
A N E S T E L L E . Z P A R S E R F O R A P R O T O C O L T E S T G E N E R A T I O N

E N V I R O N M E N T T E S T G E N +

B y

R u i Zhang

B . Eng. (Computer Science) X i ' a n Jiaotong University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E D E G R E E OF

M A S T E R OF SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

August 1996

© R u i Zhang, 1996

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of Br i t i sh Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of Br i t i sh Columbia

2366 M a i n M a l l

Vancouver, Canada

V 6 T 1Z4

Date:

Abstract

Protocol testing is an indispensable constituent in protocol development. The test

suite generation and selection processes are usually tedious and time-consuming. It

is difficult to manually generate and select test suites without errors. Therefore, an

automatic protocol test suite generation and selection environment is required. For this

purpose, the protocol test suite generation and selection environment, T E S T G E N + , was

developed. T E S T G E N + includes the T E S T G E N , T E S T S E L and T E S T V A L tools for

test suite generation, selection, and validation, respectively.

In this thesis, a new front end of the T E S T G E N tool, an Estelle.Z parser which is

for an Estelle-like protocol specification language, is designed and implemented. A real

world protocol, home agent - a major component of the Mobi le IP protocol, is specified

in Estelle.Z. The specification is fed into the T E S T G E N tool to yield a test suite, which

is then fed into the T E S T S E L tool to get a subset of an efficient test suite with user

satisfactory coverage and cost. In order to evaluate the correctness of the parser, the

same protocol is specified in E s t e l l e . Y + A S N . l and fed through a different parser into

T E S T G E N and T E S T S E L generating a test suite. Comparing the two test suites, results

from the experiment indicate: a) the Estelle.Z parser works with the T E S T G E N tool well;

b) T E S T G E N and T E S T S E L are competent tools to generate and select test suites for

protocol specifications; c) furthermore, there is room to improve the T E S T G E N and the

T E S T S E L tools.

11

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgment ix

1 Introduction 1

1.1 Thesis Motivat ion and Contributions * 1

1.2 Thesis Outline " 2

2 T E S T G E N + Environment 4

2.1 Test Suite Generation - T E S T G E N 6

2.2 Test Suite Selection - T E S T S E L 8

2.3 Test Suite Validation - T E S T V A L 11

3 Estelle.Z Parser for T E S T G E N 13

3.1 Introduction 13

3.2 Estelle.Z Language 14

3.3 Implementation of Estelle.Z Parser 18

3.3.1 Lexical Analysis of Estelle.Z 18

3.3.2 Syntax Analysis of Estelle.Z 18

in

3.3.3 Semantic Analysis 22

3.3.4 Structure of the P D S 23

3.3.5 Testing for the parser 28

3.4 Improvement on the interface of T E S T G E N 29

3.5 Summary 32

4 Specification of a Subset of the Mobile IP Protocol 33

4.1 Basics of the Protocol 34

4.1.1 Protocol Overview 35

4.1.2 Home Agent 36

4.1.3 Foreign Agent 37

4.1.4 Mobile Host 38

4.1.5 Example 39

4.2 Home Agent 42

4.3 The formal Specifications of the Home Agent 45

5 Apply ing Mobile IP to T E S T G E N 51

5.1 The Test Suite Generation • 51

5.1.1 The Algor i thm of T E S T G E N ' 52

5.1.2 Constraints of T E S T G E N 54

5.1.3 Comments on T E S T G E N 57

5.2 The Coverage Of The Test Suite 60

5.2.1 The algorithm of the test selection tool 60

5.2.2 The results of the T E S T S E L 62

5.3 Results from the Estelle.Z parser 66

iv

5.4 Summary 67

6 Conclusions and Future Work 70

6.1 Conclusions 70

6.2 Future Work 71

Bibliography 74

Appendices 75

A A S N . l specification of the simplified Home Agent in Mobile IP 75

B Estel le .Y specification of the simplified Home Agent in Mobile IP 80

C Estelle.Z specification of the simplified Home Agent in Mobile IP 96

D A S N . l specification of message parameters for the complete Home

Agent 115

E Selected Control Sequences and Test Cases 125

F 4 Typical Control Sequences and Typical test cases in T T C N . M P 137

List of Tables

4.1 Fields in Registration Request 42

4.2 Fields in Registration Reply 43

4.3 Fields in Advertisement 44

5.1 Results of the T E S T S E L for Specification in E s t e l l e . Y + A S N . l 63

5.2 Results of the T E S T S E L for Specification in Estelle.Z 69

vi

List of Figures

2.1 T E S T G E N + E n v i r o n m e n t . 5

2.2 T E S T G E N Structure 7

2.3 T E S T S E L Structure ' 9

2.4 T E S T V A L Structure 11

3.1 Example of the Declaration Component , 15

3.2 Example of the Initialization Component 17

3.3 Example of the Transition Component 17

3.4 Estelle.Z Parser Generation 19

3.5 Syntax Tree of Assignment Statement 20

3.6 Structure of Constant Declaration 20

3.7 Syntax Tree of Channel Declaration (P D U) 21

3.8 Syntax Tree of State Transition 23

3.9 Environment of the Parser 24

3.10 Protocol Data Structure 25

3.11 Data Structure of State in the P D S 26

3.12 Architecture of T T C N Tree From T E S T G E N " 31

4.1 Module of Mobi le IP 34

4.2 Example of mobile IP Operation 40

4.3 E F S M of the Home Agent 48

v i i

5.1 Test Case Space 61

5.2 Two Parsers 68

v m

Acknowledgment

First of al l , I would like to express my sincerest appreciation to my supervisor, Dr . Son

Vuong, for his constant encouragement and invaluable guidance throughout my research

work, which made it possible for me to complete this thesis on time. His enthusiasm has

made the past years an enjoyable and unforgettable period.

I would like to thank Dr . N o r m Hutchinson for his helpful comments and careful

reading of the final draft despite his very busy schedule.

I wish to thank Dr . ir. Rol f J . Velthuys and M r . B i n h Do for their helpful suggestions

and productive discussions, and Ms . Andrea Warrington who read the thesis draft and

made very good suggestions to improve the thesis.

I wish to acknowledge the Computer Science department at the University of Br i t i sh

Columbia for providing an environment suitable for my research and for providing finan­

cial support. The financial support in the form of R A from the joint grant of Motorola

and N S E R C / I O R is also gratefully acknowledged.

I wish to thank my relatives and friends who gave me constant encouragement and

moral support during my studies in Canada.

I wish to express my gratitude and appreciation to my husband Yidong and my

daughter Jenny for their unceasing support and understanding. Without their patience

and support, this thesis could not have been completed.

I X

Chapter 1

Introduction

1.1 Thesis Motivation and Contributions

In general, a communication protocol is quite complex and takes a considerable effort

to move from a standard protocol specification to an implementation on a real system.

The protocol standard may lead to several different implementations. The testing of

each protocol implementation for conformance to the specification of the protocol stan­

dard becomes crit ical. The complexity of protocols necessitates the use of automated

tools to test the protocol implementation. For this purpose, the T E S T G E N - | - environ­

ment was developed to generate test suites based on the protocol specifications in the

E s t e l l e . Y + A S N . l language. In T E S T G E N + , there are three major modules: T E S T ­

G E N , T E S T S E L and T E S T V A L for test suite generation, test suite selection and test

suite verification respectively. T E S T G E N + accepts E s t e l l e . Y + A S N . l specifications and

yields test suites.

The Estelle language is one of the F D T s (Formal Description Techniques) based on an

extended state transition model. A subset of Estelle defined as Estelle.Z is employed in

T E S T G E N + , because the complete Estelle language is too complex and the T E S T G E N

kernel does not support i t .

In this thesis, the research objectives are:

• To design and develop the front end of the testing environment T E S T G E N + for

1

Chapter 1. Introduction 2

Estelle.Z.

• To demonstrate the usefulness of the tools, T E S T G E N and T E S T S E L , by applying

it to a real world protocol and generating a test suite for the protocol.

• To prove the parser works correctly by applying the real world protocol specification

to it.

The front end of the testing environment is the essential constituent of the whole test

environment. It analyzes the protocol specification, which is the main information given

by the user. In addition, it provides the internal representation of the protocol in which

the external behaviors of a protocol are precisely and completely described. The internal

representation of protocol must be accessible to the T E S T G E N engine, which is the key

process of the whole testing generation environment.

The Mobile IP protocol is a well-known real world protocol. In this thesis, it is

employed to test the new parser and the T E S T G E N + tool. The home agent, a major

component of Mobi le IP, is specified in both Estelle.Z and E s t e l l e . Y + A S N . l languages.

These specifications are fed into the T E S T G E N + tool to yield two sets of test suites.

Results from the experiment indicate that the parser works wi th the T E S T G E N engine.

They also indicate that while the T E S T G E N + environment is an efficient tool, it can

sti l l be improved further.

1.2 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2, an overview of the T E S T ­

G E N + environment is introduced. A n introduction to each main module in T E S T G E N +

and the architecture of T E S T G E N + are presented.

Chapter 1. Introduction 3

In chapter 3, the design and implementation of the front end of T E S T G E N are dis­

cussed. The definition and function of the Estelle.Z language are introduced, the object

data structure of the internal representation of protocol is described, and then the im­

plementation of the Estelle.Z parser is presented.

In chapter 4, a review of a real world protocol, home agent - a component of Mobi le

IP, is given first. The protocol is specified in Estel le .Y for the control component and

specified in A S N . l for the data component. Also the protocol specification in Estelle.Z

is presented.

In chapter 5, The applications of T E S T G E N + to both the specifications given in

chapter 4 are discussed, and the results are analyzed. A t the end, the strong points and

weak points of T E S T G E N and T E S T S E L are discussed.

In chapter 6, Some conclusions are drawn and future improvement work on the parser,

T E S T G E N and T E S T S E L is discussed.

The appendices contain listings of files used in the thesis. The source codes for the

specification in A S N . l and Estel le .Y are shown in Appendix A and B respectively. The

source code for the specification in Estelle.Z is shown in Appendix C . The complete home

agent message parameters specification in A S N . l is shown in Appendix D . The selected

control sequences and the subset of selected test cases are shown in Appendix E . The

test cases in T T C N (Tree and Tabular Combined Notation) form are shown in Appendix

Chapter 2

T E S T G E N + Environment

Introduction

Protocol testing is an essential phase in the protocol development process. To ensure

that each protocol implementation is able to inter operate wi th other implementations

correctly, conformance testing is applied to each implementation.

