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ABSTRACT 

There has been l i t t l e p u b l i s h e d about the c h a r a c t e r i s t i c s 

of computer jobs running on modern tim e - s h a r i n g computer 

systems, due l a r g e l y to the l a c k of a p p r o p r i a t e programs and 

equipment necessary to measure the parameters i n v o l v e d . In t h i s 

t h e s i s , measures are presented f o r some of the important 

c h a r a c t e r i s t i c s of jobs. The Data C o l l e c t i o n F a c i l i t y , which i s 

part of the Michigan Terminal System, was used to t h i s end. The 

Michigan Terminal System i s a time-sharing o p e r a t i n g system f o r 

the IBM 360/67 computer, and supports batch and t e r m i n a l users 

s i m u l t a n e o u s l y . 

Chapter 1 g i v e s an o u t l i n e of the problem, and other work 

which has been done i n t h i s l i n e . I t a l s o c o n t a i n s a reasonably 

d e t a i l e d d e s c r i p t i o n of the Michigan Terminal System. In 

Chapter 2, measurements of requested CPU s e r v i c e , CPU s e r v i c e 

obtained, system and user response times, I/O delays, and page 

wai t i n g times are g i v e n . Chapter 3 o u t l i n e s the s t o r a g e 

requirements of jobs, and g i v e s a model which w i l l generate 

p r o f i l e s of s t o r a g e r e q u i r e d by jobs over t h e i r running times, 

which are very s i m i l a r to p r o f i l e s observed f o r a c t u a l jobs. 

Some d i s c u s s i o n of the r e s u l t s i s given i n chapter 4, and a l s o a 

simple model of the system i s shown which might be used i n a 

s i m u l a t i o n study employing measurements taken i n t h i s study. 
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CHAFTEB 1 INTRODUCTION 

1.1 Preamble 

In the p a s t , program behavior and the c h a r a c t e r i s t i c s of 

the job mix running on a computer system were r e l a t i v e l y easy 

t h i n g s to observe. The machines were slow, and u s u a l l y ran as 

s i n g l e thread batch systems, so that one program was processed 

to completion before another was allowed on the system. I t was 

p o s s i b l e on the e a r l y machines to time the p e r i o d s of p r o c e s s o r 

a c t i v i t y and waits f o r I/O with a stop watch s i n c e there was no 

o v e r l a p of p r o c e s s i n g and I/O, and the times of the events were 

of the order of seconds. On f a s t e r machines the measurements 

s t i l l c o u l d have been e a s i l y made using some s o r t of hardware 

device to do the measuring. With the advent of 

multiprogramming, measurements of program behavior became much 

more d i f f i c u l t . Hardware devices c o u l d s t i l l measure e a s i l y the 

p r o c e s s i n g and I/O i n t e r v a l s on the system, but, as s t a t e d by 

Drummond [ 1 9 ] , data dependent c h a r a c t e r i s t i c s such as job 

i d e n t i f i c a t i o n , data set i d e n t i f i c a t i o n , and the o r i g i n s of 

r e g u e s t s are not r e a d i l y a v a i l a b l e . In e f f e c t , what these 

d e v i c e s measure i s system behavior and not program behavior. 

The c h a r a c t e r i s t i c s of s i n g l e jobs can be determined using 

a hardware d e v i c e by running the jobs alone on the system one at 

a time, as was done by Cheng [ 1 2 ] . T h i s method i s t e d i o u s , and 

t i e s up the system f o r long p e r i o d s of time, which makes i t 

i m p r a c t i c a l t o use i n a busy environment. 

Other c o m p l i c a t i o n s f o r measurement a l s o a r i s e . Not a l l 

the I/O i s a s s o c i a t e d with the jobs that are running. In an 

e f f o r t to improve the u t i l i z a t i o n of various resources of the 
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system, jobs can not be allowed to t i e up c e r t a i n d e v i c e s f o r 

long p e r i o d s of time. (In p a r t i c u l a r c a r d readers and 

p r i n t e r s ) . I f a job i s allowed to possess a p r i n t e r , i t w i l l 

t i e i t up f o r the d u r a t i o n of i t s running time on the system, 

(since the output f o r one job must be kept together) even though 

i t p r i n t s o n l y a few l i n e s . Other jobs r e q u i r i n g the p r i n t e r 

can not be dispatched. The s o l u t i o n i s to have the job write 

i t s output to a f i l e on d i s k (or t a p e ) , and a f t e r i t i s f i n i s h e d 

have the system take care of the p r i n t i n g . S i m i l a r l y c a r d input 

i s read i n t o a d i s k f i l e , and the job can read the f i l e as i t 

progresses without t y i n g up the card reader f o r long p e r i o d s . 

So we have the system, as well as the jobs running, doing I/O. 

Time-sharing adds the a d d i t i o n a l c o m p l i c a t i o n t h a t a job running 

on a GPU does not need t o i n i t i a t e an I/O o p e r a t i o n to l o s e 

c o n t r o l of i t s CPU. 

On a m u l t i p r o c e s s i n g system more than one job can be 

running on the system at once and the task of a s s o c i a t i n g events 

with the job i n v o l v e d i s a very complex one f o r an e x t e r n a l 

hardware de v i c e , (A good d e s c r i p t i o n of the type of i n f o r m a t i o n 

gathered by a hardware d e v i c e may be found i n [ 7 ] ) . For a 

software d e v i c e , t h i s task i s much simpler, and v a r i o u s such 

d e v i c e s (see [ 3 , 4 7 ] f o r examples) have been w r i t t e n f o r some 

computer systems. Software d e v i c e s have such i n f o r m a t i o n , as 

job i d e n t i f i c a t i o n and the s t a t i s t i c s t h a t the system keeps 

about the j o b s , e a s i l y a v a i l a b l e to them (the device may be the 

part of the system t h a t c o l l e c t s these s t a t i s t i c s ) , but r e q u i r e 

f o r t h e i r o p e r a t i o n some part of the system's r e s o u r c e s . T h i s 

f a c t i m p l i e s that they can a f f e c t the measurements that they are 
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t a k i n g , a n d t h i s must a l w a y s be c o n s i d e r e d when u s i n g s u c h a 

d e v i c e . 

Two t y p e s o f s o f t w a r e measurement t e c h n i q u e s have emerged 

i n r e c e n t y e a r s . One a p p r o a c h i s a s a m p l i n g [ 1 9 , 4 7 , 4 8 ] f o r m o f 

measurement i n w h i c h v a r i o u s s t a t i s t i c s k e p t a b o u t t h e j o b s a r e 

s a m p l e d p e r i o d i c a l l y and t h e r e s u l t s r e c o r d e d . (CPU t i m e , I/O 

r e g u e s t s , p a g e r e a d s e t c . ) I t i s e a s y t o s e e t h a t a w e l l d e v i s e d 

p r o g r a m t o do t h i s s a m p l i n g w i l l n o t a f f e c t t h e m e a s u r e m e n t s 

t h a t i t t a k e s , a s l o n g as i t d o e s n o t s a m p l e t o o f r e q u e n t l y . I t 

m i g h t use o n l y a few m i l l i s e c o n d s o f CPU t i m e e v e r y f ew s e c o n d s , 

b u t t h e r e i s a c o n s i d e r a b l e l o s s o f d e t a i l e d i n f o r m a t i o n u s i n g 

t h i s t e c h n i g u e . Mean t i m e s f o r e v e n t s may be o b t a i n e d , b u t 

i n f o r m a t i o n a b o u t d i s t r i b u t i o n s o f e v e n t t i m e s , and t h e 

s e q u e n c e s o f e v e n t s [ 1 9 , 4 0 ] w i l l be l o s t . 

The s e c o n d t y p e o f d e v i c e (program) m o n i t o r s c o n t i n u o u s l y , 

and e v e r y i m p o r t a n t e v e n t h a p p e n i n g i n t h e s y s t e m c a n be 

r e c o r d e d . (See [ 3 , 3 9 ] f o r e x a m p l e s . ) I n o r d e r t h a t t h i s 

t e c h n i q u e d o e s n o t c o m p l e t e l y o v e r w h e l m t h e m e a s u r e m e n t s t h a t i t 

i s t a k i n g , i t must be a p a r t o f t h e s u p e r v i s o r p r o g r a m o f t h e 

s y s t e m , s i n c e t h e i n f o r m a t i o n i s e a s i l y a v a i l a b l e a t t h i s l e v e l , 

and may be o b t a i n e d a t s m a l l e x p e n s e . ft p r o g r a m t o do t h i s t y p e 

o f m o n i t o r i n g , e x t e r n a l t o t h e s u p e r v i s o r , would v i r t u a l l y h a v e 

t o i n t e r p r e t e v e r y a c t i o n t h a t t h e s u p e r v i s o r t a k e s , t o s e e i f 

some i n f o r m a t i o n n e e d s s a v i n g . S u c h i n t e r p r e t a t i o n w o u l d c a u s e 

c o n s i d e r a b l e d e g r a d a t i o n o f s y s t e m p e r f o r m a n c e , b e c a u s e o f t h e 

p r o c e s s o r t i m e n e c c e s s a r y t o a c c o m p l i s h i t . T h i s makes t h i s 

t e c h n i g u e much more d i f f i c u l t t o i m p l e m e n t t h a n t h a t o f 
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sampling. The disadvantage of the continuous monitoring 

technique i s that enormous q u a n t i t i e s of raw data are produced, 

and the c o s t of reducing these data can be qu i t e l a r g e . The 

sampling method on the other hand, produces manageable 

q u a n t i t i e s of s p e c i f i c data which are more e a s i l y reduced. 

L i t t l e data has been published on the c h a r a c t e r i s t i c s of 

jobs i n a t i m e - s h a r i n g environment, other than t h e i r behavior 

with r e s p e c t t o paging, and paging s t r a t e g i e s . Brawn and 

Gustavson [ 8 ] measured the e f f e c t of r e s t r i c t i n g r e a l memory 

s i z e on the running time of v a r i o u s programs, and they, as well 

as H a t f i e l d [ 2 6 ] , s t u d i e d the e f f e c t of r e s t r u c t u r i n g programs 

to l o c a l i z e t h e i r memory r e f e r e n c e s , on the amount of paging 

r e g u i r e d . Coffman and V a r i a n [13] were i n t e r e s t e d i n the times 

between i n t e r - p a g e r e f e r e n c e s (as were Fine e t a l [ 2 2 ] ) , and 

a l s o page r e s i d e n c e times i n main memory. U n f o r t u n a t e l y t h e i r 

study was done using u n r e a l i s t i c r e s t r i c t i o n s on core s i z e . 

