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ABSTRACT

The problem of the automatic generation of logical
consequences of a set of axioms i1s examined. The merging sub-
sumption linear strategy has been shown complete with respect
to that problem. A generalization of a set of support strategy
is given, and the completeness of merging subsumption linear
strategy with set of support is proved. The merging-linear-A-
ordered strategy and the merging 1inear-d—ordered strategy have
been shown to be incomplete. Relations between unit strategy

and input strétegy have been examined. A little review of the

'interesting theorem' is given.
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INTRODUCTION
| The ﬁroblem studied in this thesis is the automatic (i.,e,
by computer) generation of theorems from a given set of axioms S,
This problem, calied 'consequence finding', has been introduced
by R.C.T. Lee in [5],- Ioe

Loosely spéaking, we can say that Lee shows that using a
particular rule of inference, the Resolution Principle (9],
it i1s possible to deduce all the theorems of S. Later‘on
Slagle, Chang and Lee [12] have shown that with respect to the
consequence finding problem, the Semantic Resolution, another
rule of inference, has the same property of the Resolution
Principle.

In both of the works that we have mentioned (particularly
in the first) the authors also try to formalize what is meant
by an 'interesting theorem'. Moreover, they try, less successfully,
to find mechanical procedures for selecting the 'interesting'
theorems from the'uninteresting'ones.

Our interest in this problem is based mainly on two reasons.
One ic that it can lead, as was the case for theorem proving, to
a deeper understanding of the laws of the deduction in
mathematical loglc; for example one can find rules of inference
simpler but equivalent to the ones traditionally used.

The second reéson is that to study automatic consequences
'finding can help the development of Artificial Intelligence topics,
not necessarily related to mathematics. In any case, we believe

that this problem must be seen as a topic belonging to the field

of Artificial Intelligence.
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Of course, gilven the tight relationship between our topic
and theorem proving, a2 much more develéped subject, the question
arises as to how worthwhile 1t is to develop it as an independent
sublect of research., 1In order to answer this question we wish
here to stress the following two points:

1) Theorem proving is actually developing as a study of a
| particulartype of proof, the proof of a contradiction.
Of course, one can prove that a proposition T is a theorem
of a given set of axioms not only by contradiction, (i,e.
showing that from S and the negation of T one can deduce
a contradiction), but also by the deduction of T itself
from S.

Then the research on consequences finding can be seen as
the study on a kind of proof different from the one by contradiction.
In this regard we can think the relationship between theorem
proving and consequence finding as the one between problem of
generation and problem of recognition:

2) Consequence finding differs from theorem proving in the fact
that it does not need previous‘knowledge of the theorems,
S0 a consequence finding programAcan lead the computer to
find new theorems, an activity that should be considered as
intelligent as the one of proving theorems.

The approach we follow 1s essentially the same as the one
of Lee, Chang and Slagle who have studied the applicability.té
consequence finding of some strategies first introduced in
theorem proving,

We have taken into consideration strategies different from

those and our technique for proving theorems is also different



from the one used by them.

The main results we have found in this thesis are the
following: _

The merging linear subsumption strategy is complete for
consequence finding; it 1s possible to generalize the set of
support strategy to consequence finding and the merging linear
subsumption strategy with set of support is complete for 1it;
the merging A-ordered linear strategy andbthe merging C-ordered
linear strategy are hot complete for consequence finding.

We have also found under which hypothesis on the set of
axioms S it 1is possible to use the merging A-ordered iinear
and the merging C-ordered linear strategiles for deducing theorems
from S, and we have shown that for consequence finding the unit
strategy is not equivalent to the input strategy.

We do not think that the approach we have:chosen is the
only possible one, but we believe that 1t can help in better
understanding both the peculiartty of theorem proving itself
and the difference between theorem proving and consequence finding,

as they have been historically developing.
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CHAPTER 1: FORMAL AXIOMATIC THEORIES AND THE RESOLUTION PRINCIPLE.

In this chapter a rather rigorous description of what a
formal axiomatic théory 1s will be given; it will be, also,
clarified under which limits we will speak abouﬁ axioms and
theorems; a particular rule of inference, that is the resolution

principle, will be introduced. B /

Section 1: Formal Axiomatic Theories.

Definition ((7]: A formal axiomatic theory K is defined when

the following conditions are satisfied:

1) A countable set of symbols is given as
symbols of K, A finite sequence of
symbols of K is called an expression of K,

2) There is a subset of the expressions of K
called the set of well formed formulas
(wffs) of K (we will assume that there
exists an effective procedure'to determine
whether a given expression is a wff).

3) A set of wffs is set aside and called the
set of axioms of K. There existsvan effective
procedure to determine if a wff is an axiom
or not. |

4) There is a finite set il-"In of relations
among wffs, called rules of inference. For
each ii there 1s auunique posit;ve integer J
such that, for every set of J wffs and each
wff A, one can effectively decide whether the
given J wffs are in the relation‘l; to 4, and

if 'so, A is called a direct consequence of

the given wffs by virtue of I;.



(L1) Definition {71 A wff A is said to be a consequence in

K of a set S of wffs.if and only if there

is a sequence AjAo...A, of wffs such that

AﬁA and for each 1, either Ay 1is an

axiom or A; is in S5, or A; 1s a direct

consequence by some rule of inference

of some of the preceding wffs in the sequence.

Such a sequence is called a proof (or

deduction) of-A from S.

The members of

S are called the hypothé&sis or premises
£

of the proof.

If S is just the set of the axioms

of K, then the consequences in K of S

are called theorems.

Before giving an equivalent definition of 'wff is a consequence

in K of a set S of wffs' let us give some other specification of

our theory K:

1)

The set of symbols of K will be a subset of the following

set of symbols:

a) Punctuation symbols:
e (5)5

b) Logical symbole:
Vi&;—;V ;3

c¢) Individual variables:
X; ¥ 23

X1 ¥1s

d) Individual constants:

215

a; b; ¢; ay; bys cq;

e) Predicate letters:

etce.

etc.

Py Q R; S5 T; Py Qs Rys 8515 Tys ete.

Where any symbol represents an n-ary predicate letter

with n 2 O.



f) Function letters:
f5 g h; f15 &13 hys etce.
Where any symbol represents an n-ary function

letter with n 2 O.

2) Set of terms:
- a) Variables and individual constants are terms.
v) If & 1s an n-ary function letter and nj...np

are terms, thenf (n;,...n,) is a term.

n)
¢) An expression is a term only if it can be
shown to be a term on the basis of a) and b).

3) Set of atomic formulas:

If Ny,...0,, are terms and L 1s an n-ary predicate
then L(ny,...n,) 1s an atomic formula.

4) Set of wffs:

a).Every étomic formula 1s s wff,

b) If A and B are wffs, and w is a variable then:-
A; A& B; Av B;¥w(a); w(a) are wffs.

c) An expression is a wff only if it can be shown
to be a wff on the basis of a) and b).

