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ABSTRACT

There has been little published about the characteristics
of computer Jjobs running on modern time-sharing computer
systems, due largely to the lack of appropriate programs and
equipment necessary to measure the parameters involved. 1In this
thesis, measures are presented for some of the important
characteristics of jobs. The Data Collection Facility, which is
part of the Michigan Terminal System, was used to this end. The
Michigan Terminal System is a time-sharing operating system for
the IBM 360/67 computer, and supports batch and terminal users

sinultaneously.

Chapter 1 gives an outline of the problem, and other work
which has been done in this line. It also contains a reasonably
detailed description of the Michigan Terminal Systen. In
Chapter 2, measurements of requested CPU service, CPU service
obtained, system and user response times, I/0 delays, and page
waiting times are given. Chapter 3 outlines the storage
requirements of Jjobs, and gives a model which will generate
profiles of storage required by jobs over their running tinmes,
which are very similar to profiles observed for actual jobs.
Some discussion of the results is given in chapter 4, and also a
simple model of the systém is shown which might be wused in a

simulation study employing measurements taken in this study.
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In the past, program behavior and the characteristics of
the djob mix running on a computer system were relatively easy
things to observe. The machines vere slow, and usually ran as
single thread batch systems, so that one program was processed
to completion before another was allowed on the system. It was
possible on the early machines to time the periods of processor
activity and waits for I/0 with a stop watch since there was no
overlap of processing and I/0, and the times of the esvents were
of the order of seconds. On faster machines the measurements
still could have been easily made using some sort of hardware
device to. do the measuring. With t he advent of
meltiprogramming, measurements of program behavior became much
more difficult. Hardware devices could still measure easily the
processing and 1/0 intervals on the system, but, as stated by
Drummond [19], data dependent characteristics such as Jjob
identification, data set identification, and the origins of
requests are not readily available, In effect, what these

devices measure is system behavior and not program behavior.

The characteristics of single jobs can be determined using
a hardware device by running the jobs alone on the system one at
a time, as was done by Cheng [12]. This method is tedious, and
ties up the system for long periods of time, which makes it

impractical to use in a busy environment,

Other complications for measurement also arise. Not all
the I/0 is associated with the jobs that are running. In an

effort to improve the utilization of various resources of the



system, Jjobs can not be allowed to tie up <certain devices for
long‘ periods of tinme. (In particular card readers and
printers). If a job is allowed to possess a printer, it will
tie it wup for the duration of its running time on the systen,
(since the output for one job must be.kept together) even though
it prints only a few lines. Other jobs requiring the printer
can not be dispatched. The solution is to have the job write
its output to a file on disk (or tape), and after it is finished
have the system take care of the printing. Similarly card input
is read into a disk file, and the job can read the file as it
progresses without tying wup the card reader for long periods.
S50 we have the system, as well as the jobs running, doing I/0.
Time-sharing adds the additional complication that a job running
on a CPU does not need to initiate an I/0 operation to lose

control of its CPpPU.

On a multiprocessing system more than one Jjob can be
running on the system at once and the task of associating events
with the job involved 1is a very complex one for an external
hardware device., (A good description of the type of information
gathered by a hardware device may be found in [7]). For a
software device, this task is much simpler, and various such
devices (see [3,47] for examples) have been written for some
computer systenms. Software devices have such information, as
job identification and the statistics that the system keeps
about the jobs, easily available to them (the device may be the
part of the system that collects these statistics), but require
for their operation some part of the system's resources. This

fact implies that they can affect the measurements that they are



taking, and this must always be considered when using such a

device.

Two types of software measurement techniques have emerged
in recent years. One approach is a sampling [19,47,48] form of
measurement in which various statistics kept about the jobs are
sampled periodically and the results recorded. (CPU time, I/D
requests, page reads etc.) It is easy to see that a well devised
program to do this sampling will not affect the measurements
that it takes, as long as it does not sample too frequently. It
might use only a few milliseconds of CPU time every faw seconds,
but there is a considerable loss of detailed information wusing
this technique. Mean times for events may be obtained, but
information about distributions of event times, and the

sequences of events [19,40] will be lost.

The second type of device (program) monitors continuously,
and every important event happening in the system can be
recorded. (See [3,39]1 for examples.) In order that this
technique does not completely overwhelm the measurements that it
is taking, it must be a part of the supervisor program of the
system, since the information is easily available at this level,
and may be obtained at small expense. A progranm to do this type
of monitoring, external to the supervisor, would virtuwally have
to interpret every action that the supervisor takes, to see if
some information needs saving. Such interpretation'would cause
considerable degradation of system performance, because of the

processor time neccessary to accomplish it. This makes this

technique wmuch more difficult to implement than that of



sampling. The disadvantage of +the continuous monitoring
technique is that enormous quantities of raw data are produced,
and the cost of reducing these data can be quite large. The
sampling method on the other hand, produces manageable

quantities of specific data which are more easily reduced.

Little data has been published on the characteristics of
jobs in a time-sharing environment, other than their behavior
with respect to paging, and paging strategies. Brawn and
Gustavson [8] measured the effect of restricting real memory
size on the running time of various programs, and they, as well
as Hatfield [26], studied the effect of restructuring programs
to localize their wmemory references, on the amount of paging
required. Coffman and Varian [13] were interested in the times
between inter-page references (as were Fine et al {22]), and
also page residence times in main memory. Unfortunately their

study was done using unrealistic restrictions on core size.

Freibergs [23)] has measured the times taken bastween calls
to the supervisor program for services, for a few types of
programs (a FORTRAN compiler, a list processing program, etc.),
and has measured a distribution for the maximum nemory
requirements of Jjobs on McGill's IBM 7044, Scherr [45] and
Schwetman and DeLine [447 have measured distributions for user
response time (think time) and system response time for two
different systems. Scherr as well has obtained a distribution
for the amount of processor time demanded by tasks between
interactions on Project MAC's CTSS system. Baskett et al [5]

have measured a distribution for disk I/0 delays.