F r e i b e r g s [23] has measured the times taken between c a l l s 

t o the s u p e r v i s o r program f o r s e r v i c e s , f o r a few types of 

programs (a FOBTRAH compiler, a l i s t p r o c e s s i n g program, e t c . ) , 

and has measured a d i s t r i b u t i o n f o r the maximum memory 

requirements of jobs on M c G i l l ' s IBM 7044. Scherr [45] and 

Schwetman and DeLine [44] have measured d i s t r i b u t i o n s f o r user 

response time (think time) and system response time f o r two 

d i f f e r e n t systems. Scherr as w e l l has obtained a d i s t r i b u t i o n 

f o r the amount of pr o c e s s o r time demanded by tasks between 

i n t e r a c t i o n s on P r o j e c t MAC 'S CTSS system. Baskett e t a l [ 5 ] 

have measured a d i s t r i b u t i o n f o r d i s k I/O de l a y s . 
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The problem of page t r a n s f e r times has been w e l l covered i n 

the l i t e r a t u r e [14,39], but i n the Michigan Terminal System 

(MTS), which i s the o p e r a t i n g system f o r the U n i v e r s i t y of 

B r i t i s h Columbia's IBM 360/67 computer, a l a r g e p o r t i o n of the 

page f a u l t s do not r e q u i r e page t r a n s f e r s from the drum. These 

f a u l t s r e s u l t from the f i r s t r e f e r e n c e to a new page. MTS does 

not a l l o c a t e any r e a l page to a job u n t i l a f t e r t h at page has 

been r e f e r e n c e d . The f i r s t r e f e r e n c e to a, new page causes a 

page f a u l t which can be d e a l t with by immediately a l l o c a t i n g an 

a v a i l a b l e r e a l page, and no drum t r a n s f e r occurs. (See s e c t i o n 

2.4.) 

Parameters l i k e the t o t a l processor time r e q u i r e d by jobs, 

and job i n t e r - a r r i v a l times are h i g h l y s i t u a t i o n dependent, but 

can be e a s i l y obtained i f the system keeps any accounting 

s t a t i s t i c s . 

Although models have been proposed f o r the r e a l core 

reguirements of computer jobs, notably Denning»s [ 1 6 ] , almost 

nothing e x i s t s concerning jobs* v i r t u a l memory reguirements. By 

v i r t u a l memory requirements, we mean the t o t a l i nstantaneous 

s t o r a g e reguirements, which i s a dynamic q u a n t i t y i n most time­

s h a r i n g systems. Lehman and Hosenfeld [31] have modelled the 

dynamic g u a l i t y of storage demands to some extent by breaking 

t h e i r model of a job i n t o job s t e p s , and g i v i n g each job step" a 

d i f f e r e n t memory requirement. T h i s i s s t i l l not a complete 

enough model, however, s i n c e the storage requirement of a job i n 

a time-sharing environment t h a t a l l o w s dynamic program l o a d i n g 

and storage a l l o c a t i o n , may vary c o n s i d e r a b l y over a s i n g l e job 
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s t e p . 

E m p i r i c a l measurements of program storage reguirements over 

t h e i r running times, and models of these requirements are needed 

f o r a more thorough understanding of program behavior, and f o r 

s i m u l a t i o n s t u d i e s . 

1.2 D e s c r i p t i o n Of The Michigan Terminal System 

T h i s d e s c r i p t i o n i s taken i n l a r g e p a r t from 

M. T. Alexander's paper "Time-sharing s u p e r v i s o r programs." [ 2 ] 

1.2.1 The Michigan Terminal System jMTS)_ 

MTS i s a general purpose t i m e - s h a r i n g system designed f o r 

the IBM 360/67 computer, and w i l l support up to f o u r p r o c e s s o r s 

running i n p a r a l l e l . The term MTS i s used t o r e f e r to both the 

o p e r a t i n g system as a whole, and to a r e - e n t r a n t job program i n 

the s u p e r v i s o r program, UMMPS, which g i v e s the user the 

c a p a b i l i t y to run programs and to manipulate f i l e s from remote 

t e r m i n a l s or from batch. 

MTS p r o v i d e s : 

1) An easy to use command language to cause the 

running and monitoring of programs and to crea t e , 

destroy and otherwise manipulate f i l e s . and f o r 

other communication with the system. 
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2) Two types of f i l e s , s e q u e n t i a l and l i n e f i l e s . 
L ine f i l e s may be accessed randomly by l i n e number, 
but s e q u e n t i a l f i l e s can only be accessed 
s e q u e n t i a l l y . Line f i l e s r e s i d e on disk while 
s e q u e n t i a l f i l e s may e i t h e r be on di s k or d a t a c e l l . 

3) A dynamic program loader which a l l o w s a program to 
load another during execution. 

4) Extensive subroutine l i b r a r i e s and the c a p a b i l i t y 
to load programs s e l e c t i v e l y from e i t h e r user 
defined or system l i b r a r i e s to reso l v e undefined 
e x t e r n a l symbol references i n a loaded object 
module. 

5) Many language processors such as FORTRAN, PL/1, 
APL, ALGOL, WATFIV etc. 

Together MTS and UMMPS form an easy to use but powerful 
time sharing system. 

\jt2.±2. U n i v e r s i t y Of Michigan Mult iprogrammi ng Supervisor JUMM PS J. 

The UMMPS supervisor i s a time-sharing s u p e r v i s o r f o r IBS 
360/67 supporting up to four processors. I t c o n s i s t s of a set 
of subroutines f o r processing i n t e r r u p t s , and i s only entered by 
i n t e r r u p t , e i t h e r hardware, or i n t e r n a l such as c a l l s to the 
super v i s o r (the 360 SVC i n s t r u c t i o n ) , and the various program 
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i n t e r r u p t s . A l l in terrupts are processed as c lose to completion 

as poss ib le , and a queue i s maintained for a l l those things that 

must be postponed. When there i s nothing more to be done at the 

moment, the supervisor gives contro l to a ready task (if any). 

DMMPS runs with in terrupts disabled, which means that i t cannot 

i t s e l f be in terrupted , and also with the re locat ion mechanism 

turned of f . I t also allows some tasks to ran with re loca t ion 

turned of f which permits them to reference any r e a l core 

l o c a t i o n . This a b i l i t y i s r e s t r i c t e d to s p e c i a l tasks such as 

the Paging Drum Processor (PDP) and tasks c o n t r o l l i n g unit 

record equipment, which need to be able to reference a l l of main 

memory. User tasks cannot be given this power, s ince the 

re loca t ion hardware i s used to provide in ter - task pro tec t ion . 

J.-2 ..3 Processor Scheduling 

UMMPS maintains only one CPD queue which a l l the processors 

scan looking for ava i lab le work. Tasks i n the system can be in 

one of four states as far as the supervisor i s concerned. 

1) Sunning 

2) Ready 

3) Waiting 

4) Page wait 

A l l tasks which are running or ready and some waiting tasks 

are on the processor queue, and when the queue i s being scanned, 

the f i r s t ready task found i s given a processor. A task which 

uses up i t s time s l i c e (100ms) i s given a new one and placed on 
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t h e b o t t o m o f t h e queue (b u t a h e a d o f any w a i t i n g t a s k s w h i c h 

a r e on t h e q u e u e ) . T h i s i s t h e o n l y t i m e t h a t a t a s k i s g i v e n a 

new t i m e s l i c e , A t a s k w h i c h i n i t i a t e s an I/O r e q u e s t o r 

r e q u e s t s a page n o t i n main s t o r a g e i s n o t r e p l a c e d on t h e 

p r o c e s s o r q u e u e , b u t when i t becomes r e a d y i t i s a d d e d t o t h e 

t o p o f t h e queue. Whenever a t a s k i s added t o t h e p r o c e s s o r 

queue f o r any r e a s o n , i t i s a d d e d t o t h e t o p o f t h e q u e u e . T h i s 

g i v e s v e r y q u i c k s e r v i c e t o i n t e r r u p t s , and a l l o w s t a s k s w h i c h 

a r e a c q u i r i n g r e a l s t o r a g e t o do so q u i c k l y . 

I t i s p o s s i b l e f o r a t a s k t o w a i t f o r some b i t s i n a b y t e 

i n v i r t u a l s t o r a g e t o become a l l z e r o . T h i s i s u s e d t o a l l o w 

d i f f e r e n t t a s k s t o c o m m u n i c a t e , and a l s o t o a l l o w t a s k s t o w a i t 

f o r a s y n c h r o n o u s i n t e r r u p t s . I n t h e l a t t e r c a s e , t h e i n t e r r u p t 

h a n d l e r s e t s t h e b i t s . When a t a s k w a i t s f o r a b y t e t h a t i s n o t 

i n i t s p r i v a t e v i r t u a l memory, t h e t a s k r e m a i n s on t h e CPU queue 

and t h e b y t e i s t e s t e d e a c h t i m e t h e t a s k i s t h e n e x t t o be 

g i v e n a p r o c e s s o r . I f t h e b i t s a r e z e r o , t h e t a s k g e t s a 

p r o c e s s o r , i f n o t t h e n e x t t a s k i s e x a m i n e d . The CPU q u e u e i s 

r e - o r d e r e d s o t h a t a l l s u c h w a i t i n g t a s k s f o l l o w any r e a d y t a s k 

i n t h e g u e u e . I f t h e b y t e i s i n t h e t a s k s own v i r t u a l s t o r a g e , 

t h e t a s k i s removed f r o m t h e p r o c e s s o r q u e u e , s i n c e some 

i n t e r r u p t must o c c u r t o a l l o w t h e b i t s t o be c h a n g e d . 

The f a c t t h a t a t a s k t h a t q u i t s w a i t i n g i s p l a c e d a t t h e 

t o p o f t h e p r o c e s s o r queue g i v e s v e r y f a s t s e r v i c e t o i n t e r r u p t s 

and a l l o w s o r d i n a r y t a s k s t o c o n t r o l I/O e g u i p m e n t . F o r 

e x a m p l e , t h e PDP i s n o t t r e a t e d s p e c i a l l y as f a r a s s c h e d u l i n g 

i s c o n c e r n e d , b u t i t c a n e a s i l y keep up w i t h t h e drum 
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i n t e r r u p t s , and such tasks can be given very l a r g e time s l i c e s 

which w i l l prevent them from being f o r c e d to the end of the 

processor gueue. 

In an e f f o r t to prevent too many tasks from competing f o r 

main storage, UMMPS has a mechanism f o r making c e r t a i n t a s k s 

p r i v i l e g e d or n o n - p r i v i l e g e d . There are t h e r e f o r e , three 

c l a s s e s of tasks i n UMMPS: 

1) N e u t r a l 

2) P r i v i l e g e d 

3) N o n - p r i v i l e g e d 

The term p r i v i l e g e d a p p l i e s only to the amount of processor time 

t h a t a task g e t s , and the amount of paging that i t i s allowed t o 

do. 

