
We accept this thesis as conforming
to the required standard

Real-Time Intelligent Behaviour in Dynamic
Environments: Soccer-playing Robots

by

Michael K. Sahota

B.A.Sc. in Engineering Science,
University of Toronto, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF BRITISH COLUMBIA
August 1993

© Michael K. Sahota, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of C.-01)1-4^C--e

The University of British Columbia
Vancouver, Canada

Date 5-eiel. 21,013

DE-6 (2/88)

Abstract

An autonomous robot operating in a dynamic environment is confronted by the question

of, "What to do now?" The problem of designing a controller for a car-like robot competing

with another robot in a game of soccer is considered. This is a dynamic environment; the

locations of the ball and the robots are constantly changing. Rapid and appropriate responses

to changes in the world are central to intelligent behaviour.

There are no established robot architectures that seem adequate for the challenges

posed in dynamic domains. Traditional work in Artificial Intelligence has focused on the

construction of plans for future execution and has resulted in architectures that are not

extensible to dynamic environments. Even recently developed "reactive" architectures such

as the subsumption architecture, situated automata, and RAP do not seem satisfactory.

Reactive deliberation has been designed to present a set of structural elements needed

in dynamic domains. Reactive deliberation makes three contributions to robot architecture.

First, the decisions of what task to achieve and how to achieve it are best resolved in unison.

Second, the transient goals of a robot must be evaluated at a rate commensurate with changes

in the environment. Third, goal-oriented modules called behaviours are a useful abstraction

that allow effective goal-arbitration and sharing of scarce computational resources.

The effectiveness of reactive deliberation has been demonstrated through a tournament

of one-on-one soccer games between robots. Current functionality includes motion planning,

ball shooting, and playing goal, with accurate motion control at speeds of 1 m/s. The results

of the soccer tournament suggest that the architectural elements in reactive deliberation are

sufficient for real-time intelligent control in dynamic environments.

Table of Contents

Abstract^ ii

Contents^ iii

List of Tables^ vii

List of Figures^ viii

Acknowledgments^ ix

1 Introduction^ 1

1.1 Motivation ^ 1

1.2 Research Goals and Objectives ^ 2

1.3 Thesis Outline ^ 3

2 On Robot Architecture^ 5

2.1 Setting The Stage^ 5

2.1.1 The World of Autonomous Mobile Robots ^ 6

2.1.2 Robots have goals ^ 9

2.1.3 Criteria for Robot Architectures ^ 11

2.2 Complete Reactive Architectures ^ 13

2.2.1 The Subsumption Architecture^ 13

2.2.2 Concrete-Situated ^ 15

2.2.3 Situated Automata ^ 17

2.2.4 Summary ^ 20

iii

2.3 Partitioned Architectures ^ 21

2.3.1 Shakey ^ 21

2.3.2 Reactive Action Packages ^ 24

2.3.3 ATLANTIS ^ 25

2.3.4 The Dynamics of Action Selection ^ 26

2.3.5 Summary ^ 28

2.4 Additional Related Literature ^ 30

2.5 Discussion ^ 32

3 Reactive Deliberation^ 34

3.1 The Architecture ^ 35

3.2 The Executor^ 37

3.3 The Deliberator ^ 38

3.3.1 More Than Just A Theory of Action Selection ^ 39

3.3.2 Further Issues ^ 41

Subtopic 1 Starvation and Stability ^ 41

Subtopic 2 Use of Plans ^ 42

Subtopic 3 Multiple Resources ^ 42

Subtopic 4 Modularity and Concurrency^ 42

Subtopic 5 A Possible Unitary Framework ^ 43

Subtopic 6 Learning ^ 43

Subtopic 7 Inter-robot Cooperation ^ 43

3.4 Discussion ^ 44

iv

4 Playing Soccer: A Real-World Experiment^ 46

4.1 The Dynamite Testbed ^ 46

4.1.1 The Soccer Field ^ 47

4.1.2 System Overview ^ 47

4.1.3 User Interface ^ 48

4.1.4 System Latency^ 49

4.1.5 Soccer with Monster Trucks ^ 50

4.1.6 Non-holonomic Constraints ^ 50

4.1.7 Design Decisions ^ 51

4.1.8 Importance of the testbed to this thesis ^ 52

4.2 The Soccer Controller Implemented in Reactive Deliberation ^ 53

4.2.1 Overview ^ 53

4.2.2 Executor ^ 54

4.2.3 Deliberator ^ 56

4.3 The Experiment ^ 58

5 Results and Evaluation^ 61

5.1 The LCI Cup ^ 61

5.2 Discussion ^ 62

6 Conclusions^ 65

6.1 Summary and Contributions ^ 65

6.2 Future Work ^ 67

Appendix A:The Vision Subsystem^ 70

Appendix B:The Simulator^ 73

Appendix C:Path Planning^ 75

C.1 Introduction ^ 75

C.2 A Metric for Motion Planners ^ 75

C.3 Motion Planning in an Infinite Plane ^ 76

C.4 Motion Planning in a Convex Arena ^ 77

C.5 A Fast Motion Planner ^ 78

Bibliography^ 80

vi

List of Tables

Table 1^Distinguishing Features of Complete Reactive Architectures ^ 20
Table 2^Partitioned Architectures in Perspective ^ 29
Table 3^Action Schema for Soccer-Playing ^ 55
Table 4^Soccer-Playing Behaviours in Reactive Deliberation ^ 57
Table 5^Final Scores in the LCI Cup ^ 61

vu

List of Figures

Figure 1 An abstraction of the robot domain ^ 6
Figure 2 Where are the goals in a robot system?^ 9
Figure 3 Task-achieving Behaviours in the Subsumption Architecture ^ 14
Figure 4 An abstraction of the Concrete-Situated Architecture ^ 17
Figure 5 The Architecture of Shakey the Robot ^ 22
Figure 6 The RAP Architecture ^ 24
Figure 7 The Architecture of Reactive Deliberation ^ 36
Figure 8 Robot Players Inhabiting the Soccer Field ^ 47
Figure 9 Hardware Setup ^ 49
Figure 10 Two Dynamo Vehicles: Zeno (front) and Heraclitus (rear) ^ 51
Figure 11 The Reactive Deliberation Controller ^ 53
Figure 12 Path Plot for the Car-like Dynamite ^ 55
Figure 13 The Vision Engine^ 70
Figure 14 Output from the real camera ^ 71
Figure 15 Processed output from the DataCube ^ 71
Figure 16 The Dynamite Simulator with Two Cars and a Ball ^ 74
Figure 17 Jump paths with unidirectional motion ^ 77

vu'

Acknowledgments

Without the help and support of the Clod-Buster/Dynamo group this thesis would never

have happened. Stewart Kingdon, an extraordinary vision programmer and DataCube guru,

is the creator of the vision system that I have relied on for months. Rod Barman handled

the electronic fiddlybits and was a key participant in getting this project on the road. Credit

also goes to Heath Wilkinson whose simulator I used extensively.

After a long debate last summer, I was finally able to convince Alan Mackworth to be

my supervisor. This turned out to be a good thing. Over the past year, we have had a number

of meetings that were so good that they went on and on and . . . Thanks to Alan, I have

kept on the straight and narrow, hence avoiding the seductive trap of Brooksian robotics.

I have received invaluable comments on draft versions of this thesis; I would like to

recognize the following individuals for taking the time to review it: Jeff Brewster, Stewart,

Alan, Keiji Kanazawa, Ying Zhang, Dinesh Pai, and Michael Horsch.

Thanks also goes to my wife Beverly who has put up with my long hours, sudden plan

changes, and late arrivals. In time, perhaps, will I be weaned off my desire to show the

latest copy of the Dynamo video to everyone we know.

ix

Chapter 1
Introduction
1.1 Motivation

Ever since the nineteen-fifties when Isaac Asimov identified robots as machines that

could be helpful to society, people have dreamed of having robots that can operate side by

side with human beings [Asi90]. One obvious characteristic of our environment is that it is

dynamic — it changes over time. As robot designers, we need robot architectures to guide

the design of robots that can function in dynamic environments.

Robot architecture is both the art and science of building robots as well as the structure

of robots. The computational aspects robot architecture are of interest to computer scientists.

Although this includes the type and organization of computing elements, this thesis will

be restricted to considering only the software. The term robot architecture will be used to

describe approaches taken in the design of software for sensing, thinking, and acting.

There are no established architectures that seem adequate for the challenges posed in

dynamic domains. Traditional work in Artificial Intelligence has focused on the construction

of plans for future execution and has resulted in architectures that are not extensible

to dynamic environments. Even recently developed "reactive" architectures such as the

1

Chapter 1^ Introduction

subsumption architecture [Bro86], situated automata [KR90], and RAP [Fir89] do not seem

satisfactory.

1.2 Research Goals and Objectives

The main goal of this thesis is to describe an architecture that can generate real-time

intelligent behaviour in dynamic environments. A robot operating within the real-time

constraints placed by the external environment must answer the question: "What to do

now?" It is not sufficient for a robot to react and interact with its environment; it must act in

goal-oriented ways to produce intelligent behaviour and not just any behaviour. Intelligent

behaviour simply means that both the achievement of goals and the manner in which they

are accomplished are important. The importance of real-time control is identified by the

following quote: "An oncoming truck waits for no theorem prover." [Gat92] The moral is

that robots operating in dynamic domains must keep pace with changes in the environment.

This thesis investigates robotic intelligence as opposed to general intelligence. Robotic

intelligence is about generating intelligent behaviour in robots, while general intelligence is

the pursuit of human level intelligence through connectionist and symbolic approaches.

Soccer has been chosen as a domain for experiments with mobile robots since it has

characteristics prevalent in the real-world that are absent from typical robot problem domains.

Soccer-playing is a dynamic environment because the ball and the cars are all moving. One

feature is that the score of a game provides an objective measure of a robot's ability to

function. The inadequacy of robot architectures suitable for soccer motivates the need for

better architectures.

The research strategy pursued is to: (1) determine a research problem, (2) develop

a solution, and (3) test the solution with an experiment. The research problem is the

2

Chapter 1^ Introduction

development of an architecture suitable for dynamic domains such as soccer. The solution

presented in this thesis is a robot architectures called reactive deliberation. The experiment is

a tournament of one-on-one games of soccer that are conducted using the Dynamite testbed.

The testbed consists of a collection of radio-controlled robots under visual control. The

use of real-world robots to demonstrate the effectiveness of the proposed architecture is an

essential component of this thesis. Hence, the construction of a system of soccer playing

robots is the secondary goal of this thesis.

The architecture presented in this thesis, reactive deliberation, is focussed on the problems

that arise in dynamic domains. Further, it is an incomplete robot architecture that does not

address important issues such as sensor processing and fusion, the development of maps,

and world modeling.

1.3 Thesis Outline

The purpose of Chapter 2 is to consider the suitability of established architectures for

robots operating in dynamic environments. The role of robot architecture and the challenges

in the area of mobile robots provide a context for the work performed in this thesis. Landmark

robotic architectures are analyzed in the context of their suitability to dynamic environments.

In Chapter 3, the principal results of this thesis are presented through a robot architecture

called reactive deliberation. It can be viewed as a coherent summary of the essential elements

of an architecture for dynamic domains.

The purpose of Chapter 4 is to demonstrate the link from theory to practice through

the Dynamite testbed that has been designed for experiments with multiple mobile robots.

A robot controller based on reactive deliberation has been designed so that a robot may

3

Chapter 1^ Introduction

compete with another robot in a game of soccer. A series of soccer experiments called the

LCI Cup are described.

The experimental results and conclusions are contained in Chapter 5. In addition, the

theoretical limitations and advantages of reactive deliberation in relation to other architectures

are discussed.

Chapter 6 summarizes the contributions of this thesis.

The appendices provide greater detail on subjects not directly connected with the

objective of this thesis: the vision subsystem, the simulator, and path planning algorithms.

It is possible to avoid most of the theory on robot architecture by omitting Chapters 2

and 3. This leaves the reader with the more application-oriented details in Chapters 4 and 5.

On the other hand, Chapter 3 provides a detailed look at reactive deliberation and contains

the bulk of the contributions of this thesis.

4

Chapter 2
On Robot Architecture

The purpose of this chapter is to consider the suitability of existing architectures for

robots operating in dynamic environments. Before considering specific architectures, some

background is introduced, such as the role of robot architecture, the challenges in the area

of mobile robots, and a classification scheme for robot architectures. The body of the

chapter describes landmark robot architectures belonging to each class, and a discussion of

the differences is contained in the final section. Section 2.4, additional related literature,

describes previous work relevant to this thesis that has not been presented as part of a

coherent architecture.

2.1 Setting The Stage

There is more to robotics than just computer science; the real world is not an abstract

data type. Effecting change in the environment is not as simple as writing to some output

registers. Few intelligent robotic systems function without carefully monitoring changes in

the environment. Usable information about the environment has to be synthesized from

complex sensor data.

5

Chapter 2^ On Robot Architecture

Robot

Reaming
Machin.ery Effectors
(Ccetroller)

Environment

Figure 1: An abstraction of the robot domain

2.1.1 The World of Autonomous Mobile Robots

The purpose of this section is to describe the complexities faced by mobile robots.

Figure 1 provides an abstract view of the domain of robots. Robots interact with the world

through sensors and effectors/actuators. Sensors measure physical properties in the world

such as the light impinging on a camera, or the closure of a switch (contact sensor). Effectors

allow a robot to effect changes in the world. For example, the motors and steering servos in a

mobile robot allow it to move about and push objects. The part of the robot labelled reasoning

machinery is typically a monoprocessor computer, although it could be a combinational logic

circuit. A robot architecture seeks to describe the content and organization of the controller.

A typical view of the design process for robots is as follows. Given a specification of

the desired behaviour of the robot and a description of the robot and environment, produce

a design for the robot controller [ZM92a]. The triple of sensors, actuators, and environment

is considered fixed. For example, it is difficult to modify the robot hardware and nearly

impossible to modify the environment. The role of robot architecture is to aid the design of

a controller that will produce the desired behaviour given a fixed triple.

There are a number of characteristics of the environments of mobile robots that compli-

6

Chapter 2^ On Robot Architecture

cate the design of controllers. Typically the environments are unstructured, unpredictable,

complex, dynamic and perceived through noisy sensors.