The problem of page transfer times has been well covered in
the literature [14,39], but in the Michigan Terminal Systen
(MTS), which is the operating system for the University of
British Columbia's 1IBM 360/67 computer, a large portion of the
page faults do not require page transfers from the drum.  These
faults result from the first reference to a new page. MTS does
not allocate any real- page to a job until afteﬁ vthat page has
been referenced. The first reference to a, new page causes a
page fault which can be dealt with by immediatély allocating an
available real page, and no drum transfer occurs. (See section

2.’40)

Parameters like the total processor time required by jobs,
and job inter-arrival times are highly situation dependent, but
can be easily obtained if the system keeps any accounting

statistics.

Although models have bheen proposed for the real core
requirements of computer jobs, notably Denning's [16], almost
nothing exists concérning jobs?! virtual memory requirements. By
virtual memory requirements, we mean the total instantaneous
storage requirements, which is a dynamic quantity in most time-
sharing systens, Lehman and Rosenfeld [31] have modelled the
dynamic gquality of storage demands to some extent by breaking
their model of a job into job steps, and giving each job step a
different memory requirement., This 1is still not a conplete
enough model, however, since the storage requirement of a job in

a time-sharing environment that allows dynamic program loading

and storage allocation, may vary considerably over a single Jjob



step.

Empirical measurements of program storage regquirements over
their running times, and models of these requirements are needed
for a more thorough understanding of program behavior, and for

simulation studies.

This description is taken in large part from

M. T. BAlexander's paper "Time-sharing supervisor programs.” [2]

1.2.1 The Michigan Terminal System- (MTS)

MTS 1is a general purpose time-sharing system designed for
the IBM 360/67 computer, and will support up to four processors
running in parallel. The term MTS is used to refer to both the
operating system as a whole, and to a re-entrant job program in
the supervisor program, UMMPS, which gives the user the
capability to run programs and to manipulate files from remote

terminals or from batch.

MTS provides:

1) An easy to use command language to cause the
running and monitoring of programs and to create,
destroy and otherwise manipulate files, and for

other communicaticn with the systen.



2) Two types of files, sequential and 1line files.
Line files may be accessed randomly by line number,
but sequential files can only be accessed
sequentially. Line files reside on disk while

sequential files may either be on disk or datacell .

3) A dynamic program loader which allows a program to

load another during execution.

4) Extensive subroutine libraries and the capability
to load programs selectively from either user
defined or system 1libraries to resolve undefined
external synbol references in a loaded object

module.
5) Many language processors such' as FORTRAN, PL/1,
APL, ALGOL, WATFIV etc,

Together MNTS and UMMPS form an easy to use but powerful

time sharing system,

The UMMPS supervisor is a time-sharing supervisor for 1IBM
360/67 supporting up to four processors. It consists of a set
of subroutines for processing interrupts, and is only entered by
interrupt, either hardware, or internal such as calls to the

supervisor (the 360 SVC instruction), and the various progran



interrupts. A2ll interrupts are processéd as close to completion
as possible, and a queue is maintained for all those things that
must be postponed. When there is nothing more to be done at the
moment, the supervisor gives control to a ready task (if any).
UMMPS runs with interrupts disabled, which means that it cannot
itself be interrupted, and also with the relocation mechanisnm
turned off. It also allows some tasks to ran with relocation
turned off which permits them +to reference any real core
location. This ability is restricted to special tasks such as
the Paging Drum Processor (PDP) and tasks controlling unit
record equipment, which need to be able to reference all of main
Memory. User tasks cannot be given this power, since the

relocation hardware is used to provide inter-task protection.

1.2.3 Processor Scheduling

UMMPS maintains only one CPU queue which all the processors
scan looking for available work. Tasks in the system can be in
one of four states as far as the supervisor is concerned.

1) Running
2) Ready
3) Waiting

4) Page wait

All tasks which are running or ready and some waiting tasks
are on the processor queue, and when the queue is being scanned,
the first ready task found is given a processor. A task which

uses up its time slice (100ms) is given a new one and placed on



the bottom of the queue (but ahead of any waiting_tasks which
are on the queue). This is the only time that a task is given a
new time slice. A task which 1initiates an I/0 regquest or
reqqests a page not 1in main storage is not replaced on the
processor queue, but when it becomes ready it is added to the
top of the queue. Whenever a task is added to the processor
queue for any reason, it is added to the top of the gqueue. This
gives very quick service to interrupts, and allows tasks which

are acquiring real storage to do so quickly.

It is possible for a task to wait for some bits in a byte
in virtual storage to become all zero. This is used to allow
different tasks to communicate, and also to allow tasks to wait
for asynchronous interrupts. In the latter case, the interrupt
handler sets the bits. When a task waits for a byte that is not
in its private virtual memory, the task remains on the CPU gueue
and the byte is tested each time the task is the next to be
given a processor. If the bits are =zero, the task gets a
processor, if not the next task is examined. The CPU queue is
re-ordered so that all such waiting tasks follow any ready task
in the queue. If the byte is in the tasks own virtual storage,
the task is removed from the processor queue, since sone

interrupt must occur to allow the bits to be changed.

The fact that a task that quits waiting is placed at the
top of the processor queue gives very fast service to interrupts
and allows ordinary tasks to control I/0O equipment. For
example, the PDP is not treated specially as far as scheduling

is concerned, but it can easily keep up with the drum
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interrupts, and such tasks can be given very large time slices
which will prevent them from being forced to the end of the

processor queue.

In an effort to prevent too many tasks from competing for
main storage, UMMPS has a mechanism for making certain tasks
privileged or non-privileged. There are therefore, three
classes of tasks in UNMMPS:

1) Neutral

2) Privileged

3) Non-privileged
The term privileged applies only to the amount of processor time
that a task gets, and the amount of paging that it is allowed to

do.