When a task i s f i r s t added t o the pro c e s s o r queue, i t i s 

c l a s s e d n e u t r a l , but i f i t attempts to accumulate more than a 

c e r t a i n t h r e s h o l d of pages, a d e c i s i o n i s made. I f there are 

fewer than the maximum allowed number of p r i v i l e g e d tasks, i t i s 

made p r i v i l e g e d , and i s g i v e n a time s l i c e equal 4*K*U, where K 

i s the number of a d d i t i o n a l p r i v i l e g e d tasks allowed at th a t 

poi n t i n time, and U i s the b a s i c time s l i c e . The t o t a l number 

of p r i v i l e g e d t a s k s allowed i s 7 f o r 1 core box, 12 f o r 2 core 

boxes, 15 f o r 3 core boxes, 22 f o r 4 core boxes, and 30 f o r more 

than 4. The d e c i s i o n t h r e s h o l d i s i n i t i a l l y s e t to about 30 

pages. (This mechanism i s c u r r e n t l y i n the process of r e v i s i o n . 

Further i n f o r m a t i o n may be obtained from the U n i v e r s i t y of 

Michigan Computing C e n t e r ) . The d e c i s i o n t h r e s h o l d f o r the next 

task i s then lowered, and t h i s one i s allowed t o o b t a i n as many 
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r e a l pages as i t wants. I f there are alre a d y the maximum number 

of p r i v i l e g e d t a s k s when the d e c i s i o n p o i n t i s reached, the task 

i s made n o n - p r i v i l e g e d , which removes that task t e m p o r a r i l y from 

c o n t e n t i o n f o r the CPU's and main storage. A p r i v i l e g e d task 

remains p r i v i l e g e d u n t i l i t uses up i t s extended time s l i c e or 

ent e r s the wait s t a t e (except page-wait). At t h i s p o i n t i t i s 

made n e u t r a l and the d e c i s i o n t h r e s h o l d i s r a i s e d , a l l o w i n g a 

n o n - p r i v i l e g e d task, i f any, to be made p r i v i l e g e d . Non-

p r i v i l e g e d t a s k s are never made n e u t r a l without f i r s t becoming 

p r i v i l e g e d . 

Two gueues are a l s o maintained f o r each task, a task CPU 

queue and a task wait queue. The task CPU queue i s used t o keep 

t r a c k of m u l t i p l e l e v e l s of execution. Each e n t r y under the top 

one r e p r e s e n t s a subtask which has been i n t e r r u p t e d but may 

l a t e r be resumed. Some I/O i n t e r r u p t s cause a new e n t r y t o be 

added to the top of the CPU queue, and a f t e r t h e i r p r o c e s s i n g 

the next lower l e v e l resumes p r o c e s s i n g . A wait e n t r y i s 

maintained i n the wait gueue f o r each l e v e l of the CPU queue at 

which a wait i s o u t s t a n d i n g . The end of a wait a t any l e v e l can 

be recorded by removing the wait gueue e n t r y at t h a t l e v e l . 

S u p e r v i s o r r o u t i n e s e x i s t to remove a l l e n t r i e s from the 

task CPU gueue but the top one or to remove the top e n t r y . An 

example of the above i s i l l u s t r a t e d by the f o l l o w i n g s i t u a t i o n . 

A user i s running a program a t a t e r m i n a l and e n t e r s an 

a t t e n t i o n i n t e r r u p t . T h i s f o r c e s the saving of s t a t u s a t the 

i n i t i a l CPU queue l e v e l and a new en t r y t o be added to the top. 

He may now enter commands at the t e r m i n a l , then he can enter a 
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command to r e s t a r t the program (remove the top e n t r y ) , or he can 

e l e c t to run another program, which causes the previous e n t r y or 

e n t r i e s to be removed. 

As.2j.ii Storage S c h e d u l i n g 

In MTS, v i r t u a l memory i s implemented u s i n g drum storage 

d e v i c e s (IBM 2301»s). These drums have 200 t r a c k s and are 

capable of s t o r i n g 4.5 pages per tr a c k . In order to o b t a i n the 

best u t i l i z a t i o n of the drums, they are arranged with 100 

l o g i c a l t r a c k s having 9 pages each. Two r e v o l u t i o n s of the r e a l 

drum are needed f o r one r e v o l u t i o n of the l o g i c a l drum. The 9 

s l o t s around the circumference of a l o g i c a l t r a c k are c a l l e d 

s e c t o r s . 

The task of v i r t u a l memory management i n MTS i s d i v i d e d 

between UMMPS and a s p e c i a l job c a l l e d the Paging Drum Processor 

(PDP). The PDP takes care of the a c t u a l reading and w r i t i n g of 

pages to and from main memory, while i t i s the r e s p o n s i b i l i t y of 

the s u p e r v i s o r to decide which pages need moving, UMMPS and the 

PDP communicate v i a Page C o n t r o l Blocks (PCB*s) and there e x i s t s 

one PCB f o r each v i r t u a l page. Each PCB c o n t a i n s a l l the 

in f o r m a t i o n concerning the s t a t u s of i t s page, and may be l i n k e d 

at any time on one of f o u r queues: 

D Page In Queue (PIQ) co n t a i n s 

page requests t h a t PDP has not yet 

the PCB's f o r a l l 

s t a r t e d r e a d i n g 

http://As.2j.ii
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i n . 

2) Page In Complete Queue (PICQ) c o n t a i n s the PCB's 

of a l l pages that the PDP has read or a new page f o r 

which reading was unnecessary but of which the 

s u p e r v i s o r has not been n o t i f i e d y e t . 

3) Page Out Queue (POQ) c o n t a i n s PCB's f o r a l l pages 

i n main storage that can be removed. 

4) Release Page Queue (RPQ) c o n t a i n s PCB's f o r a l l 

pages which have been r e l e a s e d by the tasks t h a t own 

them, but which the PDP has not r e l e a s e d yet (the 

PDP must be n o t i f i e d so the drum space can be 

released) . 

A l l pages t h a t are read i n are immediately placed on the 

POQ at the top. When the PDP requests some pages to be w r i t t e n , 

the s u p e r v i s o r checks the amount of f r e e space a v a i l a b l e and i f 

i t i s s u f f i c i e n t (about 20% of main memory), no pages are given 

t o the PDP. Otherwise the s u p e r v i s o r s t a r t s scanning the POQ 

f o r a page t o be w r i t t e n out. I f the page under c o n s i d e r a t i o n 

i n the scan has been r e f e r e n c e d s i n c e the l a s t scan, the 

r e f e r e n c e b i t i s r e s e t and the PCB w i l l be placed on the bottom 

of the POQ. I f the page was not r e f e r e n c e d i t i s given to the 

PDP f o r w r i t i n g out. T h i s process continues u n t i l enough pages 

are found f o r the PDP., 
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When a page i s requested by a task, the s u p e r v i s o r places 

the PCB on the bottom of PIQ and i f the PDP i s not already 

running, i t i s s t a r t e d . The PDP places the PCB on one of nine 

s e c t o r queues, corresponding t o the s e c t o r t h a t the page 

occupies on the l o g i c a l drum, and then requests pages t o be 

w r i t t e n from the s u p e r v i s o r t o f i l l any of the nine s e c t o r 

gueues which are empty. I f any of these pages to be wr i t t e n 

have not been changed s i n c e l a s t w r i t i n g , the s u p e r v i s o r w i l l be 

n o t i f i e d that the main storage f o r that page i s f r e e and another 

page i s requested f o r w r i t i n g . When a l l s e c t o r queues are 

f i l l e d as much as p o s s i b l e , a channel program t o do the readi n g 

and w r i t i n g i s c o n s t r u c t e d by the PDP and executed. The PDP 

w i l l then p l a c e the PCB's f o r the pages read on the PICQ and 

n o t i f y the s u p e r v i s o r that main storage f o r the pages w r i t t e n i s 

f r e e . The s u p e r v i s o r takes PCB's from the PICQ and pla c e s them 

on the POQ at the top and r e s t a r t s the tasks i n v o l v e d . The PDP 

handles the job of c o n s t r u c t i n g new channel programs i n p a r a l l e l 

with p r o c e s s i n g o l d ones so that the process of readi n g and 

w r i t i n g i s continuous. 



Figure 1.1 Flowchart cf storage scheduling 
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Figure 1.1 (b) Flowchart of storage scheduling 
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J * . 2 , 5 General 

Flow of tasks in MTS at the Univers i ty of B r i t i s h Columbia 

i s depicted i n f i g , 1 .2 . Both processors scan the s ingle gueue 

looking for work, and the f i r s t ready task encountered i s given 

a CPU. A task which i s running on a CPU can subsequently stop 

for any of the fol lowing reasons: 

1) I t requests some I/O 

2) It stops to wait for some byte to be set to zero 

3) It references a page not i n main storage 

4) I t exhausts i t s t ime- s l i c e 

5) It i s pre-empted 

Tasks which are waiting for an i n t e r r u p t to occur, to 

s i g n a l the end of an I/O operat ion, or the completion of a page 

transfer are not on the processor gueue, but immediately se ize 

one of the CPU's when the in terrupt occurs, pre-empting a task 

that i s current ly running. The pre-empted task i s placed on the 

top of the queue, and i s the next to receive service provided 

that another task i s not pre-empted in the i n t e r i m . 

There are no spec ia l p r i o r i t i e s assigned to any tasks in 

MTS, so that a l l tasks compete on an equal basis for system 

resources. 

Most of the occurrences of stoppages i n processing for the 

second reason above have to do with terminal I/O for in t erac t ive 

tasks . In t h i s study, the time that the device support routine 

(DSB) for the terminal i s entered to get an input l i n e or to 

write an output l i n e , i s taken as the s tar t of the terminal I/O 
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o p e r a t i o n . The time that an e x i t i s made from the DSR i s taken 

as the f i n i s h of t h a t o p e r a t i o n , and a l l processor a c t i v i t y f o r 

that task between i s ignored. In e f f e c t , the en t r y of the DSR 

i s taken as the beginning of a wait I/O o p e r a t i o n f o r the 

t e r m i n a l , and the e x i t from the DSR i s taken as the completion 

of t h a t wait. 

When a task r e l e a s e s a v i r t u a l memory page, the PDP i s 

s t a r t e d by the s u p e r v i s o r ( i f i t i s not al r e a d y running) i n 

order to n o t i f y i t t h a t the drum space may now be used f o r other 

page w r i t e o p e r a t i o n s . I f the PDP was not running, i t w i l l pre­

empt the task t h a t r e l e a s e d the page f o r the time taken t o 

modify the a p p r o p r i a t e t a b l e s . 