Mobile robots are often intended to operate in unstructured or unconstrained environ-

ments. The real world is usually not organized so that it is easy for a robot to navigate and

identify hazards. An example of a highly structured environment is a room without furniture

with smooth and level floors, fixed lighting, and orthogonal adjacent walls. However, a

normal office usually has irregular structure. A robot would have to contend with different

kinds of obstacles such as chairs, tables, and filing cabinets. The floor might have extension

cords, video cables, or even a thick Persian carpet on it. Most buildings have windows so

the optical sensors of a robot must work under varying illumination conditions. Even the

domain of an office, however, is highly structured in comparison with outdoor environments

such as a forest.

Most environments are unpredictable. For instance, a robot may be unable to predict

the outcome of an action. Consider a robot rolling a die; unless it knows how to cheat, the

outcome of the roll is unpredictable. A more practical example is that of a robot opening

a door. The robot can make a partial prediction of what will be on the other side based on

prior knowledge. Things may have changed since the last time the robot opened the door,

so this can be characterized as partially unpredictable.

Agre and Chapman [AC87] characterize the world as complex. The essential idea is that

most real world situations cannot be fully represented inside a computer. There is so much

to know that only a subset of all the information available can be absorbed and reasoned

about in a finite amount of time. The issue of complexity places limits on the suitability and

completeness of world models internal to a robot.

7

Chapter 2^ On Robot Architecture

As illustrated in Figure 1, robots obtain knowledge of the outside world through sensors.

Sensors provides a limited and incomplete view of the world. The raw data provided by

the sensors has finite resolution and is often noisy. Many robots are limited to sonar range

sensors, although some have video and other sensors. As a result, robots are limited to

incomplete information. Robots need to interpret raw data so that they are able to function

in the world. As anyone in computer vision will testify, this is a difficult task

A fundamental problem for robots is that the world is dynamic. The environment changes

with time due to: actions taken by the robot, actions taken by other agents, and continuing

processes in the environment (e.g. a rolling ball). In dynamic worlds, a robot may have to

respond to changes within a limited period of time (e.g. the problem of an oncoming truck).

The controller for a mobile robot is an embedded system with fixed computational hard-

ware. Limited time coupled with fixed computational hardware results in a limited amount

of computation that can be performed. Regardless of advances in technology, robots will

only be able to perform bounded computations. Effective robot architectures must provide a

strategy for dealing with scarce computational resources [DB88]. A computational resource

is a multipurpose computing engine (typically a Von Neumann architecture computer) that

can be used for a variety of tasks. The problem of distributing computational resources is

often the problem of sharing computer cycles.

Robot domains can be classified according to how well the above characteristics apply.

It is interesting to note that many architectures are designed for specific domains where

certain problems are ignored. This taxonomy could be more rigorously developed to classify

domains and architectures, but this is beyond the scope of this thesis.

8

Chapter 2^ On Robot Architecture

2.1.2 Robots have goals

All robots have goals. These goals may be explicit in the mind of the designer, in the

internal structures of the robot, or externally attributed to the robot by an outside observer. In

Figure 2 a robot arm is trying to pick up a block. It is easy to imagine how the goals might

be represented in each of the designer, robot, and observer. It is possible for the robot to have

either explicit or implicit goals. In the figure, these alternatives are shown by the predicate

Pickup(Block) and the binary encoding 1001110011000. For example, some programming

languages compile down to circuit descriptions, so there are no predicates stored in the robot.

(The circuit description is shown in the figure as a series of bits.)

Pickup(Block)???

--,..
0

Observer

Figure 2: Where are the goals in a robot system?

An observer may or may not be able to ascribe goals to a robot exhibiting complex

behaviour, so the goals of the robot need not necessarily be represented in observers. In

contrast, the designer is responsible for constructing the robot program and so must have

explicit goals to program the robot. Goals describe function and purpose, and yet if the

designer has no goals (for the robot), then what is the meaning of the robot program?

9

Chapter 2^ On Robot Architecture

Hence, a purposeful robot must contain implicit or explicit goals that are generated from the

explicit goals of the designer.

When discussing or designing the architecture of a robot it is useful to describe the

sub-goals that the robot is trying accomplish. The term transient goals describes the current

concrete low level goals that a robot is trying to achieve through its actions. Transient

goals should be interpreted as active/current/operative goals. They have extent in time and

typically cannot be accomplished through a single atomic action. Transient goals change

with time: a robot may first try to accomplish one particular goal, while later a different

one. For example, a robot may have many goals that motivate movement from one room to

another. The transient goal in this situation would be to move through a certain doorway. It

is not the motivation, but rather the action attempted that reflects the transient goal. If only

a single action can be performed at a time, then there is only one transient goal active at a

time. Transient goals are used to compare and classify approaches to robot architecture.

Why are transient goals important? A robot operating in a dynamic world should seek to

produce intelligent behaviour through the selection of appropriate transient goals. If transient

goals are seldom evaluated, then a robot may continue to pursue a transient goal that is no

longer appropriate. Some important questions that robot architectures must answer are "How

are transient goals chosen?" and "When are transient goals changed?"

Robots use control signals to drive actuators. At the lowest level of a robot controller,

control signals are used to drive motors and other actuator mechanisms. Control signals can

be thought of as the level below which there is no further processing. Typically robotic

systems have a control rate associated with them that is a function of the hardware design.

This is the maximum frequency that the robot can drive its actuators at.

10

Chapter 2^ On Robot Architecture

Robot architectures can be compared and classified using transient goals and control

signals. They will be differentiated from one another based on when transient goals are

evaluated and can be changed. A complete reactive architecture is an architecture that

selects transient goals at the same rate as control signals. In such architectures, only control

signals are generated, and transient goals are implicit in them. A partitioned architecture is

one where transient goals are formed independently and usually at a slower rate than control

signals. Both of these classes of architectures will be illustrated in the following sections

through landmark robot architectures.

The word reactive means the rapid response to stimulus. When applied to the word

behaviour, it means that actions (1) occur within bounded time and (2) are in response to

changes in the environment. The term reactive architectures is used in this sense and many

of the architectures discussed in this chapter would fall under this classification. It does

not mean that the robot has no internal state, although it has occasionally been used in this

manner.

Some, but not all, reactive architectures are able to select transient goals at the same rate

as control signals. These are named complete reactive architectures to note this distinguishing

feature. The word complete is used to indicate that a complete decision is made that includes

the selection of transient goals. Other architectures are labelled reactive because they respond

to changes in the environment while pursuing specific transient goals, although they are

unable to change transient goals.

2.1.3 Criteria for Robot Architectures

There is no consensus on how to build robot controllers. Every year new architectures

are proposed that are different from previous ones, yet the majority seem not to be designed

11

Chapter 2^ On Robot Architecture

to test out a theory or to satisfy general criteria, but rather to work with a particular hardware

configuration on a specific problem. It is difficult to compare architectures that are associated

with different domains, and to make matters worse, the target domains are rarely described

clearly.

In this thesis, architectures will be evaluated according to their suitability for dynamic

domains. Architectures are judged on their underlying model and not on the performance

of a specific implementation. The following questions establish the criteria for comparing

robot architectures:

• When are transient goals selected?

• How are transient goals selected?

• How are real-time constraints met?

• What kinds of computations are permitted?

• Are suitable abstractions provided?

The main criteria in this thesis is based on when and how the transient goals of a robot are

selected. Other issues of general importance to robot architecture such as sensory processing,

the role of internal state (world modeling), general design issues are not addressed in this

thesis.

Another omission from this thesis is a treatment of the correctness of robotic systems.

Formal concepts from concurrent systems such as safety and liveness can be applied to robotic

systems. A safety property guarantees that an undesirable event never happens [MP92]. A

liveness property guarantees that a desirable event eventually happens (this means that the

system is not susceptible to either deadlock or livelock). Constraint Nets, a computational

model for real-time systems, provides a thorough treatment of this [ZM92a; ZM92b; ZM93].

12

Chapter 2^ On Robot Architecture

Individual robots can be compared, but differences may be the result of technical details

which have nothing to do with their architectures. However, implemented systems provide

a lower bound on the utility of an architecture since limitations in the architecture are often

reflected in the functionality of a robot. The robot controller described in this thesis will be

experimentally tested to establish a lower bound on the utility of reactive deliberation. This

criterion will also be used to highlight significant limitations of other architectures.

Appropriate questions to ask of a robot are, "What tasks can it perform?" and "How

well are they accomplished?" These measures of utility are determined by the observer of

a robot. A nice wording for these ideas is: "Intelligence is determined by the dynamics

of interaction with the world." and "Intelligence is in the eye of the observer." [Bro91].

The essence of these ideas is that robots must achieve goals in an appropriate manner and

interact intelligently with the world.

2.2 Complete Reactive Architectures

The descriptor complete is used to describe a class of reactive architectures where both

transient goals and control signals are evaluated at a system specific rate. In this section,

the following architectures are described: the subsumption architecture, the concrete-situated

approach and the situated automata. The common features of complete reactive architectures

are summarized in the last subsection.

2.2.1 The Subsumption Architecture

Brooks proposes the subsumption architecture that uses a hierarchy of task achieving

behaviours rather than the traditional Artificial Intelligence sense-model-plan-act framework

[Bro86; Bro91]. The behaviours in the subsumption architecture are generic types of

behaviour, not specific instances. For example, a hierarchy of behaviours that include generic

13

Chapter 2^ On Robot Architecture

ones like "plan changes to the world" is given in Figure 3. Some activity-specific examples

of behaviours are: seek-light, avoid-darkness, avoid-obstacles, and recharge [Kub92].

reason about behaviour of objects

plan changes to the world

identify objects

monitor changes
From

Sensors build maps To
Effectors

explore

wander

avoid objects

Figure 3: Task-achieving Behaviours in the Subsumption Architecture [Bro86]

Each task-achieving behaviour independently maps sensor inputs into desired control

signal outputs. Behaviours principally interact with one another through a fixed set of

inhibition and suppression connections, although message passing between behaviours is

allowed. These connections allow higher level behaviours to subsume the function of lower

levels. Higher levels can suppress the outputs of lower levels when they wish to take control

of the robot. This form of arbitration, where the highest level behaviour wins, makes sense

in the subsumption architecture where the highest level is the most sophisticated.

Each behaviour is composed of a collection of simple computing elements: augmented

finite state machines. The elements can store state, perform simple computations and

communicate through fixed-topology connections. These design choices result in some

interesting features/limitations: there is no central locus of control; there is no central model

of the world; pointers and data structures cannot be easily implemented (and are discouraged

since they result in costly computations); and the search space of computations is bounded.

14

Chapter 2^ On Robot Architecture

In the subsumption architecture there is no explicit representation of goals and knowledge.

Brooks argues that this is a good thing and promotes the slogan, "The world is its own best

model." [Bro91]. Since there is no explicit representation, the transient goals of the robot

are implicit in the control signals it generates. The subsumption architecture is clearly a

complete reactive architecture since the transient goals and the control signals are evaluated

at the same rate. One additional note is that a behaviour does not guarantee an output. For

instance, if a behaviour is performing a time consuming computation it may not produce an

output on time. This feature permits computations that require more time than a sensing-

action cycle. It is not clear, however, that slow behaviours can be effectively combined with

more responsive ones.

The focus of the subsumption architecture is on engineering robots by starting out as

simple as possible and developing them incrementally. This approach has been demonstrated

on at least ten robots from the 50 gram Squirt to the much larger Herbert that has a robot arm

attached [Bro90]. However, the commitment to avoid representation seems to be a significant

hinderance in the development of more sophisticated robots.

2.2.2 Concrete-Situated

The concrete -situated approach take by Agre and Chapman characterises real world

situations as complex, uncertain, and immediate [AC87; Cha91]. Their approach has been

used to build software agents that play two different video games. Their system, although

implemented in LISP, is based on a connectionist approach to architecture where expensive

(according to [Cha91]) data structures such as pointers and dynamic storage allocation are

prohibited.

The main thesis of the work is that intelligent activity can be produced from moment

15

Chapter 2^ On Robot Architecture

to moment improvisation and need not result from the pursuit of detailed plans. The first

system designed on this basis, Pengi, has no internal state, while the more sophisticated

Sonja has a small amount of distributed local memory. The action of the agent is determined

principally by the current situation. The implicit assumption is that the portion of the world

observable by the agent contains sufficient information for making an intelligent decision.

In such an environment, there is no need for memory, since the world itself acts as memory

that has perfect fidelity. The video games that Agre and Chapman's software agents live

in are instances of environments that contain complete information. Unfortunately, the real

world is not composed of discrete blocks that form a finite 40 by 30 grid.

Patterns of behaviour, called routines, result from interaction with the environment and

not from the explicit encoding of repetitive actions. Agre and Chapman have demonstrated

that simple rules for action can generate intelligent coherent behaviour. One criticism made

of this work is that the designer of the system is responsible for analysing the environment

and abstracting appropriate rules for behaviour [Mae90]. However, this is no different from

what is needed of the builders of other systems; the problem of automatic programming has

not yet been solved.

The system consists of a visual routine processor and a collection of action proposers

as can be seen in Figure 4. The proposers correspond quite closely to behaviours. There is

a proposer for each internal and external action that the agent can make. Internal actions

are computation requests sent to the vision routine processor, while external actions are

moves that the agent makes in the environment. Internal actions provide a central feature

of the system: task directed sensing (or more accurately, situation directed computation).

This approach to vision is gaining increasing recognition for solving some of the complexity

16

Chapter 2^ On Robot Architecture

problems in computer vision. Conflicts between proposers are ultimately resolved through

a fixed priority scheme, so that only one action is enabled at a time. In general, multiple

internal actions will take place before the proposal for an external action is accepted.

Internal
Actions

-111.

From
Sensors

Visual Routine
Processor

Central System
with Proposers External

Actions

^ To
Effectors

Figure 4: An abstraction of the Concrete-Situated Architecture

Each change in the environment results in a new action. There is no separation between

the selecting transient goals (through proposers) and control signals (external actions); the

winning external action proposal is the control signal. Since transient goals and control

signals are evaluated at the same rate, the concrete-situated approach is a complete reactive

architecture.

A valid criticism of the concrete-situated approach is that there are many problems in

the real world that do not arise in video games. Despite this, the work has made a significant

contribution to the theory of building intelligent systems. In the two video-game systems the

software agents could examine complex situations and generate intelligent actions through

a distributed network of behaviours.

2.2.3 Situated Automata

Kaelbling and Rosenschein have created two separate robot architectures based on the

Rex programming language. The architecture presented in "An Architecture for Intelligent

Reactive Systems" [Kae90] appears to be a strongly related to the subsumption architecture,

while the later situated automata approach [KR90], is more rigorous with its treatment of

17

Chapter 2^ On Robot Architecture

semantics. To avoid confusion, the architectures will be described in chronological order.

