
A UNIT RESOLUTION THEOREM

PROVING SYSTEM

by

PETER NEAVE LEQUESNE

B.Sc, University of British Columbia, 1963

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in the Department

of

Computer Science

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April , 1972

In presenting this thesis in partial fulfilment of the requirements for

an advanced degree at the University of British Columbia, I agree that

the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis

for scholarly purposes may be granted by the Head of my Department or

by his representatives. It is understood that copying or publication

of this thesis for financial gain shall not be allowed without my

written permission.

Department of

The University of British Columbia
Vancouver 8, Canada

Abstract

A unit resolution theorem proving system is developed and

compared with the previous work of C.L. Chang. This thesis includes

a description of a particular approach to unit resolution and a

description of the resulting program and i t s effectiveness.

i i

Table of Contents

I Concepts and Terminology 1

1. Introduction 1

2. Preliminary Formulation of the Axioms and 1

Proposed Theorems

3. The Unit Proof 3

4. Unification and Substitution for a Unit 4

Proof

5. Subsumption 5

6. The "hyper" Unit Resolution Strategy 5

7. Embedded Equality Axioms 7

II A Description of the Program and i t s Use 9

1. Input to the Program 9

2. Program Operation 10

3. Program Output 13

III Evaluation of Experimental Results 16

1. Comparison with the work of Chang 16

2. Comments on the Differences in the Results 17

IV Possible Directions for Further Work 19

1. The Nature of Inferential Unit Resolution 19

2. Heuristic Tree Search 19

3. Concluding Remarks 20

Bibliography 22

Appendix 1 23

Appendix 2 25

Appendix 3 27

Appendix 4 28

i i i

Appendix 5 29

Appendix 6 37

List of Tables

Table 1 A Comparative Table of Chang's Exampl

Acknowledgement v

Most of the ideas developed in this thesis are the

suggestions of Professor Raymond Reiter. I am deeply grateful

for the patient assistance he has given me in completing this

work.

Thanks are also extended to the Department of Computer

Science for a most satisfying two years of study and to Mrs.

Olwen Sutton for an excellent typing job.

1.

I Concepts and Terminology

1. Introduction

Application of the f u l l resolution proof procedure normally

results in a very large amount of matching and clause generation.

Unit resolution is a means of reducing the size of such problems.

This work is an implementation of a particular form of unit resolu­

tion, paralleling closely that of CL. Chang [2]. This Chapter

outlines the theoretical basis of the program produced and

describes the notation and terminology used. A f u l l description of

resolution is not attempted however unit resolution w i l l be described

as a special case of the more general technique.

2. Preliminary Formulation of the Axioms and Proposed Theorem.

For any resolution procedure, the axioms and proposed theorem

of a given system must be expressed in a particular format for

expressions of f i r s t order mathematical logic called conjunctive

normal form. Procedures for converting to conjunctive normal form

are given in [3] and [8]. A conjunctive normal form (cnf) has the

following structure.

Let C^,...,C^ be logical phrases called clauses. Then a c.n.f.

has the following form:

C. A C„ A ... A C.
1 2 k

That i s , a c.n.f. is a conjunction of clauses. A clause is a

disjunction of l i t e r a l s . Say L^,...,L^ are l i t e r a l s then a clause

has the following structure for M > 0: L^ v ... v L^. A l i t e r a l

is a logical phrase of the following general form, where + or -

indicates a sign, P a predicate symbol, and t ^ , . . . , t ^ are expressions

2.

called terms: ± P t ^ , . . . , t ^ for some k > 0. A term may be a free

variable, a constant or a functional value where a functional value

i s a functional symbol followed by a number of terms in brackets,

e.g., f(t^,...,t£) for some H > 0. Consider the following examples of

a) a free variable, x

b) a constant, 3

c) a functional value, g(x,3)

d) a l i t e r a l , + T x g(x,3) x

e) a clause, + P x g(x,3) x V + Q x, g(x,5), 5

f) a c.n.f. }

+ P x g(x,3) x V + Q x g(x,5) 5 A + T x g(x,3) x

For purposes of programming in the LISP 1.5 language the following

notation is used for the date types described above

1) A free variable is designated by the letter x followed by any

number, e.g. x20, xl5.

2) A constant is any other letter or an integer, e.g. A,B,C,1,15,10.

3) A functional'value has the following l i s t form (F t^ t^-•-tyj

for example (F 1 x3 10) or (G x l x2).

4) A l i t e r a l is again a l i s t but always begins with a + or - sign

followed by a predicate symbol. For example: (+ P x l x2 x3)

or (- Q (F xl) 2)

5) A clause is simply a l i s t of its, l i t e r a l s . Further information

on input of the c.n.f. to the program is given in Chapter 2.

Fundamental to this thesis is the concept of a unit clause. A

unit clause is a clause of one l i t e r a l . For instance ((- P x l x2))

where one set of brackets denotes a clause and the other a single

l i t e r a l , is a unit clause. In practise, for example, in the context

3.

of the program written, the outer set of brackets is dropped.

For a unit resolution theorem prover to proceed on a proposed

theorem and associated set of axioms at least one unit clause must

be present i n the associated conjunctive normal form.

3. The Unit Proof

A resolution proof is normally sketched as an inverted binary

tree whose bottom-most node is the • symbol. A unit proof is defined

as a resolution proof such that for each node generated downwards in

the proof tree, at least one parent node is a unit clause. For

example i f we denote unit clauses as U^, regular non-unit clauses as

C_. and have the following c.n.f. ; A A A A C^; then if_ a

proof for this c.n.f. i s found as follows,

we then have a proof by unit resolution.

Normal resolution is a process combining clauses to form new

clauses un t i l two clauses combine to n i l or •. In the above hypo­

thetical diagram, three new unit clauses (U^, U^, U,.) and two new

non-unit clauses (C^, Cj.) are generated. In each case the new

clause has at least one parent which is a unit clause. Since we

are describing what is really a combining process an.-advantage of

unit resolution is apparent. For any given resolution the length of

•

4.

the newly generated clause (i.e., the number of l i t e r a l s which i t

contains) w i l l be one less than that of the non-unit parent. An

approach which attempts to make such unit resolutions f i r s t in search

of a proof is termed the unit preference strategy [1], The theorem

proving system developed i n this work does not attempt non-unit

resolution and hence w i l l not succeed on problems which do not have

a unit proof. That i s , i t w i l l not prove proposed theorems whose

c.n.f. has no unit clauses or whose proof is dependent on the

resolution of two non-unit clauses.

4. Unification and Substitution for a Unit Proof.

Essentially, unification i s the process of finding a common

instance of two sets of terms. For the purposes of resolution

these two sets of terms appear in separate clauses and are associated

with the same predicate symbols of differing signs. This common

instance of two sets of terms is demonstrated by the generation of

a substitution to be made to the two clauses in question, the result

of which i s the presence of contradictory l i t e r a l s within the clauses

in question, which are then combined to form a resolvent (minus the

contradictory l i t e r a l s) . Further to the concept of a unifying

substitution, i s the idea of a most general unifier. This notion

which is developed in (10) basically means that there exists a

substitution for two unifiable l i t e r a l s such that the most general

common instance of the two is the result.

In normal resolution systems i t is necessary to apply a unifying

substitution to both clauses being resolved as the two w i l l be

combined (minus the l i t e r a l s "resolved away") to form a new clause.

5.
Here unit r e s o l u t i o n has a s p e c i a l advantage. Because one of

the parent clauses i n unit r e s o l u t i o n i s a unit clause, a given

s u b s t i t u t i o n need only be applied to one clause (minus the resolved

l i t e r a l) . Since these substitutions are quite expensive t h i s i s a

considerable advantage.