There are many well known test methods which have been applied to protocol confor­

mance testing with varying degrees of success, such as U - , D- , W-methods [SD88, Gon70,

Cho78]. Even though these methods have been improved and optimized [CVI89, VCI89] ,

they sti l l have a major shortcoming: they only address the control part of the protocols.

The T E S T G E N environment overcomes this weak point by combining control flow test­

ing and data flow testing in test suite generation. This has been applied to some practical

protocols successfully, such as the InRes, OSI class transport and L A P B protocols.

The protocol T E S T suite Generation, selection, and validation ENvironment for con­

formance testing (T E S T G E N +) was developed at the University of Br i t i sh Columbia

[Vuo93]. The overall functional structure of T E S T G E N + is described in Figure 2.1.

There are three major modules: T E S T G E N , T E S T S E L and T E S T V A L for test suite

generation, selection and validation respectively. TESTGEN accepts protocol specifica­

tions in a combination of Estel le .Y and A S N . l from the user. The specifications are

converted to an internal data structure , Protocol Data Structure (PDS) , by the parsers.

4

Chapter 2. TESTGEN+ Environment 5

USER

Estelle.Y + ASN. l
Protocol Specification

Parsers Constraints Editor

Protocol Data Structure

T E S T S E L

Selected Test Suite

T S G Constraints

Test Suite
c /

Subtour :
 {

T E S T G E N

internal files T E S T V A L

Validated Test Suite

Legend: User accessible file

Internal file

Dynamic module

I I

C)

Figure 2.1: T E S T G E N + Environment

Chapter 2. TESTGEN+ Environment 6

It also accepts a set of user-defined constraints (T S G constraints) through the constraints

editor. The T E S T G E N tool obtains the protocol knowledge and the T S G constraints

from the P D S , generates a test suite, and outputs the test suite in the subtour form.

The test suite can be fed into the TESTSEL tool to get a refined test suite which has

the user acceptable cost and satisfied fault coverage. The test suite can also be fed into

the TESTVAL tool to check the validation of the test suite with respect to the given

specifications.

2.1 Test Suite Generation - T E S T G E N

T E S T G E N is a major module in T E S T G E N + . The function of the T E S T G E N is to

generate test suites according to protocol specifications. This module accepts protocol

specifications in A S N . l (for data), protocol specifications in Estel le .Y (for control), and

constraints, which can easily be edited by the user. It also generates test suite in subtour,

and two internal files for T E S T V A L and T E S T S E L respectively. The overall structure

of T E S T G E N is depicted in Figure 2.2. W i t h i n the T E S T G E N module, there are five

modules: Estel le .Y parser, A S N . l parser, constraints editor, test suite generation engine

and output module. In addition, there is one internal data structure, the P D S which

contains all information obtained from both specifications. The modules' functions are

given as follows:

• Estel le .Y parser: This is a parser for the Estel le .Y language which is a modified

subset of Estelle language, and is used to describe the control part of protocol

specifications. The parser object is an internal data structure the P D S .

• A S N . l parser: This is a parser for the A S N . l language which is used to describe the

data part of protocol specifications. The parser object is an internal data structure

Chapter 2. TESTGEN+ Environment 7

which is part of the P D S .

• Constraints editor: The constraints editor module provides the user wi th an in­

teractive interface for definition of the T E S T G E N constraints. In T E S T G E N ,

constraints are a set of boolean predicates that are used for the generation of each

subtour. There are two types of constraints: (1) the max imum and the min imum

usage conditions for all states, transitions, ISPs (Input Service Pr imi t ive) , OSPs

(Output Service Pr imi t ive) , P D U s (Protocol Data Un i t) , constants, variables, and

Estelle.Y Specification ASN.l Specification

ASN.l Parser

Protocol Data Structure TSG Constraints Constraints Editor

Test Suite Generation Engine

Output module

Subtours internal files

Legend: User accessible file
Internal file

Functional module

I I
()

Figure 2.2: T E S T G E N Structure

Chapter 2. TESTGEN+ Environment 8

timers. (2) the parameter variations which include up to 10 values for each param­

eter of each ISP or P D U . The user can modify all of these constraints, save and

restore the values, and set the default values through the editor.

• Test suite generation engine: This module generates test suites based on the given

specifications and a set of constraints. The test suite is divided into test cases

which are subtours in T E S T G E N . The subtour identification algorithm performs an

exhaustive backtracking depth first search algorithm. It operates over the behavior

tree representation of the protocol. Each subtour starts and ends at the same state,

the ini t ia l state, and satisfies all the constraints conditions. These constraints l imi t

the length of each subtour. According to the protocol specification, only a finite

number of the transitions can be applied in each state. The parameter variation

constraints on the parameters of the ISP and P D U l imi t the number of different

instances of the ISP and P D U in the transition. Thus, the length and the number of

different subtours are l imited if the backtracking algorithm is to finish successfully.

Each subtour is recorded and saved into files through the output module.

• Output module: This module is to save the test cases from the test suite generation

engine into files. The test cases are in subtour form, and two internal files used by

the T E S T V A L and the T E S T S E L respectively.

2.2 Test Suite Selection - T E S T S E L

The function of T E S T S E L is to select test cases from the test suite output by T E S T G E N

according to the user's requirement, such as cost and coverage tolerance, i.e., the number

of test cases, and the distance between the test cases. This tool can accept test cases

generated by T E S T G E N or other tools in proper format which T E S T G E N can recognize,

Chapter 2. TESTGEN+ Environment

and produce a subset of the test cases which satisfies the user.

9

Test Suite

Filtering Module

Uniqued Test Suite

Parameters Value List

Selection Module

Selected Test Suite

Merge Module

Selected Test Suite

User

Figure 2.3: T E S T S E L Structure

The overall structure of the T E S T S E L is in Figure 2.3. W i t h i n the T E S T S E L mod­

ule, there are three functional modules: filtering module, selection module and merging

module. Their functions are as follows:

• Fi l ter ing module: This module strips off the data flow information from the test

cases, leaving the control flow information in the test cases as the output of filtering

module. Complete test cases are composed of both control and data components.

Test cases are filtered before being fed into the selection module because the selec­

tion module selects test cases based solely on the control component and not on

both components.

Chapter 2. TESTGEN+ Environment 10

• Selection module: This module selects test cases from the internal test cases which

are the output of the filtering module arid produces a subset of test "cases by using

the user defined constraints. These constraints are (1) the testing distance definition

parameters pk and r^, (2) the test selection constraints including the max imum cost,

the ini t ia l coverage tolerance e and min imum coverage tolerance e m 4 n which is the

test selection radius, (3) the radius scale factor for each pass. B y using a multi-pass

algorithm, this module selects test cases to maximize coverage subject to the cost

constraint. It has been proven that all Cauchy sequences converge in the metric

space and repeated application of the greedy algorithm with successively narrower

test case radii produces such Cauchy sequences, thus, the greedy approach yields a

set of test cases with general coverage of the test suite and guarantees, convergence

to the test suite. The test selection algorithm is guaranteed to yield a set of test

cases which converge to the in i t ia l test suite as more test cases are selected. This

guarantees that no specific test cases are overlooked. A detailed algorithm can be

found in [MVC92] .

• Merging module: This module accepts the subset test cases from the output of

the selection module and merges the control component and the data component

to form the final test cases. The selection module only processes the control com­

ponents of test cases, hence only control information in the output test cases is

available. The data component of the test cases should be inserted to the control

component to get the complete test cases for the user.

Chapter 2. TESTGEN+ Environment 11

ASN.l Specification Estelle.Y Specification

Test Cases

TESTGEN Parser

Protocol Data Structure
J

Protocol Data Structure
J

Validation Module

Output Module

Logging file

Legend: User accessible file

Internal file

Function module

Preprocessor Module

Figure 2.4: T E S T V A L Structure

2.3 Test Suite Validation - T E S T V A L

The function of T E S T V A L is to check whether a given test suite is valid with respect

to a given Estel le .Y and A S N . l specification. Like T E S T G E N , T E S T S E L also accepts

A S N . l specification and Estel le .Y specification, and gives out a logging file which contains

the position of an event which is in error of an indication the the test case is valid.

The overall structure of T E S T V A L is given in Figure 2.4. There are three functional

modules: preprocessor module, validation module and output module. Their functions

are as follows:

Chapter 2. TESTGEN+ Environment . 12

• Preprocessor module: To process the test suite validation quickly and efficiently,

this module converts some types of transitions in the specification into a more

suitable form for the validation module. It also translates the E F S M form of an

Estel le .Y specification into a simple F S M form.

• Validation module: This module validates given test cases with respect to the P D S

of the protocol specifications.

• Output module: This module logs the traces of states and transitions which satisfy

the given test cases in a file. If a test case is valid according to the given formal

specifications, a message - "test case valid" is in the logging file. If a test case is

invalid, the position is logged in the file. B y using the information in the logging

file, errors in test cases may be located.

Chapter 3

Estelle.Z Parser for T E S T G E N

3.1 Introduction

The T E S T G E N tool accepts protocol specifications in Estel le .Y for the control com­

ponent and specifications in A S N . l for the data component of the protocol through two

parsers. Hence, users need to learn both the A S N . l and Estel le .Y languages. O n the other

hand, Estel le .Y is only a small subset of the Estelle language, and is not powerful enough

to specify a real world protocol. Furthermore, the Estelle language is one of the most

popular specification languages in the real world. (Estelle, S D L and L O T O S are three

common specification languages.) Therefore, it is necessary to expand E s t e l l e . Y + A S N . l

into a large subset of Estelle or even to the whole Estelle language. As a result of the

T E S T G E N kernel accepting only the functions in Estel le .Y and A S N . l , we have to define

the Estelle.Z language which supports al l functions in E s t e l l e . Y + A S N . l , and can easily

be expanded into the entire Estelle language.

The output of the T E S T G E N tool is a set of subtours, which is easy to read for people,

but not easily to be recognized by computers. Hence, the T T C N (Tree and Tabular

Combined Notation) format is adapted for the T E S T G E N output. Also a graphic user

interface is implemented.

