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Abstract 

A unit resolution theorem proving system is developed and 

compared with the previous work of C.L. Chang. This thesis includes 

a description of a particular approach to unit resolution and a 

description of the resulting program and i t s effectiveness. 
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1. 

I Concepts and Terminology 

1. Introduction 

Application of the f u l l resolution proof procedure normally 

results in a very large amount of matching and clause generation. 

Unit resolution is a means of reducing the size of such problems. 

This work is an implementation of a particular form of unit resolu

tion, paralleling closely that of CL. Chang [2]. This Chapter 

outlines the theoretical basis of the program produced and 

describes the notation and terminology used. A f u l l description of 

resolution is not attempted however unit resolution w i l l be described 

as a special case of the more general technique. 

2. Preliminary Formulation of the Axioms and Proposed Theorem. 

For any resolution procedure, the axioms and proposed theorem 

of a given system must be expressed in a particular format for 

expressions of f i r s t order mathematical logic called conjunctive  

normal form. Procedures for converting to conjunctive normal form 

are given in [3] and [8]. A conjunctive normal form (cnf) has the 

following structure. 

Let C^,...,C^ be logical phrases called clauses. Then a c.n.f. 

has the following form: 

C. A C„ A ... A C. 
1 2 k 

That i s , a c.n.f. is a conjunction of clauses. A clause is a 

disjunction of l i t e r a l s . Say L^,...,L^ are l i t e r a l s then a clause 

has the following structure for M > 0: L^ v ... v L^. A l i t e r a l 

is a logical phrase of the following general form, where + or -

indicates a sign, P a predicate symbol, and t ^ , . . . , t ^ are expressions 
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called terms: ± P t ^ , . . . , t ^ for some k > 0. A term may be a free  

variable, a constant or a functional value where a functional value 

i s a functional symbol followed by a number of terms in brackets, 

e.g., f(t^,...,t£) for some H > 0. Consider the following examples of 

a) a free variable, x 

b) a constant, 3 

c) a functional value, g(x,3) 

d) a l i t e r a l , + T x g(x,3) x 

e) a clause, + P x g(x,3) x V + Q x, g(x,5), 5 

f) a c.n.f. } 

+ P x g(x,3) x V + Q x g(x,5) 5 A + T x g(x,3) x 

For purposes of programming in the LISP 1.5 language the following 

notation is used for the date types described above 

1) A free variable is designated by the letter x followed by any 

number, e.g. x20, xl5. 

2) A constant is any other letter or an integer, e.g. A,B,C,1,15,10. 

3) A functional'value has the following l i s t form (F t^ t^-•-tyj 

for example (F 1 x3 10) or (G x l x2). 

4) A l i t e r a l is again a l i s t but always begins with a + or - sign 

followed by a predicate symbol. For example: (+ P x l x2 x3) 

or (- Q (F xl) 2) 

5) A clause is simply a l i s t of its, l i t e r a l s . Further information 

on input of the c.n.f. to the program is given in Chapter 2. 

Fundamental to this thesis is the concept of a unit clause. A 

unit clause is a clause of one l i t e r a l . For instance (( - P x l x2)) 

where one set of brackets denotes a clause and the other a single 

l i t e r a l , is a unit clause. In practise, for example, in the context 
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of the program written, the outer set of brackets is dropped. 

For a unit resolution theorem prover to proceed on a proposed 

theorem and associated set of axioms at least one unit clause must 

be present i n the associated conjunctive normal form. 

3. The Unit Proof 

A resolution proof is normally sketched as an inverted binary 

tree whose bottom-most node is the • symbol. A unit proof is defined 

as a resolution proof such that for each node generated downwards in 

the proof tree, at least one parent node is a unit clause. For 

example i f we denote unit clauses as U^, regular non-unit clauses as 

C_. and have the following c.n.f. ; A A A A C^; then if_ a 

proof for this c.n.f. i s found as follows, 

we then have a proof by unit resolution. 

Normal resolution is a process combining clauses to form new 

clauses un t i l two clauses combine to n i l or •. In the above hypo

thetical diagram, three new unit clauses (U^, U^, U,.) and two new 

non-unit clauses (C^, Cj.) are generated. In each case the new 

clause has at least one parent which is a unit clause. Since we 

are describing what is really a combining process an.-advantage of 

unit resolution is apparent. For any given resolution the length of 

• 
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the newly generated clause (i.e., the number of l i t e r a l s which i t 

contains) w i l l be one less than that of the non-unit parent. An 

approach which attempts to make such unit resolutions f i r s t in search 

of a proof is termed the unit preference strategy [1], The theorem 

proving system developed i n this work does not attempt non-unit 

resolution and hence w i l l not succeed on problems which do not have 

a unit proof. That i s , i t w i l l not prove proposed theorems whose 

c.n.f. has no unit clauses or whose proof is dependent on the 

resolution of two non-unit clauses. 

4. Unification and Substitution for a Unit Proof. 

Essentially, unification i s the process of finding a common 

instance of two sets of terms. For the purposes of resolution 

these two sets of terms appear in separate clauses and are associated 

with the same predicate symbols of differing signs. This common 

instance of two sets of terms is demonstrated by the generation of 

a substitution to be made to the two clauses in question, the result 

of which i s the presence of contradictory l i t e r a l s within the clauses 

in question, which are then combined to form a resolvent (minus the 

contradictory l i t e r a l s ) . Further to the concept of a unifying 

substitution, i s the idea of a most general unifier. This notion 

which is developed in (10) basically means that there exists a 

substitution for two unifiable l i t e r a l s such that the most general 

common instance of the two is the result. 

In normal resolution systems i t is necessary to apply a unifying 

substitution to both clauses being resolved as the two w i l l be 

combined (minus the l i t e r a l s "resolved away") to form a new clause. 
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Here unit r e s o l u t i o n has a s p e c i a l advantage. Because one of 

the parent clauses i n unit r e s o l u t i o n i s a unit clause, a given 

s u b s t i t u t i o n need only be applied to one clause (minus the resolved 

l i t e r a l ) . Since these substitutions are quite expensive t h i s i s a 

considerable advantage. 

5. Subsumption 

Closely r e l a t e d to the concept of u n i f i c a t i o n i s the subsumed  

clause. A clause M i s s a i d to be subsumed by a clause N i f there 

e x i s t s a s u b s t i t u t i o n 0 such that N 6 £ M. B a s i c a l l y , t h i s means 

whenever M i s true, N i s true and hence there i s l i t t l e value i n 

terms of the r e s o l u t i o n process i n keeping the subsumed clause. 

A check f o r subsumed clauses i n included i n t h i s theorem proving 

system. 

6. The "hyper" Unit Resolution Strategy 

Consider a sequence of resolutions of the following type where 

a, a are unit clauses and 5, v 5L v ... v a v g i s a non-unit 
I n 1 2 n 

clause (axiom): 

cL v a 0 v . . . v a v 3 an 1 

a 

a. 

2 

2 

3 

v 

v 

a 4 v v a v 3 n 

a 
n 
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In short where a l l the consequent l i t e r a l s may be matched with known 

unit clauses i t is possible that a new unit clause can be generated 

by in this case n resolutions. A necessary condition for this to 

occur is that the l i t e r a l s must have differing signs and matching 

predicate symbols with their corresponding units in {a^}. In 

additional each l i t e r a l / u n i t pair must unify at the appropriate 

stage of the overall resolution sequence. The "hyper" unit resolution 

strategy is simply to generate only unit resolvents in the above 

fashion. The n resolutions outlined above are treated as occurring 

simultaneously for purposes of retaining new resolvents. A resolvent 

is generated only i f i t is a unit clause, that i s , a l l l i t e r a l s 

appearing in a given axiom except the "target" l i t e r a l already 

exist as axioms or previously generated unit resolvents. This target 

l i t e r a l , i.e. , that l i t e r a l of the axiom which becomes the unit 

resolvent, may be any of the l i t e r a l s appearing in the axiom. 

The use of this apparent restriction on clauses generated by 

unit resolution greatly reduces the number of clauses generated for 

further use in search of a contradiction. For instance (not 

including multiple instances of the same target l i t e r a l : which differ 

in their terms) for three axioms of length four there are twelve 

possible unit resolvents while there are forty-eight possible 

resolvents including non-unit clauses. Appendix 1 contains a f u l l 

example demonstrating this advantage. 

