
On TESTGEN+, An Environment for Protocol
Test Generation and Validation

by

Zhou Jingsong

B.Sc., Changsha Institute of Technology, China, 1987

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of

Master of Science

in

The Faculty of Graduate Studies
Department of Computer Science

We accept this thesis as conforming
to the required standard

University of British Columbia
December 1992

© Zhou jingsong, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of kc

The University of British Columbia
Vancouver, Canada

Date ^/0 77/1

DE-6 (2/88)

Abstract

This thesis addresses a significant tool ,TESTGEN+, for protocol test generation and valida-

tion. TESTGEN+ consists of two basic components:TESTGEN for protocol test generation,

and TESTVAL for test validation.

TESTGEN, is a protocol TEST Generation and Selection Environment for conformance testing

which has been developed at the University of British Columbia. This environment is menu

driven and unique in that it is effective, general, flexible and portable. It is based on an inter-

mediate extended transition system formalism and directly supports ASN.1 and Estelle. The

test generation method adopted in the environment integrates both the control flow testing and

the data flow testing with parameter variation. Furthermore, test generation and selection are

integrated and guided by user-defined test suite generation constraints and parameter variation

constraints. The environment will serve as a useful testbed for experimenting with test gen-

eration and selection as well as being a productive system for generating useful test suites for

real-life protocols.

TESTVAL is a test suite validator, which is based on a trace analyzer, and which allows test

cases to be validated against their protocol specification. Using TESTVAL, the validation of

the test suite for the LAPB protocol defined in the ISO 9646 standard document has been

performed and the validation result is presented in the thesis.

Contents

Abstract^ ii

Table of Contents^ iii

List of Figures^ V

Acknowledgement^ vi

1 Introduction 1
1.1 Motivation and Objectives ^ 1
1.2 Thesis Contributions ^ 2
1.3 Thesis Outline ^ 2

2 Strategy 4
2.1 Extended Transition System^ 4
2.2 Definition ^ 6
2.3 Backtracking Algorithm ^ 6
2.4 Comparison ^ 7

3 Design and Architecture 8
3.1 User Input Part ^ 9
3.2 Parser Part ^ 20

3.2.1^ASN.1 Parser ^ 20
3.2.2^Protocol Parser ^ 20

3.3 Backtracking Testing Part ^ 21
3.3.1^Dynamic Data Structure^ 21
3.3.2^Backtracking Testing ^ 22

3.4 Subtour Identification ^ 22
3.5 Abstract TTCN Test Suite ^ 23

3.5.1^Modified TTCN Dynamic Part ^ 25
3.5.2^TTCN constraint table part ^ 25

111

4 Implementation^ 27
4.1 The Environment ^ 27
4.2 Backtracking Testing Kernel^ 28

4.2.1 Static Data Structure Checking Module ^ 28
4.2.2 Dynamic Data Structure Module ^ 30
4.2.3 Check Constraint Module ^ 31
4.2.4 Expression and Effect Function Module ^ 31
4.2.5 Initiate Module ^ 32
4.2.6 Backtracking Module^ 32
4.2.7 Subpath Identification Module ^ 34
4.2.8 TTCN Dynamic Module^ 40
4.2.9 TTCN Constraint Module ^ 43

5 Test Case Validator and LAPB Validation^ 47
5.1 Trace Analysis and Validator ^ 48

5.1.1 Trace Analysis ^ 48
5.1.2 Validator ^ 51

5.2 LAPB ^ 52
5.2.1 Introduction ^ 52
5.2.2 LAPB Estelle Specification ^ 53
5.2.3 LAPB Specification ^ 55

5.3 LAPB Validation and Result Analysis ^ 56
5.4 Conclusion ^ 61

6 Conclusion and Future work^ 62
6.1 Summary ^ 62
6.2 Future work ^ 63

A LAPB Estelle Specification^ 64

B PART OF LAPB SUBTOUR IDENTIFICATION OUTPUT^78

C LAPB test cases and validation results for DL1^ 88

D LAPB test cases and validation results for DL2^ 93

Reference^ 99

iv

List of Figures

3.1 Model of Test Case Generation Design ^ 8
3.2 Model of Protocol Data Structure. ^ 19

5.1 Components of TESTGEN+ ^ 47

V

Acknowledgement

I would like to acknowledge the tremendous amount of help, support and guidance given to

me by my supervisor, Dr. Son Vuong, throughout the course of my thesis work and studies at

UB C.

Also, I would like to thank Dr. Samuel T. Chanson for serving as the second reader of this

thesis, and also for his invaluable comment and help on this thesis.

Finally, I would like to extend my thanks to the department of Computer Science, and many

graduate students in this department, for the financial support as well as the great help and

encouragement during my studies at UBC.

vi

Chapter 1

Introduction

1.1 Motivation and Objectives

Conformance testing of communication protocols is commonly used to ensure that the imple-

mented protocol meets the design specifications and operates correctly in the communication

network. The usual approach in conformance testing is based on the Finite State Machine

(FSM) model, which is thus inherently limited to the testing of the control flow part of the

protocol.

In the past, several methods have been put forward to handle the data flow of the protocol

[Ura— 88], [Sra— 87], [Wu —89]. However these methods do not consider the dependencies be-

tween transitions and they may therefore miss hidden interactions among the service primitives

exchanged in different parts of the protocol.

The Test Suite Generation (TSG) method used in TESTGEN integrate both the control flow

and the data flow testing with parameter variation and can produce test cases to cover any

path defined by the service primitives that an JUT is allowed to exchange with its environment.

It also integrates the generation and selection of test suites by providing an environment where

1

CHAPTER 1. INTRODUCTION^ 2

various TSG — constraints and constraints on the service primitive parameter can be defined

by the user to control the limit and depth of the testing tree, it thus provide a great extent of

flexibility.

With a growing number of standardized test suites generated, it is very important to ascertain

the validity of the test suites with respect to the protocol specification. Since, TESTGEN is

not suitable for test case validation , a new validator based on a trace analyzer, is developed.

This test case validator is incorporated into TESTGEN to produce an enhanced version called

TESTGEN+ which can handle both test case generation and validation.

1.2 Thesis Contributions

The main contributions of my thesis include the following:

. Contributions in the design of TESTGEN.

. Implementation of the test generation kernel part of a version of TESTGEN, including the

subpath identification and the test suite specification in TTCN.

. Modifications of a trace analyzer to produce a test case validator, and validation of the

LAPB test suite as defined in the ISO 9646 standard document.

1.3 Thesis Outline

In this thesis, I first discuss about the strategy in building the test generation kernel part of

TESTGEN, and then the design and the implementation of that test kernel. Finally, I present

CHAPTER 1. INTRODUCTION^ 3

the modification of a trace analyzer to produce a test case validator and the results of validating

a standardized LAPB test suite using this validator.

Chapter 2

Strategy

2.1 Extended Transition System

In this chapter, I mainly introduce the definition of an extendented transition system , and the

algorithm for building the test kernel.

The old FSM formalism describes a protocol in terms of states and transitions. An input/output

pair (i/o) is associated with each transition. This specification is suited to describe the be-

haviour of very simple systems. However in the real world, we need a formalism which can

describe the real world protocols, and thus cause the appearance of the ETS.

The Extended Transition System (ETS) model is a quadruple ET S = (Q, E,T, Qint) where

. Q is the set of states of the ETS,

. E is the set of events of the ETS,

. T is the set of transitions of ETS,

• Qint is the initial state of ETS.

4

CHAPTER 2. STRATEGY^ 5

The set of states Q denotes the set product:

Q = STATES *VAR * C *TIMER

Qintt represents the initial control state Sinit, the initial values of all variables and timers.

The set of event E denotes the set product:

E = ISP * OSP * PDU

ISP is the set of Input Service Primitives, OSP is the set of Output Service Primitives, PDU is

the set of Protocol Data Units.

A transition in T is a relation on Q * E *Q represented by a set product

T = EPRED * AFN

where an enabling predicate epred (a subset of EPRED) is a boolean function:

epred :Q * E— > true, false

(a transition can be executed only if its associated enabling predicate is true) and an action

function afn (a subset of AFN) is a function:

afn :Q * E— > Q * E

which affects variables in VAR, timer in TIMER and parameters of OSPs and PDUs.

A transition can be executed if and only if the ISP and PDU associated with the transition (if

any) are received and if the enabling predicate is true. When a transition fires, the associated

action function is executed automatically. Variables and timers are set, OSP(s) and PDU(s)

are assembled (their parameters are set), OSP(s) and PDU(s) are sent.

CHAPTER 2. STRATEGY^ 6

2.2 Definition

Interaction path(testing subpath):

An interaction path IP is a ETS observable path on which a sequence of interactions

between the protocol and its external environment occurs, starting from the Q init and

ending in the same state.

I/O path:

An I/O path is the ETS observable track Pi, P2... .Pk in an IP, where

Pi has the isp li with parameters Siii, ...Simi,

Pi has the osp Oi with parameter Soli, ...Somi,

Pi has the pdu Iii with parameter Suii,...Sunii.

2.3 Backtracking Algorithm

Once a protocol ETS data structure has been generated, we can use the following algorithm to

identify all its interaction pathes.

Loop (if there is one or more transitions have been fired in set of Q)

Stepl: find an unmarked transition with the lowest transition number in the current state.

Step2: check whether the current transition can been applied or not. if the answer is TRUE,

fire and mark this transition.

Step3: if there is no unmarked transition in this state, back one step, and go to step 1.

CHAPTER 2. STRATEGY^ 7

step4: the new state Q is the receive state of the current transition.

Q init •step5: if the newst ate = Qinit, store one interaction path, and currentstate =

2.4 Comparison

Comparing with other strategies, our strategy has the following advantages:

Practicality:

Unlike some other strategies which can only test simple toy protocols, our test strategy

can test real protocols, and thus provides a practical tool.

flexibility:

Due to the flexibility of the TSG constraint part, we can get different test cases depending

on the user's different requests.

generality:

Unlike some other strategies, which limit their applications only to some certain specific

protocols, our TSG tool can test different protocol specifications. So it is a generalized

conformance test tool.

Chapter 3

Design and Architecture

Figure 3.1: Model of Test Case Generation Design

CHAPTER 3. DESIGN AND ARCHITECTURE^ 9

In this chapter, we will discuss in detail the design and architecture of each part of the TEST-

GEN.

From Figure 3.1, we can see the whole test process be mainly divided into three parts, parser

part, user input part and the backtracking test part.

The user input is made of three parts: ASN.1 specification, Estelle.Y specification, and con-

straint part.