5. Subsumption

Closely r e l a t e d to the concept of u n i f i c a t i o n i s the subsumed

clause. A clause M i s s a i d to be subsumed by a clause N i f there

e x i s t s a s u b s t i t u t i o n 0 such that N 6 £ M. B a s i c a l l y , t h i s means

whenever M i s true, N i s true and hence there i s l i t t l e value i n

terms of the r e s o l u t i o n process i n keeping the subsumed clause.

A check f o r subsumed clauses i n included i n t h i s theorem proving

system.

6. The "hyper" Unit Resolution Strategy

Consider a sequence of resolutions of the following type where

a, a are unit clauses and 5, v 5L v ... v a v g i s a non-unit
I n 1 2 n

clause (axiom):

cL v a 0 v . . . v a v 3 an 1

a

a.

2

2

3

v

v

a 4 v v a v 3 n

a
n

6.

In short where a l l the consequent l i t e r a l s may be matched with known

unit clauses i t is possible that a new unit clause can be generated

by in this case n resolutions. A necessary condition for this to

occur is that the l i t e r a l s must have differing signs and matching

predicate symbols with their corresponding units in {a^}. In

additional each l i t e r a l / u n i t pair must unify at the appropriate

stage of the overall resolution sequence. The "hyper" unit resolution

strategy is simply to generate only unit resolvents in the above

fashion. The n resolutions outlined above are treated as occurring

simultaneously for purposes of retaining new resolvents. A resolvent

is generated only i f i t is a unit clause, that i s , a l l l i t e r a l s

appearing in a given axiom except the "target" l i t e r a l already

exist as axioms or previously generated unit resolvents. This target

l i t e r a l , i.e. , that l i t e r a l of the axiom which becomes the unit

resolvent, may be any of the l i t e r a l s appearing in the axiom.

The use of this apparent restriction on clauses generated by

unit resolution greatly reduces the number of clauses generated for

further use in search of a contradiction. For instance (not

including multiple instances of the same target l i t e r a l : which differ

in their terms) for three axioms of length four there are twelve

possible unit resolvents while there are forty-eight possible

resolvents including non-unit clauses. Appendix 1 contains a f u l l

example demonstrating this advantage.

The following theorem demonstrates that the use of "hyper"

resolution i s in fact not a further restriction on the effectiveness

of unit resolution. "A set of clauses can be proved insatisfiable

7.

by unit resolution i f and only i f i t can be proved unsatisfiable

by "hyper" unit resolution". Clearly, from the definition of unit

resolution, any proof by regular unit resolution can be converted

to a proof by "hyper" unit resolution and hence the proof is t r i v i a l .

There i s significant combinatorial aspect of "hyper" resolution

to be described. Consider the generation of unit resolvents from a

clause C = L., v ... v L of r l i t e r a l s . There are r possible l i t e r a l s 1 r K

which may become unit resolvents. These possible'"target" l i t e r a l s

each may become a unit clause after r - l other l i t e r a l s are resolved

away using the, say k, unit clauses available. In order to insure

that a l l possible resolvents are generated at a particular level, i t

is necessary to match each sequence of r - l l i t e r a l s corresponding to

a particular target l i t e r a l with a l l possible l i s t s of length r - l

of existing units. Since a given unit may be used more than once
kfr—2

there are (r_^) such combinations of units. Each of these combinations
may be ordered i n (r - l) ! ways hence for a clause c of r possible

k+r-2

target l i t e r a l s there are () (r - l) ! * r combinations of clause

l i t e r a l s and unit clauses to be checked for possible results. Thus

i t i s clear that while the number of retained units is significantly

reduced with a "hyper" resolution approach there is no reduction apparent

in the amount of matching which must take place in order to generate

a particular unit clause.

7. Embedded Equality Axioms.

The treatment of problems of proof generation with axiom sets

expressing equality has had considerable attention in a number of

papers on mechanical theorem proving [7 , 9] . The problem is a

familiar one - only more so. Consider the following axiom (reflexive):

8.

E (xl x2) => E (x2 xl) or in clausal form E (xl x2) v E (x2 x l) .

Now any unit clause with E as i t s predicate symbol w i l l unify with one

or the other of the l i t e r a l s in this clause. In consequence an

abnormally large number of new unit clauses w i l l be generated, most

of which are quite useless to the production of a proof. Since the

nature of axioms expressing equality are relatively mechanical in

their effect, treating them as any other axiom unnecessarily marrs

the efficiency of a theorem proving program. Such axioms may be

embedded within the code of the program and thus produce much more

effi c i e n t l y as required. In! light of this the axioms of r e f l e x i t i v i t y

and transitivity of equality, i.e., E (xl x2) ^ E (x2-xl) and

E (xl x2) A E (x2 x3) => E (xl x3) have been coded directly into

this program and may be used by setting a switch variable on input.

9.

II A Description of the Program and it s Use-

The "hyper" unit resolution strategy described in Chapter I

has been implemented as a theorem proving program written in LISP

1.5 [5 , ' l l] . Appendix 4 outlines how this program may be accessed

on the U.B.C./MTS system. This chapter comprises a description of

the input format required, an outline of the flow of processing

performed by the program and fi n a l l y a description of program

output and it s interpretation.

1. Input to the Program

A representation of the conjunctive normal form of a given

proposed theorem and a few controlling parameters are passed to

the predicate UPR00F in order to in i t i a t e the generation of a proof.

This c a l l has the following general form:

UPR00F (CLAUSES UNITSET DEPTH FD ES)

CLAUSES i s a structured l i s t of the non-unit clauses of the c.n.f.

and UNITSET i s a l i s t of the unit clauses. DEPTH is an integer

indicating the allowable number of times the CLAUSES may be used

before quitting the search for a proof. FD, also an integer,

indicates the maximum function depth in retained unit clauses.

ES i s a switch variable; i t s value i s T i f embedded equality

relations are to be used and NIL otherwise.

The latter three parameters have a self explanatory format as

indicated in the example which follows. CLAUSES and UNITSET, however,

require further description.

CLAUSES has a certain amount of structure in i t s format in

order to aid the search process of the program. As indicated

earlier in Chapter I, a clause is represented as a l i s t of i t s

10.

l i t e r a l s which in turn are l i s t s of signs, predicate symbols and

variables etc. An example is ((+ P xl x2)(+ Q x l x2)(+ R x2 x3)).

Given this format for a clause, CLAUSES is imply a set of clauses

grouped by length. In other words, CLAUSES is a l i s t of l i s t s of

clauses, each sublist containing clauses of the same length. The

following is a set of four clauses so arranged:

((((+ P xl x2)(+ Q x2 x3()- R xl x2)))

(((+ P x2 x3)(- Q x3 x2)(- P x3 x2))

((- R xl x4)(+ Q x l x2)(+ P xl x2)))

(((+ P xl x2)(- Rx2 xl))))

UNITSET is simply a l i s t of unit clauses. As earlier mentioned

in Chapter I, the additional set of brackets which would normally

denote a clause as opposed to a l i t e r a l have been dropped hence

UNITSET appears as shown in the following example:

((+ P x l x2)(+ Q xl x3)(- R x2 x3))

A l l variables which appear in CLAUSES and UNITSET are x-standardized

according to the following condition. The same variable name may

appear in two or more non-unit clauses but may not appear in any

unit clause. In addition those variable names occurring in a unit

clause must be distinct from a l l other variable names appearing in

unit clauses (as well as those appearing i n CLAUSES). This is done

to avoid ambiguity in unification and substitution. In addition a l l

variable names must include an integer larger than 20 to avoid

conflict with internal variables in the equality processing. A

complete example of a c a l l to UPR00F follows:

11.

