrasound image and the y axis orientation along the 

vertical direction of the ultrasound image; and the z axis is perpendicular to the ultrasound 

image. For each pixel p at (u, v) in the 2D ultrasound image, the corresponding position 

in the Ultrasound image coordinate system is (x, y, 0,1), where u and v are the indexes for 

the column and row respectively, x — u* sx, y = v * sy, and sx and sy are the scalars, with 
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Figure 5.8: Ultrasound image of calibration phantom 

unit of mm per pixel. Therefore, we get the following: 

u 

( 

Difl y»,i 

0 0 

1 1 

X i , N i - l 

Vi,Ni-l 

0 

1 

(5.16) 

Li,Q 

Vi,o Vi,i 

<0 <1 

V i i . 
Equation 5.15 can be rewritten as follows: 

13T -U Xi O r p - l P r p - l p • 

x i , N i - l 

y ' i , N i - \ 

z ' i , N i - l 

1 

_L rp O rp P Y 
" O  1 i 'P  1 '  A ^ 

(5.17) 

(5.18) 

Notice that in Equation 5.16, all the elements in the 3rd row of the matrix are Os. 

Since \jT is in the form of Equation 5.10, no matter what the 3rd column of matrix yT is, 

it is finally multiplied by zeros in Equation 5.16. That is why the first 3 elements of the 3rd 

column of jjT can not be directly observed from the data. 
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The transform matrix to be calibrated fjT can be computed by solving 5.18 using 

the Least Mean Squares method. 

5.2.4 Calibration from Multiple Scans 

Pagoulatos [40] used a single ultrasound image scan to compute the calibration matrix. 

Only a limited number of reference points are displayed on a given image. The N-wire 

phantom, designed by Pagoulatos et al. [40], uses 5 layers, each layer has 6 N-shapes. 

Thus, there are, at most, 30 reference points in one image. However, in general, the more 

reference points, and the more widely located, the more accurate are the calculations for the 

calibration matrix. We extend Pagoulatos's method by using multiple ultrasound images to 

obtain higher accuracy. Comeau et al. [14] cite a similar approach. 

Given a series of images of the calibration phantom, we have the following: 

JJT -UX=LX (5.19) 

where the following is true: 

u X = 
UX 

X 0 

l 

In addition, according to Equation 5.18, we get the following: 

/ 0To^T.°X0 \ 
Lm O rn O Y Q±1 -p I • A i 

(5.20) 

(5.21) 

\ £ T M - i - £ T - ° X M - I J 

where M is number of scans. Equation 5.19 is normally an over-determined set of equa

tions, and can be solved with the Least Mean Squares method. 

Furthermore, we simplified the design by Pagoulatos et al. [40] down to one single 

N-fiducial, but with many images. The results are evaluated in the next section. 
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5.2.5 Results Evaluation 

The direct evaluation of the accuracy of the calibration matrix is difficult because the true 

calibration matrix is unknown. We evaluate the accuracy of the calibration matrix by com

puting the coordinates of a fixed point from multiple images at different viewpoints. An 

ideal calibration matrix results in a stationary point in the Optotrak coordinate system. One 

requirement for such a fixed point is that it should be easily distinguishable in ultrasound 

images. We crossed two nylon wires to construct a fixed intersection point. One extra nylon 

A 

B 

Figure 5.9: Nylon wires intersection 

wire is added in the same calibration phantom we use for the calibration in Figure 5.6; it 

connects As and B\ (see Figure 5.9). Two nylon wires, A^B\ and A3B4 have an intersec

tion at point C. The position of this intersection point in the Optotrak coordinate system 

can be accurately measured. In the ultrasound images, two nylon wires A$B\ and A3 .B4 

form two spots. When the probe moves from one end (side A) to another end (side B), the 

two spots come closer together, then overlap each other at a certain position C, and then go 

further away. At the location where we can only see one single bright spot, the position is 
UC(UCX,U Cy). By setting UCZ = 0, we can apply Equation 5.19 to compute the position 
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in the Optotrak coordinate system °C(°CX,° Cy,° Cz). Also, according to the property of 

similar triangles ( A A 5 C A 3 and AB1CB4), we have the following: 

