
PROGRAM AND JOB-STREAM CHARACTERISTICS
IN THE MICHIGAN TERMINAL SYSTEM

by

KENNETH H. BOWLER

B. Eng., Carleton U n i v e r s i t y , 1969

A t h e s i s submitted i n p a r t i a l f u l f i l m e n t of
the requirements f o r the degree of

MASTER OF SCIENCE

i n the Department
of

COMPUTER SCIENCE

We accept t h i s t h e s i s as conforming to
the r e q u i r e d standard.

THE UNIVERSITY OF BRITISH COLUMBIA
J u l y , 1972

In present ing th is thes is in p a r t i a l f u l f i l m e n t of the requirements for

an advanced degree at the Un ive rs i t y of B r i t i s h Columbia, I agree that

the L i b r a r y sha l l make i t f r e e l y a v a i l a b l e for reference and study.

I fu r ther agree that permission for extensive copying o f th is t h e s i s

fo r s c h o l a r l y purposes may be granted by the Head of my Department or

by h is representa t ives . It is understood that copying or p u b l i c a t i o n

o f th is t h e s i s f o r f i n a n c i a l gain sha l l not be allowed without my

wr i t ten permiss ion .

Department

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver 8, Canada

i

ABSTRACT

There has been l i t t l e p u b l i s h e d about the c h a r a c t e r i s t i c s

of computer jobs running on modern tim e - s h a r i n g computer

systems, due l a r g e l y to the l a c k of a p p r o p r i a t e programs and

equipment necessary to measure the parameters i n v o l v e d . In t h i s

t h e s i s , measures are presented f o r some of the important

c h a r a c t e r i s t i c s of jobs. The Data C o l l e c t i o n F a c i l i t y , which i s

part of the Michigan Terminal System, was used to t h i s end. The

Michigan Terminal System i s a time-sharing o p e r a t i n g system f o r

the IBM 360/67 computer, and supports batch and t e r m i n a l users

s i m u l t a n e o u s l y .

Chapter 1 g i v e s an o u t l i n e of the problem, and other work

which has been done i n t h i s l i n e . I t a l s o c o n t a i n s a reasonably

d e t a i l e d d e s c r i p t i o n of the Michigan Terminal System. In

Chapter 2, measurements of requested CPU s e r v i c e , CPU s e r v i c e

obtained, system and user response times, I/O delays, and page

wai t i n g times are g i v e n . Chapter 3 o u t l i n e s the s t o r a g e

requirements of jobs, and g i v e s a model which w i l l generate

p r o f i l e s of s t o r a g e r e q u i r e d by jobs over t h e i r running times,

which are very s i m i l a r to p r o f i l e s observed f o r a c t u a l jobs.

Some d i s c u s s i o n of the r e s u l t s i s given i n chapter 4, and a l s o a

simple model of the system i s shown which might be used i n a

s i m u l a t i o n study employing measurements taken i n t h i s study.

i i
TABLE OF CONTENTS

Chapter 1 - I n t r o d u c t i o n 1
1.1 Preamble 1
1.2 D e s c r i p t i o n of the Michigan Terminal System 6
1.3 Problem Area 18

Chapter 2 - Some Basic C h a r a c t e r i s t i c s 21
2.1 fieguests f o r CPU Se r v i c e 21
2.2 CPU Se r v i c e Obtained 25
2.3 I/O Delays 27
2.4 Page Waiting Times 32
2.5 Other Parameters of I n t e r e s t 34

Chapter 3 - Storage Requirements 4 1
3.1 Preamble 4 1
3.2 Observed Storage Requirements 42
3.3 A Model f o r Program Storage Requirements 44

Chapter 4 - Summary and Discussion 50
4.1 Summary and Discussion 50
4.2 A Simple Model of MTS f o r Simulation 51
4.3 Concluding Remarks 57

Bib l i o g r a p h y 58
Appendix A - The Data C o l l e c t i o n F a c i l i t y 63
Appendix B - F i t t i n g Weibull and Hyper-exponential

D i s t r i b u t i o n s 65
Appendix C - The Data 68
Appendix D - Storage P r o f i l e s 71
Appendix E - The Computing System 85

i l l
LIST OF TABLES

2.1 Job stream c h a r a c t e r i s t i c s UO
3.1 Comparison of observed p r o f i l e s , and those

generated by the model U9

C.1 MTS data 69
C.2 Frequency of STAT items 70

LIST OF FIGURES

1. 1 Flowchart of storage scheduling 15
1. 2 Flow of tasks i n MTS 20
2. 1 Requested CPU i n t e r v a l s (i n t e r a c t i v e) 23
2. 2 Requested CPU i n t e r v a l s (batch) 23
2. 3 Processor time between i n t e r a c t i o n s 24
2. 4 Ac t u a l CPU i n t e r v a l s (tape 1) 26
2. 5 Ac t u a l CPU i n t e r v a l s (tape 2) 26
2. 6 I/O delays (batch) 28
2. 7 I/O delays (i n t e r a c t i v e) 28
2. 8 User response time 31
2. 9 System wri t e time (i n t e r a c t i v e) 31
2, 1 Page waiting times (tape 1) 34
2, 11 Page waiting times (tape 2) 35
2, 12 Page waiting times generated by the model 35
2. 13 System response time 36
2. 14 Ready i n t e r v a l s (tape 1) 38
2. 15 Ready i n t e r v a l s (tape 2) 38
3. 1 T y p i c a l storage p r o f i l e 43
3. 2 D i s t r i b u t i o n s f o r storage p r o f i l e model (grp D 45
3. 3 D i s t r i b u t i o n s f o r storage p r o f i l e model (grp 2) 46
3. 4 Flowchart f o r storage p r o f i l e model 48
a . 1 Flowchart f o r a model of MTS 54
D. 1 through D.8 Observed p r o f i l e s (group!) 71- 74
D. 9 through D.20 Observed p r o f i l e s (group 2) 75- 80
D. 21 through D.24 Generated p r o f i l e s (group D 81- 82
D. 25 through D.28 Generated p r o f i l e s (group 2) 83- 84

V
ACKNOWLEDGMENT

I w i s h t o e x p r e s s my t h a n k s t o Dr. D.A.R. S e e l e y f o r h i s

h e l p f u l a s s i s t a n c e d u r i n g t h e p r e p a r a t i o n o f t h i s t h e s i s , a n d t o

t h e N a t i o n a l R e s e a r c h C o u n c i l o f Ca n a d a , and t h e D e p a r t m e n t o f

Computer S c i e n c e f o r p r o v i d i n g f i n a n c i a l a s s i s t a n c e d u r i n g t h e

c o u r s e o f my s t u d i e s . I w i s h a l s o t o t h a n k my w i f e , J o a n , who

p r o v i d e d much e n c o u r a g e m e n t , and s p e n t many h o u r s k e y p u n c h i n g

and p r o o f - r e a d i n g f o r t h e p r e p a r a t i o n o f t h i s work.

CHAFTEB 1 INTRODUCTION

1.1 Preamble

In the p a s t , program behavior and the c h a r a c t e r i s t i c s of

the job mix running on a computer system were r e l a t i v e l y easy

t h i n g s to observe. The machines were slow, and u s u a l l y ran as

s i n g l e thread batch systems, so that one program was processed

to completion before another was allowed on the system. I t was

p o s s i b l e on the e a r l y machines to time the p e r i o d s of p r o c e s s o r

a c t i v i t y and waits f o r I/O with a stop watch s i n c e there was no

o v e r l a p of p r o c e s s i n g and I/O, and the times of the events were

of the order of seconds. On f a s t e r machines the measurements

s t i l l c o u l d have been e a s i l y made using some s o r t of hardware

device to do the measuring. With the advent of

multiprogramming, measurements of program behavior became much

more d i f f i c u l t . Hardware devices c o u l d s t i l l measure e a s i l y the

p r o c e s s i n g and I/O i n t e r v a l s on the system, but, as s t a t e d by

Drummond [1 9] , data dependent c h a r a c t e r i s t i c s such as job

i d e n t i f i c a t i o n , data set i d e n t i f i c a t i o n , and the o r i g i n s of

r e g u e s t s are not r e a d i l y a v a i l a b l e . In e f f e c t , what these

d e v i c e s measure i s system behavior and not program behavior.

The c h a r a c t e r i s t i c s of s i n g l e jobs can be determined using

a hardware d e v i c e by running the jobs alone on the system one at

a time, as was done by Cheng [1 2] . T h i s method i s t e d i o u s , and

t i e s up the system f o r long p e r i o d s of time, which makes i t

i m p r a c t i c a l t o use i n a busy environment.

Other c o m p l i c a t i o n s f o r measurement a l s o a r i s e . Not a l l

the I/O i s a s s o c i a t e d with the jobs that are running. In an

e f f o r t to improve the u t i l i z a t i o n of various resources of the

2

system, jobs can not be allowed to t i e up c e r t a i n d e v i c e s f o r

long p e r i o d s of time. (In p a r t i c u l a r c a r d readers and

p r i n t e r s) . I f a job i s allowed to possess a p r i n t e r , i t w i l l

t i e i t up f o r the d u r a t i o n of i t s running time on the system,

(since the output f o r one job must be kept together) even though

i t p r i n t s o n l y a few l i n e s . Other jobs r e q u i r i n g the p r i n t e r

can not be dispatched. The s o l u t i o n i s to have the job write

i t s output to a f i l e on d i s k (or t a p e) , and a f t e r i t i s f i n i s h e d

have the system take care of the p r i n t i n g . S i m i l a r l y c a r d input

i s read i n t o a d i s k f i l e , and the job can read the f i l e as i t

progresses without t y i n g up the card reader f o r long p e r i o d s .

So we have the system, as well as the jobs running, doing I/O.

Time-sharing adds the a d d i t i o n a l c o m p l i c a t i o n t h a t a job running

on a GPU does not need t o i n i t i a t e an I/O o p e r a t i o n to l o s e

c o n t r o l of i t s CPU.

On a m u l t i p r o c e s s i n g system more than one job can be

running on the system at once and the task of a s s o c i a t i n g events

with the job i n v o l v e d i s a very complex one f o r an e x t e r n a l

hardware de v i c e , (A good d e s c r i p t i o n of the type of i n f o r m a t i o n

gathered by a hardware d e v i c e may be found i n [7]) . For a

software d e v i c e , t h i s task i s much simpler, and v a r i o u s such

d e v i c e s (see [3 , 4 7] f o r examples) have been w r i t t e n f o r some

computer systems. Software d e v i c e s have such i n f o r m a t i o n , as

job i d e n t i f i c a t i o n and the s t a t i s t i c s t h a t the system keeps

about the j o b s , e a s i l y a v a i l a b l e to them (the device may be the

part of the system t h a t c o l l e c t s these s t a t i s t i c s) , but r e q u i r e

f o r t h e i r o p e r a t i o n some part of the system's r e s o u r c e s . T h i s

f a c t i m p l i e s that they can a f f e c t the measurements that they are

3

t a k i n g , a n d t h i s must a l w a y s be c o n s i d e r e d when u s i n g s u c h a

d e v i c e .

Two t y p e s o f s o f t w a r e measurement t e c h n i q u e s have emerged

i n r e c e n t y e a r s . One a p p r o a c h i s a s a m p l i n g [1 9 , 4 7 , 4 8] f o r m o f

measurement i n w h i c h v a r i o u s s t a t i s t i c s k e p t a b o u t t h e j o b s a r e

s a m p l e d p e r i o d i c a l l y and t h e r e s u l t s r e c o r d e d . (CPU t i m e , I/O

r e g u e s t s , p a g e r e a d s e t c .) I t i s e a s y t o s e e t h a t a w e l l d e v i s e d

p r o g r a m t o do t h i s s a m p l i n g w i l l n o t a f f e c t t h e m e a s u r e m e n t s

t h a t i t t a k e s , a s l o n g as i t d o e s n o t s a m p l e t o o f r e q u e n t l y . I t

m i g h t use o n l y a few m i l l i s e c o n d s o f CPU t i m e e v e r y f ew s e c o n d s ,

b u t t h e r e i s a c o n s i d e r a b l e l o s s o f d e t a i l e d i n f o r m a t i o n u s i n g

t h i s t e c h n i g u e . Mean t i m e s f o r e v e n t s may be o b t a i n e d , b u t

i n f o r m a t i o n a b o u t d i s t r i b u t i o n s o f e v e n t t i m e s , and t h e

s e q u e n c e s o f e v e n t s [1 9 , 4 0] w i l l be l o s t .