The parser part contains two parts, ASN.1 parser and protocol parser. The ASN.1 parser gets

the ASN.1 specification from the user, produce ASN.1 input to the parser.

The protocol parser takes Estelle.Y specification provided by user, and the output provided by

the ASN.1 parser, to produce the static data structure of the whole protocol. It becomes the

input to the backtracking testing part.

The backtracking test part takes the protocol static data structure as the input to produce

the subtour identification as the output. Furthermore, it will produce the Modified TTCN

Generation (tree and verdict) and TTCN Constraint Tables.

3.1 User Input Part

The user should provide three kinds of inputs, the Estelle.Y Protocol specification, the ASN.1

Protocol specification, and the Constraint part.

The ASN.1 Protocol specification specifies the protocol data structure using the ASN.1 defini-

tion. Here is a simple example, which builds a subset of the X25 ASN.1 specification.

X25 DEFINITIONS : :=

CHAPTER 3. DESIGN AND ARCHITECTURE^ 10

BEGIN

NetworkAsp ::= CHOICE

NConnectRequest,

NconnectIndication

NConnectRequest ::= SEQUENCE

calledAddress OCTET STRING,

callingAddress OCTET STRING (SIZE(0-109)),

receiptConfirmationSelection

ENUMERATED { nouse(0), use(1) 1,

quality0fService SEQUENCE

throughput SEQUENCE

toTargetValue INTEGER,

toLeastValue INTEGER

1,

CHAPTER 3. DESIGN AND ARCHITECTURE^ 11

transitDelay SEQUENCE

{

targetValue INTEGER,

leastValue INTEGER

1

1

NConnectIndication ::= SEQUENCE

{

calledAddress INTEGER,

callingAddress OCTET STRING

1

x25Pdu ::= CHOICE

{

CallRequest,

CallAccepted

CallRequest^::=^SEQUENCE

CHAPTER 3. DESIGN AND ARCHITECTURE^ 12

{

generalFormatId^NameBitString4,

logicalChannelId^BitInteger12

CallRequest ::=^SEQUENCE

{

generalFormatId^NamedBitString4,

logicalChannelId BitInteger12,

facilityLength^BitInteger4

1

NameBitString4 ::= BIT STRING (SIZE(4,4))

BitInteger12^::= INTEGER (SIZE(12..12))

BitInteger4^::= INTEGER (SIZE(4..4))

END

The definition of the Estelle.Y protocol specification was made by ourselves by modifying the

Normal Form Estelle specification.

CHAPTER 3. DESIGN AND ARCHITECTURE^ 13

Here is a simple example of the Estelle.Y specification.

Specification FDDIMAC;

Const

COUNT = -100 : int;

tkrecvd = true : boolean;

frrecvd = false : boolean;

MAXSIZEaaabb = 1000 : int;

STR = "stri-.*ngggg" : CHAR_STR;

Var

abcddddd, ccc, n1, n2: int

a2: char_str;

ISP

NconnectRequest NASP;

NconnectIndication NASP;

PHY_DATA_ind PSAP;

nisp nsap;

CHAPTER 3. DESIGN AND ARCHITECTURE^ 14

T_DATA_req tsap;

OSP

DL_data_req dsap;

DL_data_ind dsap;

T_DATA_ind tsap;

PDU

TPDU sent_in DL_data_ind,

recv_in PHY_DATA_ind;

NPDU sent_in T_DATA_ind, recv_in T_DATA_req;

SPDU recv_in T_DATA_req;

CallRequest recv_in NConnectRequest;

Timer

TVX 250;

THT 380;

State

CHAPTER 3. DESIGN AND ARCHITECTURE^ 15

SO,S1,S2,S3,s4,s5;

Trans

from S3

to Si

when NConnectrequest

provided ((NconnectRequest.calledAddress + 1055 * n2 / ccc) = 100)

priority 10

OUTPUT TPDU, CallRequest

pretty

begin

reset(TVX);

NConnectRequest.calledAddress := NConnectRequest.quality0fService

NconnectRequest.callingAddress := (10 + CallRequest.logicalChanne:

STOP(THT);

end;

to S2

begin

if (m1) then

CHAPTER 3. DESIGN AND ARCHITECTURE^ 16

if (m3 and m4) then

begin

n2 := NConnectRequest.calledAddress;

reset(TVX)

end

else if (m4 or ml) then

begin

n2 := n1;

ccc := 0;

n1 := 1

end;

START(TVX);

end;

TO SO

WHEN SPDU

PROVIDED (m2 = m3)

ugly

BEGIN

IF (m3 = true) THEN n1 := n2*10;

END;

CHAPTER 3. DESIGN AND ARCHITECTURE^ 17

from S2

to SO

PROVIDED (ml or (not m2) and m3 and STOPPED(TVX))

priority 20

BEGIN

start(THT);

END;

TRANS

FROM s4

to s5

WHEN TPDU

provided m4

Begin

m3 := true;

End;

end.

The constraint part can either be set by default or be interactively specified by the user to

CHAPTER 3. DESIGN AND ARCHITECTURE^ 18

guide the selective identification process.

The user can specify the minimum and maximum uses of each state, transition, constant, input

service primitive, output service primitive, protocol data unit and timer for the whole protocol

testing and subpath generation. This controls the depth of the testing tree by the user himself.

Also, the user can specify the constraint for the primitives; it gives a certain field of the data

which can be used for this service primitive during the testing. Meanwhile, the user can set the

default, and the system can automatically give the entire constraints for the testing.

CHAPTER 3. DESIGN AND ARCHITECTURE^ 19

Figure 3.2: Model of Protocol Data Structure.

CHAPTER 3. DESIGN AND ARCHITECTURE^ 20

3.2 Parser Part

3.2.1 ASN.1 Parser

Abstract Syntax Notation One (ASN.1) is a widespread, standardized notation that provides

its user with an easy to read, yet powerful definition language for describing communication

protocol data structures in terms of types and values of these types. Here, we mainly use this

definition to specify the data type of these data structure, and we also limit several basic data

type to be used in the specification of service primitive.

3.2.2 Protocol Parser

Protocol parser takes the Estelle.Y specification, the ASN.1 parser output to produce the static

data structure of the protocol.

As we can see from figure 3.2, The PDS is a complex structure which has the entire pointers

for each of the protocol static data structures, and these data structures contain the whole

information which each test part needs.

Inside the input service primitive, output service primitive and protocol data unit, there is a

pointer to the ASN.1 data structure which contains the detailed service primitive information.

When we do the protocol testing, we get a pointer pointing to the PDS after we call the parser

function, then we get the whole information that we need in the backtracking testing.

CHAPTER 3. DESIGN AND ARCHITECTURE^ 21

3.3 Backtracking Testing Part

3.3.1 Dynamic Data Structure

In order to get the data value from every data structure which we defined in the static data part,

to produce the subtour identification and TTCN test generation, we should define a dynamic

data structure.

Each test case consists of some tested states and transitions; inside the state, we should write

down the actual value of every variable, timer, and service primitive.

Inside the dynamic data structure, we define a backtracking timer structure; it records the state

(stopped or running) and value of the timer in each test state.

Inside the dynamic data structure, we define a backtracking variable structure, it records the

actual value for each variable in every testing state.

Also, we define the backtracking service primitive structure in the dynamic data structure, and

we use it to record the actual value for each service primitive in every testing state.

Then, we can define the backtracking state structure; it contains the transition number which

starts from here, and the three data structures we described above. Therefore, the backtrack-

ing state structure can get the actual values of timer, variable, and service primitive in each

backtracking state.

In order to check the constraint part which the user specified, we should define a data structure

to record the times for each state, transition, isp, osp, constant, pdu and other data structures

which we have tested.

For each subpath, we need to get the information about how many backtracking states it has,

CHAPTER 3. DESIGN AND ARCHITECTURE^ 22

and the entire information about that state. So, we define a backtracking subpath structure;

it will write down the entire information we described above. In order to store the subpaths

we get from the backtracking test, we define a subpath head data structure, which storing the

total subpaths and we can reach any of the subpath through this data structure.

3.3.2 Backtracking Testing

The backtracking testing program will take the output from the ASN.1 parser and the input

from the user, create and store the dynamic backtracking state data structure as the testing

goes on. When a subpath has been reached, the program will also store this subpath and link

it to the previous one. After we finish the backtracking testing, we will create a subpath head

data structure and make a pointer to the beginning of the subpath and a pointer to the end of

the subpath; also, it will record the total numbers of subpaths.

3.4 Subtour Identification

Subtour identification is a list of the subpaths, which are generated from the backtracking

testing program. Inside the subpath, we can see the total states being tested in this subtour.

Also during a certain state, there is information about which input service primitive and input

protocol data unit we get, which output service primitive and output protocol data unit we

send.

In addition, we provide detailed information about each backtracking state for all subtours we

generate.

For each state, we provide how many transitions which can be applied from there, the type and

CHAPTER 3. DESIGN AND ARCHITECTURE^ 23

the actual value for each variable in this backtracking state.

Also, we provide the frequency for using each variable, timer, constant in that time and the

frequency in assigning variable, starting timer, stopping timer and resetting timer.

For each transition, we provide the name of the associated input service primitive, input protocol

data unit, output service primitive, output protocol data unit, and the values of the service

primitives for the above three data structures.

With these information, the user will fully understand the testing results.

3.5 Abstract TTCN Test Suite

In constructing a generic or abstract test suite, a test notation is used to describe abstract test

cases. The test notation can be an informal notation or a formal description technique(FDT).

TTCN is an informal notation with clearly defined, but not formally defined, semantics.

In the abstract testing methodology, a test suite is looked upon as a hierarchy ranging from the

complete test suite, through test groups, test cases and test steps, down to test events. TTCN

provides a naming structure to reflect the position of test cases in this hierarchy. It also provides

the means of structuring test cases as a hierarchy of test steps culminating in test events.

In TTCN, the basic test events are sending and receiving Abstract Service Primitive(ASPs),

Protocol Data Units(PDUs) and timer events.

Two form of the notation are provided: a human readable tabular form, called TTCN.GR, for

use in OSI conformance test suite standards; and a machine-processable form, called TTCN.MP ,

for use in representing TTCN in a canonical form within computer systems and as the syntax

CHAPTER 3. DESIGN AND ARCHITECTURE^ 24

to be used when transferring TTCN test cases between different computer systems. The two

form are semantically equivalent.