UPR00F ((((+ P xlOO)(+ D (G xlOO) xlOO))

((+ P xlOO)(+ L 1 (G xlOO)))

((+ P xlOO)(+ L (G xlOO) xlOO))

((- P xlOO)(- D xlOO A)))

(((- L 1 xlOO)(- L xlOO A)(+ P (F xlOO)))

((- L 1 xlOO)(- L xlOO A)(+ D (F xlOO) xlOO))

(- D xlOO x200)(- D x200 x300)(+ D xlOO x300))))

((+ D x400 x400)(+ L 1 A)) 5 3 NIL)

This is a formulation of example eight from Chang [2].

2. Program Operation

This program generates and tests unit clauses in a breadth

f i r s t fashion using the general procedure outlined in the following

steps.

7. 1. Select a set of non-unit
clauses of the same length
(SLCSET)

2. Generate a l i s t of unit
clauses from the unitset
(UNITS)

3. If level of generation is
greater than one test above
units for presence of at
least one unit from previous
level.

4. Match UNITS against a l l
clauses in SLCSET and
generate any new resolvents
possible.

5. Test newly generated
resolvents for function
depth and subsumption by
other units.

Is a new string of units
possible i f so go to step 2.

8. Is a new set of clauses of
the same length available?
If yes, go to step 1.

9. Test a l l units generated
at this level for contradiction
and subsumption among each
other i f contradiction return
T, i f no units remain return
1.

10. Has maximum depth of clause
use been reached i f so return
0.

11. Update unitset with newly
generated units and go to
step 1.

6. Test remaining units generated
for contradiction with other
units already existing, i f found
return T.

12.

In short, this program matches every clause of length t-1 at

a given level. Using clause rotation each l i t e r a l in a clause is

treated as a possible unit resolvent. A simple combinatorial

algorithm [4] is used to.generate l i s t s of units from the UNITSET

of a given level. I n i t i a l checks are made on such l i s t s and a given

clause (or rotation of a clause) to insure appropriate sign and

predicate symbols in each l i t e r a l pair from l e f t to right. Given

the success of the above test, unification and substitution proceed

on the l i t e r a l pairings from the l e f t u n t i l the given l i s t of units

is exhausted or unification f a l l s . If a unit resolvent is generated

i t i s tested for function depth, subsumption by existing units and

for possible contradiction by resolution against one of the existing

units. If i t does not contradict or f a i l the other test i t i s

saved for use during the next level of resolution.

There are three major sections or LISP functions in this theorem

proving system. They are UPR00F, AL0NZ0I, and SIGMA.

UPR00F is the overall driver of the system. It controls passage

through the clauses, updates the set of units between levels of

clause use, and communicates with the user. UPR00F calls on

AL0NZ0I to perform the matching of clauses with l i s t s of units and

to do most of the screening of generated unit clauses.

AL0NZ0I is the most active of the functions-of the system. It

generates l i s t s of units of the appropriate length for the clause

or clauses i t has been passed, checks for sign and predicate symbol

matching, controls and calls the unification and substitution functions

as required, rotates clauses as needed, and performs subsumption,

function depth and contradictory unit tests as needed. If a

13.

contradiction is found or a l l possible units have been generated for

a given l i s t of clauses of the same length, AL0NZ0I returns to

UPR00F.

SIGMA, is the controling LISP function for a collection of

routines which perform unification (i f possible) for a given pair

of l i s t s of terms of a l i t e r a l pair. SIGMA produces a most general

unifier i f unification i s possible or else returns the LISP atom

NIL.

In order to obtain a run which utilizes implicit coding of

the equality axioms, i.e.,

E (x, y) A E (y, z) = E (x, z)

E (x, y) a E (y, x)

the value of the input variable ES must be T. In order to have

these axioms be effective at the appropriate point in use of the

clauses there are a few dynamic switch variables set in UPR00F and

passed to AL0NZ0I. The function EQGEN is called by AL0NZ0I to

generate new units resulting from said axioms, when such generation

is signaled by UPR00F.

Appendices 2 and 3 contain relatively detailed flow charts for

UPR00F and AL0NZ0I and Appendix 5, The LISP Code.

3. Program Output

A machine generated proof must be recoverable. This program

achieves this condition for i t s proofs by printing out the history

of a unit just after i t has been generated. This history's format

is as follows:

14.

< parent clause
or a r o t a t i o n of
that clause >

< the l i s t of units
used to resolve
against the clause
above >

< the unit resolvent >

an example might be;

CLAUSE 'USED
((- P x l x2)(- P x2 x3)(+ P x l x3))

UNITS USED
((+ P A B) (+ P B C))

RESULTANT UNIT CLAUSE
(+ P A C)

Units generated by the use of i m p l i c i t e q u a l ity axioms are

simply l i s t e d as such and normally are simply traced by checking

with previous e x i s t i n g u n i ts. Upon the discovery of two contradictory

u n i t clauses, UPR00F returns the value T. The two units which

contradict are printed under the heading.

PR00F F0UND F0R THIS THE0REM

At this point the user may reconstruct the proof tree f o r the

theorem i n question by t r a c i n g the printed h i s t o r i e s of the units i n

question. Since variables are restandardized r e l a t i v e l y often

within the proof generation process, the user must generally look

back f o r a d i f f e r e n t instance (i n respect of v a r i a b l e names) than

the current unit being traced.

Each time a new set of clauses i s passed to AL0NZ0I, the l e v e l

of clause use, clauses passed, and new units from the previous l a b e l

are p r i n t e d .

If the program f a i l s to f i n d a proof i t w i l l be indicated by

a return value of 0 or 1 or an obvious time over-run. A return value

15.

of 0 indicates that a proof was not found at the maximum depth

specified by the input parameter DEPTH. A return value of 1

signifies that at the last indicated level of clause use no new

units were generated (or more specifically no new units were

generated that passed both the subsumption and function depth

tests). In the latter circumstance, i f a greater function depth

does not change matters then no unit proof exists for the proposed

theorem.

The output format described above is motivated by two considera­

tions; generation of a trace of a proof is costly and involves a

considerable amount of programming and, secondly, to effectively

study the possible implementation of heuristics in a theorem prover

i t i s helpful to print as much as possible concerning the directions

taken.

A sample run is given of example 1 from Chang in Appendix 6.

16.

I l l Evaluation of Experimental Results

1. Comparison with the work of Chang-- [2]

Apart from his 'use of the set of support technique, the work of

Chang i s quite similar to that presented here. The following table

displays the results of the two programmes when applied to the examples

given by Chang-

EXAMPLE # UNITS CLAUSE UNITS TIME
GENERATED DEPTH RETAINED (sec)

1 16 1 0 1.550
2 1 0 .524

2 109 3 3 7.510
72 2 4 28.222

3 44 3 3 3.417
14 2 3 3.821

4 32 2 2 2.650
14 1 0 2.0.51

5 21 1 0 0.667
1 1 0 0.646

6 32 2 1 2.300
74 1 0 15.267

7 58 2 5 3.566
6 1 0 5.602

8 65 ? 11 5.184
17 4 4 4.843

9 34 ? 10 4.050
15 4 9 6.640

10(a) 136 4 17 24.550
154 2 16 31.457

10(b) 59 3 6 9.367
169 2 16 37.228

10(c) 53 3 4 6.916
141 2 16 28.151

10(d) 48 3 5 7.317
167 2 16 37.055

TABLE I: A Comparative Table of Chang's Examples

17.

For each entry in the table the value obtained by Chang is

followed by that obtained with this system. The column headings

have the following, more elaborate explanations:

UNITS GENERATED - the total number of unit clauses produced before

a proof was found.

CLAUSE DEPTH - the number of times the set of non-unit clauses

was used in order to find a proof.

UNITS RETAINED - the number of generated unit clauses which were

retained for use in further levels before a proof

was found.

Comparison of the two sets of results reveals the following general

differences:

(1) With:••the exception of examples 6 and 10 this system produces

significantly fewer unit clauses than Chang's.

(2) The clause depth necessary for proof for this system i s most

often lower than that for Chang's.