However, outside of this subsection, only the situated automata approach will be referred to.

The architecture described in "An Architecture for Intelligent Reactive Systems" [Kae90]

is based on the Rex programming language. Rex is designed for the implementation of real-

time embedded systems. It supports recursion and functional programming. Programs can

be compiled into hardware specifications that can be built or simulated by sequential code.

All computations in Rex are guaranteed to terminate in constant time. Rex also supports an

incremental planning system that is compatible with real-time operation. The planner verifies

that its goal is unchanged and the context of the plan is satisfied by the environment before

continuing planning for a fixed period of time.

The architecture proposed in [Kae90] looks like a cleaned-up version of the subsumption

architecture, although there are some significant differences. One notable difference is the

separation of the perception and action components of the robot. The perception component

stores the world model of the robot with data types ranging from raw sensor values to abstract

world models. The similarity with the subsumption architecture lies in the organization of

the action component into hierarchically mediated behaviours. The behaviours described in

[Kae90] are similar to the ones in [Bro86]. A fundamental difference, however, is that the

former fosters the use of meaningful symbols. The idea of situating planning in real-time

activity (mentioned earlier) is a good one, but the details provided in the paper do not explain

the connection between the behaviour-based approach and planning.

In [KR90] a more formal approach to robot synthesis, situated automata, is presented.

The only connection with the previous paper appears to be the use of the Rex programming

language. Rather than using the earlier behavioural style of architecture, situated automata

18

Chapter 2^ On Robot Architecture

builds on the perception-action split through two metalanguages, Ruler and Gapps, which

compile into Rex expressions. Ruler is used to describe the perception component by

establishing connections between raw sensor data and propositional descriptions of the

environment. (This is essentially the same as the approach to sensing in the earlier

architecture.) Gapps is used to describe the action component of a robot. It has a formal

semantic grounding for describing robot programs.

The behaviour of the robot is specified through a set of goal reduction rules as well

as a prioritized goal list. The goal reduction rules describe how actions of the robot lead

to the accomplishment of the goals. The prioritized goal list ranks the goals according to

importance. Just, as the subsumption architecture, Gapps has a fixed hierarchy of goals. The

behavioural specification are compiled into a finite set of condition-action pairs that form a

robot program and can be compiled further into a circuit description.

In situated automata a clock tick is defined as the minimum-cycle time needed to read

inputs, perform some computation, and set outputs. A single action is generated from the

set of condition-action pairs. The action component of the robot has no state: it is purely

reactive. There is, however, state in the perception component to reduce the effects of sensor

noise and uncertainty. The action produced is a control signal as well as a transient goal.

Thus situated automata is a complete reactive architecture.

A serious drawback to Gapps is that it has a fixed ranking of goals and does not support

arbitrarily complicated computations such as planning. Some remedies to the planning

problem are discussed but it is not clear if they can be cleanly integrated with situated

automata. It is claimed in [KR90] that the situated automata approach has been used in a

variety of robotic applications, although none are described.

19

Chapter 2^ On Robot Architecture

2.2.4 Summary

Complete reactive architectures select transient goals at the same rate as control signals,

so the transient goals certainly can keep pace with the environment. The transient goals are

implicit in the control signals and not explicitly represented. The architectures described

in this section have a strong focus on reactive behaviour. They are capable of moment to

moment activity, but there is no projection or planning of future states.

Figure 1 contrasts the complete reactive architectures. The architectures are listed in the

rows, and the distinguishing features in the columns.

Feature

Architecture
Model of
Computation

Limited
Computation? Focus on: Systems

Subsumption
Architecture

AFSM No
Engineered

Solution
Many Robots

(10)

Concrete
Situated

Circuit Yes Improvisation
through Routines

Video Game
Players (2)

Situated
Automata Circuit Yes

(Possibly No) Formal Semantics Variety of
Applications (?)

Table 1 Distinguishing Features of Complete Reactive Architectures

The heading Model of Computation refers to the computational model used in the

architecture. All of the architectures can compile down to a circuit level description.

The restriction of the computational mechanism to circuits has significant impact on the

capabilities of these architectures. For instance, all these systems can respond quickly to

changes in the environment. A limitation of these architectures is the inability to perform

search type algorithms needed for planning, since they have little or no memory.

The architectures with limited computation are guaranteed to complete all computations

each system cycle. This means that only a small class of algorithms can be used by these

20

Chapter 2^ On Robot Architecture

architectures. Although the subsumption architecture permits unbounded computations, other

commitments within the design philosophy limit the applicable algorithms. The issue of

limited computation may lead to problems extending these architectures to more sophisticated

systems.

The column Focus on contains the motivation or guiding principle of each architecture.

Although these architectures share a large number of features, they have significantly different

motivations. The only one concerned with semantics and correctness is the situated automata

approach.

The Systems column lists robotic systems built using the architecture. It is included

because experiments are needed to substantiate theories of robot architecture. The concrete-

situated approach has only been demonstrated in a video game, so its extensibility has yet to

be demonstrated. The subsumption architecture has had simple applications in dynamic

domains documented; little has been published on the experimental use of the situated

automata approach.

2.3 Partitioned Architectures

Partitioned architectures are architectures where transient goals are generated independent

of, and typically at a slower rate than, control signals. The approaches discussed in this

section are: Shakey the robot, Reactive Action Packages (RAP), ATLANTIS, and the

dynamics of action selection. This section concludes with a discussion of the common

features and differences between architectures.

2.3.1 Shakey

"Shakey" is the name of a mobile robot that was used in experiments in the late sixties

and early seventies [Ni184]. This was one of the first attempts at creating an intelligent

21

From
Sensors

PLANEX
Executor

To
Effectors

STRIPS
Planner

Predicates

World Model

A

Plan

Predicates Out Predicates
V

Figure 5: The Architecture of Shakey the Robot

Chapter 2^ On Robot Architecture

autonomous robot and strongly influenced successive attempts at building robots. Shakey is

considered the "traditional" Artificial Intelligence approach to building robots.

Figure 5 shows the architecture of Shakey the Robot. Shakey is partitioned into the

STRIPS planner and the PLANEX executor. The planner is responsible for "high-level"

reasoning and instructs the executor through plans. The executor is responsible for monitoring

the execution of the plan and communicates with the planner through an abstract world model

that stores information in predicate form. The partition between planning and execution

monitoring that began with Shakey is reflected in all the partitioned architectures in this

section.

The reasoning component of the robot is the STRIPS planner. It is assumed that the

robot is given a high level goal by an external authority. The STRIPS planner performs a

directed search through the space of possible actions to produce a plan. The plan consists of

a sequence of operators (actions) that should result the goal state when they are executed. An

example operator actually used in Shakey is: GOTOADJROOM(ROOM1,DOOR,ROOM2)

[Ni184]. This reads as: Go To Adjacent Room from Rooml through Door to Room2.

22

Chapter 2^ On Robot Architecture

The PLANEX component of the system is responsible for executing the plan. PLANEX

iterates over a series of perceptions and actions. First, it checks to see if the goal state has

been achieved. If it has not, PLANEX selects an operator whose preconditions are true.

If no operator is valid, then plan failure is reported to the STRIPS planner. The operators

are typically selected in sequence, although some may be skipped if some external agent

assists Shakey.

Operators are associated with action routines called Intermediate-Level Actions (ILAs).

ILAs are composed of a sequence of Low-Level Actions (LLAs) LLAs are the bottom of

the abstraction hierarchy and are implemented in LISP. Each LLA has termination conditions

based on simple sensory data. It is the LLAs that form feedback loops with the environment

to perform simple tasks. The ILAs allow the STRIPS planner to plan at a higher level of

abstraction the LLAs The operator (ILA) GOTOADJROOM is composed of the following

LLAs: DOORPIC, TURN, PLANJOURNEY, ROLL, etc. [Ni184].

The operators defined in this system are composed of LLAs. LLAs are related to transient

goals since they are close to the idea of a simple action or activity. Hence, a STRIPS plan can

be thought of as a sequence of transient goals. The transient goals of Shakey are established

during planning and are committed to long afterwards. New plans are generated when the

current plan has been completed or there is a problem in execution. Shakey is a partitioned

architecture because transient goals are evaluated independent of and usually far in advance

of the control signals.

The assumptions made in building the planner for Shakey are very restrictive: there

is a single agent in the world, the world is static, actions are discrete, and all actions are

predictable. Each of the problems stated in Section 2.1.1 were engineered away or ignored.

23

To
Effectors

Planner

()World Model^Status Sketchy
Plans RAP Library

RAP Executor

Instructions
Data

From
Sensors Controller

Chapter 2^ On Robot Architecture

It is worth noting that all of the assumptions made in Shakey are invalid in an environment

with people in it. Shakey is not at all appropriate for dynamic environments.

2.3.2 Reactive Action Packages

The Reactive Action Packages (RAP) system is a descendant of Shakey with some

significant improvements [Fir89]. Like Shakey, the decision making component of the robot

is a planning system. Reactive action packages play exactly the same role as operators

and ILAs in Shakey. The operator role of the reactive action packages is to maintain the

planner's delusion that there are abstract primitive actions in a continuous world [Fir92].

The ILA role is to provide a means for describing robot programs. The RAP Executor acts

as a bridge between an abstract planner and a controller embedded in the real world. The

entire architecture can be seen in Figure 6.

Figure 6: The RAP Architecture

Each RAP is a robot program that consists of a task, success criteria, and a number

of alternate methods for carrying out the task [Fir89]. RAP provides a more structured

approach to robot programing than ILAs since each method within a RAP can be thought

of as a simple behaviour-based program. In the latest version of RAP theory, methods

24

Chapter 2^ On Robot Architecture

enable and disable collections of control and sensing modules in the controller rather than

directly performing sensing and controlling the actuators [Fir92]. The controller continuously

interacts with the world to produce reactive behaviour. A notable improvement over Shakey

is that dynamic activities such as following someone across the room are now supported.

Further, the behaviour-based approach has resulted in more robust control and the system

tolerates the failure of actions.

The RAP system generates a "sketchy plan" composed of a sequence of tasks. The

sequentially executed methods within each task are equivalent to transient goals. Like

Shakey, plans and transient goals are generated only when the preceding plan has been

completed or has failed. As a result the problem of producing appropriate behaviour (as

opposed to reactive behaviour) in a dynamic world is not addressed. RAP is a partitioned

architecture for the same reasons as Shakey.

2.3.3 ATLANTIS

ATLANTIS (A Three-Layer Architecture for Navigating Through Intricate Situations) is

described as a direct intellectual descendent of the original RAP system [Gat92]. It has a three

layer architecture that consists of a deliberator and a controller connected by a sequencer that

is similar to the RAP executor. It allows an asynchronous traditional planner to operate with

a reactive control mechanism. In ATLANTIS, the deliberator can perform any computations,

so it is difficult to draw a clear schematic for the architecture. However, the figure for RAP,

Figure 6, is fairly close, except that the planner/deliberator has access to sensor data and

can add to the world model.

The deliberator is restricted to computations that are interruptible so that complex

computations will not degrade the real-time performance of the robot. The architectural

25

Chapter 2^ On Robot Architecture

model makes no commitment to any particular deliberation mechanism, although all lengthy

computations must be performed by the deliberator. The current implementation includes a

vision system, a world modeler, and a planner in the deliberator.

The controller is composed of behaviour producing modules called primitive actions.

Each primitive action is very similar to the control modules in the RAP system. Although

they are called primitive actions, there is no commitment to discrete actions and continuous

activities are supported.

The deliberator shares computational resources with the controller and can operate while

the controller pursues the current plan. Simultaneous planning and control allows the

deliberator to consider alternate plans. Plans (and hence transient goals) are evaluated in

ATLANTIS as available processing time allows. This makes it possible for a robot to

produce intelligent behaviour in dynamic environments.

In conclusion, ATLANTIS attempts to alleviate some of the difficulties with the traditional

Artificial Intelligence approach to robotics. It has some features appropriate to dynamic

domains, such as the consideration of alternate plans. However, the commitment to the

plans-as-communication view [AC90] prevents specific plan details from being computed

until they are needed, resulting in a greater latency in response.

23.4 The Dynamics of Action Selection

The dynamics of action selection is a theory of action selection intended for autonomous

agents [Mae89; Mae90]. It describes a mechanism for action selection and is not a complete

robot architecture. The dynamics of action selection provides an alternative to traditional

planning systems. It is discussed in this section because the dynamics of action selection

could be inserted in the "planner" box of any of the other partitioned architectures. In

26

Chapter 2^ On Robot Architecture

addition, this material is relevant because the problems of action selection and the selection

of transient goals are essentially the same.

Maes argues that a mechanism for action selection is needed for a robot operating in a

complex dynamic environment [Mae90]. Any such mechanism must be fast, favour actions

relevant to the current situation, and be able to exploit opportunities. Further, there is a trade-

off between "goal-oriented" and "situation-oriented" behaviour. "Goal-oriented" behaviour

means that a robot prefers to follow an active plan rather than respond to the current situation.

The commitment to pursue a plan irrespective of changes in the environment is inappro-

priate. The decision made by a robot of what to do now should be based on the expected

utility of each action, not on the arbitrary notion of following a plan. The postulated trade-off

does not apply. However, the inspiration for a systematic means of evaluating the appro-

priateness of actions is insightful.

The dynamics of action selection mechanism accepts high-level goals and predicates

about the world as inputs. At each time step, it outputs an action. There is a competence

module [Min86] for each possible action that is represented as a node in an activation network.

Competence modules are connected through successor, predecessor and conflicter links that

represent dependencies and conflicts among the actions. Energy is injected into the network

for each active goal and valid proposition. A small number of tunable global parameters

are used to regulate the flow of energy through the links connecting the nodes. After a set

number of energy spreading iterations, the competence module with the highest energy is

selected as output.

The dynamics of action selection is identified as a fast mechanism for robots, although it

is not ideal in a number of ways. First, predicates describing the world are readily available

27

Chapter 2^ On Robot Architecture

and are used to the exclusion of probabilistic models (actually, this is a planned modification).

Second, all goals input the same amount of activation energy into the network, although it

is unlikely that all goals are of equal importance. Third, in an experimental evaluation of

different action selection mechanisms the dynamics of action selection fared very poorly

[Tyr93].

2.3.5 Summary

The partitioned architectures are, roughly speaking, composed of a planning component

and an execution monitoring component. Transient goals are selected independently of and

less frequently than control signals. This is advantageous because it is typically not necessary

to select transient goals as frequently as control signals in dynamic environments. Transient

goals are explicitly represented as actions. Actions are associated with activity producing

modules that abstract away system specific implementation issues. This allows modules to

be tested independently and reduces the complexity of the entire system.