The following theorem demonstrates that the use of "hyper" 

resolution i s in fact not a further restriction on the effectiveness 

of unit resolution. "A set of clauses can be proved insatisfiable 
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by unit resolution i f and only i f i t can be proved unsatisfiable 

by "hyper" unit resolution". Clearly, from the definition of unit 

resolution, any proof by regular unit resolution can be converted 

to a proof by "hyper" unit resolution and hence the proof is t r i v i a l . 

There i s significant combinatorial aspect of "hyper" resolution 

to be described. Consider the generation of unit resolvents from a 

clause C = L., v ... v L of r l i t e r a l s . There are r possible l i t e r a l s 1 r K 

which may become unit resolvents. These possible'"target" l i t e r a l s 

each may become a unit clause after r - l other l i t e r a l s are resolved 

away using the, say k, unit clauses available. In order to insure 

that a l l possible resolvents are generated at a particular level, i t 

is necessary to match each sequence of r - l l i t e r a l s corresponding to 

a particular target l i t e r a l with a l l possible l i s t s of length r - l 

of existing units. Since a given unit may be used more than once 
kfr—2 

there are (r_^ ) such combinations of units. Each of these combinations 
may be ordered i n ( r - l ) ! ways hence for a clause c of r possible 

k+r-2 

target l i t e r a l s there are ( ) ( r - l ) ! * r combinations of clause 

l i t e r a l s and unit clauses to be checked for possible results. Thus 

i t i s clear that while the number of retained units is significantly 

reduced with a "hyper" resolution approach there is no reduction apparent 

in the amount of matching which must take place in order to generate 

a particular unit clause. 

7. Embedded Equality Axioms. 

The treatment of problems of proof generation with axiom sets 

expressing equality has had considerable attention in a number of 

papers on mechanical theorem proving [7 , 9 ] . The problem is a 

familiar one - only more so. Consider the following axiom (reflexive): 
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E (xl x2) => E (x2 xl) or in clausal form E (xl x2) v E (x2 x l ) . 

Now any unit clause with E as i t s predicate symbol w i l l unify with one 

or the other of the l i t e r a l s in this clause. In consequence an 

abnormally large number of new unit clauses w i l l be generated, most 

of which are quite useless to the production of a proof. Since the 

nature of axioms expressing equality are relatively mechanical in 

their effect, treating them as any other axiom unnecessarily marrs 

the efficiency of a theorem proving program. Such axioms may be 

embedded within the code of the program and thus produce much more 

effi c i e n t l y as required. In! light of this the axioms of r e f l e x i t i v i t y 

and transitivity of equality, i.e., E (xl x2) ^ E (x2-xl) and 

E (xl x2) A E (x2 x3) => E (xl x3) have been coded directly into 

this program and may be used by setting a switch variable on input. 
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II A Description of the Program and it s Use-

The "hyper" unit resolution strategy described in Chapter I 

has been implemented as a theorem proving program written in LISP 

1.5 [ 5 , ' l l ] . Appendix 4 outlines how this program may be accessed 

on the U.B.C./MTS system. This chapter comprises a description of 

the input format required, an outline of the flow of processing 

performed by the program and fi n a l l y a description of program 

output and it s interpretation. 

1. Input to the Program 

A representation of the conjunctive normal form of a given 

proposed theorem and a few controlling parameters are passed to 

the predicate UPR00F in order to in i t i a t e the generation of a proof. 

This c a l l has the following general form: 

UPR00F (CLAUSES UNITSET DEPTH FD ES) 

CLAUSES i s a structured l i s t of the non-unit clauses of the c.n.f. 

and UNITSET i s a l i s t of the unit clauses. DEPTH is an integer 

indicating the allowable number of times the CLAUSES may be used 

before quitting the search for a proof. FD, also an integer, 

indicates the maximum function depth in retained unit clauses. 

ES i s a switch variable; i t s value i s T i f embedded equality 

relations are to be used and NIL otherwise. 

The latter three parameters have a self explanatory format as 

indicated in the example which follows. CLAUSES and UNITSET, however, 

require further description. 

CLAUSES has a certain amount of structure in i t s format in 

order to aid the search process of the program. As indicated 

earlier in Chapter I, a clause is represented as a l i s t of i t s 
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l i t e r a l s which in turn are l i s t s of signs, predicate symbols and 

variables etc. An example is ((+ P xl x2)(+ Q x l x2)(+ R x2 x3)). 

Given this format for a clause, CLAUSES is imply a set of clauses 

grouped by length. In other words, CLAUSES is a l i s t of l i s t s of 

clauses, each sublist containing clauses of the same length. The 

following is a set of four clauses so arranged: 

((((+ P xl x2)(+ Q x2 x3()- R xl x2))) 

(((+ P x2 x3)(- Q x3 x2)(- P x3 x2)) 

((- R xl x4)(+ Q x l x2)(+ P xl x2))) 

(((+ P xl x2)(- Rx2 xl)))) 

UNITSET is simply a l i s t of unit clauses. As earlier mentioned 

in Chapter I, the additional set of brackets which would normally 

denote a clause as opposed to a l i t e r a l have been dropped hence 

UNITSET appears as shown in the following example: 

((+ P x l x2)(+ Q xl x3)(- R x2 x3)) 

A l l variables which appear in CLAUSES and UNITSET are x-standardized 

according to the following condition. The same variable name may 

appear in two or more non-unit clauses but may not appear in any 

unit clause. In addition those variable names occurring in a unit 

clause must be distinct from a l l other variable names appearing in 

unit clauses (as well as those appearing i n CLAUSES). This is done 

to avoid ambiguity in unification and substitution. In addition a l l 

variable names must include an integer larger than 20 to avoid 

conflict with internal variables in the equality processing. A 

complete example of a c a l l to UPR00F follows: 
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UPR00F ((((+ P xlOO)(+ D (G xlOO) xlOO)) 

((+ P xlOO)(+ L 1 (G xlOO))) 

((+ P xlOO)(+ L (G xlOO) xlOO)) 

((- P xlOO)(- D xlOO A))) 

(((- L 1 xlOO)(- L xlOO A)(+ P (F xlOO))) 

((- L 1 xlOO)(- L xlOO A)(+ D (F xlOO) xlOO)) 

(- D xlOO x200)(- D x200 x300)(+ D xlOO x300)))) 

((+ D x400 x400)(+ L 1 A)) 5 3 NIL) 

This is a formulation of example eight from Chang [2]. 

2. Program Operation 

This program generates and tests unit clauses in a breadth 

f i r s t fashion using the general procedure outlined in the following 

steps. 

7. 1. Select a set of non-unit 
clauses of the same length 
(SLCSET) 

2. Generate a l i s t of unit 
clauses from the unitset 
(UNITS) 

3. If level of generation is 
greater than one test above 
units for presence of at 
least one unit from previous 
level. 

4. Match UNITS against a l l 
clauses in SLCSET and 
generate any new resolvents 
possible. 

5. Test newly generated 
resolvents for function 
depth and subsumption by 
other units. 

Is a new string of units 
possible i f so go to step 2. 

8. Is a new set of clauses of 
the same length available? 
If yes, go to step 1. 

9. Test a l l units generated 
at this level for contradiction 
and subsumption among each 
other i f contradiction return 
T, i f no units remain return 
1. 

10. Has maximum depth of clause 
use been reached i f so return 
0. 

11. Update unitset with newly 
generated units and go to 
step 1. 

6. Test remaining units generated 
for contradiction with other 
units already existing, i f found 
return T. 
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In short, this program matches every clause of length t-1 at 

a given level. Using clause rotation each l i t e r a l in a clause is 

treated as a possible unit resolvent. A simple combinatorial 

algorithm [4] is used to.generate l i s t s of units from the UNITSET 

of a given level. I n i t i a l checks are made on such l i s t s and a given 

clause (or rotation of a clause) to insure appropriate sign and 

predicate symbols in each l i t e r a l pair from l e f t to right. Given 

the success of the above test, unification and substitution proceed 

on the l i t e r a l pairings from the l e f t u n t i l the given l i s t of units 

is exhausted or unification f a l l s . If a unit resolvent is generated 

i t i s tested for function depth, subsumption by existing units and 

for possible contradiction by resolution against one of the existing 

units. If i t does not contradict or f a i l the other test i t i s 

saved for use during the next level of resolution. 