Normally, an abstract test suite written in TTCN shall have the following four sections in the

following order:

a) Suite Overview:

which is the information needed for the general presentation and understanding of the

test suite, such as test references and a description of its overall purpose:

b) Declaration Part:

which is the set of components that comprise the test suite is described. This section

shall contain the definition of any abbreviations to be used later in the test suite:

c) Constraint Part:

which is when the set set of values for the ASPs, PDUs, and their parameters used in the

Dynamic Part. the constraint shall be specified using:

1. TTCN tables: or

2. the ASN.1 Modular Method; or

3. both TTCN tables and the ASN.1 Modular Method.

d) Dynamic Part:

which comprises three sections that contain tables specifying test behaviour expressed

mainly in terms of the occurrence of ASPs at PC0s.

CHAPTER 3. DESIGN AND ARCHITECTURE^ 25

After getting the subtour identification and the subtour data structure, we can use them to

construct the Abstract TTCN test suite.

Our abstract TTCN test suite will contain two parts, the modified TTCN dynamic part and

the TTCN constraint table part.

3.5.1 Modified TTCN Dynamic Part

In this modified TTCN dynamic part, we build the behaviour description to describe the be-

haviour of the lower tester and/or upper tester in terms of test events using the tree notation.

We also place the verdict or result information in the verdicts column which is associated with

TTCN statements in a behaviour tree.

In the TTCN notation, each TTCN statement shall be shown on a separate statement line.

Sequences of TTCN statements are represented one statement line after the other, each new

TTCN statement being indented once from left to right.

Test TTCN statements at the same level of identification and belonging to the same predeces-

sor node represent the possible alternative TTCN statements which may occur at that time.

Alternative TTCN statements shall be given in the order in which the tester shall repeatedly

attempt them until one occurs. Each behaviour description shall contain at least one behaviour

tree.

3.5.2 TTCN constraint table part

It is necessary to specify in detail the values of ASP parameter and PD1J fields. The encodings

shall be described using either the Tabular Method or the ASN.1 Modular Method. Here we

CHAPTER 3. DESIGN AND ARCHITECTURE^ 26

use the first one.

In the TTCN tabular form, a constraint is defined by specifying a value and optional length

for each PDU field. Each field entry in the field name column shall have been declared in the

relevant ASP or PDU type declaration. When defining constraints on an ASP or PDU, values

assigned to each field shall be of the type specified in the ASP or PDU declaration.

Chapter 4

Implementation

In this chapter, we discuss the implementation of the backtracking test kernel part and its

environment.

The backtracking test generation part is implemented in the C and UNIX Sun 4 workstation

environment.

4.1 The Environment

There are some advantages to achieving the implementation of the backtracking test kernel

part.

First, The available ASN.1 parser and the protocol parser make it possible to get the entire static

data structure (including the ASN.1 part), which has all the information for the backtracking

testing part.

Also, the UNIX environment provides a better programming debugging, a huge C-program

library, and almost all needed primitive functions. It is quite convenient to develop an entire

program in this environment.

27

CHAPTER 4. IMPLEMENTATION^ 28

4.2 Backtracking Testing Kernel

The backtracking testing kernel part consists of nine modules; they are static data structure

checking module, dynamic data structure module, check constraint module, expression and

effect function module, initial module, backing module, subpath identification module, TTCN

dynamic module, and TTCN constraint module.

4.2.1 Static Data Structure Checking Module

In order to make sure that each field of the static data structure completely correct, we need to

make a check function to check them first before we use this information for our backtracking

testing.

The checking function takes care of the following static data structure parts.

general information PDS part:

This part is the index part which points to the entire static data structure we build for

the testing; also, it has the total numbers of states, transitions, variables and other parts

of static data structures. We check whether the total numbers of states, transitions and

the numbers of other data structure are among the maximum numbers we define for these

data structures.

state part:

In the state part of the static data structure, we should check whether the key number

of the state is among the state numbers which we define in the static data structure; the

CHAPTER 4. IMPLEMENTATION^ 29

nb_o f_tr field is less than the total numbers of transitions we define in the static data

structure, and the tr_key[i] field is among the nb_o f_tr field we define for this state.

transition past:

In the transition part of the static data structure, we should check whether the key number

of the state is among the transition numbers which we define in the static data structure;

the from_st and to_st fileds are among the state numbers which we define in the static

data structure, and the other fields are also among the information which we define in

the static data structures.

constant part and variable part:

In the constant part and variable part of the static data structure, we should check

whether the key number of both data structures are among the numbers we define for the

constants and the variables; also we should check the type of both data structures among

the three data types we defined before.

input, output service primitive part:

In the input and output service primitive part of the static data structure, we should

check whether the key number of both data structures are among the numbers we define

for them; also we should check the nb_of_pdus fields is less than the total number of

pdus we define in this static data structure.

expression part:

CHAPTER 4. IMPLEMENTATION^ 30

In the expression part of the static data structure, we should check whether the key field

is among the total expression numbers of the PPDS part, the le ft_kind field belongs to

the KIND type we defined before, and the operator field belongs to the OPERATOR type

we defined before.

effect function part:

In the effect function part of the static data structure, we should check whether the key

number is among the total PDS effect function numbers, and the stmt_ kind field belongs

to the SKIND type which we defined before.

4.2.2 Dynamic Data Structure Module

As the backtracking goes on, this part creates and copies the dynamic data structure in order

to record the whole protocol testing results. This module includes the following functions.

creat backtracking node submodule:

The creating backtracking node part has new_bvar(), new_btimer(), new_bspam(),

new_btrans(), new_bstate(), new_belt() functions; these functions create a new back-

tracking node.

copy backtracking node submodule:

The copy backtracking node part has copy _bvar(), copy _btimer(), copy _bspam(), copy_btrans(),

copy_bstate(), copy_belt() functions; those functions copy the current backtracking test-

ing node to the current subpath and move to the next testing node after that.

CHAPTER 4. IMPLEMENTATION^ 31

subpath store and index creat submodule:

This submodule includes the functions to link the testing nodes, store the available sub-

pathes, link the current subpath to the previous one, and finally create the index for the

whole dynamic subpaths.

4.2.3 Check Constraint Module

When the user specifies the constraints for each part of the testing protocol, it limits the depth

of the testing tree. Those constraints come to the static data structure part as the testing goes

on. The check constraint module checks the constraints which the user specifies, to make sure

that they do not pass the constraint limits.

The check constraint module function set includes the following functions: check_state(),

check_tran(), check _const(), check _isp(), check_osp(), check_pdu(), check _var(), check _assvar(),

check_tstart(), check_tstop(), check_treset(), check_ crest(), check_cstart(), check _cstop(),

check_ctimer(). They do the constraint checking for each part of the testing protocol.

4.2.4 Expression and Effect Function Module

Usually, there is some condition for the firing of a transition; it can simply be the constant

expression, variable expression, primitive expression. It can also be the timer expression and

complex expression.

Similarly, there is some effect action after the firing of a transition, it simply can be the assign-

ment statement, timer statement. It can also be the if statement, and compound statement.

The expression and effect function module set include the following functions:

CHAPTER 4. IMPLEMENTATION^ 32

trans_expr_check(), ifst_ef f n(), ast_ef fn(), tst_ef fn, cst_ef fn(), ef f_trans().

The trans_expr_check() function handles the condition predicate for each of the transitions,

and the rest functions handle the effect action whenever a transition is fired.

4.2.5 Initiate Module

As the testing starts, there should be some initial values for the JUT, such as the initial state,

initial values for variables, initial status for timer.

In order to do the protocol backtracking testing, we also need to copy parts of the static

data structure values into the dynamic data structure, such as the entire initial input service

primitives, output service primitives, protocol data units. All of these guarantee the consistency

of the whole dynamic data structure with the static data structure.

4.2.6 Backtracking Module

The backtracking module is the kernel of the TESTGEN; it implements the backtracking algo-

rithm we described before, finds the whole possible subpaths, and produces the entire testing

results.

The backtracking module consists of a backtracking control part, a transition and state selection

part, a backing part, a subpath storing part.

control part:

The control part controls the running of the entire backtracking testing process; the

testing is finished if the Boolean expression in the control part can satisfy the following

two requirements:

CHAPTER 4. IMPLEMENTATION^ 33

1. The current testing state is the initial state.

2. All the transitions in all testing states which can be fired have already been applied.

Tithe control part detects that the current testing process meets the above two require-

ments, it automatically stops the testing, and starts the subpath output modules. Oth-

erwise, it continues running the backtracking module.

transition and state selection part:

The transition and state selection part handle the selection of a new testing state and

a new applying transition in the current testing state. The new testing state is the

destination state of the current transition. To select a new testing state, we need to know

the current applying transition from the old testing state, and we also need to check

whether the new testing state passes the constraint limits which the user specifies.

The new applying transition is the next applying transition in the current testing state.

To select a new applying transition, we need to know the current testing state; also, we

need to check whether the new applying transition passes the constraint limit which the

user specifies.

After the transition is fired , we need to mark the firing of that transition in the current

testing state. The function set of this module includes Ntr_ find() function; it finds the

next applying transition for the current testing state, checks the constraint limit for this

transition, and decides whether this transition can be fired or not according to the return

value from the expression checking function of this transition. Also, it includes some other

CHAPTER 4. IMPLEMENTATION^ 34

functions such as the mark_trans() function and so on.

backing part:

As the testing is in progress, we need to go back one step under one of the two circum-

stances. The new testing state we reach is the initial state, or the current testing state

has no transition which can be applied.

When the testing process is in one of the two above situations, the current testing state

goes back to the previous one, and all the transitions in the current testing state are

unmarked.

subpath store part:

After building a subpath, we need to store it. Thus, the backtracking module calls the

subpath store function to store the current subpath and link it to the previous one.

4.2.7 Subpath Identification Module

The subpath identification module outputs all the subpaths which generated from the back-

tracking testing kernel in a certain format.

The subpath identification module includes two functions sub_print() and sel_print().

The sub_print() outputs all the subpaths, generated from the testing kernel. Here is a simple

subpath output example.