Definitions {7]: 1) An expression is said to be guantifier

free 1if the symbolsV , 3 do not appear
invit.

2) InVw(orIw)(A) A is called the scope
of the universal (or existential)
guantifier. .

3) An occurrence of a variable w is bound

in a wff, if either it is the variable

of a universallquantifier or it is



the variable of an existential
guantifier in the wff, or 1t is within
the scope of either Ww' or 'dw' in
the formula., Otherwise the occurrence
i1s said to be free in the wff,

4) A variable is said to be free (bound)

in a wff if it has a free (bound)

occurrence in the wff,

Definition [7]: An interpretation consists of a not-empty

get D, called the domain of the inter-
pretation, and an assignment to each n-ary
function letter X of an n-place operation
in D (i.e. a function from D™ into D), to
each n-ary predicate letter L of an n-place
relation in D, whose values are 'True' or
'"False' (that is a function DR (True,

Fglse)).

Given such an interpretation variables are thought of as
ranging over the set D, each constant is thought of as a single
point in D, 'V', "&' 'V' '3’ are given their usual meaning.

~ For a given interpretation, a wff without free variables
@closed wff) represents a proposition which 1is true or false,
whereas a wff with free varlables stands for a relation on the
domain of the interpretation which may be satisfied (true) for
some values in the domaln of the free variable and for the
values of the constants, and not satisfied (false) for other

values of the free variables and for the values of the constants(b).

e will not go into any definition of truth and satisfiability
more formal than the one we have given before.



Definitions: 1) A wff i1s called 'satisfiable' if there
18 some interpretation in which it is
satisfied.

2) A set of wffs is satisfiable if there

is an interpretation in which all the
wffs in the set are satisfied.

3) A wff is called 'unsatisfiable' if it is

not satisfiable,
4) A set of wffs is 'unsatisfiable' if every

wff in the set is not satisfiable,.

(L2) Definition 7 : A wff A is said to be logical

consequence in K of a set 5 of wffs if

the set S' = SUA is unsatisfiable. We

will say S5 implies A for 'A is a logical

consequence of S',

Definition ¥ : A wff A is said to be logically wvalid

if and only if A is true for every
interpretation.

Definition 7 : A theorv K i1s said to be a first order

logic theory if:

1) The axioms of K are divided into two
clagses: the logical axioms and the
proper axloms. -

2) The rules of inference are:

(2)

"“'Modus ponens and generallzation .

(zkor the definition of these inference rules, see the reference
given in Chapter 2.



The logical axloms are the same for every first order
1ogic.theory and they are logically valid wffs, The.préper
&XiQNE vary from theory to theory.
A first order logic theory in which there are not proper

axioms 18 called a first order predicate calculus.

The logical axioms are so designed that the logical
consequences of the closure of the axioms of K are precisely
the theorems of K., The theories we will consider Wwil2 be first

order loglc theories,

Section 2: Set of wffs as set of clauses,
Definition: A literal is an atomic formula or its negation.
Definition: A clause is a set of literals., We will
indicate them with the following symbols:
C; T; C'; T'; C''; T''; etec.
CO; Tgs Cq3 Tys ete. R Rys ete.
Ré; Ri; etc.
Definition [7]: "A wff B such that B Qlwl...QKwK{A)GB)
Where: Q3 1s elther the universal quantifier
or the existential quantifier, Wy is
a variable and Wi'#‘ Wy for 1% J,
A 1s a quantifier free wff

is said to be in prenex normal form; A is

called the matrix and the seguence Qlwl...QKwK
is called the prefix,.

G%vcan bé élso a quantifier free wff,
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Definition: A wff 1s said to be in prenex conjunctive form

if it 1s in prenex normal form and its matrix
is a conjunction of wffs,

Definition: A wff A i1s said to be equivalent to a wff B

if B is a consequence of A and A is a
consequence of B.

Th., [7] : There 1s an effective procedure for transforming
any wff‘A into a wff B in prenex normal form
such that AEB(4).

Given a closed wff A in prenex normal form: A=Q1Wi.‘.QKWk663
we will say that:

Definition: B is the functional normal form of A if B is

obtained from A using the followling procedure:
0) If A is a quantifier free wff, B is just A,
1) Starting from the left of A let Q. be the
first ‘existential quantifier we meet, and
let Wr be thé variable which is quantified
by Qn, construct
BQWy .o Q1 Wp 1@y 1 W1 - .QKWK( c')
where C' 1s C except that any occurrence
of Wr in C 1s substituted either with
L(Wy...W._1), where £ is a functional
symbol which doeé not occur in our theory
K, if r > 1, or with a constant symbol,
which does not occur in our theory K, if

r=1;

(%)

~AzB means that 'A equivalent to B' is a theorem of the
first order predicate calculus,
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2) If either there is not such Q,, or r:zK,
| fhen stop: B i1s a functional normal form
of the starting wff A, otherwise call B, A
and C', C and go to step i.
Because this proceduré substitutes for a variable bound by
an existential quantifier a particular term, intultively it is
clear that the prems normal form of a wff is a conéequence of its

functional normal form, but the opposite is not true; let_us give
an example:

A

¥x¥y3zC(x,y,2)
Vx¥yC(X,y, Ux,y),

Clearly, whenever B 1s satisfied also A 1s satisfied.

B

Now we are ready to perform the following transformation
of our theory K:
1) We consider the closure of the wffs of our theory K,
2) Every wff so obtained 1s transformed into its prenex
-conjunctive ﬁormal form.
3) Every wff so obtained is transformed in its functional
normal form.
4) Every wff so obtained is transformed into a corresponding
set of clauses,
Let us give an example of the algorithm just glven:
. Example: Consider a wff
A = ¥x3y((p(x,y)Val(x,c))&(p(X,b)Valx,y))
By steps 1 and 2 A is transformed 1nto_A, by step 3 A is
transformed into B such that
B = (p(x,f(x))Va(x,c))&(p(x,b)Va(x, f(x))

where f is a new functional symbol.



and from the logical soundness
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By step 4 B is transformed into a set of clauses
S = (p(x,f(x))alx,e),p(x,blalx, f(x)))
(Note that from the fact that our wffs are closed formulas

(5)

of the rules of infereénce we

will use, it follows easily that the definitions (L1l) and (L2)

are equlvalent, that is a wff A i1s a logical consequence of =&

set of wffs 1f and only if A is a consequence in K of -5, It

seems natural to us to look at definitions (L1) and (L2) as

characteristic respectively of the consequence finding approach

and the theorem proving approach).

set of clauses

From now on we will regard the axioms of our theory as a

(:6) (7).

and our theorem as a clause

(5)

(8)

(7)

Logical soundness is an elementary property that every
set of rules of inference must satisfy. A set of rules
of inference is logically sound if, when it is applied
to some satisfiable set of wffs, the resulting set of
wffs 1s still satisfiable.