There are three major sections or LISP functions in this theorem 

proving system. They are UPR00F, AL0NZ0I, and SIGMA. 

UPR00F is the overall driver of the system. It controls passage 

through the clauses, updates the set of units between levels of 

clause use, and communicates with the user. UPR00F calls on 

AL0NZ0I to perform the matching of clauses with l i s t s of units and 

to do most of the screening of generated unit clauses. 

AL0NZ0I is the most active of the functions-of the system. It 

generates l i s t s of units of the appropriate length for the clause 

or clauses i t has been passed, checks for sign and predicate symbol 

matching, controls and calls the unification and substitution functions 

as required, rotates clauses as needed, and performs subsumption, 

function depth and contradictory unit tests as needed. If a 
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contradiction is found or a l l possible units have been generated for 

a given l i s t of clauses of the same length, AL0NZ0I returns to 

UPR00F. 

SIGMA, is the controling LISP function for a collection of 

routines which perform unification ( i f possible) for a given pair 

of l i s t s of terms of a l i t e r a l pair. SIGMA produces a most general 

unifier i f unification i s possible or else returns the LISP atom 

NIL. 

In order to obtain a run which utilizes implicit coding of 

the equality axioms, i.e., 

E (x, y) A E (y, z) = E (x, z) 

E (x, y) a E (y, x) 

the value of the input variable ES must be T. In order to have 

these axioms be effective at the appropriate point in use of the 

clauses there are a few dynamic switch variables set in UPR00F and 

passed to AL0NZ0I. The function EQGEN is called by AL0NZ0I to 

generate new units resulting from said axioms, when such generation 

is signaled by UPR00F. 

Appendices 2 and 3 contain relatively detailed flow charts for 

UPR00F and AL0NZ0I and Appendix 5, The LISP Code. 

3. Program Output 

A machine generated proof must be recoverable. This program 

achieves this condition for i t s proofs by printing out the history 

of a unit just after i t has been generated. This history's format 

is as follows: 
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< parent clause 
or a r o t a t i o n of 
that clause > 

< the l i s t of units 
used to resolve 
against the clause 
above > 

< the unit resolvent > 

an example might be; 

CLAUSE 'USED 
((- P x l x2)(- P x2 x3)(+ P x l x3)) 

UNITS USED 
((+ P A B ) (+ P B C)) 

RESULTANT UNIT CLAUSE 
(+ P A C) 

Units generated by the use of i m p l i c i t e q u a l ity axioms are 

simply l i s t e d as such and normally are simply traced by checking 

with previous e x i s t i n g u n i ts. Upon the discovery of two contradictory 

u n i t clauses, UPR00F returns the value T. The two units which 

contradict are printed under the heading. 

PR00F F0UND F0R THIS THE0REM 

At this point the user may reconstruct the proof tree f o r the 

theorem i n question by t r a c i n g the printed h i s t o r i e s of the units i n 

question. Since variables are restandardized r e l a t i v e l y often 

within the proof generation process, the user must generally look 

back f o r a d i f f e r e n t instance ( i n respect of v a r i a b l e names) than 

the current unit being traced. 

Each time a new set of clauses i s passed to AL0NZ0I, the l e v e l 

of clause use, clauses passed, and new units from the previous l a b e l 

are p r i n t e d . 

If the program f a i l s to f i n d a proof i t w i l l be indicated by 

a return value of 0 or 1 or an obvious time over-run. A return value 
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of 0 indicates that a proof was not found at the maximum depth 

specified by the input parameter DEPTH. A return value of 1 

signifies that at the last indicated level of clause use no new 

units were generated (or more specifically no new units were 

generated that passed both the subsumption and function depth 

tests). In the latter circumstance, i f a greater function depth 

does not change matters then no unit proof exists for the proposed 

theorem. 

The output format described above is motivated by two considera

tions; generation of a trace of a proof is costly and involves a 

considerable amount of programming and, secondly, to effectively 

study the possible implementation of heuristics in a theorem prover 

i t i s helpful to print as much as possible concerning the directions 

taken. 

A sample run is given of example 1 from Chang in Appendix 6. 
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I l l Evaluation of Experimental Results 

1. Comparison with the work of Chang-- [2] 

Apart from his 'use of the set of support technique, the work of 

Chang i s quite similar to that presented here. The following table 

displays the results of the two programmes when applied to the examples 

given by Chang-

EXAMPLE # UNITS CLAUSE UNITS TIME 
GENERATED DEPTH RETAINED (sec) 

1 16 1 0 1.550 
2 1 0 .524 

2 109 3 3 7.510 
72 2 4 28.222 

3 44 3 3 3.417 
14 2 3 3.821 

4 32 2 2 2.650 
14 1 0 2.0.51 

5 21 1 0 0.667 
1 1 0 0.646 

6 32 2 1 2.300 
74 1 0 15.267 

7 58 2 5 3.566 
6 1 0 5.602 

8 65 ? 11 5.184 
17 4 4 4.843 

9 34 ? 10 4.050 
15 4 9 6.640 

10(a) 136 4 17 24.550 
154 2 16 31.457 

10(b) 59 3 6 9.367 
169 2 16 37.228 

10(c) 53 3 4 6.916 
141 2 16 28.151 

10(d) 48 3 5 7.317 
167 2 16 37.055 

TABLE I: A Comparative Table of Chang's Examples 
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For each entry in the table the value obtained by Chang is 

followed by that obtained with this system. The column headings 

have the following, more elaborate explanations: 

UNITS GENERATED - the total number of unit clauses produced before 

a proof was found. 

CLAUSE DEPTH - the number of times the set of non-unit clauses 

was used in order to find a proof. 

UNITS RETAINED - the number of generated unit clauses which were 

retained for use in further levels before a proof 

was found. 

Comparison of the two sets of results reveals the following general 

differences: 

(1) With:••the exception of examples 6 and 10 this system produces 

significantly fewer unit clauses than Chang's. 

(2) The clause depth necessary for proof for this system i s most 

often lower than that for Chang's. 

(3) Relative to the number of clauses generated, the number of 

clauses retained by both programmes is about the same. 

(4) The running times required by Chang's programme are (not 

withstanding differences in hardware and software) significantly 

lower than those required by this programme. 

2. Comments on the Differences in the Results 

The conclusions stated here are by necessity somewhat 

speculative both for reasons of inadequate information about the 

internal operation of Chang's system and, perhaps more importantly, 

lack of an adequate or conclusive technique for measuring the 

effectiveness of a theorem proving programme [6], 
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Points (1) and (2) are probable evidence of an inherent 

disadvantage of the set of support strategy. Simply put, i t quite 

often results in deeper proofs than are necessary. In many 

circumstances an "inferential" proof exists at a shallower depth 

than one provided by set of support. The set of support programme 

must pass through, in general, more levels of clause use (and 

generate more clauses as a result) in order to find a contradiction. 

This fault in the set of support approach is probably not particularly 

significant for theorems which do not admit to a relatively simple 

inferential proof. 

It should be noted at this point that although not ex p l i c i t l y 

stated, Changes program is using the same basic strategy as the 

"hyper" unit resolution developed here. In addition, his routine 

includes a mechanism to avoid the generation of duplicate clauses. 

Point (3) is approximately as expected since the routines have 

the same clause rejection mechanisms, i.e., subsumption and function 

depth. 

Point (4), judging by points (l)-(3), relates to the amount of 

effort expended on non-productive matching in the larger search 

tree a program without set of support techniques must face. Here 

also the effects of not having a means of avoiding duplicate clause 

generation are shown as well as a probable difference in programming 

s k i l l . 

In summary, our programme has a definite advantage over Chang's 

in respect to depth of search and units generated where a proof of 

a shallow inferential nature exists. It also seems likely that with 

or without set of support, either program could not prove significantly 

deeper theorems without additional techniques. 
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IV Possible Directions for Further Work 

1. The nature of inferential unit resolution. 

While incomplete as an inference system, unit resolution appears 

to admit many proofs which are inferential in nature. That i s , 

a consequent of the axioms conflicts with the negation of the theorem. 