1.3 Problem Area 

T h i s study uses the Data C o l l e c t i o n F a c i l i t y c a l l e d the DCF 

(continuous monitoring type) a v a i l a b l e i n the MTS o p e r a t i n g 

system to study the c h a r a c t e r i s t i c s of a t y p i c a l u n i v e r s i t y job 

stream, the purpose being to allow the pr o d u c t i o n of an accurate 

model of the job stream f o r s i m u l a t i o n . I t has been p o s s i b l e to 

measure the times taken f o r many of the events o c c u r i n g i n the 

system, i n p a r t i c u l a r : 

1) The amount of processor time requested by a task 

when i t o b t a i n s a CPU 

2) The amount of processor time that i t a c t u a l l y gets 
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3) The w a i t i n g t i m e s f o r I/O, and pages 

4) The i n t e r a r r i v a l t i m e s f o r j o b s i n t o t h e s y s t e m 

5) The t o t a l p r o c e s s o r time used by j o b s 

6) The s t o r a g e r e g u i r e m e n t s o f j o b s 

Some s y s t e m d e p e n d e n t c h a r a c t e r i s t i c s (CPtJ t i m e r e q u i r e d t o 

p r o c e s s i n t e r r u p t s ) have been removed as f a r a s p o s s i b l e from 

t h e measure o f CPU s e r v i c e r e q u i r e d by j o b s , so t h a t t h i s 

measure s h o u l d be a p p l i c a b l e on o t h e r s y s t e m s . 

D a t a was c o l l e c t e d f o r t h e s t u d y on two m a g n e t i c t a p e s , 

c a l l e d t a p e 1 and t a p e 2, The d a t a on t a p e 1 was c o l l e c t e d on a 

S a t u r d a y a f t e r n o o n , and r e p r e s e n t s a t i m e o f l i g h t l o a d on t h e 

s y s t e m , w h i l e t h e d a t a f o r t a p e 2 was c o l l e c t e d on a F r i d a y 

a f t e r n o o n , which i s a t i m e o f m o d e r a t e l y heavy l o a d . T o g e t h e r 

t h e t a p e s c o n t a i n d a t a f o r a b o u t 300 j o b s . 
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CHAPTER 2- SOME BASIC CHARACTERISTICS 

2s.l Requests For CPU- Se r v i c e 

In the past, i t has teen d i f f i c u l t to obtain measurements 
of the time that computer jobs run between successive I/O 
operations, because of the la c k of appropriate monitoring 
devices and programs (see [31,33]), but with the development of 
t o o l s l i k e the DCF i n MTS [ 3 , Appendix A], such measurements may 
now be r e a d i l y obtained. The amount of processor time that a 
job requests from the termination of one I/O operation u n t i l the 
s t a r t of the next, w i l l be c a l l e d a requested CPU i n t e r v a l . 

Many s i m u l a t i o n s t u d i e s have assumed that the d i s t r i b u t i o n 
of these i n t e r v a l s i s exponential [33,34,46], or hyper-
exponential [ 2 1 ] , since the use of these d i s t r i b u t i o n s a llows 
easy generation of random samples, and a n a l y t i c methods e x i s t 
f o r studying systems governed by them. 

Measurements of requested CPU i n t e r v a l s i n t h i s study show 
considerably more v a r i a b i l i t y than they would i f they were 
e x p o n e n t i a l l y d i s t r i b u t e d , and even a hyper-exponential 
d i s t r i b u t i o n does not provide a cl o s e f i t to the observed 
d i s t r i b u t i o n s . Requested CPU i n t e r v a l s f o r batch jobs had a 
mean of 23.6 ms and a standard d e v i a t i o n of 73.6, while 
i n t e r a c t i v e tasks had a mean of 17.0 ms with a standard 
d e v i a t i o n of 76.4. 

A Weibull d i s t r i b u t i o n provided the c l o s e s t f i t f o r the 
observed i n t e r v a l s f o r batch jobs, and a hyper-exponential 
d i s t r i b u t i o n f o r those of the i n t e r a c t i v e jobs. (See f i g s . 
2.1, and 2.2). The Kolmogorov-Smirnov goodness of f i t t e s t i s 
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used throughout, and gave maximum d e v i a t i o n s f o r the observed 

values from the f i t t i n g curve of 0.1673 f o r batch jobs, and 

0.0802 f o r i n t e r a c t i v e jobs. The p r o b a b i l i t y of f i n d i n g a 

d e v i a t i o n as l a r g e as 0.0200 (batch) or 0.0119 ( i n t e r a c t i v e ) f o r 

samples t h i s l a r g e i s l e s s than 1% i f the f i t i s t o be 

cons i d e r e d good. T h i s value w i l l be r e f e r r e d t o i n f u t u r e as 

KS (.01) . 

The Weibull d i s t r i b u t i o n i s u s e f u l f o r f i t t i n g sample 

d i s t r i b u t i o n s of t h i s type (with the a p p r o p r i a t e c h o i c e of 

parameters), s i n c e one can o b t a i n a d i s t r i b u t i o n with more very 

l a r g e v a l u es, and more very s m a l l values than with a hyper-

e x p o n e n t i a l d i s t r i b u t i o n having the same mean and standard 

d e v i a t i o n . The problem with using the Weibull d i s t r i b u t i o n , 

however, comes i n choosing the parameters. (See Appendix B f o r 

d e t a i l s ) . 

The CPU time reguested by i n t e r a c t i v e jobs between t e r m i n a l 

I/O o p e r a t i o n s i s l a r g e r than the requested CP0 i n t e r v a l s on the 

average s i n c e s e v e r a l i n s t a n c e s o f d i s k or tape I/O may occur 

between s u c c e s s i v e t e r m i n a l o p e r a t i o n s . The mean observed time 

was 58.6 ms with a standard d e v i a t i o n of 669, and a Weibull 

d i s t r i b u t i o n gave the c l o s e s t f i t with a maximum d e v i a t i o n of 

0.0942. (KS (.01) =0.0211) (see f i g . 2.3) The Weibull 

d i s t r i b u t i o n f i t t e d by the method d e s c r i b e d i n Appendix B had a 

mean of 27 ms, and a standard d e v i a t i o n of 48 which are much 

l e s s than the observed values f o r the mean and standard 

d e v i a t i o n , however, the observed d i s t r i b u t i o n had a few very 

l a r g e sample val u e s (as gre a t as 30 seconds of CPU time), which 
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made the mean and standard d e v i a t i o n l a r g e . Such lar g e samples 
are very r a r e . 

Scherr [43] found a s i m i l a r shaped d i s t r i b u t i o n f o r these 
times, with a mean of 0.88 seconds f o r jobs run on an IBM 7094 
running CTSS. 

Q 

TIME 

Figure 2.3 Processor time between i n t e r a c t i o n s 
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2-2 CPU S e r v i c e Obtained 

The amount of time that a job a c t u a l l y gets on a processor 

i n one shot, c a l l e d an a c t u a l CPU i n t e r v a l * . i - s c o n s i d e r a b l y l e s s 

than i t r e q u e s t s , s i n c e the maximum time that a job may hold a 

CPU i s l i m i t e d by i t s time s l i c e , and a job has a high 

p r o b a b i l i t y of being pre-empted i f there are more than a few 

other jobs i n the system. Means f o r the CPU s e r v i c e obtained 

( a c t u a l CPU i n t e r v a l s were 14.3 ms f o r jobs on tape 1, and 8.9 

ms f o r jobs on tape 2 with standard d e v i a t i o n s of 42.5 and 14.9 

r e s p e c t i v e l y . The average a c t u a l CPU i n t e r v a l s on tape 1 

r e p r e s e n t about 80% of the requested i n t e r v a l s , while those on 

tape 2 r e p r e s e n t only about 45%. The reason f o r t h i s d i f f e r e n c e 

i s t h a t tape 2 r e c o r d s a c t i v i t y a t a b u s i e r time than tape 1, 

and jobs are pre-empted more f r e q u e n t l y when the system i s busy. 

A hyper-exponential d i s t r i b u t i o n p r o v i d e s the c l o s e s t f i t 

f o r these v a l u e s , and the observed data show a maximum d e v i a t i o n 

of 0.0900 (KS (.01)=0.0111) from the f i t t i n g curve f o r tape 1, 

and a maximum d e v i a t i o n of 0.027 f o r tape 2. (See f i g s . 2.4 

and 2.5). 
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Figure' 2.5 . Actual.CPU intervals (tape 2) 
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.2.J I/O Delays 

In MTS, the pro c e s s i n g of a job i s not overlapped with i t s 

own I/O, and as a r e s u l t , the job must remain i d l e d u r i n g these 

times. 

Most of the I/O a c t i v i t y of MTS jobs i s f o r disk 

o p e r a t i o n s , with some f o r tape I/O. For i n t e r a c t i v e jobs, some 

of the I/O i s a l s o f o r the t e r m i n a l on which the job i s run. 

The d i s t r i b u t i o n s of I/O delays f o r both i n t e r a c t i v e and batch 

t a s k s (excluding the de l a y s f o r the t e r m i n a l i t s e l f ) are q u i t e 

s i m i l a r , ( f i g s . 2.6, and 2.7) and a l s o ressemble c l o s e l y the 

d i s t r i b u t i o n f o r d i s k I/O delays measured by Baskett et a l [ 5 ] 

f o r the U n i v e r s i t y of Texas' CDC 6600 system. The peaks are 

c l o s e to the same p o i n t ( 35 ms), and the shapes of the 

d i s t r i b u t i o n s are s i m i l a r . The reason f o r the d i f f e r e n c e i n 

means f o r the batch and i n t e r a c t i v e tasks i s probably due t o the 

f a c t t h a t much more d i s k arm movement i s r e q u i r e d f o r the 

i n t e r a c t i v e t a s k s , s i n c e f a i r l y long p e r i o d s can be spent 

w a i t i n g f o r t e r m i n a l responses during which time the arm can be 

r e p o s i t i o n e d by another t a s k . 

The peak observed i n f i g , 2.3 at 80 ms i s due to s e v e r a l 

jobs i n the sample doing tape I/O. 80ms i s the time taken to 

t r a n s f e r a tape record one page i n l e n g t h , and t h i s i s a very 

common s i z e used i n the MTS system. Most disk o p e r a t i o n s take 

between 25 and 75 ms (from P i n k e r t o n [ 3 9 ] ) , with those r e q u i r i n g 

arm movements t a k i n g l o n g e r . 