When a task is first added to the processor queue, it is
classed neutral, but if it attempts to accumulate more than a
certain threshold of pages, a decision is made. If there are
fewver than the maximum allowed number of privileged tasks, it is

made privileqed, and is given a time slice equal U4*K¥U, where K

is the number of additional privileged tasks allowed at that
point in time, and U is the basic time slice. The total nunber
of privileged tasks allowed is 7 for 1 core box, 12 for 2 core
boxes, 15 for 3 core boxes, 22 for 4 core boxes, and 30 for more
than 4. The decision threshold is initially set to about 30
pages. (This mechanism is currently in the process of revision.
Further information may be obtained from the University of
Michigan Computing Center). The decision threshold for the next

task is then lowered, and this one is allowed to obtain as many
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real pages as it wants. If there are already the maximum number
of privileged tasks when the decision point is reached, the task
is made non-privileged, which removes that task temporarily from
contention for the CPU's and main storage. A privileged task
remains privileged until it uses up its extended time slice or
enters the wait state (except page-wait). At this point it 1is
made neutral and the decision threshold is raised, allowing a
non-privileged task, if any, to be made privileged. Non-
privileged tasks are never made neutral without first becoming

privileged.

Two gueues are also maintained for each task, a task CPU
queue and a task wait queue. The task CPU queue is used to keep
track of multiple levels of execution, Each entry under the top
one represents a subtask which has been interrupted but may
later bhe resumed. Some I/0 interrupts cause a nev entry to be
added to the top of the CPU queue, and after their processing
the next lower 1level resumes processing, A wait entry is
maintained in the wait queue for each level of the CPU queue at
which a wait is outstanding. The end of a wait at any level can

be recorded by removing the wait queue entry at that level.

Supervisor routines exist to remove all entries from the
task CPU gqueue but the top one or to remove the top entry. Aan
example of the above is illustrated by the following situation.
A user is running a program at a terminal and enters an
attention interrupt. This forces the saving of status at the
initial CPU quene level and a new entry to be added to the top.

He may now enter commands at the terminal, then he can enter a
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command to restart the program (remove the top entry), or he can

elect to run another program, which causes the previous entry or

entries to be removed.

1.2.4 Storage Scheduling

In MTS, virtual memory is implemesnted using drum storage
devices (IBM 2301's). These drums have 200 tracks and are
capable of storing 4.5 pages per track.e IDn otder to obtain the
best utilization of the drums, they are arranged with 100
logical tracks having 9 pages each. Two revolutions of the real
drum are needed for one revolution of the logical drum. The 9
slots around the circumference of a logical ¢track are called

sectors.

The task of virtual wmemory management in MTS is divided
between UMMPS and a special job called the Paging Drum Processor
(PDP). The PDP takes care of the actual reading and writing of
pages to and from main memory, while it is the responsibility of
the supervisor to decide which pages need moving, UMMPS and the
PDP communicate via Page Control Blocks (PCB's) and there exists
one PCB for each virtual page. Each PCB <contains all the
information concerning the status of its page, and may be linked

at any time on one of four queues:

1) Page In Queue (PIQ) contains the PCB's for all

page requests that PDP has not yet started reading


http://As.2j.ii

13
in,

2) Page In Complete Queue (PICQ) contains the PCB's
of all pages that the PDP has read or a new page for
which reading was unnecessary but of which the

supervisor has not been notified yet.

3) Page Out Queue (POQ) contains PCB's for all pages

in main storage that can be renmnoved.

4) Release Page Queue (RPQ) contains PCB's for all
pages which have been released by the tasks that own
them, but which the PDP has not released yet (the
PDP must be notified so the drum space can be

released).

All pages that are read in are immediately placed on the
POQ at the top. When the PDP requests some pages to be written,
the supervisor checks the amount of free space available and if
it 1is sufficient (ébout 20% of main memory), no pages are given
to the PDP. Otherwise the supervisor starts scanning the POQ
for a page to be written out. 1If the page under consideration
in the scan has been referenced since the 1last scan, the
reference bit is reset and the PCB will be placed on the botton
of the POQ. 1If the page was not referenced it is given' to the
PDP for writing out. This process continues until enough pages

are found for the PDP.
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When a page is regquested by a task, the supervisor places
the PCB on the bottom of PIQ and if the PDP is not already
running, it is started. The PDP places the PCB on one of nine
sector queues, corresponding to the sector that the page
occupies on the logical drum, and then requests pages to be
written from the supervisor to f£fill any of the nine sector
queues which are empty. If any of these pages to be written
have not been changed since last writing, the supervisor will be
notified that the main storage for that page is free and another
page 1is requested for writing. When all sector gueues are
filled as much as possible, a channel program to do the reading
and writing 1is constructed by the PDP and executed. The PDP
will then place the PCB's for the pages read on the PICQ and
notify the supervisor that main storage for the pages written is
free. The supervisor takes PCB's from the PICQ and places thenm
on the POQ at the top and restarts the tasks involved. The PDP
handles the job of constructing new channel programs in parallel
with processing o0ld ones so that the process of reading and

writing is continuous.
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1.2.5-General-

Flow of tasks in MTS at the University of British Columbia
is depicted in fig. 1.2. Both processors scan the single queue
looking for work, and the first ready task encountered is given
a CPU. A task which is running on a CPU can subsequently stop
for any of the following reasons:

1) It requests some I/0

2) It stops to wait for some byte to be set to zero
3) It references a page not in main storage
4) It exhausts its time-slice

5) It is pre-empted

Tasks which are waiting for an interrgpt to occur, to
signal the end of an I/O operation, or the completion of a page
transfer are not on the processor queue, but immediately seize
one of the CPU’s.when the interrupt occurs, pre-empting a task
that is currently running. The pre-empted task is placed cn the
top of the queue, and is the next to receive service provided

that another task is not pre-empted in the interinm.

There are no special priorities assigned to any tasks 1in
MTS, so that all tasks compete on an equal basis for system

resources.