(3) Relative to the number of clauses generated, the number of

clauses retained by both programmes is about the same.

(4) The running times required by Chang's programme are (not

withstanding differences in hardware and software) significantly

lower than those required by this programme.

2. Comments on the Differences in the Results

The conclusions stated here are by necessity somewhat

speculative both for reasons of inadequate information about the

internal operation of Chang's system and, perhaps more importantly,

lack of an adequate or conclusive technique for measuring the

effectiveness of a theorem proving programme [6],

18.

Points (1) and (2) are probable evidence of an inherent

disadvantage of the set of support strategy. Simply put, i t quite

often results in deeper proofs than are necessary. In many

circumstances an "inferential" proof exists at a shallower depth

than one provided by set of support. The set of support programme

must pass through, in general, more levels of clause use (and

generate more clauses as a result) in order to find a contradiction.

This fault in the set of support approach is probably not particularly

significant for theorems which do not admit to a relatively simple

inferential proof.

It should be noted at this point that although not ex p l i c i t l y

stated, Changes program is using the same basic strategy as the

"hyper" unit resolution developed here. In addition, his routine

includes a mechanism to avoid the generation of duplicate clauses.

Point (3) is approximately as expected since the routines have

the same clause rejection mechanisms, i.e., subsumption and function

depth.

Point (4), judging by points (l)-(3), relates to the amount of

effort expended on non-productive matching in the larger search

tree a program without set of support techniques must face. Here

also the effects of not having a means of avoiding duplicate clause

generation are shown as well as a probable difference in programming

s k i l l .

In summary, our programme has a definite advantage over Chang's

in respect to depth of search and units generated where a proof of

a shallow inferential nature exists. It also seems likely that with

or without set of support, either program could not prove significantly

deeper theorems without additional techniques.

19.

IV Possible Directions for Further Work

1. The nature of inferential unit resolution.

While incomplete as an inference system, unit resolution appears

to admit many proofs which are inferential in nature. That i s ,

a consequent of the axioms conflicts with the negation of the theorem.

It i s perhaps possible that a program could be developed to choose

such proof circumstances and, using a form of backtracking from the

negation of the proposed theorem, construct possible proof trees for

development by regular unit resolution. In short this sort of idea

points to the development of a "measure of complexity" for resolution

proofs.

2. Heuristic Tree Search

Insofar as unit resolution is not complete, i.e. there are

possible theorems i t cannot theoretically prove, i t can therefore

be thought of as a heuristic approach. As Chang states "If a

theorem, i.e., a set of clauses, does not have an input or unit

proof, we may convert i t into a theorem which has an input or
[2].

unit proof by putting into i t appropriate lemmas" . This would

certainly seem to be the direction to follow i f i t were clear that

unit resolution, as now implemented can find proofs for a l l such

lemmas. Results so far seem to indicate this i s not the case and

that continued work on the development of stronger unit resolution

procedures is very much needed. Most refinements to resolution have

centered on the logical power of the technique i n order to reduce

the overall size of the search tree. Like unit resolution in this

system, they have generally been applied to that tree so defined

20.

in a breadth f i r s t manner, normally plowing through masses of units

in quite rote fashion. Work with this programme has emphasised this

blindness of flow i n two respects. F i r s t , once a clause is retained

i t i s not evaluated for significance in further proof development.

Secondly, axioms are selected and used rotely without any type of

dynamic choice. When these types of concepts are entertained, much

of the theory and philosophy of tree search becomes relevant to

theorem proving. It is simply a matter of saying logical completeness

or algorithmic process i s not worth much i f the program i s not

able to reach interesting levels.

A couple of facts drawn from runs with this theorem prover are

worthy of consideration in developing a genuinely heuristic theorem

proving system. The f i r s t of these i s the significance of ground

instances of l i t e r a l s or unit clauses. Most proofs include at least

one of these in their tree structure and hence appear to be of more

than average value when generated. The other fact i s the difference

in time required for proof using varying orders of clause selection.

For this program using breadth f i r s t search, the times may vary as

much as the total processing time for the deepest level required.

Obviously even a slight amount of selectively or dynamic clause

ordering would reduce the mean time for such proofs.

3. Concluding Remarks

The original intent of this work was twofold. First to provide

a form of theorem proving system for further work and secondly to

try the "hyper" unit resolution technique described i n Chapter I.

It seems clear now that the "further work" which motivated

this project w i l l involve some major changes to the theorem prover

21.

i t s e l f as i t s potential for "interesting" results is limited.

The "hyper" unit resolution strategy seems to b o i l down to a method

of description of internal workings of the program rather than an

advancement as a natural approach. If the problems i t entails

with respect to the internal ordering and construction of l i s t s

can be reduced i t seems as good as any other unit resolution approach.

Finally insofar as i t is relatively uncluttered in concept, unit

resolution should perhaps be given more time and effort than i t :

appears to have received. If the problems of resolution theorem

proving are to be solved i t seems wise to work on the simpler case

f i r s t .

Bibliography 22.

1. Carson, D., Robinson, G., and Wos, L., The unit preference
strategy in theorem proving, Proceedings, 1964 F a l l Joint
Computer Conference, 615-621, Spartan Press, 1964.

2. Chang, CL. , The unit proof and the input proof in Theorem
Proving. J.ACM 17, 4 (October 1970), 698-707.

3. Davis, M., Eliminating the irrelevant from mechanical proofs,
Proc. Symp. App. Math XV, 1963, pp. 15-30.

4. Lehmer, D.H., The machine tools of Combinatorics, in Applied
Combinatorial Mathematics, E.F. Beckinbach, ed., Wiley,
New York, 1964, pp. 17-18.

5. McCarthy, J., et. a l . , LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass., 1962.

6. Meltzer, B., Prolegomena to a theory of efficiency of proof
procedures, A r t i f i c i a l Intelligence and Heuristic
Programming, N.V. Findler, B. Meltzer, eds., American
Elsevier, N.Y., 1971.

7. Morris, J.B., E resolution; extension of resolution to include
the equality relation., Proceedings Int. Joint Conference
on A r t i f i c i a l Intelligence, Wash. D.C, May 7-9, 1969.

8. Nilsson, N.J., Problem Solving Methods in A r t i f i c i a l Intelligence,
McGraw-Hill, 1971.

9. Robinson, G., and Wos, L., Paramodulation and theorem proving
in f i r s t order theories with equality, in Machine Intelligence
IV, Meltzer and Michie, eds. , Edinburgh University Press,
1969.

10. Robinson, J.A., A machine oriented logic based on the resolution
principle, J.ACM, 12, 1 (Jan. 1965), 23-41.

11. Weissman, C , LISP 1.5 Primer, Dickenson Publishing Company,
1967.

23.

Appendix 1

An example of "hyper" unit resolution

We wish to prove a=d from the following axioms:

a=b, b=c, c=d

x=y A y=z 3 x=z

In the notation of this theorem proving system we are thus working

with the unit clauses (+ E A B) , (+ E B C)(+ E C D) and the non unit

clause ((- E x l x2) (- E x2 x3j.(+ E xl x3))

If we apply regular unit resolution the following clauses are generated:

((- E B x3) (+ E A x3))

((- E C x3)(+ E B x3))

((- E D x3) (+ E C x3))
1st level resolvents

((- E xl A)(+ E xl B))

((- E x l B) (+ E xl C))

((- E x l C) (+ E xl D))

(+ E A C)
2nd level resolvents

(+ E B D)

((- E C x3)(+ E A x3))

((- E B x3)(+ E D x3))

((- E x l A)(+ E x l C)) 3rd level resolvents

((- E x l B) (+ E x l D))

(+ E A D)

In short, twelve clauses were generated and retained before the

clause desired appeared.

24..