\\A5C\\ \\A5A3\ 
||5iC|| 11 .B41 

where we define the following: 
Q = l l ^ 5 C | | 

(5.22) 

l l A S i H 

such that we can calculate the position of °C as follows: 

°C =° B i + (1 - a) *° A5 (5.23) 

The positions of reference points A3, A5, B\ and B4 are measured with our mea

surement tool before we compute the calibration matrix. 
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The following table contains the results from our experiments. 

X y z 
True value -123.011526 -182.902962 -1909.601196 

1 -122.751835 -183.517520 -1909.914263 
2 -122.349035 -182.753069 -1910.381879 
3 -122.584570 -183.252505 -1910.962577 
4 -122.438516 -182.514651 -1909.511045 
5 -121.077462 -182.761388 -1909.400939 
6 -122.557312 -184.013336 -1909.535202 
7 -122.487234 -183.025301 -1910.537852 
8 -122.573555 -182.692987 -1910.705000 
9 -122.500994 -182.943929 -1910.978210 
10 -122.478459 -182.838067 -1909.539419 
11 -122.571859 -183.005245 -1910.347381 

' 12 -122.567613 -182.967902 -1910.741086 
13 -122.667153 -183.089103 -1909.894261 
14 -122.761445 -182.656778 -1910.743243 
15 -122.507427 -182.818154 -1909.608550 

Average -122.4582979 -182.9899957 -1910.186727 
Stdev 0.397319508 0.377448043 0.580194871 
Range 

(max-min) 1.683983 1.498685 1.577271 

Table 5.2: Statistics of a fixed nylon wire cross point (Unit:mm, radius of fish wire is 
0.5mm) 

During the experiments, we carefully scan the nylon wire cross from various direc

tions, and record those images for which two nylon wires display only one single bright 

spot. The true value of the intersection point is calculated from pre-measured 3D positions 

of four points on the steel boards of the calibration phantom. We took 15 valid samples al

together, from different directions individually. The standard deviation is less than 0.4mm 

in the x and y directions, and less than 0.6mm in the z direction. Such accuracy is sufficient 

for our direct surface extraction experiments. 
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Chapter 6 

Segmentation 

6.1 Edge detection 

The goal of the automatic segmentation algorithm is to trim pixels that are far from the 

estimated boundary of the surface. There is no need to have a high level of accuracy at this 

stage. The only need is to avoid removing pixels that depict the boundary. As described in 

previous sections, we use the intensity value of the pixels as a quasi distance function in the 

calculation of the radial basis function coefficients. It is therefore, important to also extract 

pixels that are nearby the boundary. For both of these reasons, the desired segmentation 

consists of a band of pixels surrounding the boundary in each ultrasound image. 

The perform this, an initial segmentation is drawn by the user on the first image 

and a simple tracker is used to automatically propagate the segmentation to the following 

frames. The simple tracker is guided by the presence of boundary features that follow the 

boundary as it changes from image to image. The features that are used here are edgels 

(edge elements) detected along each column of pixels. Edges are detected along columns 

because each image is created from ultrasound echoes that travel in a vertical direction. 

Thus, the physics of ultrasound image creation suggests that edges are best detected along 

vertical lines. 

Edgels are identified by large gradients. The largest M such gradients are selected 
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in each image, where M is smaller than the number of columns. This reduces the number 

of occasional false edgels around speckle or other artifacts. 

6.2 Region Propagation 

The segmentation region is propagated by the following algorithm: 

For each image i, perform the following steps: 

1. Assign prior probabilities P(u,v) = C\ to pixels pu,v (where u,v are the row and 

column indices) inside the segmented area Ai (where AQ is created manually). Assign 

P(u, v) — Co to pixels outside (e.g.,Ci = 1.0 and Co = 0.2). 

