
Models of 2D-Scene Complexity: A Look at the
Intrinsic Complexity of Scenes

by

Mark R. Sauer

B.Sc. (Computer Science and Statistics)

University of Toronto, 1997

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
August 1999

© Mark R. Sauer, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of (jT>fM rjT Sc (>^
The University of British Columbia
Vancouver, Canada

Date J D - S e p ^ - / ? ? 7

DE-6 (2/88)

Abstrac t

The worst-case time and space complexity of many algorithms in computational

geometry is high when expressed as a function of the input size. This can make

algorithms seem inefficient in general. Usually, however, the algorithm will not run

with identical times on every input of a given size. Intuitively, inputs of higher-

complexity cause higher run-time and/or space costs in an algorithm. The size

of an input is only one factor contributing to the complexity of an input. As such,

input size is not always an adequate predictor of the behaviour of an algorithm. This

thesis looks at models capturing the intrinsic complexity of a scene of objects. The

models identify quantifiable properties which can be used as additional parameters in

the time and space complexity of computational geometry algorithms. In particular

properties of two-dimensional scenes will be explored. One problem is then looked at

and analyzed with respect to the new models: the Binary Space Partition problem.

Under the assumption that an input scene is considered to be simple by our most

general model, the analysis reveals that such a scene will have a linear sized binary

space partition.

ii

Contents

A b s t r a c t i i

C o n t e n t s i i i

A c k n o w l e d g e m e n t s v i

1 I n t r o d u c t i o n 1

1.1 Overview of the Properties 7

1.1.1 Fatness . 7

1.1.2 Density 9

1.1.3 Guarding Sets 10

1.1.4 Clutteredness 11

1.1.5 Simple-Cover-Complexity 12

1.1.6 Weighted Cover Complexity 14

1.1.7 Note on Generalizations 17

2 M o d e l s o f S c e n e C o m p l e x i t y 20

2.1 Fatness and Density 21

2.1.1 A Scene of Fat Objects has Low Density 24

2.2 Approximation by Sets of Points 25

iii •

2.2.1 Guarding Sets 26

2.2.2 Clutteredness 29

2.2.3 A Scene with Low Density is Uncluttered 31

2.2.4 On to Linear-Sized Guarding Sets 34

2.3 Simple Cover Complexity 34

2.3.1 Relationships to Previous Models 36

2.4 Picture of Relationships Between Models 39

3 Weighted Complexity Models 41

3.1 Definitions 47

3.2 Disc Based Models 50

3.2.1 Expanded Disc Complexity 51

3.2.2 Relationships 52

3.2.3 Unexpanded Disc Complexity 54

3.2.4 Relationships 54

3.2.5 Complexity of Computation 55

3.3 Quadtree Complexity 57

3.3.1 Quadtree Origin Differences 62

3.3.2 Relationships 68

3.3.3 Low Expanded Disc Complexity Implies Low Quadtree Com

plexity 72

3.3.4 Complexity of Computation 78

3.4 Weighted Complexity of Tightly Packed Parallel Lines 83

3.5 Application: Binary Space Partitions 90

3.5.1 Binary Space Partitions of Linear Size 90

3.5.2 Previous Results 91

iv

3.5.3 Relation to Quadtree Complexity 93

4 Conclusions 98

4.1 Possible Future Work 101

Bibliography 103

v

Acknowledgements

First and foremost I would like to thank my supervisor, David Kirkpatrick, for his

unending patience, advice and encouragement while I was writing this thesis. He

and I had many hours of discussions about the material in this thesis. I learned a

great deal from these discussions. They ultimately created this thesis. I would also

like to thank my girlfriend, Lauri Gale, for her constant love, encouragement and

support. Additionally, my friend Jan van der Valk and my parents deserve many

thanks for their love and support.

M A R K R . S A U E R

The University of British Columbia

August 1999

vi

Chapter 1

Introduction

One very important aspect of computer science is the study of the computational

complexity of various problems. In doing this, one usually begins with a statement

describing the input to the problem and the output expected. Different methods by

which the problem would be solved by a particular model of a computer are analyzed,

leading to a number of upper and lower bounds for the time and space complexity

of the problem. In doing this analysis, the worst possible, most complicated input

is often looked at for determining the output from the input. Focusing on the worst

case scenario ensures that regardless of which input is supplied to the algorithm,

it will not be worse than the worst case input. Functions based on the input size

are determined that give upper and lower bounds on how much time and space

the algorithm will need if presented with the worst case input of a certain size to

compute the output.

There are many problems for which a worst case analysis leads to a very

accurate description of how hard the problem is to solve, regardless of the input

presented of a given size. As an example of such a problem, suppose you are given

1

a list of points in the plane, and you want to compute their bounding box, which

is the smallest axis-aligned box that contains all of the points in the list. Assuming

that no properties of the input list are known, it is impossible to determine the

bounding box without reading the entire input. This requires a linear worst case

lower bound on the running time of any algorithm solving this problem. This will

be true regardless of the input list supplied to the problem solver (the algorithm).

However, there are also problems where the bounds determined by a worst

case analysis are not very accurate for a large class of size n inputs. That is to

say that the algorithm will perform faster or use less memory than predicted by

the worst case lower bound on time and/or space complexity for a potentially large

number of size n inputs. An example of this is the quicksort algorithm for sorting

an array of n objects. A worst case analysis of this algorithm shows that it requires

©(n 2) time to sort the array - seemingly slower than a O(nlogn) sort like heapsort

or mergesort. However, the quicksort algorithm is one of the most popular sorting

algorithms in practice because it sorts faster than other comparison-based sorting

algorithms. To understand why this is the case, we have to look more closely at

the analysis of the quicksort algorithm. When doing this, we discover that the

algorithm gives bad behaviour on a very specific type of input, one which causes a

very unbalanced pivot point on most iterations (we assume the reader is familiar with

the quicksort algorithm, and refer the reader to Gormen et al. [5] or any other good

introductory algorithms text for more details on the algorithm). It can be shown

that for any constant k > 0, all but O(^r) of the n! possible input permutations

yield an 0(n\ogn) running time. The majority of all possible length n inputs to

the quicksort algorithm cause it to give 0(nlogn) behaviour, where the hidden

constants are quite low. The worst case analysis for this algorithm does not reveal

2

much about how efficient the algorithm is on most input arrays.

Suppose you have an algorithm and one input to that algorithm, and you

are interested in obtaining a lower bound on how long the algorithm will take on

that input. In this case, your best bet is to look at the worst case lower bound

on the running time for the algorithm. This will give a guarantee (provided that

the input size is large enough), that the algorithm will do no worse than what the

lower bound indicates. If, however, you are planning on running a long stream of

inputs of a given size through an algorithm, the worst case bound may be an overly

pessimistic measure of the run time needed to process the entire stream of inputs.

There are three popular algorithm analysis techniques, based on the input size, that

give a more accurate picture of the behaviour of such an algorithm on a long stream

of inputs. The techniques are average case analysis, expected case analysis and

amortized analysis.

Average case analysis is a special case of expected case analysis. In average

case analysis, every input to an algorithm of size n is considered to be equally likely.

This could be because of the nature of the input process creating the inputs, or

because the algorithm itself chooses to look at the data in a random order as in a

randomized algorithm. The average case running time for an algorithm is computed

as an average over the entire set of size n inputs of the running time needed by the

algorithm on each input.

Expected case analysis generalizes average case analysis. The difference is

that whereas average case analysis places a uniform distribution across the size n

inputs, expected case analysis allows an arbitrary distribution, known as the input

model, to be placed on the inputs. The input model is a statistical model that assigns

probabilities to each input in the set of possible size n inputs. These probabilities

3

tell us how often each input will occur over an infinitely long stream of inputs to the

algorithm. Once an input model has been selected, the expected running time for

the algorithm is computed by first determining the running time of the algorithm

for all inputs, and then by taking the statistical expectation of all of these running

times (weighted by the input model).

Average and expected case analysis give an idea of what to expect when

an algorithm is run repeatedly over a long sequence of inputs. Any one input

may have bad performance, but over a large number of inputs to the algorithm,

the measured average performance will tend to the expected running time for the

algorithm, assuming that an accurate input model has been chosen. That is to

say the expected running time of the algorithm gives a probabilistic bound on the

amount of time needed to run the algorithm on a series of inputs of a given size. As

the size of the input series increases, the probability of the bound holding increases

(this follows from the law of probability).

In amortized analysis, the complexity of a series of n operations is looked

at (for say maintaining a certain data structure). Amortized analysis is useful for

algorithms whose computational complexity may vary depending on the current

state of the data structures the algorithm is maintaining. Many data structure

maintenance algorithms exhibit the behaviour that they have a small running time

for a sequence of operations, then after a number of these inexpensive operations,

a more expensive operation with a longer running time occurs. Amortized analysis

looks at the ratio between the cheaper operations and the expensive operations to

see if the extra cost of the expensive operation can somehow be explained or paid for

by the number of cheaper operations performed before an expensive operation. A

way of thinking about this is that each operation performed costs a certain amount

4

of money to perform. The amount of money needed should correlate to the running

time of the operation. Then for each operation to occur, a certain amount of money

is supplied to perform each operation. Now, if the cheap operations cost less than

the amount of money given to the algorithm to perform its work, the algorithm

saves some money. This money can then be used to pay for future operations. That

is, if at some point an expensive operation comes up that needs more money to run

than is being supplied to the algorithm, the algorithm can use its savings to pay

for its operation. In amortized analysis, one tries to determine the smallest amount

of money that needs to be paid for each operation so that the system always has

enough money to pay for any action performed by the algorithms. This amount of

money is the amortized complexity per operation of the algorithm.

An example may help at this point. Suppose you want to maintain a list of

elements, and you will be adding elements to the list from time to time. You do not

want to wait a very long time to add elements into the list, and you also do not want

to waste a lot of memory having empty slots available for future insertions. You

are happy if there are never more open slots available than items in the list. A list

with these properties can be maintained by starting with one empty slot, and then

whenever the list fills up, doubling the size of the list, copying over the old list to the

new memory. Each insertion to the list will be cheap if the memory is already there,

say it costs one dollar. The expensive operation is when the old list must be copied

over to the new list, say it costs n dollars (where n is the current number of items

in the list). This doubling of the list size will always occur after n/2 elements have

been added into the list from the previous list doubling operation. Thus if we give

3 dollars per operation, each cheap operation will be able to save 2 dollars. When

the list doubling needs to take place, n/2 * 2 = n dollars will be saved - enough to

5

pay for the expensive operation. Thus the amortized complexity of this algorithm is

3. In this case we would say that the algorithm has constant amortized complexity.

It is noteworthy that the worst case complexity of this algorithm is n, since the

worst case cost of a single step would be one in which the list copy operation was

performed. Looking only at the worst case complexity of an operation would lead

us to conclude that the algorithm would require 0(n2) steps for a sequence of n

insertions to the list. However, the amortized analysis shows that only 0(n) steps

are needed for a sequence of n insertions to the list.

A l l of the analysis techniques discussed so far are based on input size. In

every case a function is computed based on the input size that places a bound on how

much time and/or space an algorithm will need to complete its task. While these

bounds are accurate, better bounds can be achieved by taking a look at additional

properties of the input. In many problems, the complexity of dealing with a certain

input depends on some property of the input. An example of this is so-called Jarvis

march algorithm for computing the convex hull of a set of points in the plane. This

algorithm starts with a point known to be on the hull (the left-most point in the set),

and then for each point on the hull, it scans the remaining unclassified points to find

the next point on the hull. The exact details of the algorithm and the convex hull

problem are beyond the scope of this thesis, and refer the reader to Cormen et al. [5]

for more details, but the point is that the analysis of the algorithm indicates that it

runs in time 0(nh) where h is the number of vertices on the convex hull. This is so

because 0(n) vertices are scanned at each convex hull vertex. Analyzing the Jarvis

march algorithm only as a function of the input size would lead to a 0(n2) run time

bound. It is well known that for a uniform distribution of n points in the plane,

the average number of points on the convex hull of the points is 0(logn). Because

6

of this fact it is concluded that the Jarvis march algorithm will on average perform

with complexity 0(nlog n); this shows a significant improvement over worst-case

analysis. This is the sort of improvement that is possible by taking into account

properties of the input to an algorithm. In this thesis, we look at properties which

attempt to capture the intrinsic complexity of two dimensional scenes of objects.

The intent of these properties is that they should improve the analysis of geometric

algorithms, giving more accurate bounds on the time complexity of algorithms.

The properties should represent natural characteristics of a scene. They

should be quantifiable so that the time complexity of algorithms can be related

to the property. When discussing the properties, we will talk about models of

scene complexity. This is just a more formal way of talking about the technique of

measuring the complexity of scenes with respect to a particular property. The goal

of the models is to explain the differences in the behaviour of algorithms on scenes

of the same size.

1.1 Overview of the Properties

We will now give an overview of the properties that we look at in the remainder of the

thesis. In this thesis we will mainly be dealing with results about planar scenes. It is

our hope to give the reader a feeling for the intuition behind the properties without

getting into the formal specifications of the properties. The formal definitions can

be found in the discussion in chapters 2 and 3.

1.1.1 Fatness

What are properties of a scene that make it simple? This seems like a simple enough

question. To answer it, we first look to the literature. A number of authors have

7

Figure 1.1: A scene consisting of fat objects, with no long and skinny parts. Note
that small objects can be placed close to large objects.

talked about the property of fatness of objects, e.g. [1, 2, 13, 19, 9, 17, 20]. The

basic idea is that a scene is "simple" if it is composed of disjoint fat objects, which

are objects that lack long and skinny parts. Very roughly, the fatness of an object

tells you how close the object is to a circle. The fatness of a scene is the fatness of

the least fat object in the scene, as this object is the limiting factor in the model.

Because each object is fat in a scene of fat objects, the nature of the interactions

between a given fat object with other close objects is limited and rather simple. See

figure 1.1 for a picture of a scene of fat objects. Note that the area between adjacent

objects is simple and not too complicated to describe. This model does not forbid

scale differences between the sizes of adjacent objects either; large objects can be

adjacent to small objects.

Putting these observations together gives us some insight into the real un

derlying characteristic of a scene that a scene of fat objects gives you. Looking at

such scenes carefully reveals that the number of objects of comparable size in the

"neighbourhood" of any object in the scene is limited. That is to say that although

a given object may have a large number of small neighbours, it cannot have more

than a constant number of large neighbours. Suppose you are looking at the scene

through a disc shaped window. Wherever you place this window over a scene of

fat objects, you will discover that there are never more than a constant number

of objects of size comparable to the radius of the window through which you are

looking. It is this property of uniformity at any scale that makes a scene of fat

objects simple.

1.1.2 Density

The density model takes the property observed for scenes of fat objects and makes

it the defining characteristic. That is to say that the model considers a scene to

be simple if each object has a small number of comparable size neighbours. More

precisely, the density model requires that wherever you place your disc window

over the scene, it will intersect no more than a constant number of objects of size

comparable with the radius of the window. The density of a scene is the maximum

number of objects that can be intersected by a disc window counting only those

objects that have radius larger than or equal to the radius of the window. The

density model states that a scene is not complicated if its density is constant.

The power that this model has over the fatness model is that now the shape

of the objects is no longer restricted. Rather than being only a function of the shape

of the objects, it is now a function of the shape and placement of the objects. See

figure 1.2 for a comparison of a scene of fat objects, and a similar scene that has

low density. Because no restriction is placed on the shapes of objects, it is easy

to see that this model is more general than fatness. For some applications, this

9

Figure 1.2: On the left is a scene of fat objects. On the right is a similar scene that
has low density.

uniformity of the density across the scene is quite useful. For other applications, it

can actually be a drawback in the following sense. Consider a scene that is rather

sparse throughout most of the scene, but has a single region where the object density

is high. The density of the scene would then be the density of this single region. This

parameter would overestimate the actual density of most of the scene. Accordingly,

some algorithms will operate efficiently when supplied an input containing a small

number of dense regions (up to a certain extent); in such a case the density of the

scene fails to accurately predict the algorithmic behaviour. An example exhibiting

this behaviour is the Binary Space Partition problem, which we look at in more

detail in section 3.5 of chapter 3.

1.1.3 Guarding Sets

The next model states that the complexity of a scene of objects relates to the

number of points needed to provide a good approximation of the scene. A set of

points provides a good approximation of the scene if wherever a box intersects more

10

than a constant number of objects from the scene, the box also intersects at least

one point. Thus a sufficient guarding set is a set of points that provides a good

approximation to the scene. The points in the set are the guards. This model

appeared in a paper by de Berg et al. in [10], and is more general than the previous

two models.

The idea of determining the minimum size guarding set for a scene differs

intuitively from the previous notions in that it is a more abstract way of measuring

the complexity of a scene. Whereas before we were measuring fatness of objects,

or counting objects in windows, we now have to consider different numbers of and

locations of points to see if they will provide a sufficient sized guarding set. Finding

a minimum sized guarding set for a scene is probably hard to do. However, most

of the time, we do not need to know the minimum sized guarding set, we just

want to know, say, if a linear sized guarding set exists for the scene. This can be

done for certain classes of scenes. We will see one such method in our next model,

clutteredness.