Most of the occurrences of stoppages in processing for the
second reason above have to do with terminal I/0 for interactive
tasks. In this study, the time that the device support routine
{(DSR) for the terminal is entered to get an input 1line or to

write an output line, is taken as the start of the terminal I/D
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operation. The time that an exit is made from the DSR is taken
as the finish of that operation, and all processor activity for
that task between is ignored. In effect, the entry of the DSR
is taken as the beginning of a wait I/0 operation for the
terminal, and the exit from the DSR is taken as the completion

of that wait.

When a task releases a virtual memory page, the PDP is
started by the supervisor (if it 1is not already running) in
order to notify it that the drum space may now be used for other
page write operations. If the PDP was not running, it will pre-
empt the task that released the page for the time taken to

modify the appropriate tables.

1.3 Problem Area

This study uses the Data‘Collection Facility called the DCF
(continuous monitoring type) available in the MNTS operating
systen to study the characteristics of a typical university job
stream, the purpose being to allow the production of an accurate
model of the job stream for simulation. It has been possible to
measure the times taken for many of the events occuring in the

system, in particular:

1) The amount of processor time requested by a task
when it obtains a CPU

2) The amount of processor time that it actually gets
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3) The waiting times for I1/0, and pages

q) The interarrival times for jobs into the systen
5) The total processor time used by jobs
6) The storage requirements of jobs

Some system dependent characteristics (CPU time required to
process interrupts) have been removed as far as possible from
the wmeasure of CPU service required by Jjobs, so that this

measure should be applicable on other systenms.

Data was collected for the study on two magnetic tapes,
called tape 1 and tape 2. The data on tape 1 was collected on a
Saturday afternoon, and represents a time of light load con the
systenm, while the data for tape 2 was collected on a Friday
afternoon, which 1is a time of moderately heavy load. Together

the tapes contain data for about 300 jobs.
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CHAPTER 2-  SOME BASIC CHARACTERISTICS

In the past, it has keen difficult to obtain measurements
of the time that computer jobs run between successive I/0
operations, because of the 1lack of appropriate monitoring
devices and programs (see [31,33)), but with the development of
tools like the DCF in MTS {3, Appendix A], such measurenents may
now be readily obtained. The amount of processor time that a
job requests from the termination of one I/0 operation until the

start of the next, will be called a requested CPU interval.

Many simulation studies have assumed that the distribution
of these 1intervals 1is exponential [33,34,46], or hyper-
exponential [21], since the use of these distributions allows
easy generation of random samples, and analytic methods exist

for studying systems governed by then.

Measurements of requested CPU intervals in this study show
considerably more variability than they would if they were
exponentially distributed, and even a hyper-exponential
distribution does not provide a <close fit to the observed
distributions. Reguested CPU intervals for batch jobs had a
mean of 23.6 mns and a standard deviation of 73.6, while
interactive tasks had a mean of 17.0 ms with a standard

deviation of 76.4.

A Weibull distribution provided the <closest fit for the
observed intervals for batch jobs, and a hyper-exponential
distribution for those of the interactive jobs. (See figs.

2.1, and 2.2). The Kolmogorov-Smirnov goodness of fit test is
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used throughout, and gave maximum deviations for the observed
values from the fitting curve of 0.1673 for batch jobs, and
0.0802 for intéractive jobs., The probability of finding a
deviation as large as 0.0200 (batch) or 0.0119 (interactive) for
samples this 1large 1is 1less than 1% if the fit 1is to be
considered good. This value will be referred to in future as

KS(.01).

The Weibull distributicn is useful for fitting sample
distributions of this type (with the appropriate choice of
parameters), since one can obtain a distribution with more very
large values, and more very small values than with a hyper-
exponential distribution having the same mean and standard
deviation. The problem with wusing the Weibull distribution,
however, comes in choosing the parameters. {See appendix B for

details).

The CPU time requested by interactive jobs between terminal
I/0 operations is larger than the requested CPJ intervals on the
average since several instances of disk or tape I/0 may occur
between successive terminal operations. The mean observed time
was 58.6 ms with a standard deviation of 669, and a Weibull
distribution ga&e the <closest fit with a maximum deviation of
0.0942, {KS (.01)=0.0211) (see fiqg. 2.3) The Weibull
distribution fitted by the method described in Appendix B had a
mean of 27 ms, and a standard deviation of 48 which are much
less than the observed values for the mean and standard.
deviation, however, the observed distributicon had a few very

large sample values (as great as 30 seconds of CPU time), which
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made the mean and standard deviation large. Such large sanmples

are very rare.

Scherr [4#3] found a similar shaped distribution for these
times, with a mean of 0.88 seconds for Jjobs run on an IBM 7094

running CTSS.
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The amount of time that a job actually gets on a processor

in one shot, called an actual CPU-interval, is considerably less

than it requests, since the maximum time that a job may hold a
CPU is limited by its time slice, and a Jjob has a high
probability of being pre-empted if there are more than a few
6ther jobs in the system. Means for the CPU service obtained
(actual CPU intervals were 1.3 ms for jobs on tape 1, and 8.9
mns for jobs on tape 2 with standard deviations of 42.5 and 14.9
respectively. The average actual CPU 1intervals on tape 1
represent about B80% of the requested intervals, while those on
tape 2 represent only about #5%. The reason for this difference
is that tape 2 records activity at a busier time than tape 1,

and jobs are pre-empted more frequently when the system is busy.

A hyper-exponential distribution provides fhe closest fit
for these values, and the observed data show a maximum deviation
of 0.0900 (KS(.01)=0.0111) from the fitting curve for tape 1,
and a maximum deviation of 0.027 for tape 2. {See figs. 2.4

and 2.5).
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223-I/0 Delays-

In MTS, the processing of a job is not overlapped with its
own I/0, and as a result, the job must remain idle during these

times.

Most of the 1I/0 activity of MTS djobs 1is for disk
operations, with some for tape I/0. For interactive jobs, some
of the I/0 is also for the terminal on which the Jjob 1is run.
The distributions of I/0 delays for both interactive and batch
tasks (excluding the delays for the ierminal itself) are gquite
similar, (figs. 2.6, and 2.7) and also ressemble closely the
distribution for disk I/0 delays measured by Baskett 2t al [5]
for the University of Texas!'! CDC 6600 system. The peaks are
close to the same point ( 35 ms), and the shapes of the
distributions are similar. The reason for the difference in
means for the batch and interactive tasks is probably due to the
fact that much more disk arm movement 1is required for the
interactive tasks, since fairly 1long periods can be spent
waiting for terminal responses during which time the arm can be

repositioned by another task.