It i s perhaps possible that a program could be developed to choose 

such proof circumstances and, using a form of backtracking from the 

negation of the proposed theorem, construct possible proof trees for 

development by regular unit resolution. In short this sort of idea 

points to the development of a "measure of complexity" for resolution 

proofs. 

2. Heuristic Tree Search 

Insofar as unit resolution is not complete, i.e. there are 

possible theorems i t cannot theoretically prove, i t can therefore 

be thought of as a heuristic approach. As Chang states "If a 

theorem, i.e., a set of clauses, does not have an input or unit 

proof, we may convert i t into a theorem which has an input or 
[2]. 

unit proof by putting into i t appropriate lemmas" . This would 

certainly seem to be the direction to follow i f i t were clear that 

unit resolution, as now implemented can find proofs for a l l such 

lemmas. Results so far seem to indicate this i s not the case and 

that continued work on the development of stronger unit resolution 

procedures is very much needed. Most refinements to resolution have 

centered on the logical power of the technique i n order to reduce 

the overall size of the search tree. Like unit resolution in this 

system, they have generally been applied to that tree so defined 
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in a breadth f i r s t manner, normally plowing through masses of units 

in quite rote fashion. Work with this programme has emphasised this 

blindness of flow i n two respects. F i r s t , once a clause is retained 

i t i s not evaluated for significance in further proof development. 

Secondly, axioms are selected and used rotely without any type of 

dynamic choice. When these types of concepts are entertained, much 

of the theory and philosophy of tree search becomes relevant to 

theorem proving. It is simply a matter of saying logical completeness 

or algorithmic process i s not worth much i f the program i s not 

able to reach interesting levels. 

A couple of facts drawn from runs with this theorem prover are 

worthy of consideration in developing a genuinely heuristic theorem 

proving system. The f i r s t of these i s the significance of ground 

instances of l i t e r a l s or unit clauses. Most proofs include at least 

one of these in their tree structure and hence appear to be of more 

than average value when generated. The other fact i s the difference 

in time required for proof using varying orders of clause selection. 

For this program using breadth f i r s t search, the times may vary as 

much as the total processing time for the deepest level required. 

Obviously even a slight amount of selectively or dynamic clause 

ordering would reduce the mean time for such proofs. 

3. Concluding Remarks 

The original intent of this work was twofold. First to provide 

a form of theorem proving system for further work and secondly to 

try the "hyper" unit resolution technique described i n Chapter I. 

It seems clear now that the "further work" which motivated 

this project w i l l involve some major changes to the theorem prover 
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i t s e l f as i t s potential for "interesting" results is limited. 

The "hyper" unit resolution strategy seems to b o i l down to a method 

of description of internal workings of the program rather than an 

advancement as a natural approach. If the problems i t entails 

with respect to the internal ordering and construction of l i s t s 

can be reduced i t seems as good as any other unit resolution approach. 

Finally insofar as i t is relatively uncluttered in concept, unit 

resolution should perhaps be given more time and effort than i t : 

appears to have received. If the problems of resolution theorem 

proving are to be solved i t seems wise to work on the simpler case 

f i r s t . 
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Appendix 1 

An example of "hyper" unit resolution 

We wish to prove a=d from the following axioms: 

a=b, b=c, c=d 

x=y A y=z 3 x=z 

In the notation of this theorem proving system we are thus working 

with the unit clauses (+ E A B) , (+ E B C)(+ E C D) and the non unit 

clause ((- E x l x2) (- E x2 x3j.(+ E xl x3)) 

If we apply regular unit resolution the following clauses are generated: 

((- E B x3) (+ E A x3)) 

( ( - E C x3)(+ E B x3)) 

( ( - E D x3) (+ E C x3)) 
1st level resolvents 

((- E xl A)(+ E xl B)) 

((- E x l B) (+ E xl C)) 

((- E x l C) (+ E xl D)) 

(+ E A C) 
2nd level resolvents 

(+ E B D) 

( ( - E C x3)(+ E A x3)) 

((- E B x3)(+ E D x3)) 

((- E x l A)(+ E x l C)) 3rd level resolvents 

((- E x l B) (+ E x l D)) 

(+ E A D) 

In short, twelve clauses were generated and retained before the 

clause desired appeared. 
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Using "hyper" unit resolution, we take our three i n i t i a l 

positive units in pairs and try to match them with the two negative 

l i t e r a l s of the non-unit clause. The only two pairs which work are 

((+ E A B)(+ E B C)) and ((+ E B C)(+ E C D)) which in turn produce 

the pair of resolvents (+ E A C) and (+ E B D). 

Hence for the next level of clause use we have five unit clauses. 

From these five units only two pairs ((+ E A B)(+ E B D)) and 

((+ E A C)(+ E C D)) w i l l produce a unit resolvent from our non-unit 

clause. (Repeated matchings from earlier levels are not used.) In 

both cases the unit result i s (+ E A D) which is the desired clause 

in this proof. 

The important difference in these two methods is clearly 

illustrated; the regular unit proof must retain 12 clauses before 

the desired result is found whereas the "hyper" unit resolution 

technique needs to hold only 2 intermediate results. 
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Flow of AL0NZ0I 

ENTRY 

Generate 
i n i t i a l 

unit l i s t 

Check each 
unit which 
has been 
generated for 
Function Depth 
Subsumption and 
contradition 
with other 
units. 

Save remaining 
units 

Return T 
and the 
contradictory 
units to 
UPR00F 

y 

t 

Generate a 
new l i s t of 

units 

Return units 
generated to 

UPR00F 
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CLAUSE-<-SLCSET(CP) 
CP^CP + 1 

Enter unification 
and substitution 

procedure 

Rotate the 
clause 

Print clause, 
unit l i s t and 

resultant unit. 

Save the 
resultant unit 

CP - position in set of clauses 
of the same length. 

SLCSET - set of clauses of the 
same length. 

CLAUSE - a particular clause from SLCSET. 



Appendix 3 

Flow of UPR00F 

•27. 

ENTRY 

Set SLCSET 
to I t n entry 
of CLAUSES 

IH-I + 1 

DEPTH set to 
DEPTH -1 

RETURN 0 

Set LEVEL 
to LEVEL+1 

> '•SI 

from two 
levels above 
current to 
UNITSET 

Save pre
vious level's 

generated 
units 

Print SLCSET 
LEVEL and 
new units 

X 
Call AL0NZ0I 

Screen out 
subsumed 
units in Save re
those maining 

generated at units 
this level 
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Appendix 4 

Use of the Programme on the U.B.C. M.T.S. System 

Because of the somewhat awkward method of compilation used by 

USP 1.5 the following job set up must be used to run the program. 

1) $SIG <ID> T= , etc. 
PW 

2) $R LISP:LISP.-SCARDS=*SOURCE* 
3) 0PEN(THRM:UTP SYSFILE INPUT) 
4) RE S T0RE(THRM:UTP) 
5) CL0SE(THRM:UTP) 
6) UPR00F (<args as given in Chapter II>) 
7) MTS() 
8) $SIG 

1) signon card 

2) run card 

3) 0PEN 

4) REST0RE 

5) CL0SE 

6) UPR00F 

7) MTSQ 

8) signdff 

allow enough time and pages (program is somewhat 
verbose to say the least). 

note that the program does not use the regular 
LISP 1/5 system (for reasons of data c e l l space 
required). 

opens the data c e l l f i l e containing the compiled 
theorem prover. 

reads the compiled program into the LISP system. 

closes the source f i l e - must be included. 

statement to c a l l the program exactly as outlined 
in Chapter II., Can be several cards but don't 
use past column 72. 

this c a l l returns control to MTS. Note that there 
is a n i l argument. 

The f i l e THRM:UTP is marked public and takes approximately 3 

seconds to restore. 

Finally, check input to UPR00F carefully before attempting a 

long run. LISP is not the cheapest way to f l y . 
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S0URCE C0DE 
1. The functions AL0NZ0I and UPR00F and t h e i r supporting functions. 