The s e c o n d t y p e o f d e v i c e (program) m o n i t o r s c o n t i n u o u s l y ,

and e v e r y i m p o r t a n t e v e n t h a p p e n i n g i n t h e s y s t e m c a n be

r e c o r d e d . (See [3 , 3 9] f o r e x a m p l e s .) I n o r d e r t h a t t h i s

t e c h n i q u e d o e s n o t c o m p l e t e l y o v e r w h e l m t h e m e a s u r e m e n t s t h a t i t

i s t a k i n g , i t must be a p a r t o f t h e s u p e r v i s o r p r o g r a m o f t h e

s y s t e m , s i n c e t h e i n f o r m a t i o n i s e a s i l y a v a i l a b l e a t t h i s l e v e l ,

and may be o b t a i n e d a t s m a l l e x p e n s e . ft p r o g r a m t o do t h i s t y p e

o f m o n i t o r i n g , e x t e r n a l t o t h e s u p e r v i s o r , would v i r t u a l l y h a v e

t o i n t e r p r e t e v e r y a c t i o n t h a t t h e s u p e r v i s o r t a k e s , t o s e e i f

some i n f o r m a t i o n n e e d s s a v i n g . S u c h i n t e r p r e t a t i o n w o u l d c a u s e

c o n s i d e r a b l e d e g r a d a t i o n o f s y s t e m p e r f o r m a n c e , b e c a u s e o f t h e

p r o c e s s o r t i m e n e c c e s s a r y t o a c c o m p l i s h i t . T h i s makes t h i s

t e c h n i g u e much more d i f f i c u l t t o i m p l e m e n t t h a n t h a t o f

4

sampling. The disadvantage of the continuous monitoring

technique i s that enormous q u a n t i t i e s of raw data are produced,

and the c o s t of reducing these data can be qu i t e l a r g e . The

sampling method on the other hand, produces manageable

q u a n t i t i e s of s p e c i f i c data which are more e a s i l y reduced.

L i t t l e data has been published on the c h a r a c t e r i s t i c s of

jobs i n a t i m e - s h a r i n g environment, other than t h e i r behavior

with r e s p e c t t o paging, and paging s t r a t e g i e s . Brawn and

Gustavson [8] measured the e f f e c t of r e s t r i c t i n g r e a l memory

s i z e on the running time of v a r i o u s programs, and they, as well

as H a t f i e l d [2 6] , s t u d i e d the e f f e c t of r e s t r u c t u r i n g programs

to l o c a l i z e t h e i r memory r e f e r e n c e s , on the amount of paging

r e g u i r e d . Coffman and V a r i a n [13] were i n t e r e s t e d i n the times

between i n t e r - p a g e r e f e r e n c e s (as were Fine e t a l [2 2]) , and

a l s o page r e s i d e n c e times i n main memory. U n f o r t u n a t e l y t h e i r

study was done using u n r e a l i s t i c r e s t r i c t i o n s on core s i z e .

F r e i b e r g s [23] has measured the times taken between c a l l s

t o the s u p e r v i s o r program f o r s e r v i c e s , f o r a few types of

programs (a FOBTRAH compiler, a l i s t p r o c e s s i n g program, e t c .) ,

and has measured a d i s t r i b u t i o n f o r the maximum memory

requirements of jobs on M c G i l l ' s IBM 7044. Scherr [45] and

Schwetman and DeLine [44] have measured d i s t r i b u t i o n s f o r user

response time (think time) and system response time f o r two

d i f f e r e n t systems. Scherr as w e l l has obtained a d i s t r i b u t i o n

f o r the amount of pr o c e s s o r time demanded by tasks between

i n t e r a c t i o n s on P r o j e c t MAC 'S CTSS system. Baskett e t a l [5]

have measured a d i s t r i b u t i o n f o r d i s k I/O de l a y s .

5

The problem of page t r a n s f e r times has been w e l l covered i n

the l i t e r a t u r e [14,39], but i n the Michigan Terminal System

(MTS), which i s the o p e r a t i n g system f o r the U n i v e r s i t y of

B r i t i s h Columbia's IBM 360/67 computer, a l a r g e p o r t i o n of the

page f a u l t s do not r e q u i r e page t r a n s f e r s from the drum. These

f a u l t s r e s u l t from the f i r s t r e f e r e n c e to a new page. MTS does

not a l l o c a t e any r e a l page to a job u n t i l a f t e r t h at page has

been r e f e r e n c e d . The f i r s t r e f e r e n c e to a, new page causes a

page f a u l t which can be d e a l t with by immediately a l l o c a t i n g an

a v a i l a b l e r e a l page, and no drum t r a n s f e r occurs. (See s e c t i o n

2.4.)

Parameters l i k e the t o t a l processor time r e q u i r e d by jobs,

and job i n t e r - a r r i v a l times are h i g h l y s i t u a t i o n dependent, but

can be e a s i l y obtained i f the system keeps any accounting

s t a t i s t i c s .

Although models have been proposed f o r the r e a l core

reguirements of computer jobs, notably Denning»s [1 6] , almost

nothing e x i s t s concerning jobs* v i r t u a l memory reguirements. By

v i r t u a l memory requirements, we mean the t o t a l i nstantaneous

s t o r a g e reguirements, which i s a dynamic q u a n t i t y i n most time

s h a r i n g systems. Lehman and Hosenfeld [31] have modelled the

dynamic g u a l i t y of storage demands to some extent by breaking

t h e i r model of a job i n t o job s t e p s , and g i v i n g each job step" a

d i f f e r e n t memory requirement. T h i s i s s t i l l not a complete

enough model, however, s i n c e the storage requirement of a job i n

a time-sharing environment t h a t a l l o w s dynamic program l o a d i n g

and storage a l l o c a t i o n , may vary c o n s i d e r a b l y over a s i n g l e job

6

s t e p .

E m p i r i c a l measurements of program storage reguirements over

t h e i r running times, and models of these requirements are needed

f o r a more thorough understanding of program behavior, and f o r

s i m u l a t i o n s t u d i e s .

1.2 D e s c r i p t i o n Of The Michigan Terminal System

T h i s d e s c r i p t i o n i s taken i n l a r g e p a r t from

M. T. Alexander's paper "Time-sharing s u p e r v i s o r programs." [2]

1.2.1 The Michigan Terminal System jMTS)_

MTS i s a general purpose t i m e - s h a r i n g system designed f o r

the IBM 360/67 computer, and w i l l support up to f o u r p r o c e s s o r s

running i n p a r a l l e l . The term MTS i s used t o r e f e r to both the

o p e r a t i n g system as a whole, and to a r e - e n t r a n t job program i n

the s u p e r v i s o r program, UMMPS, which g i v e s the user the

c a p a b i l i t y to run programs and to manipulate f i l e s from remote

t e r m i n a l s or from batch.

MTS p r o v i d e s :

1) An easy to use command language to cause the

running and monitoring of programs and to crea t e ,

destroy and otherwise manipulate f i l e s . and f o r

other communication with the system.

7

2) Two types of f i l e s , s e q u e n t i a l and l i n e f i l e s .
L ine f i l e s may be accessed randomly by l i n e number,
but s e q u e n t i a l f i l e s can only be accessed
s e q u e n t i a l l y . Line f i l e s r e s i d e on disk while
s e q u e n t i a l f i l e s may e i t h e r be on di s k or d a t a c e l l .

3) A dynamic program loader which a l l o w s a program to
load another during execution.

4) Extensive subroutine l i b r a r i e s and the c a p a b i l i t y
to load programs s e l e c t i v e l y from e i t h e r user
defined or system l i b r a r i e s to reso l v e undefined
e x t e r n a l symbol references i n a loaded object
module.

5) Many language processors such as FORTRAN, PL/1,
APL, ALGOL, WATFIV etc.

Together MTS and UMMPS form an easy to use but powerful
time sharing system.

\jt2.±2. U n i v e r s i t y Of Michigan Mult iprogrammi ng Supervisor JUMM PS J.

The UMMPS supervisor i s a time-sharing s u p e r v i s o r f o r IBS
360/67 supporting up to four processors. I t c o n s i s t s of a set
of subroutines f o r processing i n t e r r u p t s , and i s only entered by
i n t e r r u p t , e i t h e r hardware, or i n t e r n a l such as c a l l s to the
super v i s o r (the 360 SVC i n s t r u c t i o n) , and the various program

8

i n t e r r u p t s . A l l in terrupts are processed as c lose to completion

as poss ib le , and a queue i s maintained for a l l those things that

must be postponed. When there i s nothing more to be done at the

moment, the supervisor gives contro l to a ready task (if any).

DMMPS runs with in terrupts disabled, which means that i t cannot

i t s e l f be in terrupted , and also with the re locat ion mechanism

turned of f . I t also allows some tasks to ran with re loca t ion

turned of f which permits them to reference any r e a l core

l o c a t i o n . This a b i l i t y i s r e s t r i c t e d to s p e c i a l tasks such as

the Paging Drum Processor (PDP) and tasks c o n t r o l l i n g unit

record equipment, which need to be able to reference a l l of main

memory. User tasks cannot be given this power, s ince the

re loca t ion hardware i s used to provide in ter - task pro tec t ion .

J.-2 ..3 Processor Scheduling

UMMPS maintains only one CPD queue which a l l the processors

scan looking for ava i lab le work. Tasks i n the system can be in

one of four states as far as the supervisor i s concerned.

1) Sunning

2) Ready

3) Waiting

4) Page wait

A l l tasks which are running or ready and some waiting tasks

are on the processor queue, and when the queue i s being scanned,

the f i r s t ready task found i s given a processor. A task which

uses up i t s time s l i c e (100ms) i s given a new one and placed on

9

t h e b o t t o m o f t h e queue (b u t a h e a d o f any w a i t i n g t a s k s w h i c h

a r e on t h e q u e u e) . T h i s i s t h e o n l y t i m e t h a t a t a s k i s g i v e n a

new t i m e s l i c e , A t a s k w h i c h i n i t i a t e s an I/O r e q u e s t o r

r e q u e s t s a page n o t i n main s t o r a g e i s n o t r e p l a c e d on t h e

p r o c e s s o r q u e u e , b u t when i t becomes r e a d y i t i s a d d e d t o t h e

t o p o f t h e queue. Whenever a t a s k i s added t o t h e p r o c e s s o r

queue f o r any r e a s o n , i t i s a d d e d t o t h e t o p o f t h e q u e u e . T h i s

g i v e s v e r y q u i c k s e r v i c e t o i n t e r r u p t s , and a l l o w s t a s k s w h i c h

a r e a c q u i r i n g r e a l s t o r a g e t o do so q u i c k l y .

I t i s p o s s i b l e f o r a t a s k t o w a i t f o r some b i t s i n a b y t e

i n v i r t u a l s t o r a g e t o become a l l z e r o . T h i s i s u s e d t o a l l o w

d i f f e r e n t t a s k s t o c o m m u n i c a t e , and a l s o t o a l l o w t a s k s t o w a i t

f o r a s y n c h r o n o u s i n t e r r u p t s . I n t h e l a t t e r c a s e , t h e i n t e r r u p t

h a n d l e r s e t s t h e b i t s . When a t a s k w a i t s f o r a b y t e t h a t i s n o t

i n i t s p r i v a t e v i r t u a l memory, t h e t a s k r e m a i n s on t h e CPU queue

and t h e b y t e i s t e s t e d e a c h t i m e t h e t a s k i s t h e n e x t t o be

g i v e n a p r o c e s s o r . I f t h e b i t s a r e z e r o , t h e t a s k g e t s a

p r o c e s s o r , i f n o t t h e n e x t t a s k i s e x a m i n e d . The CPU q u e u e i s

r e - o r d e r e d s o t h a t a l l s u c h w a i t i n g t a s k s f o l l o w any r e a d y t a s k

i n t h e g u e u e . I f t h e b y t e i s i n t h e t a s k s own v i r t u a l s t o r a g e ,

t h e t a s k i s removed f r o m t h e p r o c e s s o r q u e u e , s i n c e some

i n t e r r u p t must o c c u r t o a l l o w t h e b i t s t o be c h a n g e d .

The f a c t t h a t a t a s k t h a t q u i t s w a i t i n g i s p l a c e d a t t h e

t o p o f t h e p r o c e s s o r queue g i v e s v e r y f a s t s e r v i c e t o i n t e r r u p t s

and a l l o w s o r d i n a r y t a s k s t o c o n t r o l I/O e g u i p m e n t . F o r

e x a m p l e , t h e PDP i s n o t t r e a t e d s p e c i a l l y as f a r a s s c h e d u l i n g

i s c o n c e r n e d , b u t i t c a n e a s i l y keep up w i t h t h e drum

10

i n t e r r u p t s , and such tasks can be given very l a r g e time s l i c e s

which w i l l prevent them from being f o r c e d to the end of the

processor gueue.