For an intuitive understanding of some notion we will
introduce later, It is enough to remember that each
clause represents the disjunction of its literals, and

a set of clauses represents the conjunction of its clause.

Actually, since the rules of inference we are going to
use are such that they transform a couple of clauses into
a single clause, a clause will be treated as an axiom.
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Section 3: Herbrand's theorems,
Definitions [9]:1) A literal which does not contain

variables ig called a ground literal,

2) A clause each member of which is ground

is called a ground clause,

A particular ground clause is the emply
clause., By general clause or simply
clause we will mean any clause (not
necessarily ground).
Definttion:(a): With any set S of clauses can be associated
a set of ground terms called the Herbrand
Universe of S:
o
g = ngo Hn,s
Where: Ho,s: the set of all constant
symbols belonging to S if there are any,
otherwise a generic constant symbol,
Hp, g= Hp-1, gU set of all terms obtained
from all the functional symbols of S in
which the varlables are substituted by
terms of H__,.
Definitions [9] : 1) If S ié any set of clauses and P is
any set of terms then by P(S} we denote

the saturation of S over P, that is

the set of all ground clauses obtainable
from members of S by replacing variable
with member of P, occurrences of the

same variable in any one of clause being

8 C
(f)Definition of the Herbrand Universe equivalent to this one
can be found, for example, in *{9].
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replaced by occurrences of the same
term., |

2) A set of ground literals which does not
contain a literal and its negation is
called a model.

3) A clause C belonging to a set S of cléuses

is satisfied by a model M if for every

member C' of Hg(C), C'/A M igs not empty.

A set 5 of clauses is satisfied by

a_model M if every clause in S5 1s satisfied
by M. Such M is said to be a model for 5.

First Herbrand's theorem(Q)ti If S is any finite set of
clauses, then S5 is unsatisfiable if and
only if there is.a finite subset of Hg(S)
which is unsatisfiable.

Generalized Herbrand's theorem L12]: If S ig any finite
sét of clauses and C is a ground clause
then S implies(ie) C if and only if there
is a finite subset S' of Hgyg(8) such

that S' implies C.

Section 4: Completeness,
Let S be any finite set of clauses, let I'be a set of rules
of inference, let C be a clause.

Definitions: 1) ‘T is refutation complete if:

S is unsatisfiable(ll) if and only if there

is a deduction of the empty clause from S by ¥,

“«Q)Formulation of the Herbrand theorem equivalent to this one can
~ be found in (41, (93, (10].
(10)

1 S implies C is equivalent to 'C is a logical sequence of S',
(“l)Obviously S 1s unsatisfiable if there is no model for it.
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2) ‘I is complete for conseguence finding if:

S implies C if and only if there is a deduction

of a clause C' from S by ‘I and C' implies C,

Section 5: Resolution principle.

Definitions [9] : 1)

3).

Any expression of the form n/w where
w is any variable and n 1s any term

different from w is called substitution

component.

Any finite set of substitution components
(possibly empty), none of the variables
of which are the same, is called a

substitution. We write the substitution

whose components are ny/wy, ...nm/wy
as(nl/wl,...nk/wg)with the understanding
that the order of components 1is
immaterial.
We use lower case Greek letters to
denote substitution., In particular

€ is the empty substitution.

If © = (ny/wy,...n /W) and A are

two substitutions, then 68 V A!'

‘where A' is the set of all components

of A whose variables are among WyeoaWy
and. ©' 1s the set of all components
ny A /wy such that ny A 1is different

from Wy is called the composition of

© by A and is denoted by OA .
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4) If E is any string of symbols and
o = (nl/wl,...nk/wk) is any
substitution, then the ingtantiation

of E by © is the operation of
repiacing each occurrence of wy in E
by an occurrence of the term ns, Ee

is called the instance of E by ©. (4s

a result in [7] we want to remember
that E(ed )= (E€) A .
5) If C is any set of strings and © is a

subetitution then the instance of C

by © is the set of 21l strings E®
where E is in C, We denote this set
by C8 and we say that it is an instance
of C.
Definition: . Given a string of symbols E (or a set of

strings C), the substitution e 1s a most

general substitution for E (or for C) if for

any substitution © there is a substitution
A such that E®@=E(EA) (or C6 =CEA)), that is
for any ©, E®(or C8) is an instance of E&
(or Ce@),
Definitions 9 : 1) Given two clauses C and C' such that
there are two literals m and m', m
belonging to C, m' belonging to C'

. (12)

and mSz n's where © and & are

the most general substitutions with

(12) -
For avoiding confusion, given a set S of clauses, we rename
‘variables so that all variables in one clause are distinct
from all the variables in the other clause. (Standardization
process [97).
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respect to making m and m' the
complement of each other, the clause
Ri — (C-m)8U(C'-m' )or 15 called a
resolvent of C and C!. Clearly two
clauses can have only a finite
number of resolvents,

2) If S 1s any set of clauses the set of
all clauses which are members of S
or resolvents of members of S is
denoted by R(S);

R(R™1(5)) with R°(S)=S and n»l is
called the n-th resolution of 5,

Let us give an example of the last definitions:

Ex: _
Let S be (prq, pg, gr)

R(S) = R(S) will be rq, prr, pqd, pr)ys
Definition [9] : The Resolution Principle is the following

rule of inference:
From any pair of clauses C ang C',
one may infer a resolvent of C
and C'. C and C' are called parent
clauses of their resolvent.
It is clear from the definition that any
model for the parent clauses of a resolution
~ satisfies the resolvent, that is the resolvent
1s a logical consequence of its parents,.
Intuitively we can say that the resolution principle
involves, as ideas, the syllogism principle of the propositional

calculus, that is fromp v g and p v r we obtain q v r, and the
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instantiation of predicate calculus, that is from le...an

A(wy,...w,) we obtain A(ny,...n,) where wy,...w, are variables,

n) n

A is a wff,'nl...nn are terms,
Resultsi: For the resolution principle both refutation
compléteness and completeness for consequence

finding have been proved [9,5].
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CHAPTER 2:. MERGING SUBSUMPTICN LINEAR RESOLUTION AND SET OF

SUPPORT STRATEGY.

In this chapter we will prove the completeness for
consequences: finding of the merging linear subsumption strategy.
A generalization to consequence finding of the set of support
strategy will be given and its compleieness will be proved.

Section 1: Prél;minary definitions.