In this chapter, a description of the Estelle.Z language is presented briefly, followed by

a discussion on the implementation of the Estelle.Z parser. A t the end, the improvement

13

Chapter 3. Estelle.Z Parser for TESTGEN 14

of the interface of the T E S T G E N tool is discussed.

3.2 Estelle.Z Language

Estelle.Z is a formal language defined to specify protocols for automatic test suite

generation. A n Estelle.Z specification is a modified, single module Estelle specification

enhanced by introducing explicit language support for timers. A subset of the Estelle

language is defined as Estelle.Z. The design goal is (1) to be easily expanded to the whole

Estelle language; (2) to get an exact or very similar object data structure the P D S so

that the T E S T G E N kernel can recognize the information in the P D S ; (3) to follow the

syntax of Estelle as closely as possible.

The advantage of Estelle.Z is (1) users can specify protocols in one language rather

than two languages; (2) the syntax of Estelle.Z is more closer to Estelle than Estel le .Y;

(3) the parser can be very easily expanded to complete Estelle language.

Syntax and Semantics

The syntax of Estelle.Z is defined in Backus-Naur Form (B N F) notation. A n Estelle.Z

specification is a single module definition. It contains three components: declaration,

init ial ization and transition. Variables and constants used in the specification are defined

in declaration component; the protocol state machine is init ial ized in the init ial ization

component; the transitions of the protocol state machine are defined in the transition

component.

Declaration The declaration component contains constant declarations, variable decla­

rations, channel declarations, timer declarations and state declarations.

The syntax of variable and constant declarations is similar to that in Pascal.

Chapter 3. Estelle.Z Parser for TESTGEN 15

Estelle.Z language supports five data types for variables and constants: integer,

boolean, character string, enumeration and record. Input Service Primit ives (ISPs),

Output Service Primit ives (OSPs) and Protocol Data Structures (PDUs) are de­

fined in the channel declaration, these are necessary for the T E S T G E N kernel.

Timeout values are declared for timers. A l l states in the protocol machine are

defined in the state declaration. Figure 3.1 is an example of the declaration com­

ponent.

Specification HomeAgent;

C O N S T mipMHauthExtAuth = 100 ;

AdLifetime = 18000 ;

V A R PduMessage : (RegRequest, DeRegRequest, RegReply, Datagram, Advertisement);

RegRequest: record

ipSourceAddr : integer;

isDestAddr : integer;

end ;

identification : integer;

C H A N N E L SPchannel (Net, Other) ;

by Net:

Junk ;

by Other :

Junk ;

C H A N N E L PDUchannel (pdu, another);

by pdu :

RegRequest;

RegReply ;

Datagram ;

TIMER ad_timer 600;

S T A T E REGISTERED, IDLE ;

Figure 3.1: Example of the Declaration Component

Chapter 3. Estelle.Z Parser for TESTGEN 16

Initialization The ini t ia l state of the protocol machine is defined by the init ial ization.

In addition, all the variables may be assigned their in i t ia l values in the ini t ial iza­

tion, or given default values if not explicit ly init ialized. Figure 3.2 is an example

of the init ial ization.

Transition The transition component contains a set of state transitions which define

the start states, the end states, and the input/output events.1 The clause group

(including from, to, when, priority, and provided clauses) specify the present state

and the next state of a transition, the sending and receiving of the SPs and P D U s ,

the priority, and the enabling predicate.

A group of Pascal statements specify the action function. F ive Pascal statements

are supported: assignment statement, if statement, while statement and compound

statement and output statement. Moreover, a set of timer statements are supported

to specify the operations on the timers.

If the enabling predicate is satisfied, an ISP or P D U is received, the protocol is

in the right control state, and the transition has the highest priority among all

transitions, then the transition is fired, and the protocol machine moves to the

next state. Figure 3.3 is an example of a transition declaration,

A complete example of specification for the home agent is in Appendix C .

Chapter 3. Estelle.Z Parser for TESTGEN

INITIALIZE

T O I D L E

B E G I N

identification := 0 :

careofAddr := 0 ;

E N D ;

Figure 3.2: Example of the Initialization Component

T R A N S

F R O M I D L E

T O R E G I S T E R E D

P R O V I D E D

(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI) A N D

(RegRequesLmipMHauthExtAuth = mipMHauthExtAuth) A N D

(RegRequest.mipIdentification > identification.) A N D

(RegRequest.ipDestAddr = mipHomeAgent)

B E G I N

RegReply.ipSourceAddr = mipHomeAgent;

RegReply.mipType : = 3 ;

RegReply.mipLifetime := RegRequest.mipLifetime - 1 ;

IF (bindno = 1)

T H E N careofAddr := RegRequest.mipCOA

E L S E careofAddl := RegRequest.mipCOA;

output pdu.RegReply ;

E N D ;

Figure 3.3: Example of the Transition Component

Chapter 3. Estelle.Z Parser for TESTGEN 18

3.3 Implementation of Estelle.Z Parser

3.3.1 Lexical Analysis of Estelle.Z

Lexical analysis for Estelle.Z is done by the lexical analyzer L E X . The lexical analyzer

reads from the source program, and carves the source program into tokens. Each token

can be treated as a single logical entity. Identifiers, keywords, constants, operators and

punctuation symbols are typical tokens. The lexical analyzer returns to its caller a code

for the token that it found. It also returns a token value i f the token is not a reserved

word, punctuation, or operator, such as an identifier, integer and string.

In a compiler implementation, lexical analysis and syntactic analysis are normally

performed in the same pass. The lexical analyzer operates under the control of the

parser. The parser asks the lexical analyzer for the next token whenever the parser needs

one. Then the lexical analyzer returns the token code and an applicable token value to

the parser.

In the lexical analyzer of Estelle.Z, al l the reserved words, punctuation and predefine

operators in Estelle are included, even though they are not uti l ized in Estelle.Z. Therefore,

this lexical analyzer can be used without much modification when Estelle.Z is expanded

to the whole Estelle language.

3.3.2 Syntax Analysis of Estelle.Z

The parser for Estelle.Z is generated by the syntactic analyzer tool Y A C C . The syn­

tactic analysis checks that input tokens occurring according to the patterns that are

permitted by the specification for the source language.

Y A C C input is produced based on the B N F rules of Estelle.Z. Figure 3.4 depicts the

process of Estelle.Z parser generation. The object of the Estelle.Z parser is generation of

Chapter 3. Estelle.Z Parser for TESTGEN 19

syntax trees which store the syntactical information of the statements and expressions in

an Estelle.Z specification. The syntax trees are stored in data structure the P D S , from

which the T E S T G E N engine can obtain information to generate test suites.

f \

Estelle.Z

L E X source code
>v _ -

^J^^Estelle.Z Parser^) — ^J^^Estelle.Z Parser^) — — - PDS

f 'N

Estelle.Z

Y A C C source code

— - PDS

Figure 3.4: Estelle.Z Parser Generation

In a syntax tree, the statements are represented as tree nodes. For example, A n

assignment statement, variable-name := expression, is depicted in Figure 3.5(a). The

variable-name can be a simple variable name or be a parameter at the left-hand side

of the assignment statement. The expression can be a tree of any expression on the

right-hand side of the assignment statement. Figure 3.5(b) shows an example of the

syntax tree of an assignment statement and its right-hand side expression. Similarly,

if statements, while statements, compound statements and output statements are

converted into syntax trees stored in the P D S . In addition, expressions are represented

by syntax trees.

Declaration

In the declaration section, variables, constants, channels, timers and° states are de­

clared. The parser converts the information into key, name, type and value (if applicable)

Chapter 3. Estelle.Z Parser for TESTGEN

variable-name expression

(a)

RegReply.mipLifetime : = RegRequest.milLifetime - 1

(b)

Figure 3.5: Syntax Tree of Assignment Statement

which are then stored in the P D S . For example, in the constant declaration,

mipMHauthExtAuth = 100

is stored as in Figure 3.6, where the key is an index into constants.

key = 0

name = mipMHauthExtAuth

type = INTTYPE

val = 100

Figure 3.6: Structure of Constant Declaration

Chapter 3. Estelle.Z Parser for TESTGEN 21

Variables, timers and states are processed in the same way as constants. The channel

declaration varies slightly from the above. There are two types of declarations, SPchan-

nel and PDUchannel . SPchannel declares the ISPs and OSPs used in the specification.

PDUchannel declares the P D U s used in the specification. The information on SPs and

P D U s is necessary for the T E S T G E N engine. A l l of the information, such as the param­

eter's field name and type, is stored in the P D S . For example, the P D U RegRequest is

stored as in Figure 3.7. The P D U type tree is a pointer pointing to the P D U ' s parameters

including name, type and other features (if applicable).

Initialization

The parser sets default ini t ia l values for all variables, parameters and timers if they

are not explicit ly init ialized. The default value is 0 for those of integer type, false for

key = 0

name = RegRequest

P D U type tree • 1

univTag = integer

field name = ipSourceAddr

univTag = integer

field name = ipDestAddr

univTag = integer

field name = mipMHauthExtAuth

Figure 3.7: Syntax Tree of Channel Declaration (P D U)

Chapter 3. Estelle.Z Parser for TESTGEN 22

those boolean type and the empty string for those of character string type. The ini t ia l

state of protocol machine is assigned in this part. Otherwise the first state in the state

declaration is assumed to be the ini t ia l state.

Transition

The transition consists of a group of transition definitions. Each transition definition

is identified by a key, which is stored in the trans_key[] field of the starting state of that

transition. The transition definition includes the from state, the to state, the input events,

the enabling predicate, the priority and the action function which is a set of statements.

This definition is converted into a syntax tree. Whenever the basic components such as

variables, constants, parameters are referenced, their types and keys are stored. The leaf

nodes of a syntax tree may be variables, constants, parameters and timer constructs.

Figure 3.8 shows the syntax tree of the transition in Figure 3.3. In this example, the

transition is from the I D L E state to the R E G I S T E R E D state, the input event is RegRe-

quest, the output event is RegReply, the enabling predicate is the boolean expression

stored in epred field, and the action function consists of 12 statements, which are linked

respectively to their syntax by the keys and types.