In an e f f o r t to prevent too many tasks from competing f o r

main storage, UMMPS has a mechanism f o r making c e r t a i n t a s k s

p r i v i l e g e d or n o n - p r i v i l e g e d . There are t h e r e f o r e , three

c l a s s e s of tasks i n UMMPS:

1) N e u t r a l

2) P r i v i l e g e d

3) N o n - p r i v i l e g e d

The term p r i v i l e g e d a p p l i e s only to the amount of processor time

t h a t a task g e t s , and the amount of paging that i t i s allowed t o

do.

When a task i s f i r s t added t o the pro c e s s o r queue, i t i s

c l a s s e d n e u t r a l , but i f i t attempts to accumulate more than a

c e r t a i n t h r e s h o l d of pages, a d e c i s i o n i s made. I f there are

fewer than the maximum allowed number of p r i v i l e g e d tasks, i t i s

made p r i v i l e g e d , and i s g i v e n a time s l i c e equal 4*K*U, where K

i s the number of a d d i t i o n a l p r i v i l e g e d tasks allowed at th a t

poi n t i n time, and U i s the b a s i c time s l i c e . The t o t a l number

of p r i v i l e g e d t a s k s allowed i s 7 f o r 1 core box, 12 f o r 2 core

boxes, 15 f o r 3 core boxes, 22 f o r 4 core boxes, and 30 f o r more

than 4. The d e c i s i o n t h r e s h o l d i s i n i t i a l l y s e t to about 30

pages. (This mechanism i s c u r r e n t l y i n the process of r e v i s i o n .

Further i n f o r m a t i o n may be obtained from the U n i v e r s i t y of

Michigan Computing C e n t e r) . The d e c i s i o n t h r e s h o l d f o r the next

task i s then lowered, and t h i s one i s allowed t o o b t a i n as many

11

r e a l pages as i t wants. I f there are alre a d y the maximum number

of p r i v i l e g e d t a s k s when the d e c i s i o n p o i n t i s reached, the task

i s made n o n - p r i v i l e g e d , which removes that task t e m p o r a r i l y from

c o n t e n t i o n f o r the CPU's and main storage. A p r i v i l e g e d task

remains p r i v i l e g e d u n t i l i t uses up i t s extended time s l i c e or

ent e r s the wait s t a t e (except page-wait). At t h i s p o i n t i t i s

made n e u t r a l and the d e c i s i o n t h r e s h o l d i s r a i s e d , a l l o w i n g a

n o n - p r i v i l e g e d task, i f any, to be made p r i v i l e g e d . Non-

p r i v i l e g e d t a s k s are never made n e u t r a l without f i r s t becoming

p r i v i l e g e d .

Two gueues are a l s o maintained f o r each task, a task CPU

queue and a task wait queue. The task CPU queue i s used t o keep

t r a c k of m u l t i p l e l e v e l s of execution. Each e n t r y under the top

one r e p r e s e n t s a subtask which has been i n t e r r u p t e d but may

l a t e r be resumed. Some I/O i n t e r r u p t s cause a new e n t r y t o be

added to the top of the CPU queue, and a f t e r t h e i r p r o c e s s i n g

the next lower l e v e l resumes p r o c e s s i n g . A wait e n t r y i s

maintained i n the wait gueue f o r each l e v e l of the CPU queue at

which a wait i s o u t s t a n d i n g . The end of a wait a t any l e v e l can

be recorded by removing the wait gueue e n t r y at t h a t l e v e l .

S u p e r v i s o r r o u t i n e s e x i s t to remove a l l e n t r i e s from the

task CPU gueue but the top one or to remove the top e n t r y . An

example of the above i s i l l u s t r a t e d by the f o l l o w i n g s i t u a t i o n .

A user i s running a program a t a t e r m i n a l and e n t e r s an

a t t e n t i o n i n t e r r u p t . T h i s f o r c e s the saving of s t a t u s a t the

i n i t i a l CPU queue l e v e l and a new en t r y t o be added to the top.

He may now enter commands at the t e r m i n a l , then he can enter a

12

command to r e s t a r t the program (remove the top e n t r y) , or he can

e l e c t to run another program, which causes the previous e n t r y or

e n t r i e s to be removed.

As.2j.ii Storage S c h e d u l i n g

In MTS, v i r t u a l memory i s implemented u s i n g drum storage

d e v i c e s (IBM 2301»s). These drums have 200 t r a c k s and are

capable of s t o r i n g 4.5 pages per tr a c k . In order to o b t a i n the

best u t i l i z a t i o n of the drums, they are arranged with 100

l o g i c a l t r a c k s having 9 pages each. Two r e v o l u t i o n s of the r e a l

drum are needed f o r one r e v o l u t i o n of the l o g i c a l drum. The 9

s l o t s around the circumference of a l o g i c a l t r a c k are c a l l e d

s e c t o r s .

The task of v i r t u a l memory management i n MTS i s d i v i d e d

between UMMPS and a s p e c i a l job c a l l e d the Paging Drum Processor

(PDP). The PDP takes care of the a c t u a l reading and w r i t i n g of

pages to and from main memory, while i t i s the r e s p o n s i b i l i t y of

the s u p e r v i s o r to decide which pages need moving, UMMPS and the

PDP communicate v i a Page C o n t r o l Blocks (PCB*s) and there e x i s t s

one PCB f o r each v i r t u a l page. Each PCB c o n t a i n s a l l the

in f o r m a t i o n concerning the s t a t u s of i t s page, and may be l i n k e d

at any time on one of f o u r queues:

D Page In Queue (PIQ) co n t a i n s

page requests t h a t PDP has not yet

the PCB's f o r a l l

s t a r t e d r e a d i n g

http://As.2j.ii

13

i n .

2) Page In Complete Queue (PICQ) c o n t a i n s the PCB's

of a l l pages that the PDP has read or a new page f o r

which reading was unnecessary but of which the

s u p e r v i s o r has not been n o t i f i e d y e t .

3) Page Out Queue (POQ) c o n t a i n s PCB's f o r a l l pages

i n main storage that can be removed.

4) Release Page Queue (RPQ) c o n t a i n s PCB's f o r a l l

pages which have been r e l e a s e d by the tasks t h a t own

them, but which the PDP has not r e l e a s e d yet (the

PDP must be n o t i f i e d so the drum space can be

released) .

A l l pages t h a t are read i n are immediately placed on the

POQ at the top. When the PDP requests some pages to be w r i t t e n ,

the s u p e r v i s o r checks the amount of f r e e space a v a i l a b l e and i f

i t i s s u f f i c i e n t (about 20% of main memory), no pages are given

t o the PDP. Otherwise the s u p e r v i s o r s t a r t s scanning the POQ

f o r a page t o be w r i t t e n out. I f the page under c o n s i d e r a t i o n

i n the scan has been r e f e r e n c e d s i n c e the l a s t scan, the

r e f e r e n c e b i t i s r e s e t and the PCB w i l l be placed on the bottom

of the POQ. I f the page was not r e f e r e n c e d i t i s given to the

PDP f o r w r i t i n g out. T h i s process continues u n t i l enough pages

are found f o r the PDP.,

14

When a page i s requested by a task, the s u p e r v i s o r places

the PCB on the bottom of PIQ and i f the PDP i s not already

running, i t i s s t a r t e d . The PDP places the PCB on one of nine

s e c t o r queues, corresponding t o the s e c t o r t h a t the page

occupies on the l o g i c a l drum, and then requests pages t o be

w r i t t e n from the s u p e r v i s o r t o f i l l any of the nine s e c t o r

gueues which are empty. I f any of these pages to be wr i t t e n

have not been changed s i n c e l a s t w r i t i n g , the s u p e r v i s o r w i l l be

n o t i f i e d that the main storage f o r that page i s f r e e and another

page i s requested f o r w r i t i n g . When a l l s e c t o r queues are

f i l l e d as much as p o s s i b l e , a channel program t o do the readi n g

and w r i t i n g i s c o n s t r u c t e d by the PDP and executed. The PDP

w i l l then p l a c e the PCB's f o r the pages read on the PICQ and

n o t i f y the s u p e r v i s o r that main storage f o r the pages w r i t t e n i s

f r e e . The s u p e r v i s o r takes PCB's from the PICQ and pla c e s them

on the POQ at the top and r e s t a r t s the tasks i n v o l v e d . The PDP

handles the job of c o n s t r u c t i n g new channel programs i n p a r a l l e l

with p r o c e s s i n g o l d ones so that the process of readi n g and

w r i t i n g i s continuous.

Figure 1.1 Flowchart cf storage scheduling

16

Figure 1.1 (b) Flowchart of storage scheduling

17

J * . 2 , 5 General

Flow of tasks in MTS at the Univers i ty of B r i t i s h Columbia

i s depicted i n f i g , 1 .2 . Both processors scan the s ingle gueue

looking for work, and the f i r s t ready task encountered i s given

a CPU. A task which i s running on a CPU can subsequently stop

for any of the fol lowing reasons:

1) I t requests some I/O

2) It stops to wait for some byte to be set to zero

3) It references a page not i n main storage

4) I t exhausts i t s t ime- s l i c e

5) It i s pre-empted

Tasks which are waiting for an i n t e r r u p t to occur, to

s i g n a l the end of an I/O operat ion, or the completion of a page

transfer are not on the processor gueue, but immediately se ize

one of the CPU's when the in terrupt occurs, pre-empting a task

that i s current ly running. The pre-empted task i s placed on the

top of the queue, and i s the next to receive service provided

that another task i s not pre-empted in the i n t e r i m .

There are no spec ia l p r i o r i t i e s assigned to any tasks in

MTS, so that a l l tasks compete on an equal basis for system

resources.

Most of the occurrences of stoppages i n processing for the

second reason above have to do with terminal I/O for in t erac t ive

tasks . In t h i s study, the time that the device support routine

(DSB) for the terminal i s entered to get an input l i n e or to

write an output l i n e , i s taken as the s tar t of the terminal I/O

18

o p e r a t i o n . The time that an e x i t i s made from the DSR i s taken

as the f i n i s h of t h a t o p e r a t i o n , and a l l processor a c t i v i t y f o r

that task between i s ignored. In e f f e c t , the en t r y of the DSR

i s taken as the beginning of a wait I/O o p e r a t i o n f o r the

t e r m i n a l , and the e x i t from the DSR i s taken as the completion

of t h a t wait.

When a task r e l e a s e s a v i r t u a l memory page, the PDP i s

s t a r t e d by the s u p e r v i s o r (i f i t i s not al r e a d y running) i n

order to n o t i f y i t t h a t the drum space may now be used f o r other

page w r i t e o p e r a t i o n s . I f the PDP was not running, i t w i l l pre

empt the task t h a t r e l e a s e d the page f o r the time taken t o

modify the a p p r o p r i a t e t a b l e s .

1.3 Problem Area

T h i s study uses the Data C o l l e c t i o n F a c i l i t y c a l l e d the DCF

(continuous monitoring type) a v a i l a b l e i n the MTS o p e r a t i n g

system to study the c h a r a c t e r i s t i c s of a t y p i c a l u n i v e r s i t y job

stream, the purpose being to allow the pr o d u c t i o n of an accurate

model of the job stream f o r s i m u l a t i o n . I t has been p o s s i b l e to

measure the times taken f o r many of the events o c c u r i n g i n the

system, i n p a r t i c u l a r :

1) The amount of processor time requested by a task

when i t o b t a i n s a CPU

2) The amount of processor time that i t a c t u a l l y gets

19

3) The w a i t i n g t i m e s f o r I/O, and pages

4) The i n t e r a r r i v a l t i m e s f o r j o b s i n t o t h e s y s t e m

5) The t o t a l p r o c e s s o r time used by j o b s

6) The s t o r a g e r e g u i r e m e n t s o f j o b s

Some s y s t e m d e p e n d e n t c h a r a c t e r i s t i c s (CPtJ t i m e r e q u i r e d t o

p r o c e s s i n t e r r u p t s) have been removed as f a r a s p o s s i b l e from

t h e measure o f CPU s e r v i c e r e q u i r e d by j o b s , so t h a t t h i s

measure s h o u l d be a p p l i c a b l e on o t h e r s y s t e m s .