The peak observed in fig. 2.3 at 80 ms is due to several
jobs in the sample doing tape I/0. 80ms is the time taken to
transfer a tape record one page in length, and this is a very
common size used in the MNTS system. Most disk operations take
between 25 and 75 ms (from Pinkerton [39]), with those requiring

arm movements taking longer.

Although these distributions look Erlangian, the standard
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deviations are greater than the means. For batch tasks, the
observed mean was 38 ms with a standard deviation of 67, and for
interactive tasks, the mean was 123 ms with a standard deviation
of 986. The dotted lines in figs. 2.6 and 2.7 show the Weibull
density function giving the closest fit according to the
Kolmogorov-Smirnov goodness of fit test. Greater values of

(causing the peak to be shifted right) yielded larger deviations

from the cummulative distribution than the curves plotted.

The term "User- Response Time" refers to the time that it

takes a user at an interactive terminal to frame his response
and to type it in. It is measured from the time that the systen
starts waiting for some action from the user, until the user
enters a carriage return or other end of line signal indicating
that he has finished his response. Scherr [43] calls these
times "Think Times". The distribution of wuser response times
for interactive tasks will vary from system to system, depending
on the type of response required, the devices used, and the

sophistication of the users.

scherr found the mean user response time to be 35 seconds
for users of the CTSS sytem, but for MTS users the mean is
closer to 11 seconds with a standard deviation of 16. The
distribution of these times was similar in shape to that
observed by Scherr, if one removes the ©program generated
responses from his observations. It 1is also similar to the
distribution observed by Schwetman. and DeLine ({4431 for the

RESPOND systemn.

A Weibull distribution again showed the closest fit (fig.



30

2.8) and the observed data displayed a maximum deviation of
0.0655 from it with KS(.01)=0.05. The distribution in the
figure may be seen to have two large peaks. The first
corresponds to gquick responses requiring little thought cn the
part of the user, and also little typing. Such responses are
quite common in MTS with the user entering a null line, or one
with only a few characters in reply to some query on the part of
the systenm. The second peak Tepresents those responses
requiring some thought, or considerable typing, or both. The
number of respcnses falling into the firét category (less than 5

seconds) is roughly 35% of the total.

The system responds by typing a reply which takes an
average of 0.65 seconds (fig. 2.9) and writes about five times
as many lines as the user inputs. The peaks in the distribution

correspond to different devices.
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2.4 Page Waiting Times

The distribution of page waiting times 4is divided into
several types of events in MTS, depending on the reason for the
page fault that generated the request, and the status of the

page involved. The possibilities are outlined below:

1 Page fault was for the first reference to a new

page, which can be allocated nearly immediately.

2) Page fault was for the first reference to a new
page, but <core space can be allocated only after

first writing out another page to provide space.

3) Page fault was for a page existing on the drunm,

which must be brought into core.

) Page fault was for a page existing on the drum,
but it can only be brought into core after first

writing out another page.

5) Page fault was for a page that still exists in
core, although a page out operation was in progress
for that page. The page out operation can be
cancelled, and the page will becone available

immediately.

Since MTS tries to keep about 20% of the available core

space empty to allow quick service to page reads, situations of
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type 2, or U above occur only rarely. In addition to the five
types of events above, the supervisor may decide to make a task
non-privileged (see sec. 1.2.3) if it attempts to obtain more
than a certain threshold of real pages. The job must then wait
for some other privileged job to leave that status before it can
be mwmade privileged, and have its page request serviced. This
has the effect of making some page waits very long. Events of
this type are easily separated from the rest by the large

difference in magnitude.

Because of the various types of events making up the
distribution of page waiting times, no one function can be made
to fit the observed data very closely. If one breaks the
distribution into part corresponding to the events of different
types, however, a reasonable fit can be obtained. (See figs.
2.10, 2.11, and fig. 2.12). In this case, the distribution was
broken into two parts, the first corresponding to events of

types 1, and 5 above, and the second to events of type 3.

An exponential distribution with a mean of ims was used to
fit the distribution of events of types 1, and 5, and an Erlang
distribution with a mean of 22 ms and 6 channels was used to fit
the events of type 3. This gives a fair fit to the observed
data, which shows a maximum deviation of 0.1453  with
KS(.01)=0.0591. The probability density function for the

resulting distribution is seen in fig. 2.12.
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2.5-0Other Parameters 0f Interest

2.5.1-System Response- Time

System response time is defined as the time that it takes
the system to start to type a response, after a user has entered
his carriage ;eturn signal at an interactive terminal. This
gquantity 4is of interest, as it is often used as a criterioh for

judging the performance of time-sharing systems.

The distribution observed had a mean of 0.42 seconds, with

a standard deviation of 2. (see fig. 2.13) The median was only
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30 ms. A Weibull distribution gave the closest fit, and the
observed values showed a maximum deviation of 0.070 from it,
with KS(.01)=0.05. The distribution is similar in shape to the
ocne obtained by Scherr [43], although the mean is an order of
magnitude less. It 1is quite different in shape to the one
observed by Schwetman and Deline [ 44} for the RESPOND systen,
although the mean time is similar in this instance. The RESPOND

systen seens to make almost no very quick responses.