>DEFI N E C ( ( N E W U C H K (LAMBDAC CTRL N I S ) 
> ( C 0 N D ( ( N U L L C T R L ) N I L ) ( ( M E M B E R (CAR C T R L ) N I S ) T ) 
X T (NEWUCHK (CDR C T R L ) N I S ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( S U B S (LAMBDA ( S S T R I N G ) 
X P R O G O 
>S2 ( C O N D U N U L L S ) (RETURN S T R I N G ) ) ) 
X S E T Q S T R I N G (ATOMSUBST ( C A A R S ) (CADAR S " S T R I N G ) ) 
X S E T Q S (CDR S ) ) 
X G O S 2 ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( F E T C H (LAMBDA ( J L I S T ) 
X C O N D U N U L L LI S T ) N I L ) ( ( E Q U A L J 1 ) ( C A R L I S T ) ) 
X T ( F E T C H ( S U B 1 J M C D R L I S T ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( R E P L A C E ( L A M B D A ( J B L I S T ) 
X P R O G ( T E M P l ) 
> A l ( C O N D ( ( E Q U A L J l ) ( G O E N D ) ) ) 
X S E T Q T E M P I ( A P P E N D 1 T E M P I (CAR L I S T ) ) ) 
X S E T Q L I S T (CDR L I S T ) ) 
X S E T Q J ( S U B 1 J ) ) (GO A l ) 
>END (RETURN (NCONC T E M P I ( R P L A C A L I S T B ) ) ) ) ) ) ) ) ) ) 
>DEFINE ( ( ( C O N T R A (LAMBDA ( U N I T U L I S T ) 
X P R O G ( X ) 
>L1 ( C O N D ( ( N U L L ULI S T ) ( R E T U R N N I L ) ) ) 
X S E T Q X (CAR U L I S T ) ) 
X C 0 N D ( ( A N D ( N U L L ( E Q ( C A R U N I T ) ( C A R X ) ) ) ( E Q (CADR U N I T ) ( C A D R X ) ) ) 
> ( C 0 N D ( ( S I G M A ( C D D R U N I T ) ( C D D R X ) ) ( R E T U R N X ) ) ( T N I L ) ) ) ) 
X S E T Q U L I S T (CDR U L I S T ) ) (GO L l ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( A L O N Z O K L A M B D A ( S L C S E T U N I T S E T NEWU FD ES EQS F S ) 
X P R O G ( F I R S T COUNTER L N L I S T J X R E S U L T S Y COUNT ANS CTEMP UTEMP S 
>CLAUSE CP C L A U S E 1 U L I S T 1 UT1 E L E NC V I V2 CTRL N I S K) 
X C O N D U N U L L E Q S M G O A B B ) ) ) 
X S D T Q ANS (NCONC ANS (EQGEN NEWU U N I T S E T ) ) ) 
X C O N D ( F S ( S E T Q ANS (NCONC ANS (EQGEN U N I T S E T N I L ) ) ) ) ) 
X P R I N T (QUOTE $ $ ' U N I T S GENERATED BY I M P L I C I T E Q U A L I T Y R E L A T I O N S ' ) ) 
X P R I N T A N S ) 
>ABC ( S E T Q NC ( L E N G T H S L C S E T ) ) 
X S E T Q L ( S U B 1 ( L E N G T H (CAR S L C S E T ) ) ) ) 
>LAB1 ( S E T Q F I R S T ( F E T C H 1 U N I T S E T ) ) 
X S E T Q COUNTER L ) 
>L1 ( S E T Q N L I S T ( A P P E N D 1 N L I S T (STAND F I R S S ) ) ) 
X S E T Q CTRL ( A P P E N D 1 C T R L (QUOTE 1 ) ) ) 
X S E T Q COUNTER ( S U B 1 COUNTER) ) 
X C O N D C ( G R E A T E R P COUNTER 0 ) ( G O L l ) ) ) 
X C O N D ( ( N U L L NEWU) (GO Z2 ) ) ) 
X S E T Q COUNTER (ADD1 ( L E N G T H U N I T S E T ) ) ) 
X S E T Q U N I T S E T ( A P P E N D U N I T S E T NEWU)) 
>Z1 ( S E T Q N I S ( A P P E N D 1 N I S C O U N T E R ) ) 
# 



X S E T Q COUNTER ( A D D 1 C O U N T E R ) ) J U * 
> ( C O N D ( ( G R E A T E R P COUNTER ( L E N G T H U N I T S E T ) ) ( G O Z 2 ) ) (T (GO Z D ) ) 
>Z2 ( S E T Q K ( L E N G T H U N I T S E T ) ) 
>L2 ( C O N D ( ( N U L L NEWU) (GO P A S T ) ) ) 
X C O N D U N U L L (NEWUCHK CTRL N I S ) ) ( G O O N ) ) ) 
>PAST ( S E T Q CP 1 ) 
>CF (COND ( ( G R E A T E R P CP N C X G O O U T ) ) ) 
X S E T Q C L A U S E ( F E T C H CP S L C S E T ) ) 
X S E T Q CP ( A D D 1 C P ) ) 
X S E T Q COUNT ( A D D 1 L ) ) 
> L 0 0 ( S E T Q U L I S T 1 N L I S T ) 
X S E T Q C L A U S E 1 C L A U S E ) 
> L 1 0 0 ( C O N D ( ( E Q ( C A A R U L I S T 1 M C A A R C L A U S E D X G O L M ) ) ) 
> ( C O N D ( ( N O T ( E Q (CADAR UL I S T 1 ) (CADAR C L A U S E D ) ) (GO Lkk))) 
X S E T Q U L I S T 1 (CDR U L I S T D ) 
X S E T Q C L A U S E 1 (CDR C L A U S E D ) 
X C O N D ( ( N U L L U L I S T D ( G O L 2 2 ) ) ) 
X G O L l O O ) 
>lkk ( S E T Q COUNT ( S U B 1 C O U N T ) ) 
X S E T Q C L A U S E ( A P P E N D (CDR C L A U S E X L I S T (CAR C L A U S E ) ) ) ) 
> ( C O N D ( ( E Q U A L COUNT 0 ) ( G O C F ) ) ) 
X G O LOO) 
>L22 ( S E T Q CTEMP C L A U S E X S E T Q UTEMP N L I S S ) 
> L 7 7 ( S E T Q S ( S I G M A (CDDAR C T E M P ) ( C D D A R U T E M P ) ) ) 
X C O N D ( S (GO L 3 3 ) ) ( T (GO Lkh))) 
>L33 (COND ( ( E Q U A L S T ) ( G O L 5 5 ) ) ) 
X S E T Q CTEMP ( S U B S S C T E M P ) ) 
> L 5 5 ( C O N D ( ( E Q U A L (CDR U T E M P ) N I L X G O L 6 6 ) ) ) 
X S E T Q CTEMP (CDR C T E M P ) ) ( S E T Q UTEMP (CDR U T E M P ) ) 
X G O L 7 7 ) 
>L66 ( P R I N T (QUOTE $ $ ' C L A U S E U S E D ' ) ) ( P R I N T C L A U S E ) 
X P R I N T (QUOTE $ $ ' U N I T S U S E D ' ) ) ( P R I N T N L I S T ) 
> ( P R I N T ( Q U O T E $ $ ' R E S U L T A N T U N I T C L A U S E 1 ) ) ( P R I N T (CADR C T E M P ) ) 
X S E T Q ANS ( A P P E N D 1 ANS (STAND (CADR C T E M P ) ) ) ) ( G O lkk) 
> O U T ( C O N D ( ( N U L L A N S ) ( G O O N ) ) ) 
X S E T Q V2 ( A P P E N D U N I T S E T R E S U L T S ) ) 
X S E T Q V I (CAR A N S ) ) 
X C O N D U F D C H K (CDDR V I ) F D ) ( G O B Y ) ) ) 
X C O N D U N U L L E S ) ( G O L 5 0 0 ) ) ) 
X C O N D ( ( N O T ( E Q (CADR V l ) ( Q U O T E E ) ) ) ( G O L 5 0 0 ) ) ) 
> ( C O N D ( ( E Q (CAR V l ) ( Q U O T E - ) ) ( G O E D ) ) 
X C O N D ( ( S I G M A ( L I S T ( C A D D R V 1 ) ) ( C D D D R V l ) ) ( G O B Y ) ) ) 
X G O L 5 0 0 ) 
>E1 ( C O N D ( ( S I G M A ( L I S T ( C A D D R V I ) ) ( C D D D R V I ) ) 
X R E T U R N ( A P P E N D 1 ( L I S T T ( L I S T (QUOTE + H Q U O T E E X Q U O T E X ) 
X Q U O T E X ) ) ) V 1 > ) > ) 
> L 5 0 0 ( C O N D ( ( N O T ( E Q ( C A D R V 1 ) ( C A D A R V 2 ) ) ) ( G O L 5 0 D ) 
> ( ( E Q ( C A R V I ) ( C A A R V 2 ) ) ( G O L 5 0 2 ) ) ) 
> ( C O N D ( ( S I G M A (CDDR V 1 ) ( C D D A R V 2 ) ) 
X R E T U R N ( A P P E N D 1 ( L I S T T (CAR V 2 ) ) V I ) ) ) ) 
X G O L 5 0 1 ) 
>L502 ( S E T Q Y ( S I G M A (CDDAR V 2 X C D D R V D ) ) 
X C O N D ( Y (GO L 6 0 D X T (GO L 5 0 1 ) ) ) 
> L 6 0 1 ( C O N D ( ( E Q U A L Y T ) (GO B Z ) ) ) 
# 