1.1.4 Clutteredness

A special case of the guarding set model is the clutteredness model. This model asks

whether the bounding-box corners of the objects in the scene provide a sufficient

guarding set. The clutter factor of the scene is the maximum number of objects that

is permitted to intersect a square that does not contain any bounding-box corners.

This model was actually introduced before the guarding set model in a paper by de

Berg. [6]. It is less general than the guarding set model, but fairly straightforward

to compute. Even though a number of problems have been analyzed with respect

to this model, the model has some unsatisfying characteristics. One drawback is

11

that a scene with a certain clutter factor can have its clutter factor lowered with

the addition of new objects - this would happen if the new objects introduced to

the scene caused bounding box corners to appear in a region with a high clutter

factor. This is not as bad as it seems at first glance, since if we are relating the

computational complexity of a problem to the clutter factor of the input, having the

clutter go down with a new object has the effect of improving our analysis of the

problem on the larger scene. Nonetheless, it seems, more natural to have a model

that is monotonic in this, sense - i.e. that is a scene's complexity can not be made

to go down with the addition of objects. If a scene's complexity can go down with

the addition of objects, then it seems that somehow the original scene was not as

complex as was measured by the property. It is this aspect that we find unnatural

about this model.

1.1.5 Simple-Cover-Complexity

The final model from the literature, looked at in this thesis, is known as simple-cover

complexity. This model first appeared in a paper by Mitchell et al. [14] and was

modified by de Berg et al. [9] to a form close to the definition used here. The idea in

this model is that a scene is simple if it can be covered by an arrangement consisting

of a small number of simple hyperdiscs. A hyperdisc is considered to be simple if it

intersects a constant number of objects from the scene. It turns out that this model

is identical to the guarding set model in the plane [10]. The thinking behind this

model is that the number of regions in the scene, in some decomposition, that do

not contain more than a constant number of objects can be related to the amount

of work necessary to perform certain algorithms.

As an example, consider the ray shooting problem. In this problem, you are

12

given a scene of disjoint objects in two or three dimensions, the location of the start

of a ray, and the direction that the ray is pointing. You want to know which object

face the ray first intersects in the scene. One way of doing this would be to first do

some preprocessing on the scene that would partition the scene into a number of

regions that, individually, do not intersect too many objects. Once this is done, the

ray shooting query would be performed in two steps. First the region containing

the origin point of the ray would have to be located. To determine which object

the ray intersects, the constant number of objects intersected by the region would

have to be looked at. If none of the objects in the first region intersect the ray, then

the next region will be selected by determining which region the ray enters. A l l of

the objects intersecting that region would then have to be checked. In this way,

eventually the object face first intersected by the ray will be detected. If it does not

hit any objects, the algorithm will terminate because it will detect when the ray goes

beyond the boundary of the partitioning of the of scene. The performance of this

algorithm is dependent on how long it would take to locate the region containing the

origin of the ray, and the number of regions that the ray passes through before the

ray hits an object. Since only a constant number of objects must be checked in each

region, the performance of the ray shooting query algorithm is dependent in a linear

fashion on the number of regions the ray passes through (which is the simple-cover-

complexity of the ray) plus the time needed to find the origin of the ray, which,

using the algorithm of Mitchell et. al. [14], can be done in 0(\ogR/r) time (where

R is the diameter of the scene of objects and r is the radius of the largest simple

hyperdisc intersecting the origin of the ray). The amount of storage needed for

this solution is proportional to the simple-cover-complexity of the scene. Previous

algorithms for this problem required 0{y/n\ogn) query time to have a linear sized

13

data structure [4, 12], and to get O(logn) query time all solutions require Q(n2)

space [14].

1.1.6 Weighted Cover Complexity

While the aforementioned models do represent properties of complexity in scenes,

they do not go far enough. Intuitively, it seems that a scene should not be seen

as complicated because there is one region of high complexity within the scene.

Yet, most of the aforementioned models possess this property. One highly complex

region in the scene will have the effect of blowing up the apparent complexity of

the whole scene for most of these models; this remains true even if the complicated

region represents a very small fraction of the area covered by the scene. Although

guarding sets and simple-cover-complexity do not directly suffer from this problem,

they do tend to provide a high estimation of the complexity of a scene consisting

of set of n parallel lines. These observations have led us to find some new measures

of scene complexity. From this point on, we look at a scene of objects as if it were

composed of line segments. In this way, it makes sense to talk about the endpoint

of an object, as this is just the endpoints of the line segments composing the scene.

These endpoints will also be referred to as representatives of the objects in the scene.

Our new models are similar to the simple-cover-complexity model in that

they are based on a cover of discs or quadtree cells. However, our models differ in

their restrictions on the size of the covering objects, and in the way each covering

disc or quadtree cell contributes to the complexity. If an object intersects one of the

covering cells, then it must either pass totally through the region, or end in that

region. If the object passes entirely through a region, it adds to the complexity of

the scene by partitioning the region into two sections. If, on the other hand, the

14

object ends in a region, it adds to the complexity of the scene by causing complicated

interactions in the region. As a result, in our models we will allow any number of

objects to pass entirely through a covering region, but we will bound the number of

objects that end within a given region. Since the objects that pass entirely through

a covering region have the effect of dividing the region into two pieces, we want

to count the number of such objects throughout the scene; we define the weight

of a covering region to be the number of objects passing entirely through a region.

Adding up the weights of each covering region gives the weighted cover complexity

of the scene.

These weighted cover complexity models better predict the behaviour of some

algorithms on scenes with a small number of regions of high complexity. Figure 1.3

is an example of such a scene that has low complexity under one of our weighted

models, but possesses 8 parallel lines, a structure which would cause the scene to

have high complexity under the previous models. We look at a problem in section

3.5 of chapter 3 that can be analyzed with respect to our weighted cover complexity

models. Doing so improves its analysis.

Weighted models differ in the shape of the covering object used to cover the

scene. They differ in how complex they perceive various scenes to be. In this thesis,

we look at disc covers and quadtree covers.

The disc cover is the natural extension of the simple-cover-complexity model

into the weighted framework. An unfortunate problem that this model shares with

the simple-cover-complexity model is that it seems to be hard to compute what the

disc complexity is for a scene, as the weighted disc cover leading to the minimum

complexity must be found.

To deal with the computability problems of the weighted disc cover, another

15

Figure 1.3: The following is a scene that would have high simple cover complexity,
but for which it has low quadtree complexity. Each cell in this decomposition is
permitted to have 4 corners in it.

16

cover type is used - the adaptive quadtree decomposition of the scene. In this

cover, a quadtree is formed so that each cell has no more than a constant number of

representatives. Quadtree cover complexity deals well with scenes that have clusters

of object representatives in a given area. As an example of such a scene, see figure

1.3. In the figure, the quadtree algorithm quickly shrinks the cell size to the level

of the endpoints. This prevents too many cells from intersecting the densely packed

parallel lines. Even though the scene has relatively small quadtree cover complexity,

the weighted disc complexity of the scene is arbitrarily high. We discuss the reason

why this is the case in section 3.4.

1.1.7 Note on Generalizations

It should not be taken that the ultimate goal of this research is to find a model that

considers the least scenes to be complicated without any proof that scenes deemed

complicated are indeed hard to deal with by some algorithm. We are studying the

relationships between various models. One relationship is the notion of generality

which is defined as follows: model A is said to be more general than model B if

A assigns a lower complexity to more scenes than B where each low complexity

scene in B retains its low complexity in A. Focusing on more general models is

interesting only if the new models provide better insight into the characteristics of

scenes that tend to be easier to deal with by algorithms. In this way, a more general

model should also be a better predictor of the actual behaviour of some existing

algorithms.

The models mentioned form a hierarchy where the models get progressively

more and more general. It is noted here that this does not imply that all problems

that run well when given a low complexity scene according to one model, say fatness,

17

will necessarily run well when given a low complexity input according to another,

more general model, say unclutteredness. In fact the opposite is sometimes true.

Take the example of the motion planning problem for bounded-reach robots.

Keeping things simple, a bounded-reach robot is one which is bounded by how far

it can reach from a reference point on the robot. The robot can be either the free-

flying type, a robotic arm, or any other type, so long as it satisfies the bounded

reach criterion. The motion planing problem asks how easy it is to determine a

path from point A of the robot to point B (in the configuration space), such that

the robot does not crash into any of the obstacles. The computational complexity

of the free space of a scene of objects determines how difficult the motion planning

problem is to solve. The worst case situation for a robot with / degrees of freedom

is a complexity for the free space of Q(n^). However, if the scene consists of fat

obstacles or has low density, the complexity of the free space is Q(n) [18], which is

an improvement for this class of scenes. De Berg et al. [10] have shown that in two

dimensions, the complexity of the free space of an uncluttered scene is 6 (n 2) , which

is an improvement over the worst case, but not quite as small as is the case for low

density scenes. The analysis of the free space complexity for a bounded-reach robot

shows that generalizing a complexity model sometimes causes algorithms to operate

less efficiently under the more general model.

This problem reveals one more point about the usefulness of a model. New

algorithms can exploit models to improve their performance on scenes that are

measured to be uncomplicated by those models. It is productive to use the most

general model possible that does not underestimate the complexity of the scene

relative to the problem being solved.

The next two chapters of this thesis will look at the models described in

18

much more detail . The specific results to back up the above claims wi l l be referred

to, or shown in full detail . The final chapter wi l l take analyze an application from

computat ional geometry using this the above models. We wi l l see that we can better

predict the complexity of the problems mentioned by using the quadtree complexity

of the input scene as a parameter to the analysis.

19

Chapter 2

Models of Scene Complexity

In this chapter we look at and expand upon a number of models of scene complexity

mentioned in the introduction. For each model, we give its formal definition and

show its relationships to previous models that have been described. For some models,

we look at some problems that it has helped to analyze. The models we look at are

fatness, density, guarding sets, clutteredness, and simple cover complexity. Before

starting, we need to give some definitions.

In this chapter we will view a scene S as a set of n disjoint bounded ob

jects. We are mainly dealing with properties about scenes that are contained in

two dimensional euclidean space in this thesis, although we will quote results that

have been proven to hold in higher dimensions in their stronger form. Sometimes

we will view an object as a polygonal shape, and at other times as a collection of

line segments - the context of the discussion should make this distinction clear. The

bounding box of an object O, denoted bb(O) is the smallest axis aligned box con

taining O. The minimally enclosing hyperdisc around an object O, denoted meb(0)

is the smallest hyperdisc containing O. The size of an object is the radius of the

20

minimally enclosing hyperdisc around the object. The radius of an object is the

same as its size. A set of representatives of an object O is a finite set of points that

will represent O; these representatives could be the object's bounding box corners,

endpoints or any other set of related points and would depend on the model used.

2.1 Fatness and Density

The first model of scene complexity that we will look at is known as fatness. It

is a parameterized model that measures the minimum fatness of all objects in the

scene. The fatness of an object represents, informally, how close the object is to

being a disc. Intuitively, a fat object is one that does not contain any long and

skinny parts. The fatness of the scene is the fatness of the least fat object. A scene

that consists of objects of a certain minimum fatness satisfies a nice property that

limits the number of neighbours of similar or larger size any object in the scene can

have. The precise definition of the fatness of an object O is given as follows1:

D e f i n i t i o n 1 (v a n d e r S t a p p e n [17]) Let O C ~Ed be an object and let 3 be a

constant with 0 < 8 < 1. Define U(O) as the set of all hyperdiscs centered inside O

whose boundary intersects O. We say that the object O is (3-fat if for all hyperdiscs

B £ U(O), vol{OnB) > 3 • vol{B). The fatness of an object O is defined as the

maximal 3 for which O is ft-fat.

The maximal 3 occurs as the minimum over all hyperdiscs in U(0) of the

fraction of the hyperdisc covered by O. As an example, a half plane in two dimen

sions would be i-fat because the smallest fraction occurs for any hyperdisc centered

JThe original definition of fatness due to van der Stappen calls an object l//?-fat when
we call it /Mat.

21

on the boundary of the half plane. A line segment is 0-fat since the area of inter

section between a line segment and any hyperdisc is zero. A disc D is |-fat since

the hyperdisc centered at a point on the boundary of D with radius equal to the

diameter of D is four times the area of D. The fatness of a scene of objects is

defined to be the minimum fatness over all of the objects in the scene. We will often

talk informally about a scene consisting of fat objects. To be precise, we should talk

about scenes consisting of /3-fat objects for some constant f3. However, we will allow

ourselves, as is often done in papers about fatness, the ability to talk about scenes of

fat objects meaning that the scene consists of /?-fat objects for some not-too-small

constant (3.

It is noted that the complexity analysis of a number of problems has been

improved by assuming the input is a fat scene. Some problems that have been looked

at are the Binary Space partition problem and the Motion Planning Problem, the

first of which we discuss further in section 3.5 of chapter 3. We refer the interested

reader to Vleugels' thesis [20] and to van der Stappen's thesis [17] for a discussion

of these and some other applications.

A scene of fat objects possesses the property that each object in the scene

does not have too many neighbours of similar or larger size. To see why this is

the case, consider some arbitrary point in the scene. It must be shown that there

cannot be too many objects close to the point. Van der Stappen, in his thesis [17],

proves this by showing that each such object takes up a constant fraction of the

space near the point. He does this by considering arbitrarily placed hyperdiscs that

are no larger than the diameter of the smallest object in the scene. He uses a simple

packing argument to show that the maximum number of objects that can intersect

the hyperdisc is bounded by the number of objects that can fit in a small ring

22

Figure 2.1: A disc covering part of a scene,

wrapped around the hyperdisc. The following theorem results:

T h e o r e m 1 (van der Stappen [17]) Let S be a scene of non-intersecting /3-fat

objects in E r f where the size of the minimal enclosing hyperdisc is at least o. For

a given constant c > 0, the number of objects intersecting any region with minimal

enclosing hyperdisc size at most co is bounded by [c + l)d/(3.

From theorem 1, it follows that a fat scene (consisting only of fat objects)

has a minimum object density across the whole scene. In fact, it is easy to see that

by focusing on a subset of the objects in a scene that have radius larger than any

constant, p, will also possess a similar minimum density of the objects. This can be

seen by applying theorem 1 to the subset of the scene with the objects smaller than

p removed. This observation leads us to another model of scene complexity - the

density model. The density model considers all locations and sizes of a disc window

looking at the scene and measures the maximum number of objects of size larger

than or equal to the disc that can be intersected by disc window (see figure 2.1).

The formal definition for a scene S to have low-density is given as follows:

Definition 2 (Van der Stappen [17]) Let S be a d-dimensional scene, and A >

0 a parameter. We call S a A-low-density scene if for any hyperdisc B, the number

of objects Oi € S with pmeb{0) > radius(B) that intersect B is at most X. The

23

density of S is defined to be the smallest A for which S is a X-low-density scene.

Informally, we will say that a scene has low-density if it is a A-low-density

scene and A is a small constant.

We will see, formally, in the next subsection that this model is more general

than the fatness model; by this we mean that a scene consisting of fat objects

will have low density, and that there are low density scenes which consist of non

fat objects. The main way in which this model is more general is that it now

permits objects in the scene to have long and skinny parts. Because of the fact that

many applications of fatness only use the density limiting property of fatness, many

of these same applications will also run well on low density scenes. In Vleugels'

thesis [20], for instance, he shows that the point-location and range-searching result

of van der Stappen [17] can be generalized to apply to a low density scene. As a

result, many of the applications of fatness are also applications of low density; these

applications run well on a larger class of input scenes than previously known.

2.1.1 A Scene of Fat Objects has Low Density

We now state the results that prove that a low density scene is more general than

a scene of fat objects. We first show that fatness is a sufficient condition for low

density, and then we describe a scene that has low density but consists of 0-fat

objects.

Theorem 2 (van der Stappen [17]) Any d-dimensional scene consisting of 3-

fat objects has density at most

The proof of this looks at some disc window overlooking a scene of fat objects.

Sufficiently large objects that intersect the disc window are isolated. A constant

24

lower bound is then determined for the area of intersection between an object that

intersects the disc window and the neighbourhood of the disc window (which is a

larger disc with the same centre). Because of this constant lower bound on area of

intersection, there are only a constant number of such objects that can pack into the

neighbourhood of the disc window. This constant number is shown to be at most

in van der Stappen's proof.

Figure 1.2 from the introductory chapter shows an example (on the right) of

a scene that has low density but consists of line segments which are 0-fat. In general,

any scene of /3-fat objects can be converted into a scene with density at most ^ by

replacing every fat object with a line segment that is contained in the interior of the

object. The fatness of a scene created in this way is 0, yet, the density of the scene

will not increase by reducing its constituent objects to line segments. This proves

the following theorem.

Theo rem 3 There is family of low density scenes such that each scene consists of

0-fat objects.