Deduction as a tree: We will represent a deduction of a
cléuse from a set of clauses as a tree
periorming the following elementary
correspondence: if a clause R1 1s inferred
from Cj and Cy by Iy then the tree shown
in Figure 1 will represent this deduction,
When there is no possibility of confusion
about the rule of inference used the tree
of Figure 1 will be substituted by.the
tree Figure la.
Let usigive an ekamplerf a not elementary deductlion:
Let S be (pfq, pgfk, & ). The clause pr can be deduced
from S by fesolutibn, one of these deductlons can be:.
From prg and pgf by resolution prf{,
" From prf and § by resolution pr, the deduction tree
corresponding to this deduction of pr will be the tree of. Eigure 1bi.
Definition: If C and C' are two clauses we say that |

- C subsumes C'if there is a substitutioné& such

that C& is a subset of C'<152‘

(15
Note that if C subsumes C' then C implies C', the converse
is not true,
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Definition 2 : A ground clause C'' is called a merge
| resolvent of two ground clauses C and C'
if C'' is a resolvent of C and C' and
there 1s some literal K such that K is
an element of C, C' and C'', K is

called a merge literal,

Definition: A clause T is a prime implicate of a set of

clauses S5, if S implies T and every T' such

that T£T' and S implies T', does not subsume T.

Definition: A set of clauses S is a minimum deduction set
for é clause T ig S implies T and S—C} where
C is any element,ﬁf 8, does not imply T. 1If
5 is a minimum deduction set for T we will

say also that S minimally implies T.

Section 2: Cdmpleteness theorems for consequence finding for
the merging-linear-subsumption strategy.

Definition: A merging-subsumption-linear deduction (m-s-1)

(2,6,1) of a clause is a deduction represented

by the tree in Figure 2 where:

1) C i8cin S{ e R

2) Ry for.4%i<niis‘a’resolvent:of the two
clauses immediately above it,

3) C; for O¢i<n-1 is either in S or is one RJ
for some j<i.

4) 1f C; is not in 8 éhen:
a) Ry,1 subsumes some instance of R;
b) C; 1s a merge resolvent

¢) The literal resolved upon in C1 is a

merge literal of Cy4
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5) DNo clause in the deduction is a tautology.
Result: Thevréfutation completeness of the m.s.l. strategy
with top clause(lé)any clause in a minimally unsatisfiable set
of clauses has been proved [17].
Lemma 1: Let S be a finite set of ground clauses, let K
beva set of literals, let S' be the set
(c'/ces & c'=c-x) ()
let T be a clause then:
if S implies\T, S' implies T.
Proof: Every model for S' is a model for S. Then becéuse
S implies T, S' implies T.
Corollary 1: Let S be a finite set of ground clauses
let K be 2 set of literals, »
let S' be the set (C'/C S & C'=C-K)
" then ‘if S 1s unsatisfiable, S' is
unsatisfiable,
Proof: Directly from Lemma 1 when T is the empty clause.
Th. 1: Let S be a finlte set of ground clauses, let T be
a clause, let C be a clause in S thep:
if S minimélly implies Tpis) then there is a
m.s.l. deduction with top ciause C of a clause
T' such that T' subsumes T.
Proof: Since S implies T, the set S1=SUT is unsatisfiable.
Consider Si =(C'/Cesy & C'=C-T)

from corollary 1 Si is unsatisfiable.

(18)
An m,s.l. deduction with top clause C is a m.s.l, deduction
( )in which the left top clause is C,
17
(18)Note that 1f some C in S 1s just K the empty clause will be in sS'.
 The hypothesis that § minimally implies T can be substituted

by the hypothesis S implies T if the deduction of T in which we
are interested is just a mgs.l. deduction of T from S,
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unsatisfiable. ‘From the refutation completeness of the m.s.l.
strategy with top clause any clause in a minimally unsatisfiable
set of clauses, for any clause C' in Sé there 1s a m.s8,1, deduction
of the empty clause from Sé with top clause C', 1In particular,

because S minimally impliee T, therexwill be a m.s.l. deduction
of the empty clause from S5 with top clause C'=C-T where C is
the given clause of 5. Let D (Fig.3) be such a deduction.
Starting from the  top of D, apply the following algorithm:.
Algorithm 'Reconstruction'.
1) Substitute for C' the éorresponding clause in 51(19)

2) For Osign-1 if Ci is in Sé substitute for 1t the

corresponding clause in Sl‘
3) Substitute for each resolvent appearing in D as
Ri or Cﬁ , the resolvent obtained under the
previous substitution.-
Let the deduction D' in Fig.4 be such deductioﬁ.'
Observe now that no ¥ such that t is in T, appears in D'
because otherwise t would be in some clauses of D and then in the
empty clause; this means that: the no-tautologies condition

holds for D' because 1t holds for D and D' is a deduction from

20)°
Trivially the last resolvent of D'T' subsumes T<“‘2

S more than from 5q.

Trivially the merging and subsumption conditionsg hold for D'.
. Th.2: Let S be a set of general clauses, let T be a general

clause then: 1if S minimally implies T(Xy, ...X,) then for every

(19 ') e A0
(go)This means to add T'' to C'=C-T if T'' is a subset of T and of C.

Remember that the empty clause subsumes every clause.
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clause in S, there is a mys.l. deduction from S with top clause

C of a clause T' such that T' subsumes T,

Prooff Let us write T as T(xl,...xn) to emphasise the

variables of T,

1) Let us introduce the individual symbols by, ...bpy
such that for 1¢ L&¢n by does not appear in S or in T.

2) Consider T(bj,...bp), since S implies T(X1,...Xn)
represents a closed wff, T(xq,...x,) implies ¥
T(by,...b,) and S implies T(by,...bp).

3) Let us construct the Herbrand universe of S and
T(by,...by), that is Hgyp.

4) From the generalised Herbrand theorem there is a
finite subset S' of HSUT(S) such that S' implies
T(by,...0,).

5) Conesider the subset 5'' of 8 such that st
minimally implies T(bq,...Db,).

6) From Th.l, for every clause C' in 5'' there is a
m.s.l, deduction with top clause C' from S'' of a
clause T'' such that T'' subsumes T(by,bs,...b,).
Let D, (Fig.5) be the m.s.l. deduction of T'', with top
clause C{, which is an instance of the given clause C of 5,
Staftiﬁg from the top of D do the following operations:.
a) Substitute for C' the clause C of which C' is an
instance,

\

b) if C; belongs to S'', substitute for it the clause

i

in 8 of which Cj is an instance,

c) substitute for each resolvent appearing in D as Ri )
or Ci the clzuse obtalined under the previous substitution.

(21)In {73 we can fingd the following result: 'If clauses T and C

have as instances respectively T' and C'! with resolvept R; then
there exists a resolvent Ryof T and C with instance Rj.
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Let D' in Fig.5a be the deduction so obtained and let T'
be the result of the deduction D'.
Note that:

a) T' does not contain by,...b,, because by,...b, are

n,
not individual symbols in 5,

b) because T' subsumes T'' there is a substitution
(b1/%1, ++.bpn/%p) such that T' subsumes T''.

From the fact that T'' subsumes T(bl,...b it follows that

n)
T' subsumes T(xi,...xp).
It is easy to see that the top clause condition holds for
D' as well as the merging subsumption and no tautologies
conditions.
Corollary 2:: Let S be a set of clauses,
let C be a clause in S,
let T be a clause then
if S minimally implies T and T is
prime implicate of S then there is
a m,s,l. deduction with top clause C,

from S, of T.