Using "hyper" unit resolution, we take our three i n i t i a l

positive units in pairs and try to match them with the two negative

l i t e r a l s of the non-unit clause. The only two pairs which work are

((+ E A B)(+ E B C)) and ((+ E B C)(+ E C D)) which in turn produce

the pair of resolvents (+ E A C) and (+ E B D).

Hence for the next level of clause use we have five unit clauses.

From these five units only two pairs ((+ E A B)(+ E B D)) and

((+ E A C)(+ E C D)) w i l l produce a unit resolvent from our non-unit

clause. (Repeated matchings from earlier levels are not used.) In

both cases the unit result i s (+ E A D) which is the desired clause

in this proof.

The important difference in these two methods is clearly

illustrated; the regular unit proof must retain 12 clauses before

the desired result is found whereas the "hyper" unit resolution

technique needs to hold only 2 intermediate results.

Appendix 2

Flow of AL0NZ0I

ENTRY

Generate
i n i t i a l

unit l i s t

Check each
unit which
has been
generated for
Function Depth
Subsumption and
contradition
with other
units.

Save remaining
units

Return T
and the
contradictory
units to
UPR00F

y

t

Generate a
new l i s t of

units

Return units
generated to

UPR00F

26.

CLAUSE-<-SLCSET(CP)
CP^CP + 1

Enter unification
and substitution

procedure

Rotate the
clause

Print clause,
unit l i s t and

resultant unit.

Save the
resultant unit

CP - position in set of clauses
of the same length.

SLCSET - set of clauses of the
same length.

CLAUSE - a particular clause from SLCSET.

Appendix 3

Flow of UPR00F

•27.

ENTRY

Set SLCSET
to I t n entry
of CLAUSES

IH-I + 1

DEPTH set to
DEPTH -1

RETURN 0

Set LEVEL
to LEVEL+1

> '•SI

from two
levels above
current to
UNITSET

Save pre­
vious level's

generated
units

Print SLCSET
LEVEL and
new units

X
Call AL0NZ0I

Screen out
subsumed
units in Save re­
those maining

generated at units
this level

28.

Appendix 4

Use of the Programme on the U.B.C. M.T.S. System

Because of the somewhat awkward method of compilation used by

USP 1.5 the following job set up must be used to run the program.

1) $SIG <ID> T= , etc.
PW

2) $R LISP:LISP.-SCARDS=*SOURCE*
3) 0PEN(THRM:UTP SYSFILE INPUT)
4) RE S T0RE(THRM:UTP)
5) CL0SE(THRM:UTP)
6) UPR00F (<args as given in Chapter II>)
7) MTS()
8) $SIG

1) signon card

2) run card

3) 0PEN

4) REST0RE

5) CL0SE

6) UPR00F

7) MTSQ

8) signdff

allow enough time and pages (program is somewhat
verbose to say the least).

note that the program does not use the regular
LISP 1/5 system (for reasons of data c e l l space
required).

opens the data c e l l f i l e containing the compiled
theorem prover.

reads the compiled program into the LISP system.

closes the source f i l e - must be included.

statement to c a l l the program exactly as outlined
in Chapter II., Can be several cards but don't
use past column 72.

this c a l l returns control to MTS. Note that there
is a n i l argument.

The f i l e THRM:UTP is marked public and takes approximately 3

seconds to restore.

Finally, check input to UPR00F carefully before attempting a

long run. LISP is not the cheapest way to f l y .

Appendix 5 29.

S0URCE C0DE
1. The functions AL0NZ0I and UPR00F and t h e i r supporting functions.

>DEFI N E C ((N E W U C H K (LAMBDAC CTRL N I S)
> (C 0 N D ((N U L L C T R L) N I L) ((M E M B E R (CAR C T R L) N I S) T)
X T (NEWUCHK (CDR C T R L) N I S))))))))))))))
> D E F I N E (((S U B S (LAMBDA (S S T R I N G)
X P R O G O
>S2 (C O N D U N U L L S) (RETURN S T R I N G)))
X S E T Q S T R I N G (ATOMSUBST (C A A R S) (CADAR S " S T R I N G))
X S E T Q S (CDR S))
X G O S 2))))))))))))
> D E F I N E (((F E T C H (LAMBDA (J L I S T)
X C O N D U N U L L LI S T) N I L) ((E Q U A L J 1) (C A R L I S T))
X T (F E T C H (S U B 1 J M C D R L I S T)))))))))))))
> D E F I N E (((R E P L A C E (L A M B D A (J B L I S T)
X P R O G (T E M P l)
> A l (C O N D ((E Q U A L J l) (G O E N D)))
X S E T Q T E M P I (A P P E N D 1 T E M P I (CAR L I S T)))
X S E T Q L I S T (CDR L I S T))
X S E T Q J (S U B 1 J)) (GO A l)
>END (RETURN (NCONC T E M P I (R P L A C A L I S T B))))))))))
>DEFINE (((C O N T R A (LAMBDA (U N I T U L I S T)
X P R O G (X)
>L1 (C O N D ((N U L L ULI S T) (R E T U R N N I L)))
X S E T Q X (CAR U L I S T))
X C 0 N D ((A N D (N U L L (E Q (C A R U N I T) (C A R X))) (E Q (CADR U N I T) (C A D R X)))
> (C 0 N D ((S I G M A (C D D R U N I T) (C D D R X)) (R E T U R N X)) (T N I L))))
X S E T Q U L I S T (CDR U L I S T)) (GO L l)))))))))))))))
> D E F I N E (((A L O N Z O K L A M B D A (S L C S E T U N I T S E T NEWU FD ES EQS F S)
X P R O G (F I R S T COUNTER L N L I S T J X R E S U L T S Y COUNT ANS CTEMP UTEMP S
>CLAUSE CP C L A U S E 1 U L I S T 1 UT1 E L E NC V I V2 CTRL N I S K)
X C O N D U N U L L E Q S M G O A B B)))
X S D T Q ANS (NCONC ANS (EQGEN NEWU U N I T S E T)))
X C O N D (F S (S E T Q ANS (NCONC ANS (EQGEN U N I T S E T N I L)))))
X P R I N T (QUOTE $ $ ' U N I T S GENERATED BY I M P L I C I T E Q U A L I T Y R E L A T I O N S '))
X P R I N T A N S)
>ABC (S E T Q NC (L E N G T H S L C S E T))
X S E T Q L (S U B 1 (L E N G T H (CAR S L C S E T))))
>LAB1 (S E T Q F I R S T (F E T C H 1 U N I T S E T))
X S E T Q COUNTER L)
>L1 (S E T Q N L I S T (A P P E N D 1 N L I S T (STAND F I R S S)))
X S E T Q CTRL (A P P E N D 1 C T R L (QUOTE 1)))
X S E T Q COUNTER (S U B 1 COUNTER))
X C O N D C (G R E A T E R P COUNTER 0) (G O L l)))
X C O N D ((N U L L NEWU) (GO Z2)))
X S E T Q COUNTER (ADD1 (L E N G T H U N I T S E T)))
X S E T Q U N I T S E T (A P P E N D U N I T S E T NEWU))
>Z1 (S E T Q N I S (A P P E N D 1 N I S C O U N T E R))