Table 2 focuses on the selection of transient goals in partitioned architectures. The

architectures are listed in the rows, and the distinguishing features in the columns. The issues

that are important for partitioned architectures are different from those that are relevant to

the complete reactive architectures. Hence, the differences between the headings of this table

and the table on complete reactive architectures.

The question, "When are transient goals selected?" is the most important in dynamic

worlds, since transient goals must be able to change with the environment. The heading

Systems is included since robot theories must be tested to ensure validity. The bottom row

provides a sneak preview of reactive deliberation, the architecture presented in this paper,

since it is a partitioned architecture.

28

Chapter 2
^

On Robot Architecture

Feature

Architecture

When are
transient goals
selected?

How are
transient goals
selected?

How far into
the future do
transient goals
extend?

Systems

Shakey
On failure or
completion of
plan.

Planner Arbitrary
Length Plans "Office" Robot

RAP
On failure or
completion of
plan.

Planner Arbitrary
Length Plans

Office Robot
(1?)

ATLANTIS

On failure or
completion of
plan and as
frequently as
possible.

Planner.
(Possibly other
mechanisms) Arbitrary

Length Plans
Outdoor

Robots (>2)

Dynamics of
Action Selection

As frequently
as possible.

Activation
Network

One Action Tested in
Simulator

Reactive
Deliberation

As frequently
as possible.

Estimates of the
utility of
behaviours

One Action
Multiple
Soccer Playing
Robots

Table 2 Partitioned Architectures in Perspective

The top three architectures, Shakey, RAP, and ATLANTIS, exhibit similar characteristics,

since they are all designed around planning systems. In Shakey and RAP, arbitrarily long

sequences of actions are planned and then executed without much consideration for other

actions. ATLANTIS is similar, but allows alternate plans to be considered. In all three,

sequences of actions are generated, and not just a single action. The danger with these

approaches is that much of the robot's success lies in its ability to predict future worlds A

robot must be able to operate in a dynamic world where there are multiple agents, actions

are continuous, and the effects of non trivial actions are unpredictable. To operate in a real

environment, transient goals must be evaluated frequently: the blind pursuit of plans is poor

paradigm to follow.

29

Chapter 2^ On Robot Architecture

The dynamics of action selection generates a single action at each time step, so it is

able to select actions appropriate under the current circumstances. This approach is more

appropriate for robots in dynamic environments, than the approaches based on planning.

However, the dynamics of action selection is hardly an ideal scheme.

One notable omission from this chapter is a survey of hierarchical architectures such as

NASREM where the problem of controlling a robot is considered analogous to the problem

of controlling an army or business [A1b81]. Hierarchical architectures in their general form

have been successfully used for the control of robot work cells in manufacturing. However,

their use in mobile robots has been limited and their applicability in uncertain and dynamic

environments has yet to be demonstrated. For these reasons, hierarchical architectures have

not been given detailed treatment. It is worth noting that partitioned architectures can be

considered a special case of hierarchical architectures.

2.4 Additional Related Literature

This section describes additional previous work relevant to this thesis. The work is

related to mechanisms that arbitrate between conflicting goals. Planning systems are not

suitable for this; they do not decide which goal the agent should pursue, but rather accept

a single goal as an input. One possible solution is to develop a heuristic mechanism that

arbitrates between goals such as the dynamics of action selection. A more rigorous approach

is to use decision theory to evaluate the expected utility of each action.

Decision theory can be used to answer the question "What to do now?" (It can also be

used to compute a sequence of actions.) Given an initial state wo and finite sets of decisions

D and world states W, decision theory requires that a value be assigned to each world state

v[w]and for each potential decision that the conditional probability of reaching each world

30

Chapter 2^ On Robot Architecture

state be specified p[w d, wo}. The expected value of each decision EV[d] is then the sum

of the values of each world state weighted by its conditional probability as shown in the

following equation: EV[d] = E v[w] x p[w I d, wo]. The best decision is then simply the
wE W

decision with the greatest expected value.

One problem with decision theory is that there are a lot of world states and this leads to

a very large number of conditional probabilities. The above instructions must be performed

for each initial state, so for n world states and m decisions 1 , the number of conditional

probabilities needed are n2m. Continuous properties must be discretized; This forces the

designer of a system using decision theory to abstract away (hopefully) unimportant details

of the world to reduce the number of conditional probabilities to be computed. A decision

model for robots based on decision theory has been proposed [KD89], however it does

not handle continuous variables, nor is it possible to do sophisticated spatial reasoning. For

realistic robotic environments, decision theory does not appear to be good approach, however

it motivates the approach taken in reactive deliberation of generating estimates of the utility

of actions.

Bidding as a mechanism for action selection has been proposed before for autonomous

robots. Minsky describes a central marketplace where mental proto -specialists compete for

control [Min86]. Each proto-specialist represents a different goal and generates a bid based

on the internal urgency of the goal. He argues that this approach is bound to result in

unstable behaviour, but this conclusion is reached since only the urgencies of the goals

and not the current situation are considered in his scheme. Once bids are based on both

the importance of the goal and the current situation the objections raised are invalid. The

I^The situation is actually worse than this. If there are k independent propositions, then n=2k. Also, m is exponential in the number

of independent decisions, and quadratic in the number of different control values.

31

Chapter 2^ On Robot Architecture

problem of mediating behaviours is also discussed in [Kae90] and follows the same (flawed)

line of arguments as in Minsky.

Action selection mechanisms based on bidding are referred to as drives in psychological

literature. Different mechanisms for action selection are compared through a simulation of

a zebra living in an African savannah in [Tyr93]. He found that while the drives approach

is effective, a free-flow decision hierarchy (neural network) works better due to its ability

to combine preferences (actions). It makes sense to combine preferences in the simulation

when the world is a discrete grid and there are only a small number of actions. It is unclear

how preferences can be meaningfully combined in a real robot where actions, such as the

desired direction of motion, are continuous.

Systems such a contract nets allow negotiation between agents to make a decision

[Smi80]. This is very different from the bidding mechanism described above. With

negotiation, the bids an agent makes are influenced by the bids of other agents, while

with the bidding described above, there is no interaction among agents (behaviours, goals).

Negotiation has been used for the control of multiple robots [Nor92].

2.5 Discussion

Through transient goals an abstract view of robot architecture is provided. From this

viewpoint, landmark architectures have been partitioned into two groups: complete reactive

architectures and partitioned architectures. Each group has a number of features that are

useful in dynamic domains.

In complete reactive architectures, the transient goals of the robot are implicit in the

control signals. These architectures can compile down to a circuit level description and can

32

Chapter 2^ On Robot Architecture

only perform bounded computations, and so are able to respond quickly to changes in the

environment.

Partitioned architectures have transient goals explicitly represented as actions. Actions

are associated with activity producing modules to abstract away system specific implemen-

tation issues and increase modularity. One weakness typical of these architectures is the

commitment to arbitrary length plans.

The separation of the selection of transient goals from the frequent generation of control

signals in partitioned architectures provides two advantages. First, transient goals can be

selected at whatever rate is appropriate for the environment since it is seldom necessary to

select transient goals as frequently as control signals. Second, lengthy computations can be

performed, while complete reactive architectures are restricted to those that can be done at

the same rate as control signals.

It is not appropriate to rank the architectures described in this chapter according to

their suitability for dynamic domains, since there is no clear basis for such a comparison.

For instance, both the concrete-situated approach and the dynamics of action selection are

only partial specifications of robot architectures and results have been limited to software

simulations. Shakey, RAP, and ATLANTIS are very similar with only small differences,

although ATLANTIS supports some features that recognize the time limited nature of dynamic

environments. The utility of the situated automata approach, although it appears limited, is

not entirely clear. The subsumption architecture has some good elements, but has not evolved

significantly since its inception in the mid-eighties.

33

Chapter 3
Reactive Deliberation

In this chapter, the main results of this thesis are presented through an architecture called

reactive deliberation. It combines responsiveness to the environment with intelligent decision

making. Even deliberation must be to some extent reactive to changes in the environment.

Although the name is an oxymoron, it is consistent with Artificial Intelligence nomenclature

(cf. Reactive Planning).

Although reactive deliberation is a partitioned architecture, it shares many of the features

of the complete reactive architectures and contains the architectural elements needed in

dynamic domains. Reactive deliberation was influenced principally by RAP and the dynamics

of action selection, although all of the approaches discussed in the previous chapter have

contributed to it in some way.

Reactive deliberation has two related architectural contributions. The first is the partition

of the architecture into deliberative and executive layers. The second is the decomposition

of the deliberative layer into behaviours that represent the goals of the robot. Each of these

is motivated and explained in the following sections.

34

Chapter 3^ Reactive Deliberation

3.1 The Architecture

Reactive deliberation is a partitioned architecture that follows the principles behind

Shakey. However, there are many ways to divide and conquer the problem of robot control.

The difference between reactive deliberation and other approaches is the level of abstraction

at which the split between reasoning and execution monitoring occurs. In this section, an

alternative way of selecting this split, one that is suited to dynamic domains, is presented

and justified.

Reactive deliberation is partitioned into deliberative and executive layers. The delibera-

tive layer decides what to do and how to do it, while the executive layer interacts with the

environment in real-time through a set of action schemas that receive run-time parameters

from the deliberative layer. The components that form each layer are collectively referred

to as the deliberator and the executor respectively.

A structural model illustrating the partition can be seen in Figure 7. The deliberator

is composed of multiple concurrently active behaviours, while the executor has only one

action schema enabled at a time. The deliberator and the executor run asynchronously to

allow the executor to continuously interact with the world and the deliberator to perform

time consuming computations. More detailed information on behaviours and action schemas

are provided in the following sections.

The deliberator is responsible for answering the questions: "What to do now?" and

"How should it be done?" Believers in the theory of plans-as-communication would argue

that these questions can and should be resolved independently [Gat92]. In this case a planner

decides what to do based on an abstract world model, while the problem of resolving how

each action should be performed is postponed until it is to be executed. In a dynamic

35

Chapter 3^ Reactive Deliberation

Deliberator

behaviours

•

Sens
and S

or Data
tatus

Executor
Action
Param

and
ters

From
Sensors

action schemas

To
Effectors-DP

Figure 7: The Architecture of Reactive Deliberation

environment, however, these questions are usually interrelated. Before committing to an

action, it is important to verify that the action is both feasible and more appropriate than

other actions. Partitioned architectures that follow the planning paradigm check to see if an

action is feasible, but not if there is a better action.

Answering the question "How should it be done?" provides information about the utility

of an action. For example, detailed planning may show that one action is impossible, while

another can be accomplished quickly. This suggests that generating plans at a high level of

abstraction may not provide an effective solution for the problem of action selection. Unless

all actions of the robot are feasible and the outcomes can be predicted at design time, the

question "What to do now?" cannot be intelligently answered without also answering "How

should it be done?"

The interface between the two layers is fairly simple, yet reveals important structural

features of reactive deliberation. The executor regularly sends filtered sensory data as well

as occasional status messages describing events or errors from the enabled schema. The

36

Chapter 3^ Reactive Deliberation

deliberator sends an action with parameters to the executor when the enabled schema has

accomplished its objective or an action more appropriate the current situation is found. This

is a central feature of the architecture: the deliberator can interrupt the current activity of

the executor and provide it with a more appropriate one. Notice also that the deliberator is

responsible for generating a single action, whereas other partitioned architectures (excepting

the dynamics of action selection) generate a complete plan (i.e. sequences of actions). This

distinction helps focus the deliberative activities on the immediate situation.

3.2 The Executor

The executor is composed of a collection of action schemas. An action schema is a

robot program that interacts with the environment in real-time to accomplish specific actions.

Schemas receive run-time parameters from the deliberative layer that fully define the activity.

The Action schemas exhibit the same level of complexity as controller modules in RAP

and primitive actions in ATLANTIS. They are designed in the spirit of behaviour-based

approaches, where each schema is experimentally verified. For example, typical schemas

might be: follow path, drive along wall, push box, and pickup block. All the schemas

together define the capabilities of the robot; they are independent of the robot's goals.

The deliberator enables a single action schema with a set of run-time parameters that

fully defines the activity. Only one action schema is enabled at a time and it interacts with

the environment through a tight feedback loop. In the world of real-time control there is no

room for time consuming planning algorithms. Computations in action schemas are restricted

to those that can keep pace with the environment, so lengthy computations are performed

in the deliberator.

37

Chapter 3^ Reactive Deliberation

The boundary between appropriate and inappropriate computations in the executor is a

function of the computing power of a particular system and specific environmental constraints.

The idea is that any computations that can be performed within the time constraints of

the environment are suitable for use in the executor. Computations which do not meet

time constraints are relegated to the deliberator to avoid degrading the ability of the robot

to interact in real-time. Regardless of advances in computing power, there will likely be

interesting algorithms that do not run in real-time. This suggests that the partition between

the executor and the deliberator is indicative of a technology-independent need to segment

computations.

3.3 The Deliberator

In this section, the internal specifications of the deliberator module are described. The

focus of the deliberator is on an effective mechanism for selecting actions or transient goals

in a timely manner. There are a large number of architectural issues to be discussed, so the

more peripheral ones have been relegated to the Subsection 3.3.2, Further Issues.

A central feature of reactive deliberation is that the deliberator is composed of modules

called behaviours that represent the goals of the robot. The notion of a behaviour is used

in the sense of Minsky's mental proto -specialists [Min86] with some important distinctions.

In reactive deliberation, each behaviour computes an action and generates a bid reflecting

how suitable it is in the current situation. The most appropriate behaviour, and hence action,

is determined in a distributed manner through inter-behaviour bidding. Some examples

of behaviours are: clean floor, recharge, deliver mail, and patrol building. Notice that

behaviours characterize goals, not actions.

38

Chapter 3^ Reactive Deliberation

A behaviour is a robot program that computes actions that may, if executed, bring about

a specific goal. Behaviours compute actions whereas action schemas perform actions. Each

behaviour must perform the following: 1) select an action schema, 2) compute run-time

parameters for the schema, and 3) generate a bid describing how appropriate the action is.

3.3.1 More Than Just A Theory of Action Selection

The deliberator is responsible for ensuring the robot acts intelligently in its environment.

It must decide what the robot should do now by selecting the action or transient goal to

pursue. Reactive deliberation does this while also addressing the problem of limited time

and bounded computational resources.