2.2 Approximation by Sets of Points

The previous two models have looked at the objects themselves, looking either at the

shape of the objects or measuring the number of objects of a certain size intersecting

a given region of the scene. If the objects are too skinny or there are too many large

objects intersecting the given region, the scene is deemed complicated. The next two

models look at a seemingly different property of the scene: how easily can a scene

be approximated by a set of points. Easily here refers to the number of points that

are needed to approximate the scene. If a linear number of points are enough, then

25

the scene is considered simple, otherwise it is considered complicated. An empty

covering shape is a shape (square, circle, etc.) that intersects the scene without

containing any approximating points in its interior. Using squares, for instance,

a set of points provides a good approximation to the scene if wherever an empty

square is placed over the scene, it does not intersect more than a constant number

of objects. The first model discussed, the guarding set model, makes the above idea

precise. The second model, the clutteredness model, is actually a special case of

the guarding set model, which focuses its attention on whether the bounding box

corners of objects form a small guarding set against squares.

2.2.1 Guarding Sets

This notion was described by de Berg et al. in [10]'. The points used to approximate

the scene are called guards in this model, as they guard against covering shapes.

The covering shapes are called ranges. In the model, a set of guards are essentially

scattered throughout the scene. A good approximation to the scene is provided by

the guards if each range that intersects more than a constant number of objects

from the scene also contains at least one guard.

The precise definition of a K-guarding set is given below:

Definition 3 (De Berg et al. [10]) Let S be a d-dimensional scene. Let 1Z be a

family of subsets ofHd called ranges. Let K be a positive integer. A set G of points

is called a K-guarding set for S against TZ if any range from 1Z not containing a

point from G intersects at most n objects from S.

Ranges that do not contain any guards will be referred to as empty ranges.

A crowded range is one that intersects more than K objects. Thus, if we have a

26

sufficient set of guards, any crowded range can not be empty as an empty range

would intersect no more than K objects from the scene. In this model, we will say

that a scene admits a small guarding set against a particular family of ranges if

there is a K-guarding set G of linear size (in the number of objects).

The model allows for different ranges to be used, which can have the effect

of changing the effectiveness of the approximations to the scene. The ranges can be

anything from cubes to discs to fat objects to line segments. However, de Berg et al.

in [10] have argued that approximating against non fat ranges does not adequately

measure the complexity of a scene. In this spirit we only consider families of ranges

that are fat. De Berg et al. have also shown that if a scene admits a linear size

guarding set against any family of fat objects then it will also admit a linear size

guarding set against the family of hypercubes. It is therefore sufficient to prove

properties about guarding sets against hypercubes, as these result will automatically

apply to guarding sets against any fat shape. As a result, hypercubes will be our

default family of ranges in the subsequent discussion.

Finally, we note that this model is strictly more general than the density and

the unclutteredness models (to be discussed in the next subsection).

Application: Motion Planning Problem for Robots

One application of the guarding set model studies the computational complexity of

the free space for the motion planning problem for robots. We introduced the motion

planning problem in the introduction. The motion planning problem usually involves

taking a scene of obstacles, a starting location and a final location and planning a

path through the obstacles so that a robot (which will likely have a shape to it, but

could also be a point) can travel from the starting to the final location if such motion

27

is possible. As part of the task of planning the motion, we need to have a model

of the free space that the robot can maneuver in. The computational complexity

of the free space represents how hard it is to compute a model of the free space.

Once the free space has been computed, it must be determined if there is a path

from the start to the finish in the free space. There are a number of algorithms for

determining and computing such a path. It is beyond the scope of this thesis to

present the details of these. We are concerned with the computational complexity of

the free space, called the free space complexity, however, as this is a limiting factor in

an exact solution to the motion planning problem. The results presented apply for

a robot that has bounded reach with / degrees of freedom. A bounded reach robot

is one where the maximum distance that any part of the robot can be from a fixed

reference point on the robot is no larger than twice the size of the smallest object.

That is, let 7Z be a robot with / degrees of freedom moving in a two-dimensional

scene S containing n obstacles. Let p-ji be an arbitrary reference point inside TZ. The

reach oilZ, denoted reach(7£), is defined as the maximum over all configurations of

1Z of the distance from pn to any point on 1Z. A bounded reach robot 1Z is defined

such that the reach of 1Z is bounded as reach(7£) < c • minee.s{size(C)}, where c is

a (small) constant. If we assume that the scene of obstacles forms a low density

scene then it has been shown that the free space complexity for this scene is O(n),

regardless of the dimensionality of the scene [18]. In [10], de Berg et al. show that

if a scene has a K-guarding set against squares, then the free space complexity is

0(K^U2). This is an improvement of the worst case bound of Q(n^) for the free

space complexity. For more details on the motion planning problem, we refer the

reader to Vleugels' thesis [20].

28

2.2.2 Clutteredness

The clutteredness model is a special case of the guarding set model. This model

looks at a scene to see if the bounding box corners of the objects in the scene form

a linear-sized guarding set against squares. Why might one be interested in a more

restrictive model? The reason is that it is hard to compute, for a scene, what

the minimum number of guards needed is to provide a good approximation of the

scene. In the clutteredness model, we just have to form one particular set of guards,

and check to see if they provide a good approximation of the scene. This is quite

straightforward to accomplish.

By definition, the clutteredness model is more restrictive than the guarding

set model, and therefore considers more scenes to be complicated. It can be shown,

however, that clutteredness is still more general that the density and fatness models.

The precise definition for a scene of objects to be K-cluttered is as follows:

Definition 4 (De Berg [7]) Let S be a d-dimensional scene. We call S a K-

cluttered scene if any hypercube whose interior does not contain a vertex of one

of the bounding boxes of the objects in S is intersected by at most K objects in S.

The clutter factor of a scene is the smallest K for which it is n-cluttered.

Informally, we will say that a scene is uncluttered if the clutter factor for the

scene is a small constant.

Applications: Motion Planning and Linear Sized Binary Space Partitions

The motion planning problem has been analyzed with respect to the clutteredness

model. In [10], de Berg et al. give a lower bound for the free space complexity

of a K-cluttered scene with n objects where the robot has / degrees of freedom.

29

The lower bound is Qfa-'nz). Since this model is less general than the guarding

set model, the upper bound on the free space complexity for a scene with a small

guarding set applies here. We get that the free space complexity for a bounded-reach

robot is 0(fi/n2), for both uncluttered scenes and scenes with small guarding sets.

This result shows that although the unclutteredness model is more general than the

density model (as will be seen in theorems 4 and 5), the generality does not always

come without a cost in terms of the efficiency of solving problems with respect to

the model.

Another problem that we look at in more detail in section 3.5 is the binary

space partition problem. The binary space partition problem takes a scene of disjoint

objects as input and recursively produces a set of dividing hyperplanes so that each

region induced by the hyperplanes will end up containing no more than one object

from the scene. See figure 2.2 for a picture of a binary space partition. A useful

property of a binary space partition is its size, or the number of regions it partitions

the space into. Paterson and Yao [15] have shown that in the plane, a binary

space partition of size 0(n\ogn) always exists for a set of n polygons. In three-

dimensions, they have given an example of a scene that requires a size f2(n2) binary

space partition. The sizes of BSP's for scenes of fat objects, low density scenes,

uncluttered scenes and scenes with linear-sized guarding sets have been studied. In

every case, a BSP of linear-size is guaranteed [6, 7]. For this problem, it is interesting

to see if even more general models can be related to the size of a BSP to get an even

better understanding about the types of scenes that lead to small BSP's; we return

to this problem in section 3.5.

30

Figure 2 .2 : A binary space partition of a scene.

2.2.3 A Scene with Low Density is Uncluttered

We now show that the clutteredness model is more general than the density model

(for appropriately chosen constants). We first show that a low density scene has a

constant clutter factor. Then we describe a scene that is uncluttered but has high

density.

Theorem 4 (De Berg [7]) Any d-dimensional X-low-density scene has clutter fac

tor at most [y/d\dX.

Proof: (Summary of proof by de Berg) Let S a A-low-density scene of d-dimensions.

We know that any disc window of radius r will intersect no more than A objects

with radius greater than or equal to r. Now looking at the bounding box corners of

objects in the scene, we want to determine the largest number of objects that can

intersect a hypercube without leaving a bounding box vertex in the hypercube. Let

O be a hypercube such that no objects leave bounding box corners inside. For an

object to intersect O the side-length of its bounding box must be at least I, where /

is the side-length of O. This tells us that such an object must have radius at least

31

2. How many discs of radius ^ are needed to cover 0? To determine this, we cover

O with a grid of smaller hypercubes such that the diameter of each sub-cube is I. If

O' is one of the sub-cubes, and S(O') represents its diameter, then its side length,

1(0') = ^jj - — -J2- Thus to cover O, we need [v ^ J ^ sub-cubes. Now each of these

cubes can be wrapped in its minimally enclosing disc, which by the A-low-density

of the scene must not intersect more than A objects larger than or equal to \ in

radius. We also know that there are no objects with radius smaller than £ since O

was chosen not to contain any bounding box corners. O therefore does not intersect

more than [v ^J^A objects in total. This proves that S is a [-\/^JdA-uncluttered

scene. •

We now give an example of a scene that has high density but is uncluttered.

To construct such a scene, we start with a scene that has high density because one

region in the scene is intersected by a large number of objects. Now it may be

that these objects would leave enough bounding box corners to make the region

uncluttered already. But we will assume many of the objects pass entirely through

the region without leaving a bounding box corner inside. We can modify this scene

to one that is uncluttered by adding extra line segments. These line segments will

have the effect of projecting bounding box corners into the dense region to prevent

large boxes from intersecting the region (recall that boxes cannot contain bounding

box corners in the unclutteredness model). See figure 2.3 for an example showing

how line segments project bounding box corners into the dense region. In order that

the added line segments do not themselves form a cluttered region, we must ensure

that there is sufficient spacing between adjacent line segments in the periphery of

the scene; to accomplish this, each new line segment should be drawn outside of

the bounding box of the previous line segment; in this way, no square can intersect

32

Figure 2.3: A dense scene with an added line segment that projects a bounding box
corner inside the dense region.

more than one of the added line segments without also intersecting a bounding box

corner. The number of line segments we have to add is proport ional to the radius

of the disc region that contains the long objects, the spacing between the objects

in the region and the constant factor we want to achieve for the clutter factor; this

is roughly proportional to ^ where r is the radius of the disc, <j> is the smallest

distance between two adjacent objects and K is the desired (small) clutter factor.

Looking at the density of the modified scene, we see that it has high density because

the line segments added are ignored by the disc window. Al so , the scene has become

/t-cluttered, and is therefore uncluttered. This proves that we can create a family of

such scenes starting with any high density scene, as the following result indicates:

Theorem 5 (De Berg et al. [9]) There is a family of fl(n)-dense scenes such

that each scene is K-cluttered for a small constant n. That is, each scene in the

family has high density, but is uncluttered.

33

2.2.4 On to Linear-Sized Guarding Sets

We now look at how guarding sets fit in with other models. By definition, the

guarding set model is more general than the clutteredness model. If a scene S of

dimension d is uncluttered with clutter factor n then the bounding box vertices of

the objects will form a K-guarding set of size 2dn. This implies that the model is

more general than the density or fatness models.

It is a little more difficult to come up with a scene that has a high clutter

factor and yet has a linear-sized guarding set. The difference would be in the location

of the associated guards for the two models. Because the next model we look at

turns out to be the same as the guarding set model (to within a constant factor),

we save the presentation of this scene until the next section.

2.3 Simple Cover Complexity

We now come to another type of complexity measure. The model of simple cover

complexity is a cover complexity measure. Such a measure consists of two parts.

First the scene is covered by a number of shapes (cubes, discs, etc.), where the size

of each shape is somehow restricted. A scene is covered by a set of shapes if the union

of the shapes contains the bounding box of the scene. Second the complexity, or

amount of interaction between objects inside each of the covering shapes is measured

and added up. This total becomes the "cover complexity" of the scene. One cover

complexity measure differs from another one by the shape chosen to cover the scene,

the method used to restrict the size of the covering shapes and by the method used

to determine the complexity associated with the shape. This model attempts to

measure the amount of interaction in the scene. The inherent idea is different than

34

trying to approximate a scene by a set of points, although they are related. The

rest of the models discussed in this thesis are cover complexity measures.

In the simple-cover-complexity model, discs are used to cover the scene. Let

£ be a positive small constant. To restrict the size of a disc of radius r, the e-radial

expansion of the disc (i.e. the disc with radius (1 + e)r with the same centre as

the disc) must not intersect more than a constant number of object facets from the

scene. An object facet is a (d — l)-dimensional face on the object; in 2-dimensions,

for instance, a facet of a polygon would be one of the line segments on its boundary.

A disc that is restricted in this way will be called a simple disc. Each disc in the

simple cover is assigned a value of 1 for its complexity. This parameter indicates

that a constant amount of "complexity" is contained inside the disc; in other words,

there is only a constant amount of interaction between the objects inside any disc in

the cover. Thus the simple cover complexity of the scene is a count of the number

of simple discs needed to cover the scene.

Our definition for a scene S of disjoint objects to have (a, <5)-simple-cover

complexity is given below. In the definition, the (.-expansion of a hyperdisc with

radius r is the same-centered hyperdisc of radius (1 + e)r.

Def in i t ion 5 Let S be a d-dimensional scene, e > 0 a small constant and 8 a

parameter. A <5-simple hyperdisc is a hyperdisc whose e-expansion intersects at most

8 object facets in S. A (5-simple cover for S is a collection of 5-simple hyperdiscs

whose union covers bb(S). We say that S has (a, 8) simple-cover-complexity if there

is a 8-simple cover for S of cardinality an. The 8 simple-cover-complexity of S is

the smallest a for which S has (a, 8) simple-cover-complexity (note this comes from

the arrangement of covering hyperdiscs with the lowest cardinality).

Informally, we will say that a scene has small simple-cover-complexity if there

35

are small constants 5 and a such that it has (cr, 5)-simple-cover complexity.

Originally the simple-cover-complexity model appeared in a paper by Mitchell

et al. [14]. There the simple-cover-complexity was defined in terms of a region of

space that needed to be covered. This region could be the bounding box of the scene,

a line segment within the scene, or any other compact region. The complexity of

a line segment relates to how complicated the scene is near the line segment, that

is, how many object facets are there close to the line segment. Taking the com

plexity of a bounding box, however, gives an idea of what the average complexity is

over the whole scene. Mitchell et al. defined the simple-cover-complexity in terms

of e-simple hyperdiscs as we do. When de Berg et al. in [9] talked about simple-

cover-complexity, they dropped the idea of using e-expansions. To justify this, they

note that the ratio between the simple-cover-complexity of a scene computed for

two different values of e is proportional to the ratio between the two values of e.

They also note that dropping e-expansions from the definition does not significantly

change the measurement of the simple-cover-complexity of most scenes in practice

(although it can cause very large changes in theory). De Berg et al. also focused

their discussion of simple-cover-complexity as a complexity measure of the whole

scene. Our definition of simple-cover-complexity returns to using e-expansions, but

keeps de Berg et al.'s notion of simple-cover-complexity looking at the whole scene.

2.3.1 Relationships to Previous Models

We show in this section that the simple-cover-complexity model is more general

than the clutteredness model and that the model is identical to the guarding set

model (to within a constant factor). That is, a scene in the plane has a linear sized

guarding set if and only if it has small simple-cover-complexity.

36

T h e o r e m 6 (De Berg et al. [9]) Any K-cluttered scene has (a, 5)-simple-cover com

plexity where o = 0(d25d+3) and S = 0(Qdn).

Proof: We give the outline the proof, and refer the interested reader to de Berg et

al. [9] for the details.

Suppose S is a K-cluttered (/-dimensional scene. We will also assume that

K bounds the number of object facets passing through a cell, not just the number

of objects. The basic idea of the proof is to first show that S can be covered by

a set of hypercubes that each do not intersect any of the bounding box corners of

the objects in S. This cover must be of the nature that each hypercube in the

cover is not adjacent to more than a constant number of other hypercubes in the

cover. Once such a cover has been constructed, a simple-cover can be constructed

by wrapping each hypercube in the cover with the minimally enclosing hyperdisc.

De Berg et al. [9] have described how to cover the S with 0(d25d+3) hyper

cubes with the property that each cube in the cover will be adjacent to at most

0(Qd) other hypercubes in the cover. Now since S is K-cluttered, each cell in the

cover intersects no more than n object facets from S. Any minimally enclosing hy

perdisc wrapped around a hypercube in the cover will intersect at most 0(6d) other

cubes, and thus at most 0(<odn) other objects from S. From this it is concluded

that S has (a, 5)-simple-cover complexity for a = 0(d25d+3) and S = 0(6DK). •

Now we look at the converse to the above relationship between simple-cover-

complexity and clutteredness. We note that there are scenes, that have small simple-

cover-complexity, yet are cluttered. One family of such a scene consists of a section

of n parallel lines of length / with separation between leftmost and rightmost lines 5.

The simple-cover-complexity of the lines themselves is at least as we shall see in

theorem 9 from the next chapter (where S is the maximum number of object facets

37

permitted inside a cell and A is the distance between the leftmost and rightmost

lines). We can add objects to this to give the resultant scene small simple-cover-

complexity; this is done by adding an equivalent number of point objects (to the

actual simple-cover-complexity of the parallel lines) just outside of the bounding box

of the parallel lines. This would have the effect of averaging out the simple cover

complexity of the scene over the now large number of objects, at least n + JJ, in the

scene so that the resultant simple-cover-complexity would be a small constant. This

shows that the scene has small simple-cover-complexity. Yet, the scene is cluttered

on account of the parallel lines (assuming the clutter factor is less than n). A square

can be placed to intersect all of the parallel lines without containing an endpoint of

the scene.