3.3.3 Semantic Analysis

Semantic analysis is used to determine the type of expressions, to check that argu­

ments are of types that are legal for an application of an operator, and to convert the

statements into syntax trees stored in the P D S . Semantic analysis is carried out during

the syntax analysis phase.

Chapter 3. Estelle.Z Parser for TESTGEN 23

3.3.4 Structure of the P D S

The internal object of the parser is the P D S , based on which the T E S T G E N kernel

can generate test suites automatically. The P D S is designed to represent the formal

protocol specifications based on Estelle.Z formalism in a machine accessible form. The

key = 1

name =
from = IDLE

to REGISTERED
priority = 0
ipdu = RegRequest
opdu = RegReply

epred : (RegRequest.mipLifetime > 0) and
(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI) and
(RegRequest.mipMHauthExtAuth = mipMHauthExtAuth) and
(RegRequest.mipIdentification > identification) and
(RegRequest.ipDestAddr = mipHomeAgent)

efn 1

key = 1
nb of stmts =12
stmt 0

kind = ASTMT
key = 6

stmt 1
kind = ASTMT
key = 7

RegReply .ipSourceAddr mipHomeAgent

stmt 11
kind = IFSTMT
key = 1

Figure 3.8: Syntax Tree of State Transition

Chapter 3. Estelle.Z Parser for TESTGEN 24

protocol specification saved in the P D S wi l l be directly used for the subtours identification

process which is the key process of automatic test suite generation. Since T E S T G E N

is completely dependent on the data in the P D S , it is essential to ensure that the P D S

correctly represents the information of the protocol specifications in order to generate test

suites correctly. On the other hand, it is also important for information in the P D S to be

easily accessed by T E S T G E N . In addition, the P D S can be used as an internal medium

between the test suite engine and the protocol specification, i.e., the P D S can be the

internal object of any specification language parser with some modification if necessary,

and the test suite generation engine can yield test suites based on the P D S as showed in

Figure 3.9.

Figure 3.9: Environment of the Parser

The P D S is organized in a way shown in Figure 3.10.

Using the Estelle.Z language, a protocol is described in terms of several sets of com­

ponents, such as states, variables, constants, channels, timers and transitions. Some

protocol components are further described in terms of other sets of protocol components.

protocol specification in X language

PDS

Chapter 3. Estelle.Z Parser for TESTGEN 25

int init_state

int nb_of_states

pstate[0...]

nb_of transitions

ptrans[0...]

nb_of_variables

pvar[0...]

nb_of_constants

pconst[0...]

nb_of_isps

pisp[0...]

nb_of_osps

posp[0...]

nb_of_pdus

ppdu[0...]

nb_of_timers

ptimer[0...]

nb_of_texprs

ptexpr[0...]

nb_of_efns

pefn[0...]

nb_of_cstmts

pcstmt[0...]

nb_of_astmts

pastmt[0...]

nb_of_ifstmts

pifstmt[0...]

nb_of_wstmts

pwstmt[0...]

nb_of_tstmts

ptstmt

nb_of_spparms

pspparmfO...]

key name nb_of_tr tr_key min_use man_use

min_use man_use

key name from_st to_st isp osp osp2 ipdu opdu opdu2 epred efn priority

key name type init_ival init_bval init_cstr

min_use max_use min_assigned max_assigned

key name type int_val bool_val char_ptr min"_use max_use

key name pco isp_typetree nb_of_pdus pdu_key min_use max_use

key name pco osp_typetree nb_of_pdus pdu_key min_use max_use

key mane pco sent_in recv_in pdu_typetree min_use mx_use

key | name | timeout_value ,| init_status | min_start [max_start | min_stop [max_stop

key name timer status

key name nb_of_statements stmt_kind stmt_key

key name nb_of_statements stmt_kind stmt_key

key name left_kind left right_expr

key name bool_expr stmt_kind stmt else_stmt_kind else_stmt

key name bool_expr stmt_kind stmt

key name timer timer_op t_op_arg

key name sptype spkey t_enode_ptr type nb_of_cnsts bool_cnst int_cnst chat_cnst

Figure 3.10: Protocol Data Structure

Chapter 3. Estelle.Z Parser for TESTGEN 26

For example, transitions may be described by enabling predicates, action functions, state­

ments, etc. Each set of protocol components is defined by a structure in the P D S . The

definitions of the major structures: states, transitions, variables, constants and state­

ments, are given briefly in the following sections.

State Structure definition

State is defined to describe the control states of a protocol. Five fields are used to

represent a state as depicted in Figure 3.11a.

S T A T E TRANSITION

key

name
number of trans

trans_key[0]

trans_key[l]

trans_key[MAXTRANS-l]

min_use

max use

key

name
from state

to_state

epred

efn

pnotity

isp

osp

osp2

ipdu

opdu

opdu2

mm_use

max use

(a) (b)

Figure 3.11: Data Structure of State in the P D S

• key is an index into the pstate array. The current state is the A:eyth state in the

Chapter 3. Estelle.Z Parser for TESTGEN 27

state declaration and may be referenced as pstatefkeyj.

• name is the state's name.

• number_of_trans indicates the total number of transitions possible from this state.

• trans_key is an array storing the keys to the transitions which are possible from

this state.

• min_use, max_use indicate the limitations of the usage of the current state, i.e.,

passing the state at least min_use times and at most max_use times. These are not

a part of the specification, but are T E S T G E N constraints edited by the users.

A l l the transitions possible from the given state can be assessed consequently by

looking up the trans Jcey[key] array. This is used for the subtours identification process

in the test suite generation engine.

Transition Structure Definition

The transition structure defines the state transitions of the protocol machine. Fields

are as shown in Figure 3.11b.

• key is the keyth state transition in the transition declaration.

• name is the name of the transition if applicable.

• from_state. to_state indicate the beginning and ending states of the transition by

the keys to the states.

• epred, afn are keys to the enabling predicate and the action function associated

with this transition.

• priority indicates the priority of the transition i f applicable.

Chapter 3. Estelle.Z Parser for TESTGEN . 28

• min_use, max_use are the limitations that the transition can be used at least min_use

times and at most max_use times. These are not a part of the specification, but

are T E S T G E N constraints edited by the users.

The data structure of variables and constants consists of key, name, type and value

fields. The value may be an integer, boolean or string stored in intjual, booljval and

charjval for constants, or stored in initJval, initjbval and init-cstr for variables.

The statements consist of if statement, while statement, compound statement and

assignment statement. The syntax trees of these statements are stored in the P D S as

shown in Figure 3.10, and the meaning of the fields are plainly indicated by the field

name.

3.3.5 Testing for the parser

The accuracy of the P D S is very crucial to the test suite generation engine since the

test suite generation engine completely depends on the information in the P D S . Three

verification mechanisms are used to verify the accuracy of a generated the P D S .

Printing the P D S

The P D S can be saved into a text file, and can also be displayed interactively on the

screen by the user. The user can check al l the information in the P D S by reading the

text file or check a particular part, such as an expression or a statement, by displaying

the expression or statement on screen through a set of printing functions.

Since there is a parser of Estelle. Y + A S N . l which converts a protocol specification into

a P D S , the two PDSs generated by the two parsers, the E s t e l l e . Y + A N S . l parser and the

Estelle.Z parser, can be compared. One protocol can be specified in E s t e l l e . Y + A S N . l ,

as well as in Estelle.Z. The two PDSs should be similar i f the protocol specifications are

Chapter 3. Estelle.Z Parser for TESTGEN 29

equivalent.

Consistency checking

In T E S T G E N + , there is a set of consistency checking functions developed to check

the consistency of the P D S after it has been generated. Theses functions can be used to

check the P D S generated by the Estelle.Z parser.

Test suite coverage checking

B y feeding the two specifications, one in E s t e l l e . Y + A S N . l and the other in Estelle.Z,

for the same protocol into their respective parsers, the same test suites should be gener­

ated. The existence of numerous test cases in a test suite makes it difficult to compare

the two test suites on an individual case by case basis. The test coverage tool is used to

compare the coverage of the two test suites. If they are the same or very similar, then

the P D S generated by the Estelle.Z parser is correct.

In Chapter 5, the home agent protocol is specified in both Es te l l e .Y- f -ASN. l and

Estelle.Z. The two specifications are applied to the T E S T G E N engine and two test suites

are generated. The two test suites are fed into the test coverage tool and the same results

obtained. This wi l l be discussed in detail in Chapter 5.

3.4 Improvement on the interface of T E S T G E N

Output in T T C N . M P format

The output formats of T E S T G E N are subtours for people to read, and the internal

files for T E S T V A L and T E S T S E L . None of them is standard output format that can be

used outside T E S T G E N + . Therefore, it is necessary to provide a standard output for

T E S T G E N + so that the T E S T G E N + tool can be widely used.

Chapter 3. Estelle.Z Parser for TESTGEN 30

For this purpose, the T T C N . M P format, a standardized test notation, is provided.

The Tree and Tabular Combined Notation (T T C N) was developed and standardized by

the ISO (International Organization for Standardization) in 1990, and is used for precise

specification of abstract test suites [ISO].

The T T C N consists of two types of notations: the tree notation, used in dynamic

behavior descriptions to describe events which can occur as alternative responses to a

previous event, and a tabular component, used to simplify the representation of all static

elements. The T T C N is in two formats, a graphical form denoted T T C N . G R , and a

machine-processable form denoted T T C N . M P . The T T C N . G R is human readable and

understandable. The T T C N . M P is a packed format representation to allow more uniform

and more efficient storage [Pro92].

Because T T C N is a standardized test notation and T T C N . M P is a packed repre­

sentation and a machine processable format, the T T C N . M P is developed as a output

module in T E S T G E N + . This module obtains information from T E S T G E N and the

P D S , organizes them in T T C N . M P format, and writes them to a file.

A test suite consists of four sections: overview, declaration, dynamic and constraints

as shown in Figure 3.12. The overview section names the test suite and defines its context

with respect to the protocol standard and test method. The declaration section provides

the name, type definition, range and comments for all of the objects that are referenced

in the test suite itself. The constraints section specifies particular data values for P D U

fields or A S P parameters as used in a constrained test event in the dynamic behavior

section. These constraints are different from the constraints in the T E S T G E N tool. The

dynamic section comprises a set of test cases, the main body of the abstract test suite

including the test case library, the test step library and the default behaviors library.