Specification id = TPO

CHAPTER 4. IMPLEMENTATION^ 35

yyparse() = 0

The subpathes number is 1

The subpathes are

idle - TCREQ /[CR]-> wfcc -[CC]/ TCCON-> data - TDATR /-> data -/EDT]-> data\

-[DT]/-> data -/-> data - TDREQ / NDREQ->idle

The subpathes number is 2

The subpathes are

idle - TCREQ /[CR]-> wfcc -[CC], TCCON-> data - TDATR /-> data -/[DT]-> data\

-[DT]/-> data -/-> data - NDIND / TDIND->idle

The subpathes number is 3

The subpathes are

idle - TCREQ /[CR]-> wfcc -[CC]/ TCCON-> data - TDATR /-> data -/[DT]-> data\

-[DT]/-> data -/-> data - NRIND / TDIND->idle

The subpathes number is 4

The subpathes are

CHAPTER 4. IMPLEMENTATION^ 36

idle - TCREQ /[CR]-> wfcc -[DR]/ NDREQ, TDIND->idle

The subpathes number is 6

The subpathes are

idle - TCREQ / TDIND->idle

The subpathes number is 6

The subpathes are

idle -[CR]! TCIND-> wftr - TCRES /[CC]-> data - TDATR /-> data -/EDT]-> data\

-[DT]/-> data -/-> data - TDREQ / NDREQ->idle

The subpathes number is 7

The subpathes are

idle -[CR]! TCIND-> wftr - TCRES /[CC]-> data - TDATR /-> data -/[DT]-> data\

-[DT]/-> data -/-> data - !WIND / TDIND->idle

The subpathes number is 8

CHAPTER 4. IMPLEMENTATION^ 37

The subpathes are

idle - [CR], TCIND-> wftr - TCRES /[CC]-> data - TDATR /-> data -/ [DT]-> data\

- [DT] /-> data -/-> data - NRIND / TDIND->idle

The sel_print0 prints the detailed information about some certain testing state in some sub-

pathes. It prints until the current time, how many times that state, the whole variables,

constants, and timers have been used in the backtracking testing. Also the values for the whole

variables, timers, the names and the values of the all service primitives which have been used

in this testing state. The user can select the testing state and the subpath number which he

would like to get more detailed information about the testing results.

Here, we have a simple example of one testing state in one subpath of the tp0 testing result.

The subpath number is 2

The subpath are

idle - TCREQ /[CR]-> wfcc - [CC]/ TCCON-> data - TDATR /-> data -/ [DT]-> data - [DT] /-

ata -/-> data - NDIND / TDIND->idle

**

CHAPTER 4. IMPLEMENTATION^ 38

This is the detailed information for the state 0

**

The used of the state in the backtracking is 0

/////////////////// DETAILED INFORMATION ///////////////

//////**///////

This is the information about the transition 0

//////**///////

****** The isp name of this transition is TCREQ *****

TCREQ.qtsReq = TRUE

TCREQ.fromAddr = 312

TCREQ.toAddr = 316

**********output pdu one name of this transition is CR *******

CR.sourceRef = 665

Moption =

CR.callingAddr = 314

CR.calledAddr = 225

CHAPTER 4. IMPLEMENTATION

CR.maxTpdu = 1024

This is the information about the transition 1

// ////**************** * ********* *********** ** ***///// //

****** The isp name of this transition is TCREQ *****

TCREQ.qtsReq =

TCREQ.fromAddr = 321

TCREQ.toAddr = 324

********* osp 1 name of this transition is TDIND ********

TDIND.tsDiscReason =

TDIND.tsUserReason =

************** The constant information are ****************

//////////////**********************/////////////////////////

The constant number is 0

The used for this constant is 1

39

/////////////*************************////////////////////////

************ The timer information are ********************

CHAPTER 4. IMPLEMENTATION^ 40

/////////////*************************////////////////////////

The timer key number is 0

The started times for this timer is 0

The stopped times for this timer is 0

The reseted times for this timer is 0

The check of the reseted for this timer is 0

The check of the started for this timer is 0

The check of the stopped for this timer is 0

The check of the timed out for this timer is 0

4.2.8 TTCN Dynamic Module

The TTCN dynamic part contains the main body of the test suite, it comprises three sections

that contain tables specifying test behaviour expressed mainly in terms of the occurrence of

ASPS at PC0s. it provides the information in a certain format, Behaviour Description, Label,

Constraint Reference, Verdict, Comments.

Our modified TTCN dynamic output simplifiesn the format, and provide some important parts

of them. Such as behaviour tree part, constraint reference part and the verdict part.

The TTCN dynamic module takes the subpathes from the testing kernel and produces the

modified TTCN dynamic table. Here, we have a simple example, the two test cases of the

FDDI.

CHAPTER 4. IMPLEMENTATION^ 41

Test^Case^Dynamic^Behaviour

Identifier^Case 1

Behaviour Description^Constraint Ref^Verdict

! SmMaCtrlReq

! PhUnitDataIndication

? PhUnitDataRequest

SmMaCtrlReq_IO

PhUnitDataIndication_IO

PhUnitDataRequest_01

pass

CHAPTER 4. IMPLEMENTATION^ 42

Test^Case^Dynamic^Behaviour

Identifier^Case 2

Behaviour Description
^

Constraint Ref^Verdict

! SmMaCtrlReq

! PhUnitDataIndication

? PhUnitDataRequest

SmMaCtriReq_I2

PhUnitDataIndication_I2

PhUnitDataRequest_03

pass

CHAPTER 4. IMPLEMENTATION^ 43

4.2.9 TTCN Constraint Module

It is necessary to specify, in detail, the values of ASP parameters and PDU fields. The TTCN

Constraint Part specifies values for the ASPs, PDUs, and their parameters used in the Dynamic

Part. And we use the TTCN constraint tables to specify these information.

The TTCN tabular form a constraint is defined by specifying a value for each PDU field. This

information shall be provided in some certain format. Also, each field entry in the field name

column shall have been declared in the relevant ASP or PDU declaration, values assigned to

each field shall be of the type specified in the PDU (or ASP) declaration.

The TTCN constraint module takes the generated subpathes and the TTCN dynamic part as

the input, and produce corresponding TTCN constraint tables.

Here, we have a simple example, part of the FDDI TTCN constraint table.

ASP Constraint

ASP Name: SmMaCtrlReq^Constraint Name: SmMaCtrlReq_Il

CHAPTER 4. IMPLEMENTATION^ 44

Field Name Value^Comments

SmMaCtrlReq.ctrlAction^ 0

ASP Constraint

ASP Name: PhUnitDataIndication^Constraint Name: PhUnitDataIndication.

CHAPTER 4. IMPLEMENTATION^ 45

Field Name
^

Value^Comments

PhUnitDataIndication.phIndication^0

ASP Constraint

ASP Name: PhUnitDataRequest^Constraint Name: PhUnitDataRequest_01

Field Name^Field Name^Value^Comments

CHAPTER 4. IMPLEMENTATION^ 46

PhUnitDataRequest .phRequest^ 0

Protocol Specification
(ASN.1)

Protocol Specification
(Estelle.Y) Constraint Editor

Subtour identification output

TSO Constraint

Chapter 5

Test Case Validator and LAPB
Validation

Test generation kernel

Modified TTCN generation
(Tree and verdict)

'ITCN Constraint Tables

Figure 5.1: Components of TESTGEN+

47

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^48

In this chapter, I discuss the test case validator and the validation of the standardized LAPB

test suite.

Test case generation and validation are two important topics in protocol testing research. Com-

pared to test case generation, much less work has been done in the area of test case validation.

As part of a Ph.D research conducted at the University of British Columbia, a trace analysis

tool has been developed based on the protocol data structure (PDS) produced by the parser

TESTGEN. This tool can handle any protocol specifications that can be mapped into an EFSM,

and can be easily modified to serve as a test case validator, called TESTVAL.

TEST VAL can be incorporated into TESTGEN to produce an overal tool called TESTGEN+

for protocol test generation and validation, as shown in Figure 5.1

5.1 Trace Analysis and Validator
5.1.1 Trace Analysis

Trace analysis is a very important part of protocol conformance testing. Compared to test case

generation, trace analysis has the following main differences.

1. In test case generation, the initial and final states of each path are assumed to be known.

Trace analysis is different; we need to determine the initial and final states from the

observed input and output message sequences. Even for finite state machines which deal

with control flow only, determining the initial state is not always possible. The condition

is even more complicated for extended finite state machines which deal with both control

and data flows.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^49

2. In test case generation, every possible path of a formal specification has to be considered.

Trace analysis, on the other hand, needs only to consider a finite number of paths that

comply with the observed sequence of input and output messages.

3. The paths which have to be considered in trace analysis are finite in number and are

a subset of those for test case generation. The trace contains information to determine

the actual number of loop iterations, specific values of parameters, and the outcome of

conditional statements. The absence of this information is largely responsible for the

inefficiency in test case generation.

The trace analysis which was developed in the University of British Columbia is based on the

extended finite state machine (EFSM), and the general steps are as following:

Given an Estelle specification and its implementation M.

1. Transform the Estelle specification into the single module Estelle specification.

2. Map from Estelle specification E to finite state machine F.

3. Perform trace analysis for conformance testing:

a: Select from F the set of paths satisfying the input and output message in the case of

trace analysis, and all the paths from the given initial state to the given final state

with constraint for test case generation.

b: Detect and delete the infeasible paths using symbolic evaluation if necessary.

c: Assign verdict.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^50

The implementation of the trace analysis consists of three parts:

Preprocessing Phase:

In this phase, some transitions of formal specification are preprocessed to be changed into

finite state machine form.

Main Phase:

In order to make the implementation simple, fast and feasible without diminishing prac-

ticality, we assume that the trace analysis is started at the initial state. We analyze

traces with respect to PDS of Estelle formal protocol specification. Data structure paths

contain information such as data structures on a number of transitions and to_state of

each transition with respect to the same from_state. Also, the current pointer of trace

processing by trace analyzer is kept in order to process the right trace from the file.

Final Phase:

At from_state and to_state, these states contain an environment on all variables of a

specification and all candidate transitions at that state. If there is a candiate transition,

values of variables and service primitive from trace are substituted by a symbolic repre-

sentation of PDS. lithe predicate and the output primitives of a transition are satisfied

with a trace, we can say that the trace conforms to the formal specification with respect

to the trace.

Traces not conforming to the formal specifications are from the unsatisfaction of predi-

cates, and the no matching of inputs and or outputs.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^51

5.1.2 Validator

The trace analysis can also be used as a validator to validate the test cases. In order to

handle various kinds of unexpected test cases, I made modifications to several parts of the trace

analyzer to make it more general and practical for the users.

To perform a validation, we need two input files: the protocol Estelle specification and the

actual test cases.

Here is an example for the test case input file, which is a simple test case of LAPB.

Case 1:

DataIndicat DISC A 1 - - - / DataRequest DM A 1 - - - / -

DataIndicat DISC A 1 - - - / DataRequest DM A 1 - - - / -

DataIndicat RR A 1 - 0 - / DataRequest DM A 1 - - - / -

Each test case consists of "inputl(or input2)loutputlloutput2" where inputl and outputl

are of lower interaction point of IUT and input2 and output2 are of upper interaction point.