Looking at the distribution of processor time required
between interactions, one would expect very dquick responses
since so little time is used in most cases (less than 55 ms),
and the mean time for disk operations if they are required is

small (less than 100 ms).
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2.5.2 Ready Intervals

Ready intervals are defined as the intervals of time that
tasks which could be running on a CPU spend waiting on the
pProcessor gueue. These include tasks which have used up their
time-slices and are placed on the bottom of the queue, and tasks
which haVe been pre-empted and are placed on the top. The mean
value for ready intervals is very small since a large portion of
the intervals represent pre-empted tasks waiting for some
interrupt to be processed, and so will obtain CPU service again
in a relatively short time, since most interrupts are processed
in 200 - 300 us. It is also unlikely (at UBC) that many tasks
will be stacked 'in such a manner that each is waiting for the
previous task to finish processing some interrupt. Processing
of interrupts has been removed from the distribution of actual
CPU intervals, so the mean of the actual intervals 1is larger
than it would be if these were included. It is for this reason
that the mean of the ready intervals is so small compared to the
mean of the actual CPU intervals. {See figs. 2.14 and 2.15 for

distributions of ready intervals).

—_— sl

The inter-arrival times of jobs to the system is the tinme
between successive "SIGNON's", not the time between submissions
of jobs to the HASP queue. For terminal Jjobs, the act of
signing on puts +the job immediately into the system, but for
batch jobs the case is different. Batch jobs are engqueued by

HASP, and ordered according to an assigned priority which is
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calculated from the user's estimates of CPU time, and pages of
output required for the job. Jobs are released from the guene
for execution at a rate that is dependent on the system load.
Only two batch jobs are permitted if there are many terminal
users signed on. The time that a batch job actually leaves the

queue and starts executing is deemed its arrival time.

The inter-arrival times for terminal jobs were found to be
exponentially distributed as expected, and the same was found to
be true for batch jobs. The mean inter-arrival time for Dbatch
jobs was 40 seconds, and was 94 seconds for the terminal jobs.
More accurate values for inter-arrival times could be obtained

by examining the system accounting records.

2.5.4- Total Processor- Time

Processing time required by jobs is the total amount of CPU
time required to complete the job. This quantity was found to
be hyper-exponentially distributed with a mean of 16 seconds,
and a standard deviation of 28, based on a sample of 136 Jjobs
drawn fronrn the data tapes. Again more accurate values could be
obtained by examining the accounting statistics since a much

larger sample could be used.
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CHAPTER 3 STORAGE REQUIREMENTS

In a time-sharing environment, there is usually
insufficient core étorage available to allow all users to have
their full allotment of storage in core simultaneously. Schemes
of virtual memory management have been developed [1,3,15,#7,18]
which try to give each user only as much core as he needs at the
moment, while the remainder of his allotted memory space resides
on some secondary storage device such as a drum. The memory is
normally grouped into blocks called pages, which are the units
of storage transferred between core storage and the drum. A
pade is brought into core memory when a reference is made to it,
and pages that are in core for a long time, or have not been
referenced in a long time, are placed on the drum to make more

core storage available.

Even with the large amounts of virtual storage that exist
in such systems, each user cannot simply be allocated as much
storage space as he might possibly require, and be allowed to
keep all this space for the duration of his time on the systenm.
In this instance, most of the storage would be wunused at any
moment and -poor wutilization of the hardware would result. 1In
addition, a restriction would have to be placed on the number of
simultaneous users which would depend on the total amount of

storage available.

To overcome this problem, methods of dynamic storage
allocation have been devised that allow jobs to acquire storage
as they need it, and to release that storage as soon as the need

disappears. This process 1is transparent to the user in most
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cases, so that when he runs a program, the correct amount of
storage 1is automatically acquired, and then released when the
progranm terminétes. Most systems provide the wuser with the
capability of writing programs that acquire storage during
execution (see [25]), either to load additional program modules,
or to increase the size of data areas, and this storage may be
retained or released as the program writer sees fit until the

program terminates.

Since the storage requirement of Jjobs 1is a dynanic
guantity, any simulation which studies the utilization of
virtual memory, must incorporate a model for the storage demands
of jobs. Most studies, however, have concerned themselves with
paging behavior (such as times between inter-page references,
and sequences of references, etc., See [1,13,22]), and real core
requirements for efficient running [8,16,29], rather than the
variability of storage requirements with time, since the concern
was mostly the feasibility of paging algorithms, and paging
machines in general. Lehman and Rosenfeld [31] broke their
model of a Jjob into job steps, giving each step a different
storage allotment. This comes closest to modelling the variable
nature of storage requirements, Denning [16] developed a model

for the real core demands of computer jobs, which he calls the
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A storage -profile is a plot of the storage requirements of
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analysis [45] the profiles were found to fall into two clusters.

Profiles from the first group showed large maximum storage
requirements, and usﬁally had one large hump covering most of
the running time. The average maximum number of pages for this
group was 70 pages, and the average size of change in storage
requirement was 6.5 pages. (See figs. D.1 through D.8.)
Profiles from the second group had an average maximum number of
pages of 23, and the average size of change was 4.1 pages. MNost
of the profiles in this group show a great amount of fluctuation

in the storage possessed (see figs. D.9 through D.20).

About 50% of the batch jobs examined had storage profiles
falling into the first group, while only 25% of the interactive
jobs had similar requirements, At the University of British
Columbia, the MTS wuser 1is charged for storage used during
inactive periods when he 1is signed on at an interactive
terminal, but not if his Jjob is run from batch. This makes
programs with 1large storége requirements costly to run
interactively, and probably accounts for the lower proportion of

interactive jobs having profiles in the first group.

3.3- A Model For Program Storage Requirements

Since it would be desirable to generate storage requirement
profiles for computer jobs for simulation purposes, a model was
developed to .do this. The wmodel used is very simple 1in
principle, but seens to generate profiles quite similar to the

ones observed (see Appendix D, and Table 3.1).
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A set of distributions was determined for the sizes of
increases and decreases in the amount of storage possessed for
each cateqgory (see figs. 3.2 and 3.3), and also a distribution
for the 1lengths of time +that the number of pages remained
static. Conditional probabilities for the direction of the next
change in the number of pages (up or down), given the direction
of the last <change, were measured from the observed storage
profiles, By drawing randon numbers from the above
distributions, and forcing an increase to the maximum storage
size at some point, it is possible to generate very reasonable

storage profiles. A comparison is found in Table 3.1

It 1is possible that a much more elaborate model could be
devised, but because of the extreme variability of jobs run on
this system, it is unlikely that much better profiles could be

obtained.