Proof: From Th.2 and from the definition of prime implicate.

Section 3: The extenslion of set of support strategy to the
conseguence finding case.
The set of support strategy was introduced by Wos, Robinson,
Carson L1337 in order to speed up the search for the deduction
of the empty clause from an unsatisfiable set of clauses, when
the used rules of inferenceare resolution [13] and the
paramodulation [14]. The intuitive idea on which the set of

support strategy 1s based is essentially this one: Given an

unsatisfiable set of clauses S, if our goal i1s the deduction of
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the empty clause from S, it is not necessary to resolve (or to
paramodulste) two clauses in a satisfiable subget of S. However,
since the definitions are more general than this intuitive idea
we will give them(zgz

Definition [13]: Given a set S of clauses and a subset S'

of S, a clause C has S%-gupport (with

respect to 5) if either C is in 55 or C
i1s a resolvent and at least one of 1ts
parent clauses has S'-support. |
Definition {13]: Given a set S of clauses and a subset S'
of 5, a 5'-supported deduction is a
sequence of clauses such that every clause
in the sequence either is in 5-5' or has
S' support. |
Results: Given an unsatisfiable set of clauses 5, for
.every S' subset of S, such that S-5' is satisfiable the
refutation completeness of both resoclution with set of support
s' [13,14] and m.s.1l., resolution with set of support 3' [ 1] has
been proved,

The way of generalizing the set of support‘strategy to
consequence finding comeg to us naturally from observing that
the set S' mentioned in the results just given is s&ch that S5-5'
does not imply the empty clause.

Th.3: Let S be a set of clauses,

let T be a clause then
if S implies T, then for every's' subset of S
such that S-5' does not imply T, there is a-
m.s.l. S'-supported deduction of a clause T'

such that T' implies T.

(§é)Because we are interested in strategies based on resolution
we will not mention further paramodulation.
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If T is the empty clause, Th.3 1s just the
fefutation cbmpletenesé of m.s.l., resolution
with S'-support.

Oﬁherwise, since S-5' does not implie T,
the minimum deduction set f6r T is such that
its intersection 8" with S' is not empty.

Let C be a clause in S", From theorem 2
we have that there 1s a m.s.l. deduction with
top clause C of 2 clause T' such that T' implies
T. This one is just a m.s.l., deduction with

set support S',
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CHAPTER 3: OSOME DIFFERENCES BETWEEN THEOREM PROVING AND

CONSEQUENCE FINDING.

In this chapter we will examine unit resolution, input

resolution, A-ordered resovlution, C-ordered resolution with

respect to the consequence finding problem.

Section 1:: Unit and input strategies.

Definitions:

Given a set S of clauses we will say that:

1)

2)

C'is an input clause if C i1s an element

of 5.

C is a unit clause if C is ausét

consisting of a single literal.

A deduction D is a unit proof of a

clause C if D is g deduction of C

by resolution, and every resolution in

D 1s such that at least one of the

two parent clauses is unit.

A deduction D is an input proof of a

clause C, if D is a deduction of Chand
every resolution in D is such that at -
least one of the two parent clauses is

an input clause,

Result: Chang (3] ::If S is an unsatisfiable set of

clauses then there is an input proof of the

empty clause from S if and only if there is a

unit proof of the empty clause from S.

The above result was lmportant in theorem proving because

of the efficiency (time and storage used) of the unit strategy

(1.e. the only allowed resolutions are unit resolutions).
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Unfortunately, in consequence finding (Th.4) we loose
this equivalence, trivially because for having a unit proof
we must have at least some unit clause in S, The following
example shows this loss of equivalence between unit and input
proof:
Ex: Let the following clauses be our axlioms:
1) pg
2) "paq
Resolving 1 and 2 we have an input proof of p,
and obviocusly there is not unit proof of p from
1 and 2. |
Th.4 3 Let S be a set of ground clauses,
let T be a clause,
let S imply T then
if there 18 a unit proof from S of some
clause T' such fhat T' implies T, then
there is an input proof from S5 of some
T such that T" implies T,
Proof: ©Since there is a deduction by resolution from 5
of T' then S implies T' and S V T'is unsatisfiable.
Since T' is 2 set of unit clauses and there
1s a unit proof of T' from S then there is a unit
proof D from S' of the emptv clause (Fig.6).
By Chang's theorem there 'is an input proof’
from S of the empty clause.
In this proof remove every Ti element of T'
on the right as shown in Fig.7 and in Fig.7a; the
deduction so obtained is an input proof from S

of ™ such that T" implies T.
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Th.5:. Let S be a set of general clauses,

let T be a clause then

if there is a unit proof from S of some
clause T' such that T' implies T, then

there is an input proof from S5 of some

- clause T" such that T" implies T.

Proof: It follows from Thw4 using the same method has

been used for proving Th.Z2.

We must observe that the loss of equivalence between

input and unit resolution for consequence finding causes some

loss of the relevance of Th.4.

Section 2¢ Merge linear A-order resolution:

Definitions: Let S be & set of clauses, we will say that:

Definition:

Definition:

Definition:

1) S is an A-ordered set of clauses if a

sequence O = ALA2, AP of all atoms in
S5 without repetitions is given,
2) &d is greater than Al ir J 1s greater than

i.

An atom 2nd its negation are‘eoual under
any A-ordering. |
Given an A-ordered set of atoms R, then

if R' is any subset of R, the A-ordering

of R' induced by an A-ordering O of R, is
the sequence 0O' obtained from O by deleting
the atoms of R-R' from 0.

A merge A-ordered linear resolution (m.a.l.)
with top clause C from an A-ordered set of

clauses 5 is a deduction D (Fig.8) where:
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a) C is in S,

b) each resolvent is formed by resolving
upon the 1argesi literal under the
A-ordering of S in the clause on the
left in D,

c) for Og¢u¢n ~ 1 either Cy belongs to S
or Cs 1is some Rj for j £ 1; in which

cace C;

;3 1s a merge A-ordered resolvent

and the literal resolved upon in Cy is
a merge literal (as well as being the
largest literal in Ry),
4) No clause in the deduction D is a tautology.
sult: »The refutation completeness of m.a.l, resolution

has been proved [87.