2. Locate the edgels Eitk(k — 1...M) 

3. For all pixels pu>v in the segmented area Ai, do the following: 

(a) Find the nearest edgel Eitk 

(b) Calculate the Likelihood function L(u, v) as the proximity of the nearest edgel, 

and weight it using a Gaussian centered at pu>v (Gaussian with a standard devi

ation of 15 pixels and truncated to zero at ± 32 pixels ') 

4. Convolve the Likelihood with the Prior: P(u, v)new — L(u, v) <g) P(u, v) + Co over 

all u,v 

5. Threshold the new Likelihood at value T (T=0.35)2 to obtain Ai+i 

In this way, the segmentation region propagates smoothly from image to image 

without deviations into regions far from the boundary. All the pixels that fall within the 

segmented areas are then used as the inputs to the RBF interpolation. 

Figure 6.1 shows the original image of the first frame of the image sequence. A 

manually outlined region (in orange) is displayed in Figure 6.2. Figure 6.3 shows the edgels 
115, 32 were experimentally determined. 
2T was experimentally determined. 
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(in green) found within the estimated region from the previous step. Edgels and their neigh

bors (in blue) within a certain distance are taken into the data set for further processing, as 

shown in Figure 6.4. 

Figure 6.1: Original image 

Figure 6.5 demonstrates the process of the segmentation region propagation. The 

image sequences are shown on the left side of each column, while their corresponding prob

ability distributions are displayed on the the right side. The segmentation region propagates 

from one image to next, provided that there is no rapid change between them. 
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Figure 6.2: Estimated boundary region 

Figure 6.3: Edge detection 
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Figure 6.4: Automatic segmentation 
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(a) image 0 

(c) image 1 

(b) probability distribution 

(d) probability distribution 

(e) image 17 ( f ) probability distribution 

Figure 6.5: Segmentation region propagation algorithm. 
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Chapter 7 

Results 

7.1 Results 

We performed experiments on both artificial objects and real human subjects in vivo to 

demonstrate the validity of our method. In our experiments, in order to be scanned, the 

objects are submerged in a water bath. There are two reasons for using a water bath. One 

is to avoid direct probe contact with the object, which may cause small surface deforma

tions. Another is to set good acoustic coupling between the probe and the object, allowing 

ultrasound to penetrate the tissue and create images of internal structures. 

As described in Chapter 4, the image sequence is obtained with LED markers at

tached to a hand-held probe which is moved slowly and evenly over the object. An 8MHz 

linear probe is used with a width of 36mm, corresponding to 480 pixels in the ultrasound 

image (this corresponds to a scale of 0.075mm/pixel in the x axis, and the same scale in 

they axis is also 0.075mm/pixel). 36mm is usually not wide enough to cover our objects 

in one single sweep, so multiple sweeps are needed and combined together. 

The automatic segmentation algorithm is then applied to the data sets. This seg

mentation is performed mainly to obtain a reasonable computation time. In fact, additional 

pruning is also performed to see the effect that large data reduction has on surface quality. 

To do this, pixels from the set of images are randomly deleted. A small amount of deletion 
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results in the "high resolution" data set, and a large amount of deletion results in the "low 

resolution" data set. 

There are several important parameters that can be tuned for better results. These 

parameters include the fitting accuracy and smoothness for fitting the RBF, the iso-value, 

and the resolution for 3D iso-surfacing. 

• Fitting accuracy 

Fitting accuracy is defined as follows: 

m a x J / O i ) - fi\ 
i=l,..,N 

The fitting accuracy sets the maximum allowed deviation between the function values 

f(xi) and the corresponding values fi of RBF. 

Since a true RBF value is not usually obtained with the fast approximation methods, 

another term evaluation accuracy, is defined to describe the accuracy achieved with 

fast approximation methods. Evaluation accuracy is the following value: 

max I f(xi) — a j ! 

where is the approximate values of the RBFs at points x^ 

• Smoothness 

As described in Section 3.2, a parameter to is used to provide a balance between 

smoothness and interpolation. When to = 0, RBF is forced to pass through the data 

points. When u > 0, RBF is pulled close to the data points, but not forced to pass 

through them. 