D a t a was c o l l e c t e d f o r t h e s t u d y on two m a g n e t i c t a p e s ,

c a l l e d t a p e 1 and t a p e 2, The d a t a on t a p e 1 was c o l l e c t e d on a

S a t u r d a y a f t e r n o o n , and r e p r e s e n t s a t i m e o f l i g h t l o a d on t h e

s y s t e m , w h i l e t h e d a t a f o r t a p e 2 was c o l l e c t e d on a F r i d a y

a f t e r n o o n , which i s a t i m e o f m o d e r a t e l y heavy l o a d . T o g e t h e r

t h e t a p e s c o n t a i n d a t a f o r a b o u t 300 j o b s .

co
•CJ
a
o
o
CO
I

o
EH P r o c e s s o r Queue

C O CE
Job A r r i v a l s

A j o b e n t e r i n g the square marked

P i m m e d i a t e l y s e i z e s a CPU, p r e -

empting the j o b a l r e a d y r u n n i n g

i f the CPU was busy*
.WAIT I/O)

- ^ A P T -1/0^

_ ^
{PAGE WAIT)

F i g u r e l . l Flow o f t a s k s i n MTS

21
CHAPTER 2- SOME BASIC CHARACTERISTICS

2s.l Requests For CPU- Se r v i c e

In the past, i t has teen d i f f i c u l t to obtain measurements
of the time that computer jobs run between successive I/O
operations, because of the la c k of appropriate monitoring
devices and programs (see [31,33]), but with the development of
t o o l s l i k e the DCF i n MTS [3 , Appendix A], such measurements may
now be r e a d i l y obtained. The amount of processor time that a
job requests from the termination of one I/O operation u n t i l the
s t a r t of the next, w i l l be c a l l e d a requested CPU i n t e r v a l .

Many s i m u l a t i o n s t u d i e s have assumed that the d i s t r i b u t i o n
of these i n t e r v a l s i s exponential [33,34,46], or hyper-
exponential [2 1] , since the use of these d i s t r i b u t i o n s a llows
easy generation of random samples, and a n a l y t i c methods e x i s t
f o r studying systems governed by them.

Measurements of requested CPU i n t e r v a l s i n t h i s study show
considerably more v a r i a b i l i t y than they would i f they were
e x p o n e n t i a l l y d i s t r i b u t e d , and even a hyper-exponential
d i s t r i b u t i o n does not provide a cl o s e f i t to the observed
d i s t r i b u t i o n s . Requested CPU i n t e r v a l s f o r batch jobs had a
mean of 23.6 ms and a standard d e v i a t i o n of 73.6, while
i n t e r a c t i v e tasks had a mean of 17.0 ms with a standard
d e v i a t i o n of 76.4.

A Weibull d i s t r i b u t i o n provided the c l o s e s t f i t f o r the
observed i n t e r v a l s f o r batch jobs, and a hyper-exponential
d i s t r i b u t i o n f o r those of the i n t e r a c t i v e jobs. (See f i g s .
2.1, and 2.2). The Kolmogorov-Smirnov goodness of f i t t e s t i s

22

used throughout, and gave maximum d e v i a t i o n s f o r the observed

values from the f i t t i n g curve of 0.1673 f o r batch jobs, and

0.0802 f o r i n t e r a c t i v e jobs. The p r o b a b i l i t y of f i n d i n g a

d e v i a t i o n as l a r g e as 0.0200 (batch) or 0.0119 (i n t e r a c t i v e) f o r

samples t h i s l a r g e i s l e s s than 1% i f the f i t i s t o be

cons i d e r e d good. T h i s value w i l l be r e f e r r e d t o i n f u t u r e as

KS (.01) .

The Weibull d i s t r i b u t i o n i s u s e f u l f o r f i t t i n g sample

d i s t r i b u t i o n s of t h i s type (with the a p p r o p r i a t e c h o i c e of

parameters), s i n c e one can o b t a i n a d i s t r i b u t i o n with more very

l a r g e v a l u es, and more very s m a l l values than with a hyper-

e x p o n e n t i a l d i s t r i b u t i o n having the same mean and standard

d e v i a t i o n . The problem with using the Weibull d i s t r i b u t i o n ,

however, comes i n choosing the parameters. (See Appendix B f o r

d e t a i l s) .

The CPU time reguested by i n t e r a c t i v e jobs between t e r m i n a l

I/O o p e r a t i o n s i s l a r g e r than the requested CP0 i n t e r v a l s on the

average s i n c e s e v e r a l i n s t a n c e s o f d i s k or tape I/O may occur

between s u c c e s s i v e t e r m i n a l o p e r a t i o n s . The mean observed time

was 58.6 ms with a standard d e v i a t i o n of 669, and a Weibull

d i s t r i b u t i o n gave the c l o s e s t f i t with a maximum d e v i a t i o n of

0.0942. (KS (.01) =0.0211) (see f i g . 2.3) The Weibull

d i s t r i b u t i o n f i t t e d by the method d e s c r i b e d i n Appendix B had a

mean of 27 ms, and a standard d e v i a t i o n of 48 which are much

l e s s than the observed values f o r the mean and standard

d e v i a t i o n , however, the observed d i s t r i b u t i o n had a few very

l a r g e sample val u e s (as gre a t as 30 seconds of CPU time), which

20.0 . 60.0
TINE

20.0 120.0 150.0

Figure 2.1 Requested CPU i n t e r v a l s (interactive)

V

.0 30.0 60.0 . 20.0 120.0
T I M E

Figure 2.2 Requested CPU i n t e r v a l s (batch)

150.0

made the mean and standard d e v i a t i o n l a r g e . Such lar g e samples
are very r a r e .

Scherr [43] found a s i m i l a r shaped d i s t r i b u t i o n f o r these
times, with a mean of 0.88 seconds f o r jobs run on an IBM 7094
running CTSS.

Q

TIME

Figure 2.3 Processor time between i n t e r a c t i o n s

25

2-2 CPU S e r v i c e Obtained

The amount of time that a job a c t u a l l y gets on a processor

i n one shot, c a l l e d an a c t u a l CPU i n t e r v a l * . i - s c o n s i d e r a b l y l e s s

than i t r e q u e s t s , s i n c e the maximum time that a job may hold a

CPU i s l i m i t e d by i t s time s l i c e , and a job has a high

p r o b a b i l i t y of being pre-empted i f there are more than a few

other jobs i n the system. Means f o r the CPU s e r v i c e obtained

(a c t u a l CPU i n t e r v a l s were 14.3 ms f o r jobs on tape 1, and 8.9

ms f o r jobs on tape 2 with standard d e v i a t i o n s of 42.5 and 14.9

r e s p e c t i v e l y . The average a c t u a l CPU i n t e r v a l s on tape 1

r e p r e s e n t about 80% of the requested i n t e r v a l s , while those on

tape 2 r e p r e s e n t only about 45%. The reason f o r t h i s d i f f e r e n c e

i s t h a t tape 2 r e c o r d s a c t i v i t y a t a b u s i e r time than tape 1,

and jobs are pre-empted more f r e q u e n t l y when the system i s busy.

A hyper-exponential d i s t r i b u t i o n p r o v i d e s the c l o s e s t f i t

f o r these v a l u e s , and the observed data show a maximum d e v i a t i o n

of 0.0900 (KS (.01)=0.0111) from the f i t t i n g curve f o r tape 1,

and a maximum d e v i a t i o n of 0.027 f o r tape 2. (See f i g s . 2.4

and 2.5).

26

Figure' 2.5 . Actual.CPU intervals (tape 2)

27

.2.J I/O Delays

In MTS, the pro c e s s i n g of a job i s not overlapped with i t s

own I/O, and as a r e s u l t , the job must remain i d l e d u r i n g these

times.

Most of the I/O a c t i v i t y of MTS jobs i s f o r disk

o p e r a t i o n s , with some f o r tape I/O. For i n t e r a c t i v e jobs, some

of the I/O i s a l s o f o r the t e r m i n a l on which the job i s run.

The d i s t r i b u t i o n s of I/O delays f o r both i n t e r a c t i v e and batch

t a s k s (excluding the de l a y s f o r the t e r m i n a l i t s e l f) are q u i t e

s i m i l a r , (f i g s . 2.6, and 2.7) and a l s o ressemble c l o s e l y the

d i s t r i b u t i o n f o r d i s k I/O delays measured by Baskett et a l [5]

f o r the U n i v e r s i t y of Texas' CDC 6600 system. The peaks are

c l o s e to the same p o i n t (35 ms), and the shapes of the

d i s t r i b u t i o n s are s i m i l a r . The reason f o r the d i f f e r e n c e i n

means f o r the batch and i n t e r a c t i v e tasks i s probably due t o the

f a c t t h a t much more d i s k arm movement i s r e q u i r e d f o r the

i n t e r a c t i v e t a s k s , s i n c e f a i r l y long p e r i o d s can be spent

w a i t i n g f o r t e r m i n a l responses during which time the arm can be

r e p o s i t i o n e d by another t a s k .

The peak observed i n f i g , 2.3 at 80 ms i s due to s e v e r a l

jobs i n the sample doing tape I/O. 80ms i s the time taken to

t r a n s f e r a tape record one page i n l e n g t h , and t h i s i s a very

common s i z e used i n the MTS system. Most disk o p e r a t i o n s take

between 25 and 75 ms (from P i n k e r t o n [3 9]) , with those r e q u i r i n g

arm movements t a k i n g l o n g e r .

Although these d i s t r i b u t i o n s look E r l a n g i a n , the standard

o . o a o . o . i s o . o 2^0.0 320.0 4 0 0 . 0
T I M E

Figure 2 .7 I/O delays (interactive)

29

d e v i a t i o n s are g r e a t e r than the means. For batch t a s k s , the

observed mean was 38 ms with a standard d e v i a t i o n of 67, and f o r

i n t e r a c t i v e t a s k s , the mean was 123 ms with a standard d e v i a t i o n

of 986. The dotted l i n e s i n f i g s . 2.6 and 2.7 show the Weibull

d e n s i t y f u n c t i o n g i v i n g the c l o s e s t f i t a c c o r d i n g to the

Kolmogorov-Smirnov goodness of f i t t e s t . Greater values of

(causing the peak t o be s h i f t e d r i g h t) y i e l d e d l a r g e r d e v i a t i o n s

from the cummulative d i s t r i b u t i o n than the curves p l o t t e d .

The term "U§§r Response Time^ r e f e r s to the time that i t

takes a user at an i n t e r a c t i v e t e r m i n a l to frame h i s response

and to type i t i n . I t i s measured from the time t h a t the system

s t a r t s w a i t i n g f o r some a c t i o n from the user, u n t i l the user

e n t e r s a c a r r i a g e r e t u r n or other end of l i n e s i g n a l i n d i c a t i n g

t h a t he has f i n i s h e d h i s response. Scherr [43] c a l l s these

times "Think Times". The d i s t r i b u t i o n of user response times

f o r i n t e r a c t i v e t a s k s w i l l vary from system t o system, depending

on the type of response r e g u i r e d , the dev i c e s used, and the

s o p h i s t i c a t i o n of the users.

Scherr found the mean user response time t o be 35 seconds

f o r users of the CTSS sytem, but f o r MTS users the mean i s

c l o s e r to 11 seconds with a standard d e v i a t i o n of 16. The

d i s t r i b u t i o n of these times was s i m i l a r i n shape to th a t

observed by Scherr, i f one removes the program generated

responses from h i s o b s e r v a t i o n s . I t i s a l s o s i m i l a r t o the

d i s t r i b u t i o n observed by Schwetman and DeLine [4 4] f o r the

RESPOND system.

A Weibull d i s t r i b u t i o n again showed the c l o s e s t f i t (f i g .

30

2.8) and the observed data d i s p l a y e d a maximum d e v i a t i o n of

0.0655 from i t with KS (. 0 1) =0 .05. The d i s t r i b u t i o n i n the

f i g u r e may be seen to have two l a r g e peaks. The f i r s t

corresponds t o quick responses r e q u i r i n g l i t t l e thought on the

part of the user, and a l s o l i t t l e t y p i n g . Such responses are

g u i t e common i n MTS with the user e n t e r i n g a n u l l l i n e , or one

with only a few c h a r a c t e r s i n r e p l y to some query on the part of

the system. The second peak r e p r e s e n t s those responses

r e g u i r i n g some thought, or c o n s i d e r a b l e t y p i n g , or both. The

number of responses f a l l i n g i n t o the f i r s t category (l e s s than 5

seconds) i s roughly 35% of the t o t a l .

The system responds by ty p i n g a r e p l y which takes an

average of 0.65 seconds (f i g . 2.9) and writes about f i v e times

as many l i n e s as the user i n p u t s . The peaks i n the d i s t r i b u t i o n

correspond to d i f f e r e n t d e v i c e s .

F i g u r e 2.9 System w r i t e t i m e s (i n t e r a c t i v e)

32

2J± Page Waiting Times

The d i s t r i b u t i o n of page waiting times i s divided into

several types of events i n MTS, depending on the reason for the

page f a u l t that generated the request, and the status of the

page involved. The p o s s i b i l i t i e s are outlined below:

1) Page f a u l t was for the f i r s t reference to a new

page, which can be allocated nearly immediately.

2) Page f a u l t was for the f i r s t reference to a new

page, but core space can be allocated only aft e r

f i r s t writing out another page to provide space.

3) Page f a u l t was for a page exis t i n g on the drum,

which must be brought into core.

4) Page f a u l t was for a page existing on the drum,

but i t can only be brought into core after f i r s t

writing out another page.