Chapter 3. Estelle.Z Parser for TESTGEN 31

SUITE

ASP PDU C O N S T A N T PCO TIMER V A R Testcase Testcase ... Testcase

Constraints from T E S T G E N

Figure 3.12: Architecture of T T C N Tree From T E S T G E N

A collection of test cases for the home agent in T T C N . M P format is shown in A p ­

pendix F .

Graphical user interface

In order to give users a user friendly interface, a graphical user interface is provided

based on the menu driven user interface. The graphical user interface is implemented

on X V i e w library under SunOS U N I X 4.1.3. Under this user interface, T E S T G E N ,

T E S T S E L and T E S T V A L are integrated under T E S T G E N + , so that the user can easily

travel among the three tools simply by clicking on the mouse.

The function of the graphical user interface is the same as the menu driven user

interface for T E S T G E N , T E S T S E L and T E S T V A L . In addition, some items are added

to enhance the T E S T G E N menu, such as storing the constraint instances and parameters

of P D U s , ISPs and OSPs , removing the subtours file when restarting the T E S T G E N tool,

choosing to display the default constraints, editing the subtours file and T T C N . M P file,

etc.

Chapter 3. Estelle.Z Parser for TESTGEN 32

3.5 Summary

In this chapter, the Estelle.Z parser has been presented. The Estelle.Z parser accepts

the Estelle.Z specification language, and produces a representation of the protocol as a

P D S . the object structure of The lexical, syntactic and semantic analyses of the parser

have been discussed. In chapter 5, a real world protocol specification in Estelle.Z wi l l be

fed in the parser to test its accuracy.

Chapter 4

Specification of a Subset of the Mobile IP Protocol

Introduction

The Mobile IP Protocol, also called IP Mobi l i ty Support, is an Internet-Draft sub­

mit ted by the Mobile IP Working Group of the Internet Engineering Task Force (I E T F) ,

to route IP datagrams transparently in the Internet.

Version 15 of this protocol released in February, 1996 [Per96] is discussed in this

thesis.

In the Mobile IP Protocol, each mobile node is identified by its home IP address,

regardless of where the mobile node's current point of attachment to the Internet is. If a

mobile node is away from its home network, then it is associated wi th a care-of address

which provides information about its current point of attachment to the Internet. The

mobile node then registers the care-of address with its home agent. The home agent

sends datagrams headed for the mobile node through a tunnel to the care-of address. A t

the end of the tunnel, each datagram is either directly delivered to the mobile node or is

delivered via a foreign agent.

In this chapter, the basic concepts and functions of the Mobi le IP Protocol are de­

scribed. One major element, the home agent, is discussed in detail. The formal specifi­

cation of the home agent is presented.

33

Chapter 4. Specification of a Subset of the Mobile IP Protocol 34

User (T C P)

Advertisement

Router

RegReply

F A

'.IP/Mobile IP

foreign network

Net (Link)

Note: * H A : Home Agent
* F A : Foreign Agent
* M H : Mobile Host

Figure 4.1: Module of Mobi le IP

4.1 Basics of the Protocol

There are three major modules in the mobile IP protocol: (1) Home Agent, (2) Foreign

Agent and (3) Mobile Host or Mobi le Node as shown in Figure 4.1.

The home agent is a router on the mobile node's home network. When a mobile node

is away from its home, the home agent maintains information on its current location and

tunnels datagrams to the mobile node.

The foreign agent is a router on the mobile node's foreign network. When a mobile

node is registered with a foreign agent, the foreign agent provides routing services to the

mobile node.

The mobile host is a host or a router which can change its point of attachment from

one network to another. A mobile host may change its location without changing its IP

Chapter 4. Specification of a Subset of the Mobile IP Protocol 35

address and may continue to communicate wi th other Internet nodes by using this IP

address.

In the following subsections, an overview of the Mobi le IP protocol is given and the

functions of the three modules are discussed.

4.1.1 Protocol Overview

Mobile IP protocol provides two types of services:

1. Agent Discovery: The home agent and the foreign agent advertise their services on

the subnetworks where they are available. B y listening to these advertisements, a

newly arrived mobile node can locate a foreign agent i f it is in a foreign network,

or a home agent i f it is in its home network.

2. Registration: When a mobile node is away from its home, it registers its care-of

address with the home agent. If the mobile node can find a foreign agent in the

current network, then the foreign agent's IP address wi l l be the care-of address

and the mobile node can register with its home agent through the foreign agent.

Otherwise, the mobile node can get a co-located care-of address, a temporary or a

long-term address used by the mobile node while visit ing the foreign network, by

some external assignment mechanism, and register this temporary address wi th its

home agent directly.

The Mobile IP Protocol operates in the following manner:

• The foreign agent and the home agent advertise their presence by sending an Agent

Advertisement message.

Chapter 4. Specification of a Subset of the Mobile IP Protocol 36

• A mobile node analyzes the Agent Advertisement messages it receives and assesses

whether it is on its home network or on a foreign network. If the mobile node is

on its home network, it operates without mobil i ty service. If it is returning to its

home network from a foreign network, the mobile node de-registers wi th its home

agent by sending a Registration Request and receiving a Registration Reply. If the

mobile node moves to a foreign network, it registers its new care-of address with its

home agent by sending a Registration Request and receiving a Registration Reply

either directly or through a foreign agent.

• Datagrams delivered to the mobile node's home address are intercepted and tun­

neled by its home agent to the mobile node's care-of address. They are then de­

livered to the mobile node by a foreign agent or tunneled to the mobile node's

co-located care-of address, i.e., the mobile node.

• Datagrams sent by the mobile node are generally delivered to their destinations by

using standard IP routing mechanisms, and not by using any mobil i ty services.

4.1.2 Home Agent

The services provided by the Home Agent are:

• Agent Advertisement: The home agent advertises its services on a l ink by sending

Agent Advertisement messages periodically. The mobile nodes use these advertise­

ments to determine their current point of attachment to the Internet, i.e., whether

they are on their home networks. A n Agent Advertisement is an I C M P (Internet

Control Message Protocol) Router Advertisement that has been extended to also

carry a Mobi l i ty Agent Advertisement Extension.

Chapter 4. Specification of a Subset of the Mobile IP Protocol 37

• Registration: The home agent receives Registration Requests, processes them and

sends Registration Replies to grant or deny the services requested. If service per­

mission is granted, then the home agent wi l l update its mobil i ty binding list wi th

the care-of address of the tunnel and send the registration reply wi th an appropri­

ate message. If the registration request is denied, then the home agent wi l l send

the Registration Reply with a suitable error code. If the parameter life-time in

the Registration Request is zero, then the home agent wi l l de-register the current

care-of address. B y maitaining the binding list, the home agent can serve more

than one mobile nodes.

• Routing: The home agent intercepts al l the datagrams on the home network that

are addressed to the mobile node while the mobile node is registered away from

its home. If the IP Destination Address of the arriving datagrams is the same as

the home address of the mobile node, then the home agent tunnels the datagrams

to the mobile node's currently registered care-of address. If the mobile node has

no current mobil i ty bindings, i.e., it is at home, and the home agent is also a

router handling common IP traffic, then the home agent wi l l forward the datagram

directly to the mobile node. If the mobile node requires, then the home agent wi l l

forward the broadcast messages to the mobile node.

4.1.3 Foreign Agent

The foreign agent supports the following services:

• Agent Advertisement: Similar to the home agent, the foreign agent advertises its

services on a l ink by sending Agent Advertisement messages periodically to the

local network. The foreign agent uses different parameters from that of the home

Chapter 4. Specification of a Subset of the Mobile IP Protocol 38

agent, including the foreign agent's care-of address for the mobile nodes. The care-

of address usually is the IP address of the foreign agent.

• Registration: When a mobile node registers with its home agent v i a a foreign agent,

the foreign agent only relays valid Registration Requests between the mobile node

and the home agent and valid Registration Replies between the home agent and

the mobile node. Each foreign agent maintains a visitors' entry list containing

the information obtained from the mobile node's Registration Requests. When

the foreign agent receives a valid Registration Reply from the home agent, hence

indicating a successful Registration, the foreign agent modifies the visitors' entry

list. B y maintaining the visitors' entry list, the foreign agent can serve more than

one visit ing mobile nodes.

• Routing: The foreign agent receives datagrams sent to its advertised care-of address.

If the datagrams are destined for its visit ing mobile nodes, then the foreign agent

forwards the datagrams to these mobile nodes, otherwise it discards them.

4.1.4 Mobile Host

A mobile host, also called a mobile node, has the following functions:

• Agent Discovery: After a mobile node receives an Agent Advertisement, it can

determine whether it is on its home network or on a foreign network. If the mobile

node returns to its home network from a foreign network, it de-registers with its

home agent directly. If the mobile node moves to a foreign network, it registers wi th

its home agent via a foreign agent, which is sending an Agent Advertisement wi th

a care-of address. If the mobile node does not receive any Agent Advertisement for

a certain amount of time, and if it can obtain a care-of address through a link-layer

Chapter 4. Specification of a Subset of the Mobile IP Protocol 39

protocol or other means, then the mobile node registers the care-of address with

its home agent directly. Otherwise, the mobile node sends an Agent Solicitation to

search for an agent.

• Registration: A mobile node initiates a registration whenever it detects a change

in its network connectivity. When it is away from its home, the mobile node's Reg­

istration Request allows its home agent to create or modify a mobil i ty binding for

the mobile node. When it is at home, the mobile node's (de)Registration Request

allows its home agent to delete any previous mobil i ty binding(s) to i t . A mobile

node is able to operate without the support of mobil i ty functions when it is at

home.

After sending a Registration Request, the mobile node wi l l receive a Registration

Reply, either from a home agent or a foreign agent. If the registration is accepted,

then the mobile node configures its routing table accordingly. If the registration is

rejected, then the mobile node modifies its Registration Request according to the

error information on the Registration Reply, and tries again.

• Routing: When a mobile node is connected to its home network, it operates as

a stationary host. When it is registered on a foreign network, the mobile node

chooses a default router. If it is registered with a foreign agent, the foreign agent

becomes the default router, otherwise, the local network router becomes the router.