A flowchart describing the model appears in figure 3.4.
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Meximuwn Mean 7 # humps Max % Max 9% 7 of CMeximum  lMesn
7 pages pages '_ » 10 increase decréasé-changes.width chenpe
Group 1 = 23.17  10.59 14,17 28.95  49.92 21.00 17.42 17.61

'_Observed . , 4
Group 2 | 70.43 42084 11.43 35,55 55.73 25.14 74fOO 9.27

Grovp 1 23.17  11.92 15,00  32.31  61.66  17.09  2L.50  18.66
Generated | 1 _ : ' ' , g
Group 2 70.43 34 .42 10,91 236,22 . 57.25 26.88 69.31 - 10.73

Teble 3.1 Comparison of observed profiles, and those generated

by the model,
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CHAPTER- 4  SUMMARY AND DISCUSSION

4.1- Sumpary And Discussion

- —_rm e e s — i

It was found in section 2.1 that the requested CPU
intervals for batch Jjobs were about 30% ldnger on the average
than those'for interactive jobs, and that these 1intervals have
standard deviations about four times as large as their means.
Either a hyper—-exponential or a Weibull distribution can be used
as a model for the intervals, with the hyper-exponential
distribution being the easiest to use, as it is much easier to
generate parameters that give the desired mean and variance.
The relationship between the distribution parameters, and the
mean and variance for the Weibull distribution is very conmplex,
(see Appendix B) and no straight forward solution exists to

determine the parameters from then,

The processor time required by interactive tasks, is broken
up into requested CPU 1intervals, with disk or tape 1/0
operations terminating all but the 1last of these intervals,
which is terminated by a terminal I/O operation. The Weibull
distribution gives the closest fit according to the Kolmogorov-
Smirnov goodness of fit test, has a mean and standard deviation
much less than those observed due to a few very large values in

the observed distribution.

A shifted Weibull distribution (one with the ¥ parameter
greater than zero) provides a fairly good fit to the observed
distribution of user response times, but for the distribution of
times that it takes the system to write 1lines no distribution
function was found to provide a TrTeasonable fit. It would

probably be a good idea to break this distribution up according
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to the various types of devices involved, and to determine a

distribution of write times for each one.

A Weibull distribution with a shift can be used to nodel

disk I/0 delays, but the fit obtained is not a good one.

The distribution of page waiting times for the MTS systen,
is best broken up into two categories if one wants to generate
page transfer delays with a distribution similar to the ones
observed. An exponential distribution models the delays that do
not require a transfer of a page from the drum, and the
traditional Erlang distribution can be used to model those

delays that do.

Distributions of system response time, and actual CPUO
intervals can be used to check the accuracy of simulation models

tested.

In the area of program storage requirements, more work
might be profitable. For simulation models, the relationship
between virtual storage allotment and the amount of real core
needed would be useful, as well as relationships between amrount
of real core, the number of simultaneous users, and the amount
of paging done. The model developed in section 3.3 for virtual
storage requirements of Jjobs 1is only a beginning 1in this

direction.

4.2 A Simple Model 0f MTS For Simulation

The following simple simulation model of MTS could be used

to employ some of the measures taken in this study. The model
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keeps three lists outlined below:

1)

2)

Job List
Each entry on the job 1list contains all the
information <concerning a particular job running on

the simulated system, and includes these fields:

TC maximum CPU time for the job
TE current total CPU time for the job
TR time remaining in the current request

for CPU service
TRTS time remaining in the time-slice
NB the reason the job will stop at the end

of the current requested CPU interval

vVarious other fields can be used to keep track of
statistics of interest such as the current number of

real pages, the cumulative wait time, etc.

CPU Queue

This 1list 1is 1linked with the first. entry
pointing to the next, etc. Each entry contains only
a pointer to the job list, and the link to the next
entry, with the position of the entry indicating the
position of the corresponding job in the simulated

CPU queue.
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3) Event List

This l1ist is also linked, and ordered according
to the times of the events represented. Events in
this 1list will cause the pre-emption of a job that
is running on a CPU if any job 1is running at the
time of the event. Each entry contains a pointer to
the Job list indicating the job associated with the
event, an indication of the event type, and a 1link

to the next entry in the list.
In addition the model keeps the current time T.

A flowchart of the model appears in fig. U.1. The value
i indicates the job currently in possession of a CPU. (note:
the model is shown for only one CPU since others are identical)
Tr is the running time before stopping for the job currently on
the CPU, and Tn 1is the time of the next event from the event

list. Tev is the time calculated for an event to occur.
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Information on the worklocads of computing systems beconmes
increasingly difficult to obtain as the systems become more
complex. New tcols must constantly be developed to overcome
this problem, as a good understanding of the behavior of
programs is necessary for one to design new operating systems,
or modify old ones, with the idea of producing a system that
makes good use of the hardware available (to minimize waste),
and also gives satisfactory performance to users. Basing an
operating system design on faulty assumptions about the
characteristics of programs, is bound to be a hit and miss

affair.

The purpose of this study has been to measure some of the
important characteristics of programs at the University of
British Columbia. The Data Collection Facility written by
DPr. T. B. Pinkerton for the MTS operating system has proven to

be a valuable tcol to this end.
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APPENDIX A  THE DATA COLLECTION FACILITY

The DCF consists of two UMMPS jobs called STAT and STATSH
and of supervisor subroutine which is invoked from various
points in the supervisor, and which may also be invoked by a

The STAT job manages a ring of buffers which it writes onto
a tape when full. The STATSW job is responsible for setting and
resetting a word of switches in each entry in the Jjob table,
which 1indicate whether or not data is to be collected for that
job, and what items are to be collected for it if data is to be
collected. The sapervisor subroutine is responsible for placing
the items 1in the buffers, Each item consists of a two word
prefix containing the item type, item length, ID of job to which
the item applies, an indication of which CPU the item occurred
on, and the time of the event, followed by from zero to six

words of specific information about the event.