5) Page f a u l t was for a page that s t i l l exists in

core, although a page out operation was in progress

for that page. The page out operation can be

cancelled, and the page w i l l become available

immediately.

Since MTS t r i e s to keep about 20% of the available core

space empty to allow guick service to page reads, situations of

33

type 2, or 4 above occur o n l y r a r e l y . In a d d i t i o n to the f i v e

types of events above, the s u p e r v i s o r may decide to make a task

n o n - p r i v i l e g e d (see sec. 1,2.3) i f i t attempts to o b t a i n more

than a c e r t a i n t h r e s h o l d of r e a l pages. The job must then wait

f o r some other p r i v i l e g e d job t o leave t h a t s t a t u s before i t can

be made p r i v i l e g e d , and have i t s page request s e r v i c e d . T h i s

has the e f f e c t of making some page waits very l o n g . Events of

t h i s type are e a s i l y separated from the r e s t by the l a r g e

d i f f e r e n c e i n magnitude.

Because of the v a r i o u s types of events making up the

d i s t r i b u t i o n of page w a i t i n g times, no one f u n c t i o n can be made

to f i t the observed data very c l o s e l y . I f one breaks the

d i s t r i b u t i o n i n t o part corresponding to the events of d i f f e r e n t

t y pes, however, a reasonable f i t can be obtained. (See f i g s .

2.10, 2.11, and f i g . 2.12). In t h i s case, the d i s t r i b u t i o n was

broken i n t o two p a r t s , the f i r s t corresponding to events of

types 1, and 5 above, and the second to events of type 3.

An e x p o n e n t i a l d i s t r i b u t i o n with a mean of 1ms was used to

f i t the d i s t r i b u t i o n of events of types 1, and 5, and an E r l a n g

d i s t r i b u t i o n with a mean of 22 ms and 6 channels was used t o f i t

the events of type 3. T h i s g i v e s a f a i r f i t to the observed

data, which shows a maximum d e v i a t i o n of 0.1453 with

KS (.01)=0.0591. The p r o b a b i l i t y d e n s i t y f u n c t i o n f o r the

r e s u l t i n g d i s t r i b u t i o n i s seen i n f i g . 2. 12.

34

04

O

>-CD

0.0 50.D 100-O 150-0 200.0 250.0
T I M E

F i g u r e 2.10 Page w a i t i n g times (tape 1)

2.5 Other Parameters Of I n t e r e s t

2*5.. 1- System Response- Time

System response time i s d e f i n e d as the time that i t takes

the system to s t a r t to type a response, a f t e r a user has entered

h i s c a r r i a g e r e t u r n s i g n a l at an i n t e r a c t i v e t e r m i n a l . T h i s

g u a n t i t y i s of i n t e r e s t , as i t i s o f t e n used as a c r i t e r i o n f o r

judging the performance of t i m e - s h a r i n g systems.

The d i s t r i b u t i o n observed had a mean of 0.42 seconds, with

a standard d e v i a t i o n of 2. (see f i g . 2.13) The median was only

35

1Q0.Q
T I M E

150.0 200.0 250.0

Figure 2.11 Page waiting times (tape 2)

36

30 ms. a Weibull d i s t r i b u t i o n gave the c l o s e s t f i t , and the

observed values showed a maximum d e v i a t i o n of 0 .070 from i t ,

with KS (.01)=0.05. The d i s t r i b u t i o n i s s i m i l a r i n shape t o the

one o b t a i n e d by Scherr [4 3] , although the mean i s an order of

observed by Schwetman and DeLine [4 4] f o r the RESPOND system,

although the mean time i s s i m i l a r i n t h i s i n s t a n c e . The RESPOND

system seems t o make almost no very quick responses.

Looking at the d i s t r i b u t i o n of proc e s s o r time r e q u i r e d

between i n t e r a c t i o n s , one would expect very quick responses

s i n c e so l i t t l e time i s used i n most cases (l e s s than 55 ms),

and the mean time f o r d i s k o p e r a t i o n s i f they are r e q u i r e d i s

sm a l l (l e s s than 100 ms).

magnitude l e s s . I t i s q u i t e d i f f e r e n t i n shape to the one

o

50.0 75.0)0O0 \?S.O 0.0 25.0
Tine t x IO 1)

F i g u r e 2 .13 System reponse time

37

2.5.2 Ready I n t e r v a l s

Beady i n t e r v a l s are def i n e d as the i n t e r v a l s of time that

t a s k s which could be running on a CPU spend w a i t i n g on the

processor gueue. These i n c l u d e tasks which have used up t h e i r

t i m e - s l i c e s and are placed on the bottom of the gueue, and ta s k s

which have been pre-empted and are placed on the top. The mean

value f o r ready i n t e r v a l s i s very s m a l l s i n c e a l a r g e p o r t i o n of

the i n t e r v a l s r epresent pre-empted tasks w a i t i n g f o r some

i n t e r r u p t to be processed, and so w i l l o b t a i n CPU s e r v i c e again

i n a r e l a t i v e l y s h o r t time, s i n c e most i n t e r r u p t s are processed

i n 200 - 300 us. I t i s a l s o u n l i k e l y (at UBC) t h a t many ta s k s

w i l l be stacked i n such a manner that each i s waiting f o r the

prev i o u s task t o f i n i s h p r o c e s s i n g some i n t e r r u p t . P r o c e s s i n g

of i n t e r r u p t s has been removed from the d i s t r i b u t i o n of a c t u a l

CPU i n t e r v a l s , so the mean of the a c t u a l i n t e r v a l s i s l a r g e r

than i t would be i f these were i n c l u d e d . I t i s f o r t h i s reason

t h a t the mean of the ready i n t e r v a l s i s so s m a l l compared t o the

mean of the a c t u a l CPU i n t e r v a l s . (See f i g s . 2.14 and 2.15 f o r

d i s t r i b u t i o n s of ready i n t e r v a l s) .

2.5.3 I n t e r - A r r i v a l Times

The i n t e r - a r r i v a l times of jobs to the system i s the time

between s u c c e s s i v e "SIGNON's", not the time between submissions

of jobs to the HASP gueue. For t e r m i n a l j o b s , the act of

s i g n i n g on puts the job immediately i n t o the system, but f o r

batch jobs the case i s d i f f e r e n t . Batch jobs are enqueued by

HASP, and ordered a c c o r d i n g t o an assigned p r i o r i t y which i s

° 1

I m

C O

i I
i i

60.0 SO.O

F i g u r e 2 .1h Ready i n t e r v a l s (tape 1)

C O

0.0 20.0
T I M E

SO.O 80.0

F i g u r e 2.15. Ready i n t e r v a l s .(tape 2)

39

c a l c u l a t e d from the user's estimates of CPU time, and pages of
output r e q u i r e d f o r the job. Jobs are released from the gueue
f o r execution at a r a t e that i s dependent on the system load.
Only two batch jobs are permitted i f there are many t e r m i n a l
users signed on. The time that a batch job a c t u a l l y leaves the
gueue and s t a r t s executing i s deemed i t s a r r i v a l time.

The i n t e r - a r r i v a l times f o r t e r m i n a l jobs were found to be
e x p o n e n t i a l l y d i s t r i b u t e d as expected, and the same was found to
be true f o r batch jobs. The mean i n t e r - a r r i v a l time f o r batch
jobs was 40 seconds, and was 94 seconds f o r the t e r m i n a l jobs.
More accurate values f o r i n t e r - a r r i v a l times could be obtained
by examining the system accounting records.

T o t a l Processor- Time

Processing time r e g u i r e d by jobs i s the t o t a l amount of CPU
time reguired t o complete the job. This q u a n t i t y was found to
be hyper-exponentially d i s t r i b u t e d with a mean of 16 seconds,
and a standard d e v i a t i o n of 28, based on a sample of 136 jobs
drawn from the data tapes. Again more accurate values could be
obtained by examining the accounting s t a t i s t i c s s ince a much
l a r g e r sample could be used.

UO

Tape • 1 1 Tape 2

Terminal Batch | j Terminal J Batch
Requested CPU
int e r v a l s 18 .1 ms

(87.6)
2U.1 ms
(319^

lh.9 ms
' . (U6 . U) '

2 3 . 2 ms '
(2 1 3)

Actual CPU
Intervals 12.9 ms

(3 7 . 6)
19.U ms
(60.1) .

6 . 0 ms
| (1U.1)

1 0 . 1 ms
(16.1)

I/O Delays 1 5 0 . 2 ms
(1 2 0 3)

30.1 ms
(3 1 . 9)

1 76.1 ms
(3 8 1)

U2.2 ms
(82 .3)

User Response 1 0 . h sec
(lh.9)

•
| 12.1 sec
j (17.7)

System Write O.hli sec
(1 . 9 0)

| 0 . 5 7 sec
(1 . 6 7)

System Response 0.39 sec
(2 . 0 1)

' •0.U7 sec
• (2 . 1 U) .

CPU Time Between
Interactions

59-9 ms
(719)

55 .8 ms
(5 3 5)

Page Waits 22.5 ms
(22 .0)

22.2 ms
(22 .U) . j

25.7 ms
(20.7)

2U.1 ms
(15.U)

Ready
Intervals

3.7 ms
(11.4) •

3-9 ms
(li t . 8)

' • 6 .U ms
' (15.U) •

7 . 0 ms
(17 .5)

No. Concurrent
Tasks

1~2 j — 1 9 2 - 3

I n t e r - a r r i v a l
Times

9 U sec

<*> |

U 0 sec
(111)

Bracketted numbers are standard deviations.

Table 2.1 Job stream cha r a c t e r i s t i c s

41
CHAPTER 3 STORAGE REQUIREMENTS

3*. I Preamble

In a time-sharing environment, there i s u s u a l l y

i n s u f f i c i e n t core storage a v a i l a b l e to allow a l l users to have

t h e i r f u l l a l l o t m e n t of s t o r a g e i n core s i m u l t a n e o u s l y . Schemes

of v i r t u a l memory management have been developed [1,3,15,17,18]

which t r y to g i v e each user only as much core as he needs at the

moment, while the remainder of h i s a l l o t t e d memory space r e s i d e s

on some secondary storage device such as a drum. The memory i s

normally grouped i n t o b l o c k s c a l l e d pages, which are the u n i t s

of storage t r a n s f e r r e d between core storage and the drum. A

page i s brought i n t o core memory when a r e f e r e n c e i s made to i t ,

and pages t h a t are i n core f o r a long time, or have not been

r e f e r e n c e d i n a long time, are placed on the drum to make more

core storage a v a i l a b l e .

Even with the l a r g e amounts of v i r t u a l storage that e x i s t

i n such systems, each user cannot simply be a l l o c a t e d as much

storage space as he might p o s s i b l y r e g u i r e , and be allowed to

keep a l l t h i s space f o r the d u r a t i o n of h i s time on the system.

In t h i s i n s t a n c e , most of the storage would be unused at any

moment and poor u t i l i z a t i o n of the hardware would r e s u l t . In

a d d i t i o n , a r e s t r i c t i o n would have to be placed on the number of

simultaneous users which would depend on the t o t a l amount of

storage a v a i l a b l e .

To overcome t h i s problem, methods of dynamic storage

a l l o c a t i o n have been d e v i s e d that allow jobs to a c q u i r e s t o r a g e

as they need i t , and to r e l e a s e t h a t storage as soon as the need

disappears. T h i s process i s t r a n s p a r e n t to the user i n most

42

cases, so that when he runs a program, the c o r r e c t amount of
storage i s a u t o m a t i c a l l y acquired, and then released when the
program terminates. Most systems provide the user with the
c a p a b i l i t y of w r i t i n g programs that acquire storage during
execution (see [2 5]) , e i t h e r to load a d d i t i o n a l program modules,
or to increase the s i z e of data areas, and t h i s storage may be
re t a i n e d or released as the program w r i t e r sees f i t u n t i l the
program terminates.

Since the storage requirement of jobs i s a dynamic
gu a n t i t y , any s i m u l a t i o n which s t u d i e s the u t i l i z a t i o n of
v i r t u a l memory, must incorporate a model f o r the storage demands
of jobs. Most s t u d i e s , however, have concerned themselves with
paging behavior (such as times between inter-page references,
and sequences of references, e t c . See [1,13,22]), and r e a l core
requirements f o r e f f i c i e n t running [8,16,29], rather than the
v a r i a b i l i t y of storage reguirements with time, s i n c e the concern
was mostly the f e a s i b i l i t y of paging algorithms, and paging
machines i n general. Lehman and Rosenfeld [31] broke t h e i r
model of a job i n t o job steps, g i v i n g each step a d i f f e r e n t
storage allotment. This comes c l o s e s t to modelling the v a r i a b l e
nature of storage requirements. Denning [16] developed a model
fo r the r e a l core demands of computer jobs, which he c a l l s the
working set model.