The inputl and outputl consist of "interactionprimitive","PDUtype","address","PI Fbit",

" sendsequencenumber" , "receivesequencenumber" and "data f ields" .

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^52

5.2 LAPB

5.2.1 Introduction

X.25 is a set making up the international standard network access protocols for layer 1, 2 and

3. X.25 defined the interface between the host, called DTE(DATA Terminal Equipment) by

CCITT, and the carrier's equipment, called a DCE(DATA Circuitterminating Equipment) by

CCITT.

X.25 layer 1, the X.21 interface standard deals with the electrical, mechanical, procedural, and

functional interface between DTE and DCE. It generally defines the physical interface between

the DTE and DCE.

Layer 2, data link layer protocol, performs the link management and data transfer between the

DTE and DCE, and ensures reliable communication between the DTE and the DCE.

Layer 3 manages connections between a pair of DTEs. Two forms of connection are provided,

virtual calls and permanent virtual circuits.

The data link layer protocol used with X.25 is a version of the HDLC protocol called LAPB.

The function of LAPB protocol is to provide the packet layer with an error — free packet

transport facility over the physical link between DTE and its local DCE.

As discussed, the physical interface between the DTE and the local DCE is defined in recom-

mendation X.21. The datalink layer provides the packet layer with a reliable packet transport

facility across the physical link between the DTE and the DCE. In the context of the OSI ref-

erence Model, the packet layer is the same as the network layer. The transport layer thus uses

the services provided by the packet to enable it to exchange Transport PDUs with a remote

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^53

transport layer.

The frame structure, error and flow control procedures used by the link layer are based on the

HDLC protocol. HDLC is a link — level protocol that has been defined by the ISO for use

on both point — to — point and multipoint data links. It supports full — duplex, transport —

mode operation and is now extensively used in both terminal — based networks and computer

networks. It uses the ABM(asynchronous Balanced Mode) of operation, which is also referred

to as LAPB in the CCITT X.25 standard document.

5.2.2 LAPB Estelle Specification

The LAPB was specified according to the Packet— Switch Protocol documentation. The Finite

State Machine(FSM) structuring the LAPB protocol is described in the documentation.

Link Set Up

After DTE and DCE entered into the Initial State, The DCE sends the "DM" primitive to the

DTE. It changes the state from the INITIAL to SEND_DM and starts the timerl. When

timerl is out, the DCE retransmits the "DM". After N2 times of timeout, DCE sends a

"SABM" to the DTE. It enters SABM_SENT state and starts timerl. DTE gets the "DM"

N2 times but ignores them. Eventually, DTE gets "SABM" under INITIAL state; it sends

a "UA" to response the DCE and changes its state from INITIAL to ABM. DCE will receive

that "UA" response and change its state from SEND_SABM to ABM. At this moment, both

DCE and DTE get in ABM state and be ready to transmit the information frames.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^54

Information Frame Sending

When the LAPB entity module gets a Data_Req primitive from its user module, the LAPB

entity will transmit the Iframe by setting its parameter variable ns equal to its window variable

vs, and parameter variable nr equal to its window variable yr. After sending the Iframe, the vs is

creased by 1 with mod k. This Iframe should be buffered in retxbuffer before it is acknowledged

by its peer LAPB entity.

Information Frame Receiving

When an Mame arrives, it is accepted if its parameter variable ns is equal to the window's vr.

The window variable yr is the number of the Mame the current LAPB waiting for. By accepting

the Iframe, the yr is increased by 1 with mod k, and timer2 is started. The acknowledgement

for this Iframe should not be sent at this moment; it will be piggybacked in the next outsending

Iframe or be sent when timer2 is out.

Receiving Acknowledgement

There may be two kinds of acknowledgements: Mame with p f = 1, or in retransmission a buffer

should be released. The corresponding action in this specification is that retxprt(retransmission

buffer pointer) increases by 1 with mod k and window variable nubuffered(number of buffered

Iframe in retransmission buffer) decreased by 1.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^55

Receiving Reject

The REJ_cmd can inform the receiving LAPB of the number of Iframe which the peer LAPB

in remote station is waiting for.

Link Disconnect Condition

When the LAPB receives the dis_req from the upper layer, it sends dis_cmd to remote station

and sets discmyself as true. When discmyself is true, the current LAPB entity module stops

sending anything out, but can not refuse receiving coming messages until receiving disc_resp,

and stops running LAPB protocol too. This disconnection procedure guarantees that no mes-

sage is lost during the disconnection procedure.

5.2.3 LAPB Specification

PDU Encoding and Deconding

Every LAPB PDU contains the following items in the form of interaction parameters:

.address: the address of the station the message comes from, DCE or DTE in this program.

.control: type of the message; it can be INF for information frame, SUP for supervisory frame,

and UNB for unnumbered frame.

.ns: for information frame, it tells the receiver that sequence number of the coming information

frame. This ns is assigned to be window variable vs.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^56

.nr: for information frame; it tells the receiver the acknowledgement from sender if pf is equal

to 1. This ns assigned to be window variable yr. It also includes the acknowledgement

when the RR_cmd is sent while pf is set.

.pf: as Iframe; when it is set, it indicates that the acknowledgement is piggybacked. As Uframe

when pf is set, it indicates that the sender site is polling for an Mame.

.udata: transmitted user data.

ASN.1 Specification

The ASN.1 specification part of the LAPB specification specifies the all filed data type of each

ASP and PDU, and it will be inputted into the ASN.1 parser.

5.3 LAPB Validation and Result Analysis

Using this validator, I validated the whole LAPB test cases defined in the ISO 9646 standard

document. In general, more than eighty percent of test cases passed our validation; the remain-

der could not pass due to the incompleteness of the LAPB specification used in the validation.

Further details of the validation and the analysis are given in this section.

Validation

The whole LAPB test suite consists of around 300 test cases which are classified into seven

phases.

DL1:

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^57

The DL1 is the Disconnected Phase; it is the state when JUT receives DISC and sends

the UA or DM frame. There are 36 valuable test cases here. After the validation, 31

test cases passed which means that more than ninety percent of test cases passed the

validation in DLL

DL2:

The DL2 is the Link Disconnection phase; it is the state when JUT sends DISC frame.

There are 31 valuable test cases here; 29 test cases passed the validation, which means

that more than ninety three percent of test cases passed the validation in DL2.

DL3:

The DL3 is the Link Set up phase; it is the state when JUT sends SABM frame from

Disconnected Phase. There are 29 valuable test cases here. After the validation, 28 test

cases passed. This means that more than ninety five percent of test cases passed the

validation in DL3.

DL4:

The DL4 is the Information Transfer phase; it is the state when JUT receives the SABM

and sends the UA frame, or JUT sends the SABM and it receives the UA frame. There

are 43 valuable test cases here, and 33 test cases passed the validation after the test. This

means that around seventy percent of test cases passed the validation in DL4.

DL5:

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^58

The DL5 is the Frame reject condition phase; it is the state when JUT sends the FRMR

frame from the Information Transfer phase. There are 40 valuable test cases here; 28 test

cases passed the validation after the test. Thus seventy percent of test cases passed the

validation in DL5.

DL6:

The DL6 is the JUT busy condition phase; it is the state when JUT sends the RNR frame

from the Information Transfer phase. There are 32 valuable test cases here, and 20 test

cases passed the validation after the test; sixty percent of test cases passed the validation

in DL6.

DL7:

The DL7 is the Sent Reject condition phase; it is the state when JUT sends the REJ frame

from the Information Transfer phase. There are 33 valuable test cases here, and 27 test

cases passed this validation; it means that around eighty percent of test cases passed the

validation in DL7.

From the seven phase testing results, we see that more than eighty percent of test cases here

passed the validation. Clearly, this result is quite productive.

Analysis

From the above results, we are surprised to see that the total percentage rate with which the

test cases passed this validation vary in different phases. This difference is mainly because of

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^59

the different limitations of this protocol specification among the seven phases. In the first three

phases, we have a very complete LAPB specification. Most of the test cases which stand in the

ISO 9646 standard conform to the specification we used here, a few of them could not pass.

However, in the later phases, due to the incompleteness of the LAPB specifications, some test

cases have been ignored, and there is a relatively lower passing rate.

After carefully analyzing these test cases, we find that some of the test cases couldn't be

validated by this validator. There are several reasons:

— limitations of the specification of the LAPB protocol:

Due to the limitations of this LAPB specification, there are some test cases could not be

included; for example, in the Disconnected phase, the DL1_102 is supposed to verify that

IUT sends a DM with F=0 in response to DISC P=0. The specifications here only have

this situation with F=1, and P=1. The validator could not find any corresponding cases

in the current LAPB version; this will result in the failure of this test case validation.

DL1_102

DataIndicat DISC A 0 - - - / DataRequest DM A 0 - - / _

— limitations of the validator:

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^60

Due to the limitations of the validator, there are still some test cases which could not be

validated. Let us look at some examples here.

In the DL4, there is a test case DL4_116; it verifies that the JUT in the information

transfer phase can manage its send window correctly. For the purposes of this test, the JUT

shall transmit I frame that has a N(S) value within the send window. Acknowledgements

from the tester will rotate the send window for the DTE. The JUT window rotation

shall be observed over the entire valid range of sequence numbers. The JUT shall stop

the window rotation function when outstanding acknowledgements are not sent from the

tester.

The test cases are obviously out of the input format we used here; thus, they can not be

validated by this validator.

The redundant test case:

After carefully going through all the unsuccessful test cases, we find a few redundant test

cases which may be omitted from a standard test suite.

Let us look at two test cases in the DL4, and at the information transfer phase in the

LAPB. The point is to verify that in this phase, the JUT shall transmit an FRMR frame

in response to a command frame with undefined or unimplemented control field. The C / R

bit can be set to "0" or "1" and the W bit shall be set to "1" in the FRMR information

field. In the ISO 9646 standard test cases, this test case was put into two separated test

cases, which include the C/R both 0 and 1.

CHAPTER 5. TEST CASE VALIDATOR AND LAPB VALIDATION^61

It definitely increases the number of unnecessary test cases, and produces some redundant

test cases.

5.4 Conclusion

This chapter presents a test case validator, which is based on the finite state machine model

and Estelle.Y specification.

After using it to validate the ISO 9646 LAPB test cases, a most satisfactory result has been

produced.

Here, we can see that this validator is not only an efficient, general, flexible and semi-automatic

tool for various kinds of protocol conformance test cases, but is also a very remarkable apporach

to the protocol verification and validation, both theoretically and practically.