> L 6 0 1 ( C O N D ( ( E Q U A L Y T ) (GO B Y ) ) ) 
> L 5 0 6 ( C O N D ( ( N O T ( A T V A R O F (CADAR Y ) ( C D D A R U 2 ) ) ) ( G 0 L 5 0 1 ) ) ) 
X C O N D U N U L L (CDR Y ) ) (GO B Y ) ) ) 
X S E T Q Y (CDR Y ) ) ( G O L 5 0 6 ) 
> L 5 0 1 ( S E T Q V2 (CDR V 2 ) ) 
X C 0 N D ( V 2 (GO L 5 0 0 ) ) ) 
> X 1 ( S E T Q R E S U L T S ( A P P E N D 1 R E S U L T S (CAR A N S ) ) ) 
>BY ( S E T Q ANS (CDR A N S ) ) (GO OUT) 
>0N ( S E T Q J 1 ) 
>LU ( S E T Q E L E (ADD1 ( F E T C H J C T R L ) ) ) 
X C O N D ( ( G R E A T E R P E L E K ) ( G O L 3 ) ) ) 
X S E T Q X ( S T A N D ( F E T C H E L E U N I T S E T ) ) ) 
X S D T Q N L I S T ( R E P L A C E J X N L I S T ) ) 
X S E T Q CTRL ( R E P L A C E J E L E C T R L ) ) 
X C O N D U E Q U A L J 1 ) (GO L 2 ) ) ) 
X S E T Q COUNTER ( S U B 1 J ) ) 
>L5 ( S E T Q N L I S T ( R E P L A C E COUNTER (STAND F I R S T ) N L I S T ) ) 
X S E T Q C T R L ( R E P L A C E COUNTER (QUOTE 1 ) C T R L ) ) 
X S E T Q COUNTER ( S U B 1 C O U N T E R ) ) 
X C O N D ( ( G R E A T E R P COUNTER 0 ) ( G O L 5 ) ) ) 
X G O L 2 ) 
>L3 ( S E T Q J (ADD1 J ) ) 
X C O N D ( ( L E S S P J L ) ( G O Ik)) 
X ( E Q U A L J L ) ( G 0 Lk))) 
X R E T U R N R E S U L T S ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( U P R O O F ( L A M B D A ( C L A U S E S U N I T S E T DEPTH FD E S ) 
X P R O G ( I S L C S E T A NEW NU V A l L E V E L EQS F S " 
X S E T Q L E V E L 1 ) 
X C O N D ( E S ( S E T Q EQS T ) ) ) 
X S E T Q FS T ) 
>SETCC ( S E T Q I 1 ) 
>GETC ( S E T Q S L C S E T ( F E T C H I C L A U S E S ) ) 
X S E T Q I (ADD1 I ) ) 
X C O N D C S L C S E T (GO O N ) ) ) 
X S E T Q DEPTH ( S U B 1 D E P T H ) ) 
X C O N D ( ( E Q U A L DEPTH 0 ) (RETURN 0 ) ) ) 
X S E T Q L E V E L (ADD1 L E V E L ) ) 
X C O N D U N U L L E S X G O A A ) ) ) 
X S E T Q EQS T ) 
>AA ( S E T Q U N I T S E T (NCONC U N I T S E T N U ) ) 
> S L 1 ( S E T Q I ( L E N G T H NEW)) 
X C O N D U L E S S P I 2 ) ( G O S L 2 ) ) ) 
> S L U ( C O N D ( ( S U B S U M E D (CAR N E W H C D R N E W ) ) ( G O S L3 ) ) ) 
X S E T Q NEW ( A P P E N D (CDR N E W H L I S T (CAR N E W ) ) ) ) 
X S E T Q I ( S U B 1 I ) ) 
X C O N D U E Q U A L I 0 ) ( G O S L 2 ) ) ) 
X G O SLk) 
>SL3 ( S E T Q NEW (CDR N E W ) ) ( G O S L 1 ) 
>SL2 ( S E T Q NU NEW) 
X C O N D ( ( N U L L NU) ( R E T U R N 1 ) ) ) 
X S E T Q NEW N I L ) (GO S E T C C ) 
> O N ( P R I N T (QUOTE $ $ ' L E V E L OF C L A U S E U S E ' ) ) 
X P R I NT L E V E L ) 
X P R L T (QUOTE C L A U S E S ) ) 
X P R I N T S L C S E T ) 
> ( P R I N T ( Q U O T E $ $ ' N E W U N I T S FROM P R E V I O U S L E V E L 1 ) ) 
X P R I N T NU) 
X S E T Q A ( A L O N Z O l S L C S E T U N I T S E T NU FD ES EQS F S ) ) 
X S E T Q EQS NI L ) ( S E T Q FS N I L ) 
> ( C O N D ( A (GO T E S T ) ) ( T ( G O G E T C ) ) ) 
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>(COND(A (GO T E S T ) ) ( T ( G O G E T C ) ) ) 
> T E S T ( C O N D ( ( N U L L ( E Q U A L (CAR A ) T ) ) ( G O B l ) ) ) 
X P R I N T (QUOTE $ $ ' P R O O F FOUND FOR T H I S T H E O R M 1 ) ) 
X P R I N T (CADR A ) ) 
X P R I N T (QUOTE $$ ' CONTRAD I CTS 1 ) ) 
X P R I N T (CADDR A ) ) (RETURN T ) 
>B1 ( S E T Q A l A ) 
>B2 ( S E T Q V (CONTRA (CAR A ) NEW)) 
X C O N D ( V (GO E N D 1 ) ) ) 
X S E T Q A (CDR A ) ) 
X C O N D ( A (GO B 2 ) ) ) 
X S E T Q NEW (NCONC NEW A D ) 
X G O GETC) 
>END1 ( P R I N T T ) ( P R I N T V ) ( P R I N T (CAR A ) ) 
X R E T U R N T ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( T A ( L A M B D A ( A R G ) 
X C O N D U N U L L A R G ) 0 ) ( ( A T O M A R G ) 0 ) 
X T ( M A X ( A D D 1 ( T A (CAR A R G ) ) ) ( T A (CDR A R G ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F L E ( ( ( F D C H K ( L A M B D A (ARG F D ) 
X P R O G ( A ) 
> L 1 ( S E T Q A ( C A R A R G ) ) 
X C O N D ( ( G R E A T E R P ( T A A ) F D ) ( R E T U R N T ) ) ) 
X S E T Q ARG (CDR A R G ) ) 
X C O N D U N U L L A R G ) (RETURN N I L ) ) ( T (GO L l ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( S U B S U M E D ( L A M B D A ( U U L ) 
X P R O G ( S I G N SYMB S V A R L I S T 1 V A R L I S T 2 ) 
X S E T Q S I G N (CAR U ) ) ( S E T Q SYMB (CADR U ) ) 
X S E T Q V A R L I S T 1 (CDDR U ) ) 
>CHECK ( C O N D ( ( A N D ( E Q S I G N (CAAR U L ) ) ( E Q SYMB (CADAR U L ) ) ) 
X S E T Q V A R L I S T 2 (CDDAR U L ) ) ) 
X T (GO NEXTUN I T ) ) ) 
X S E T Q S ( S I G M A V A R L I S T 2 V A R L I S T D ) 
> ( C O N D ( ( N U L L S X G O N E X T U N I T ) ) 
> ( ( E Q U A L S T ) ( R E T U R N ( C A R U L ) ) ) ) 
>TEST ( C O N D U N O T ( A T V A R O F (CADAR S ) V A R L I S S 2 ) ) 
> (GO N E X T U N I T ) ) ) 
X S E T Q S (CDR S ) ) 
>(COND( S (GO T E S T ) ) ( T (RETURN (CAR U L ) ) ) ) 
>NEXTUNIT ( S E T Q UL (CDR U L ) ) 
X C O N D ( U L (GO C H E C K ) ) ( T (RETURN N I L ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
# 