X S E T Q COUNTER (A D D 1 C O U N T E R)) J U *
> (C O N D ((G R E A T E R P COUNTER (L E N G T H U N I T S E T)) (G O Z 2)) (T (GO Z D))
>Z2 (S E T Q K (L E N G T H U N I T S E T))
>L2 (C O N D ((N U L L NEWU) (GO P A S T)))
X C O N D U N U L L (NEWUCHK CTRL N I S)) (G O O N)))
>PAST (S E T Q CP 1)
>CF (COND ((G R E A T E R P CP N C X G O O U T)))
X S E T Q C L A U S E (F E T C H CP S L C S E T))
X S E T Q CP (A D D 1 C P))
X S E T Q COUNT (A D D 1 L))
> L 0 0 (S E T Q U L I S T 1 N L I S T)
X S E T Q C L A U S E 1 C L A U S E)
> L 1 0 0 (C O N D ((E Q (C A A R U L I S T 1 M C A A R C L A U S E D X G O L M)))
> (C O N D ((N O T (E Q (CADAR UL I S T 1) (CADAR C L A U S E D)) (GO Lkk)))
X S E T Q U L I S T 1 (CDR U L I S T D)
X S E T Q C L A U S E 1 (CDR C L A U S E D)
X C O N D ((N U L L U L I S T D (G O L 2 2)))
X G O L l O O)
>lkk (S E T Q COUNT (S U B 1 C O U N T))
X S E T Q C L A U S E (A P P E N D (CDR C L A U S E X L I S T (CAR C L A U S E))))
> (C O N D ((E Q U A L COUNT 0) (G O C F)))
X G O LOO)
>L22 (S E T Q CTEMP C L A U S E X S E T Q UTEMP N L I S S)
> L 7 7 (S E T Q S (S I G M A (CDDAR C T E M P) (C D D A R U T E M P)))
X C O N D (S (GO L 3 3)) (T (GO Lkh)))
>L33 (COND ((E Q U A L S T) (G O L 5 5)))
X S E T Q CTEMP (S U B S S C T E M P))
> L 5 5 (C O N D ((E Q U A L (CDR U T E M P) N I L X G O L 6 6)))
X S E T Q CTEMP (CDR C T E M P)) (S E T Q UTEMP (CDR U T E M P))
X G O L 7 7)
>L66 (P R I N T (QUOTE $ $ ' C L A U S E U S E D ')) (P R I N T C L A U S E)
X P R I N T (QUOTE $ $ ' U N I T S U S E D ')) (P R I N T N L I S T)
> (P R I N T (Q U O T E $ $ ' R E S U L T A N T U N I T C L A U S E 1)) (P R I N T (CADR C T E M P))
X S E T Q ANS (A P P E N D 1 ANS (STAND (CADR C T E M P)))) (G O lkk)
> O U T (C O N D ((N U L L A N S) (G O O N)))
X S E T Q V2 (A P P E N D U N I T S E T R E S U L T S))
X S E T Q V I (CAR A N S))
X C O N D U F D C H K (CDDR V I) F D) (G O B Y)))
X C O N D U N U L L E S) (G O L 5 0 0)))
X C O N D ((N O T (E Q (CADR V l) (Q U O T E E))) (G O L 5 0 0)))
> (C O N D ((E Q (CAR V l) (Q U O T E -)) (G O E D))
X C O N D ((S I G M A (L I S T (C A D D R V 1)) (C D D D R V l)) (G O B Y)))
X G O L 5 0 0)
>E1 (C O N D ((S I G M A (L I S T (C A D D R V I)) (C D D D R V I))
X R E T U R N (A P P E N D 1 (L I S T T (L I S T (QUOTE + H Q U O T E E X Q U O T E X)
X Q U O T E X))) V 1 >) >)
> L 5 0 0 (C O N D ((N O T (E Q (C A D R V 1) (C A D A R V 2))) (G O L 5 0 D)
> ((E Q (C A R V I) (C A A R V 2)) (G O L 5 0 2)))
> (C O N D ((S I G M A (CDDR V 1) (C D D A R V 2))
X R E T U R N (A P P E N D 1 (L I S T T (CAR V 2)) V I))))
X G O L 5 0 1)
>L502 (S E T Q Y (S I G M A (CDDAR V 2 X C D D R V D))
X C O N D (Y (GO L 6 0 D X T (GO L 5 0 1)))
> L 6 0 1 (C O N D ((E Q U A L Y T) (GO B Z)))

> L 6 0 1 (C O N D ((E Q U A L Y T) (GO B Y)))
> L 5 0 6 (C O N D ((N O T (A T V A R O F (CADAR Y) (C D D A R U 2))) (G 0 L 5 0 1)))
X C O N D U N U L L (CDR Y)) (GO B Y)))
X S E T Q Y (CDR Y)) (G O L 5 0 6)
> L 5 0 1 (S E T Q V2 (CDR V 2))
X C 0 N D (V 2 (GO L 5 0 0)))
> X 1 (S E T Q R E S U L T S (A P P E N D 1 R E S U L T S (CAR A N S)))
>BY (S E T Q ANS (CDR A N S)) (GO OUT)
>0N (S E T Q J 1)
>LU (S E T Q E L E (ADD1 (F E T C H J C T R L)))
X C O N D ((G R E A T E R P E L E K) (G O L 3)))
X S E T Q X (S T A N D (F E T C H E L E U N I T S E T)))
X S D T Q N L I S T (R E P L A C E J X N L I S T))
X S E T Q CTRL (R E P L A C E J E L E C T R L))
X C O N D U E Q U A L J 1) (GO L 2)))
X S E T Q COUNTER (S U B 1 J))
>L5 (S E T Q N L I S T (R E P L A C E COUNTER (STAND F I R S T) N L I S T))
X S E T Q C T R L (R E P L A C E COUNTER (QUOTE 1) C T R L))
X S E T Q COUNTER (S U B 1 C O U N T E R))
X C O N D ((G R E A T E R P COUNTER 0) (G O L 5)))
X G O L 2)
>L3 (S E T Q J (ADD1 J))
X C O N D ((L E S S P J L) (G O Ik))
X (E Q U A L J L) (G 0 Lk)))
X R E T U R N R E S U L T S)))))))))))))))))
> D E F I N E (((U P R O O F (L A M B D A (C L A U S E S U N I T S E T DEPTH FD E S)
X P R O G (I S L C S E T A NEW NU V A l L E V E L EQS F S "
X S E T Q L E V E L 1)
X C O N D (E S (S E T Q EQS T)))
X S E T Q FS T)
>SETCC (S E T Q I 1)
>GETC (S E T Q S L C S E T (F E T C H I C L A U S E S))
X S E T Q I (ADD1 I))
X C O N D C S L C S E T (GO O N)))
X S E T Q DEPTH (S U B 1 D E P T H))
X C O N D ((E Q U A L DEPTH 0) (RETURN 0)))
X S E T Q L E V E L (ADD1 L E V E L))
X C O N D U N U L L E S X G O A A)))
X S E T Q EQS T)
>AA (S E T Q U N I T S E T (NCONC U N I T S E T N U))
> S L 1 (S E T Q I (L E N G T H NEW))
X C O N D U L E S S P I 2) (G O S L 2)))
> S L U (C O N D ((S U B S U M E D (CAR N E W H C D R N E W)) (G O S L3)))
X S E T Q NEW (A P P E N D (CDR N E W H L I S T (CAR N E W))))
X S E T Q I (S U B 1 I))
X C O N D U E Q U A L I 0) (G O S L 2)))
X G O SLk)
>SL3 (S E T Q NEW (CDR N E W)) (G O S L 1)
>SL2 (S E T Q NU NEW)
X C O N D ((N U L L NU) (R E T U R N 1)))
X S E T Q NEW N I L) (GO S E T C C)
> O N (P R I N T (QUOTE $ $ ' L E V E L OF C L A U S E U S E '))
X P R I NT L E V E L)
X P R L T (QUOTE C L A U S E S))
X P R I N T S L C S E T)
> (P R I N T (Q U O T E $ $ ' N E W U N I T S FROM P R E V I O U S L E V E L 1))
X P R I N T NU)
X S E T Q A (A L O N Z O l S L C S E T U N I T S E T NU FD ES EQS F S))
X S E T Q EQS NI L) (S E T Q FS N I L)
> (C O N D (A (GO T E S T)) (T (G O G E T C)))