However, with the limitation of this validator, we couldn't test all possible test cases here;

clearly, some improvement is still needed. For example, in one of the LAPB test cases, we could

not validate the test case which has wrong information in the "checksum" field simply because

we hadn't provided any input format to do so. In short, some improvement is still needed in

future work.

Chapter 6

Conclusion and Future work

6.1 Summary

In this thesis, we discussed about the implementation of the TESTGEN and the test suite

validation for some real protocol LAPB , TESTVAL, a test case validator based on an existing

trace analyzer.

TESTGEN is intended to serve as a effective, general, flexible, portable, and user friendly

environment for protocol generation.

However, TESTGEN is found to be unsuitable for test case validation. We have thus developed

a test case validator called TESTVAL which is based on existing protocol trace analyzer and

applied it to the standard LAPB test suite.

In general, we find TESTGEN+, including TESTGEN and TESTVAL, a general, useful and

effective tool for protocol test generation and validation.

62

6.2 Future work

Despite the usefulness of TESTGEN+, There are still some areas which need further work to

improve the tool.

• In TESTGEN, the number of data types supported for the ASN.1 data part representation,

is limited to only a few types, thus limiting its applicability to real-life protocols. How to

extend TESTGEN to support more data types is one of the major improvements in the

future TESTGEN version.

• In practice, TESTGEN is for test case generation, and TESTVAL is for test case validation.

It is useful to combine these two tools together to handle the entire test generation and

validation. This is an ongoing piece of development work in the Protocol Engineering

Group at UBC.

. Also, we need to improve the output format of the TTCN dynamic part and TTCN constraint

part, as well as producing more complete and beautiful output format in general.

. Still, we need to improve the parser part and the test kernel part to adopt more and more

real protocols for conformance testing.

. For TEST VAL, we also need to improve it further and to make it more general for validing

test cases of any protocols.

63

Appendix A

LAPB Estelle Specification

Specification lapb;

CONST
MAXCLOCK = 1000: int;

MAXSEQ^= 7: int;

DATASIZE = 1024: int;
N2MAX^= 6: int;

= 8: int;

ZERO^= 0: int;

ONE^= 1: int;

NO^= false: boolean;

YES^= true : boolean;

VAR
datano,retxptr : int;

busyremote : boolean;
busymyself : boolean;
discmyself : boolean;

vs,vr : int;
timerion,timer2on : boolean;

n2,nubuffered : int;

data : int;

ISP

64

UP^nsap;

OSP
DOWN^nsap;

PDU

SABM^recv_in UP;
DISC^recv_in UP;
UA^recv_in UP;
DM^recv_in UP;

recv_in UP;
FRMR^recv_in UP;
RRcmd^recv_in UP;
RRresp^recv_in UP;
RNRcmd^recv_in UP;
REJcmd^recv_in UP;
RNRresp recv_in UP;
REJresp recv_in UP;
BADcmd recv_in UP;
BADresp recv_in UP;

Timer

Timer1^2;
Timer2^1;

STATE
INITIAL, DMSend, SABMSend, ABM,SABMWait, UAWait;

TRANS
FROM INITIAL
TO DMSend

WHEN^UP
OUTPUT DM

65

BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

TO DMSend
OUTPUT DM
BEGIN
n2 := n2 + ONE;
END;

FROM DMSend

TO DMSend
WHEN^DISC
OUTPUT DM
BEGIN
timerion := YES;
n2 := n2 + ONE;

END;

TO SABMS end
WHEN^DM
OUTPUT SABM
BEGIN
timerion := NO;
n2 := ZERO;

END;

TO SABMSend
WHEN^FRMR
OUTPUT SABM
BEGIN
timerlon := NO;
n2 := ZERO;

66

END;

TO DMSend
PROVIDED^((n2 < N2MAX) and (timerlon = true) and Timeout(Timer1))
OUTPUT DM
BEGIN
n2 := n2 + ONE;
END;

TO DMSend
PROVIDED^((n2 >= N2MAX) and (timerlon = true))
OUTPUT SABM
BEGIN
timer/on := NO;
n2 := ZERO;

END;

TO ABM
WHEN^SABM
OUTPUT UA
BEGIN
vs := ZERO;
vr := ZERO;
timerlon := NO;
timer2on := NO;
n2 := ZERO;
nubuffered := ZERO;

END;

FROM SABMSend
TO SABMSend

WHEN^SABM
OUTPUT UA
BEGIN

timerlon := YES;

67

n2 := n2 + ONE;
END;

TO DMSend
WHEN^DISC
OUTPUT DM
BEGIN
timerion := NO;
n2 := ZERO;

END;

TO ABM
WHEN^UA
BEGIN
vs := ZERO;
vr := ZERO;
timerlon := NO;
timer2on := NO;
n2 := ZERO;
nubuffered := ZERO;

END;

TO DMSend
WHEN^I
OUTPUT DM
BEGIN

timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^RRcmd
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

68

END;

TO DMSend
WHEN^RNRcmd
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^REJcmd
OUTPUT DM
BEGIN

timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^RRresp
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^RNRresp
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^REJresp
OUTPUT DM
BEGIN

69

timerion := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^BADcmd
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO DMSend
WHEN^BADresp
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO SABMSend
PROVIDED^(timerlon = true)
OUTPUT SABM
BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

FROM ABM

TO DMSend
WHEN^DISC
OUTPUT UA
BEGIN
timerlon := NO;
n2 := ZERO;

END;

70

TO DMSend
WHEN^UA
OUTPUT DM
BEGIN
timer1on := NO;
n2 := ZERO;

END;

TO ABM
WHEN^RRcmd
PROVIDED^((busymyself = false) and (discmyself = false))
OUTPUT I
BEGIN
retxptr := (retxptr + 1) mod k;
nubuffered := nubuffered + 1;
vs := (vs + 1) mod k;

END;

TO ABM
WHEN^RRcmd
PROVIDED^(busymyself = true)
BEGIN
nubuffered := nubuffered - 1;
retxptr := (retxptr + 1) mod k;

END;

TO ABM
WHEN^REJcmd
OUTPUT I;

TO SABMSend
WHEN^DM
OUTPUT SABM;

TO UAWait

WHEN^FRMR
OUTPUT SABM;

71

TO SABMWait

WHEN^BADcmd
OUTPUT FRMR;

TO SABMWait
WHEN^BADresp
OUTPUT DM;

TO ABM

WHEN

PROVIDED^(busymyself = false)
OUTPUT I

BEGIN
vr := (yr + 1) mod k;

timer2on := true;

nubuffered := nubuffered - 1;

vs := (vs + 1) mod k;

nubuffered := nubuffered + 1;
timerlon := YES;

END;

TO ABM
WHEN^UP

PROVIDED^((busyremote = false) and (timer2on = false) and (nubuffered < MI

OUTPUT I

BEGIN

vs := (vs + 1) mod k;

nubuffered := nubuffered + 1;

timer1on := YES;

END;

TO ABM

PROVIDED^((busymyself = false) and (timer2on = true) and Timeout(Timer2):

OUTPUT RRcmd
BEGIN

timer2on := NO;

END;

72

TO ABM
PROVIDED^((busyremote = false) and (timerlon = true) and (nubuffered <
OUTPUT I
BEGIN
if (nubuffered <= k)
then
timerlon := YES

else
timer2on := NO;

END;

TO ABM
WHEN
PROVIDED^(busymyself = false)
OUTPUT REJcmd;

TO ABM
WHEN
PROVIDED^(busymyself = true);

TO ABM
WHEN^UP
PROVIDED^(UP.hostbusy = true)
OUTPUT RNRresp
BEGIN

busymyself := YES;
END;

^

FROM^SABMWait

^

TO^ABM
WHEN^SABM
OUTPUT UA

BEGIN
vs := ZERO;

vr := ZERO;
timerlon := NO;

73

timer2on := NO;
n2 := ZERO;
nubuffered := ZERO;

END;

TO^DMSend
WHEN^DISC
OUTPUT UA
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO^DMSend
WHEN^UA
OUTPUT^DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO^DMSend
WHEN^UA
OUTPUT^SABM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO^SABMWait
WHEN^I
OUTPUT FRMR
BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

TO^DMSend

74

WHEN^FRMR
OUTPUT DM
BEGIN
timerion := NO;
n2 := ZERO;

END;

TO^SABMWait
WHEN^RRcmd
OUTPUT FRMR;

TO^SABMWait
WHEN^RNRcmd
OUTPUT FRMR;

TO^SABMWait
WHEN^REJcmd
OUTPUT^FRMR;

TO^SABMWait
WHEN^BADcmd
OUTPUT^FRMR
BEGIN
timerlon := YES;
n2 := n2 + ONE;
END;

TO SABMWait
PROVIDED^((timer1on = true) and (n2 < N2MAX) and Timeout(Timer1))
OUTPUT FRMR
BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

TO UAWait
PROVIDED^((timer1on = true) and (n2 >= N2MAX))
OUTPUT SABM

75

BEGIN
timerlon := NO;
n2 := ZERO;

END;

FROM UAWait
TO UAWait

WHEN^SABM
OUTPUT UA
BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

TO DMSend
WHEN^DISC
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO ABM
WHEN^UA
OUTPUT DM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

TO SABMSend
WHEN^DM
OUTPUT SABM
BEGIN
timerlon := NO;
n2 := ZERO;

END;

76

TO UAWait
PROVIDED^((timerlon = true) and (n2 < N2MAX) and Timeout(Timeri))
OUTPUT SABM
BEGIN
timerlon := YES;
n2 := n2 + ONE;

END;

TO DMSend
PROVIDED^((timerlon = true) and (n2 >= N2MAX))
OUTPUT DM
BEGIN
timerion := NO;
n2 := ZERO;

END;

END.