3,2 Observed Program Storage Requirements

a storage p r o f i l e i s a p l o t of the storage reguirements of

4 3

a j o b o v e r i t s r u n n i n g t i m e (S e e r i g . , 3 . 1 , a n a A p p e n d i x D f o r

e x a m p l e s) . A n u m b e r o f t h e s e p r o f i l e s w e r e c o l l e c t e d , a n d

' d e s c r i p t i v e p a r a m e t e r s f o r e a c h w e r e m e a s u r e d . 'The t i m e s c a l e

was n o r m a l i z e d t o make a l l t h e p r o f i l e s t h e same l e n g t h f o r

c o m p a r i s o n - p u r p o s e s . T h e p a r a m e t e r s m e a s u r e d w e r e t h e j t a x i m u m

number 0£ p a q e s , the icaan number o f p a g e s , the number o f

d i s t i n c t humps (a hump i s a n a r e a o f t h e p r o f i l e w h e r e t h e

n u m b e r , o f p a q e s p o s s e s s e d e x c e e d s a n a r b i t r a r y s m a l l l i m i t , 15

p a g e s i n t h i s c a s e) , t h e w i d t h o f t h e l a r g e s t hump, t h e n u m b e r

o f c h a n g e s i n s t o r a g e r e q u i r e m e n t , t h e a v e r a g e s i z e o f t h e s e

c h a n q e s a s a p e r c e n t o f t h e maximum n u m b e r o f p a g e s , , a n d t h e

s i z e o f t h e maximum i n c r e a s e a n d d e c r e a s e i n s t o r a g e r e q u i r e m e n t

a s a p e r c e n t o f t h e maximum n u m b e r o f p a y e s .

CO ;

CD o e
Cd

0.0

o
O J

w
S

max width---!

i V T
r hump 1 hump 2

i . 1 ; ™

0.2 .0.4 0.6
Normalized Time

0.8

JI
i

T
1.0

F i g u r e 3.1 - T y p i c a l s t o r a g e p r o f i l e w i t h m e a s u r e d

p a r a m e t e r s .

U s i n g t h e p a r a m e t e r s m e a s u r e d f o r e a c h p r o f i l e a s a v e c t o r

d e f i n i n g t h e p o s i t i o n o f t h e p r o f i l e i n a n e i g h t d i m e n s i o n a l

E u c l i d i a n s p a c e (e i g h t ' p a r a m e t e r s) , a n d d o i n g some c l u s t e r

44

a n a l y s i s [45] the p r o f i l e s were found to f a l l i n t o two c l u s t e r s .

P r o f i l e s from the f i r s t group showed l a r g e maximum sto r a g e

requirements, and u s u a l l y had one l a r g e hump c o v e r i n g most of

the running time. The average maximum number of pages f o r t h i s

group was 70 pages, and the average s i z e of change i n storage

reguirement was 6.5 pages. (See f i g s . D.1 through D.8.)

P r o f i l e s from the second group had an average maximum number of

pages of 23, and the average s i z e of change was 4.1 pages. Most

of the p r o f i l e s i n t h i s group show a g r e a t amount of f l u c t u a t i o n

i n the storage possessed (see f i g s . D. 9 through D.20).

about 50% of the batch jobs examined had storage p r o f i l e s

f a l l i n g i n t o the f i r s t group, while only 25% of the i n t e r a c t i v e

jobs had s i m i l a r requirements. At the U n i v e r s i t y of B r i t i s h

Columbia, the MTS user i s charged f o r storage used during

i n a c t i v e p e r i o d s when he i s signed on at an i n t e r a c t i v e

t e r m i n a l , but not i f h i s job i s run from batch. T h i s makes

programs with l a r g e s t o r a g e requirements c o s t l y to run

i n t e r a c t i v e l y , and probably accounts f o r the lower p r o p o r t i o n of

i n t e r a c t i v e jobs having p r o f i l e s i n the f i r s t group.

3.3 A Model Tor Program Storage Requirements

Since i t would be d e s i r a b l e to generate storage reguirement

p r o f i l e s f o r computer jobs f o r s i m u l a t i o n purposes, a model was

developed to do t h i s . The model used i s very simple i n

p r i n c i p l e , but seems to generate p r o f i l e s q u i t e s i m i l a r t o the

ones observed (see Appendix D, and Table 3 . 1) .

45

a)

10 20 30 ko
Percent of maximum number of pages

Increases, i n storage allotment

b)

10 20 30 kO 50
Percent of maximum number of pages

Decreases i n storage allotment

-r
10 20 30 ko

Percent of normalized time
50

c) Time storage allotment remained s t a t i c
Figure 3.2 Dis t r i b u t i o n s f o r storage p r o f i l e model (grp 1)

o c .j
O r-i

-p
OCX).
a
fe

vO.
0) a

> •H
• P J " .
c3 •

H
3
a CM.
a •
o

a)

10 20 30 '1*0 , 50
Percent of maximum number of pages

Increases i n storage allotment

b)

10 20 30 ko 50
Percent of maximum number of pages

Decreases i n storage allotment

10 20 30 kO
Percent of normalized time

50

c) Time storage allotment remained s t a t i c

Figure 3.3 Dist r i b u t i o n s f o r storage p r o f i l e model (grp 2)

47

A s e t of d i s t r i b u t i o n s was determined f o r the s i z e s of

i n c r e a s e s and decreases i n the amount of storage possessed f o r

each category (see f i g s . 3.2 and 3.3), and a l s o a d i s t r i b u t i o n

f o r the l e n g t h s of time t h a t the number of pages remained

s t a t i c . C o n d i t i o n a l p r o b a b i l i t i e s f o r the d i r e c t i o n of the next

change i n the number of pages (up or down), given the d i r e c t i o n

of the l a s t change, were measured from the observed storage

p r o f i l e s . By drawing random numbers from the above

d i s t r i b u t i o n s , and f o r c i n g an i n c r e a s e to the maximum storage

s i z e a t some p o i n t , i t i s p o s s i b l e to generate very reasonable

storage p r o f i l e s . A comparison i s found i n Table 3.1

I t i s p o s s i b l e that a much more e l a b o r a t e model co u l d be

devised, but because of the extreme v a r i a b i l i t y of jobs run on

t h i s system, i t i s u n l i k e l y t h a t much b e t t e r p r o f i l e s c o u l d be

obta ined.

A f l o w c h a r t d e s c r i b i n g the model appears i n f i g u r e 3.4.

M8

Determine
i f p r o f i l e
i s c l a s s

] o r ?

Stop

Determine
the s i z e O J
increase

Determine
point to
forc e climb to tfaxirau:?: I
Determine
point of
d e c l i n e i n
storage demand

•Determine
time to- the
next change

Set # of
pages equal, * i
to minimum

Determine
the s i z e of s

decrease

Determine
time to the;

N^next change:

Figure 3.U- Flowchart of storage p r o f i l e model

Maximum Mean tf tf humps Max % Max % tf o f Maximum Mean %

tf pages pages x 10 i n c r e a s e d e c r e a s e changes w i d t h change

Group 1 23.17 1 0 . 5 9 14 . 1 7 2 8 . 9 5 4 9 . 9 2 2 1 . 0 0 17.42 1 7 . 6 1

Observed
Group 2 7 0 . 4 3 42 . 8 4 11 .43 3 5 . 5 5 5 5 . 7 3 25.14 7 4 . 0 0 9 .27

Group 1 23 .17 11 .72 1 5 . 0 0 3 2 . 3 1 6 1 . 6 6 1 7 . 0 9 2 1 . 5 0 1 8 . 6 6

Generated
Group 2 7 0 . 4 3 34.42 1 0 . 9 1 36.22 5 7 . 2 5 2 6 . 8 8 6 9 . 3 1 10 . 7 3

T a b l e 3*1 Comparison o f observed p r o f i l e s , and t h o s e g e n e r a t e d

by the model.

50
CHAPTER-U SUMMARY AND DISCUSSION

ii-s.1 Summary And Discussion

I t was found i n s e c t i o n 2.1 that the requested CPU
i n t e r v a l s f o r batch jobs were about 30% longer on the average
than those f o r i n t e r a c t i v e jobs, and that these i n t e r v a l s have
standard d e v i a t i o n s about four times as large as t h e i r means.
E i t h e r a hyper-exponential or a W e i b u l l d i s t r i b u t i o n can be used
as a model f o r the i n t e r v a l s , with the hyper-exponential
d i s t r i b u t i o n being the e a s i e s t to use, as i t i s much e a s i e r to
generate parameters that g i v e the d e s i r e d mean and variance.
The r e l a t i o n s h i p between the d i s t r i b u t i o n parameters, and the
mean and variance f o r the Weibull d i s t r i b u t i o n i s very complex,
(see Appendix B) and no s t r a i g h t forward s o l u t i o n e x i s t s to
determine the parameters from them.

The processor time r e q u i r e d by i n t e r a c t i v e t a s k s , i s broken
up i n t o reguested CPU i n t e r v a l s , with disk or tape I/O
operations terminating a l l but the l a s t of these i n t e r v a l s ,
which i s terminated by a te r m i n a l I/O operation. The Weibull
d i s t r i b u t i o n g i v e s the c l o s e s t f i t according to the Kolmogorov-
Smirnov goodness of f i t t e s t , has a mean and standard d e v i a t i o n
much l e s s than those observed due to a few very large values i n
the observed d i s t r i b u t i o n .

A s h i f t e d Weibull d i s t r i b u t i o n (one with the 2f parameter
greater than zero) provides a f a i r l y good f i t to the observed
d i s t r i b u t i o n of user response times, but f o r the d i s t r i b u t i o n of
times that i t takes the system to write l i n e s no d i s t r i b u t i o n
f u n c t i o n was found to provide a reasonable f i t . I t would
probably be a good idea to break t h i s d i s t r i b u t i o n up according

51

to the various types of devices i n v o l v e d , and to determine a
d i s t r i b u t i o n of w r i t e times f o r each one.

A Weibull d i s t r i b u t i o n with a s h i f t can be used to model
disk I/O del a y s , but the f i t obtained i s not a good one.

The d i s t r i b u t i o n of page waiting times f o r the MTS system,
i s best broken up i n t o two cat e g o r i e s i f one wants to generate
page t r a n s f e r delays with a d i s t r i b u t i o n s i m i l a r to the ones
observed. An exponential d i s t r i b u t i o n models the delays that do
not require a t r a n s f e r of a page from the drum, and the
t r a d i t i o n a l Erlang d i s t r i b u t i o n can be used to model those
delays that do.

D i s t r i b u t i o n s of system response time, and a c t u a l CPU
i n t e r v a l s can be used to check the accuracy of s i m u l a t i o n models
t e s t e d .

In the area of program storage requirements, more work
might be p r o f i t a b l e . For s i m u l a t i o n models, the r e l a t i o n s h i p
between v i r t u a l storage allotment and the amount of r e a l core
needed would be u s e f u l , as w e l l as r e l a t i o n s h i p s between amount
of r e a l core, the number of simultaneous users, and the amount
of paging done. The model developed i n s e c t i o n 3.3 f o r v i r t u a l
storage requirements of jobs i s only a beginning i n t h i s
d i r e c t i o n .

H.2 A Simple Model Of MTS For Simulation

The f o l l o w i n g simple s i m u l a t i o n model of MTS could be used
to employ some of the measures taken i n t h i s study. The model

52

keeps three l i s t s o u t l i n e d below:

1) Job L i s t
Each entry on the job l i s t c o n t a i n s a l l the

informati o n concerning a p a r t i c u l a r job running on
the simulated system, and i n c l u d e s these f i e l d s :

TC maximum CPU time f o r the job
TE current t o t a l CPU time f o r the job
TR time remaining i n the c u r r e n t reguest

f o r CPU s e r v i c e
TRTS time remaining i n the t i m e - s l i c e
NB the reason the job w i l l stop at the end

of the curren t requested CPU i n t e r v a l

Various other f i e l d s can be used to keep track of
s t a t i s t i c s of i n t e r e s t such as the cu r r e n t number of
r e a l pages, the cumulative wait time, e t c .

2) CPU Queue

This l i s t i s l i n k e d with the f i r s t entry
p o i n t i n g to the next, e t c . Each entry contains only
a pointer to the job l i s t , and the l i n k to the next
ent r y , with the p o s i t i o n of the entry i n d i c a t i n g the
p o s i t i o n of the corresponding job i n the simulated
CPU gueue.

53

3) Event L i s t

This l i s t i s a l s o l i n k e d , and ordered according
to the times of the events represented. Events i n
t h i s l i s t w i l l cause the pre-emption of a job that
i s running on a CPU i f any job i s running at the
time of the event. Each entry contains a p o i n t e r to
the job l i s t i n d i c a t i n g the job a s s o c i a t e d with the
event, an i n d i c a t i o n of the event type, and a l i n k
to the next entry i n the l i s t .