Unfortunately, as the following example will show, the

completeness for consequence! finding of the mza.l. resolution

doee not hold:

Ex

: Consider the set of axioms & (pq, Grp, Dgs).
We can easiiy see that pr and gs are logical donsequences
of 5, and moreover, that they are prime implicates of
S. By observing ‘that r and s do not appear negated
in 5, we see that pr is a prime implicate of pg and
qrp and gs is prime implicate of Pd and DPgs; then the
only possible deductions of pr and gs are those ones
shown in Figs: ¢, 10, 11 and 12. Just looking into
deductions we convince ourselves that no A-ordering
of S }s possible, if we wish to>déduce both pr-and gs.
“In fact, for deducing gs we need p q, for deducing

pr we need a p.
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Proof:

Th.7:

Proof:
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The m.a.l, strategv is not complete for consequences
finding. Moreover there are axiom sets for which there
is not A-ordering such that we can find all prime
implicates of S using A-ordered resolution.
The previous example proves this theorem.
Let S be a set of ground clauses, let T be a clause,
let C be a clause in S5, then
| if S minimally implies T there is an A-ordering °
of S, such that there is a m.a.l. deduction
with top clause C from S of some clause T' such
that-T' subsumes T,
Since S implies T, SUT is unsatisfiable. Let S, bef§g?.
Consider Sl' = (C'/GQS1 &c'= C;T), from
corollary 1 Si is unsatisfiable. -
Consider 55 subset of S such that Sé is minimally
unsatisfiable,
From the refutation completeness of the mza.l.
strategy with top clause any clause in a minimally
unsatisfiable set of clauses considered any clause
C' in Sé and for any A-ordering O of Sé; there is

a m.a.l. deduction with top clause C' from Sé of

the empty clause. In particuler, because S

minimally implies T there will be a m.,a.l. deduction

of the empty clause from Sé with top clause
C'= C-T where C is the given clause of &, Let D
be such deduction (Fig.1l3),

Clearly O' is an A-ordering of S since no clause

in T is some clause of Sé because Sé minimally
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implies the empty clause and all clauses of B

é because S minimally implies T.

are clauses of S
Apply now to the deduction D the reconstruction
algorithm. Let D' be the deduction so obtained
(Fig.13a).
Clearly D' is a m.a.l. ordered deduction

with top clause C from S of T', such that T'

subsumes T, with O' the A-ordering of S.

Note that the A-ordering O' for which Theorem 6 holds is
arbitrary except for the fact thstt the literals belongihg to T
must be less than every literal in S under O', The extension
of Theorem 6 to a case in which S is a set of general clauses

féllows from Theorem 1.

. 2 P A B!
Th.8: Given a set of ground(aégy clauses S, let T eeoT

1’ n
be prime implicates of S,

let 5y, ...5, be the minimum deduction sets

respectively for Tq,...T, such that S1& 5,2 S,

n
then

there is an A-‘erdering such that there is a

m.a.l. deduction of T; from S for évery 1< i€ n.

-~

Proof: We give the algorithm for constructing this A-ordering:
Let O be the ordered sequence of atoﬁs in 5
already constructed: |
Stage 1i:

1) Read a new literal X € Si
(23) -
For simplicity we speak about a set of ground clauses,
the extension of Th.8 to the general case follows as
Th.2 follows from Thall.
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2) If K belongs to T, and elther K of K
belongs to O as A(g), then drop 4(J) from
0 and change every A(h) in O to A(h+1) for
0< h< j,go0 to 6,

3) If X belongs to T, but X and K do not belong

i
to O then change every a(h) 3 0 1n A(h+1),
ko to 6,
4) If K does not belong to Ty and either K or X
belongs to O then to to 7.
5) if K does not belong to the prime implicate
T, but K and K do not belong to 0, if a(d)
is the greatest atom in O, then put a(3+l) - K,
go to 7.
6) Put A(O): K
7) Call O the new sequence of atoms obtained.
If there i&'some literal K in S, not already
read, get it and go to 1, otherwise 1= i+ 1,
if 1 < n 4+ 1 to to 1, otherwise stop.
With theorem 6 in mind, we can understand, from the following
observations, that the A-ordering constructéd satisfies the
condition of Th.8.
Observations:
1) Substeps 2, 3 and 6 of the given algorithm are based
on the fact that if K belongs to Ti then, because Si
minimally implies Ti and because Si — %cfor ig ') ,
K does not appear negated in every Si with i €8 (i.e. K
is never resolved in any deduction of T; from 8,).

2) Step 4 and 5 of the given algorithm are based on the

fact that the only condition we have on the literals in
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B3, but not in Ty, is that they must be greater than
every literal in Ti'

Lemma 2: If a set of clauses S minimally implies a clause

T and T ig a prime implicate of 5, then
there 18 not a clause @ * T such that
S'minimally implies @ and Q is prime
implicate of 5.
Proof: DSuppose the lemma is false then we have:
a) S minimally implies T and
b) S minimally implies Q and
¢) both T and Q are prime implicate of 3 and
d) T £Q
 From corollary 2 there will be a m,.s.l.
deduction from S as of T as of . Let D and D'
be such deductions,
From a) there is no T such that t is in T
and t is in some clauses of 3,
from b) all clauses C in S such that some t
is in C and t 1s in T appear somewhere in D',
then T subsumes Q; but if T subsumes & because
for hypothesis Q is prime implicate of S, T must
be equal to @ contradicting the hypothesis that
T # @, therefore the lemma holds,

From theorem 8, lemma 2, and from ﬁhe fact that an unsatis-
fiable set of élauses has as unique prime implicate, the empty
clause, 1t is intuitively enough clear why the m.a.l. strategy
is complete for refutation. (We could say just for the same

A
reasons for which it 1s not complete for consequence finding).



Section 3:

Definition:

Definition:
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Merge linear C-ordered resolution.

An ordered clause (O-clause) is a sequence of

literals with no two literals the same.:

If C is a clause we denote by (C) an

O-clause obtained from C by some arbitrary

but fixed ordering of its literals.

If S is a set of clauses we denote by (5)

the set S in which all clauses are ordered.

Given two C-ordered ground clauses (C) and (C'),

the clause Ri will be the C-ordered resolvent

between (C) and (C') if

a) Ry is a resolvent between C and c'.

b) She literal resolved upon is the

c)

rightmost literal in (C) if (C) is the
left clause in the deduction tree of Ri
from (C) and (C'), otherwise it is the
rightmost literal in (C').

If (C) is the left clause in the
deduction tree of Ry from (C) and (C'),

and C=¢y... , and C'= c¢y...c¢ so that

n

1
Ch=zCq for some s £ k, then Ri is the
seguence ¢y...c, 7 followed by the
sequence obtained from cq...cp by
deleting c'y: together with any literal

ci which also occurs in C. If such cj

exists, it is a2 merge literal and Ri is

an ordered merge resolvent,

We will write R; as (Ry). (Fig.l4 is an example

of the previous definition).
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Let (5) be a set of ground O-clauses, a_merge

linear C-ordered (m.c.l) deduction from S is

a deduction like the deduction in Fig.l5
where:

1) (C) is in S

2) For each i, O ¢ i 4 n-1

Either (C ig in (S) or (Ci) is some Rj) for

1)

some J € 1 in which case

a) (Ci) is an ordered merge resolvent,

b) the literal resolved upon in (Ci) is a
merge literal,c$o{that the rightmost
literal of (Ri) is its complement,

3) No clause in the deduction is a tautology.