77

Appendix B

PART OF LAPB SUBTOUR
IDENTIFICATION OUTPUT

The subpathes number is 1
The subpathes are

DMSend - [DISC] / [DM] ->DMSend

The subpathes number is 2
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [DISC] / [DM] ->DMSend

The subpathes number is 3
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM]/ [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp] -:
ABM - UP / [I] -> ABM - [BADresp]/ [DM] -> SABMWait - [SABM] / [UA]->
SABMWait - [DISC] / [UA]->DMSend

The subpathes number is 4
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNIIresp]-:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
SABMWait - [UA] / [DM] ->DMSend

78

The subpathes number is 5
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
SABMWait - [UA] / [SABM]->DMSend

The subpathes number is 6
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
SABMWait - [I] / [FRMR]-> SABMWait - [FRMR] / [DM] ->DMSend

The subpathes number is 7
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend -[SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp]-:
ABM - UP / [1]-> ABM - [BADresp] / [DM] -> SABMWait -ESABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DISC] / [DM] ->DMSend

The subpathes number is 8
The subpathes are

DMSend - [DM]/ [SABM] -> SABMSend -[SABM]/ [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp] -:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] -> ABM -[RNRresp] /->
ABM -[SABM] / [UA]-> ABM - [DISC] / [UA] ->DMSend

The subpathes number is 9
The subpathes are
DMSend - [DM)/ [SABM] -> SABMSend - [SABM] / [17']-> SABMSend - [UA] /-> ABM - UP / [RNRresp] - :

ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] - >
UAWait - [SABM] / [UA] -> UAWait - [LTA]/ [DM] -> ABM - [RNRresp] /->
ABM - [SABM] / [UA]-> ABM -[ITA] / [DM] ->DMSend

79

The subpathes number is 10
The subpathes are
DMSend - [DM] / [SABM] -> SABMSend - [SABM] / [UA] -> SABMSend -En] /-> ABM - UP / [RNRresp] -
ABM - UP / [17-> ABM - [BADresp] / [DM] -> SABMWait -[SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] -> ABM -[RNEresp]/->
ABM - [SABM] / [UA] -> ABM - [DM] / [SABM]-> SABMSend - [I] / [DM] ->DMSend

The subpathes number is 11
The subpathes are
DMSend - [DM]! [SABM] -> SABMSend - [SABM] / En] -> SABMSend - [UA]/-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA] -> UAWait - [UA] / [DM] -> ABM - [RNRresp] /->
ABM - [SABM] / [UA] -> ABM - [DM] / [SABM] -> SABMSend - [RFtcmd] / [DM] ->DMSend

The subpathes number is 12
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM -[BADresp] / [DM] -> SABMWait -[SABM]/ [UA]->
UAWait - [SABM] / [UA]-> UAWait - [UA]/ [DM] -> ABM -ERNRresp]/->
ABM - [SABM] / [UA]-> ABM - [DM] / [SABM] -> SABMSend - [RNRcmd] / [DM] ->DMSend

The subpathes number is 13
The subpathes are
DMSend - [DM]! [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] -> ABM - [RNRresp] /->
ABM -[SABM]/ [UA]-> ABM - [DM] / [SABM] -> SABMSend - [REJcmd] / [DM] ->DMSend

The subpathes number is 14
The subpathes are
DMSend - [DM] / [SABM]-> SABMS end - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] -> ABM - [RNRresp] /->

80

ABM - [SABM] / [UA]-> ABM - [DM] / [SABM]-> SABMSend - [IRresp] / [DM] ->DMSend

The subpathes number is 15
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM]/ [UP.] -> SABMSend - [UA]/-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UP.] -> UAWait - [UP.] / [DM] -> ABM - [RNRresp] /->
ABM - [SABM] / [UP.] -> ABM - [DM] / [SABM] -> SABMSend - [RNRresp] / [DM] ->DMSend

The subpathes number is 16
The subpathes are
DMSend - [DM] / [SABM] -> SABMSend - [SABM] / CUP.] -> SABMSend - CUP.] /-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UP.] ->
UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] -> ABM - [RNRresp] /->
ABM - [SABM] / [UP.] -> ABM - [DM] / [SABM]-> SABMSend - [REJresp] / [DM] ->DMSend

The subpathes number is 17
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UP.] -> SABMSend -[UA]/-> ABM - UP / [RNRresp] -:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UP.] ->
UAWait -[SABM]/ [UP.] -> UAWait - [UA]/ [DM] -> ABM - [RNRresp]/->
ABM -[SABM]/[UA]-> ABM - [DM] / [SABM]-> SABMSend - [BADcmd] / [DM] ->DMSend

The subpathes number is 18
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UP.] -> SABMSend - [UP.] I-> ABM - UP / [RNRresp]-:
ABM - UP / [13-> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA] -> UAWait -[UA] / [DM] -> ABM - [RNRresp] /->
ABM - [SABM] / [UP.] -> ABM - [DM]! [SABM] -> SABMSend - [BADresp] / [DM] ->DMSend

The subpathes number is 19
The subpathes are
DMSend - [DM]! [SABM]-> SABMSend - [SABM] / [UP.] -> SABMSend - [UP.] I-> ABM - UP / [RNRresp] -:

81

ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / CM] ->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM] -> SABMSend - [SABM] / [UA]->

DMSend

The subpathes number is 20
The subpathes are
DMSend - [DM)/ [SABM]-> SABMS end - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait -[SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM] -> SABMSend -[SABM]/ [UA] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp]/ [DM] ->
ABM -[BADcmd] / [FRMR]-> SABMWait -[DISC] / [UA]->DMSend

The subpathes number is 21
The subpathes are
DMS end - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp]
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM] -> SABMSend - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM -[BADcmd] / EFRMR]-> SABMWait - [UA] / [DM] ->DMSend

The subpathes number is 22
The subpathes are
DMSend - [DM] / [SABM] -> SABMS end - [SABM] / [UA] -> SABMS end - [UA] /-> ABM - UP / [RNRresp]
ABM - UP /^-> ABM - [BADresp] / [DM] -> SABMWait -[SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend -[SABM]/ [UA]->
ABM - [I] /-> ABM - UP /^-> ABM -[BADresp] / [DM] ->
ABM -[BADcmd]/ [FRMR]-> SABMWait - [UA]/ [SABM]->DMSend

The subpathes number is 23
The subpathes are
DMSend - [DM] / [SABM] -> SABMS end - [SABM] / [UA] -> SABMS end - [UA] /-> ABM - UP / [RNRresp]
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA]-> UAWait - [DM]! [SABM]-> SABMS end - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->

82

ABM -[BADcmd]/ [FRMR]-> SABMWait - [I] / [FRMR] -> SABMWait - [FRMR]/ [DM] ->DMSend

The subpathes number is 24
The subpathes are
DMSend - [DM] / [SABM]-> SABMS end - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA] -> UAWait - [DM] / [SABM] -> SABMSend - [SABM] / [UA] - >
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [DM] / [SABM] -> SABMSend - [I] / [DM] ->DMSend

The subpathes number is 25
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA] -> SABMSend - [LIA] /-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] /[DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
ABM - [I] /-> ABM - UP / [I] -> ABM - [BADresp] / [DM] ->
ABM - [DM] / [SABM]-> SABMSend - [RRcmd]/ [DM] ->DMSend

The subpathes number is 26
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / ERNRresp]-:
ABM - UP / [I] -> ABM - [BADresp] /[DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [DM] / [SABM]-> SABMSend -[RNRcmd] /[DM] ->DMSend

The subpathes number is 27
The subpathes are
DMSend - [DM] / [SABM] -> SABMSend - [SABM] / [UA] -> SABMSend -[UA]/-> ABM - UP / [RNRresp]
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM] -> SABMSend - [SABM] / [UA] ->
ABM - [I] / -> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [DM] / [SABM] -> SABMSend -[REJcmd] / [DM] ->DMSend

83

The subpathes number is 28
The subpathes are
DMSend -CDM]/CSABM]-> SABMSend -CSABW[UA]-> SABMSend -CUA]/-> ABM - UP /[11NRresp]-
ABM - UP /[I]-> ABM -EBADresp]/CDM]-> SABMWait -[SABM]/[UA]->
UAWait -ESABM]/EUA]-> UAWait -DM]/[SABM]-> SABMSend -[SABM]/EUA]->
ABM -[I]/-> ABM - UP /[I]-> ABM -[BADresp]/[DM]->
ABM -[DM]/[SABM]-> SABMSend -[RRresp]/DM]->DMSend

The subpathes number is 29
The subpathes are
DMSend -[DM]/[SABM]-> SABMSend -[SABM]/CUA]-> SABMSend -CUA]/-> ABM - UP MNRresp]-:
ABM - UP /[1]-> ABM -[BADresp]/EDM]-> SABMWait -[SABM]/CUA]->
UAWait -[SABM]/CUA]-> UAWait -[DM]/[SABM]-> SABMSend -[SABM]/CUA]->
ABM -[I]/-> ABM - UP /[1]-> ABM -[BADresp]/CDM]->
ABM -EDM]/[SABM]-> SABMSend -[RNRresp]/DM]->DMSend

The subpathes number is 30
The subpathes are
DMSend -[DM]/CSABM]-> SABMSend -CSABMYEUA]-> SABMSend -EUA]/-> ABM - UP MNRresp]-:
ABM - UP /[1]-> ABM -[BADresp]/EDM]-> SABMWait -[SABM]/[UA]->
UAWait -[SABM]/CUA]-> UAWait -[DM]/[SABM]-> SABMSend -[SABM]/[UA]->
ABM -[1]/-> ABM - UP /[1]-> ABM -[BADresp]/[DM]->
ABM -[DM]/CSABM]-> SABMSend -DIEJresp]/DM]->DMSend

The subpathes number is 31
The subpathes are
DMSend -CDM]/[SABM]-> SABMSend -[SABM]/NA]-> SABMSend -[UA]/-> ABM - UP /[INRresp]-:
ABM - UP /[I]-> ABM -[BADresp]/[DM]-> SABMWait -[SABM]/CUA]->
UAWait -[SABM]/CUA]-> UAWait -CDM]/[SABM]-> SABMS end -ISABM]/[UA]->

ABM - [I]/ -> ABM - UP /M.> ABM - [BADresp]/DM] ->
ABM -CDMYESABM]-> SABMSend -[BADcmd]/EDM]->DMSend

The subpathes number is 32

84

The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp]/ [DM] -> SABMWait -[SABM]/ [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMS end -[SABM]/ [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [DM] / [SABM] -> SABMSend -[BADresp] / [DM] ->DMSend

The subpathes number is 33
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM -[BADresp] / [DM] -> SABMWait -[SABM]/[UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM - [BADresp] / [DM] ->
ABM -[REJcmd] / [I] -> ABM - [RNRresp] /-> ABM - [RRresp] /->
ABM - [DISC] / [UA]->DMSend

The subpathes number is 34
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend -[SABM] / [UA] -> SABMSend - [UA] /-> ABM - UP / [RNRresp] -:
ABM - UP / [1]-> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [REJcmd] / [I] -> ABM - [RNRresp]/-> ABM - [RRresp]/->
ABM -[UA] / [DM] ->DMSend

The subpathes number is 35
The subpathes are
DMS end -[DM] / [SABM] -> SABMS end - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp] -:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait -[SABM]/ [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->