In a d d i t i o n the model keeps the current time T.

A flowchart of the model appears i n f i g . 4 . 1 . The value
i i n d i c a t e s the job c u r r e n t l y i n possession of a CPU. (note:
the model i s shown f o r o n l y one CPU since others are i d e n t i c a l)
Tr i s the running time before stopping f o r the job c u r r e n t l y on
the CPU, and Tn i s the time of the next event from the event
l i s t . Tev i s the time c a l c u l a t e d f o r an event to occur.

5*

T i l

Tev

p o i n t e r to job l i s t
(c u r r e n t job)

.current time

running time before
s t o p p i n g f o r job i

time of next, event

time c a l c u l a t e d f o r
an event t o occur

St?

V?

S'Generate i n i t i a l :
j; parameters f o r
[a l l jobs i n the
jj system a t the
j s t a r t

I Order a l l the |
I jobs on the
I CPU queue

iOB LIST

TC

TRTS

NB

maximum CPU time

c u r r e n t t o t a l CPU
time

time remaining .in
c u r r e n t r e q uest f o r
s e r v i c e

time remaining i n
time--s l i c e

reason job w i l l stop
a t the end of the
c u r r e n t request

i-. job if j
o f . t h e job |
on the top of
the aueue f

I Generate time
I of next a r r i v a l !
f o r the event
l i s t

La-

i
X

T r

min (TRj_, TRTS ±]

F i g u r e ^ . I Flowchart f o r a model of MTS (see over)

i
I

Job s t o p s f o r i / 0
o r a page • f a u l t

Figure A . l (b) Flowchart f o r a' model of MTS -'(see over)

.^y- THj_-TRTS j_

T RTSi

new t i m e - s l i c e

? i m e - s l i c e
runs out

TRTS-? <- TRTS-i J O D 1
pre-em

-(Tn-T).

TR^-.-TRi

-(Tn-T)
TE .•'<*• TE l
•(Ti

Put job i on
the bottom o f
the CPU queue

®

Put j o b i on
the t o p o f
the CPU queue

job #
from n e x t
event

Generate j o b

parameters

F i g u r e -l+.l '(c) F l o w c h a r t f o r a model'-of'MTS

57

i L i i Concluding Remarks

Information on the workloads of computing systems becomes

i n c r e a s i n g l y d i f f i c u l t t o o b t a i n as the systems become more

complex. New t o o l s must c o n s t a n t l y be developed to overcome

t h i s problem, as a good understanding of the behavior of

programs i s necessary f o r one to design new o p e r a t i n g systems,

or modify o l d ones, with the idea of producing a system t h a t

makes good use of the hardware a v a i l a b l e (to minimize waste) ,

and a l s o g i v e s s a t i s f a c t o r y performance t o users . Basing an

oper a t i n g system design on f a u l t y assumptions about the

c h a r a c t e r i s t i c s of programs, i s bound to be a h i t and miss

a f f a i r .

The purpose of t h i s study has been to measure some of the

important c h a r a c t e r i s t i c s of programs at the U n i v e r s i t y of

B r i t i s h Columbia. The Data C o l l e c t i o n F a c i l i t y w r i t t e n by

Dr. T. B. P i n k e r t o n f o r the MTS o p e r a t i n g system has proven to

be a v a l u a b l e t o o l to t h i s end.

BIBLIOGRAPHY
58

Aho, A. V., Denning, P. J . , Ullman, J . D., " P r i n c i p l e s
of Optimal Page Replacement", J o u r n a l of the ACM,
v o l . 18, 1 (Jan 1971).

Alexander, M. T., "Time-Sharing S u p e r v i s o r Programs",
U n i v e r s i t y of Michigan Computing Cetner Memorandum
(May 1969).

Alexander, M. T., & K. M., "Data C o l l e c t i o n F a c i l i t y
and Data A n a l y s i s Program f o r MTS", U n i v e r s i t y of
Michigan Computing Center Memorandum #M200 (Nov
1971) .

Bard, Y., "Performance C r i t e r i a f o r a Time-Sharing
System", IBM S y s t . J o u r n a l , v o l . 10, 3 (1971).

Baskett, F., Browne, J . , Raike, w., "The Management of
a M u l t i - L e v e l Non-Paged Memory System", Proc. Of
AFIPS 1970 SJCC, v o l . 36.

B e r r e t t o n i , N. J . , " P r a c t i c a l A p p l i c a t i o n s of the
Weibull D i s t r i b u t i o n " , I n d u s t r i a l Q u a l i t y C o n t r o l ,
v o l . 21, 2 (Aug 196U).

Bonner, A. J . , "Using System Monitor Output to Improve
Performance", IBM Syst. J o u r n a l , v o l . 8, 4 (1969).

Brawn, B., Gustavson, F., "Program Behavior i n a Paging
Environment", Proc. Of AFIPS 1968 FJCC, v o l . 33.

Bryan, G. E. , "20,000 Hours at the Console: A
S t a t i s t i c a l Summary", Proc. Of AFIPS 1967 FJCC,
v o l . 31.

Campbell, D. J . , Hef f n e r , W. J. , "Measurement A n a l y s i s
of Large Operating Systems During System
Development", Proc. Of AFIPS 1968 FJCC, v o l . 33,
part 1.

C a n t r e l l , H. 8., E l l i s o n , A. L. , "Multiprogamming
System Performance Measurement and A n a l y s i s " , Proc.
Of AFIPS 1968 SJCC, v o l . 32.

Cheng, P. S., "Trace Driven System Modeling", IBM Sy s t .
J o u r n a l , v o l . 8, 4 (1969).

59

13 Coffman, E. G, , Varian, L. C. , "Further Experimental
Data on the Behavior of Programs i n a Paging
Environment", Communications of the ACM, v o l . 11, 7
(July 1968).

14 Coffman, E. G., " A n a l y s i s of a Drum Input/Output Queue
Under Scheduled Operation i n a Paged Computer
System", Journal of the ACM, v o l . 16, 1 (Jan 1969).

15 Daley, R. , Dennis, J . B., " V i r t u a l Memory, Process, and
Sharing i n MU1TICS", Communications of the ACM, v o l .
11, 5 (May 1968).

16 Denning, P. J . , "The Working Set Model f o r Program
Behavior", Communications of the ACM, v o l . 11, 5
(May 1968).

17 Denning, P. J . , " V i r t u a l Memory", Computing Surveys,
v o l . 2, 3 (Sept 1970).

18 Dennis, J . B., "Segmentation and Design of
Multiprogramming Computing Systems", J o u r n a l of the
ACM, vol.12, 4 (Oct 1965).

19 Drummond, M. E. J r . , "A Pe r s p e c t i v e on System
Performance", IBM Syst. J o u r n a l , v o l 8, 4 (1969).

20 E s t r i n , G., K l e i n r o c k , L., "Measures, Models, and
Measurements f o r Time-Shared Computer Systems",
Proc. Of the ACM 22 N a t i o n a l Conference (1967).

21 F i f e , D. W., "An Optimization Model f o r Time-Sharing",
Proc. Of AFIPS 1966 SJCC, v o l . 28.

22 F i n e , G. H., Jackson, C. W., Mclsaac, P. v . , "Dynamic
Behavior of Programs Under Paging", Proc. Of the
ACM 21 N a t i o n a l Conference (1966).

23 F r e i b e r g s , I. F., "The Dynamic Behavior of Programs",
Proc. Of AFIPS 1968 FJCC, v o l . 33.

60

24 Fuchs, E., Jackson, P. E., "Estimates of D i s t r i b u t i o n s
of Random V a r i a b l e s f o r C e r t a i n Computer
Commumnications T r a f f i c Models", Communications of
the ACM, v o l . 13, 12 (Dec 1970).

25 Gordon, G., System S i m u l a t i o n ^ P r e n t i c e - H a l l , Englewood
C l i f f s , New Jersey, 1969.

26 H a t f i e l d , D., Gerald, J . , "Program R e s t r u c t u r i n g
Techniques i n V i r t u a l Memory", IBM Syst. J o u r n a l ,
v o l . 10, 3 (1971).

27 K i l b u r n , T., Edwards, D., Lanigan, M., Sumner, F., "One
L e v e l Storage Systems", IEEE Trans. On Elec.
Computers, v o l . 11, 2 (Apr 1962).

28 K l e i n r o c k , L., Coffman, E. G., " D i s t r i b u t i o n of
Atta i n e d S e r v i c e i n Time-Shared Systems", Jour.
Comput. Syst. S c i . , v o l . 1 (1967).

29 Kuehner, C. J . , R a n d e l l , B., "Demand Paging i n
Pers p e c t i v e " , Proc. Of AFIPS 1968 FJCC, v o l . 33.

30 Lauer, H., "Bulk Core i n a 360/67 Time-Sharing System",
Proc. Of AFIPS 1967 FJCC, v o l . 31.

31 Lehman, M., Rosenfeld, J . , "Performance of a Simulated
Multiprogramming System", Proc. Of AFIPS 1968 FJCC,
v o l . 33, part 2.

32 MacDougall, M. H., "Simulation of an ECS-Based
Operating System", Proc. Of AFIPS 1967 SJCC, v o l .
30.

33 MacDougall, M. H., "Computer System Simulation: An
I n t r o d u c t i o n " , Computing Surveys, v o l . 2, 3 (Sept
1970).

34 McKinney, J. M., " A n a l y t i c a l Time-Sharing Models",
Computing Surveys, v o l . 1, 2 (June 1969).

35 Nakamura, G., "A Feedback Queueing Model f o r an
I n t e r a c t i v e Computer System", Proc. Of AFIPS 1971
FJCC, v o l . 39.

61

36 N i e l s e n , N. R., "The Simulation of Time-Sharing
Systems", Communications of the ACM, v o l . 10, 7
(July 1968) .

37 O'Neil, R. W. , "Experience Using a Time-Shared
Multiprogrammed System With Dynamic Address
Rel o c a t i o n Hardware", Proc. Of AFIPS 1967 SJCC,
v o l . 30.

38 Oppenheimer, G., Weizer, N., "Resource Management f o r a
Medium Scale Time-Sharing Operating System",
Communications of the ACM, v o l 11, 5 (May 1968).

39 P i n k e r t o n , T. B., "Program Behavior and C o n t r o l i n
V i r t u a l Storage Computer Systems", U n i v e r s i t y of
Michigan Tech. Rep. #4, CONCOMP P r o j e c t .

40 P i n k e r t o n , T. B., "Performance Monitoring i n a Time-
Sharing System", Communications of the ACM, v o l .
12, 11 (Nov 1969).

41 R u i z - P a l a , E., A v i l a - B e l o s o , C., Hines, W. W., Waitincj-
i i n e . Models, Reinhold P u b l i s h i n g Co., New York,
1967.

42 Scherr, A. L., "Time-Sharing Measurement", Datamation,
v o l . 12, 4 (Apr 1966).

43 Scherr, A. E., A n a l y s i s of Time-Shared Computer
Systems, MIT P r e s s , Cambridge, Mass., 1967.

44 Schwetman, H. D. , DeLine, J. R. , "An Operational
A n a l y s i s of a Remote Console System", Proc. Of
AFIPS 1969 SJCC, v o l . 34.

45 Sebestyen, G. S., Decision-Making Processes i n Pattern
B.6co3nition x Macmillan, New York, 1962.

46 Shemer, J . E., Heying, D.W., "Performance Modeling and
E m p i r i c a l Measurement i n a System f o r Batch and
Time-Sharing Users", Proc. Of AFIPS 1969 FJCC, v o l .
35.

47 Stanley, W. I . , "Measurement of System Operational
S t a t i s t i c s " , IBM Syst. J o u r n a l , v o l . 8, 4 (1969).

62

von Maydell, U. M., Gatha, A. K., "Analysing the
Performance of the CP/67 Time Sharing System",
INFOR, v o l . 9, 3 (Nov 1971).

Z e s g l e r , J . R., Time-Sharing Data Processing Systems^
P r e n t i c e - H a l l , Englewood C l i f f s , New Jersey, 1967.

63
APPENDIX A THE DATA COLLECTION FACILITY

The DCF c o n s i s t s of two UMMPS jobs c a l l e d STAT and STATSW
and of supervisor subroutine which i s invoked from various
points i n the s u p e r v i s o r , and which may a l s o be invoked by a
SVC.