32
>(COND(A (GO T E S T)) (T (G O G E T C)))
> T E S T (C O N D ((N U L L (E Q U A L (CAR A) T)) (G O B l)))
X P R I N T (QUOTE $ $ ' P R O O F FOUND FOR T H I S T H E O R M 1))
X P R I N T (CADR A))
X P R I N T (QUOTE $$ ' CONTRAD I CTS 1))
X P R I N T (CADDR A)) (RETURN T)
>B1 (S E T Q A l A)
>B2 (S E T Q V (CONTRA (CAR A) NEW))
X C O N D (V (GO E N D 1)))
X S E T Q A (CDR A))
X C O N D (A (GO B 2)))
X S E T Q NEW (NCONC NEW A D)
X G O GETC)
>END1 (P R I N T T) (P R I N T V) (P R I N T (CAR A))
X R E T U R N T))))))))))))))))
> D E F I N E (((T A (L A M B D A (A R G)
X C O N D U N U L L A R G) 0) ((A T O M A R G) 0)
X T (M A X (A D D 1 (T A (CAR A R G))) (T A (CDR A R G)))))))))))))))
> D E F L E (((F D C H K (L A M B D A (ARG F D)
X P R O G (A)
> L 1 (S E T Q A (C A R A R G))
X C O N D ((G R E A T E R P (T A A) F D) (R E T U R N T)))
X S E T Q ARG (CDR A R G))
X C O N D U N U L L A R G) (RETURN N I L)) (T (GO L l))))))))))))))
> D E F I N E (((S U B S U M E D (L A M B D A (U U L)
X P R O G (S I G N SYMB S V A R L I S T 1 V A R L I S T 2)
X S E T Q S I G N (CAR U)) (S E T Q SYMB (CADR U))
X S E T Q V A R L I S T 1 (CDDR U))
>CHECK (C O N D ((A N D (E Q S I G N (CAAR U L)) (E Q SYMB (CADAR U L)))
X S E T Q V A R L I S T 2 (CDDAR U L)))
X T (GO NEXTUN I T)))
X S E T Q S (S I G M A V A R L I S T 2 V A R L I S T D)
> (C O N D ((N U L L S X G O N E X T U N I T))
> ((E Q U A L S T) (R E T U R N (C A R U L))))
>TEST (C O N D U N O T (A T V A R O F (CADAR S) V A R L I S S 2))
> (GO N E X T U N I T)))
X S E T Q S (CDR S))
>(COND(S (GO T E S T)) (T (RETURN (CAR U L))))
>NEXTUNIT (S E T Q UL (CDR U L))
X C O N D (U L (GO C H E C K)) (T (RETURN N I L))))))))))))))))

2. The Unification Routines

>DEFINE (((V A R S E T (LAMBDA (C)
X C O N D
> ((A T O M C)
X C O N D
X (E Q (CAR (E X P L O D E O) (QUOTE X)) (L I S T O)
X T N I L)))
X T (A T U N I O N (V A R S E T (CAR O) (V A R S E T (CDR C)))))))))
> D E F I N E (((A T U N I ON (LAMBDA (A B)
X C O N D
X C N U L L A) B)
X (A T M E M B D R (C A R A) B) (A T U N I O N (CDR A) B))
X T (CONS (CAR A) (U N I O N (CDR A) B))))))))
> D E F L E (((A T M E M B D R (LAMBDA (A B)
X C O N D
X (N U L L B) N I L)
> ((E Q A (CAR B)) T)
X T (ATMEMBER A (CDR B 1 1)))))))
> D E F I N E (((S T A N D (LAMBDA (C)
X P R O G (A)
X S E T Q A (V A R S E T O)
>TAG (COND
X (N U L L A) (RETURN C)))
X S E T Q C (ATOMSUBST (GENSYM1 (QUOTE X)) (CAR A) O)
X S E T Q A (CDR A))
X G O T A G))))))
>DEFIL E (((S I G M A (LAMBDA (C D)
X P R O G (L A B)
X S E T Q L N I L)
>L1 (S E T Q A (CAR C>)
X S E T Q B (CAR D))
X C O N D
> ((A T O M A) (GO U O)
X (A T O M B) (GO L 5))
X C N O T (E Q (CAR A) (CAR B))) (RETURN N I L)))
X S E T Q C (NCONC (CDR A) (CDR C)))
X S E T Q D (NCONC (CDR B) (CDR D)))
X G O L l)
>lh (COND
X (E Q (CAR (E X P L O D E A)) (QUOTE X)) (GO L 6))
> ((N O T (ATOM B)) (RETURN N I L))
> ((E Q (CAR (E X P L O D E B)) (QUOTE X)) (GO L 3))
> ((N O T (E Q A B)) (RETURN N I L)))
>L7 (S E T Q C (CDR O)
X S E T Q D (CDR D))
X G O L 2)
>L5 (COND
>((NOT (E Q (CAR (E X P L O D E B)) (QUOTE X))) (RETURN N I L))
X (A T V A R O F B A) (RETURN N I L)))
X G O L 3)
>L6 (COND ((E Q A B " (GO L 7))

34.

> ((A T V A R O F A B " (RETURN N I L)))
X S E T Q L (A P P E N D 1 L (L I S T B A)))
X S E T Q C (ATOMSUBST B A (CDR C)))
X S E T Q D (ATOMSUBST B A (CDR D)))
>L2 (COND
>((NOT (N U L L O) (GO L l))
> ((N U L L L) (R E T U R N T)))
>(RETURN L)
>L3 (S E T Q L (A P P E N D 1 L (L I S T A B)))
X S D T Q C (ATOMSUBST A B (CDR C)))
X S E T Q D (ATOMSUBSS A B (CDR D)))
X G O L 2))))))
> D E F I N E (((U N I O N (LAMBDA (X Y)
X C O N D ((N U L L X) Y) ((M E M B E R (CAR X) Y) (U N I O N (CDR X) Y))
X T (CONS (CAR X) (U N I O N (CDR X) Y))))))))
> D E F I N E (((E F F A C E (LAMBDA (A X)
X C O N D
X C N U L L X) N I L)
X (E Q U A L A (CAR X)) (CDR X))
X T (CONS (CAR X) (E F F A C E A (CDR X)))))))))
> D E F I N E (((S U B S T (LAMBDA (X Y Z)
X C O N D
> ((E Q U A L Y Z) X)
X (A T O M Z) Z)
X T (CONS (S U B S T X Y (CAR Z)) (S U B S T X Y (CDR Z)))))))))
>DEFINE (((S T R I N G S U B (LAMBDA (S T V Z)
X C O N D
X C A T O M Z) Z)
X (E Q V (CAR Z)) (A P P E N D ST (S T R I N G S U B ST V (CDR Z))))
X T (CONS (S T R I N G S U B ST V (CAR Z)) (S T R I N G S U B ST V (CDR Z)))))))))
> D E F I N E (((A T O M S U B S T (LAMBDA (X A Z)
X C O N D
X (E Q A Z) X)
X C A T O M Z) Z)
X T (CONS (ATOMSUBST X A (CAR Z))
X A T O M S U B S T X A (CDR Z)))))))))
> D E F I N E (((A T V A R O F (LAMBDA (A Y)
X C O N D
X (A T O M Y) (COND
X (E Q A Y) T)
X T N I L)))
X T (OR (A T V A R O F A (CAR Y)) (A T V A R O F A (CDR Y)))))))))