T h e o r e m 7 (De Berg et al. [9]) There is a family of cluttered scenes which have

small simple-cover-complexity and linear sized guarding sets against hypercubes.

It is also interesting to look at the relation between linear size guarding sets

and simple cover complexity. De Berg et al. have shown [10] that if a scene admits

a linear-sized guarding set then it has small simple cover complexity. In the same

paper, they also show that a planar scene with small simple cover complexity has a

linear size guarding set. The exact theorem proved is shown below:

Theorem 8 Let S be a d-dimensional scene consisting of n objects.

(i) If S has a K-guarding set of size m against hypercubes, then it has

(s, S)-simple-cover complexity for s = 25d+3d(m/n) and 5 = 6dn.

(ii) For d = 2, if S has (s, 5)-simple-cover complexity, then it has a 85-

guarding set against squares of size O(sn).

38

If we have an algorithm that is not sensitive to small regions consisting of

parallel lines in the scene, then the simple-cover-complexity does a better job at

estimating the complexity of this configuration when compared to the clutteredness

model. The clutteredness model may be more appropriate for algorithms that re

quire a guarantee that the whole scene is of a uniform complexity. But the above

has demonstrated that the simple-cover-complexity model is a more general model

in the sense that it considers more scenes to be simple. Finally, we note that since

the guarding set model is equivalent to the simple-cover-complexity model in the

plane, that the above example shows that the guarding set model is also strictly

more general than the clutteredness model.

2.4 Picture of Relationships Between Models

Below is a diagram representing the classes of scenes that each model considers to

have low complexity (with appropriate constants set for each model so that the

models can all be compared by theorems from this chapter). Note how the models

form a nice hierarchy. This is an interesting feature of the models that will be

extended in the so-called weighted complexity models discussed in the next chapter.

Once again we reiterate that the usefulness of the models are in how well they can

be used to predict the behaviour of algorithms when input simple scenes. A more

general model is only useful if there are algorithms whose behaviour is predicted

accurately by the model.

39

A - Scenes of Fat Objects
B - Low Density Scenes
C - Uncluttered Scenes
D - Scenes with Small Simple-Cover-Complexity or

a Linear-sized Guarding Set

Figure 2.4: Hierarchy of Models

40

Chapter 3

Weighted Complexity Models

The goal of this chapter is to describe some new models of scene complexity that may

be better predictors of the time or space complexity of certain types of algorithms.

Before describing what we mean by a weighted complexity model, we will explain

where the models of the previous chapter fall short in their goal as predictors for

these algorithms. Certainly they do a fine job of predicting the behaviour of many

algorithms. However, the ultimate goal is to have a model that classifies scenes

as uncomplicated whenever a particular algorithm actually finds the scene to be

simple to deal with. The problem is that we want to be able to determine this for

a scene in less time than it takes to run the algorithm itself on the scene. Thus the

models attempt to efficiently measure certain properties of scenes that make certain

algorithms behave better. The more scenes that can be deemed simple with respect

to a particular algorithm the better. It is in this light that we present new models.

Suppose you are processing a scene that is for the most part sparse (say it

has low density over most of the area of the scene), yet it contains one small region

consisting of a large number of relatively long and thin objects each passing through

41

a common area (see figure 3.1). Any of the models discussed up to this point would

consider this scene to have high complexity, and would therefore put high bounds

on the complexity estimates for dealing with this scene. There are algorithms that

do not find such a scene to complicated to deal with, however, like the solution to

the binary space partition problem presented in section 3.5. The previous models

in the hierarchy up to and including the clutteredness model deem a scene to be

complicated if it contains one complicated region. Such a region could consist of

non-fat objects, a set of large objects that are closely packed in a region or a set of

objects that pass through a region without leaving a bounding box corner inside.

These models look for a certain uniformity of complexity throughout the scene to

deem a scene simple. A small complicated portion of the input scene will deem a

scene complicated. As such, these models do a nice job at predicting the behaviour of

algorithms whose worst case behaviour is determined by the complexity inherent in

only a small portion of the input scene. If a nonuniform scene, like the one in figure

3.1, is presented to an algorithm that does not require uniformity throughout its

input, like the binary space partition problem, then these models will overestimate

the complexity of the scene. That is, the models will put an overly large upper

bound on the time or space complexity of any such algorithm with respect to this

scene.

The simple-cover-complexity and guarding set models will not necessarily

deem a scene complicated merely because the scene contains a complicated region.

They focus on the scene as a whole when assigning it a complexity. However, if

you consider the relatively simple scene, S, consisting of n parallel lines each of

length / with the separation between leftmost and rightmost lines being A, then the

models of simple-cover-complexity and guarding sets do not behave so well. These

42

/

\

\

\

/ \

\

\

\

, \
\

1
1

Figure 3.1: A sparse scene with a dense region in the corner.

models could classify a scene containing a region of clutter as simple if there are

a large number of additional extraneous objects (outside the region of clutter). A

seemingly simple scene, like S, consisting of parallel lines gets a high complexity,

because there are not a large number of extraneous objects to average down the

complexity to linear levels in the number of objects. T h e following theorem shows

the complexity assignments to S by all of the models from the last chapter.

Theorem 9 Let S be a planar scene consisting of n identical vertical parallel lines

each of length I that start and end in alignment. Let X < I be the distance between

the leftmost and the rightmost lines.

• S consists of 0-fat objects.

• S is a n-density scene.

• S is a n-cluttered scene.

• S has (S,Q(n2))-simple-cover-complexity.

• S has an Q(n2)-sized K-guarding set.

43

Proof: Clearly, S consists of 0-fat objects.

The density of S is n since a circle with diameter larger than A can intersect

all n of the lines, each of which is larger than the size of the circle.

The clutter factor of S is n since a box with side length A can be placed to

cover all the lines without including any of the bounding box corners of the lines.

The average separation between the parallel lines is ^ . Since no more than

8 objects can intersect any disc, we will on average be able to use discs of radius

| ^ to cover 8 lines. How many discs of this size would it take to cover a group of 8

lines? It would be at least the number of discs to cover one of the lines, which is

I In.
~^ = 8X

n

discs. Thus to cover a group of 8 lines, we need at least a linear number of discs.

To cover all \j] groups of 8 lines, requires at least

82X

discs. This proves that the <5-simple-cover-complexity of S is in fi(n2).

The size of a K-guarding set for S against squares is superlinear in n. This

follows from de Berg et al.'s result [10] from theorem 8 that in the plane the guard

ing set and simple-cover-complexity models are equivalent. However, we also give a

direct argument as follows. Suppose Q is a linear-sized K-guarding set for S against

squares. The spacing between adjacent lines is ^zj. Thus, imagine placing a rect

angular grid of squares over the lines, where each square has side length (K) ^ T J , the

left column of cells intersects the first column of K + 1 lines and where there are

A (n - 1) n - 1

cells across the top, and

Z (n - 1)
KX

44

cells down the side. Each cell in this grid intersects K + 1 lines, and therefore must

contain at least one guard. This would imply that there are at least

guards in Q. •

This theorem tells us that the models of the previous chapter all find parallel

lines to have high complexity. With respect to some algorithms, this assertion is

not desirable.

We have shown two shortcomings with the models of the last chapter. That

is most are local measures of complexity, and they all consider the scene consisting of

n parallel lines to have high complexity. We would like to create a model that does

not have these two properties. In fact we would like to find a model that not only

considers the exact scene of parallel lines described to have low complexity, but any

part of a scene that consists of "almost" parallel lines to have low complexity. To

attain this, we now explain what is meant by a weighted model of scene complexity.

In the last chapter, we introduced the notion of a cover complexity measure

of a scene of n disjoint objects. Our weighted-complexity models are based on this

notion. They are more forgiving, however, meaning that regions of clutter in the

scene do not always cause the scene to have a high complexity. We explain how this

is done by looking at how the simple-cover-complexity model is extended by these

models.

In the simple-cover-complexity model, the bounding box of the scene is cov

ered with a set of discs. A disc is considered too complicated if it intersects a lot of

objects (more than whatever constant is being used) from the scene. The measure

or indicator of the complexity of the scene is the minimum number of simple discs

needed to cover the scene. Restricting the discs to contain a constant number of

45

n- 1 l(n - 1)
K

intersections with objects forces the discs to be too small which, as a result, gives

a structure consisting of a lot of long and thin objects a high complexity. To get

around this, we will say that an object may intersect a disc without concern if it

passes entirely through a disc. We call such intersections silent intersections. Such

intersections have the effect of partitioning the region into smaller sub-regions. As a

result we will charge for their presence by giving each covering region a weight that

is equal to the one plus the number of silent intersections contained in that region.

Objects that do not pass through a region must end inside the region. Long

and thin objects that pass through a region often do not present too much trouble for

processing, however, objects that end in a region can cause problems. In order that

they do not cause too much trouble, the number of objects permitted to terminate

in a region is bound by a constant. In this way, we cover the scene with regions that

individually do not contain too many objects that end inside, and charge a weight

per region that is equal to the number of sub-regions each region is partitioned into

by objects that intersect it silently. The complexity of the scene then becomes a

count of a number of sub-regions that individually do not contain too many object

endings. We make these notions more precise in the next section.

We again note that the above statements about complexity do not generalize

to all algorithms, but they are only true for some algorithms that can handle some

variation in the object density across the scene without increasing the complexity.

One important example of such a problem is the planar binary space partition

problem that we look at in section 3.5. In this section, we show that the size of a

binary space partition for a scene is at worst proportional to its quadtree complexity.

46

3.1 Definitions

In this chapter, we deal only with planar scenes. As well, a planar scene is assumed

to consists of a set of n line segments that do not intersect, except possibly at the

endpoints. The set of representatives for a planar scene is the set of endpoints of

the line segments in the scene.

A weighted complexity model is a cover complexity model where the weights of

the cells are greater than or equal to one. To review, a cover complexity model looks

at a scene of disjoint objects, and attempts to cover the bounding box of the scene

by containing it in a union of simple cells or regions (different models specify exactly

what makes a cell or region simple). The weight of a region is meant to capture the

complexity contained inside the region, and the complexity of the scene is the sum

of the weights of the constituent regions of the cover. Different complexity models

can be constructed by using different shapes to make up the cover, by restricting

the size of the shapes in different ways and by assigning weights in different ways.

In our new models, we look at using discs and adaptive quadtree decompo

sitions of the scene to cover the bounding box of the scene. To restrict the size of

the regions in the covers, we limit the number of object representatives in any given

region. A silent intersection with a region in a cover is an intersection between a line

segment from the scene and the region such that the line segment intersects, but its

associated representatives do not. The weight given to each region is the number of

sub-regions that are contained in the region, which is one plus the number of silent

intersections with the region (see figure 3.2 for an example showing the calculation

of cell weights).

How does this approach improve upon the previous models, and simple-cover-

complexity in particular, to provide a better measure of the interaction between

47

Figure 3.2: A scene covered with rectangles. The weights of each of the covering
cells are shown on the right.

objects in the scene? Both models give a count of a number of simple regions.

However, in our weighted model we have further relaxed the definition of what it

means for a region to be simple. Looking at this more closely, we see that we are

actually using the objects themselves to help in the creation of our partition of

the space. We first cover the scene with discs or quadtree cells, and then use the

objects to partition each of the covering cells into a number of simple sub-regions.

This is what we are counting when we count the number of objects that intersect

the cell silently. Inside each of the resulting regions, the amount of interaction

between objects is bounded. This happens by limiting the number of objects that

terminate inside a region. Objects that pass right through a region interact in

a very restricted way. In partitioning the scene into a set of interaction limited

regions, we are assuming that interaction among objects is important for predicting

algorithmic behaviour. This assumption is valid for some applications, like binary

space partitions. If a valid cover of the scene partitions it into a linear (in the

number of line segments) number of interaction limited regions, then the scene is

not inherently as complicated as a cover which partitions it into a superlinear number

of interaction limited regions.

We therefore would like to look at different covering shapes to see how pre-

48

cisely each model captures the amount of interaction between objects. One way of

doing this is by looking at how the models deal with a scene of parallel lines. We

are assuming that this structure is simple to deal with by some algorithms, and as

such want to ensure that our models agree with this assumption. The amount of

complexity assigned by different models to this scene will be one determinant of the

goodness of a model.

The second criteria of goodness for a model relates to how easy it is to

compute what the complexity of the scene is. It is not useful to have a model of

complexity that takes longer to compute than the problem you are trying to analyze.

Otherwise, you may as well run the algorithm itself on the various inputs to classify

inputs as being complicated or not.

We give two disc based models (expanded and unexpanded disc complexity)

that do not quite meet all of our criteria. Neither are easy to compute, and only one

assigns a reasonably low complexity to a scene consisting of parallel lines. We then

give an adaptive quadtree based model that does meet our criteria. For each model,

we relate it to previous models and give some other results related to the model.

We show that the new models extend the hierarchy of models formed by the models

of the last chapter: expanded disc complexity generalizes simple-cover-complexity,

and both the quadtree and unexpanded disc complexity models generalize expanded

disc complexity. We have not been able to determine the exact relationship between

unexpanded disc complexity and quadtree complexity. After the presentation of the

models, we look at the complexity assignment by the models to a scene consisting

of a series of n parallel lines. As a result, we are able to relate the various models

with respect to our first criteria of goodness. Our second criteria is looked at in

the discussion of each model, where we look at the time complexity of computing

49

appropriate covers for each of the models.

3.2 Disc Based Models

Before describing the models, we define some terms and concepts relating to the

models. We will talk about two types of discs: unexpanded and expanded discs. An

unexpanded disc is a closed disc, and we will usually refer to it simply as a disc.

An expanded disc consists of an unexpanded disc, called the base disc with an open

ring around it that has thickness er. Thus, overall, the radius of an expanded disc is

(l + e)r, where r is the radius of the corresponding base disc. The e in the definition

of an expanded disc is assumed to be a positive fixed global constant. Note that

an unexpanded disc has a corresponding expanded disc; we call this corresponding

expanded disc the e-expansion of the unexpanded disc.

In the following, we assume that 8 is a parameter. A 5-weighted-simple disc

is a disc with radius r whose e-expansion contains no more than 5 representatives

from the scene. A silent intersection with a disc is an intersection of a line segment

from the scene with a disc such that the line segment does not begin or terminate

in the interior of the disc. The weight of a ^-weighted-simple disc is defined to

be one plus the number of silent intersections with that disc. A S-weighted-simple

disc-cover for a scene is a collection of 5-weighted-simple discs whose union covers

the bounding box of the scene. The weight of a S-weighted-simple disc-cover, D, is

the sum of the weights of the individual discs in the cover, i.e.

w(D) = £ w(c)
deD

50

3.2.1 Expanded Disc Complexity

The expanded disc complexity model is a weighted complexity model where the

cover consists of discs; it is a <5-weighted-simple disc-cover. In a 5-weighted-simple

disc-cover, the size of the discs in the cover are bounded by the number of line

segment endpoints that occur in the e-expansion of the discs. For the purposes

of assigning a weight to the disc, only the silent intersections with the base disc

count. Limiting interaction (by limiting the number of endpoints) in the expansion

of a disc, rather than just in the base disc itself serves to make the model more

robust against small perturbations in the input scene (meaning that small changes

in the location or shape of objects will not cause large changes in the measured

complexity). The scene shown later in figure 3.6 is an example of a scene that

would not be robust against small perturbations in the scene if only base discs were

used to limit interaction.

The definition of the expanded disc complexity of a scene is now given below:

Definition 6 Let S be a planar scene. Let S be a parameter.

• We say that S has (a, 5)-expanded-disc complexity if there is a 5-weighted-

simple cover C of S such that the weight of C is at most a.

• The 5-expanded-disc complexity of S is the smallest a for which S has (o~,5)-

expanded-disc complexity.

Informally, we talk about a scene having low expanded disc complexity if the

<$-expanded-disc complexity of the scene is cn for a fixed small constant c > 0.

51

3.2.2 Relationships

We now show the relationship between expanded disc complexity and simple-cover-

complexity. Because both simple-cover-complexity and expanded disc complexity

focus on limiting interaction between objects in the e-expansions of the discs, it is

easy to relate simple-cover-complexity to expanded disc complexity.

T h e o r e m 10 If a scene of n objects S has (o, 8) -simple-cover-complexity then it

has (on(l + 8), 28)-expanded disc complexity.

Proo f : Suppose S is a planar scene of n disjoint line segments that has (a, <5)-simple-

cover-complexity. Let C be a simple-cover that has no more than on 5-simple-discs.

Consider an arbitrary disc d in C. Certainly, d is 2<5-weighted-simple because its

expansion does not intersect more than 8 line segments from S. The worst possible

scenario for d is where each of the segments intersecting d is totally contained in

its interior; this would leave 28 representatives in d, proving that d is at most 28-

weighted-simple. The weight of d is the number of silent intersections with d. If

the maximum possible, 8, intersections with d all turned out to be silent, then the

weight of d is at most (1 + 8).