4.1.5 Example

In this section, an example is given to show how the mobile IP protocol functions.

In Figure 4.2 (a), the mobile node moves into a foreign network and detects a foreign

agent. The mobile node sends a Registration Request to the foreign agent (1), the foreign

Chapter 4. Specification of a Subset of the Mobile IP Protocol 40

agent relays the request to the mobile node's home agent(2). If the request is accepted,

the home agent sends a Registration Reply to the foreign agent(3), and the foreign agent

home agent

hust

foreign agent

>-

4
•<• 1

mobile node

foreign network

(a)

home agent

l l i M

(b)

Legend: Data sent from mobile node

Data send to mobile node

Registration Request/Reply

2 •' >-
mobile node

router

foreign network

Figure 4.2: Example of mobile IP Operation

Chapter 4. Specification of a Subset of the Mobile IP Protocol 41

relays the request to the mobile node(4). If a message is sent to the mobile node, the

home agent intercepts the message and tunnels it to the foreign agent. Subsequently, the

foreign agent forwards the message to the mobile node after checking i f the message is

for the mobile node who is visiting the local network (dashed line). If a message is to be

sent from the mobile node, it is first sent to the foreign agent and then to the destination

host v ia normal IP routing methods (dotted line).

In Figure 4.2 (b), a mobile node moves into a foreign network where no foreign agent is

presently implemented. The mobile node obtains a co-local care-of address, and registers

with its home agent di rect ly(l) . If the request is accepted, the mobile node receives a

Registration Reply from the home agent(2). If a message is to be sent to the mobile

node, the home agent tunnels it to the mobile node (dashed line). If a message is to be

sent from the mobile node, it is ini t ial ly directed to the local router and then delivered

to the host (dotted line).

The home agent is discussed more thoroughly in the next section.

Chapter 4. Specification of a Subset of the Mobile IP Protocol 42

4.2 Home Agent

The home agent is one of the most important elements in mobile IP protocol. It is

necessary to discuss the messages received or sent by the home agent to fully understand

its behaviors.

The home agent receives one k ind of message, Registration Request, and sends two

kinds of messages, Registration Reply and Agent Advertisement. The home agent also

receives and forwards datagrams. These datagrams are IP datagrams, therefore they are

not discussed in this thesis.

Table 4.1 shows the major fields in Registration Request:

F ie ld Name Description Required
1 Source Address address from which the message is sent V

Destination Address address of foreign agent or the home agent V
Type 1 V
Lifetime the life time for this request V

2 Home address IP address of the mobile node V
Home agent IP address of the mobile node's home agent V
Care-of address IP address of the end of tunnel
Identification constructed by mobile node V
Type 32 V

3 SPI Security Parameter Index V
Authenticator message authentication code V
Type 33

4 SPI Security Parameter Index
Authenticator message authentication code
Type 34

5 SPI Security Parameter Index
Authenticator message authentication code

Table 4.1: Fields in Registration Request

Chapter 4. Specification of a Subset of the Mobile IP Protocol 43

There are five fields in this table: field one is the IP field which indicates the source

and destination addresses of the message; field two is the UDP field which indicates

information about the mobile node; field three is the Mobile-Home Authentication Ex­

tension which indicates the authentication between a mobile node and its home agent.

These three fields are essential in the Registration Request message. F ie ld four is the

Mobile-foreign Authentication Extension, which indicates the authentication between a

mobile node and a foreign agent in the foreign network, if applicable. F ie ld five is the

Foreign-Home Authentication Extension, which indicates the authentication between the

mobile node's home agent and a foreign agent, i f applicable. In some networks, there is

no implementation of a foreign agent. Thus, there is no authentication related to the

foreign agent. Hence the last two fields are optional.

Table 4.2 shows the major fields in Registration Reply:

Field Name Description Required
1 Source Address address from which the message is sent V

Destination Address source address of Registration Request V
Type 3 V
Code 0/1 for success, others for error code V
Lifetime the life time for this request V

2 Home address IP address of the mobile node V
Home agent IP address of the mobile node's home agent V
Care-of address IP address of the end of tunnel V
Identification based on the Identification of Registration Request V
Type 32

3 SPI Security Parameter Index V
Authenticator message authentication code
Type 33

4 SPI Security Parameter Index
Authenticator message authentication code
Type 34

5 SPI Security Parameter Index
Authenticator message authentication code

Table 4.2: Fields in Registration Reply

Chapter 4. Specification of a Subset of the Mobile IP Protocol 44

Similar to the fields in Registration Request, there are five fields in Registration

Reply. The first two fields are related to IP field and UDP field. The difference between

a Registration Request and a Registration Reply is the code field which indicates the

registration result. The code is 0 or 1 i f the registration is successful, otherwise, the code

is a number (greater than 1) indicating an error message. The last three fields are similar

to the fields in the Registration Request in that they indicate the authentication among

the mobile node, the home agent and the foreign agent.

Table 4.3 shows the major fields in an Advertisement:

F ie ld Name Description _ Required

1 Destination Address link layer destination address

2 T T L time to live, set to 1 V
Destination Address IP address of local broadcast address V
Lifetime the life time for this Advertisement V
H set to 1 if it is a home agent V

3 Type 16 V
Sequence number integer V
Registration lifetime max imum of acceptable seconds V

Table 4.3: Fields in Advertisement

There are three fields in Agent Advertisement: link-layer field, to indicate the destina­

tion; IP fields, to indicate T ime To Live of the message; and Mobility Agent Advertisement

Extension, to indicate that an I C M P Router Advertisement message is also an Agent A d ­

vertisement being sent by a mobil i ty agent for additional information about the mobil i ty

service that the agent supports.

The IP Mobi l i ty Support documentation[Per96] gives more detailed information on

each message communicated between the mobile node, the home agent and the foreign

Chapter 4. Specification of a Subset of the Mobile IP Protocol 45

agent.

4.3 The formal Specifications of the Home Agent

From the above sections, we have acquired more knowledge about the home agent.

Based on this knowledge, we can discuss the formal specification of the home agent, which

is used by the test generation tool (T E S T G E N) to generate test cases. To simplify the

specification, one mobile node is assumed. The T E S T G E N tool accepts specification in

A S N . l for the data part and specification in Estel le .Y for the control part, or specification

in Estelle.Z for both parts.

Data Part in A S N . l

The corresponding protocol data units (PDUs) received or sent by the home agent

and their basic parameters are as follows:

• RegRequest : Registration Request. To simplify the specifications, only 11 major

parameters are presented as follows:

Name Typ e Description / Meaning

ipSourceAddr

ipDestAddr

mipType

mipS

mipLifetime

IP f i e lds

INTEGER addr. from which the message is sent

INTEGER addr. of foreign agent / home agent

Mobile IP f i e lds

INTEGER set to 1

INTEGER 1: simultaneous bindings

INTEGER time remaining before expired

Chapter 4. Specification of a Subset of the Mobile IP Protocol

mipHomeAddr INTEGER

mipHomeAgent INTEGER

mipCOA INTEGER

mipldentif ication INTEGER

IP addr. of mobile node

IP addr. of mobile node's home agent

IP addr. of the end of the tunnel

number constructed by the mobile node

— Mobile-Home Authentication Extension

mipMHauthExtSPI INTEGER Security Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER Authenticator, keyed MD5

• RegReply : Registration Reply. To simplify the specifications, only 10

parameters are presented as follows:

Name Type Description / Meaning

ipSourceAddr

ipDestAddr

IP f i e lds

INTEGER addr. from which the message is sent

INTEGER addr. of foreign/home agent

Mobile IP f i e lds

mipType

mipCode

mipLifetime

mipHomeAddr

mipHomeAgent

mipldentif ication

INTEGER set to 3

INTEGER the result of reg is trat ion request

INTEGER time remaining before expired

INTEGER IP addr. of mobile node

INTEGER IP addr. of mobile node's home agent

INTEGER number constructed by the mobile node

— Mobile-Home Authentication Extension

mipMHauthExtSPI INTEGER Security Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER Authenticator, keyed MD5

Chapter 4. Specification of a Subset of the Mobile IP Protocol 47

• Advertisement : Agent Advertisement. To simplify the specifications,

only 6 parameters are presented as follows:

Name Type Description / Meaning

multicast addr. or

limited broadcast addr.

IP f i e l d , must be set to 1

— IP f i e l d s

ipDestAddr INTEGER

ipTTL INTEGER

— ICMP f i e l d s

icmpLifetime INTEGER l i f e time of va l i d advertisement

interval = 1/3 lifetime

icmpCode INTEGER 0: as a router too

— Mobility Agent Advertisement Extension

extRegLifetime INTEGER longest time acceptable of registration.

extH INTEGER (0..1) 1: this i s a home agent

Appendix A contains the complete A S N . l specification for the simplified home agent.

Appendix D contains the A S N . l specification for al l the parameters in all P D U s .

Chapter 4. Specification of a Subset of the Mobile IP Protocol 48

Control Part in Estel le .Y and Estelle.Z

The Extended Fini te State Machine (E F S M) of the home agent is shown in Figure 4.3.

+timer[l/3 Ad.LT]/-Advertisement

RegReq(Reg.LT > 0 & & valid)/-RegRep(OK)

+RegReq(invalid)/-RegRep(errcode)

+RegReq(Reg.LT = 0 & & validV-RegRep(dereg)

+RegReq(valid)/-RegRep(OK)

+timer[l/3 Ad.LT]/-Advertisement

+Datagram/-Datagram(binding = 0)

+Datagram/-Datagram (binding = 1)

+RegReq(invalid)/-RegRep(errcode)

State: I D L E , R E G I S T E R E D

Note: RegReq : Registration Request

RegRep: Registration Reply

dereg : deregistration

errcode : error code

Reg .LT : life time in Registration Request

A d . L T : life time in Advertisement

Figure 4.3: E F S M of the Home Agent

Chapter 4. Specification of a Subset of the Mobile IP Protocol 49

The E F S M has 2 states, I D L E and R E G I S T E R E D , which are defined as follows:

1. I D L E : Init ial state. Athe the beginning, the home agent is awaiting the Registration

Request from the foreign agent, the mobile node, or the datagrams from networks,

while the home agent sends Agent Advertisement periodically.