With m.c.l. deduction with top clause C, we mean

a m.c.l., deduction with top left clause just C.

Result: The refutation completeness for m.c.l. resolution with

top clause any clause in a minimally unsatisfiable set

of clauses has been proved £871,

Th.9: The m,c.l. resolution is not complete for conseguence

finding.

Moreover, there are some set of clauses S and

gsome prime implicate T of it such that there is no

C-ordering for which it is possible to have a m.c.l.

deduction - of T from S.

Proof: Consider the set of ground clauses

S z (typ, toP, ts3, Bar) ,

clearly tltgtjis 2 prime implicate of S, but 1t 1s easy

to see that there does not exist a C-ordering of S, which

allows us to have a m.c.l. deduction of tlt2t3from S.



37.

As an example of the possible deductions of tytots from S
see Fig.16, There the resolvent t,qt, does not allow us
to define a C-ordering for that deduction,
Th.10: Let S be a set of ground clauses,
let T be a clause,
let C be a clause in S such that T is a subset of C, then:
if S minimally implies T and T is prime implicate
of 5, then there is a C-ordering of clauses in S
for which exist a m.c.l. deduction of T from S,

Proof: Because S implies T, SUT is unsatisfiable,

\

Consider the setS' such that S'= (C'/C e sSUT ¢C'=z C-T)

From corollary 1 S' is unsatisfiable. Let S5'' be a subset
of S' minimally unsatisfiable,

Since S minimally implies T, there will be in 8'' some
clause C', such thést C' = C-T and T is a subset of C.

From the refutation completeness of a m.c.l, resolution
with top clause any clause in a minimally unsatisfiable set of
clauses, for any C-ordering of S'', there is a m.c.l. deduction
of the empty clause from S'' with top clause (C') = (C-T) where
C has as its subset T. Let D in Fig.l7 be such deduction.

Qonsider now the C-ordering of S such that under 1it:

1) If C in S corresponds to the top clause (C') in D then
the literals in T are the leftmost literals in C and the
literals in C-T¥are ordered, as the literals in the top
clause C' of D.

2) All the other clauses C in S are ordered as the corresponding
(C') in D, and literals contained in both C and T are
inserted anywhere.

Starting from the top of D, apply the following
algorithm:
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1) Substitute to (C') the corresponding clause (C)
in (S)

2) For 0 £ 1 £ n-1 if (ci ) is in S'' substitute for it
the corresponding clause in (8).

3) Substitute for each resolvent appearing in D as
either (Ri) or (Ch) the ordered resolvent obtained
under the previous substitution.

Let D' be such deduction, then from the follewing facts:
a) T is a subset of the top clause in D',
b) We merge left,
¢c) S minimally implies T (that is no ti such that tj is in T,
is in some clause of S),

it follows that D' is a m,c.l. ordered deduction of T from S.

Before going to theorem 11, let us make some observations
about theorem 10 to indicate the difference between the consequene
finding case and the theorem proving éase:

1) the top clause in the deduction satisfying theorem 10 is

hot arbitrary,

2) the C-ordering satisfying theorem 10 is arbitrary for all

clauses in S except for the top clause of D'.

Th.11l: Let S be a set of ground clauses,
let Tl"'Tn be prime implicates of S,
let C7...Cp be clauses in S having the follqwing properties:
a) T32C; & Cy £ Cy for it
b) C; €Sy where S; minimally implies Ty, then
there 1is a C-ordering of the clauses in S5, such
that there is a m.c,l. deduction from S of every

Ti for 1 £ 1 £ n.

.
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Proof: Choose a C-ordering of S arbitrary except that under it
for any 1, 1 ¢ 1 < n'Ti is the leftmost subset of the

-~

corresponding Ci .
From theorem 10 and the second observaticn above, it is
clear that the theorem holds.

Obviously, theorems 10 and 11 hold also in the case in which

S5 is a set of general clauses, their extension to a general case

follows from them, as theorem 2 follows from theorem 1,



40,

CEAPTER 4: INTERESTING THEOREMS

lASVwé are interested 1in consequence finding as a sub-field
of Artificial Intelligence, we have to deal with the problem of
how to single interesting theorems out of all the theorems of a
giveﬁ get of axioms.

The a2im of this chapter is to give a short review of the
result obtained up to now on this problem, and make some

suggestions on possible developments,

Section 1: Short review on the interesting theorems problem,

We will report some of the work done by R.C.T. Lee [5] to
give an idea on what 1s known up to now on how to single
interesting theorems out of all the theorems following from a
given set of axioms.

Indeed, most of the basic ideas developed up to now on
this subject are contained in this work. The following
definition of non trivial theorem (i.e. interesting theorem)
is given:

Definitions: 1) A theorem T is trivial if it is implied

by another theorem T' such that T' is not
equivalent to T.

Given this definition it is easy to see that:

1) The only uniform way to decide that a theorem T 1s not
trivial is to prove that there is not any theorem T'
such that T' implies T (this statement is undecidable
for meaningfull first order theories).

2) In order to single out interesting theorems, one needs
a theorem proving program or a consequence finding
program (in both cases one is faced with new problems,

for example in the last case, still with the problem
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of the generation of trivial theorems).

Faced with these difficulties, Lee tries to give algorithms
able to select prime implicates of a given set of axioms rather
than interesting theorems. We notice that, although an
Interesting theorem is prime implicate, the converse is not

(24) :

necessarily true
As an example of the algorithms we can find in his work
we will mention the following two:
1) Unit resolution principle and Bound of Clause, that is:
a) clauses containing more than k literals are not |
generated for some fixed k.
b) the triviality is checked only for unit clauses,
¢) the unit resolution strategyv 1s used.
2) Axiom resolution strategy, that is:
a) axioms are resolved with axioms or with theorems,
b) resolutions between theorems are forbidden. |
Obviously, both of these heuristics, as well as:the other
ones introduced by Lee, do not make us sure to obtain all the
prime implicates as well as only the prime implicates of a given
set of axioms.
Since Lee's work is the only one in Which this topic 1is
presented extensively, it is worthwhile to mention his oplnion
as a fair description of the stage of the resesarch on how to

single out interesting theorems:

(72%)
Remember that: if & clause C subsumes a clause D then
C implies D, but the converse is not necesgsarily true.
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The greatest failure of this research is that the author
did -not sueeed in obtaining a general theory on how an important

theorem is derived.

Section 2: Observations and suggestions.

To begin this discussion, it seems useful to us to stress
the existence of an ambiguity in the way the problem of how to
single out interesting theorems is treated. This ambiguity
arises from the fact that, although one would like to single
out theorems which are interesting with respect to thelr logical
rroperties, necessarily one has to take into account the
computational power of the actueal computers. For example, it
seems clear to us that the proposal of the strategies reported
in the last sectbn is suggested much more by considerations on
the computational power of computers rather than by the original
purpose, In fact, it is possible to understand from the discussion
in Chapter 3 of this thesls , on the unit and imput strategiles
(i.e. the Lee's axiom resolution), that both of them do not give
us any assurance even on the problem of finding prime_implicates.