• Iso-value 

Iso-value is what we use to extract the surface with all voxels in the same intensity 

value. As shown in Figure 3.1, an edgel locates where there is a sharp intensity 

change. This should be a value between a low intensity value of the background and 

a high intensity value of the bright boundary of the object. 
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• Resolution 

Resolution is the unit of the 2D grid we use to sample the RBF and construct the 

mesh. The smaller the resolution is, the more detailed the mesh is, but that also 

means a large total size and therefore greater computational time to compute and 

visualize the surface. 

The following are the results of our experiments on both artificial objects and human 

subjects. In all the experiments an iso-value of 55 (between the background intensity level 

of approximately 15 and the boundary intensity of approximately 130) is used. 

7.1,7.2 and 7.3 show the results of reconstruction from artificial phantoms. Figure 

7.4 and 7.5 are reconstructed surfaces from a real human hand. On each of these figures, the 

top left picture is the real object, the top right is the point cloud of the interpolation points, 

where a different color stands for a different intensity value of the corresponding pixel in the 

ultrasound image. The bottom image is the reconstructed surface from interpolation points 

with our direct surface extraction method. All figures are derived from approximately 100K 

interpolation points. 

Results from varying the different parameter settings are given in the following 

figures. Figure 7.6 shows results from different data set size. Figure 7.7 shows the results 

with different levels of smoothness. The effect of different interpolation points ( "high 

resolution" and "low resolution" ) is compared in Figure 7.8. Figure 7.9 shows the ability 

of our method to extract the different surfaces from one single data set. 

Table 7.1 shows some statistics of our experiments on a 1GHz Intel Pentium 3 with 

1GB RAM. The column labelled "Original Number of Points" shows the size of the point 

cloud and the column labelled Number of Points is the number of points after a random 

selection with the percentages of random selection. In addition to varying the number of 

points, we also compare results from different parameters, such as fitting accuracy, smooth

ness and resolution. 
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(c) Surface from 100K interpolation points 

Figure 7.6: Comparison of different number of interpolation points. 
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(c) large smoothing (ui = 9) 

Figure 7.7: Comparison of different levels of smoothing. 
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(a) high resolution 0.5 mm (b) medium resolution 1 

(c) low resolution 2.5 mm 

Figure 7.8: Comparison of different surface resolutions. 
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7.2 Discussion 

These results represent the first time that RBF functions have been fit to non-regular 3D 

ultrasound density data for surface extraction. In all the experiments, the extracted surface 

clearly resembles the actual surface. 

In all our experiments, because the cross-section of objects is larger than the field of 

view of the ultrasound probe, several sweeps are required to cover the whole object. There 

are usually some parts that are misscanned, such as the wing of the toy duck (Figure 7.1(b)), 

body parts of salmon and goldfish (Figure 7.2(b) and 7.3(b)), and palms of the human hand 

(Figure 7.4(b) and 7.5(b)). RBF functions filled the gaps between the sweeps and along the 

boundary in a single image (especially where the wing attaches to the torso). This is true 

for both the low resolution (Fig. 7.6(a)) and high resolution (Fig. 7.6(c)) results. Notice 

that the lower resolution result loses some small surface detail, but as expected, retains the 

larger features. 

Figure 7.6 represents the results from a different number of interpolation points. 

Retaining more than 100K points only serves to highlight the speckle (noise) on the sur

face, although retaining less than 10k points starts to remove surface features. Therefore in 

practice, this must be done carefully; this could cause the surface to be artificially trimmed 

more than what would be acceptable in clinical practice. 

Figure 7.7 shows the results with varying smoothness. One purpose of smoothing 

is to reduce the effect of speckle, and this is easily implemented with the RBF formula

tion. The speckle size is a function of the spatial resolution of the ultrasound images. The 

medium level of smoothing is chosen to minimize speckle without losing spatial resolution. 