3. The function EQGEN and supporting routines.
35.

> D E F I N E (((E Q G E N (L A M B D A (N U OU)
X P R O G (NEW OLD P I P2 P3 NEU OEU RL F L A G 1)
X S E T Q NEU (S T R A I N N U)) (S E T Q OEU (S S R A I N O U))
X C O N D U N U L L NEU) (RETURN N I L))
> ((N U L L O E U K G O N O N L Y)))
X S E T Q NEW NEU) (S E T Q OLD OEU)
>SU (S E T Q P I (CAR N E W)) (S E T Q P2 (CAR O L D))
>FSP (C O N D ((A N D (E Q (CAR P I) P L U S S) (E Q (CAR P 2) P L U S S))
> (GO P P))
> ((A N D (E Q (C A R P I) D A S H) (E Q (CAR P 2) P L U S S))
> (GO N P))
> ((A N D (E Q (C A R P I) P L U S S) (E Q (CAR P 2) D A S H))
> (GO P N))
> (T (GO C U)))
>PP (S E T Q P3 (TRANS 1 P I P 2)) (GO S A)
>NP (S E T Q P3 (TRANS 2 P I P 2)) (GO S A)
>PN (S E T Q P3 (T R A N S 3 P I P 2)) (GO S A)
>SA (C O N D (P 3 (S E T Q RL (A P P E N D 1 RL (STAND P 3)))))
X C 0 N D (F L A G 1 (G 0 C U)))
X S E T Q F L A G 1 T) (S E T Q P3 P 2 X S E T Q P2 P 1) (S E T Q P I P 3 M G O F S P)
>CU (S E T Q F L A G 1 N I L) (S E T Q OLD (CDR O L D))
> (C O N D ((N U L L O L D X G O C N U)) (T (GO S U)))
>CNU (S E T Q NEW (CDR NEW))
> (C O N D ((N U L L NEW)(GO N O N L Y)))
> (S E T Q OLD O E U K G O S U)
>NONLY (S E T Q RL (NCONC RL (R E F L E X N E U)))
> (S E T Q RL (NCONC RL (T R A N S N N E U)))
X R E T U R N R L))))))))))))))))
> D E F I N E (((T R A N S (L A M B D A (N P I P 2)
X P R O G (T l T 2 T 3 Tk S R)
X S E T Q T l (CADDR P 1)) (S E T Q T 2 (C A R (CDDDR P I)))
X S E T Q T3 (CADDR P 2)) (S E T Q Tl* (C A R (CDDDR P 2)))
X C O N D U E Q U A L N l) (G O P P))
> ((E Q U A L N 2 X G O N P))
> (T (GO P N)))
> P P (S E T Q S (S I G M A (L I S T T2 (QUOTE X 3))
> (L I S T T3 Tk)))
X C O N D U N U L L S) (R E T U R N N I L))
> ((E Q U A L S T) (R E T U R N
> (L I S T P L U S S (QUOTE E) T l 7k)))
> (T (RETURN (A P P E N D (L I S T (QUOTE + X Q U O T E E))
> (S U B S S (L I S T T l (QUOTE X 3)))))))
>PN (S E T Q S (S I G M A (L I S T (QUOTE X I) T 2 X L I S T T3 Tk)))
X C O N D ((N U L L S) (R E T U R N N I L))
> ((E Q U A L S T) (R E T U R N (L I S T P L U S S (QUOTE E) T3 T l)))
> (T (RETURN (A P P E N D (L I S S DASH (QUOTE E))
> (S U B S S (L I S T (QUOTE X I) T l))))))
>NP (S E T Q S (S I G M A (L I S T T l (QUOTE X 2))
> (L I S T T3 Tk)))
X C O N D U N U L L S) (R E T U R N N I L))

36.

> ((E Q U A L S T) (R E T U R N (L I S T DASH (QUOTE E) Tk T 2)))
> (T (RETURN (A P P E N D (L I S T DASH (QUOTE E))
> (S U B S S (L I S T (QUOTE X 2) T 2)
> D E F I N E (((R E F L E X (LAMBDA (N U)
X P R O G (L I A U)
X S E T Q L (L E N G T H N U)) (S E T Q I 1)
>L1 (S E T Q U (CAR N U))
X S E T Q A (A P P E N D 1 A (STAND (L I S T (CAR U M Q U O T E E)
X C A R (CDDDR U)) (C A D D R U)))))
X S E T Q I (ADD1 I))
> (C O N D ((G R E A T E R P I L) (R E T U R N A)))
X S E T Q NU (CDR N U)) (G O L l))))))))))
> D E F I N E (((T R A N S N (LAMBDA (N U)
X P R O G (A PCDR P l P2 P3 I R F L A G) .
>L1 (S E T Q P l (CAR N U)) (S E T Q PCDR (CDR N U))
X C O N D U N U L L PCDR) (RETURN A)))
>L2 (S E T Q P2 (C A R P C D R))
>LO (COND((AND (E Q (CAR P l) P L U S S X E Q (CAR P 2) P L U S S))
X S E T Q I 1))
> ((A N D (E Q (CAR P l) D A S H) (E Q (CAR P 2) P L U S S))
X S E T Q I 2))
> ((A N D (E Q (CAR P l) P L U S S M (E Q (CAR P 2) DASH))
X S E T Q I 3))
X T (GO L 3)))
X S E T Q R (TRANS I P l P 2))
>(COND(R (S E T Q A (A P P E N D 1 A (STAND R)))))
>L3 (C O N D (F L A G (GO Lk)))
X S E T Q P3 P 2) (S E T Q P2 P 1) (S E T Q P l P 3) (S E T Q F L A G T) (G O LO)
> L U (S E T Q FLAG N I L)
X S E T Q P l P 2)
X S E T Q PCDR (CDR P C D R))
>(COND(PCDR (GO L 2)))
X S E T Q NU (CDR N U)) (GO L l))))))))))))))))
> D E F I N E C ((S T R A I N (LAMBDA (N U)
X P R O G (U L X)
>A (C O N D ((N U L L N U) (R E T U R N U L)))
X S E T Q X (CAR N U))
X C O N D U E Q (CADR X H Q U O T E E)) (S E T Q UL (A P P E N D 1 UL X))))
X S E T Q NU (CDR N U))
X G O A))))))))))))))))

Appendix 6

A run of example 1 from Chang

$R LISP:LISP SCARDS=*SOURCE*
EXECUTION BEGINS

ARGUMENTS FOR EVALQUOTE ...
OPEN
(UTP SYSFILE INPUT)

TIME 10MS, VALUE IS ...
UTP

ARGUMENTS FOR EVALQUOTE ...
RESTORE
(UTP)

COLLECTED 18140 CELLS AND STACK HAS 5994 UNITS LEFT.

TIME 3259MS, VALUE IS ...
NIL

ARGUMENTS FOR EVALQUOTE ...
UPROOF
(((((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6)(+ P X4 X3 X6)))) ((+ P (G X7 X8) X7 X8)
(+ P X9 (H X9 X10) X10) (-P (K Xll) X l l (K X l l))) " l 2 NIL)
LEVEL OF CLAUSE USE
1
CLAUSES
(((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6) '(+ P X4 X3 X6)))
NEW UNITS FROM PREVIOUS LEVEL
NIL
CLAUSE USED
((+ P X4 X3 X6) (- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6))

UNITS USED
((- P (K X0000009) X0000009 (K X0000009)) (+ P (G X0000003 X0000004) X0000003 X0000004)
(+ P (G X0000005 X0000006) X0000005 X0000006))
RESULTANT UNIT CLAUSE
(- P (G (G X0000005 X0000006) (K X0000005)) X0000006 (K X0000005))
CLAUSE USED
((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6) (+ P X4 X3 X6))
UNITS
((+ P (G X0000014 X0000015) X0000014 X0000015) (+ P X0000012 (H X0000012 X0000013) X0000013)
(+ P (G X0000005 X0000006) X0000005 X0000006))
RESULTANT UNIT CLAUSE
(+ P X0000006 (H X0000005 X0000005) X0000006)
PROOF FOUND FOR THIS THEOREM
(•r P (K Xll) X l l (K.X11))
CONTRADICTS
(+ P X0000017 (H X0000016 XOO00O16) X0000017)

TIME 524MS, VALUE IS ...
T