When the home agent receives a Registration Request, it checks its validity. If it

is invalid, it sends a Registration Reply with a related error code and it remains

at a I D L E state; i f it is valid, it sends a Registration Reply wi th a successful code

and transfers to a R E G I S T E R E D state; i f datagrams are received, the home agent

discards them as the mobile node has not been registered yet.

2. R E G I S T E R E D : When a Registration Request is accepted, the home agent moves

to this state, which means that it provides mobil i ty service to the mobile node

from now on. If datagrams are received while in this state, the home agent tunnels

them to the care-of address of the mobile node; if another Registration Request

is received, and if the home agent supports simultaneous bindings, then the home

agent registers the mobile node with another care-of address; if a de-Registration

Request is received, then the home agent checks its validity, if it is valid, then it

de-registers for the mobile node. A t the same time, the home agent sends Agent

Advertisement periodically.

When receiving P D U s or internal events, such as timeouts, the home agent may

change its state or remain in its current state, and send corresponding P D U s .

State transmissions are described as follows:

• from I D L E to I D L E :

1. receive Registration Request (invalid), reply wi th error code

Chapter 4. Specification of a Subset of the Mobile IP Protocol 50

2. receive Datagrams for non-registered mobile node, discard

3. send Agent Advertisement periodically (time out)

• from I D L E to R E G I S T E R E D

— receive Registration Request (valid), reply with 0/1 code

• from R E G I S T E R E D to I D L E

- receive Registration Request (Lifetime = 0, valid), reply with 0/1 code

• from R E G I S T E R E D to R E G I S T E R E D

1. receive Registration Request (valid), reply wi th corresponding code

2. receive Registration Request (invalid), reply with corresponding error code

3. receive Datagrams for mobile node (if it is in a foreign network), tunnel the

Datagram

4. receive Datagrams for mobile node (it is in its home network), deliver the

Datagram

5. send Agent Advertisement periodically (time out)

The complete specification in Estel le .Y is given in Appendix B .

The complete specification in Estelle.Z is given in Appendix C .

Chapter 5

Apply ing Mobile IP to T E S T G E N

Introduction

In chapter 3, the new parser was described. In chapter 4, the specifications of the

Mobile IP protocol were presented. In this chapter, the specifications of the Mobi le IP

are fed into the T E S T G E N tool to yield test cases in order to determine whether the

new parser functions correctly. Hence, we can compare the two sets of test cases yielded

from the two parsers. Since the number of test cases is too large, and there is extreme

data variation in the test cases, we fed those test cases into the T E S T S E L tool to test

their coverage and other features. In this chapter, the quality of test cases generated by

T E S T G E N is discussed, followed by a discussion on the coverage of test cases. Comments

on the two parsers are summarized at the end of this chapter.

5.1 The Test Suite Generation

When a protocol is implemented, we need to test if it has been implemented consis­

tently with its specification and if it can cooperate with existing networks smoothly, i.e.,

we need to apply conformance testing to the implementation. T E S T G E N is one tool that

allows the generation of various test cases to check the reaction of the implementations.

In this section, the algorithm of T E S T G E N is given succinctly [LV93], followed by the

constraints chosen for the testing of the Mobi le IP protocol.

51

Chapter 5. Applying Mobile IP to TESTGEN 52

5.1.1 The Algori thm of T E S T G E N

Before we introduce the algorithm of T E S T G E N , let's first define two terminologies

that wi l l be used later.

1. A n extended transition system (ETS) is a quadruple ETS = (Q, E, —>•, qinit) •

• Q = States x Variables x Constants x Timers, denoting the set of states

of the E T S .

• E = ISP U OSP U PDU, denoting the set of events of the E T S .

• ->Q Q x E x Q, denoting the transition relation for the E T S .

• Qinit £ Q-, denoting the in i t ia l state of the E T S .

2. Subtour (X, Si, So, C) is the set of all executable paths (subtours) from an ini t ia l

state Si to a final state So, where So is the in i t ia l state of a finite state machine

X with constraint C . In T E S T G E N , Si = So, because the test control sequences

begin and end at the same ini t ia l state So (is usually idle). The constraint C is a

set of feasible paths, including restrictions on the iteration number of while loops

and transition loops, etc..

T E S T G E N generates subtours (test cases) based on a set of constraints and the

information in the P D S which has been established by the parsers according to a given

specification. The subtours generation algorithm is an exhaustive depth first search over

the protocol behavior tree. If a test branch of this tree fulfills all the defined constraints,

then a subtour is identified with this test branch. The algorithm is given briefly as

follows:

Chapter 5. Applying Mobile IP to TESTGEN 53

Generate_subtour(E T S , Cm ,-„, C m a x , q, u , subtour)

{

find transition t in the E T S that can be fired at state q;

for each t {

i f the event of t is an ISP or I P D U (Input P D U) {

for al l ISP or I P D U parameter value combination v G CV {

i f t is enabled by v {

Qnext apply action function to state q and event (I P D U or ISP);

Unext ^~ u-\- the elements usage of action function of t

subtournext <r- subtour + (t,v);

if Cmin 5; ^next 5: Cmax and (Jnext — Qinit

{ output the subtour to the file; return; }

i f unext ^ Cmax

Generate_subtour (E T S , C m j n , C m a x , <jnext iunexti subtour next);

}

}

};

i f the event of i is a P R O V I D E D clause and no W H E N clause {

i f t is enabled {

Qnext apply action function to state q;

Unext —̂ u+ the the elements usage of action function of t

subtournext «— subtour + (t,v);

i f Cmin ^ U n e x t ^ Cmax and ([next — (Jinit

Chapter 5. Applying Mobile IP to TESTGEN 54

{ output the subtour to the file; return; }

if u. "next — < c, max

Generate_subtour (E T S , C m t r i , C, subtour. nextj i

}

}

}

}

where Cmax is a vector of all the maximal constraints, Cmin is a vector of al l the min imal

constraints, q is a state, u is a vector of the number of current usages for al l parameters,

CV is a set of al l allowed parameter value combinations.

Using the algorithm above, subtours that satisfy the constraints can be generated.

The algorithm generateds finite subtours, because of the restriction of the constraints.

5.1.2 Constraints of T E S T G E N

There are two types of constraints in T E S T G E N . One type sets the max imum and

min imum usage for all elements, including states, ISPs, OSPs , P D U s , constants, vari­

ables, and timers. The other type is the parameter variations which define a set of values

for all ISPs and P D U ' s parameters. In addition, there is a set of default constraint val­

ues set by T E S T G E N . The default values for all maximum and min imum usage of al l

elements are 1 and 0 respectively, and for parameter variations are 0 and 99 respectively.

W i t h the default constraint values, 2053 test cases are generated from the home agent

specification. The 2053 test cases come from 3 test control sequences wi th data variation:

(1) I D L E to I D L E with P D U Advertisement; (2) I D L E to I D L E wi th P D U Datagram

and no output; (3) I D L E to I D L E with no meaningful P D U RegRequest and RegReply.

Chapter 5. Applying Mobile IP to TESTGEN 55

The reason is that the maximum usages of al l parameters are set to 1 and the min imum

usages of all parameters are set to 0, the values of P D U parameters are set to 0 and 99.

Such values are not meaningful in the home agent protocol.

We modify the constraints value in the following way: state R E G I S T E R E D is passed

at least once and at most 3 times; state I D L E is passed at least once and at most twice.

Hence the mobile node can apply for registration, get the service of data transmission

and advertisements from home agent, and apply for de-registration. The values of P D U

parameters are set according to the meaning of the parameters and the testing purpose.

It is necessary to test the validation of the Registration Request according to specifica­

tion, so both the correct and incorrect parameter values for the'Registration Request's

parameters are supplied, including m i p M H a u t h E x t S P I and m i p M H a u t h E x t A u t h , etc..

A l l the ISPs and OSPs ' parameters are set to 0, because these ISPs and OSPs are not

util ized in our testing, but they are required by the grammar of the specification. The

major min . and max. constraint values and the major parameter variation constraints

of P D U s in the Mobi le IP protocol are given as follows:

1. State

I D L E (1/2)

R E G I S T E R E D (1/3)

2. Transitions

For all transitions (0/99)

3. ISP

For al l ISPs (0/0)

4. O S P

For al l OSPs (0/0)

Chapter 5. Applying Mobile IP to TESTGEN 56

The following are the major parameter variation constraints for P D U s :

1. RegRequest

ipSourceAddr (8285)

ipDestAddr (821045, 82832)

mipType (1)

mipS (1)

mipLifetime (10)

mipHomeAddr (821012)

mipHomeAgent (821045)

m i p C O A (821020)

mipldentification (5, 20)

m i p M H a u t h E x t S P I (200, 250)

m i p M H a u t h E x t A u t h (100, 150)

2. DeRegRequest

ipSourceAddr (821012)

ipDestAddr (821045)

mipType (1)

mipS (1)

mipHomeAddr (821012)

mipHomeAgent (821045)

m i p C O A (0)

mipldentification (50)

m i p M H a u t h E x t S P I (200)

Chapter 5. Applying Mobile IP to TESTGEN 57

m i p M H a u t h E x t A u t h (100)

3. Advertisement

For all parameters (1)

4. RegReply

For al l parameters (1)

A l l the parameters of Advertisement and RegReply are assigned in the protocol spec­

ification, so the values in the constraint part are initialized to 1. This does not affect the

test case generation.

W i t h the above constraint values, there are 641 test cases generated by T E S T G E N

which come from 4 test control sequences with data variation. The 4 typical test control

sequences and the typical test cases in T T C N . M P form are given in Appendix F .

If I D L E (1/2) is changed to I D L E (1/3), there wi l l be 27802'test cases. These test

cases are to be used in the T E S T S E L later.

5.1.3 Comments on T E S T G E N

W i t h the experience of ut i l izing T E S T G E N on Mobile IP, my experience and com­

ments on T E S T G E N are as follows:

Advantages:

1. B y using formal specification, Estel le .Y and A S N . l or Estelle.Z, the ambiguities in

the specification written in English can be detected earlier.