Although these d i s t r i b u t i o n s look E r l a n g i a n , the standard 
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d e v i a t i o n s are g r e a t e r than the means. For batch t a s k s , the 

observed mean was 38 ms with a standard d e v i a t i o n of 67, and f o r 

i n t e r a c t i v e t a s k s , the mean was 123 ms with a standard d e v i a t i o n 

of 986. The dotted l i n e s i n f i g s . 2.6 and 2.7 show the Weibull 

d e n s i t y f u n c t i o n g i v i n g the c l o s e s t f i t a c c o r d i n g to the 

Kolmogorov-Smirnov goodness of f i t t e s t . Greater values of 

(causing the peak t o be s h i f t e d r i g h t ) y i e l d e d l a r g e r d e v i a t i o n s 

from the cummulative d i s t r i b u t i o n than the curves p l o t t e d . 

The term "U§§r Response Time^ r e f e r s to the time that i t 

takes a user at an i n t e r a c t i v e t e r m i n a l to frame h i s response 

and to type i t i n . I t i s measured from the time t h a t the system 

s t a r t s w a i t i n g f o r some a c t i o n from the user, u n t i l the user 

e n t e r s a c a r r i a g e r e t u r n or other end of l i n e s i g n a l i n d i c a t i n g 

t h a t he has f i n i s h e d h i s response. Scherr [43] c a l l s these 

times "Think Times". The d i s t r i b u t i o n of user response times 

f o r i n t e r a c t i v e t a s k s w i l l vary from system t o system, depending 

on the type of response r e g u i r e d , the dev i c e s used, and the 

s o p h i s t i c a t i o n of the users. 

Scherr found the mean user response time t o be 35 seconds 

f o r users of the CTSS sytem, but f o r MTS users the mean i s 

c l o s e r to 11 seconds with a standard d e v i a t i o n of 16. The 

d i s t r i b u t i o n of these times was s i m i l a r i n shape to th a t 

observed by Scherr, i f one removes the program generated 

responses from h i s o b s e r v a t i o n s . I t i s a l s o s i m i l a r t o the 

d i s t r i b u t i o n observed by Schwetman and DeLine [ 4 4 ] f o r the 

RESPOND system. 

A Weibull d i s t r i b u t i o n again showed the c l o s e s t f i t ( f i g . 



30 

2.8) and the observed data d i s p l a y e d a maximum d e v i a t i o n of 

0.0655 from i t with KS (. 0 1) =0 .05. The d i s t r i b u t i o n i n the 

f i g u r e may be seen to have two l a r g e peaks. The f i r s t 

corresponds t o quick responses r e q u i r i n g l i t t l e thought on the 

part of the user, and a l s o l i t t l e t y p i n g . Such responses are 

g u i t e common i n MTS with the user e n t e r i n g a n u l l l i n e , or one 

with only a few c h a r a c t e r s i n r e p l y to some query on the part of 

the system. The second peak r e p r e s e n t s those responses 

r e g u i r i n g some thought, or c o n s i d e r a b l e t y p i n g , or both. The 

number of responses f a l l i n g i n t o the f i r s t category ( l e s s than 5 

seconds) i s roughly 35% of the t o t a l . 

The system responds by ty p i n g a r e p l y which takes an 

average of 0.65 seconds ( f i g . 2.9) and writes about f i v e times 

as many l i n e s as the user i n p u t s . The peaks i n the d i s t r i b u t i o n 

correspond to d i f f e r e n t d e v i c e s . 



F i g u r e 2.9 System w r i t e t i m e s ( i n t e r a c t i v e ) 
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2J± Page Waiting Times 

The d i s t r i b u t i o n of page waiting times i s divided into 

several types of events i n MTS, depending on the reason for the 

page f a u l t that generated the request, and the status of the 

page involved. The p o s s i b i l i t i e s are outlined below: 

1) Page f a u l t was for the f i r s t reference to a new 

page, which can be allocated nearly immediately. 

2) Page f a u l t was for the f i r s t reference to a new 

page, but core space can be allocated only aft e r 

f i r s t writing out another page to provide space. 

3) Page f a u l t was for a page exis t i n g on the drum, 

which must be brought into core. 

4) Page f a u l t was for a page existing on the drum, 

but i t can only be brought into core after f i r s t 

writing out another page. 

5) Page f a u l t was for a page that s t i l l exists in 

core, although a page out operation was in progress 

for that page. The page out operation can be 

cancelled, and the page w i l l become available 

immediately. 

Since MTS t r i e s to keep about 20% of the available core 

space empty to allow guick service to page reads, situations of 
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type 2, or 4 above occur o n l y r a r e l y . In a d d i t i o n to the f i v e 

types of events above, the s u p e r v i s o r may decide to make a task 

n o n - p r i v i l e g e d (see sec. 1,2.3) i f i t attempts to o b t a i n more 

than a c e r t a i n t h r e s h o l d of r e a l pages. The job must then wait 

f o r some other p r i v i l e g e d job t o leave t h a t s t a t u s before i t can 

be made p r i v i l e g e d , and have i t s page request s e r v i c e d . T h i s 

has the e f f e c t of making some page waits very l o n g . Events of 

t h i s type are e a s i l y separated from the r e s t by the l a r g e 

d i f f e r e n c e i n magnitude. 

Because of the v a r i o u s types of events making up the 

d i s t r i b u t i o n of page w a i t i n g times, no one f u n c t i o n can be made 

to f i t the observed data very c l o s e l y . I f one breaks the 

d i s t r i b u t i o n i n t o part corresponding to the events of d i f f e r e n t 

t y pes, however, a reasonable f i t can be obtained. (See f i g s . 

2.10, 2.11, and f i g . 2.12). In t h i s case, the d i s t r i b u t i o n was 

broken i n t o two p a r t s , the f i r s t corresponding to events of 

types 1, and 5 above, and the second to events of type 3. 

An e x p o n e n t i a l d i s t r i b u t i o n with a mean of 1ms was used to 

f i t the d i s t r i b u t i o n of events of types 1, and 5, and an E r l a n g 

d i s t r i b u t i o n with a mean of 22 ms and 6 channels was used t o f i t 

the events of type 3. T h i s g i v e s a f a i r f i t to the observed 

data, which shows a maximum d e v i a t i o n of 0.1453 with 

KS (.01)=0.0591. The p r o b a b i l i t y d e n s i t y f u n c t i o n f o r the 

r e s u l t i n g d i s t r i b u t i o n i s seen i n f i g . 2. 12. 
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F i g u r e 2.10 Page w a i t i n g times (tape 1) 

2.5 Other Parameters Of I n t e r e s t 

2*5.. 1- System Response- Time 

System response time i s d e f i n e d as the time that i t takes 

the system to s t a r t to type a response, a f t e r a user has entered 

h i s c a r r i a g e r e t u r n s i g n a l at an i n t e r a c t i v e t e r m i n a l . T h i s 

g u a n t i t y i s of i n t e r e s t , as i t i s o f t e n used as a c r i t e r i o n f o r 

judging the performance of t i m e - s h a r i n g systems. 

The d i s t r i b u t i o n observed had a mean of 0.42 seconds, with 

a standard d e v i a t i o n of 2. (see f i g . 2.13) The median was only 



35 

1Q0.Q 
T I M E 

150.0 200.0 250.0 

Figure 2.11 Page waiting times (tape 2) 



36 

30 ms. a Weibull d i s t r i b u t i o n gave the c l o s e s t f i t , and the 

observed values showed a maximum d e v i a t i o n of 0 .070 from i t , 

with KS (.01)=0.05. The d i s t r i b u t i o n i s s i m i l a r i n shape t o the 

one o b t a i n e d by Scherr [ 4 3 ] , although the mean i s an order of 

observed by Schwetman and DeLine [ 4 4 ] f o r the RESPOND system, 

although the mean time i s s i m i l a r i n t h i s i n s t a n c e . The RESPOND 

system seems t o make almost no very quick responses. 

Looking at the d i s t r i b u t i o n of proc e s s o r time r e q u i r e d 

between i n t e r a c t i o n s , one would expect very quick responses 

s i n c e so l i t t l e time i s used i n most cases ( l e s s than 55 ms), 

and the mean time f o r d i s k o p e r a t i o n s i f they are r e q u i r e d i s 

sm a l l ( l e s s than 100 ms). 

magnitude l e s s . I t i s q u i t e d i f f e r e n t i n shape to the one 

o 
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F i g u r e 2 .13 System reponse time 
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2.5.2 Ready I n t e r v a l s 

Beady i n t e r v a l s are def i n e d as the i n t e r v a l s of time that 

t a s k s which could be running on a CPU spend w a i t i n g on the 

processor gueue. These i n c l u d e tasks which have used up t h e i r 

t i m e - s l i c e s and are placed on the bottom of the gueue, and ta s k s 

which have been pre-empted and are placed on the top. The mean 

value f o r ready i n t e r v a l s i s very s m a l l s i n c e a l a r g e p o r t i o n of 

the i n t e r v a l s r epresent pre-empted tasks w a i t i n g f o r some 

i n t e r r u p t to be processed, and so w i l l o b t a i n CPU s e r v i c e again 

i n a r e l a t i v e l y s h o r t time, s i n c e most i n t e r r u p t s are processed 

i n 200 - 300 us. I t i s a l s o u n l i k e l y (at UBC) t h a t many ta s k s 

w i l l be stacked i n such a manner that each i s waiting f o r the 

prev i o u s task t o f i n i s h p r o c e s s i n g some i n t e r r u p t . P r o c e s s i n g 

of i n t e r r u p t s has been removed from the d i s t r i b u t i o n of a c t u a l 

CPU i n t e r v a l s , so the mean of the a c t u a l i n t e r v a l s i s l a r g e r 

than i t would be i f these were i n c l u d e d . I t i s f o r t h i s reason 

t h a t the mean of the ready i n t e r v a l s i s so s m a l l compared t o the 

mean of the a c t u a l CPU i n t e r v a l s . (See f i g s . 2.14 and 2.15 f o r 

d i s t r i b u t i o n s of ready i n t e r v a l s ) . 

2.5.3 I n t e r - A r r i v a l Times 

The i n t e r - a r r i v a l times of jobs to the system i s the time 

between s u c c e s s i v e "SIGNON's", not the time between submissions 

of jobs to the HASP gueue. For t e r m i n a l j o b s , the act of 

s i g n i n g on puts the job immediately i n t o the system, but f o r 

batch jobs the case i s d i f f e r e n t . Batch jobs are enqueued by 

HASP, and ordered a c c o r d i n g t o an assigned p r i o r i t y which i s 
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c a l c u l a t e d from the user's estimates of CPU time, and pages of 
output r e q u i r e d f o r the job. Jobs are released from the gueue 
f o r execution at a r a t e that i s dependent on the system load. 
Only two batch jobs are permitted i f there are many t e r m i n a l 
users signed on. The time that a batch job a c t u a l l y leaves the 
gueue and s t a r t s executing i s deemed i t s a r r i v a l time. 