From this we conclude that every disc in C is 25-weighted-simple and has

weight no more than (1 + 8). This implies that C is a (1 + 8j-weighted-simple cover.

Since there are no more than an discs in C, it follows that the weight of C is bounded

by on(l + 8). S therefore has (on(l + 8), 2<5)-expanded disc complexity. •

This result shows us that every scene that has small simple-cover-complexity

also has small expanded-disc complexity (for appropriate constants). It is not the

case, however, that expanded disc complexity measures the same thing as simple-

cover-complexity. It is relatively simple to construct a family of scenes where the

52

simple-cover-complexity is more than a constant factor higher than the expanded

disc complexity. One simple example is a set of n parallel lines, where the spacing

between adjacent lines is the constant of expansion, e, and the length of the lines,

/, is larger than or equal to neS, where 8 is the parameter limiting the number of

intersections in a simple-disc. In this case, the total separation between the lines is

A = ne. From theorem 9, we know that we will not be able to cover S of the lines

with less than | ^ simple-discs. In our case, we need at least

neSn
Sne

simple-discs. Since there are \j] groups of at least 8 lines, we need at least

n •

simple-discs altogether to cover the parallel lines. Thus the 5-simple-cover-complexity

of the scene is at least (x) ' ^ s ^ o r ^ n e e x P a n d e d disc complexity of this scene, it

is quite simple to use 2n + 1 weighted-simple discs to cover the scene. We can do

this because the spacing,between the lines is e. You take one disc with radius 2(i+c)

that intersects all the lines and just misses the endpoints. The remaining endpoints

can each be covered by a single small disc each. The resulting J-expanded-disc com

plexity of the scene is thus 3n + 1. We have thus shown that the expanded disc

complexity is more than any constant times lower than the simple-cover-complexity

of the described scene.

Theorem 11 There is a family of planar scenes such that for each scene, S, in

the family, its 8-simple-cover-complexity divided by its 8-expanded-disc complexity is

Q(n), where n is the number of objects in S.

53

3.2.3 Unexpanded Disc Complexity

We wil l now look briefly at what we call unexpanded disc complexity. The differ

ence between this complexity and expanded disc complexity is that we only concern

ourselves with the number of silent intersections wi th the disc itself. Tha t is, un

expanded disc complexity is expanded disc complexity wi th e set to 0. Because the

buffers created by the expanded discs are removed in this model, it is now possible

for small perturbations in the scene to cause a large increase in the complexity of

the scene. This being said, an unexpanded disc cover does not magnify the amount

of measured interaction in a scene quite as much (that is, it requires fewer discs

to cover regions of the scene consisting of almost parallel lines) as expanded disc

complexity does, and in this way, better captures the inherent complexity of the

scene.

The precise definition is given as follows:

D e f i n i t i o n 7 Let S be a planar scene. Let 6 be a parameter.

• We say that S has (a, 8)-unexpanded-disc complexity if S has (o,8)-expanded-

disc complexity with an expansion factor e — 0.

• The 8-unexpanded-disc complexity of S is the smallest o for which S has (o, 8)-

unexpanded-disc complexity.

Informally, we talk about a scene having low disc complexity if the (5-unexpanded-

disc complexity of the scene is cn for a fixed small constant c > 0.

3.2.4 Relationships

The unexpanded-disc complexity model is more general than the expanded-disc

complexity model. Th is comes from the fact that if you take an expanded-disc cover

54

C of a scene, then C will have the same weight when considered as an unexpanded-

disc cover. This observation proves the following result:

Theorem 12 If S is a planar scene with (an, 5)-expanded-disc complexity then it

has (an, 5)-unexpanded disc complexity.

The unexpanded disc complexity model assigns a lower complexity to parallel

lines than does the expanded disc complexity model. We will see this in theorem

20 in section 3.4. There, we will see that the expanded disc complexity of the scene

can be made arbitrarily high by reducing the inter-line spacing and/or lengthening

the lines. However, the unexpanded disc complexity of the scene is no more than

3n. The expanded discs in an expanded cover cannot intersect too many endpoints

in their e-expansions. This forces the base discs to be too small to cover the parallel

lines with a constant number of discs. The expanded disc model overestimates the

interaction present in the scene since most of the covering discs do not actually

contain any representatives, or non-silent intersections. The more regions in a cover

that actually contain some representatives, the more accurately the cover measures

the interaction. Regions that do not contain representatives can only contain objects

that interact in a very limited manner.

3.2.5 Complexity of Computation

We do not know the exact computational complexity of computing either an ex

panded or an unexpanded disc cover of a scene. We believe that it is probably

NP-hard to compute the minimum weight disc cover in either case. We do not

have a direct proof of the NP-hardness of this, but note its similarity to the DISC

C O V E R problem. In the D I S C - C O V E R problem you have a set of n points in the

55

plane and you want to cover them with a fixed set of discs (the sizes of the discs are

fixed, the locations are not). For this problem, the discs in the set may be replicated

as often as needed to cover the points, however, no disc may be used that is not

the same radius as one in the set. This problem is NP-hard [11]. To compute an

expanded or unexpanded disc cover, we cover a set of line segments in the plane with

weighted discs, where the weight of the cover is to be minimized. It seems, plausible

that a reduction could be made from the D I S C - C O V E R problem to our problem.

We leave the exact determination of the computational complexity of computing

weighted disc covers as an open problem.

Given that it seems to be hard to compute weighted disc complexities, why

did we consider weighted disc covers at all? The reason is that they are closely

related to the simple-cover-complexity model. We wanted to remove some of the

shortcomings of this model, and a natural logical step was to generalize this model di

rectly. Noting also that it seems hard to compute what the simple-cover-complexity

is for a scene [20], we can look to see what problems analyzed with respect to the

simple-cover-complexity do to get an approximation of the simple-cover-complexity.

Looking at the ray-shooting problem, discussed in section 1.1.5, we note that in the

algorithm of Mitchell et al. [14], a quadtree subdivision (although not exactly the

same as the quadtree we compute in section 3.3) of the scene is first determined -

not an actual disc cover. They then go on to show that the number of cells in the

quadtree decomposition is a constant times the number of discs in the minimum

disc cover of the scene, thus their algorithm operates a constant times more slowly

than it would if it were input an actual disc based cover.

It is this sort of reasoning that leads us to believe that perhaps a decompo

sition of the scene based on quadtrees will have a complexity that is no worse than

56

a constant times the complexity of the expanded disc cover. We show in the next

section that this is true, even if we compare the minimum disc complexity possible

with the quadtree complexity, computed from the worst possible origin point for the

quadtree. This guarantees that computing a quadtree decomposition of the scene

from an arbitrary starting point will produce a decomposition of the scene with a

complexity that is no more than a constant times worse than the complexity of the

minimum expanded disc cover. This gives us a useful model that is more general

than the expanded disc complexity model at a computation cost that is manageable.

3.3 Quadtree Complexity

Before we can define what we mean by the quadtree complexity of a scene, we must

clarify what we mean by an endpoint sensitive adaptive quadtree decomposition of

a scene. From now on we will use the term quadtree decomposition to refer to an

endpoint sensitive adaptive quadtree decomposition. A quadtree decomposition of

a scene is a spatial subdivision of the scene determined by the set of line segment

endpoints. The quadtree algorithm presented below is similar to the one presented

by Mitchell et al. in [14]. In Mitchell et al.'s decomposition, rectangles were used to

cover the scene; subdivisions were made by dividing the rectangle in half by splitting

parallel to the shorter side of the rectangle. Subdivisions were made whenever a cell

in the decomposition intersected too many object facets. They provided a shrinking

operation to ensure that the number of cells in the decomposition would be linear

in the number of object facets in the scene. In our decomposition, we use squares

to cover the scene, and divide cells into four nonoverlapping isomorphic subcells. A

split in our decomposition is justified if there are too many line segment endpoints

inside the cell, not if there are too many object facets.

57

The basic algorithm for a quadtree decomposition proceeds as follows. Let S

be a parameter to the algorithm limiting the number of endpoints permitted inside

any cell in the final decomposition. Find an axis aligned box that contains all of the

objects in the scene. One way to perform this in linear time is to find the minimally

enclosing rectangle around the scene by scanning all the endpoints of the scene to

find the most extreme ones. Having found this, extend the rectangle into a square

by extending the direction that is shorter. Any other square could also be used

for this step, regardless of its size and orientation, as long as it contains the whole

scene. This box is our initial starting point for the decomposition.

After a cell is created (either initially or as the result of a split), the number

of endpoints contained in the cell must be determined; endpoints that lie on the left

or bottom border of a square will be counted by that square. This number must be

compared with 5. If more than 8 are present, the cell must be split. If fewer than

8 are present, then the cell is a leaf in the decomposition, and will not be further

subdivided.

There are two possible splits that can be performed on a cell of the quadtree:

a binary split and a shrinking split. If it is determined that a cell requires a split,

then another check must be made to determine whether "progress" will be made

by a binary split. A binary split is a split of a cell into 4 identical sub-cubes,

each | the area of the initial cell, by making two halving splits of a cell parallel to

each boundary. Progress is made by a binary split if at least two of the resulting

subcells of a split will contain endpoints after the split. If progress will be made by

a binary split then it should be performed, and the process described in the previous

paragraph performed recursively on each of the resulting subcells. If progress is not

made, as would happen if all the endpoints in a cell are clumped into one corner of

58

•
Binary Split Shrinking Split

Figure 3.3: Quadtree split types.

the cell, a shrinking split must be made. A shrinking split is a split of a cell into 2

subcells: the shrunken cell and the remaining cell. The shrunken cell, is the smallest

boundary aligned square that wraps around the points in the cell, where ambiguity

of location of the cell is resolved by placing the cell as close to a boundary and/or

a corner of the original cell as possible. The remaining cell is just the original cell

minus the shrunken cell - i.e. the endpoint-free space left over. The only cell in

the shrinking split that needs to be further processed is the shrunken cell, so the

algorithm operations recursively on this cell only. See figure 3.3 to see what these

two split types look like.

The existence of the shrinking operation in this algorithm is what makes the

algorithm different from a standard quadtree algorithm. The shrinking operation

prevents too many extra splits from occurring in the situation where all of the

endpoints in a cell are clumped into one small region. If regular binary splits were

to be performed on this region, there could be a large number of endpoint free cells

created. Each of these cells would contribute to the quadtree complexity, blowing

up the complexity estimation of the scene. In fact, we will show in the next lemma

that the shrinking operation guarantees that the number of cells in the quadtree

decomposition is linear in the cardinality of the set of object endpoints.

L e m m a 13 The number of cells in a quadtree built using the adaptive quadtree

59

algorithm is linear in the cardinality of the set of endpoints of the scene.

Proof: To establish this, we note that every time a binary split is made, we make

progress by causing at least two endpoints to end up in different cells. If progress is

not made by a binary split, we make a shrinking split. The shrinking split does not

directly make progress, but it does ensure that a binary split of the shrunken cell

will make progress. In this way, we will never have more than one shrinking split

for a given subset of endpoints in the scene.

Let 7i be the number of endpoints. We cannot make progress more than

n times. If m is the number of cells than contain endpoints, then after making

progress n times, m must be n. This can be seen by the well ordering principle (on

the quantity n — m) quite easily as each binary split increases m by at least one.

After n splits, there will be < 3n + 1 cells in the quadtree. This can be seen

by induction since a binary split creates 4 cells while removing one old cell and a

shrinking split creates 2 cells while removing one old cell. The case for 0 splits holds

easily, there is just one cell, the initial square. After TI + 1 splits, it must be that the

n-rlst split created < 4 cells with one cell being removed from the decomposition for

a total of at most 3 new cells. This would give at most < (3n + 1) + 3 = 3(n + 1) + 1

cells in the decomposition.

Thus we are guaranteed to have a linear number of cells in the quadtree using

the adaptive quadtree algorithm. •

We now give the formal definition of a quadtree cover of a scene:

D e f i n i t i o n 8 Let S be a planar scene.

• A (^-quadtree cover of S is an endpoint sensitive adaptive quadtree decompo

sition of S, where each cell in the cover is limited to having 8 endpoints in its

60

interior.

Using this, we give the definition of the quadtree complexity of a scene:

Definition 9 Let S be a planar scene and let 5 be a parameter.

• The weight of a cell in a quadtree cover of S is defined to be one plus the

number of silent intersections with that cell.

• We say that S has (a, 5)-quadtree complexity if there is a 5-quadtree cover C

such that

w{c) = o
cec

where w(c) refers to the weight of the cell c from C.

• The 8-quadtree complexity of S is the largest o for which S has (a, 5)-quadtree

complexity. Note this arises from the worst of the many possible quadtree

covers of S.

Informally, we say that a scene has low quadtree complexity if its (5-quadtree

complexity is cn for a small constant c > 0.

The quadtree complexity of a scene is defined to be the largest a for which

S has (a, c5)-weighted-quadtree complexity rather than the smallest, as might have

been expected. The reason for this is to prevent our algorithm from making too many

optimizations in the cover. Intuitively, to measure the interaction present in a scene,

one may feel that its better to use the best possible orientation for the quadtree

origin; doing this would provide a better descriptor, but would make computing

the quadtree complexity difficult. There are scenes for which the minimum and

the maximum quadtree complexities are significantly different (see next section).

It is in fact equally difficult to compute the minimum quadtree complexity as it is

61

to compute the maximum quadtree complexity. However, it is easy to compute a

lower bound on the maximum quadtree complexity. This is done by calculating the

complexity of a quadtree cover for the scene that started with an arbitrary starting

square. Having a lower bound allows us to show give some interesting results. We

show, in theorem 18, that the quadtree complexity computed from an arbitrary

starting point will be no more than a constant times the expanded disc complexity

of the scene. From this it follows that if a scene has low expanded disc complexity,

then the scene will also have low quadtree complexity, regardless of the origin square

used in the computation of the quadtree complexity.

3.3.1 Quadtree Origin Differences

Different origins in a quadtree decomposition can cause significant differences in the

complexity of the associated quadtree covers. Lets look at some ways in which the

complexity of a quadtree cover could change. For the purposes of this discussion,

we will assume that we have a scene S with n line segments that is covered by a

quadtree cover C, where C is neither the minimally nor the maximally complex cover

of the scene. One way to increase the complexity of C is to take a cell in the cover

and perform an additional quadtree split. This would increase the complexity by at

least 3, depending on how many silent intersections the cell had with line segments

from the scene. If there were silent intersections in the cell, then more than one of

the subcells could silently intersect the segment, causing the segment to contribute

more to the complexity of the scene. Even if no segments were silently intersected,

the complexity would increase due to the addition of new cells in the scene, which

must now be included in the complexity total. If we permitted cells in our quadtree

to continue splitting past the point where the splits are useful, we would get a large

62

increase in the complexity of the scene due to the presence of the many extra cells.

The stopping condition is necessary to be able to talk about a maximum complexity.

But even within the bounds of the stopping condition, it is possible to change the

complexity of some scenes. This occurs by changing the orientation and size of the

origin square used as the root cell in the quadtree decomposition. As the origin

moves around, the cells in the decomposition also move around, with new cells

possibly being created and some cells possibly being removed, as required to satisfy

the stopping condition. If the resultant cover, after the adjustment, creates more

cells or causes more cells to silently intersect line segments than in the original cover,

then the complexity will increase. If the resultant cover reduces the number of cells

or causes fewer silent intersections, then the complexity will decrease. We give an

example in theorem 14 of a scene where the maximum quadtree complexity is fi(n)

times the minimum quadtree complexity. The result also indicates that the same

scene has unexpanded disc complexity that is Q(n) times the minimum quadtree

complexity.

Not all scenes have the property that their minimum and maximum quadtree

complexity is significantly different. If a scene is such that its minimum and maxi

mum quadtree complexities are both low or both high, then the scene is somehow

uniformly simple or complex, regardless of how it is divided up by a valid quadtree

decomposition. If the scene does not possess too much interaction then minimum

and maximum quadtree complexities are both low and the quadtree leading to the

maximum quadtree complexity does not magnify the amount of interaction present

too much. If the scene has a great deal of interaction between objects then the

minimum and maximum quadtree complexities are both high, and the quadtree

leading to the minimum complexity already detects a large amount of interaction.

63

m obstacle objects

m tightly packed parallel
lines that are the same length.

Figure 3.4: A family of scenes whose quadtree complexity and unexpanded disc
complexity is Q(n) times its minimum quadtree complexity.

If the minimum and maximum quadtree complexities differ by a significant amount,

then the amount of interaction detected in the scene depends on the origin and

orientation of the initial quadtree cell used in the quadtree decomposition. In this

case, we are making a pessimistic choice by defining the quadtree complexity to be

the maximum quadtree complexity, but note that in practice, a computed quadtree

for such a scene may give a much lower complexity than the maximum quadtree

complexity.

Theo rem 14 There is a family of planar scenes consisting of line segments where

for each scene, the quadtree complexity and unexpanded disc complexity of the scene

is Q(n) times its minimum quadtree complexity, where n is the total number of

objects in the chosen scene.