The deliberator in reactive deliberation is composed of modules that each represent a

goal or behaviour. Each behaviour evaluates the world and performs whatever planning is

needed to fully describe its associated action. A bid is produced by each behaviour that

reflects how beneficial it would be for the behaviour to gain control of the robot. In other

words, a bid expresses the expected utility of an action given the current world state. The

behaviour with the highest bid gains control of the robot's effectors.

Each bid is an estimate of the expected utility that is based on the current state of the

world as well as the results of planning. Currently, the criteria for generating the bids are

hand coded and tuned so that the most appropriate behaviour is active in each situation. This

approach requires the designer of a system to explicitly state the conditions under which

certain behaviours are suitable and favourable. A simplified version of this appears in all

the complete reactive architectures. For example, the concrete-situated approach uses binary

preference relations to establish an ordering of proposers or actions.

39

Chapter 3^ Reactive Deliberation

In a real robot there is more to the problem of action selection than just deciding what

to do. In dynamic environments, a robot needs to quickly decide what to do and how to do

it. The deliberator must keep pace with changes in the environment to produce intelligent

behaviour. Each behaviour is responsible for computing a bid and planning the action. Fixed

computational resources need to be distributed among the behaviours, since it is typically

the case that there is too much computation to be done.

In reactive deliberation behaviours are not always active. Assuming the architecture is

implemented on a standard serial processor (which may be time sharing with the controller

or on a separate processor), the order of activation of behaviours must be scheduled. At

any given time there will be a ruling behaviour that has control of the robot executor. It is

desirable to schedule the ruling behaviour more frequently, since it may want to modify the

current action to reflect changes in the environment. Another observation is that behaviours

whose bids will be lower than the active behaviour's do not need to plan their actions. This

is useful since planning an action is more computationally expensive than generating a bid.

The exact mechanism for distributing computational resources is left unspecified as it is

strongly dependent on the real-time requirements of the system, the number of behaviours,

and the resources need by each behaviour. However, the basic principle is to divide the

available computational resources among the behaviours such that the ruling behaviour

receives more resources. This allows behaviours that perform minimal computations to

respond quickly, while those that perform lengthy computations will respond slowly. It

might be appropriate to allocate resources according to the importance and needs of each

behaviour, but there are no provisions for this in the current implementation. There is

no perfect architectural solution to the problem of limited computational resources. If the

40

Chapter 3^ Reactive Deliberation

computations slow, then the robot will be slow too. The only possible solutions are to get

more powerful computers or better algorithms.

Reactive deliberation is a good approach for robot domains that do not have a large

number of goals (and hence behaviours). Most robots built to date have few capabilities

and can only accomplish a small number of goals. It is clear that reactive deliberation

may become cumbersome if there are a large number of behaviours. On the other hand,

mechanisms could be developed that might, for instance, switch banks of behaviours off in

situations where they would never gain control.

3.3.2 Further Issues

In this subsection a number of issues peripheral to reactive deliberation are discussed.

These are: starvation and stability, planning, multiple resources, distributed versus central

decision making, learning, and multiple robots.

Starvation and Stability There are two issues that must be addressed by any arbitration

mechanism: starvation and stability. Starvation occurs when a behaviour should gain

control but does not. This can be avoided by tuning the bids generated by each behaviour.

For instance "impatient" behaviours might have bids that increase with time until the

behaviour gains control. A system is unstable if it alternates between two behaviours without

accomplishing the goal of either one. Stability can be accomplished through appropriate

bidding. Behaviours that have terminating actions bias their bid upward to reflect the fact

that they are closer to completing the action. This prevents the system from alternating

between two different behaviours without accomplishing either objective. Nonterminating

behaviours may have to incorporate a "boredom" component in bidding so that if they

41

Chapter 3^ Reactive Deliberation

have control for a long period of time, they get bored and reduce their bid to allow other

behaviours to gain control.

Use of Plans The use of plans is permitted within the deliberator and may be of great use

guiding the activities of the robot. For instance, a behaviour might include a planner and

a plan monitor that would bid against other behaviours on the basis of the appropriateness

of the current plan step in the current situation. However, plans are inappropriate when

used as an abstract robot program simply handed over to an executor that follows it to

the exclusion of alternate actions. It is widely recognized that robots need to operate in a

dynamic environments that are unpredictable and full of uncertainty [Mac93]. An exception

to traditional plans is universal plans [Sch87] where actions are described for all possible

world states; however, this is not a tractable solution.

Multiple Resources In the above description, all the behaviours compete for control of the

entire robot: there is only a single resource. This can be extended to multiple independent

resources, such as motion, sensor and manipulator control, where each behaviour produces

a bid for each resource that it needs. If control were assumed only when all the desired

resources were available, the problem of deadlock could be avoided, although starvation

must again be solved by proper tuning of the system.

Modularity and Concurrency Reactive deliberation is a distributed mechanism for action

selection. Each behaviour is responsible for evaluating the world according to its own criteria.

There is no central decision maker that evaluates the world and decides the best course of

action. One feature of reactive deliberation is the ability to add new behaviours without

modifying the bidding criteria of the established system; a new behaviour must, of course,

42

Chapter 3^ Reactive Deliberation

be tuned to be compatible with existing ones. Also, the behaviours are independent, so

they can have different representations and approaches to generating actions. For instance,

a behaviour could incorporate a traditional planner to generate complex activities. Another

major advantage is that behaviours can be run concurrently on different processors, thus

improving the response time of the system.

A Possible Unitary Framework Reactive deliberation need not be distributed. It could

be implemented as a unitary system that consults a database to obtain bidding criteria

and the goal of each behaviour. Unfortunately a unitary system forces commitment to

one representation for deliberative activities, whereas independent behaviours allow multiple

representations and distributed processing. However, one advantage to using a unitary system

is that a single representation system is easier to design and test.

Learning It is possible to implement a learning system that would generate appropriate

bids, rather than use the current method of tuning the bids by hand. Given a fixed set of inputs

describing important domain attributes and the results of planning, appropriate bids could be

learned. For example, neural networks are good for approximating nonlinear multivariable

functions. However, the training set may be difficult to generate for dynamic domains.

Inter-robot Cooperation Reactive deliberation can be extended to multiple robots, where

each robot would broadcast its intended actions and a bid which estimates the appropriateness

of that action. Robots whose actions are in conflict will reevaluate their decision to include

the bid information of other robots. Robots with lower bids than other robots will lower their

internal bid for that action, since that action is not a good one in the current situation. This

43

Chapter 3^ Reactive Deliberation

should result in another behaviour gaining control of the robot. It is not clear, however, that

such a mechanism will lead to effective inter-robot cooperation.

3.4 Discussion

Reactive deliberation contains a consistent set of architectural elements needed in dy-

namic domains. It was developed to investigate some of the problems with producing real-

time intelligent behaviour in dynamic environments. Reactive deliberation makes three con-

tributions to robot architecture. -

A new split between reasoning and control is needed because the questions "What to do

now?" and "How should it be done?" are interrelated. The partition between reasoning and

control advocated in reactive deliberation makes the deliberator responsible for answering

these questions. The executor is restricted to bounded-time computations to provide a tight

feedback loop with the environment. Reactive deliberation recognizes that (low level) robot

control is an on-line activity, while action selection and planning can be off-line activities

without degradation in performance. Complete reactive architectures and constraint nets are

essentially on-line and do not take advantage of the ability to perform off-line computations.

Other partitioned architectures will in general have greater lag since detailed planning is

postponed until the action is to be executed.

The transient goals of a robot need to be evaluated at a rate commensurate with changes

in the environment. This is an important claim since other partitioned architectures (except

the dynamics of action selection) do not meet this criterion. In reactive deliberation, the

restriction of attention to the next action allows the deliberator focus on the best action now.

Goal-oriented behaviours are a useful abstraction that allow effective goal arbitration

and sharing of scarce computational resources. Goal arbitration is accomplished through a

44

Chapter 3^ Reactive Deliberation

distributed bidding mechanism that reflects the expected utility of the actions of the robot,

while computational resources are shared among behaviours.

Table 2 on page 29 compares reactive deliberation with the partitioned architectures.

The dynamics of action selection serves a similar role as reactive deliberation, but uses the

spreading of energy in an activation network to select actions, rather than utility minded

behaviours. The traditional planning-based architectures are quite different since they

consider plans rather than individual actions. This bias prevents them from reacting to

changes in the environment.

Reactive deliberation is not a panacea for robotic woes. A further disclaimer is that it

is an incomplete robot architecture. Its focus is on the issues related to dynamic domains,

ignoring a number of important robotic issues. The largest omissions are on sensing issues

and on world modeling. Sensor processing, fusion, and the development of maps and world

models are really hard problems. This work ignores them to focus on the problem of real-time

intelligent behaviour in dynamic environments.

45

Chapter 4
Playing Soccer: A Real-World
Experiment

This chapter links theory to practice describing a robot controller that has been con-

structed using reactive deliberation. The controller has been designed so that the robot may

compete with another robot in a game of soccer. Soccer-playing was chosen as a domain

for experimentation since it requires real-time interaction with a dynamic environment and

involves inter-robot competition.

4.1 The Dynamite Testbed

The Dynamite testbed, which has grown out of the Dynamo (Dynamics and Mobile

Robots) project at UBC [BKL+93; BKM+93], consists of a fleet of radio controlled vehicles

that receive commands from a remote computer. Robot position and orientation is determined

using off-board visual sensing. The testbed allows autonomous robots to be controlled with

relative ease from an off-board computer. The testbed is intended for robotics experiments,

so an effort was made to simplify the visual tracking of robots and the programmer interface

while retaining the challenges faced by real robots.

Chapter 4^ Playing Soccer: A
Real-World Experiment

4.1.1 The Soccer Field

The mobile robot bases are commercially available radio controlled vehicles. Two 1/24

scale racing-cars are used in the experiment. (There are six racing cars in the lab altogether).

Each is 22 cm long, 8 cm wide, and 4 cm high excluding the antenna. These cars have driven

under computer control at speeds of 140 cm/s, well below the maximum speed of 6 m/s. The

soccer field is 244 cm by 122 cm in size. Two cars and a ball are shown their environment

in Figure 8. The ball is the small object in the middle of the image; each of the cars is fitted

with two circular colour markers allowing the vision system to identify their position and

orientation. The robots are neither as flexible nor as competent as human soccer players. As

a result, the environment is modified in two ways. First, there is a wall around the soccer

field which prevents the ball (and the players!) from going out of bounds. Second, there

are bathers to prevent the ball from getting trapped in the corners. Since these are Canadian

robots, it is not unreasonable for the soccer field to be shaped like an ice hockey rink.

Figure 8: Robot Players Inhabiting the Soccer Field

4.1.2 System Overview

The hardware used in this system is shown in Figure 9. There is a single colour camera

mounted in a fixed position above the soccer field (Figure 8 shows the image of the soccer

47

Chapter 4^ Playing Soccer: A
Real-World Experiment

field viewed from the camera). The video output of the camera is transmitted to special-

purpose video processing hardware named the DataCube in Figure 9. The DataCube is a

dataflow computer which has been programmed to classify image pixels into different colour

classes at video rate. This information is transmitted to a network of transputers which form

a MIMD computer. Additional vision processing is performed on the transputers to find the

position, in screen coordinates, of the centroid of each coloured blob and to transform these

positions from screen to world coordinates. The entire vision subsystem is called the Vision

Engine [LBaJL91]. The Vision Engine produces the absolute position and of all the objects

on the soccer field. The orientation is also produced for the cars, but not the ball. This is

done at 60 Hz with an accuracy in position of a few millimeters. For further information on

the Vision Engine and the vision software, refer to Appendix A.

The reasoning and control components of a vehicle can be implemented on any number of

transputers out of the available pool. Each vehicle is controlled by a user program running

on two transputer nodes: one for the deliberator and one for the executor. An arbitrary

number of nodes, labeled 1 to n in Figure 9, can be used in parallel to control n independent

vehicles. The movement of all vehicles is controlled through a radio transmitter attached

to a single transputer node. Commands are transmitted to the vehicles at a rate of 50 Hz.

System users are able to install their own planning and control routines and simply link in

to the vision and transmitter systems. Each user program is independent and does not effect

the operation of others. User programs can cooperate with one another by communicating

via message passing.

4.1.3 User Interface

One of the advantages of this environment is a clean user interface. The user program

48

RGB Camera
(Single CCD)

User Node: Reasoning & Control ;

Radio Transputer Network ;Transmitter;

Chapter 4^ Playing Soccer: A
Real-World Experiment

Figure 9: Hardware Setup

which is to perform reasoning ; planning and control is shielded from the some of the

complexities in the world. The input to the user program is a sequence of vectors describing

the locations of all the objects. The output from the user program is the sequence of control

signals sent to the vehicle. The control signals are throttle and steering angle. These control

the power given to the motors and the angle of the front wheels.

This interface is of significant benefit to the user. It allows one to focus on making the

robot "do the right thing" instead of worrying about implementation details. It is possible

to create this interface since there is a robust vision system and a reconfigurable network

of off-board computers. Another benefit this abstraction provides is that user programs can

be connected to either a simulator or the real system. The simulator is described fully in

Appendix B. It has proved to be an invaluable tool in developing robot programs.

4.1.4 System Latency

The vision system runs at the video standard of 60 Hz (7 = 16.7 ms). The rate of our

commercial R/C equipment is 50 Hz (T = 20 ms). The rates do not match and there is no

mechanism for providing synchronization. This problem is ignored by the action schema

and in the internal model of the vehicle dynamics. The rate mismatch problem causes an

increase in the latency of the servos of between 0 and 20 ms. It is possible for control

49

Chapter 4^ Playing Soccer: A
Real-World Experiment

signals to be overwritten in the output buffer, however this will have no significant impact

because control signals typically change smoothly except at separated discontinuities. The

overall system latency (including rate mismatch latency) is estimated at 140 ms, but this is

mainly due to mechanical servo-travel time. As a result, ignoring the problem has only a

small effect on the controllability of the robots.

4.1.5 Soccer with Monster Trucks

1/10 scale radio controlled trucks as well as the 1/24 scale racing cars have been used to

play soccer. In Figure 10 a racing car, Zeno, is in the foreground and a truck, Heraclitus, is

in the background. (The names are inspired by Monty Python's soccer-playing philosophers

sketch. Zeno and Heraclitus were two Greek philosophers particularly concerned with

dynamic worlds.) A 12 inch (30 cm) ruler is also visible. The trucks were the original

vehicles used in soccer-playing experiments. The field used with the truck was 10 ft. (3 m)

by 10 ft. which is too small because the truck's minimum turning circle is about 7 ft. In such

a constricted environment, navigation was difficult and resulted in odd-looking path plans.