The i n t e r - a r r i v a l times f o r t e r m i n a l jobs were found to be 
e x p o n e n t i a l l y d i s t r i b u t e d as expected, and the same was found to 
be true f o r batch jobs. The mean i n t e r - a r r i v a l time f o r batch 
jobs was 40 seconds, and was 94 seconds f o r the t e r m i n a l jobs. 
More accurate values f o r i n t e r - a r r i v a l times could be obtained 
by examining the system accounting records. 

T o t a l Processor- Time 

Processing time r e g u i r e d by jobs i s the t o t a l amount of CPU 
time reguired t o complete the job. This q u a n t i t y was found to 
be hyper-exponentially d i s t r i b u t e d with a mean of 16 seconds, 
and a standard d e v i a t i o n of 28, based on a sample of 136 jobs 
drawn from the data tapes. Again more accurate values could be 
obtained by examining the accounting s t a t i s t i c s s ince a much 
l a r g e r sample could be used. 



UO 

Tape • 1 1 Tape 2 

Terminal Batch | j Terminal J Batch 
Requested CPU 
int e r v a l s 18 .1 ms 

(87.6) 
2U.1 ms 
( 319^ 

lh.9 ms 
' . ( U6 . U ) ' 

2 3 . 2 ms ' 
( 2 1 3 ) 

Actual CPU 
Intervals 12.9 ms 

( 3 7 . 6 ) 
19.U ms 
(60.1) . 

6 . 0 ms 
| (1U.1) 

1 0 . 1 ms 
(16.1) 

I/O Delays 1 5 0 . 2 ms 
( 1 2 0 3 ) 

30.1 ms 
( 3 1 . 9 ) 

1 76.1 ms 
( 3 8 1 ) 

U2.2 ms 
(82 .3 ) 

User Response 1 0 . h sec 
(lh.9) 

• 
| 12.1 sec 
j (17.7) 

System Write O.hli sec 
( 1 . 9 0 ) 

| 0 . 5 7 sec 
( 1 . 6 7 ) 

System Response 0.39 sec 
(2 . 0 1 ) 

' •0.U7 sec 
• (2 . 1 U ) . 

CPU Time Between 
Interactions 

59-9 ms 
(719) 

55 .8 ms 
( 5 3 5 ) 

Page Waits 22.5 ms 
(22 .0 ) 

22.2 ms 
(22 .U) . j 

25.7 ms 
(20.7) 

2U.1 ms 
(15.U) 

Ready 
Intervals 

3.7 ms 
(11.4) • 

3-9 ms 
(li t . 8) 

' • 6 .U ms 
' (15.U) • 

7 . 0 ms 
(17 .5) 

No. Concurrent 
Tasks 

1~2 j — 1 9 2 - 3 

I n t e r - a r r i v a l 
Times 

9 U sec 

<*> | 

U 0 sec 
(111) 

Bracketted numbers are standard deviations. 

Table 2.1 Job stream cha r a c t e r i s t i c s 
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CHAPTER 3 STORAGE REQUIREMENTS 

3*. I Preamble 

In a time-sharing environment, there i s u s u a l l y 

i n s u f f i c i e n t core storage a v a i l a b l e to allow a l l users to have 

t h e i r f u l l a l l o t m e n t of s t o r a g e i n core s i m u l t a n e o u s l y . Schemes 

of v i r t u a l memory management have been developed [1,3,15,17,18] 

which t r y to g i v e each user only as much core as he needs at the 

moment, while the remainder of h i s a l l o t t e d memory space r e s i d e s 

on some secondary storage device such as a drum. The memory i s 

normally grouped i n t o b l o c k s c a l l e d pages, which are the u n i t s 

of storage t r a n s f e r r e d between core storage and the drum. A 

page i s brought i n t o core memory when a r e f e r e n c e i s made to i t , 

and pages t h a t are i n core f o r a long time, or have not been 

r e f e r e n c e d i n a long time, are placed on the drum to make more 

core storage a v a i l a b l e . 

Even with the l a r g e amounts of v i r t u a l storage that e x i s t 

i n such systems, each user cannot simply be a l l o c a t e d as much 

storage space as he might p o s s i b l y r e g u i r e , and be allowed to 

keep a l l t h i s space f o r the d u r a t i o n of h i s time on the system. 

In t h i s i n s t a n c e , most of the storage would be unused at any 

moment and poor u t i l i z a t i o n of the hardware would r e s u l t . In 

a d d i t i o n , a r e s t r i c t i o n would have to be placed on the number of 

simultaneous users which would depend on the t o t a l amount of 

storage a v a i l a b l e . 

To overcome t h i s problem, methods of dynamic storage 

a l l o c a t i o n have been d e v i s e d that allow jobs to a c q u i r e s t o r a g e 

as they need i t , and to r e l e a s e t h a t storage as soon as the need 

disappears. T h i s process i s t r a n s p a r e n t to the user i n most 
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cases, so that when he runs a program, the c o r r e c t amount of 
storage i s a u t o m a t i c a l l y acquired, and then released when the 
program terminates. Most systems provide the user with the 
c a p a b i l i t y of w r i t i n g programs that acquire storage during 
execution (see [ 2 5 ] ) , e i t h e r to load a d d i t i o n a l program modules, 
or to increase the s i z e of data areas, and t h i s storage may be 
re t a i n e d or released as the program w r i t e r sees f i t u n t i l the 
program terminates. 

Since the storage requirement of jobs i s a dynamic 
gu a n t i t y , any s i m u l a t i o n which s t u d i e s the u t i l i z a t i o n of 
v i r t u a l memory, must incorporate a model f o r the storage demands 
of jobs. Most s t u d i e s , however, have concerned themselves with 
paging behavior (such as times between inter-page references, 
and sequences of references, e t c . See [1,13,22]), and r e a l core 
requirements f o r e f f i c i e n t running [8,16,29], rather than the 
v a r i a b i l i t y of storage reguirements with time, s i n c e the concern 
was mostly the f e a s i b i l i t y of paging algorithms, and paging 
machines i n general. Lehman and Rosenfeld [31] broke t h e i r 
model of a job i n t o job steps, g i v i n g each step a d i f f e r e n t 
storage allotment. This comes c l o s e s t to modelling the v a r i a b l e 
nature of storage requirements. Denning [16] developed a model 
fo r the r e a l core demands of computer jobs, which he c a l l s the 
working set model. 

3,2 Observed Program Storage Requirements 

a storage p r o f i l e i s a p l o t of the storage reguirements of 
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a j o b o v e r i t s r u n n i n g t i m e ( S e e r i g . , 3 . 1 , a n a A p p e n d i x D f o r 

e x a m p l e s ) . A n u m b e r o f t h e s e p r o f i l e s w e r e c o l l e c t e d , a n d 

' d e s c r i p t i v e p a r a m e t e r s f o r e a c h w e r e m e a s u r e d . 'The t i m e s c a l e 

was n o r m a l i z e d t o make a l l t h e p r o f i l e s t h e same l e n g t h f o r 

c o m p a r i s o n - p u r p o s e s . T h e p a r a m e t e r s m e a s u r e d w e r e t h e j t a x i m u m 

number 0£ p a q e s , the icaan number o f p a g e s , the number o f 

d i s t i n c t humps (a hump i s a n a r e a o f t h e p r o f i l e w h e r e t h e 

n u m b e r , o f p a q e s p o s s e s s e d e x c e e d s a n a r b i t r a r y s m a l l l i m i t , 15 

p a g e s i n t h i s c a s e ) , t h e w i d t h o f t h e l a r g e s t hump, t h e n u m b e r 

o f c h a n g e s i n s t o r a g e r e q u i r e m e n t , t h e a v e r a g e s i z e o f t h e s e 

c h a n q e s a s a p e r c e n t o f t h e maximum n u m b e r o f p a g e s , , a n d t h e 

s i z e o f t h e maximum i n c r e a s e a n d d e c r e a s e i n s t o r a g e r e q u i r e m e n t 

a s a p e r c e n t o f t h e maximum n u m b e r o f p a y e s . 

CO ; 

CD o e 
Cd 
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w 
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max width---! 

i V T 
r hump 1 hump 2 

i . 1 ; ™ 

0.2 .0.4 0.6 
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JI 
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T 
1.0 

F i g u r e 3.1 - T y p i c a l s t o r a g e p r o f i l e w i t h m e a s u r e d 

p a r a m e t e r s . 

U s i n g t h e p a r a m e t e r s m e a s u r e d f o r e a c h p r o f i l e a s a v e c t o r 

d e f i n i n g t h e p o s i t i o n o f t h e p r o f i l e i n a n e i g h t d i m e n s i o n a l 

E u c l i d i a n s p a c e ( e i g h t ' p a r a m e t e r s ) , a n d d o i n g some c l u s t e r 
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a n a l y s i s [45] the p r o f i l e s were found to f a l l i n t o two c l u s t e r s . 

P r o f i l e s from the f i r s t group showed l a r g e maximum sto r a g e 

requirements, and u s u a l l y had one l a r g e hump c o v e r i n g most of 

the running time. The average maximum number of pages f o r t h i s 

group was 70 pages, and the average s i z e of change i n storage 

reguirement was 6.5 pages. (See f i g s . D.1 through D.8.) 

P r o f i l e s from the second group had an average maximum number of 

pages of 23, and the average s i z e of change was 4.1 pages. Most 

of the p r o f i l e s i n t h i s group show a g r e a t amount of f l u c t u a t i o n 

i n the storage possessed (see f i g s . D. 9 through D.20). 

about 50% of the batch jobs examined had storage p r o f i l e s 

f a l l i n g i n t o the f i r s t group, while only 25% of the i n t e r a c t i v e 

jobs had s i m i l a r requirements. At the U n i v e r s i t y of B r i t i s h 

Columbia, the MTS user i s charged f o r storage used during 

i n a c t i v e p e r i o d s when he i s signed on at an i n t e r a c t i v e 

t e r m i n a l , but not i f h i s job i s run from batch. T h i s makes 

programs with l a r g e s t o r a g e requirements c o s t l y to run 

i n t e r a c t i v e l y , and probably accounts f o r the lower p r o p o r t i o n of 

i n t e r a c t i v e jobs having p r o f i l e s i n the f i r s t group. 