The STAT job manages a r i n g of b u f f e r s which i t w r i t e s onto
a tape when f u l l . The STATSW job i s r e s p o n s i b l e f o r s e t t i n g and
r e s e t t i n g a word of switches i n each entry i n the job t a b l e ,
which i n d i c a t e whether or not data i s to be c o l l e c t e d f o r that
job, and what items are to be c o l l e c t e d f o r i t i f data i s to be
c o l l e c t e d . The supervisor subroutine i s r e s p o n s i b l e f o r p l a c i n g
the items i n the b u f f e r s . Each item c o n s i s t s of a two word
p r e f i x c o n t a i n i n g the item type, item length, ID of job to which
the item a p p l i e s , an i n d i c a t i o n of which CPU the item occurred
on, and the time of the event, followed by from zero to s i x
words of s p e c i f i c i n f o r m a t i o n about the event.

The presence of such a f a c i l i t y i n a system, must cause
some degradation i n performance, but the amount i n t h i s case i s
s m a l l . Roughly 10 us of CPU time i s r e q u i r e d every_ time the
s u p e r v i s o r i s entered to see i f the DCF i s c u r r e n t l y a c t i v e . I f
i t i s , the b u f f e r entry subroutine can place each item i n t o a
b u f f e r at a cost of about 65 us each. In a d d i t i o n , the SVC c a l l
from a job program to save an item requires about 330 us of CPU
time, but only about 10% of items are c o l l e c t e d i n t h i s manner.
My measurements have shown that on a f a i r l y busy day, with the
DCF o p e r a t i n g , roughly 0.6% of the CPU time i s used by the STAT
job, and about 4% of the CPU time by b u f f e r entry subroutine and
SVC c a l l to enter data i n b u f f e r s . The DCF a l s o uses roughly 3%

64

of the r e a l core a v a i l a b l e to users.

I t i s p o s s i b l e f o r no bu f f e r to be a v a i l a b l e when an item
i s to be entered. In t h i s case, a count i s kept of a l l items
missed u n t i l a b u f f e r becomes a v a i l a b l e and a s p e c i a l item
i n d i c a t i n g t h i s number i s i n s e r t e d as the f i r s t item of the new
b u f f e r . This s i t u a t i o n , however, occurs only r a r e l y .

The data c o l l e c t i o n f a c i l i t y i n MTS i s c u r r e n t l y the most
f l e x i b l e and d e t a i l e d a v a i l a b l e .

65
APPENDIX B FITTING WEIBULL AND HYPER-EXPONENTIAL

DISTRIBUTIONS

THE WEIBULL DISTRIBUTION

The Weibull d i s t r i b u t i o n has the gen e r a l form

F{x) = i- e-<K*-y> b

where X i s a s h i f t parameter which i s normally e g u a l t o zero

when one i s i n t e r e s t e d i n time dependent v a r i a b l e s . T h i s g i v e s

us the f o l l o w i n g form f o r the W e i b u l l d i s t r i b u t i o n

F(t) = l-e"***

The mean of t h i s d i s t r i b u t i o n i s giv e n by

and the v a r i a n c e by

<*2*{ f(2/S+1)-r 2(/S+D }
where ot = 1/a, /3 - 1/b

In order to o b t a i n e s t i m a t e s of the parameters a and b we may

apply the f o l l o w i n g t r a n s f o r m a t i o n

1-F(t) = e"*r

l n (1 - F (t)) = - a t b

l n (1 / (1 - F { t))) = a t b

l n (In (1 / (1 - F (t)))) = l n a + b In t

which r e s u l t s i n a l i n e a r equation i n the v a r i a b l e s

l n (ln (1 / (1 - F (t))) and l n t . The slope of t h i s l i n e i s b r and

the i n t e r c e p t i s l n a. We can f i n d two p o i n t s on t h i s l i n e by

s e t t i n g each of the v a r i a b l e s to zero i n t u r n .

(1) l n t = 0 when t = 1

Some s u i t a b l e s c a l i n g f a c t o r can be a p p l i e d t o the time v a r i a b l e

t o get a value of t = 1 near to the maximum time f o r which data

was c o l l e c t e d and not grouped i n an overflow c l a s s . E v a l u a t i n g

l n (ln (1 / (1 - F (t)))) at t h i s p o i n t g i v e s a value f o r l n a.

66

(2) ln (l n { 1 / (1 - F . (t)))) = 0
when 1/(1-F(t)) = e

or F (t) = 0. 6321
from the sample d i s t r i b u t i o n , f i n d a value T such that
F (T) = 0. 6321. The parameter b may now be c a l c u l a t e d from

b = -In a/In T.

An i n v e r s e f u n c t i o n e x i s t s f o r the Weibull d i s t r i b u t i o n ,
and i s derived as f o l l o w s :

P (x<t) = 1-e" a t b

1-p = e-**

In p = - a t b

t b = ln[d / p) 0 1]
In t = /Q l n (l n [(1/p)*]
In t = l n (l n [(1 / p) *]) *

t = [<*ln{1/p)] *

THE HIPER-EXPONENTIAL DISTHIBUTION

A hyper-exponential d i s t r i b u t i o n may be represented by the
general form

F(t) = + (1-s)e - 2('-s)^" t'
The mean of t h i s d i s t r i b u t i o n i s given by 1/Ar and the variance
by

Cr2 = [(1-2s+2s2)/(2s-2s2)](1 / A) 2

Given the mean and variance of a sample d i s t r i b u t i o n , we may
c a l c u l a t e a value f o r the parameter s as f o l l o w s :

l e t k = a 2
 A?

67

k = (1 - 2 s + 2 s 2) / (2 s - 2 s 2)

t h i s y i e l d s

s = (2k+2-2 (k2-1)' A)/(Uk+4)

w h i c h h a s a s o l u t i o n a s l o n g a s k>1, w h i c h must be t r u e f o r t h e

h y p e r - e x p o n e n t i a l d i s t r i b u t i o n s i n c e t h e v a r i a n c e i s g r e a t e r

t h a n t h e s g u a r e o f t h e mean.

68
APPENDIX C MTS DATA

Data was c o l l e c t e d f o r t h i s study on two occasions, f i r s t

on June 19, 1971, and secondly on November 11, 1971. The f i r s t

data tape (tape 1) r e p r e s e n t s a l i g h t load on the system, with

only about 7 i n t e r a c t i v e jobs, and 2 batch jobs running

s i m u l t a n e o u s l y . The second data tape (tape 2) was c o l l e c t e d to

observe the system under h e a v i e r l o a d . During the time that

c o l l e c t i o n took p l a c e , about 19 i n t e r a c t i v e j o b s , and 2 to 3

batch jobs were running s i m u l t a n e o u s l y , The number of batch

jobs i s r e s t r i c t e d a t times of heavy usage by i n t e r a c t i v e j o bs

t o prevent the system from g e t t i n g bogged down.

As can be seen i n Table C.1, even under the heavier l o a d

c o n d i t i o n , the CPU's are i d l e 48% of the time. The u t i l i z a t i o n

of the CPU's at The U n i v e r s i t y of B r i t i s h Columbia's computing

c e n t r e approaches 100% during the midnight hours, when most of

the l a r g e batch jobs are run.

I t i s i n t e r e s t i n g to note that the DCF uses c o n s i d e r a b l y

more of the system's res o u r c e s (Table C.1) than P i n k e r t o n has

i n d i c a t e d i n e i t h e r [3 1] , or [3 2] . The times were c a l c u l a t e d

u s i n g h i s formula of 65 us f o r the c o l l e c t i o n of 90% of the

items, and 330 us f o r the remainder. The times f o r the b u f f e r

managing subroutine (STAT) were measured d i r e c t l y from the data

tapes.

A frequency d i s t r i b u t i o n of the items on the tapes may be

found i n Table C.2, and a comprehensive d e s c r i p t i o n of the items

i n [3] .

Tape 1 . Tape 2

Date 19-6-71 12-11-71

Start Time 15:25 14;03

Durration 95 min

No. of Items 753389 ' 2749238

GJVU' s Idle 83.6% 48.4%

CPU Time f o r DC? 4 .0% 4.8%

data c o l l e c t i o n 5.5% 4.2%

STAT job (buffers) 0.5% 0.6%

CPU Time f o r PDP 2.9% , 6.6%

Total CPU Time f o r
Non-user Tasks

12.3% 16.8%

Table C l MTS Data

STAT ITEM • j* on' TAPIS 1 /V on TAPE 2

OVERFLOW 0 3

'•DATii I 1

ADTOTOP. • 35U53 , 2 0 1 6 5 1

POPvi • 320U1 • 130960
WAYT 91326 • 29*311;
UNWAYT ob656 •' ' 297U75
QUiiUS '• 3U9U12 - ' 1187322

STATSW .'. 3 U 9 . • • • _ ; 397

PAG IKSTK , $Qhb ' 3QO69
PAGINiX) 'N SOht ' . 36872

PAGOUTST •••• . " ' 5552 •• U2132

PAGOUTDN. , 5U76 • 1^689

P A G R E C L M ' * ' 8276 30210

G3TVKPAG . ' 9196- 32658

WEVMPAG •• 9u67 32760'

SYNCHRON ' . 91 95

VMP^GES 12695 . iSubk
WAITrOH • 1790 _ 20u6
UNLOAD- 212 595

LOAD. ., 211 .•• . . 63u

F R E S S P A C 2956.9 •. .' v . ' 96088

G E T S P A C S 28951' ' . 95287.

DSP.IX ' ' ' ,17183 , 69336

DSROUT 1716U • ; .69330

G T A L S 753389. 27U9238

Table G.2 . Frequency of STAT items.

APPENDIX !) SYGkAwS FftOyTLBS 7 /

o U3

CO

CXvr

a.

0.0 0.2 0 .4 0.5 0.8 1.0'

03

a

CO
LU<=>

a .

a '
0..0 0.2 • 0.4

Figure ' D.u

0.0 0.0 1 .0

H

CD

D.O
o
CD

D

cn

o
CD

2 0 . D
_ J

P f i G E S
4 0 . 0 CO.O 80.0

_ J
D.D

C.J
CD

O
to

**1

CD

o
vn

o

o
cn

o
co

2 0 . . D
I

1

1 - ,

P A G E S
4 0 . 0 60.0

_ J

•si

75

cn
C D g ,

CL

a
a ' 0.0 0.2

ST

0.4

Figure D . 9

hr^ H
0.5 0.8

"1
1.0

a
a _j can

cn
C-Dq.
CL.

a .
CM

ILnn

a '

•JI—a.

0.0 0.2

LJL

0 .4 0.5 0.8 1.0

Figure D.10

Ul

CM

a a'
0.0

"L SL

0.2 0.4 .0.6

Figure D . l l
0.8 1.0

03

CO

CL.

a .
CM

C J

0.0. 0.2 • 0.4 0.5

Figure D.12
0.8 1 A

I

Figure D .13

o
o _
CO

o .
ID

01
Li _ i , Q

CL.

a
a _

j n • 1 n n q

a 1 : I I I I
Q ; 0 Q . 2 3.4 0 . 5 • 0 . 8

Figure . D.ii;

78

LO

CO

c n v
Q-

a
a ' 0.0

, j . . — j — , 1 .

0.2 0.4 0.6 0.8 1.0

Figure 2 . 1 5

co

(£3

CO
U J Q
C C v
CL.

OJ

a '
0,0

J i or A—-T.
0-2 0.4 • 0.6 0.8 1.0

figure D.16

0.0
o
CD

O

K3

o

o
cn

o
co

. P A G E S
20.0 40.0

i i
60.D
_ J

80.0
_ J

D.O
o

o
CD

F
o
CD

o

20.0
P A G E S
•40.0 G0.D

_ J :

1

<0

D.O 20.0
_ J _

P A G E S
40. o

i
CO.D

_ J
80.0

o

o
cn

o
co

D.O
o
CD

o

o
cn

o
CO

20.0
_ l

P A G E S
40.0

l _

CO

.0.0 0.2 0 .4 0.6 o .a

Figure D.21

-TL.

0.0 .0.2
T T
0.4 0.6

Fisruro D..22 .
o.a

A

0.0 T T 0.2 0.4 0.5

' Figure D.25 .

o.a

O.D

o

o .
to

>0
3C-.

CT)

20. D
P R G E S

40.0 BD.D

o
•
CD

1=>

8D.0
_ L

CD

D.D

• *

to

t
cn .

CO

20.0
_ J

P R G E S
40.0 BD.D

J.

- j]

co -F

APPENDIX E THE COHPUTI'HG S 1ST EH
85

The c o n f i g u r a t i o n of the 360/67 computing system at the
U n i v e r s i t y of B r i t i s h Columbia during the time of t h i s study was
as f o l l o w s :

processors
drum storage u n i t s

1) 2 2067

2) 2 2301

3) a 2365-2

4) 2 2860-2

5) 2 2870

6) 2 2314

7) 1 2321

8) assorted

8-drive d i s k u n i t s
data c e l l

u n i t s , i n t e r a c t i v e t e r m i n a l s , and the associated
c o n t r o l eguipment.

The two processors run i n f u l l duplex mode,