2. The Unification Routines 

>DEFINE ( ( ( V A R S E T (LAMBDA ( C ) 
X C O N D 
> ( ( A T O M C ) 
X C O N D 
X ( E Q (CAR ( E X P L O D E O ) (QUOTE X ) ) ( L I S T O ) 
X T N I L ) ) ) 
X T ( A T U N I O N ( V A R S E T (CAR O ) ( V A R S E T (CDR C ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( A T U N I ON (LAMBDA ( A B ) 
X C O N D 
X C N U L L A ) B ) 
X ( A T M E M B D R ( C A R A ) B ) ( A T U N I O N (CDR A ) B ) ) 
X T (CONS (CAR A ) ( U N I O N (CDR A ) B ) ) ) ) ) ) ) ) 
> D E F L E ( ( ( A T M E M B D R (LAMBDA ( A B) 
X C O N D 
X ( N U L L B) N I L ) 
> ( ( E Q A (CAR B ) ) T ) 
X T (ATMEMBER A (CDR B 1 1 ) ) ) ) ) ) ) 
> D E F I N E ( ( ( S T A N D (LAMBDA ( C ) 
X P R O G ( A ) 
X S E T Q A ( V A R S E T O ) 
>TAG (COND 
X ( N U L L A) (RETURN C ) ) ) 
X S E T Q C (ATOMSUBST (GENSYM1 (QUOTE X ) ) (CAR A ) O ) 
X S E T Q A (CDR A ) ) 
X G O T A G ) ) ) ) ) ) 
>DEFIL E ( ( ( S I G M A (LAMBDA ( C D) 
X P R O G ( L A B ) 
X S E T Q L N I L ) 
>L1 ( S E T Q A (CAR C>) 
X S E T Q B (CAR D ) ) 
X C O N D 
> ( ( A T O M A ) (GO U O ) 
X ( A T O M B) (GO L 5 ) ) 
X C N O T ( E Q (CAR A ) (CAR B ) ) ) (RETURN N I L ) ) ) 
X S E T Q C (NCONC (CDR A ) (CDR C ) ) ) 
X S E T Q D (NCONC (CDR B ) (CDR D ) ) ) 
X G O L l ) 
>lh (COND 
X ( E Q (CAR ( E X P L O D E A ) ) (QUOTE X ) ) (GO L 6 ) ) 
> ( ( N O T (ATOM B ) ) (RETURN N I L ) ) 
> ( ( E Q (CAR ( E X P L O D E B ) ) (QUOTE X ) ) (GO L 3 ) ) 
> ( ( N O T ( E Q A B ) ) (RETURN N I L ) ) ) 
>L7 ( S E T Q C (CDR O ) 
X S E T Q D (CDR D ) ) 
X G O L 2 ) 
>L5 (COND 
>((NOT ( E Q (CAR ( E X P L O D E B ) ) (QUOTE X ) ) ) (RETURN N I L ) ) 
X ( A T V A R O F B A ) (RETURN N I L ) ) ) 
X G O L 3 ) 
>L6 (COND ( ( E Q A B " (GO L 7 ) ) 
# 



34. 

> ( ( A T V A R O F A B " (RETURN N I L ) ) ) 
X S E T Q L ( A P P E N D 1 L ( L I S T B A ) ) ) 
X S E T Q C (ATOMSUBST B A (CDR C ) ) ) 
X S E T Q D (ATOMSUBST B A (CDR D ) ) ) 
>L2 (COND 
>((NOT ( N U L L O ) (GO L l ) ) 
> ( ( N U L L L ) ( R E T U R N T ) ) ) 
>(RETURN L ) 
>L3 ( S E T Q L ( A P P E N D 1 L ( L I S T A B ) ) ) 
X S D T Q C (ATOMSUBST A B (CDR C ) ) ) 
X S E T Q D (ATOMSUBSS A B (CDR D ) ) ) 
X G O L 2 ) ) ) ) ) ) 
> D E F I N E ( ( ( U N I O N (LAMBDA (X Y ) 
X C O N D ( ( N U L L X ) Y ) ( ( M E M B E R (CAR X ) Y ) ( U N I O N (CDR X ) Y ) ) 
X T (CONS (CAR X ) ( U N I O N (CDR X ) Y ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( E F F A C E (LAMBDA (A X ) 
X C O N D 
X C N U L L X ) N I L ) 
X ( E Q U A L A (CAR X ) ) (CDR X ) ) 
X T (CONS (CAR X ) ( E F F A C E A (CDR X ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( S U B S T (LAMBDA (X Y Z ) 
X C O N D 
> ( ( E Q U A L Y Z ) X ) 
X ( A T O M Z ) Z ) 
X T (CONS ( S U B S T X Y (CAR Z ) ) ( S U B S T X Y (CDR Z ) ) ) ) ) ) ) ) ) 
>DEFINE ( ( ( S T R I N G S U B (LAMBDA ( S T V Z ) 
X C O N D 
X C A T O M Z ) Z ) 
X ( E Q V (CAR Z ) ) ( A P P E N D ST ( S T R I N G S U B ST V (CDR Z ) ) ) ) 
X T (CONS ( S T R I N G S U B ST V (CAR Z ) ) ( S T R I N G S U B ST V (CDR Z ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( A T O M S U B S T (LAMBDA (X A Z ) 
X C O N D 
X ( E Q A Z ) X ) 
X C A T O M Z ) Z ) 
X T (CONS (ATOMSUBST X A (CAR Z ) ) 
X A T O M S U B S T X A (CDR Z ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( A T V A R O F (LAMBDA ( A Y ) 
X C O N D 
X ( A T O M Y ) (COND 
X ( E Q A Y ) T ) 
X T N I L ) ) ) 
X T (OR ( A T V A R O F A (CAR Y ) ) ( A T V A R O F A (CDR Y ) ) ) ) ) ) ) ) ) 
# 