The Dynamite testbed, in contrast, has a width of about 2.5 turning circles and a length of

twice that. There is more than enough room to play and experiment in.

4.1.6 Non-holonomic Constraints

As mentioned earlier, the robots used in the Dynamite testbed are radio controlled cars.

These robots cannot translate and rotate freely in the plane, unlike the omnidirectional robots

typically used in indoor mobile robot experiments, such as Shakey. Car-like robots are

subject to non -holonomic kinematic constraints that limits the change in a robot's direction

of motion [Lat91]. A holonomic constraint is a constraint that is a function of only the current

configuration (position and orientation) and time. Non-holonomic constraints are constraints

50

Chapter 4^ Playing Soccer: A
Real-World Experiment

Figure 10: Two Dynamo Vehicles: Zeno (front) and Heraclitus (rear)

with higher order (with respect to time) terms such as velocity that cannot be integrated

out. In practical terms, this means that cars cannot move sideways and have motion that is

bounded by minimum turning radius circles. Non-holonomic constraints can alternatively be

interpreted as constraints that do not reduce the size of the configuration space of the robot.

The non-holonomic constraints affect the problem of robot control. Since motion is

constrained, it is no longer possible to move in the direction of the desired destination.

Although motion can be accomplished without motion planning, there is a stronger need for

planning than with omnidirectional robots. Real life problems such as parallel parking are

connected with motion planning. Cars need to move backwards when parallel parking close

to the curb, just as the soccer-playing robots drive backwards to make a shot when the ball

is very close to a wall.

4.1.7 Design Decisions

The Dynamite testbed has been engineered so that some important issues in the "real

world" are ignored. This reflects a careful research strategy where the problems faced in

51

Chapter 4^ Playing Soccer: A
Real-World Experiment

dynamic domains have been examined to the exclusion of other problems.

The vision system is simple, but this thesis is not about a new approach to vision, nor

about building robots to roam around offices or solve other industrial problems. A single

off-board camera allows us to track at least six (and possibly more) robots at a time in a

fixed area, and that is all that is needed for experiments with multiple robots. Off-board

computation is used because it is easier to modify software and the few conceptual gains to

be made from engineering an on-board system are not relevant to this thesis.

In Section 2.1.1 a number of characteristics of robotic domains were introduced. The

Dynamite testbed is a structured, simple environment. (i.e. not unstructured and complex.)

The problem of sensor ambiguity has been engineered away. Coloured blobs are mapped

into car and ball location and the locations of the goals and the walls of the field are known

a priori in the fixed world coordinates. The camera is calibrated to a coordinate system

that is consistent with the fixed locations. The goal markings discernible in Figure 8 are

for the benefit of humans only; it has no effect on the vision system. The two important

characteristics that do apply to soccer-playing are that it is unpredictable and dynamic.

Although the complexity of the testbed has been minimized, the experiments explore a

challenging dynamic world. The cars are able to drive safely at scale speeds upwards of 80

km/h in a confined space. These are autonomous mobile robots that function in a near-real

world. Robots playing soccer sounds like fun, but in no way is this a toy experiment.

4.1.8 Importance of the testbed to this thesis

An important disclaimer: the author did not build this testbed. Although he has put a

significant amount of time and energy into it, others have contributed far more. This thesis

should be evaluated on the usefulness of reactive deliberation and not on the construction of

52

Shoot Wait^Clear

Servo^behaviours

Go *A
Defend Line^Deferui

Aed Line^Home Line

Go Some
Line

Chapter 4^ Playing Soccer: A
Real-World Experiment

the Dynamite testbed. The testbed was, however, necessary for testing reactive deliberation

and its use is an integral part of this thesis.

4.2 The Soccer Controller Implemented in Reactive Deliberation

4.2.1 Overview

Figure 11 shows the soccer-playing controller based on reactive deliberation. The

Executor box lists the action schemas, while the Deliberator box lists the behaviours. The

behaviours are responsible for accomplishing objectives, whereas the action schemas are

primitive operations or activities that the robot is capable of performing. For example, the

go home line behaviour plans a path from the current position to a position in front of the

robot's home goal, while the follow path schema causes the robot to track a specific path

trajectory. The details of behaviours and action schemas will be explained further in the

following subsections.

Deliberator

•
Sensor Data
and Status Executor •

Action and
Param ters

Follow
Path Stop

To
Effectors

From
Sensors

Servo
Defend

Figure 11: The Reactive Deliberation Controller

action schemas
Idle

53

Chapter 4^ Playing Soccer: A
Real-World Experiment

The deliberator and executor each run on their own transputer nodes (processors) and

communicate through message passing. The executor sends position and status information

to the deliberator at 60 Hz. The deliberator asynchronously updates the current action of

the executor when appropriate.

The controller has been implemented in C. (This is the only programming language our

lab supports on the transputer network.) It has been constructed over a period of a year,

yet only an estimated 3 or 4 person-months have gone into design, coding, and testing. The

various parts of the controller total more than 5000 lines of code. This figure excludes the

simulator and vision system, since they were written by other members of the laboratory.

4.2.2 Executor

Table 3 shows the action schemas that have been written for the executor. Only one

action schema is enabled at a time. The enabled schema sets the robots control outputs,

throttle and steering angle, and sends messages to the active behaviour in the deliberator

when it is having problems. The enabled schema can also transfer control to other schemas.

For instance, the follow path schema transfers control to the stop schema when it has reached

the end of its path. Similarly, the stop schema transfers control to the idle schema when

the robot has stopped moving.

The follow path schema is by far the most complex one, since the robot is subject to

non-holonomic constraints. This schema follows the path (that consists of circular arcs and

straight line segments — see Appendix C) to within a certain tolerance measured in absolute

position and heading errors. An example of a planned path and the actual path followed

is shown in Figure 12. The path plot is for the center of the car. The box in the middle

indicates the dimensions of the robot.

54

Playing Soccer: A
Real-World Experiment

Chapter 4

Action Schema Parameters Function
Follow Path Path Plan. Follow the path trajectory while

minimizing tracking error.
Servo none. Drive at ball until it is struck

(provided this will advance the ball).
Defend Offset of

defense line.
Stay between the ball and the net and
intercept incoming balls.

Stop none. Reduce the speed of the car to zero.
Idle none. Do nothing.

Y (cm)

120.00

100.00

80.00

60.00

40.00

20.00

0.00

Table 3 Action Schema for Soccer-Playing

/
)7
h
t
l

'
,,,

,-

• '
..--.-.-,.7-,

!^•N

Playpen Walls
Dynamite
Planned Path
Actual Path

X (cm)
0.00
^

50.00
^

100.00
^

150.00
^

200.00
^

250.00

Figure 12: Path Plot for the Car-like Dynamite

Even the servo schema is atypical of simple behavioural routines. This schema tries

to servo the robot into the ball. However, rather than just driving straight at the ball, this

routine servos the robot to a future location of the ball that is predicted using an internal

model of the ball's dynamics.

The defend schema alternates between two modes. Normally, the robot stays between

the ball and the center of the net. However, if the projected motion of the ball will carry

it past the end of the robot, the robot moves to intercept it in an effort to keep the ball

55

Chapter 4^ Playing Soccer: A
Real-World Experiment

away from the net.

The levels of performance in control that are demonstrated in this thesis are due

principally to the use of feed-forward control. At low speeds, feed-forward control is not

needed, and a simple fuzzy logic controller is sufficient for accurate control of the robot.

However, at higher speeds (1 m/s), simple control routines are not adequate. The future

position and velocity of the robot is predicted using information about the latency in the

sensing and control and a model of the robot dynamics. Feed-forward control uses the

predicted state of the robot to determine the control signals, rather than the current state.

There are three executor subsystems that run independently of the enabled action schema.

Alternatively, one could think of these routines as being instantiated in each schema. The

sensor processing subsystem receives position data for all the objects in soccer field from

the vision engine at 60 Hz. A least-squares approximation is used to estimate the velocity of

the ball and the cars. The communications subsystem updates the planner with position and

velocity data at 60 Hz. The collision detection subsystem automatically transfers control to

the stop schema to prevent collisions with other robots.

4.2.3 Deliberator

The deliberator implemented using reactive deliberation does not contain a traditional

planner. Instead, the deliberator is composed of behaviours, listed in Table 4, that represent

the goals of the robot. The action schema invoked by each behaviour is listed in the second

column. It is possible for a behaviour to select different schemas, although this was found

not to be needed. The last column identifies the goal of the behaviour. Each behaviour is

responsible for generating a bid and planning an action. However, in this implementation,

planning is limited to motion planning.

56

Chapter 4^ Playing Soccer: A
Real-World Experiment

Behaviour Action Schema Goal

Shoot Follow Path Shoot the ball into the net
(either directly or off a wall).

Clear Follow Path Clear the ball from home end
of the soccer field

Servo at Ball Servo Advance the ball towards the
opponent's goal.

Wait Idle Wait for an opportunity to do
something.

Go Red Line Follow Path Drive to the center of the
soccer field.

Defend Red Line Defend Play forward defence.
Go Home Line Follow Path Drive to the home net.
Defend Home Line Defend Play goalie.

Table 4 Soccer-Playing Behaviours in Reactive Deliberation

Behaviours generate bids in the range [0,10] (floating point). The bids are simple

algebraic formulas that are easily computed. Each behaviour has a basic bid that is modified

through the addition and subtraction of weighted factors that depend on the environment and

the results of motion planning. Complex conditions in the environment, such as the distance

of the ball from one's home goal, are converted to factors in the range [0,1]. One exception

is path plans that are converted to factors based on the log of the expected travel time.

The shoot behaviour generates bids in a typical manner. It has a base bid that is modified

with environment factors and planning results. Some of the factors include: the speed and

heading of the ball, the Euclidean distance to the ball, the Euclidean distance of the other

car to the ball, and the speed of the other car. Since shoot plans and follows a path, its

bid is biased upwards when it has begun following a path (this is to provide stability in

the bidding process).

The bids used here are crude estimates of the expected utility of the actions proposed by

57

Chapter 4^ Playing Soccer: A
Real-World Experiment

each behaviour. The utility of each action depends on the internal importance of the goal (the

base bid), environmental conditions (factors), and the results of planning (log factors). The

factors are combined with weights so that bids are an estimate (according to the designer)

of utility.

The system currently alternates between the ruling behaviour and other behaviours. There

is no time limit (in theory) on the computations, although in the implementation all the

behaviours are restricted to bounded computations that do not last longer than 300 ms. This

is a maximum, and many behaviours do not perform planning when their bids are too low,

so there is little need for a more complex scheduling scheme.

The non-holonomic constraints on the car-like robots make motion planning difficult,

since it is not possible to move the robot in an arbitrary direction. An algorithm based on

Jumps [FW88] is used to provide fast motion planning. A number of paths are generated and

the lowest cost (in terms of time) is selected. Extensive details can be found in Appendix C.

4.3 The Experiment

In this section, a series of soccer-playing experiments that are used to evaluate reactive

deliberation are described. Different versions of the controller will be compared to establish

the utility of the architecture.

The deliberator is capable of performing at a number of levels of ability that reflect the

incremental development of the controller. The simplest version alternates between offensive

and defensive behaviours without any evaluation of the environment. The next gives control

to the deliberator only when the car is stationary and the idle action schema is active. The

final version exhibits the concurrent deliberation and execution that characterize reactive

deliberation.

58

Chapter 4^ Playing Soccer: A
Real-World Experiment

The purpose of the soccer playing robot is (not surprisingly) to play soccer. Success

in soccer is measured by the number of soccer games won compared to the number lost.

The primary objective in soccer is to win the game. Although real soccer players may have

secondary goal such as avoiding injury and personally scoring as many goals as possible,

these will not be addressed. The way to win a game is to score more goals than the other

team. This involves scoring goals on the other team and preventing goals from being scored

against one's own team.

Soccer is a dynamic game; the locations of the ball and the robots are constantly

changing. To be successful in this domain, the robot must be able to accomplish a collection

of meaningful tasks and not just exhibit "cute" behaviours. In soccer, there is an easily

identified measure of success — the score at the end of a soccer game. The competitive

nature of soccer allows us to compare the adequacy of the robot players either with other

autonomous robots or with robots under direct control of a human being. Perhaps a better

description for the soccer domain is adversarial, rather than dynamic, since the opposing

player is working directly against the objectives of the robot.

The three controllers compete for the LCI Cup (Laboratory for Computational Intelligence

Cup). The LCI Cup is a round-robin tournament where each controller plays the others

in a game of soccer. Presumably the fully implemented controller will be victorious,

however, differences in the levels of play may indicate the relative importance of the different

architectural elements. Part of the tournament includes games where controllers play copies

of themselves! The purpose of these games is to get an idea of how random the games are.

The soccer games are one-on-one tournaments between robots. With only one robot

on each team, the focus is on dynamic domains and not on multi-robot cooperation. Each

59

Chapter 4^ Playing Soccer: A
Real-World Experiment

games is ten minutes in duration, with five minute halves. At halftime the robot chassis are

switched to prevent a bias based on differences in the mechanical components. There is only

one game played between each pair of controllers since the length of each game is arbitrary.

For example, the total difference in score in two one minute games would be the same as

with one two minute game. The game duration was arbitrarily set at ten minutes, and this

proved to result in sufficiently high scores to allow differentiation between controllers.

One aberration in the testing procedure is that the ball was not centered after each goal.

There is no external process that referees the game and tells the robots when a goal has

officially been scored and when to resume play. As a result, the robots are continuously

playing soccer: each half-game is five minutes of continuous play. To compensate for one

robot repeatedly scoring goals, a robot that had been scored upon had to clear the ball from

it's end before any more goals were counted. This greatly simplified the testing procedure.

Soccer games with human beings have not been included in the LCI Cup. Humans

are at a great disadvantage playing soccer through a radio-controlled car since it is difficult

to achieve the accurate control needed to successfully shoot the ball. Games between the

middle version of the controller and many individuals have been held. In these informal

games the computer usually won, however, a skilled and practised human could certainly

win on a regular basis.

60

Chapter 5
Results and Evaluation
5.1 The LCI Cup

The winner of the 1993 LCI Cup is the fully implemented reactive deliberation controller.

Table 5 shows the scores for all the games. The score for the controller in the row is the first

number, and the score for the controller in the column is the second. (e.g. 11 - 1 means that

the reactive deliberation controller scored 11 goals while the no-wit controller scored only 1.)