Proof : Consider the scene shown in figure 3.4. This is an example member of a

64

family of scenes where for each member, its quadtree complexity and unexpanded

disc complexity is Q(n) times its minimum quadtree complexity. Each member of

this family consists of a section of parallel lines and obstacle objects. The long

parallel lines on the left are referred to as the parallel lines, and the shorter lines on

the right as the obstacle objects. The number of parallel lines and obstacle objects

in each member of the family is the same. Each scene in the family is constructed

so that a minimally enclosing ball wrapped around any of the obstacle objects

will intersect all of the parallel lines; this is accomplished by ensuring the obstacle

objects are sufficiently close to the parallel lines, that they are oriented properly

and of sufficient length. Let S be a particular scene in this family. Let m be the

number of parallel lines (and also the number of obstacle objects in S). The total

number of objects in the scene is then n = 2m. In the following, we assume that 5,

the parameter limiting the number of representatives permitted in a covering cell,

has the value 8 = 2.

To determine an upper bound on the minimum quadtree complexity of S, we

first describe the cells needed to cover the line segments in S so that the complexity

will be kept linear in n. The number of additional empty cells created by the splitting

process is guaranteed to be linear in the number of representatives by lemma 13;

the total number of created cells will be less than 6n + 1. To minimize the quadtree

complexity, we must have the boundary of a large cell falling between the parallel

lines and the obstacle objects. To achieve this, the initial square must be such that

the vertical centre of the square falls between the parallel lines and the obstacle

objects; the horizontal centre lies just A below the tops of the parallel lines, where

A > 0 is the horizontal spacing between the parallel lines. See figure 3.5 for a picture

of the first few splits in the minimum quadtree decomposition for this scene. The

65

size of the initial square must be such that the distance from the horizontal centre

to the bottom is the length of the parallel lines plus (m - 2)A. This will cause a

single large cell in the lower left quadrant to intersect most of the area of the parallel

lines. The tops and bottoms of the parallel lines will each end up being covered with

shrunken cells that contain endpoints as well as length A segments of the tops and

bottoms of the parallel lines. The m obstacles will all lie in the lower-right quadrant.

The obstacles will cause at most m binary splits to occur inside, creating m cells

that cover the objects. Thus the complexity of all cells intersecting the parallel lines

is m for the large cell in the lower-left quadrant, m for the cells that contain the

top endpoints and m for the cells that contain the bottom endpoints of the parallel

lines. The complexity caused by silent intersections is thus 3m or 3^. Adding in the

complexity caused by the cells of the quadtree we have that the minimum quadtree

complexity of S is less than

nn „ 15n + 2
3 - + 6 n + l = - T -

Note that increasing 8 would lower the minimum quadtree complexity by a propor

tionate factor. This would come about because more representatives could intersect

a given cell, reducing the number of cells in the cover.

The (maximum) quadtree complexity of S is bounded by placing the initial

square so that it is at least a distance (m — 1)A to the left of where it is in the

minimum quadtree cover. In this case each of the small cells created to contain

obstacle objects will also be forced to intersect a section of the parallel lines. Since

there are m small cells containing the obstacles and there are m parallel lines, the

additional contribution to the complexity from this is m? = \n2. This puts a

superlinear lower bound on the quadtree complexity of S showing that its quadtree

complexity is Q(n) times its minimum quadtree complexity.

66

Vertical centre passes
/between obstacles and

/ objects.

Ill / /
/
/
/
/
/
/

I Jl /

Shrunken cells intersecting
line segment endpoints.

Figure 3.5: F i rs t few splits in the minimum quadtree decomposition for the scene.

67

We now determine the (minimum) unexpanded disc complexity of S. By

the construction of S, any attempt to surround the obstacle objects by discs will

force the parallel lines to be intersected by Q(m) discs. The scene was constructed

so that the minimally enclosing ball around any of the obstacle objects would be

forced to pass through all of the parallel lines. Enlarging the minimally enclosing

balls to allow them to intersect more than one line segment (and hence more than

2 object representatives) will not change this by more than a constant factor; the

most obstacles that could be entirely contained in a single disc is | , because each

obstacle has two endpoints. At least il(m) discs must intersect the parallel lines,

adding Q(n2) to the disc complexity. This puts a superlinear lower bound on the

unexpanded disc complexity of S showing that its unexpanded disc complexity is

f2(n) times its minimum quadtree complexity. •

3.3.2 Relationships

We now prove that low unexpanded disc complexity is not a sufficient condition for

low quadtree complexity. This result is part of the reason that we looked towards

expanded disc complexity as a disc complexity measure that would hopefully pro

vide a nice relationship between the disc and quadtree based weighted complexity

measures.

Theorem 15 There is a family of planar scenes consisting of line segments where

for each scene, the quadtree complexity of the scene is Q(n) times its unexpanded

disc complexity, where n is the total number of objects in the chosen scene.

Proof: Consider the scene shown in figure 3.6. This is an example member of a

family of scenes where for each member, its quadtree complexity isf i(n) times its

68

\

O(n) Objects that each are wrapped by a circle
but will include the parallel lines when being covered by
cubes in a cover produced to maximize the complexity.

\

n tightly packed parallel lines whose lengths extend a small distance beyond the circle.
The portion of the lines adjacent to the objects can be covered by a single large circle
that just misses the lines. The maximal quadtree cover of the scene will have O(n)
cells covering the parallel lines, contributing to superlinear complexity.

Figure 3.6: A family of scenes whose quadtree complexity is Q(n) times its unex
panded disc complexity.

unexpanded disc complexity. Each member of the family consists of a section of

tightly packed parallel lines on the left and obstacle objects on the right. Let S

be a particular scene in the family. Let m be the number of parallel lines and also

the number of obstacle objects. This gives a total of n = 2m line segments in the

scene. Let A be the interline distance between the parallel lines. The lengths of

the parallel lines in S are set so that each line extends a distance of A beyond the

boundary of a large covering disc that squeezes in between the parallel lines and

the obstacle objects (see figure 3.6). Doing this prevents too many discs from being

used to cover the parallel lines since a single disc can cover most of the area between

the parallel lines. Note, in the figure, that the vertical range of the smallest of the

parallel lines includes the vertical range of a bounding box around the obstacle lines;

that is, no obstacle is above or below the smallest of the parallel lines. Finally, we

69

assume for this proof that S, the bound on the number of permitted representatives

in a covering cell, is S = 2.

Determining the disc complexity of S, we cover the n parallel lines with

2m + 1 discs: the one large disc, and 2m smaller discs to cover the endpoints of

the parallel lines. The complexity of this is m + 1 for the large disc plus 2m for

the smaller discs. To cover the remaining m obstacle objects beside the parallel

lines, an additional m discs can be used, each disc containing exactly one obstacle

object; this adds m to the complexity. The preceding only covers the objects in the

scene. To ensure the entire bounding box of the scene is covered, we must cover the

complement of the union of the discs inside the bounding box. By looking at the

figure, it is clear that there are pieces to be covered between the parallel lines and

the obstacle objects, above and below the obstacle objects and on the right side of

the obstacle objects between the covering discs. There will be up to 2m regions to

be covered around the obstacle objects; each of these can be covered by a single disc

that does not silently intersect any object in the scene. As well, the regions above

and below the obstacle objects can be covered with an additional two discs that do

not silently intersect any object. This causes a total increase to the disc complexity

of the scene of no more than 2m + 2. The overall unexpanded disc complexity of

the scene is therefore (m + 1) + (2m) + (m) + (2m + 2) = 6m + 3 = 3n + 3.

To see why the quadtree complexity of S is Cl(n) times its unexpanded disc

complexity, we show that there is an origin square that leads to a quadtree decom

position with the needed complexity. To accomplish this, we specify a cover where

the parallel lines are covered with more than a constant number of quadtree cells,

forcing the parallel lines to contribute a U(n2) amount to the quadtree complexity

of the scene. The origin square of quadtree decomposition can be set so that ev-

70

ery cell in the quadtree decomposition that contains obstacle objects also intersects

every one of the parallel lines. This is done by making the origin square twice as

wide as the minimum possible width, and placing it so that its vertical centre line

passes to the left of the parallel lines. The first split will cause the entire scene to

be contained on the right-hand side of the quadtree. Subsequent splits will continue

until there are no more than a constant number of witnesses in each quadtree cell.

The splitting caused by the obstacle objects will terminate when each cell contains

a constant number of obstacles. By placement, the cells that contain the obstacles

will also have the parallel lines passing through them, as they are just to the left of

the obstacles. Since there are m obstacles, we will have Q(m) quadtree cells covering

the obstacles, and as a result the parallel lines. Each of the fi(m) quadtree cells

will contribute Q(m) to the complexity, resulting in a contribution of Q(n2) to the

overall complexity by the parallel lines. This proves that the quadtree complexity

of S is Q,(n) times the unexpanded disc complexity of S. •

The above theorem not only shows us an example where the unexpanded disc

complexity is low and the quadtree complexity is high, it also shows us one of the

properties of unexpanded discs. It is possible to construct scenes whose unexpanded

disc complexity is very sensitive to small perturbations in the locations of the objects

in the scene. The unexpanded disc complexity would increase quite a bit if even one

of the obstacle objects were to move closer to the parallel lines. In doing this, the

large disc would be pressed closer to the parallel lines, and would therefore expose

a larger portion of the ends of the parallel lines. To cover these ends would require

a large number of small discs, or about 0(n) discs that intersect most of the lines.

If we now consider using expanded discs to cover this scene, we will find

that we cannot squeeze a large disc between the parallel lines and the obstacle

71

objects. The reason for this is that the e-expansion of this disc would be quite large

- large enough to contain the obstacles. As a result, smaller discs are needed to

cover the parallel lines. In fact it is easy to see that this scene has high expanded

disc complexity. Using theorem 20 proved in section 3.4, we know that a scene

consisting of only n tightly packed parallel lines has high expanded disc complexity.

The addition of the n obstacles will not improve this, and will in fact force even

more expanded discs to be used-'to cover the parallel lines.

This observation suggests that a relationship between quadtree complexity

and expanded disc complexity may exist. We explore this question, giving a positive

result, in the next subsection.

3.3.3 Low Expanded Disc Complexity Implies Low Quadtree Com

plexity

In this section we will establish that there is a constant c > 0 based on e such

that for any scene its quadtree complexity will be at most c times its expanded disc

complexity. Thus, if a scene has linear expanded disc complexity, then it follows that

it will have linear quadtree complexity. We do this by first noting that regardless

of the origin square used in the quadtree decomposition of the scene, the number

of cells in the resulting decomposition is linear in the number of object faces in the

scene. Then we argue that there is a constant c > 0 such that for any particular

line segment in the scene, the number of quadtree cells needed to cover that object

is no more than c times the number of expanded discs needed to cover it in the best

expanded disc cover.

By lemma 13, we know that the number of cells needed in a quadtree de

composition of a scene is linear in the cardinality of the set of endpoints. This tells

72

us that it is not possible to attribute an increase in the quadtree complexity as

compared to the expanded disc complexity to there being a superlinear number of

cells in the quadtree decomposition.

We now show that every line segment covered by d expanded discs in the

minimum expanded disc cover can be covered by cd quadtree cells in the maximum

quadtree cover, where c = 2 j ^ ^ is a constant. To establish this, we prove the

following two lemmata. The first shows that at least a third of the intersections

between cells and line segments contain a sizable portion of the line segment. We

call an intersection a healthy intersection if it contains a piece of the line segment

that is proportional to e in length. The second lemma shows there cannot be more

than a constant number (^p-) of healthy intersections with cells from a quadtree

cover in the region of a line segment covered by a particular disc from the expanded

disc cover.

To define exactly what we will consider to be a healthy and an unhealthy

intersection, we must define and measure what we call the minimally intersecting

cell. Consider an arbitrary disc, d, that you might find in an expanded disc cover. By

definition of the model, there cannot be more than a constant, 8, object endpoints

inside d (or its associated expanded disc). Suppose a line segment, /, passes through

d, and that we want to cover this / by a collection of quadtree cells. By the quadtree

decomposition algorithm, every cell created must have a reason for its creation.

This reason is that there were more than a constant, 8, object endpoints in the

neighbourhood of the cell, where the neighbourhood is the union of all possible

parent cells that could have created the cell; such a region is a square with side

lengths 3 times that of the cell and where the cell appears in the centre. For the

neighbourhood of a cell within d to intersect more than S endpoints, it must extend

73

Minimally Intersecting Cell
i
/

/
/

Figure 3 . 7 : The minimally intersecting cell occurs in the e-expansion of the disc.

beyond the e-expansion of d. The minimally intersecting cell is defined as the

smallest valid cell that could intersect any line segment inside the e-expansion of d.

A cell that intersects the line segment in the centre of the e-expansion of d must be

larger than a cell that intersects the line segment near the edge of the e-expansion of

d. The size of the cell needed to create a particular length of intersection decreases

as the distance from the centre of d increases. As a result, the minimally intersecting

cell occurs in the e-expansion portion of the expanded disc (see figure 3 . 7) . The size

of the minimally intersecting cell acts as a lower bound on the size of any cell that

could intersect / inside d. The size of a minimally intersecting cell is bounded from

below by a cell, c, occurring in the expansion of d positioned so that a line segment

exits d and passes along the diagonal of c, where the length of the c's diagonal is y .

Thus, the size of a minimally intersecting cell must be greater than

Having this, we define an intersection between a cell and a line segment

within an expanded disc with radius r to be healthy if the length of the intersection

is larger than or equal to -f^. The size of a healthy intersection must be larger

or equal to one half the size of the minimally intersecting cell. An intersection is

7 4

defined to be unhealthy if it is not healthy.

For an intersection to be unhealthy, note that the line segment must cut off

exactly one corner of the cell. This is true because the cell creating the intersection

must be larger than or equal to the size of the minimally intersecting cell. If an

unhealthy intersection cut off exactly two corners of the cell, then the length of the

intersection would be at least making the intersection healthy.

L e m m a 16 Suppose c is the intersection of a line segment from the scene and a

disc from a minimum expanded disc cover. It is impossible to have more than 2

consecutive unhealthy intersections between cells of a quadtree cover and c. Thus at

most | of the intersecting cells from a quadtree cover of the scene will form unhealthy

intersections with c.

Proof: For the purposes of this proof, we will permit cells to float around without

the restriction that they be formed from a sequence of quadtree splits. We prove

that even with this relaxation, the result holds. Using the restriction that cells must

come from a valid quadtree decomposition can only increase the fraction of healthy

intersections of cells with the line segment.

Without loss of generality, we will assume that c has an upward, or positive

slope. We claim that the maximum number of consecutive cells that intersect c

in an unhealthy way is 2. There are two cases possible: an upper-left, lower-right

intersection and a lower-right, upper-left intersection. See figure 3.8.

In the lower-right, upper-left intersection case, c passes through the right half

of the bottom of the left-most square, and out through the left half of the right-most

square. Consider placing a third square, s, above the right-most square. How might

it be that s could produce a third unhealthy intersection with c while remaining at

75

upper-left, lower-right lower-right, upper-left

Figure 3.8: A lower-right, upper left and an upper-left, lower-right intersection with
a positively sloped line.

least as large as the minimally intersecting cell? Since c exits the right-most square

from the top, c will enter the bottom of s and will thus need to exit the right side

of s for the intersection to be unhealthy. Now consider how far along the top of the

right-most square, c could exit, measured from the left-most square; this distance

must be less than or else the intersection between c and the right-most square

would have been healthy. Suppose we try to fit in the minimally intersecting cell as s.

The size of the intersection between s and c would be minimized by placing s as far

left as possible on top of the right-most square. Doing so would cause c to enter s to

the left of the centre-point of the bottom of s. The size of the resulting intersection

between c and s is therefore larger than This implies that c intersects s in

a healthy fashion. Using a square larger than the minimally intersecting cell for s

would result in a larger intersection. We are forced to conclude that s must intersect

c in a healthy fashion regardless of the size of s. By symmetry, placing s below the

76

left-most square will also result in a healthy intersection.

The argument for the upper-right, lower-left intersection case follows from

the previous argument again by symmetry.

If we have had 2 consecutive unhealthy intersections on c, then we know

that the next intersection must be healthy. This gives an upper bound of | , as the

fraction of the total number of intersections with c that are unhealthy. •

Now we establish that for any intersection between a line segment from the

scene and a disc from a disc cover of the scene that there the number of healthy

intersections between the portion of the line segment inside that disc and cells in

any quadtree cover is bounded from above by the constant 2 4 ^ .

L e m m a 17 Suppose c is a line segment that is covered by d discs from a minimum

expanded disc cover. The maximum number of cells from a quadtree cover that form

healthy intersections with c is Sx^d

 > where e > 0 is the expansion factor of the

expanded disc cover.

Proof : Consider any of the expanded discs that intersect c in the minimum ex

panded disc cover, and label it e - the following argument applies equally to any of

them. Suppose the radius of e is r. The maximum number of healthy intersections

with c that could exist inside e is equal to the diameter of the disc divided by the

size of the smallest possible healthy intersection. This is:

2r _ 8A/2

Since there are d discs covering c, there can be at most

Sy/2d
e

cells that form healthy intersections with c. •

77

We have just shown in lemma 16 that there can be at most two unhealthy

intersections with c for every healthy intersection with c. Accounting for both health

and unhealthy intersections with c inside e gives us a total of

8^/2 _ 24V2
e e

intersections.