The axial resolution is approximately 0.4mm (calculated using a two cycle pulse from the 

7MHz probe l), and the lateral and elevational resolution are approximately 1 — 2mm (de

pending on the proximity to the focal point). The medium level of smoothing also avoids 

aliasing. Notice that the medium smoothing removes the speckle with a minimal loss of 

'Wavelength A = c/f, where c is the typical ultrasound propagation speed in human tissues, 
which equals to 1, 540m/s [28], and / is the frequency of ultrasound probe. 
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other features, such as the detail of the features in the wings. A large amount of smoothing 

starts to remove these small features. 

Surfacing results with different resolutions are compared in Figure 7.8. The higher 

resolution surface retains more detail, but also requires more storage and memory for ren

dering. This should be carefully traded off for individual applications in practice. 

Figure 7.9 shows the ability to extract multiple surfaces from a single volumetric 

ultrasound data set. Here, we attempt to extract the inner surface in addition to the outer 

surface (from Fig. 7.1). Since the toy duck is made from a material with consistent thick

ness, the inner surface is expected to be similar to the outer surface. Fig. 7.9(b) confirms 

this is the case. 

Shown in Table 7.1 are results of our experiments with different settings. The first 

three experiments show the results for the artificial phantoms, all with approximately 99K 

points, a fitting accuracy at 0.1mm, and smoothness u = 0. The fitting times are all close 

to 1120 seconds. Since the fast RBF method computes only approximate values, the ac

curacies achieved are generally poorer than the fitting accuracy. Their surfacing times are 

different because they have a different data range. With the same resolution, the larger the 

data range is, the greater number of triangles the mesh has. 

In the fourth and fifth experiments, we compared the results using a different num

ber of center points. Experiment No.4 uses only 2.5% of the original data points, and 

experiment No.5 uses 25%. We can see that the smaller data size takes less fitting time, 

which still follows the expected 0{N log N) complexity. The small data size also produces 

a smaller size of RBF coefficients, and therefore, takes less time for surfacing. 

Experiments 5, 6 and 7 compares the effect of different fitting accuracies. A higher 

accuracy (smaller value) requires more computation. The evaluation accuracy is always 

worse than the fitting accuracy. 

Results using different values of the smoothness parameter are shown in experi

ments 8, 9 and 10. We can see that smoothing also takes some extra computation time. 

That's why in experiments 9 and 10 the computation time takes more than 0(Nlog N). 
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We also compared different resolutions for surfacing in experiments 5, 11, and 12. 

A smaller resolution means fewer sampling points, and accordingly, lower surfacing time 

and number of vertices. In general, surfacing time is determined by the number of interpo

lation points, surfacing resolution, and the data range. 

Notice that there are still some problems. First, the presence of ultrasound speckle 

— inherent to all ultrasound images — results in a bumpy surface. Second, misalignment of 

some of the ultrasound images creates vertical creases in the surface. The second problem 

is peculiar to the type of 3D ultrasound used in this study. Freehand ultrasound relies 

on external position sensors to align the images. It also takes many seconds to perform a 

sweep of an object. Any miscalibration of the systems or movement of the object during the 

sweep results in misalignment of the images. For the duck phantom, miscalibration is the 

dominant error, but the hand examination contains both object motion and miscalibration. 

Improvements to calibration will likely reduce the misalignment significantly. Moreover, 

ultrasound scanner manufacturers are now researching 3D ultrasound acquisition systems 

with two main differences from freehand systems: electronic (non-mechanical) automatic 

scanning in 3D and real-time 3D acquisition rates. The automatic 3D scanning eliminates 

the miscalibration problem with external sensors, and the faster acquisition rate (up to 16 

volumes per second) reduces object motion error. Therefore, these sources of error can be 

expected to be eliminated in future 3D ultrasound systems. 