Controller No-wit Half-wit Reactive
Deliberation

Reactive
Deliberation 11 - 1 7 - 4 3 - 3

Half-wit 6 - 3 5 - 5
No-wit 8 - 2

Table 5 Final Scores in the LCI Cup

The no-wit controller does not select goals based on the state of the world, but simply

alternates between offensive and defensive behaviours. The half-wit controller gives control

to the deliberator only when the car is stationary and the idle action schema is active. This

occurs either when a schema has terminated or when a set maximum time is exceeded.

61

Chapter 5^ Results and Evaluation

The reactive deliberation controller performs concurrent deliberation and execution, as is

intended of the architecture.

There is an element of chance in these soccer games: the scores are a result of a

complex set of interactions between the robots and their environment. These results are

partially repeatable because the same general results will emerge, but the actual scores will

be different. For a better estimate of the results, the duration of the soccer game could be

extended.

The rank of the controllers from best to worst is: reactive deliberation, half-wit, and no-

wit. This ranking is probably reliable since the better controllers scored nearly twice as many

goals (7-4 and 6-3 are the scores) as the controller ranked beneath it. The results of the games

played with the same controller indicate that the better two controllers (reactive deliberation,

half-wit) generate fairly constant performance, while the no-wit controller produces somewhat

random performance. The scores (5-5 and 3-3) should be interpreted as close scores, rather

than identical. They really do not show the underlying randomness that is present as might

be shown by a listing of when the goals were scored. The score 8-2 in the no-wit vs. no-wit

game is a result of the almost random playing strategy of that controller.

5.2 Discussion

The difference in score between the reactive deliberation and half-wit controllers is

significant. The only difference between these two controllers are that reactive deliberation

considers alternate actions all the time, while the half-wit controller only when an action

schema terminates. The reactive deliberation controller selects transient goals as frequently

as possible and can interrupt actions. The half-wit controller is like the traditional planning-

based architectures: alternate actions are considered only when the current action has

62

Chapter 5^ Results and Evaluation

terminated. This is evidence that the frequent evaluation of transient goals is critical to

success in dynamic worlds. This is not a surprising result — what is surprising is that

architectures such as Shakey and RAP do not include provisions for this.

The level of performance that the robots were able to achieve is partially due to the use

of internal world models. As was mentioned in the last chapter, an internal model of the

dynamics of the robot is used to provide feed-forward control. This is not a superfluous

element; it really is necessary for the robots to operate at speeds of 1 m/s. Brooks argues

that "the world is its own best model" and that internal models are inappropriate [Bro91].

Experiences with soccer-playing robots suggest that Brooks' slogan is wrong.

If internal models are necessary, then how can the complete reactive architectures be

suitable for dynamic domains? The subsumption architecture prohibits the use of explicit

internal models, thus limiting the knowledge a designer can encode in a robot. The concrete-

situated approach focuses on building patterns of interaction with the environment based on

the way the world is now. To use feed-forward control, a history of control signals is needed.

The situated automata approach only has internal state in the perception part of the controller,

so one of the perception outputs could be the predicted location/state of the robot. Of the

three architectures, only the situated automata is not ruled out on the basis of internal model.

The performance of the robot players is largely a function of the selection of transient

goals. The bidding mechanism has been fine-tuned through an iteration cycle with ob-

servations of soccer games followed by incremental changes to the behaviours. A useful

abstraction that helps with this is the routines of action from the concrete-situated approach.

The idea here is that a pattern of activity such as clear the ball, shoot, defend red line, . . . In

the case of soccer-playing, the construction of successful robots does involve careful attention

63

Chapter 5^ Results and Evaluation

to patterns of activity. This is an emergent result of the soccer-playing experiments.

In conclusion, the reactive deliberation controller plays a nice, although not flawless,

game of soccer. The competitive nature of soccer places very strict time constraints on the

robots and allows different controllers to be easily compared. The dynamic and unpredictable

nature of one-on-one robot soccer favours approaches that are concerned with the immediate

situation and reactive deliberation takes advantage of this.

64

Chapter 6
Conclusions

6.1 Summary and Contributions

The purpose of this thesis is to investigate the structures needed in robot architectures

for dynamic environments. The architectures surveyed were argued to be inadequate for

dynamic domains. The weakness of the partitioned architectures such as RAP is due to

the commitment to arbitrary length plans and the infrequent evaluation of transient goals.

Complete reactive architectures such as the subsumption architecture are limited by the lack

of internal models and restricted computational structures.

Reactive deliberation has been designed to present a set of structural elements needed in

dynamic domains. The main features of the architecture are the following:

• Reactive deliberation is partitioned into an executive layer and a deliberative

layer.

• The executive layer interacts with the environment in real-time through a set of

action schemas that receive run-time parameters from the deliberative layer.

65

Chapter 6^ Conclusions

• The deliberative layer is composed of goal-oriented modules called behaviours

that select transient goals (actions) in a distributed manner through utility esti-

mates.

• Behaviours provide modularity in the design of robot controllers and allow

effective goal arbitration as well as the distribution of limited computational

resources.

The theoretical contributions of reactive deliberation to the design philosophy of robot

architecture for dynamic environments are the following:

• The transient goals (actions) of a robot need to be evaluated at a rate commen-

surate with changes in the environment.

• A new split between reasoning and control is needed since action selection cannot

be suitably determined independently of detailed planning.

• Goal-oriented behaviours are a useful abstraction.

Soccer is a demanding dynamic domain; the locations of the ball and the robots are

constantly changing. A controller based on reactive deliberation has been implemented

to allow robots to compete in one-on-one games of soccer. Current functionality includes

motion planning, ball shooting and playing goal. The robots can drive under accurate control

at speeds up to 1 m/s, while simultaneously considering alternate actions.

In a soccer tournament called the LCI Cup, the effectiveness of the controller has been

demonstrated. Specifically, the importance of modifying goals in response to changes in the

environment has been shown. Further, the results suggests that the architectural elements in

reactive deliberation are sufficient for real-time intelligent control in dynamic environments.

66

Chapter 6^ Conclusions

It has been postulated that reactive deliberation is nothing more than a kludge that has

been hacked together solely for the purpose of soccer-playing robots. Although the soccer

domain was the impetus for the development of reactive deliberation, the guiding principles

of its design were drawn from other architectures. The extensive survey of other architectures

contained in Chapter 2 stands as testimony of the attention that has been paid to previous

work in this area. Reactive deliberation is not a kludge.

One criticism that has been made of this work is that the soccer domain is too reactive.

Many tasks in the real world do not require that an agent be highly reactive to changes in the

environment. For such cases reactive deliberation is irrelevant. The usefulness of reactive

deliberation is in those tasks where a robot must be reactive to changes in the environment.

6.2 Future Work

Reactive deliberation is an architecture that focuses on the problems associated with

dynamic domains. One possible extension to reactive deliberation is to address problems

such as sensing and world modeling that have been hitherto ignored in this thesis. Perhaps

more important than this is the need to test reactive deliberation with robots operating in

other environments.

The cornerstone of reactive deliberation is action selection through behaviours that report

utility estimates. One extension would be to develop a more formal mechanism for estimating

the utility of actions in robots. Alternatively, attention could be focused learning mechanisms

and this would preclude the need for a more formal mechanism. With either extension, good

abstractions are needed to minimize complexity, yet there are few theories on how to find

good abstractions. Finally, reactive deliberation could be extended to multiple vehicles to

test the appropriateness of local utility estimates with multiple robots.

67

Chapter 6^ Conclusions

The problem of robot control in dynamic domains is still not fully solved. The

outstanding problem specific to this area is that of scarce computational resources. The

desire to respond rapidly to changes in the environment is in conflict with the need to

assimilate new information and plan alternate actions. The complete reactive architectures

use limited computational models and sacrifice the assimilation of information, while the

partitioned architectures typically sacrifice rapid responses. The solution taken in reactive

deliberation is to focus attention on the immediate situation to perform only directly relevant

computations. In general, the computations that are appropriate with fixed computational

resources are a function of the environment and the tasks the robot must achieve. More

attention is needed to fully explore this trade-off.

The assessment of robotics architectures is difficult since they describe a design process.

This thesis has demonstrated that reactive deliberation is a plausible architecture and its

advantages over other approaches have been argued. Just as reactive deliberation has been

influenced by previous architectures, future architectures may be influenced by reactive

deliberation. Reactive deliberation is an incomplete architecture specification that is focussed

on dynamic worlds; no claim has been made that it is the ultimate robot architecture. Rather,

robot architectures should be seen as a succession of improvements.

The experiments performed in this thesis only compare versions of a reactive deliberation

controller with itself. The experiments should be extended so that reactive deliberation can

compete with other architectures and with a human operator. Since motor control of the

robots is difficult for human beings, a user interface could be constructed where the human

does the deliberation and the computer does the path planning and control. This would pit the

intelligence of reactive deliberation against the intelligence of a human operator and provide

68

Chapter 6^ Conclusions

a better measure of the effectiveness of this architecture.

69

EE MV200Digicolour

DataCube

MAXTRAN
(moment)

•
From
Camera

MAXBUS
RGB^ /
Video^ Transputer

Links --._

1800
(xform)

^ , (/43',0) to
Controller

Transputer
Network

Appendix A
The Vision Subsystem

The Vision Engine is able to track the world space position of the centroids of coloured
targets placed on the robots at 60Hz using the off-board camera. Figure 13 shows the
pipelined setup of the hardware. There are four stages in converting from RGB video
to (x,y,9) configurations in the world: (1) classification into regions (on the DataCube),
(2) finding the moments of the convex regions (on the MAXTRAN), (3) converting from
(row,colunui) to (x,y) for each region, and (4) grouping regions into logical objects (i.e.
(x,y) -4 (x,y,0))•

Figure 13: The Vision Engine

The colour video camera is placed in a fixed position so that the entire soccer
field/workspace is visible, as is shown in Figure 14. The video is fed into the Datacube
hardware which is programmed to preprocess the image to simplify and speed up the cen-
troid calculations. The Digicolour converts the analog video signal to a digital format. The
MV200 converts the incoming colour pixels from RGB colour space into HSV colour space

70

Appendix A The Vision Subsystem

and then classifies them as belonging to either background or a designated colour class. An
example of the processed output is shown in Figure 15. The coloured blobs for the car and
the ball show up as black in the figure, while the background is classified into black and
white depending on the value of the image point. This stream of classified pixels is then
run-length encoded and passed onto the transputers for further processing. The mapping of
stage 1 is: video —> blobs.

Figure 14: Output from the real camera

Figure 15: Processed output from the DataCube

The moment program on the MAXTRAN transputer examines the incoming processed
image and finds the centroid, in screen coordinates, of each disjoint, connected region. The
mapping of stage 2 is: blobs —* (row,column) coordinates of each blob.

The xform program performs stages 3 and 4 of the transformation on a single transputer
node. In stage 3, xform corrects for radial lens distortion and finds the corresponding point
in world space which satisfies both the perspective projection for the camera's view position
and the constraint that all points must lie in a known plane (parallel to the floor). The
mapping of stage 3 is (for each blob): (row,column) -4 (x,y).

Once the world space position of each region has been found, it is necessary to map
these onto targets. In the current implementation there will be only a single target of each

71

Appendix A^ The Vision Subsystem

colour class visible, and the region with the most pixels for each class is assumed to be the
target. Then, since each robot has two targets on it, the position and orientation of the robot
can be found directly from the position of its targets. The accuracy in position is on the order
of a few millimeters. The mapping of stage 4 is: (x,y) blobs (x,y,O) logical vehicles.

The robustness of the system varies considerably. The theory is as follows. By painting
the targets using fluorescent paint, and then only accepting highly saturated colours of the
appropriate hue, the pixel classification can be made with almost perfect accuracy. A further
advantage of picking fluorescent colours is that it is less sensitive to changes in the colour of
the lighting. In reality, Stewart and I have spent hours twiddling around with the boundaries
in hue, saturation, and value for the colour classes. Even so, the system can produce incorrect
classifications under certain conditions 2 that result in catastrophic errors. However, once these
problems have been ironed out and the system is in a stable state, it works really well.

The system is quite fast, for tracking with video cameras, and has low latency. The
Datacube preprocessing only introduces a few milliseconds of delay relative to the camera,
and the moment program typically needs only 2ms of processing time to find the region's
centroids (for a normal image this processing can be done while the image is being transferred
to the Maxtran). The remaining calculations are fairly trivial and require at most lms. Once
the cost of transmission is included, the entire latency of the Vision Engine is about 5ms in
contrast with a separation of 16.7ms between video frames.

2^Such as someone wearing blue jeans walking by.

72

Appendix B
The Simulator

The simulator has proved invaluable in the development of the robot controller described
in this thesis. Although a significant amount of work is required to build a simulator, it is well
worth the time spent. It is easier to use the simulator than the real testbed for the following
reasons: (1) real hardware breaks down, and is unavailable from time to time; (2) you may
have to timeshare physical resources such as computer hardware with other users; (3) the
simulator can be used from any workstation, and multiple people can simultaneously be
working; (4) when your controller goes haywire, you don't wreck your carefully constructed
robot; (5) code can be tested quickly without booting up the real system (which takes time).

The version of the simulator that was used in the development of this thesis, supported
a single car in an infinite plane. A ball, walls, and another car, could be hallucinated by the
controller so that fairly extensive testing could be done even with a minimal simulator. All
that the simulator supported was a coarse model of the vehicle's dynamics. Graphics were
not used since there was only one car and a xgraph plot can be used to illustrate both the
planned path and the path traversed. (See Figure 12 on page 55.) Even this minimal setup
provided enough facilities to do a lot of debugging.

The visual display that the latest version of the simulator generates is shown in Figure 16.
The simulator supports dynamic models for the cars and the ball. In the image two cars can
be seen (an arbitrary number of cars can be used) in the soccer field with a semi-visible
ball between the cars. Collisions between the ball, cars, and walls are supported as well, so
soccer games can be conducted in the simulation.

73

Appendix B
^ The Simulator

Figure 16: The Dynamite Simulator with Two Cars and a Ball

74

Appendix C
Path Planning
C.1 Introduction

Fast generation of motion plans is an essential part of a robot operating in a dynamic
environment. The problem of planning for a car-like robot that is capable of travelling in
forward and reverse is considered. Car-like robots are subject to non-holonomic kinematic
constraints that limit the change in a robot's direction of motion.

Recently, there has been considerable interest in motion planning with non-holonomic
constraints [JC89; RS90; BCL91; BLJ91], however, much of the work fails to meet all
three criteria: 1) fast execution, 2) efficient motion plans (i.e. forward as well as reverse
motion must be provided), and 3) planner can handle obstacles. There is no algorithm that
satisfies all three criteria. My approach sacrifices optimality and completeness for speed, by
considering a restricted class of motion plans.