Putting these two lemmata together establishes the following theorem. Since

the number of unhealthy intersections is at most twice the number of healthy inter

sections, and the number of healthy intersections is bounded by ^f^, we have that

the contribution to the quadtree complexity of the scene of any line segment is no

worse than
8A / 2 _ 2 4 ^ 2

o —
e e

times the contribution of that segment in the minimum expanded disc cover. If

we suppose that the scene has (a, #)-expanded disc complexity, then it follows from

the previous discussion that the ^-quadtree complexity will be bounded by 24Y^(7,

which proves:

Theorem 18 If a scene has (a, S)-expanded disc complexity then it has {^Y^cr, 5)-

quadtree complexity.

3.3.4 Complexity of Computation

We now look at how hard it is to determine the quadtree complexity of a scene. In

our description of the algorithm to this point, we have implicitly assumed that each

cell in the quadtree decomposition would know which endpoints it contains. Then

for the computation of the cell weights, each cell needs to know which objects it

silently intersects. Thus, the algorithm proceeds in two steps, the first uses the set

78

of endpoints to drive the quadtree decomposition. During each split, the endpoints,

and the intersecting line segments are reassigned to the sub-cells. The second step

calculates the complexity of the quadtree decomposition using the line segment

intersection information stored in each cell.

More specifically, we assume that each cell in the decomposition stores a

number of binary search trees and lists. One list will keep track of the endpoints

contained in the cell sorted by one coordinate of the endpoints (with ties broken

by the other coordinate). Four binary search trees (preferably A V L or Red-Black

trees), will also be maintained to keep track of the line segments that enter each

cell along each of the four boundaries of the cell. Each of these trees will store

intersections between line segments and one of the boundaries in clockwise order.

A final list, which we call the list of free line segments, will be needed to store the

line segments that are entirely contained in a cell. This final list does not need to

be ordered in any particular way.

We must efficiently maintain the list of endpoints in the subcells created

by splitting operations. The problem with a naive approach is that unbalanced

splitting by binary splits can lead to Q(n2) complexity. Vaidya [16] and Callahan

and Kosaraju [3] both describe techniques for efficiently maintaining lists of points

owned by subcells while building a quadtree-like structure. They actually divide

cells using a single splitting-plane, but their approach can easily be extended to

quadtree style splits. Their techniques result in a construction time of 0(n logn)

for building the quadtree decomposition.

In addition to maintaining the endpoint lists, we need to maintain the four

search trees and the list of free line segments in each subcell of a particular binary

or shrinking split. We must use time proportional to ni(0) + log(n) to accomplish

79

this for each split, where ni(O) stands for the number of intersections with O. If we

can do this, we attain an overall complexity of 0(nlogn + QTC(S)) for maintaining

the object intersection data in the subcells.

We will first deal with binary splits. The first step in performing the update

for a binary split is to partition the top and bottom trees into those line segments

that enter to the left and right of the vertical split line, and to partition the left and

right trees into those line segments that enter above and below the horizontal split

line. The split locations can be found and partitions performed in O(logn) time.

The second thing to note is that a line segment crosses a split line if it enters the

cell on one side of the split line and exits on the other side. As well, since the line

segments in a scene are disjoint, the order in which the line segments intersect the

border corresponds to the order in which they cross the split line (if they do in fact

cross the split line). To determine all the silent intersections between line segments

and the vertical split line it is enough to proceed in a clockwise fashion from the

bottom of the vertical split line along the left border to the top of the vertical split

line. As each intersection is found, a simple check is made to see if it intersects the

vertical split line. If so, it is added to the set of intersections with the vertical split

line. If it does not, the line is skipped. A similar technique would be used to assign

the appropriate intersections to the horizontal split line. This probe would catch all

of the silent intersections in the cell, and some of the line segments that leave one

endpoint in the cell. To include the missing lines leaving one endpoint requires a

minor modification to this procedure. That is, two traversals around the cell must

be made in tandem: (in the vertical split case) one from bottom to top along to the

left of the vertical split and one from bottom to top along the right of the vertical

split. It is simple to note that the silent intersections will intersect both traversals

80

in the same order. As such, if a line segment is detected to cross the split line in one

traversal below the crossing of the split line by the line in the other traversal then the

line segment from the first traversal should be included in the tree for the split line.

Whenever it is detected that the same object is referred to by both traversals, the

intersection should be recorded on the split line, and each border traversal moved to

the next intersection. In this fashion, almost all of the intersections will be pegged

to the split lines. The only remaining possible intersections are those objects in

the list of free line segments. For each of these segments, we are willing to spend

O(logn) time if they cross a split line to add them to the appropriate split tree.

Otherwise, the line will be added to the free list of the subcell that contains it. This

will add an O(nlogn) factor to the time complexity since each line will be pegged

to a border at most once. Overall, we have a complexity of O(logn) for the searches

to locate the split points in the original trees plus 0(ni(C)) to create the new trees

and lists. This gives the needed 0 (logn + ni(C)) complexity.

Shrinking splits can be dealt with very simply. The intersections stored in

the trees along the border should be traversed in clockwise order. For each segment

that is encountered, it should be checked if it intersects the shrunken cell. If so, the

intersection should be noted in the tree corresponding to the border of the shrunken

cell where the intersection is located (if there are two intersections, only the one

closest to the border being traversed should- be recorded at this time - the second

intersection will be detected later). Each intersection will be found in order, since

the line segments do not intersect one another. Thus the trees in the subcell will be

built in order, and hence can be built in linear time in the number of intersections.

Afterward the list of free line segments will be traversed. Each object that intersects

the shrunken cell should be added to the appropriate border tree or the free list.

81

This can be done in O(logn) time per line segment intersection with the border

of the shrunken cell, or 0(1) time for adding to the free list. Overall we have a

complexity of 0 (logn + ni(C)) for updating the border trees.

To see how this leads to O (nlogn + QTC(S)) complexity overall, note that

since there are 0(n) cells in the final quadtree there are also 0(n) interior nodes of

the quadtree. Together 0(log n) work in each intermediate cell leads to an 0 (n log n)

overall contribution. As well, each line segment, /, will be copied into a new tree

0(wt(l)) times, where wt(l) represents the number of times / gets split in the created

quadtree. As such, summing this work over all the objects in the scene gives a

complexity of

Putting the contributions together gives the needed result.

After creating the quadtree, with the object intersection information, com

puting the quadtree complexity of the scene will take an additional 0(n + QTC(S))

time to determine the number of silent intersections in each of the resulting cells of

the quadtree.

Overall we have proven the following theorem:

Theorem 19 Let S be a planar scene. We can compute the quadtree complexity of

S, written QTC{S), in 0{nlogn + QTC(S)) time.

Thus we can determine the quadtree complexity in time proportional to the

quadtree complexity of the scene plus an n logn factor. If the quadtree complexity

of the scene is linear in the number of objects or even O(nlogn), then it takes

0(n log n) time to determine the quadtree complexity of the scene. This is further

evidence that the quadtree complexity for a scene is easier to determine than either

of the disc-based complexity measures of the scene.

82

3.4 Weighted Complexity of Tightly Packed Parallel

Lines

In this section we see how well the various weighted models, discussed in this chapter,

measure the complexity of tightly packed parallel lines. Precisely, the scene we will

be looking at consists of n identical parallel lines of length / that start and end in

alignment where the distance between the leftmost and the rightmost line is A. We

assume I > A, that is the length of the lines is larger than the separation between

the leftmost and the rightmost lines.

One of our criteria of goodness for a model is that it should assign a low

complexity to this scene. This section allows the various models to be compared

under this criteria.

In the introduction we proved theorem 9 which showed that the models of

the previous chapter give this scene a high complexity. That is, it does not consist of

fat-objects, it has density and clutter factor equal to the number of lines, it requires

Q(n2) discs in a simple cover and Q(n2) guards in a guarding set. The following

theorem shows the complexities assigned to this scene by the weighted models of

this chapter.

Theorem 20 Let S be a planar scene consisting of n identical vertical parallel lines

each of length I that start and end in alignment and are equally spaced. Let A < /

be the separation between the leftmost and the rightmost lines. Let 8 > 0 be the

parameter limiting the number of representatives inside a covering object.

• S has (8, fi(logy))-expanded disc complexity.

• S has (8, Q(n log n))-quadtree complexity.

83

• S has (5, Q(n))-unexpanded disc complexity.

P r o o f : To show a lower bound on the expanded disc complexity of S, we will

describe the number of discs needed to cover just the centre line in the collection.

The reason we can not cover this line with just one disc is because the e-expansion

of the disc would contain too many other endpoints. The first disc we use will have

radius ^ _ ^ 2 . This disc will leave a hole of size er on either end of the line that

we must cover. Focusing on covering one end of the line, we repeatedly place the

largest disc possible in the remaining space until some disc leaves less space than

the separation between the central line and its neighbours. If we were to stop before

this point, we would not be able to guarantee that one more disc would be needed

to cover the final segment of the line nor that the next disc would intersect less than

8 object endpoints. After getting to this point, one more disc can be placed to cover

the endpoint, without intersecting any other endpoints. Since the lines are equally

spaced, the space between each line is ^ . It is simple to establish (see lemma 21

below) that the space left at the end to cover after the placement of m discs is

eml
(e + l)(e + 2)™-!2

Thus we need at least
' nl'
l 0 g ^ 2 A

discs to ensure that the centre line is covered. Thus fi(log y) discs are needed

to cover S. This quantity can be made arbitrarily large by increasing I and or

decreasing A.

The ^-quadtree complexity of S is 0 (nlogn) . The reason for the improve

ment in this model as compared to the expanded disc model is the shrink-wrapping

84

operation used in the quadtree decomposition algorithm. We will proceed by show

ing that the quadtree complexity of S can be as bad as fi(nlogn). Then we will

argue that the quadtree complexity is never worse than 0(nlogn).

We start with an origin square that is oriented 45° to the parallel lines, and

contains the parallel lines, as in figure 3.9. The origin square will have one binary

split performed on it. Then in each of the two cells containing endpoints, a shrunken

cell will wrap around the endpoints of the lines. Inside each of the shrunken cells,

we will see further binary splitting in the cells that contain more than 8 endpoints.

Note that every binary split in a cell that contains m endpoints creates a subcell

that silently intersects [y j line segments. Each binary split also creates two subcells

that each contain [y j endpoints. After q > 0 levels of splitting, a simple induction

shows that there will be 2q cells each with ^ endpoints. Thus, there will be a total

of no more than logn levels of splitting. On each of the logn levels of splitting,

cells were created that in aggregate silently intersected a total of ^ line segments.

This leads to a quadtree complexity of logn) for each of the shrunken cells, and

hence a total quadtree complexity of fi(nlogn).

Now to see that the quadtree complexity of this scene can never be worse

than O (nlogn), note that regardless of the orientation of the origin square the with

respect to the parallel lines, no more than four cells will be used to shrink-wrap to

the endpoints of the lines. Inside each of the shrunken cells, there will be O(logn)

levels of splitting, since after at most one unbalanced binary split, there must be a

balanced binary split.

This can be proved by a simple case by case analysis the details of which

we omit. The idea in proving this is to note that the endpoints inside a shrunken

cell form a line. If this line touches two opposite boundaries of a cell, then a binary

85

Figure 3.9: A quadtree cover of a set of 8 parallel lines.

split of that cell will be balanced. If the line cuts off a corner, then there are a

number of cases. It may be that a binary split of the cell will be balanced in this

case. However, if a binary split is not balanced but still makes progress, then most

of the points will be located in one cell after the binary split (if the binary split does

not make progress, then a shrinking split will be made, which will force a balanced

binary split at the next level of splitting). Looking at the possible locations for

the line of points in the subcell after the binary split reveals that the line must cut

through a large portion of the subcell. This implies that the next binary split of the

subcell, with the majority of points, will be balanced.

For each of the O(logn) levels of splitting, there can be no more than n

silent intersections present. Together this puts an upper bound on the 5-quadtree

complexity of S of 0(n log n). Putting the lower and upper bounds together shows

that the 5-quadtree complexity of the scene is 0(n logn) .

Under the unexpanded disc complexity model, S has 0(n) complexity. For

the upper bound, note that in this model, one disc can come to within at least -

86

Figure 3.10: A low complexity unexpanded disc cover of a set of 8 parallel lines.

of the ends of the lines, without intersecting more than S endpoints of the lines (we

are implicitly assuming that / is much larger than A, the separation between the

leftmost and rightmost lines, for this to be true). The remaining ends of the lines

can then easily be covered by a constant number of discs per endpoint . See figure

3.10 for a picture. The result is that the scene is covered by at most a linear number

of discs, and hence the scene has 0(n) unexpanded disc complexity. For the lower

bound, it is enough to note that the unexpanded disc complexity cannot be less than

n, the number of line segments. S therefore has Q(n) unexpanded disc complexity.

Together, this proves that the ^-unexpanded disc complexity of S is Q(n). •

Lemma 21 Let lm be the remaining distance to cover on the centre line after placing

m discs using the method described in the discussion of expanded disc complexity in

the above theorem. Then

_ lem

m ~ 2 (e + l) (e + 2) m - 1

87

Thus to get a disc of radius smaller than ^ we need at least

log £±2
nl
2A

discs to cover one half of the line.

Proof: The first disc placed has a radius of r*o = jf±. This leaves

/ el

to be covered. To cover this space we will use a disc that fits on top of the previous

disc, and extends as high as possible without the expansion of the disc extending

beyond the end of the line. The radius of this next disc must satisfy

2rY + erx = lx

or

r\ =
h

2 + e

This covers 2r\ of l\. We still have to cover

t 2 = ti 2r, = -L =
e2l

e + 21 (c+ 1)(£ +2)2-12

This pattern continues with subsequent circles, to give us the following function:

= <
m = 0

(e+ l) (e+2) m - 1 2 m > 0

Using this we can determine for what m, lm is smaller than ^, the interline distance,

by solving for m:

A

n
lm —

eml
>

(e+ l) (e + 2) m - 1 2 \e + 2J 2

88

and thus

taking logarithms we see that

e + nl_
> 2A

log ^ nl

Thus using the ceiling of this value for m will ensure that we have enough discs to

cover one half of the line. •

From the theorem it is clear that the expanded disc complexity assigns a

complexity that is proportional to the logarithm of the n times the ratio between

the length and the separation of the parallel lines. In this way, the expanded disc

complexity of the scene can be made arbitrarily large by increasing the length of the

lines and/or decreasing the width of the set of parallel lines. However, in practice,

assuming that the ratio between the length of the parallel lines and the width is in
/ 2 \ 0 (n)

•(̂ T -) i the expanded disc complexity model will measure a low complexity for

the scene. As such the model is better in practice than this criterion would predict

especially given its additional property of being resistant to small perturbations in

the scene. However, to have the assurance of a reasonably low complexity assignment

to the scene regardless of the ratio between the length to width, one must use either

the unexpanded disc complexity model or the quadtree complexity model. The

unexpanded disc complexity model gives the lowest complexity assignment to the

scene, but is hard to compute. The quadtree complexity model gives a complexity

assignment to this scene that is in-between the expanded disc and unexpanded disc

models, with the advantage of being simple to compute. As such the quadtree

complexity model is our preferred model.

89

3.5 Application: Binary Space Partitions

In this section, we look at the application of binary space partitions. We give a brief

introduction to the problem, and then proceed to show that the size of a binary

space partition for a scene is at worst proportional to its quadtree complexity. After

we present a possible modification to the quadtree decomposition algorithm that

lowers the size of the binary space partition for many scenes below that which is

given by our quadtree decomposition algorithm.

3.5.1 Binary Space Partitions of Linear Size

Suppose you have a scene of n disjoint objects in the plane. The binary space

partition (BSP) problem asks for a partition of the scene into a number of regions so

that each region contains no more than one object from the scene. More specifically,

the partition is created by starting with one region, i.e. the entire plane; recursively,

each region is subdivided with a dividing subplane (aline) until each region intersects

at most one object from the scene. See figure 3.11 for an example of a scene showing

one possible binary space partitioning. A tree, known as the binary space partition

tree (BSP tree), is formed to keep a record of the splits made by the algorithm.

Each internal node represents a splitting line used to decompose a region into two

sections. If the splitting line contains any objects, they are stored in the internal

node along with the splitting line. The children of an internal node represent the

resultant regions after splitting the internal node. A leaf in the tree represents a

region that intersects at most one object from the scene. The leaf stores the object

that intersects the interior of the region.

There are two measures of the complexity of this problem. The first is the

amount of time it takes to compute what the binary space partition for a scene of

90

Figure 3.11: A binary space partition of a scene.

objects is. We will look at this later. The second issue concerns the size of the binary

space partition. The size can be viewed as the number of regions in the partition,

or the number of nodes in the BSP tree. Note that the number of regions is the

number of leaves in the BSP tree. This means that the two measures are related by

a factor of two. The number of nodes of the BSP tree, is related to the complexity

of many of the applications of the BSP tree. Many applications of the BSP tree

create the tree once, and use it over and over many times. Thus we want to ensure

that the size of the BSP tree is small. We are not as concerned with keeping the

time complexity to create the BSP tree small, although we would like to be able to

compute such a tree in a reasonable time on most input scenes for the structure to

be practical on large inputs.