3.3 A Model Tor Program Storage Requirements 

Since i t would be d e s i r a b l e to generate storage reguirement 

p r o f i l e s f o r computer jobs f o r s i m u l a t i o n purposes, a model was 

developed to do t h i s . The model used i s very simple i n 

p r i n c i p l e , but seems to generate p r o f i l e s q u i t e s i m i l a r t o the 

ones observed (see Appendix D, and Table 3 . 1 ) . 
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a) 

10 20 30 ko 
Percent of maximum number of pages 

Increases, i n storage allotment 

b) 

10 20 30 kO 50 
Percent of maximum number of pages 

Decreases i n storage allotment 

-r 
10 20 30 ko 

Percent of normalized time 
50 

c) Time storage allotment remained s t a t i c 
Figure 3.2 Dis t r i b u t i o n s f o r storage p r o f i l e model (grp 1) 
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Figure 3.3 Dist r i b u t i o n s f o r storage p r o f i l e model (grp 2) 
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A s e t of d i s t r i b u t i o n s was determined f o r the s i z e s of 

i n c r e a s e s and decreases i n the amount of storage possessed f o r 

each category (see f i g s . 3.2 and 3.3), and a l s o a d i s t r i b u t i o n 

f o r the l e n g t h s of time t h a t the number of pages remained 

s t a t i c . C o n d i t i o n a l p r o b a b i l i t i e s f o r the d i r e c t i o n of the next 

change i n the number of pages (up or down), given the d i r e c t i o n 

of the l a s t change, were measured from the observed storage 

p r o f i l e s . By drawing random numbers from the above 

d i s t r i b u t i o n s , and f o r c i n g an i n c r e a s e to the maximum storage 

s i z e a t some p o i n t , i t i s p o s s i b l e to generate very reasonable 

storage p r o f i l e s . A comparison i s found i n Table 3.1 

I t i s p o s s i b l e that a much more e l a b o r a t e model co u l d be 

devised, but because of the extreme v a r i a b i l i t y of jobs run on 

t h i s system, i t i s u n l i k e l y t h a t much b e t t e r p r o f i l e s c o u l d be 

obta ined. 

A f l o w c h a r t d e s c r i b i n g the model appears i n f i g u r e 3.4. 
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Figure 3.U- Flowchart of storage p r o f i l e model 



Maximum Mean tf tf humps Max % Max % tf o f Maximum Mean % 

tf pages pages x 10 i n c r e a s e d e c r e a s e changes w i d t h change 

Group 1 23.17 1 0 . 5 9 14 . 1 7 2 8 . 9 5 4 9 . 9 2 2 1 . 0 0 17.42 1 7 . 6 1 

Observed 
Group 2 7 0 . 4 3 42 . 8 4 11 .43 3 5 . 5 5 5 5 . 7 3 25.14 7 4 . 0 0 9 .27 

Group 1 23 .17 11 .72 1 5 . 0 0 3 2 . 3 1 6 1 . 6 6 1 7 . 0 9 2 1 . 5 0 1 8 . 6 6 

Generated 
Group 2 7 0 . 4 3 34.42 1 0 . 9 1 36.22 5 7 . 2 5 2 6 . 8 8 6 9 . 3 1 10 . 7 3 

T a b l e 3*1 Comparison o f observed p r o f i l e s , and t h o s e g e n e r a t e d 

by the model. 
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CHAPTER-U SUMMARY AND DISCUSSION 

ii-s.1 Summary And Discussion 

I t was found i n s e c t i o n 2.1 that the requested CPU 
i n t e r v a l s f o r batch jobs were about 30% longer on the average 
than those f o r i n t e r a c t i v e jobs, and that these i n t e r v a l s have 
standard d e v i a t i o n s about four times as large as t h e i r means. 
E i t h e r a hyper-exponential or a W e i b u l l d i s t r i b u t i o n can be used 
as a model f o r the i n t e r v a l s , with the hyper-exponential 
d i s t r i b u t i o n being the e a s i e s t to use, as i t i s much e a s i e r to 
generate parameters that g i v e the d e s i r e d mean and variance. 
The r e l a t i o n s h i p between the d i s t r i b u t i o n parameters, and the 
mean and variance f o r the Weibull d i s t r i b u t i o n i s very complex, 
(see Appendix B) and no s t r a i g h t forward s o l u t i o n e x i s t s to 
determine the parameters from them. 

The processor time r e q u i r e d by i n t e r a c t i v e t a s k s , i s broken 
up i n t o reguested CPU i n t e r v a l s , with disk or tape I/O 
operations terminating a l l but the l a s t of these i n t e r v a l s , 
which i s terminated by a te r m i n a l I/O operation. The Weibull 
d i s t r i b u t i o n g i v e s the c l o s e s t f i t according to the Kolmogorov-
Smirnov goodness of f i t t e s t , has a mean and standard d e v i a t i o n 
much l e s s than those observed due to a few very large values i n 
the observed d i s t r i b u t i o n . 

A s h i f t e d Weibull d i s t r i b u t i o n (one with the 2f parameter 
greater than zero) provides a f a i r l y good f i t to the observed 
d i s t r i b u t i o n of user response times, but f o r the d i s t r i b u t i o n of 
times that i t takes the system to write l i n e s no d i s t r i b u t i o n 
f u n c t i o n was found to provide a reasonable f i t . I t would 
probably be a good idea to break t h i s d i s t r i b u t i o n up according 
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to the various types of devices i n v o l v e d , and to determine a 
d i s t r i b u t i o n of w r i t e times f o r each one. 

A Weibull d i s t r i b u t i o n with a s h i f t can be used to model 
disk I/O del a y s , but the f i t obtained i s not a good one. 

The d i s t r i b u t i o n of page waiting times f o r the MTS system, 
i s best broken up i n t o two cat e g o r i e s i f one wants to generate 
page t r a n s f e r delays with a d i s t r i b u t i o n s i m i l a r to the ones 
observed. An exponential d i s t r i b u t i o n models the delays that do 
not require a t r a n s f e r of a page from the drum, and the 
t r a d i t i o n a l Erlang d i s t r i b u t i o n can be used to model those 
delays that do. 

D i s t r i b u t i o n s of system response time, and a c t u a l CPU 
i n t e r v a l s can be used to check the accuracy of s i m u l a t i o n models 
t e s t e d . 

In the area of program storage requirements, more work 
might be p r o f i t a b l e . For s i m u l a t i o n models, the r e l a t i o n s h i p 
between v i r t u a l storage allotment and the amount of r e a l core 
needed would be u s e f u l , as w e l l as r e l a t i o n s h i p s between amount 
of r e a l core, the number of simultaneous users, and the amount 
of paging done. The model developed i n s e c t i o n 3.3 f o r v i r t u a l 
storage requirements of jobs i s only a beginning i n t h i s 
d i r e c t i o n . 

H.2 A Simple Model Of MTS For Simulation 

The f o l l o w i n g simple s i m u l a t i o n model of MTS could be used 
to employ some of the measures taken i n t h i s study. The model 
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keeps three l i s t s o u t l i n e d below: 

1) Job L i s t 
Each entry on the job l i s t c o n t a i n s a l l the 

informati o n concerning a p a r t i c u l a r job running on 
the simulated system, and i n c l u d e s these f i e l d s : 

TC maximum CPU time f o r the job 
TE current t o t a l CPU time f o r the job 
TR time remaining i n the c u r r e n t reguest 

f o r CPU s e r v i c e 
TRTS time remaining i n the t i m e - s l i c e 
NB the reason the job w i l l stop at the end 

of the curren t requested CPU i n t e r v a l 

Various other f i e l d s can be used to keep track of 
s t a t i s t i c s of i n t e r e s t such as the cu r r e n t number of 
r e a l pages, the cumulative wait time, e t c . 

2) CPU Queue 

This l i s t i s l i n k e d with the f i r s t entry 
p o i n t i n g to the next, e t c . Each entry contains only 
a pointer to the job l i s t , and the l i n k to the next 
ent r y , with the p o s i t i o n of the entry i n d i c a t i n g the 
p o s i t i o n of the corresponding job i n the simulated 
CPU gueue. 
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3) Event L i s t 

This l i s t i s a l s o l i n k e d , and ordered according 
to the times of the events represented. Events i n 
t h i s l i s t w i l l cause the pre-emption of a job that 
i s running on a CPU i f any job i s running at the 
time of the event. Each entry contains a p o i n t e r to 
the job l i s t i n d i c a t i n g the job a s s o c i a t e d with the 
event, an i n d i c a t i o n of the event type, and a l i n k 
to the next entry i n the l i s t . 

In a d d i t i o n the model keeps the current time T. 

A flowchart of the model appears i n f i g . 4 . 1 . The value 
i i n d i c a t e s the job c u r r e n t l y i n possession of a CPU. (note: 
the model i s shown f o r o n l y one CPU since others are i d e n t i c a l ) 
Tr i s the running time before stopping f o r the job c u r r e n t l y on 
the CPU, and Tn i s the time of the next event from the event 
l i s t . Tev i s the time c a l c u l a t e d f o r an event to occur. 
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i L i i Concluding Remarks 

Information on the workloads of computing systems becomes 

i n c r e a s i n g l y d i f f i c u l t t o o b t a i n as the systems become more 

complex. New t o o l s must c o n s t a n t l y be developed to overcome 

t h i s problem, as a good understanding of the behavior of 

programs i s necessary f o r one to design new o p e r a t i n g systems, 

or modify o l d ones, with the idea of producing a system t h a t 

makes good use of the hardware a v a i l a b l e (to minimize waste) , 

and a l s o g i v e s s a t i s f a c t o r y performance t o users . Basing an 

oper a t i n g system design on f a u l t y assumptions about the 

c h a r a c t e r i s t i c s of programs, i s bound to be a h i t and miss 

a f f a i r . 

The purpose of t h i s study has been to measure some of the 

important c h a r a c t e r i s t i c s of programs at the U n i v e r s i t y of 

B r i t i s h Columbia. The Data C o l l e c t i o n F a c i l i t y w r i t t e n by 

Dr. T. B. P i n k e r t o n f o r the MTS o p e r a t i n g system has proven to 

be a v a l u a b l e t o o l to t h i s end. 
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APPENDIX A THE DATA COLLECTION FACILITY 

The DCF c o n s i s t s of two UMMPS jobs c a l l e d STAT and STATSW 
and of supervisor subroutine which i s invoked from various 
points i n the s u p e r v i s o r , and which may a l s o be invoked by a 
SVC. 