The basic problem is: given an initial configuration c2 = (xi,yi,e9i) in R2 x S 1 , find a
path to a final configuration cf = (xf,yf,t9f). A configuration describes the position and
orientation of a robot. A car-like robot can move forward and backward, but not sideways.
The rate of change of orientation with respect to path length is limited by the maximum
turning angle of the wheels. The result is that the motion is bounded by a minimum turning
radius circle.

The following section looks at metrics for comparing motion planning algorithms. This
is followed by a survey of previous work that has been divided into two sections: one for
motion planning without obstacles and one with obstacles. The algorithm used in this thesis
is presented in Section C.5.

C.2 A Metric for Motion Planners
Previous work in motion planning under non-holonomic constraints has focussed on

developing algorithms that compute optimal paths that are the lowest cost according to some

75

Appendix C^ Path Planning

definition of cost. Cost (cost 1) is defined as the path length plus a penalty for each change
in the direction of motion.

In robotics applications the real cost is a function of the time used to compute the path,
time used following the path, and the energy used following the path. The cost defined above
captures these notions relevant to the output of a path planner. The time needed to compute
the path is the measure that is used to compare different approaches.

The path length is the total distance that the turning center of the car travels. Note that
the average distance each wheel travels could also be used, but this will not, in general,
produce the same costs. A change in the direction of motion occurs when the car changes
from forward to reverse motion or vice versa. Changing direction is not desirable, since
it takes time and requires energy. A penalty can be computed in units of distance that is
representative of the cost of changing direction.

There are two other possible cost estimates: cost2 is just the path length, and cost3 is
path length + penalty for changes in direction of motion + penalty for changing steering or
curvature. Many planning algorithms use cost2, although costl and cost3 are more accurate.
The penalty for changing curvature accounts for the limited rate at which the wheels of a
vehicle can be turned.

Although cost3 is realistic for robots that will use these planning algorithms, the effect
of changing curvature is ignored in literature. One exception is [F.1n93] where tangential and
normal accelerations along the path are considered. The jump method that is extended in
this thesis also ignores this cost. The justification is that ignoring the penalty for changing
curvature greatly simplifies motion planning. Also, an appropriately designed low-level
controller can compensate for the problem.

The difference between cost2 and costl is simply a matter of counting the number of
reversals in motion. An optimal path using cost2 is the shortest path in units of distance. An
optimal path using costl can be thought of as an optimal trade-off between distance, time,
and energy consumed. In this paper, costl will be used to evaluate the approach presented.

All three of the proposed cost functions implicitly account for the energy and time
required to follow a path plan. The functions do not, however, account for the time required
to plan a path. It is hard to evaluate this cost for two reasons. One, a robot may need
to compare multiple paths before selecting one. Two, it is difficult to compare algorithms,
since the approaches are varied.

C.3 Motion Planning in an Infinite Plane

In this section, motion planning for a robot in an infinite plane will be considered since
this is easier than motion planning in an arena or with obstacles. For instance, optimal paths
under cost2 can be easily generated.

A set of optimal paths for a car that cannot change direction is described in [Dub57].
Since reversals are not allowed, cost2 is used and optimal means shortest. An optimal path

76

Appendix C^ Path Planning

consists of 3 subpaths that are either circular arcs (C) or straight line segments (S). Such
paths are of the form CSC or CCC. The circular arcs have curvature inversely proportional
to the radius of the minimum turning radius circle. There are 6 possible combinations of
segments that can result in an optimal path, however there is no explicit formula for this
path. The only way to find the optimal path is to try each one of the 6 combinations.

The results of [Dub57] were extended in [RS90] to a car that can change direction. The
results are analogous. Here an optimal path consists of 5 subpaths, where subpaths can be
zero in length. The paths are of the from CCSCC. There are 48 paths that must be considered
to determine an optimal path. This method for computing paths is expensive even in the
absence of obstacles. The paper describes a method for determining the shortest path using
cost2. It is not clear that cost 1, which is a preferable measure, can be incorporated easily,
since paths that are currently discarded may be optimal.

[FW88] created the notion of jumps, where a jump is the concatenation of 3 subpaths: a
circular arc, a straight line segment and another circular arc (or CSC). The circular arcs are
part of a minimum turning radius circle. [Lat91] has used jumps for motion planning with
a car that cannot change direction. In such a case, there are at most four possible jumps
between two configurations. An example of such paths are shown in Figure 17. Each path is
labeled with two letters. The first letter corresponds to the orientation of initial circle, and the
second to the final circle. For instance, "RL" refers to the path where the minimum turning
radius circle to the right of the initial configuration is chosen as well as the circle to the left of
the final configuration. The algorithm presented in this paper is an extension to this approach.

RL

LR
^ RR

Figure 17: Jump paths with unidirectional motion

C.4 Motion Planning in a Convex Arena
In this section, we consider the problem of motion planning where the robot is located

in a convex arena. It is assumed that the arena is the only static obstacle. There may be
other moving objects, but they will not be considered as it is assumed that their motion
is unpredictable and that collision detection can be considered an on-line problem that is
outside the scope of this thesis.

77

Appendix C^ Path Planning

[RS90] have a method for computing optimal paths in an infinite plane that has not been
extended to motion planning with obstacles. A motion planner that produces optimal paths
in the presence of obstacle has yet to be created. None of the following methods are optimal.

Using the original jump notation for a unidirectional car, [FW88] propose an algorithm
for deciding whether there exists feasible path by considering contact points with obstacles.
This approach is not sufficient for the problem under consideration since it does not consider
paths with reversals.

Geometric motion planners produce path plans that do not in general obey non-holonomic
constraints. [13LJ91] discuss an iterative motion planner that runs as a post-processing stage
after any geometric planner. The iterative planner modifies the path within a tolerance bound
to provide a path that does obey non-holonomic constraints. This path will be locally optimal,
but there is nothing to ensure that it is globally optimal. Further, since the two planners are
disjoint there is little evidence to suggest that efficient paths will be produced.

[JC89] approach the problem of motion planning by discretizing configuration space and
building a directed search graph. Path planning can be done by searching this graph. The
results presented are for generating paths without reversals, although it can be extended to
include paths with reversals at the expense of doubling the branching factor in the graph.
The main problem with this approach is that a large number of possible paths are computed
and discarded. It is too slow. It is interesting to note that the performance of this algorithm
will improve as complexity increases and free space is reduced.

[MC92] describes a method for planning that uses skeletons (safe path segments). A path
consists of three subpaths: a path from the initial configuration to a skeleton, a concatenation
of skeletons, and a path form the final skeleton to the final configuration. The approach is
based on generating a table lookup for the shortest feasible path distance between two points
in configuration space that can then be used to compute skeletons. This approach, although
complex, seems to be practical for a robot operating in an environment with many obstacles.
The approach, however, does not meet our earlier requirement of fast execution.

C.5 A Fast Motion Planner
The approach used in this thesis, called jumps+, is an extension of the jumps approach

to a car that can change direction. If there were no restrictions placed on motion there would
be 64 paths to be considered. (4 pairs of circles) x (4 inter-circle tangents) x (2 directions to
reach the tangent on each circle)2 = 64. The paths generated will not always be optimal. If an
optimal path is of the form CSC (Circle arc, line Segment, Circle arc), it will be found using
jumps+. There are some optimal paths that cannot be found, such as CCC and CCSCC paths.

To shoot or drive into a ball in soccer, the robot can only approach its final configuration
in one direction. As a result, only 32 of the 64 possible paths are of interest. A simple
approach is used where all 32 possible paths are generated, and then tested for collisions in

78

Appendix C^ Path Planning

order of increasing length. This is not very inefficient, and could be greatly improved by
interleaving path generation with collision tests.

This approach is reasonable for a convex arena. However, the planner is flawed because
it a) can only find some optimal paths, but not all of them and b) fails to produce any path plan
with certain initial and final configurations. It does, however, perform much less computation
than any of the other path planning approaches, by considering only a restricted set of paths.

Possible extensions include the addition of static and moving obstacles. However,
increasing the number of obstacles may not be feasible, since this will further deteriorate the
chances that a CLC path will exist between any two configurations. The problem of motion
planning with moving obstacles could potentially be solved under this approach since it is
fast and could respond in real-time.

79

Bibliography

[AC87]

[AC90]

[Alb81]
[Asi90]
[ECL91]

[B1KL+93]

[BKM+93]

[BL.I91]

[Bro86]

[Bro90]

[Bro91]

[Cha91]
[DB88]

[Dub57]

Philip Agre and David Chapman. Pengi: An implementation of a theory of
activity. In Proceedings of AAAI-87, 1987.
Philip Agre and David Chapman. What are plans for? In Pattie Maes,
editor, Designing Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, pages 17-34. M.I.T. Press, 1990.
James Albus. Brians, behaviour, and robotics. BYTE Publications, 1981.
Isaac Asimov. Robot Visions. Peguin, 1990.
J-D Boissonnat, A. Cerezo, and J. Leblond. Shortest paths of bounded
curvature in the plane. Technical Report No. 1503, I.N.R.I.A., 1991.
R. Barman, S. Kingdon, J. Little, A. K. Mackworth, D.K. Pai, M. Sahota,
H. Wilkinson, and Y. Zhang. Dynamo: real-time experiments with multpile
mobile robots. In Proceedings of Intelligent Vehicles Symposium — Tokyo,
1993.
R.A. Barman, S.J. Kingdon, A.K. Mackworth, D.K. Pai, M.K. Sahota,
H. Wilkinson, and Y. Zhang. Dynamite: A testbed for multpile mobile robots.
In Proceedings IJCAI Workshop on Dynamically Interacting Robots, 1993.
Andre Bellaiche, Jean-Paul Laumond, and Paul Jacobs. Controllability of
car-like robots and complexity of the motion planning problem with non-
holonomic constraints. In Proceedings of the International Symposium on
Intelligent Robotics, 1991.
Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2:14-23, 1986.
Rodney A. Brooks. Elephants don't play chess. In Pattie Maes, editor,
Designing Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, pages 3-15. M.I.T. Press, 1990.
Rodney A. Brooks. Intelligence without reason. Technical Report 1293, M.I.T.
A.I. Lab, 1991.
David Chapman. Vision, Instruction, and Action. MIT Press, 1991.
Thomas Dean and Mark Boddy. An analysis of time dependent planning. In
Proceedings of AAAI-88, 1988.
L.E. Dubins. On curves of minimal length with a constraint on average
curvature and with prescribed initial and terminal positions and tangents.
American Journal of Math, 1957.

80

[E1n93]^A. Elnagar. Piecewise smooth and safe trajectory planning for mobile robots.
In Proceedings of the International Conference on Intelligent Robotics and
Systems, 1993. (Forthcoming).

[Fir89]^R. James Firby. Adaptive Execution in Complex Dynamic Worlds. PhD thesis,
Yale University, 1989.

[Fir92]^R. James Firby. Building symbolic primitives with continuous control routines.
In First International Conference on Artificial Intelligence Planning Systems,
1992.

[FW88]^S. Fortune and G. Wilfong. Planning constrained motion. In Proceedings of
the Fourth Symposium on Computational Geometry, 1988.

[Gat92]^Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings of AAA1-
92, 1992.

[JC89]^P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In In STOCS ,
Chicago, pages p. 445-459. Association for Computing Machinery, 1989.

[Kae90]^Leslie Pack Kaelbling. An architecture for intelligent reactive systems. In
Readings in Planning. Morgan Kaufman, 1990. Originally in Reasoning about
Actions and Plans (Morgan Kaufman), 1987.

[ICD89]^Keiji Kanazawa and Thomas Dean. A model for projection and action. In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, 1989.

[KR90]^Leslie Pack Kaelbling and Stanley J Rosenschein. Action and planning in
embedded agents. In Pattie Maes, editor, Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, pages 35-48.
M.I.T. Press, 1990.

[Kub92]^Claus Ronald Kube. Collective robotic intelligence: A control theory for robot
populations. Master's thesis, University of Alberta, 1992.

[Lat91]^Jean-Claude Latombe. Robot Motion Planning. Kluwer, 1991.
[LBaJL91]- J. Little, R. Barman, and S. Kingdon anf J. Lu. Computational architectures for

responsive vision: the vision engine. In Proceedings of Computer Architectures
for Machine Perception, 1991. Paris.

[Mac93]^Alan Mackworth. On seeing robots. In A. Basu and X. Li, editors, Computer
Vision: Systems, Theory, and Applications. World Scientific Press, 1993.

[Mae89]^Pattie Maes. The dynamics of action selection. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, 1989.

[Mae90]^Pattie Maes. Situated agents can have goals. In Pattie Maes, editor, Designing
Autonomous Agents: Theory and Practice from Biology to Engineering and
Back, pages 49-70. M.I.T. Press, 1990.

81

[MC92]^B. Mirtich and J. Canny. Using skeletons for nonholonomic path planning
among obstacles. In Proceedings of the 1992 IEEE International Conference
on Robotics and Automation, 1992.

[Min86]^Marvin Minsky. The Society of Mind. Simon & Schuster Inc., 1986.
[MP92]^Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems. Springer-Verlag, 1992.
[Ni184]^Nils Nilsson. Shakey the robot. Technical report, SRI International, 1984.

Collection of Earlier Technical Reports.
[Nor92]^Fabrice Noreils. An architecture for cooperative and autonomous mobile

robots. In Proceedings of the 1992 IEEE International Conference on Robotics
and Automation, 1992.

[RS90]^J.A. Reeds and L.A. Shepp. Optimal paths for a car that goes both forwards
and backwards. Pacific Journal of Mathematics, 1990.

[Sch87]^Marcel Schoppers. Universal plans for reactive robots in unpredictable
environments. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, 1987.

[Smi80]^G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computing, 29(12), 1980.

[Tyr93]^Toby Tyrrell. Computational Mechanisms for Action Selection. PhD thesis,
Edinburgh University, 1993.

[ZM92a]^Ying Zhang and Alan Mackworth. Constraint nets: A semantic model for real-
time embedded systems. Technical Report TR 92-10, University of British
Columbia, 1992.

[ZM92b]^Ying Zhang and Alan Mackworth. Will the robot do the right thing? Technical
Report TR 92-31, University of British Columbia, 1992.

[ZM93]^Ying Zhang and Alan Mackworth. Design and analysis of embedded real-time
systems: An elevator case study. Technical Report TR 93-4, University of
British Columbia, 1993.

82

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92