Of course this does not mean that these two strateglies are
completely useless for finding interesting theorems. In particular
the unit strategy can be an efficient procedure because of our
definition of theorems as disjunction of literals.

With regard to the relation between results found in our
thesis and the problem in discussion here, we first remember
thét an obvious consequence of the completeness of the m.s.l.
strategy is that by it we can generate all prime implicates of

2 given set of axioms (Corollary ‘2.
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However, at the beginning of our work we thought that the
m.s.l. strategy would restrict the number of uninteresting
theorems more than we have actually found. To give an idea of
its lack of efficiency wiﬁh respect to thigs problem we give the
following example:

Let us consider the set of axioms S (gB, DG, pP, ar).

Clearly the clause T is a prime implicate of S and the
subset Sq of 5 such that 5y = (oF, D3, pP), is the minimum
deduction set for ¥. Let us consider the following deductions
of ¥ from S, by m.s.1l. resolution:

Deduction D1 (Fig.18):

from gb and $q, T;

- - g

from ¥ and pr, ¥;

Deduction D2 (Fig.19):

from p¥ and op, aT;
from g and D§, Dr;
from PF and p?f, T;

Deduction D3 (Fig.20):

from pF and §d, Tqg;
from ¥ad and ob, TD;

- 3 -—

from P and pF¥, T;

We see that D2 and D3 generate a relatively large number of
trivial theorems, namely: gr, Pr, *§, and Dl generates only
prime implicates, nameiy: T, T.

The previous example shows that the freedom with respect to
the top clause that we have in ms¢s.l. strategy is paild with a loss

of efficiency.
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However, there is an obvious difference between D1 and
the deductions D2 and D3, namely that in D1 we introduce our
theorem literals aé late as 1s possible; it is easy to see from
the characteristics of the wminimum deduction set that this fact
cut-off the generation of clauses subsumed by our theorem.

We have mentioned this difference between D1 and D2 and D3
because we hope that it could suggest some possible implementation
of the m,s.l. strategy with resvect to finding interesting
theorems,

Furthermore, we suggest using the mss.l. strategy supplemented
by the rule of deleting every left theorem thaﬁ in a m.s.1l.
deduction we resolve with theorem, instead of the Lee's axiom
resolation. |

As far as the other strategies discussed in our thesis are
concerned, we stress that their applicability to the interesting
theorems problem presents different but not minor difficultiés
to those of the mzs.l.

The m.,a.l. and the m.c.l, strateglies are almost uselegs for
finding interesting theorems, since they are applicable to
conseguence finding only in very pecullar cases.

The m.s.l. strategy with set of support presents the
obvious difficulty that is is undecidable whether a given set
of axioms is 2 wminimum deduction set for a theorem T.

However, in this case, as a possible suggestion for
developing efficient strategies for finding prime implicates
we give the following procedure: Let S be a set of ground

clauses,
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1) Consider one literal X contained in some cliause of S.

2) Consider the subset S' of S such that K does not appear
in any clause of S' and K appears in all the clauses of
5-5'.

3) If K 1s prime implicate of S, we will find it from S''
by m.s.l., In this case we choose another literal in
3 and we»repeap the procedure applied to K.

If K is not prime implicéte of ® we certainly will deduce
all prime implicate in K of 8". Let T be one of them; we
consider the set of clauses SUT and for all of the literals
contained in it we apply the same procedure we applied to K.

We notice that this procedure as it stands is not applicable

to the case of a set of general clauses,

Conclusions

We think that the completeness for consequence finding of
the m.s.l. straﬁegy, proved in this thesis, its completeness
for refutation already well known, and its simplicity can
help in better understanding the laws of the logical deductioﬁ.

It is already well known that the m.s.l. resolution has a
higher efficiency than simple resolution, because of the
restrictions it puts on the deduction. The completeness theorem
that we have proved allows us to use it in conseguence finding
instead of ordinary resolution.

Furthermore, it seems that the m.s.l. strategy, when
supplemented with a certain heuristic procedure can usefully
supplement Lee's axiom resolution with respéct to the interesting

theorems problem.
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We have also seen in this thesis that the m.a.l. and the
m.c.l,, although complete for theorem proving, are not complete
for consequence finding and that the m.s.l. strategy with set
of support although complete is difficult to use. This seems
to support our initial feeling on the difference between theoremn
proving and consequence finding, and, at the same time, provide
sbme insight in both fields.

In particular, it seems to us that our results suggest the
following conclusions: |

1) The completeness for conseqguence finding and the degree
of zpplicability to consequence finding of a given
strategy can be taken as criterion of its efficiency
for tﬁeorem proving. We guess that the less a strategy
is applicable to consequence finding the more efficient
it ie for theoem proving.

2) The generality of a strategy, for example its completeness
for both consequence finding and theorem proving, is paid
in its efficiency. We believe in fact that thecmore
efficient a strategy 1s the more it is applicable to
the deduction of peculiar classes of theorems,

Support for this idea comes to us, not only from the results
mentioned above, but also from.the following reflection on the
nature of theorem proving. We can in fact regard theorem proving
as the problem of finding prime implicates of an unsatisfisble
set of clauses; then the compatibility between the completeness
of a strategy and its efficiency seems to us related to the lucky
situation that for an unsatisfiable set of clauses the set of

prime implicates reduces to a single element, the empty clause.
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On the basis of these considerations it seems to us that
a poseible line of development of the field of consequence findin
is to search strateglies related to the logical properties of
theorems and axioms, rather than complete strategies.

An amusing example of theorems the computer can derive,
when the strategy used completely disregards the semantics, 1is
the following given by R.C.T. Lee 5 ¢ Consider the case in
which we have the following statements as axioms:

1) If ¥ has y z's and 2 has v w's, then X has y*v w's

2) Man has 2 hands;

3) Hand has S fingers.

These three axiome can be put into three clauses as follows:

1) B(x,y,z) Dlz,v,w) p(x,f(y,v)w)

2) p(man,?2,hand)

3) p(hand,5, finger).

By m.s.l, we can deduce from 1 and 2 D(x,y,man)p(x,yx2,hand)

We can easily see that the above clause, although it is a
theorem, does not have an acceptable meaning; then its deduction
is completely useless.

We think that a polnt of view very similar to the one we
have just dlscussed for consequence finding should also be tasken
when dealing with the problem of how tc single out interesting
theorems. Moreover, in this case we want also to notice that,
although important semantic and syntactic properties differentiat
the class of prime implicate from the other theorems, further
subdiVisidns of this class could be useful for finding more
efficient .strategiés ang getting more insight into what is meant

by 'interesting theorems'.
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