The STAT job manages a r i n g of b u f f e r s which i t w r i t e s onto 
a tape when f u l l . The STATSW job i s r e s p o n s i b l e f o r s e t t i n g and 
r e s e t t i n g a word of switches i n each entry i n the job t a b l e , 
which i n d i c a t e whether or not data i s to be c o l l e c t e d f o r that 
job, and what items are to be c o l l e c t e d f o r i t i f data i s to be 
c o l l e c t e d . The supervisor subroutine i s r e s p o n s i b l e f o r p l a c i n g 
the items i n the b u f f e r s . Each item c o n s i s t s of a two word 
p r e f i x c o n t a i n i n g the item type, item length, ID of job to which 
the item a p p l i e s , an i n d i c a t i o n of which CPU the item occurred 
on, and the time of the event, followed by from zero to s i x 
words of s p e c i f i c i n f o r m a t i o n about the event. 

The presence of such a f a c i l i t y i n a system, must cause 
some degradation i n performance, but the amount i n t h i s case i s 
s m a l l . Roughly 10 us of CPU time i s r e q u i r e d every_ time the 
s u p e r v i s o r i s entered to see i f the DCF i s c u r r e n t l y a c t i v e . I f 
i t i s , the b u f f e r entry subroutine can place each item i n t o a 
b u f f e r at a cost of about 65 us each. In a d d i t i o n , the SVC c a l l 
from a job program to save an item requires about 330 us of CPU 
time, but only about 10% of items are c o l l e c t e d i n t h i s manner. 
My measurements have shown that on a f a i r l y busy day, with the 
DCF o p e r a t i n g , roughly 0.6% of the CPU time i s used by the STAT 
job, and about 4% of the CPU time by b u f f e r entry subroutine and 
SVC c a l l to enter data i n b u f f e r s . The DCF a l s o uses roughly 3% 
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of the r e a l core a v a i l a b l e to users. 

I t i s p o s s i b l e f o r no bu f f e r to be a v a i l a b l e when an item 
i s to be entered. In t h i s case, a count i s kept of a l l items 
missed u n t i l a b u f f e r becomes a v a i l a b l e and a s p e c i a l item 
i n d i c a t i n g t h i s number i s i n s e r t e d as the f i r s t item of the new 
b u f f e r . This s i t u a t i o n , however, occurs only r a r e l y . 

The data c o l l e c t i o n f a c i l i t y i n MTS i s c u r r e n t l y the most 
f l e x i b l e and d e t a i l e d a v a i l a b l e . 
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APPENDIX B FITTING WEIBULL AND HYPER-EXPONENTIAL 

DISTRIBUTIONS 

THE WEIBULL DISTRIBUTION 

The Weibull d i s t r i b u t i o n has the gen e r a l form 

F{x) = i- e-<K*-y> b 

where X i s a s h i f t parameter which i s normally e g u a l t o zero 

when one i s i n t e r e s t e d i n time dependent v a r i a b l e s . T h i s g i v e s 

us the f o l l o w i n g form f o r the W e i b u l l d i s t r i b u t i o n 

F(t) = l-e"*** 

The mean of t h i s d i s t r i b u t i o n i s giv e n by 

and the v a r i a n c e by 

<*2*{ f(2/S+1)-r 2(/S+D } 
where ot = 1/a, /3 - 1/b 

In order to o b t a i n e s t i m a t e s of the parameters a and b we may 

apply the f o l l o w i n g t r a n s f o r m a t i o n 

1-F(t) = e"*r 

l n ( 1 - F (t)) = - a t b 

l n ( 1 / ( 1 - F { t ) ) ) = a t b 

l n (In ( 1 / ( 1 - F (t) ) )) = l n a + b In t 

which r e s u l t s i n a l i n e a r equation i n the v a r i a b l e s 

l n (ln ( 1 / ( 1 - F (t)) ) and l n t . The slope of t h i s l i n e i s b r and 

the i n t e r c e p t i s l n a. We can f i n d two p o i n t s on t h i s l i n e by 

s e t t i n g each of the v a r i a b l e s to zero i n t u r n . 

(1) l n t = 0 when t = 1 

Some s u i t a b l e s c a l i n g f a c t o r can be a p p l i e d t o the time v a r i a b l e 

t o get a value of t = 1 near to the maximum time f o r which data 

was c o l l e c t e d and not grouped i n an overflow c l a s s . E v a l u a t i n g 

l n (ln ( 1 / ( 1 - F ( t ) ) ) ) at t h i s p o i n t g i v e s a value f o r l n a. 
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(2) ln ( l n { 1 / ( 1 - F . ( t ) ) ) ) = 0 
when 1/(1-F(t)) = e 

or F (t) = 0. 6321 
from the sample d i s t r i b u t i o n , f i n d a value T such that 
F (T) = 0. 6321. The parameter b may now be c a l c u l a t e d from 

b = -In a/In T. 

An i n v e r s e f u n c t i o n e x i s t s f o r the Weibull d i s t r i b u t i o n , 
and i s derived as f o l l o w s : 

P (x<t) = 1-e" a t b 

1-p = e-** 

In p = - a t b 

t b = ln[ d / p ) 0 1 ] 
In t = /Q l n ( l n [ (1/p)*] 
In t = l n ( l n [ ( 1 / p ) * ] ) * 

t = [ <*ln{1/p) ] * 

THE HIPER-EXPONENTIAL DISTHIBUTION 

A hyper-exponential d i s t r i b u t i o n may be represented by the 
general form 

F(t) = + (1-s)e - 2('-s)^" t' 
The mean of t h i s d i s t r i b u t i o n i s given by 1/Ar and the variance 
by 

Cr2 = [ (1-2s+2s2)/(2s-2s2) ](1 / A ) 2 

Given the mean and variance of a sample d i s t r i b u t i o n , we may 
c a l c u l a t e a value f o r the parameter s as f o l l o w s : 

l e t k = a 2
 A? 
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k = ( 1 - 2 s + 2 s 2 ) / ( 2 s - 2 s 2 ) 

t h i s y i e l d s 

s = (2k+2-2 ( k2-1)' A)/(Uk+4) 

w h i c h h a s a s o l u t i o n a s l o n g a s k>1, w h i c h must be t r u e f o r t h e 

h y p e r - e x p o n e n t i a l d i s t r i b u t i o n s i n c e t h e v a r i a n c e i s g r e a t e r 

t h a n t h e s g u a r e o f t h e mean. 
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APPENDIX C MTS DATA 

Data was c o l l e c t e d f o r t h i s study on two occasions, f i r s t 

on June 19, 1971, and secondly on November 11, 1971. The f i r s t 

data tape (tape 1) r e p r e s e n t s a l i g h t load on the system, with 

only about 7 i n t e r a c t i v e jobs, and 2 batch jobs running 

s i m u l t a n e o u s l y . The second data tape (tape 2) was c o l l e c t e d to 

observe the system under h e a v i e r l o a d . During the time that 

c o l l e c t i o n took p l a c e , about 19 i n t e r a c t i v e j o b s , and 2 to 3 

batch jobs were running s i m u l t a n e o u s l y , The number of batch 

jobs i s r e s t r i c t e d a t times of heavy usage by i n t e r a c t i v e j o bs 

t o prevent the system from g e t t i n g bogged down. 

As can be seen i n Table C.1, even under the heavier l o a d 

c o n d i t i o n , the CPU's are i d l e 48% of the time. The u t i l i z a t i o n 

of the CPU's at The U n i v e r s i t y of B r i t i s h Columbia's computing 

c e n t r e approaches 100% during the midnight hours, when most of 

the l a r g e batch jobs are run. 

I t i s i n t e r e s t i n g to note that the DCF uses c o n s i d e r a b l y 

more of the system's res o u r c e s (Table C.1) than P i n k e r t o n has 

i n d i c a t e d i n e i t h e r [ 3 1 ] , or [ 3 2 ] . The times were c a l c u l a t e d 

u s i n g h i s formula of 65 us f o r the c o l l e c t i o n of 90% of the 

items, and 330 us f o r the remainder. The times f o r the b u f f e r 

managing subroutine (STAT) were measured d i r e c t l y from the data 

tapes. 

A frequency d i s t r i b u t i o n of the items on the tapes may be 

found i n Table C.2, and a comprehensive d e s c r i p t i o n of the items 

i n [ 3 ] . 



Tape 1 . Tape 2 

Date 19-6-71 12-11-71 

Start Time 15:25 14;03 

Durration 95 min 

No. of Items 753389 ' 2749238 

GJVU' s Idle 83.6% 48.4% 

CPU Time f o r DC? 4 .0% 4.8% 

data c o l l e c t i o n 5.5% 4.2% 

STAT job (buffers) 0.5% 0.6% 

CPU Time f o r PDP 2.9% , 6.6% 

Total CPU Time f o r 
Non-user Tasks 

12.3% 16.8% 

Table C l MTS Data 



STAT ITEM • j* on' TAPIS 1 /V on TAPE 2 

OVERFLOW 0 3 

'•DATii I 1 

ADTOTOP. • 35U53 , 2 0 1 6 5 1 

POPvi • 320U1 • 130960 
WAYT 91326 • 29*311; 
UNWAYT ob656 •' ' 297U75 
QUiiUS '• 3U9U12 - ' 1187322 

STATSW .'. 3 U 9 . • • • _ ; 397 

PAG IKSTK , $Qhb ' 3QO69 
PAGINiX) 'N SOht ' . 36872 

PAGOUTST •••• . " ' 5552 •• U2132 

PAGOUTDN. , 5U76 • 1^689 

P A G R E C L M ' * ' 8276 30210 

G3TVKPAG . ' 9196- 32658 

WEVMPAG •• 9u67 32760' 

SYNCHRON ' . 91 95 

VMP^GES 12695 . iSubk 
WAITrOH • 1790 _ 20u6 
UNLOAD- 212 595 

LOAD. ., 211 .•• . . 63u 

F R E S S P A C 2956.9 •. .' v . ' 96088 

G E T S P A C S 28951' ' . 95287. 

DSP.IX ' ' ' ,17183 , 69336 

DSROUT 1716U • ; .69330 

G T A L S 753389. 27U9238 

Table G.2 . Frequency of STAT items. 
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The c o n f i g u r a t i o n of the 360/67 computing system at the 
U n i v e r s i t y of B r i t i s h Columbia during the time of t h i s study was 
as f o l l o w s : 

processors 
drum storage u n i t s 

1) 2 2067 

2) 2 2301 

3) a 2365-2 

4) 2 2860-2 

5) 2 2870 

6) 2 2314 

7) 1 2321 

8) assorted 

8-drive d i s k u n i t s 
data c e l l 

u n i t s , i n t e r a c t i v e t e r m i n a l s , and the associated 
c o n t r o l eguipment. 

The two processors run i n f u l l duplex mode, 