The presence of such a facility in a system, must cause
some degradation in performance, but the amount in this case is
small. Roughly 10 us of CPU time is required every time the
supervisor is entered to see if the DCF is currently active. If
it 1is, the Dbuffer eptry subroutine can place each item into 1a
buffer at a cost of about 65 us each. In addition, the SVC call
from a job program to save an item requires about 330 us of CPU
time, but only about 10% of items are collected in this manner.
My measurements have shown that on a fairly busy day, with the
DCF operating, roughly 0.6% of the CPU time is used by the STAT

job, and about 4% of the CPU time by buffer entry subroutine and

SVC call to enter data in buffers. The DCF also uses roughly 3%
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of the real core available to users.

It is possible for no buffer to be available when an iten
is to be entered. 1In this case, a count is kept of all items
missed until a buffer becomes available and a special iten
indicating this number is inserted as the first item of the new

buffer. This situation, however, occurs only rarely.

The data collection facility in MTS is currently the nmost

flexible and detailed available.
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APPENDIX B FITTING WEIBULL AND HYPER-EXPONENTIAL
DISTRIBUTIONS

THE WEIBULL DISTRIBUTION

The Weibull distribution has the general form
F(x) = 1-e-acx-9°
where ¥ 1is a shift parameter which is normally equal to zero
when one is interested in time dependent variables. This gives
us the following form for the Weibull distribution

b
F(t) = 1-eot

The mean of this distribution is given by

<°T(8+1)
and the variance by
oL 28{ [F(28+1) -2 (B+1) }
where o = 1/a, B = 1/b
In order to obtain estimates of the parameters a and b we may
apply the following transformation

b
1-F () = et

1n (1-F(t)) = -at®

1n(1/(1-F{t))) = at®
In(In(1/(1-F(t)))) = 1ln a + b 1n t
which results in a linear equation in the variables
In(ln{1/(1-F(t))) and 1n t. The slope of this line is b, and
the intercept is 1ln a. We can find two points on this 1line by
setting each of the variables to zero in turn.
() In t = 0  when t =1
Some suitable scaling factor can be applied to the time variable
to get a value of t = 1 near to the maximum time for which data

was collected and not grouped in an overflow class. Evaluating

in(ln(1/(1—F(t)))) at this point gives a value for 1ln a.
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(2) In(ln (1/ (1-F(t)))) = O
when 1/(1-F(t)) = e
or F(t) = 0.6321
from the sample distribution, find a value T such that

F(T) = 0.6321. The parameter b may now be calculated fron

b= ~1na/ln T.

An inverse function exists for the Weibull distribution,

and is derived as followus:

b
p(x<t) = 1-et
1-p = o-at®
1n p = -at®

t* = 1n[ (1/P)™]

1n t = 8 1n(1n[ (1/p)%)
1n t = 1n(1ln[ (1/p)*]*
t = [ &1ln(1/p) 1"

THE HYPER-EXPONENTIAL DISTRIBUTION.

A hyper-exponential distribution may be represented by the
general form
F(t) = se-28at 4 (1-g)e-2C1-s)at
The mean of this distribution is given by 1/A, and the variance
by .
o2 = [ (1-2s+2s52) /(2s5-2s52) J(1/A) 2
Given the @mean and variance of a sample distribution, we may
calculate a value for the parameter s as follows:

let k = og2A2
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k = (1-2s+2s2)/(25-252)
this yields
s = (2k42-2 (k2-1)) / (Uk+8)
which has a solution as long as k21, which nust be true fof the
hyper—-exponential distributicn sinée the variance is greater

than the square of the mean.
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APPENDIX C  MTS DATA

Data was collected for this study on two occasions, first
on June 19, 1971, and secondly on November 11, 1971. The first
data tape (tape 1) represents a light load on the system, with
only about 7 interactive Jjobs, and 2 batch Jjobs running
simultaneously. The second data tape (tape 2) was collected to
ohserve the system under heavier load. During the time that
collection took place, about 19 interactive jobs, and 2 to 3
batch jobs were running simultaneously. The number of batch

jobs is restricted at times of heavy usage by interactive jobs

to prevent the system from getting bogged down.

As can be seen in Table C.1, even under the heavier load
condition, the CPU's are idle QS% of the time. The utilization
of the CPU's at The University of British Columbia's computing
centre approaches 100% during the midnight hours, when most of

the large batch jobs are run.

It is interesting to note that the DCF uses considerably
more of the systemt's resources (Table C.1) than Pinkerton has
indicated in either [31], or [32]. The times were calculated
using his formula of 65 us for the collection of 90% of the
items, and 330 us for the remainder. The times for the buffer
managing subroutine (STAT) were measured directly from the data

tapes.

A frequency distribution of the items on the tapes may be
found in Table C.2, and a comprehensive description of the itenms

in {3].



. Date

Start Time

Durration

No. of Items:

CktU's Idle

CPU Time for DCF
data collection
STAT job (burrers)

CrU Time for ¥DP

Total CrU Time for
Non-user Tasks:

Tepe 1 ‘Tape 2
19-6-71 12-11-71
15:25 14:03
97 min 95 min
. 153389 2749238
83. 6%  48.4%
4,0% 4;8%
3.5% 4,27,
0.5% 0.6%
2.9% 6u6%
12,37 16.8%

Table_ C.l  MTS

Data
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APPENDIX E THE COMPUTING SYSTEH >
The configquration of the 360/67 computing system at the
University of British Columbia during the time of this study was
as follows:
1) 2 2067 processors
2) 2 2301 drum storage units
3) 4 2365-2 core storage units (1024K bytes)

4) 2 2860-2 selector channels

5) 2 2870 multiplexor channels

6) 2 2314 8-drive disk units

1) 1 2321 data cell

8) assorted card readers, printers, graphics display

units, interactive terminals, and the associated

control equipment.

The two processors run in full duplex mode.