DMSend

85

The subpathes number is 36
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA] -> SABMSend - [UA] /-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->

DMSend

The subpathes number is 37
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp] -:
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADcmd] / [FRMR]->
ABM -[FRMR] / [SABM] -> UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADcmd]/ [FRMR]->
ABM - [FRMR] / [SABM]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
SABMSend - [UA] /-> ABM - [I] /-> ABM - UP / [I] ->
SABMWait - [UA] / [DM] ->DMSend

The subpathes number is 38
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA] /-> ABM - UP / [RNRresp]-:
ABM - UP / [I] -> ABM - [BADresp]/ [DM] -> SABMWait - [SABM] / [UA]->
UAWait - [SABM] / [UA]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADcmd] / [FRMR]->
ABM - [FRMR] / [SABM]-> UAWait - [SABM] / [UA]-> UAWait - [UA] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADcmd]/ [FRMR]->
ABM - [FRMR] / [SABM]-> UAWait - [DM] / [SABM]-> SABMSend - [SABM] / [UA] ->
SABMSend - [UA] /-> ABM - [I] /-> ABM - UP / [I] ->
SABMWait - [UA] / [SABM]->DMSend

86

The subpathes number is 39
The subpathes are
DMSend - [DM] / [SABM]-> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] / [DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA] -> UAWait - [DM] / [SABM] -> SABMS end - [SABM]/ [UA]->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADresp] / [DM] ->
ABM - [I] /-> ABM - UP / [I] -> ABM -[BADcmd] / [FRMR]->
ABM -[FRMR] / [SABM]-> UAWait - [SABM] / [UA] -> UAWait - [SABM] / [UA] ->

DMSend

The subpathes number is 40
The subpathes are
DMSend - [DM] / [SABM] -> SABMSend - [SABM] / [UA]-> SABMSend - [UA]/-> ABM - UP / [RNRresp] -
ABM - UP / [I] -> ABM - [BADresp] /[DM] -> SABMWait - [SABM] / [UA] ->
UAWait - [SABM] / [UA]-> UAWait - [SABM] / [UA]-> UAWait - [DISC] /[DM] ->DMSend

87

Appendix C

LAPB test cases and validation
results for DL1

DL1_101:

DataIndicat DISC A 1 - - - / DataRequest DM A 1 - - - / -
pass

DL1_102:

DataIndicat DISC A 0 - - - / DataRequest DM A 0 - - - / -
failure

DL1_103:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
pass

DL1_104:

DataIndicat SABM A 0 - - - / DataRequest UA A 0 - - - / -

DataIndicat SABM A 0 - - - / DataRequest DM A 0 - - - / -
failure

DL1_201A:

DataIndicat DM A 1 - - - / DataRequest SABM A 1 - - - /

failure

DL1_201B:

88

DataIndicat DM A 1 2 0 9 / Discard ^
pass

DL1_202:
DataIndicat SABM E 1 - - - / Discard
pass

DL1_203:
DataIndicat SABM A 1 9 0 5 / Discard
pass

DL1_204:
DataIndicat DM A 1 0 0 0 / Discard
pass

DL1_205:
DataIndicat DM A 1 9 0 9 / Discard
pass

DL1_207:
DataIndicat SABM A 1 9 0 9 / Discard
pass

DL1_208:
DataIndicat UA A 1 9 0 9 / Discard

^
/

pass

DL1_209:
DataIndicat RR A 1 9 0 9 / Discard
pass

DL1_210:
DataIndicat BNR A 1 9 0 9 / Discard

pass

DL1_211:
DataIndicat REJ A 1 9 0 9 / Discard
pass

/

/

/

89

DL1_216:
DataIndicatIEEE0E/ Discard
pass

DL1_216:
DataIndicat DISC A / 9 0 9 / Discard
pass

DL1_301:

DataIndicat I A 1 - - - / DataRequest DM A 1 - - - /
pass

DL1_302:

DataIndicat RR A 1 - - - / DataRequest DM A 1 - - - / -
failure

DL1_303:

DataIndicat RNR A 1 - - - / DataRequest DM A 1 - - - / -
pass

DL1_304:

DataIndicat REJ A 1 - - - / DataRequest DM A 1 - - - /
pass

DL1_306:

DataIndicat UA A 0 - - - / Discard
pass

DL1_306:

DataIndicat UA A 1 - - - / Discard
pass

DL1_307:

DataIndicat FRMR A 0 - - - / Discard
pass

DL1_308:

90

DataIndicat FRMR A 1 - - - / Discard ^
pass

DL1_309:
DataIndicat I A 0 - - - / Discard
pass

DL1_310:
DataIndicat RR A 0 - - - / Discard
pass

DL1_312:
DataIndicat REJ A 0 - - - / Discard
pass

DL1_313:
DataIndicat RR A 1 - - - / Discard
pass

DL1_314:
DataIndicat RNR A 1 - - - / Discard
pass

DL1_315:
DataIndicat REJ A 1 - - - / Discard
pass

DL1_316:
DataIndicat RR A 0 - - - / Discard
pass

DL1_317:
DataIndicat RNR A 0 - - - / Discard
pass

DL1_318:

DataIndicat REJ A 0 - - - / Discard
pass

91

DL1_319:
DataIndicat I A 0 - - - / Discard
pass

92

Appendix D

LAPB test cases and validation
results for DL2

DL2_101:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DISC A 0 - - - / DataRequest UA A 0 - - - / -
pass

DL2_102:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DISC A 1 - - - / DataRequest UA A 1 - - - / -
failure

DL2_106:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat SABM A 0 - - - / DataRequest DM A 0 - - - / -
pass

DL2_106:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DisReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat SABM A 1 - - - / DataRequest DM A 1 - - - / -

93

pass

DL2_109:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DM A 1 - - - / Discard ^ / -
pass

DL2_110:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DM A 1 - - - / Discard ^ /
pass

DL2_111:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat UA A 1 - - - / DiscInd
pass

DL2_201A:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat BAD E 0 - - - / Discard ^ /
pass

DL2_201B:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DM A 1 - - - / Discard ^ / -
pass

DL2_205:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DISC A 1 9 0 9 / Discard ^ / -
pass

94

DL2_207:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat SABM A 1 9 0 9 / Discard ^ / -
pass

DL2_209:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat UA A 0 9 0 9 / Discard ^ /
pass

DL2_211:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat DM A 0 9 0 9 / Discard ^ /
pass

DL2_219:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B / - - - / -
DataIndicatIAFHHH/ Discard ^ / -
pass

DL2_221:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat RR B 1 - - - / Discard ^ /
pass

DL2_223:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -

DataIndicat BNR B 1 - - - / Discard ^ /
pass

DL2_225:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd

95

DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat REJ B 1 - - - / Discard ^ / -
pass

DL2_227:

DataIndica t SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq
^

/ DataRequest DISC B 1 - - - / -
DataIndica t DISC F 0 - - - / Discard ^ / -
pass

DL2_229:

DataIndicat

DiscReq ^
DataIndicat
pass

SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
/ DataRequest DISC B 1 - - - / -

DISCAOFFF/ Discard ^ / -

DL2_231:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / dataRequest DISC B 1 - - - / -
DataIndicat DM A 0 - - - / Discard ^ /
pass

DL2_234:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat UA A 1 - - - / Discard ^ /
pass

DL2_306:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / conInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat RR A 1 - - - / Disccard ^ / -
pass

DL2_308:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat RR A 0 - - - / Discard ^ / -

96

pass

DL2_310:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat RNR A 1 - - - / Discard ^ /
pass

DL2_312:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat RNR A 0 - - - / Discard ^ /
pass

DL2_314:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat REJ A 1 - - - / Discard ^ /
pass

DL2_316:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat REJ A 0 - - - / Discard ^ / -
pass

DL2_318:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
Dataindicat FRMR A 0 - - - / Discard ^ /
pass

DL2_332:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat FRMR A 1 - - - / Discard ^ / -
pass

97

DL2_334:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat I A 0 0 0 0 / Discard ^ / -
pass

DL2_336:

DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat I A 1 0 0 0 / Discard ^ /
pass

DL2_338:
DataIndicat SABM A 1 - - - / DataRequest UA A 1 - - - / ConInd
DiscReq ^ / DataRequest DISC B 1 - - - / -
DataIndicat I A 0 - - - / Discard ^ /
pass

Bibliography

[1] W.Y.L.Chan,S. T. Vuong, and M. It. Ito,"An improved Protocol Test Generation Procedure
Based on UI0s " Proceedings of the ACM SIGCOMM '89 Symposium on Communciation
Architecture and Protocols, 1989.

[2] J.P. Wu and S. T. Chanson,"Test Sequence Derivation Based on External Behaviour Ex-
pression" 2nd Internal Workshop on Protocol Test System , Germany, 1989.

[3] ISO Transport Protocol Specification ISO DP 8073, 1984.

[4] International Organization for Stansardization"The Tree and Tabular Combined Notation
"ISO 9646 , 1989.

[5] Information Processing system, "Open System Interconnection -Specification of Abstract
Syntax Notation One" ISO 8824, September, 1987

[6] Information Processing System, "Open System Interaction - Estelle- A Formal Description
Technique Based on an Extended State Transition Model," IS 9074, 1989.

[7] Roelof J. Velthuys, "Protocol Conformance Testing with Communciation Rule System,"
IBM European Networking Center, 1989.

[8] ISO DIS 9646 " OSI Conformance Testing Methodology and Framework", March, 1989.

[9] M. Sample and G. Neufeld, "Support for ASN.1 within a Protocol Testing Enviroment",
The third International Conformance on Formal description Techniques, Madrid Spain,
November, 1990.

[10] II. Janssen, Y. Lu and P. Zhou, "Definition of a Protocol Data Structure Representation
for Communciation Protocols", UBC Technical Report planned for summer, 1991

[11] JingLu "Lapb Estelle specification", 1990

[12] Russel Vuong "Lapb Estelle specification", 1989

[13] U. Bar, J.M.Schneider, "Automated Validation of TTCN Test Suites" IBM European Net-
working Centre

99

[14] Kshirasagar Naik, Behect Sarikaya, "Verification of Protocol Conformance Test Cases Us-
ing Reachability Analysis" Dept. of Electrical and Computer Eng. Concordia University,
Dept. of Computer Science and Operation Research, University of Montreal

[15] M.C.Kim, Samuel T. Chanson and Son T. Vuong "Protocol Trace Analysis based on Formal
Specification" Department of Computer Science, University of British Columbia

100

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107