3.5.2 Previous Results

Planar binary space partitions have been well studied in the literature. Paterson

and Yao [15] proved that any set of n polygons in the plane admits a binary space

partition of size O(nlogn); if the polygons are all axis parallel then the scene admits

91

a size 0(n) or linear sized binary space partition. It is still unknown whether every

scene in the plane admits a linear sized binary space partition.

There has been a number of papers classifying specific types of inputs for

which linear sized binary space partitions can be constructed. De Berg et al.

have shown that uncluttered scenes admit linear sized binary space partitions [7].

They give an algorithm to compute such a binary space partition that runs in time

O(nlogn) if the input is uncluttered. An obvious consequence of this is that scenes

of fat objects and low density scenes admit linear sized binary space partitions.

In de Berg et al. [8] they prove that the following inputs admit linear sized binary

space partitions: scenes of n planar fat objects, scenes of n planar convex homothets

(a set of objects is a set of homothets if all the objects are scaled and translated

copies of one another) and scenes of n line segments with bounded ratio between

the longest and shortest line segment (the size of the binary space partition is actu

ally dependent on the ratio between the longest and shortest line segment in their

development).

These results all describe a number of different types of planar scenes that

admit linear sized binary space partitions. The gap between the best known general

upper bound to the size of a binary space partition and the linear sized lower bound

is better understood. We will show in the next subsection that scenes that have

linear quadtree complexity have linear sized binary space partitions that can be

computed in 0(nlogn) time. In fact we will show that the linear sized bound holds

even if we relax the splitting criterion to allow a cell to have an unlimited number

of non-silent intersections with objects that leave exactly one endpoint in the cell so

long as there is not a single silent intersection (nor a single object entirely contained

in the cell).

92

I T T I

Figure 3.12: Arrows indicate the extension of a shrunken cell to the boundary of
the parent to create valid binary space partition splits.

3.5.3 Relation to Quadtree Complexity

Lets assume that we have a planar scene S that consists of n non-intersecting (except

possibly at the endpoints) line segments. We will denote the quadtree complexity of

<S as QTC(S). Let the particular quadtree cover that leads to QTC(S) be denoted

as QT(S).

The first thing to note is that QT(S) only needs to be modified slightly to

become the start of a valid binary space partition. The order in which splits occurred

in the creation of QT(S) can be followed to create the binary space partition, noting

the following modifications. Each binary split represents three splits of a region in

the current binary space partition: a vertical one and two horizontal ones (or vice

versa). A shrinking split can also be viewed as up to four splits of a binary space

partition: one split along each of the boundaries of the shrunken cell extending as far

as each can go, not crossing boundaries. See figure 3.12 for an example. Less than

four splits will be made if the shrunken cell is adjacent to any of the boundaries.

The quadtree decomposition of the scene with the specified modifications

93

are the start of a binary space partition. At this point, we must determine the set

of line segments that intersect each cell in the intermediate BSP. We know, from

section 3.3.4 that these can be computed in 0 (n l o g n -f- QTC(S)) time. The next

step in building the BSP is to make splits along any silent intersections between

line segments and the resultant regions in the BSP. To determine the number of

cells that have been created up to this point, we focus on the cells that contain a

shrunken cell. The reason for this is that meshing the shrunken cell into the BSP

has the effect of creating more divisions than are present in the original quadtree

decomposition; these extra cells can increase the number of regions in the scene

beyond the quadtree complexity of the scene. Binary splits do not require extra

splits to insert them into the BSP, and therefore do not increase the number of

regions beyond the quadtree complexity.

Let P represent a cell that contains a shrunken cell. P is divided into four

subcells (not counting the shrunken cell, and not looking at any silent intersections).

It is possible for each of the silent intersections with P to intersect all four of the

subcells. If this happens, then each silent intersection will create four additional

cells inside P. The maximum number of cells in P is then #C(P) = 4(wt(P)),

where #C(P) represents the number of cells in P and wt(P) represents the weight

associated with P. These parent cells present the worst case possible increase in

the number of cells. The total number of cells in the intermediate binary space

partition, labeled BSP ' , is thus

#C{BSP') < (4wt(c)) = 4QTC{S)
ceQT(S)

To complete the BSP, we must deal with the remaining intersections between

line segments and cells of BSP ' . These are the non-silent intersections. We know

that there will not be more than 8 such non-silent intersections in any given cell

94

of B S P ' . Partitioning these 8 objects into a valid BSP requires a subtree of size

at most 0(5\og(8)). This represents a constant increase in the overall size of the

BSP. If every cell in B S P ' requires 0(8\og(8)) splits, we get that the final BSP has

0(8\og{8))4QTC(S) = dQTC{S) cells, where d = 40(8\og(8)) is a constant. A l l

of the above work for translating a quadtree decomposition of a scene into a valid

B S P takes a constant amount of additional time per cell in the quadtree.

Altogether we have proven the following lemma.

L e m m a 22 Given a planar scene S consisting of n disjoint (except possibly at the

endpoints) line segments, we can construct a binary space partition for S with at

most d • QTC(S) cells, where d is a constant. If QTC(S) is linear in n, then the

size of the binary space partition is linear.

The complexity of the BSP algorithm on a scene S is 0(n log n + QTC(S)).

Since the algorithm has two parts, there are two contributors to the complexity of

the algorithm. The first part of the algorithm requires the creation of a quadtree

over the scene. As we have seen in section 3.3.4, the quadtree can be computed in

time O(ralogn). Determining which line segments intersect which cell in the decom

position takes Q(niogn + QTC(S)) time. The remaining work for this computation

is the conversion of the quadtree into a binary space partition. As we have seen

above, this can be done in a constant amount of additional time per cell in the

resulting quadtree decomposition. Putting this with the above lemma proves the

following.

Theorem 23 Let S be a planar scene with n disjoint (except possibly at the end-

points) objects. We can construct a BSP for S with size 0(QTC(S)) in time

0(n log n + QTC(S)). If the quadtree complexity of S is inO(n), then the binary

95

space partition has linear size and is computed in O(nlogn) time.

If we are interested only in creating a valid binary space partition for a scene,

we can in fact relax the splitting criterion used in deciding when a cell should be

split. De Berg et al., in [8], have proven the following theorem:

Theorem 24 (de Berg et al. [8]) Let C be a convex polygon and let S be a set of

line segments inside C that are all anchored at the boundary of C. Then there exists

a binary space partition for S(C) (the set of segments anchored at the boundary of

C) inside C of size at most 3I<5(^)I~1.

This theorem shows that any convex polygon intersected by line segments in

such a way that each line segment crosses the boundary at least once, can be split

a linear number of times to form a binary space partition. We can thus change the

splitting criterion to the following: split a cell only if it contains too many segments.

If the cell contains no segments, then the cell need not be further split, as a linear

sized binary space partition can be formed for the scene inside the cell using the

theorem. This simplifies the splitting process, resulting in a lowering of the size of

most BSPs constructed in this fashion. It has the effect of increasing the number of

scenes which can be proven to produce a BSP of linear size.

Interestingly, this modified quadtree algorithm gives a linear sized binary

space partition to the scene consisting of n parallel lines, that was discussed in

section 3.4. This in itself is not surprising, but does indicate an improvement over

the quadtree algorithm used in determining quadtree complexity for a scene. Under

the original algorithm the scene has 9(nlogn) quadtree complexity, and hence will

produce a BSP of size 0 (nlogn) . An improvement to linearity in the size of the

BSP for this scene by a quadtree based method is admirable. This modified quadtree

96

gori thm may be useful in other applications as well .

97

Chapter 4

Conclusions

We have looked at a number of different models of two dimensional scene complexity.

The goal of each model is to measure the intrinsic complexity of geometric scenes.

Different models look for different properties to deem the scene simple or complex.

The first model, fatness, looks at each object in a scene, setting the fatness of the

scene to the fatness of the least fat object. If the fatness of the least fat object

is less than a fixed constant, then the scene is deemed complicated. The density

model measures the maximum number of large objects that intersect a similarly

sized region. If there is a region that intersects more than a fixed constant number

of objects of the same or larger size, then the scene is deemed complicated.

We then looked at two models that focus on how easy it is to approximate the

distribution of objects throughout the scene with a set of points. The guarding set

model counts the smallest number of points needed to provide a good approximation

of the distribution of the objects; if this number of points is linear in the number of

objects, then the scene is deemed simple. The clutteredness model deems a scene

simple if a particular set of points, namely the bounding box corners of the objects

9 8

in the scene, provide a good approximation for the set of objects.

The remaining models looked at are cover-complexity models. These models

attempt to cover the scene with a set of regions, where the complexity of scene

intersecting each region is somehow limited. The simple-cover-complexity model

limited the covering regions to not intersect more than a constant number of objects

from the scene. In this model, the number of discs needed to cover the scene is

the measure of complexity; if a linear number of discs can cover the scene, then

the model considers the scene to be simple. The expanded and unexpanded disc

complexity models both cover the scene with discs; the quadtree complexity model

covers the scene a quadtree decomposition. These models restrict the number of

objects that start or end in a region of the cover. In these models, each covering

region is assigned a weight that is equal to the number of objects that intersect the

region silently (without leaving an endpoint). The complexity of the scene is the

sum of the weights of all the regions in the cover.

The last three models of unexpanded disc complexity, expanded disc com

plexity and quadtree complexity were introduced by this thesis. The reason these

models were introduced was to capture a different idea of what it means for a scene

to be complex. It seems that there are many scenes with a number of sections of

almost parallel lines in them. Some algorithms are able to efficiently process such

scenes, even though the worst case complexity based on the input size indicates that

such processing would be inefficient. These new models permit a small number of

sections of almost parallel lines to exist in a scene, without assigning a large com

plexity to the scene. Only the starting and ending points of such lines are charged

for. In these weighted models, a scene is complicated if there are a number of regions

of parallel lines around which objects terminate.

99

The models described in this thesis have been shown to form a hierarchy.

At the bottom of the hierarchy is the model of fatness, and at the top of the hier

archy is the model of quadtree complexity. In between are the models of density,

clutteredness, the equivalent models simple-cover-complexity and guarding sets, fol

lowed by expanded disc complexity. It is not known exactly where unexpanded disc

complexity fits in the hierarchy, except that it is more general than the expanded

disc complexity model. The property of the hierarchy is that a scene deemed simple

by a particular model will be considered simple by all models above it in the hier

archy; it may not be the case that the scene is considered simple in models below

it in the hierarchy. The usefulness of this hierarchy is to aid in the analysis and

design of algorithms. When solving a particular geometric problem, the hierarchy

can be looked at to determine the most general model that can be used to aid in the

computation of the solution. Some problems may be easier to solve when provided

simple scenes according to a particular model as input. If none of the models in

the hierarchy seem to fit a particular problem, perhaps a similar model to the ones

described here can be created with the needed properties.

We looked at one problem in particular, namely the binary space partition

problem, and noted that scenes with linear quadtree complexity have linear sized

binary space partitions. The binary space partition can be computed using this

method in time 0(n log n+QTC(<S)). For scenes with superlinear quadtree complex

ities, the size of the BSP computed with the described method will be proportional

to the quadtree complexity of the scene.

We restricted our focus to the two dimensional case as it is difficult to extend

the weighted models into higher dimensions. The problem lies in how object rep

resentatives are defined. The natural choice for an object representative is a facet

100

of dimension d — 2; that is a point in two dimensions or a line segment in three di

mensions. But dividing a three dimensional cell based on the presence of too many

line segments will result in more than a linear number of cells (in the number of line

segments) to be created, as each split of a line segment will result in more than one

subcell containing the line segment. This does not occur for points.

In short, this work has looked at some specific properties that can be related

to the complexity of some geometric algorithms. It is hoped that these properties will

enable greater understanding to be achieved about the role played by the structure,

as opposed to the size, of an input scene in the complexity of algorithms that process

the scene.

4.1 Possible Future Work

Some questions remain open from this thesis. It is not known how the unex

panded disc complexity model relates to the quadtree complexity model. As we

have shown, there is an example of a scene that has low unexpanded disc complex

ity, but high quadtree complexity. However, we have no proof that every scene with

linear quadtree complexity will have linear unexpanded disc complexity. If such

a proof could be found, then the unexpanded disc complexity model would move

in to the top of the hierarchy of models. If a family of scenes, is found with high

unexpanded disc complexity and low quadtree complexity, then the disc complexity

model will still be more general than the expanded disc complexity model, but will

be unrelated to the quadtree complexity model, created a fork like structure at the

top of the hierarchy.

The optimization to the quadtree algorithm presented for computing binary

space partitions can be further studied and analyzed. The idea was to split a cell

101

only if there are objects wholly contained in the cell. This idea may extend more

readily to higher dimensions that the ideas presented in this thesis.

The complexity of various existing solutions to geometric problems can be

related to the models presented here. Additionally new solutions to geometric prob

lems can be designed with lower complexity when given simple scenes as input,

and higher complexities when given complicated scenes as input. When performing

either of these tasks, it is advantageous to analyze the algorithm under the most

general model that fits the problem. This will provide the largest selection of simple

scenes for the algorithm. However, choosing a model that is too general may cause

the associated time or space complexity bound for the algorithm to be larger than

needed.

102

Bibliography

[1] P. Agarwal, M . Katz, and M . Sharir. Computing depth orders for fat objects and
related problems. Computational Geometry Theory and Applications, 5:187-
206, 1995.

[2] H . Al t , R. Fleischer, M . Kaufmann, K . Mehlhorn, S. Naher, S. Schirra, and
C. Uhrig. Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. Algorithmica, 8:391-402, 1992.

[3] P. B . Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to ^-nearest-neighbors and n-body potential fields. Jour
nal of the Association for Computing Machinery, 42(l):67-90, January 1995.

[4] B . Chazelle, H . Edelsbrunner, M . Grigni, L . Guibas, J . Hershberger, M . Sharir,
and J . Snoeyink. Ray shooting in polygons using geodesic triangulations. In
Proceedings of the 18th International Colloquium on Automata, Languages and
Programming, L N C S 510, pages 661-673. Springer-Verlag, 1991.

[5] T. H . Cormen, C. E . Leiserson, and R. L . Rivest. Introduction to Algorithms.
McGraw-Hill , 1994.

[6] M . de Berg. Linear size binary space partitions for fat objects. In Proceedings
of the 3rd Annual European Symposium on Algorithms (ESA '95), L N C S 979,
pages 252-263. Springer-Verlag, 1995.

[7] M . de Berg. Linear size binary space partitions for uncluttered scenes. Technical
Report UU-CS-1998-12, Department of Computer Science, Utrecht University,
Utrecht, the Netherlands, 1998.

[8] M . de Berg, M . de Groot, and M . Overmars. New results on binary space
partitions in the plane. Computational Geometry Theory and Applications,
8:317-333, 1997.

103

[9] M . de Berg, M . Katz, A . F . van der Stappen, and J . Vleugels. Realistic input
models for geometric algorithms. In Proceedings of the 13th ACM Symposium
on Computational Geometry, pages 294-303, 1997.

[10] M . de Berg, M . J . Katz, M . Overmars, A . F . van der Stappen, and J . Vleugels.
Models and motion planning. In Proceedings of the 6th Scandinavian Workshop
on Algorithm Theory, L N C S 1432, pages 83-94. Springer-Verlag, 1998.

[11] R. J . Fowler, M . S. Paterson, and S. L . Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information Processing Letters, 12(3):133-137,
Jun 1981.

[12] J . Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a
ray, take a walk. Journal of Algorithms, 18:403-431, 1995.

[13] J . Matousek, N . Miller, J . Pach, M . Sharir, S. Sifrony, and E . Welzl. Fat
triangles determine linearly many holes. In Proceedings of the 32nd Annual
IEEE Symposium on the Foundations of Computer Science, pages 49-58, 1991.

[14] J . S. B . Mitchell, D . M . Mount, and S. Suri. Query-sensitive ray shooting. In
Proceedings of the 10th ACM Symposium on Computational Geometry, pages
359-368, 1994.

[15] M . S. Paterson and F . Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete Computational Geometry, 5:485-503,
1990.

[16] P. M . Vaidya. An O(nlogn) algorithm for the all-nearest-neighbors problem.
Discrete and Computational Geometry, 4(2):101-115, 1989.

[17] A . F . van der Stappen. Motion Planning Amidst Fat Obstacles. PhD thesis,
Deptartment of Computer Science, Utrecht University, Utrecht, the Nether
lands, October 1994.

[18] A . F . van der Stappen, M . H . Overmars, M . de Berg, and J . Vleugels. Motion
planning in environments with low obstacle density. Technical Report UU-CS-
1997-19, Department of Computer Science, Utrecht University, Utrecht, the
Netherlands, 1997.

[19] M . van Krevald. On fat partioning, fat covering and the union size of polygons.
In Proceedings of the 3rd Workshop in Algorithms and Data Structures, L N C S
709, pages 452-463. Springer-Verlag, 1993.

104

J. Vleugels. On Fatness and Fitness - Realistic Input Models for Geometric
Algorithms. PhD thesis, Deptartment of Computer Science, Utrecht University,
Utrecht, the Netherlands, March 1997.

105