3. The function EQGEN and supporting routines. 
35. 

> D E F I N E ( ( ( E Q G E N ( L A M B D A ( N U OU) 
X P R O G (NEW OLD P I P2 P3 NEU OEU RL F L A G 1 ) 
X S E T Q NEU ( S T R A I N N U ) ) ( S E T Q OEU ( S S R A I N O U ) ) 
X C O N D U N U L L NEU ) (RETURN N I L ) ) 
> ( ( N U L L O E U K G O N O N L Y ) ) ) 
X S E T Q NEW NEU) ( S E T Q OLD OEU) 
>SU ( S E T Q P I (CAR N E W ) ) ( S E T Q P2 (CAR O L D ) ) 
>FSP ( C O N D ( ( A N D ( E Q (CAR P I ) P L U S S ) ( E Q (CAR P 2 ) P L U S S ) ) 
> (GO P P ) ) 
> ( ( A N D ( E Q ( C A R P I ) D A S H ) ( E Q (CAR P 2 ) P L U S S ) ) 
> (GO N P ) ) 
> ( ( A N D ( E Q ( C A R P I ) P L U S S ) ( E Q (CAR P 2 ) D A S H ) ) 
> (GO P N ) ) 
> ( T (GO C U ) ) ) 
>PP ( S E T Q P3 (TRANS 1 P I P 2 ) ) (GO S A ) 
>NP ( S E T Q P3 (TRANS 2 P I P 2 ) ) (GO S A ) 
>PN ( S E T Q P3 ( T R A N S 3 P I P 2 ) ) (GO S A ) 
>SA ( C O N D ( P 3 ( S E T Q RL ( A P P E N D 1 RL (STAND P 3 ) ) ) ) ) 
X C 0 N D ( F L A G 1 ( G 0 C U ) ) ) 
X S E T Q F L A G 1 T ) ( S E T Q P3 P 2 X S E T Q P2 P 1 ) ( S E T Q P I P 3 M G O F S P ) 
>CU ( S E T Q F L A G 1 N I L ) ( S E T Q OLD (CDR O L D ) ) 
> ( C O N D ( ( N U L L O L D X G O C N U ) ) ( T (GO S U ) ) ) 
>CNU ( S E T Q NEW (CDR NEW)) 
> ( C O N D ( ( N U L L NEW)(GO N O N L Y ) ) ) 
> ( S E T Q OLD O E U K G O S U ) 
>NONLY ( S E T Q RL (NCONC RL ( R E F L E X N E U ) ) ) 
> ( S E T Q RL (NCONC RL ( T R A N S N N E U ) ) ) 
X R E T U R N R L ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( T R A N S ( L A M B D A (N P I P 2 ) 
X P R O G ( T l T 2 T 3 Tk S R ) 
X S E T Q T l (CADDR P 1 ) ) ( S E T Q T 2 ( C A R (CDDDR P I ) ) ) 
X S E T Q T3 (CADDR P 2 ) ) ( S E T Q Tl* ( C A R (CDDDR P 2 ) ) ) 
X C O N D U E Q U A L N l ) ( G O P P ) ) 
> ( ( E Q U A L N 2 X G O N P ) ) 
> ( T (GO P N ) ) ) 
> P P ( S E T Q S ( S I G M A ( L I S T T2 (QUOTE X 3 ) ) 
> ( L I S T T3 Tk))) 
X C O N D U N U L L S ) ( R E T U R N N I L ) ) 
> ( ( E Q U A L S T ) ( R E T U R N 
> ( L I S T P L U S S (QUOTE E ) T l 7k))) 
> ( T (RETURN ( A P P E N D ( L I S T (QUOTE + X Q U O T E E ) ) 
> ( S U B S S ( L I S T T l (QUOTE X 3 ) ) ) ) ) ) ) 
>PN ( S E T Q S ( S I G M A ( L I S T (QUOTE X I ) T 2 X L I S T T3 Tk))) 
X C O N D ( ( N U L L S ) ( R E T U R N N I L ) ) 
> ( ( E Q U A L S T ) ( R E T U R N ( L I S T P L U S S (QUOTE E) T3 T l ) ) ) 
> ( T (RETURN ( A P P E N D ( L I S S DASH (QUOTE E ) ) 
> ( S U B S S ( L I S T (QUOTE X I ) T l ) ) ) ) ) ) 
>NP ( S E T Q S ( S I G M A ( L I S T T l (QUOTE X 2 ) ) 
> ( L I S T T3 Tk))) 
X C O N D U N U L L S ) ( R E T U R N N I L ) ) 
# 



36. 

> ( ( E Q U A L S T ) ( R E T U R N ( L I S T DASH (QUOTE E) Tk T 2 ) ) ) 
> ( T (RETURN ( A P P E N D ( L I S T DASH (QUOTE E ) ) 
> ( S U B S S ( L I S T (QUOTE X 2 ) T 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( R E F L E X (LAMBDA ( N U ) 
X P R O G ( L I A U) 
X S E T Q L ( L E N G T H N U ) ) ( S E T Q I 1 ) 
>L1 ( S E T Q U (CAR N U ) ) 
X S E T Q A ( A P P E N D 1 A (STAND ( L I S T (CAR U M Q U O T E E ) 
X C A R (CDDDR U ) ) ( C A D D R U ) ) ) ) ) 
X S E T Q I (ADD1 I ) ) 
> ( C O N D ( ( G R E A T E R P I L ) ( R E T U R N A ) ) ) 
X S E T Q NU (CDR N U ) ) ( G O L l ) ) ) ) ) ) ) ) ) ) 
> D E F I N E ( ( ( T R A N S N (LAMBDA ( N U ) 
X P R O G ( A PCDR P l P2 P3 I R F L A G ) . 
>L1 ( S E T Q P l (CAR N U ) ) ( S E T Q PCDR (CDR N U ) ) 
X C O N D U N U L L PCDR) (RETURN A ) ) ) 
>L2 ( S E T Q P2 ( C A R P C D R ) ) 
>LO (COND( (AND ( E Q (CAR P l ) P L U S S X E Q (CAR P 2 ) P L U S S ) ) 
X S E T Q I 1 ) ) 
> ( ( A N D ( E Q (CAR P l ) D A S H ) ( E Q (CAR P 2 ) P L U S S ) ) 
X S E T Q I 2 ) ) 
> ( ( A N D ( E Q (CAR P l ) P L U S S M ( E Q (CAR P 2 ) DASH ) ) 
X S E T Q I 3 ) ) 
X T (GO L 3 ) ) ) 
X S E T Q R (TRANS I P l P 2 ) ) 
>(COND(R ( S E T Q A ( A P P E N D 1 A (STAND R ) ) ) ) ) 
>L3 ( C O N D ( F L A G (GO Lk))) 
X S E T Q P3 P 2 ) ( S E T Q P2 P 1 ) ( S E T Q P l P 3 ) ( S E T Q F L A G T ) ( G O LO) 
> L U ( S E T Q FLAG N I L ) 
X S E T Q P l P 2 ) 
X S E T Q PCDR (CDR P C D R ) ) 
>(COND(PCDR (GO L 2 ) ) ) 
X S E T Q NU (CDR N U ) ) (GO L l ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
> D E F I N E C ( ( S T R A I N (LAMBDA ( N U ) 
X P R O G ( U L X ) 
>A ( C O N D ( ( N U L L N U ) ( R E T U R N U L ) ) ) 
X S E T Q X (CAR N U ) ) 
X C O N D U E Q (CADR X H Q U O T E E ) ) ( S E T Q UL ( A P P E N D 1 UL X ) ) ) ) 
X S E T Q NU (CDR N U ) ) 
X G O A ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 
# 



Appendix 6 

A run of example 1 from Chang 

$R LISP:LISP SCARDS=*SOURCE* 
EXECUTION BEGINS 

ARGUMENTS FOR EVALQUOTE ... 
OPEN 
(UTP SYSFILE INPUT) 

TIME 10MS, VALUE IS ... 
UTP 

ARGUMENTS FOR EVALQUOTE ... 
RESTORE 
(UTP) 

COLLECTED 18140 CELLS AND STACK HAS 5994 UNITS LEFT. 

TIME 3259MS, VALUE IS ... 
NIL 

ARGUMENTS FOR EVALQUOTE ... 
UPROOF 
(((((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6)(+ P X4 X3 X6)))) ((+ P (G X7 X8) X7 X8) 
(+ P X9 (H X9 X10) X10) (-P (K Xll) X l l (K X l l ) ) ) " l 2 NIL) 
LEVEL OF CLAUSE USE 
1 
CLAUSES 
(((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6) '(+ P X4 X3 X6))) 
NEW UNITS FROM PREVIOUS LEVEL 
NIL 
CLAUSE USED 
((+ P X4 X3 X6) (- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6)) 



UNITS USED 
((- P (K X0000009) X0000009 (K X0000009)) (+ P (G X0000003 X0000004) X0000003 X0000004) 
(+ P (G X0000005 X0000006) X0000005 X0000006)) 
RESULTANT UNIT CLAUSE 
(- P (G (G X0000005 X0000006) (K X0000005)) X0000006 (K X0000005)) 
CLAUSE USED 
((- P XI X2 X4) (- P X2 X3 X5) (- P XI X5 X6) (+ P X4 X3 X6)) 
UNITS 
((+ P (G X0000014 X0000015) X0000014 X0000015) (+ P X0000012 (H X0000012 X0000013) X0000013) 
(+ P (G X0000005 X0000006) X0000005 X0000006)) 
RESULTANT UNIT CLAUSE 
( + P X0000006 (H X0000005 X0000005) X0000006) 
PROOF FOUND FOR THIS THEOREM 
(•r P (K Xll) X l l (K.X11)) 
CONTRADICTS 
(+ P X0000017 (H X0000016 XOO00O16) X0000017) 

TIME 524MS, VALUE IS ... 
T 