It is worthwhile to compare our method to alternative methods. For example, the 

following is an approach with 3 steps: 

1. Segment 2D images for the boundary; 

2. Triangulate directly on the convex hull of these points; 

3. Apply a smoothing algorithm. 

This approach is often used in 3D surface extraction when the data is already in an irregularly-

spaced set of images [3, 54, 19]. However the first step of extracting the 2D boundary 

points is non trivial and typically involves a loss of detail. Moreover, solving the 3D sur-
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face extraction problem by estimating the 2D boundary discards useful 3D information 

from neighboring images, thus 2D boundary extraction is an even more difficult task. For 

reasons explained in Chapter 1, automatic extraction of boundary points is unlikely to be 

successful and reliable in most applications. The RBF's working directly on boundary and 

non-boundary pixels perform more robust segmentation. Finally, the RBFs have shown 

an ability to bridge gaps and holes in the datasets with smooth and reasonable surfaces. 

Bridging large gaps is difficult with traditional surfacing methods. 
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Chapter 8 

Conclusion and Future Work 

8.1 Conclusion 

We have shown, for the first time, how to represent a set of semi-structured ultrasound 

pixel data as a single function. From this, we are able to extract surfaces without first 

reconstructing the irregularly spaced pixels into a regular 3D voxel array. We have shown 

that the pixel data can be represented by a single function by using fast fitting and evaluation 

techniques for radial basis functions. We adapted recent advances in fast RBF's to the 

special problems encountered in medical 3D ultrasound. The process is demonstrated on 

artificial phantoms, as well as on human skin surfaces obtained in vivo. 

A new implementation of a 3D freehand ultrasound acquisition system is introduced 

in this thesis. An open structured PC-based ultrasound machine is used as the image cap

turing device, and a binocular Optotrak vision based tracking device is used to register the 

spatial orientations of the obtained images. 

We also demonstrated in this thesis, the accuracy of the N-wire calibration method 

for determining the transformation matrix from the ultrasound image coordinate system to 

the probe coordinate system. With our multiple pass method, more reference points are 

taken into consideration, and the final results are acceptable for our applications. 

Although we extracted surfaces from water-tank experiments, the more general 
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problem of extracting organ or bone surfaces from a wide variety of 3D ultrasound scans 

is still unresolved. Our use of RBF's has resolved some issues such as resolution loss in 

voxel array reconstruction and bridging gaps. However other artifacts, such as speckle and 

shadows still affect the quality of the results. 

Even with the fast RBFs method, computation time and storage requirements are 

still a limitation in our direct surface extraction method for practical clinical applications. 

However according to Moore's law, the performance of computers is expected to double 

every 18 months, so it is feasible that computational time and storage requirements will 

eventually become manageable. 

A limitation that RBF fitting and isosurfacing shares with other surface extraction 

methods is the fine-tuning of the various parameters. In our case, we selected the form of 

the RBF and adjusted the smoothing or fitting accuracy, level of center reduction, the confi

dence we have in selecting the input pixels, and the resolution of the surface and the surface 

isovalue. Fortunately, in these experiments, the resulting surfaces are not very sensitive to 

these parameters, although they need to be set manually. 

8.2 Future Work 

In future work, we expect to concentrate on the following areas: 

• Larger data sets with improved resolution and calibration. As we discussed in pre

vious chapters, large data sets certainly retain more surface features, though at the 

expense of greater computation times. In addition, further improvements to calibra

tion will significantly reduces the misalignment of the results, so that reconstructed 

surfaces are more accurate. 

• Extraction of both water-skin boundaries, as well as soft-tissue and bone boundaries. 

We demonstrated in Chapter 7, the ability to extract multiple surfaces from a single 

data set. It is certainly feasible to construct surfaces of internal objects, such as a 

bony structure together with a skin surface. 
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Applying our method on other medical imaging modalities, such as CT and MR. CT 

and MRI images normally have a better image quality (higher resolution and less 

noise). 

Comparing it to existing techniques. Several other currently available methods are 

introduced and compared in Chapter 2. A set of tests can be performed to compare 

conventional methods with the RBF method on identical data sets. 
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