2. It is convenient for the user to have various choices through T E S T G E N menus to

select different parameter constraints according to the testing purposes. Also , it is

Chapter 5. Applying Mobile IP to TESTGEN 58

easy to repeat the operation unt i l the user gets a satisfactory result.

3. T E S T G E N combines both the control component and the data component, there­

fore it can yield many different instances for test cases. In the real testing, there

may be al l kinds of messages fed into the implementation. For example, in the

home agent implementation, a RegRequest with different parameters may be re­

ceived. From T E S T G E N the instances of such RegRequest can be generated.

Problems in T E S T G E N :

1. Assignment statement: Sometimes the assignment statements in the specification

are not executed correctly. For example, al l the parameters of RegReply P D U are

assigned in the specification according to the test purpose, but the subtours gen­

erated by the T E S T G E N reveal values which are not assigned in the specification,

such as -1, 99 and so on. These parameter values of RegReply render the subtours

meaningless. For the Advertisement P D U , the parameters are correctly assigned

as the values in the specification.

2. Provided statement: Sometimes the provided statements are executed incorrectly.

For example, when conditions are satisfied, the F S M should transform from state

R E G I S T E R E D to state I D L E , however it does not. Hence, it is necessary to add one

more P D U deRegRequest into the specification. When conditions are satisfied, the

deRegRequest P D U is sent out and the F S M is transformed from a R E G I S T E R E D

state to a I D L E state. This is not convenient for specification.

3. Expression: Sometimes the expressions are processed incorrectly. After changing

the formula, the expressions can be computed correctly. For instance, changing

not (a > b) into a < b enables T E S T G E N to run more smoothly.

Chapter 5. Applying Mobile IP to TESTGEN 59

4. Single module: Because T E S T G E N can only process a single module, the test for

the input/output message from/to the module can not be done. In this thesis, we

only assume that the home agent receives a RegRequest P D U , and sends out an

Advertisement P D U , a RegReply P D U and a Datagram P D U . A n y tests on the

communications between the home agent and mobile node can not be done. In the

real test, it is necessary to test the communications among the home agent, the

mobile node and the foreign agent.

5. Function of the subset: A t present, T E S T G E N can only support a very small

subset of the Estelle language, which makes T E S T G E N tool very l imi ted, Hence,

only a small protocol can be specified and fed into the T E S T G E N tool. In the real

world, the protocols, such as the Mobi le IP Protocol, are much bigger and more

complex than that which can be specified in Estel le .Y and A S N . l . It would be more

practical i f T E S T G E N can support more features, such as communication between

two entities, parallelism between two module instances, dynamic structure, more

statements and variable types, and etc.

6. Constraints: Some functions of constraints are duplicated. For example, if the

maximum usage of R E G I S T E R E D state is increased, and the max imum usage of

RegRequest and Datagram are not changed, no more test cases wi l l generated.

Because only when some events, such as RegRequest and Datagram, happen, can

the protocol state machine pass the state R E G I S T E R E D one more time. The usage

of state and P D U / I S P are related.

Future study:

1. More examples are needed to test every aspect of T E S T G E N to check if it works

Chapter 5. Applying Mobile IP to TESTGEN 60

perfectly according to its design.

2. The T E S T G E N tool can be expanded into several aspects: multiple modules, more

data types, more statements and subroutines.

5.2 The Coverage Of The Test Suite

T E S T G E N yields a large number of test cases, ranging from a few thousand to tens

of thousands. These test cases are combinations of both the control sequences and

data variations. A l l of these test cases come from a few control sequences. In these

control sequences, which have more coverage than the others? When there are numerous

control sequences, we must address this question. The T E S T S E L tool tries to answer

this question. In this section, the algorithm of T E S T S E L is given, followed by the results

of applying selection to the test suite in the above section. The coverage wi l l be discussed

in later section.

5.2.1 The algorithm of the test selection tool

A l l the test cases form a test space. In this space, some test cases are very close, i.e.,

the distance between them is short. However, some test cases are distant. If a set of test

cases is to be selected, which wi l l be in the final test case set? Figure 5.1 shows circle B

is bigger than circle A , even there are both five test cases in each circle.

We would say test case set B has more coverage than test case set A , since the distance

between B and the furthest test case to B is smaller than the distance between A and

the furthest test case to A . B and A may have the same cost, since both B and A have

five test cases and they may spend same steps to find these five test cases respectively.

The formal algorithms of calculating the distance between test cases, the cost, and the

Chapter 5. Applying Mobile IP to TESTGEN 61

\ • • •

•
•

•
B *

•

•
test case space •

Figure 5.1: Test Case Space

coverage are in [MVC92] .

The algorithm starts with an empty set of the selected test cases T C , and the current

cost (Cur_Cost) 0. Whi le the tolerance (i.e., the distance between test cases) e is greater

than emin for each test control sequence (tco) in the test suite T S , the min imum distance

between tco and any test control sequence tc in T S is calculated. If the min imum distance

is greater than the current tolerance e , then the tco is added to the test cases T C . Once

all the test control sequences in the T S have been tested, the test selection tolerance e is

shrunk by mult ipl ing the user defined scale factor (Scale), and reiterating the algorithm

unti l the min imum tolerance (e m i „) is reached or the maximum cost (MaxCost) is reached.

The brief test selection algorithm is given as follows:

1. init ialization: T C <— 0; Cur_Cost <— 0;

2. loop: while e > e m t r i {

reset TS ;

while (there are unprocessed test cases in TS) {

Chapter 5. Applying Mobile IP to TESTGEN 62

tc0 <— pick up a test case in T S randomly;

distance mintcexc { a l l dt(icn, tc) };

if (distance > e)

if (Cur_Cost + Cost(rco) < MaxCost) {

T C <- T C U { tc0 };

Cur.Cost <— Cost(rco) + Cur_Cost ;

}

else break from the inter while loop;

Mark the tco as processed

}

e 4— e x Scale ;

}

where dt is a function to compute the distance between the two test control sequences

and Cost is a function to compute the cost for the test control sequence. A detailed

algorithm is in [MVC92].

5.2.2 The results of the T E S T S E L

The results of running the T E S T S E L tool are given in Table 5.1, including the infor­

mation on test cases (T C) , control sequences (CS), epsilon (Eps), min . epsilon (mJEps),

max. acceptable cost (MCost) , scale (Scale), real cost (RCost) , coverage (Coverage),

selected control sequence (SCS) and selected test cases (S T C) . X denotes no result in

this place.

Chapter 5. Applying Mobile IP to TESTGEN 63

Four groups of test selection results are given in the table. In the first group there

are 641 test cases generated by T E S T G E N . These 641 test cases are composed from

4 test control sequences with data variation. In the fourth group, there are 27802 test

cases, which consist of 62 test control sequences with data variation. From Table 5.1, the

following information can be observed, and some strong and weak points can be observed:

• In the first group, if the parameter cost is set to be 20 and the scale to be 0.3, then

the test selection finishes with 5 real costs, 2 control sequences, 129 test cases and

76% for the test coverage. If the parameter cost is set to be 20, and the scale to be

0.1, then the test selection finishes with 5 real costs, 1 control sequence, 128 test

Group T C CS Eps m_Eps MCos t Scale RCost Coverage SCS S T C
641 4 1.8 0.3 20 0.3 5 0.76 2 129
641 4 2.0 0.1 20 0.5 5 1.00 4 296

1 641 4 1.8 0.3 20 0.1 5 0.51 1 128
641 4 1.0 0.05 20 0.5 0 1.00 4 296
641 4 1.8 0.3 5 0.3 0 -49.0 0 0
641 4 1.8 0.3 10 0.3 5 0.76 2 129
529 7 1.8 0.3 20 0.5 6 0.88 3 257
529 7 1.5 0.1 20 0.2 12 0.88 3 257

2 529 7 1.0 0.01 30 0.2 12 1.00 7 521
529 7 1.0 0.05 20 0.4 12 1.00 7 521
529 7 1.0 0.1 20 0.4 12 0.94 5 265

17425 13 1.8 0.3 20 0.5 6 0.88 3 X
17425 13 1.5 0.1 40 0.2 12 0.88 3 X

3 17425 13 1.0 0.01 50 0.5 12 0.99 9 X
17425 13 1.0 0.05 40 0.3 24 0.98 7 X
17425 13 1.0 0.01 40 0.1 36 1.00 13 X
27802 62 1.8 0.3 20 0.5 16 0.75 5 X

4 27802 62 1.5 0.1 40 0.2 33 0.88 7 X
27802 62 1.0 0.01 50 0.5 48 0.94 24 X
27802 62 1.0 0.01 70 0.5 37 0.99 39 X

Table 5.1: Results of the T E S T S E L for Specification in E s t e l l e . Y + A S N . l

Chapter 5. Applying Mobile IP to TESTGEN 64

cases and 51% for the test coverage. If the epsilon and min . epsilon are changed as

well, the test selection finishes with 5 real cost, 4 control sequences, 296 test cases

and the test coverage is 100%.

• The strong points are:

1. The user can choose any parameter value to satisfy their requirement. If the

bigger epsilon, smaller min . epsilon and smaller scale are chosen, then more

control sequences are selected and more coverage is obtained.

2. It is an efficient tool for a big group of test cases, because the user can select

more efficient test cases with an acceptable cost and a satisfactory coverage

from the whole collection of test cases.

• The weak points are:

1. Real cost: The cost is the sum of the number of steps for selecting control

sequences according to the parameters given by the user.

— From the data in group one, we observed that almost al l the test costs are

5, regardless of how many control sequences are selected and how much

the coverage is. This is unrealistic in the real world. It w i l l invariably

cost more when more control sequences are selected and more coverage is

obtained.

— In another test case selection, we even have 4 control sequences selected

with no cost.

— In one test case selection from the fourth group, 24 control sequences are

selected with the cost at 48 and the coverage at 94%. In another test case

Chapter 5. Applying Mobile IP to TESTGEN 65

selection with the same parameters except with the max. cost parameter

at 70, 39 control sequences are selected wi th cost at 37 and coverage at

99%. This is unrealistic in the real world. From the algorithm above,

the cost should be higher than 48 because 15 more control sequences are

selected and 5% more coverage is reached.

2. Selection: In the selected control sequences, sometimes there are two similar

control sequences, i.e., one control sequence is selected and put into the file

twice. For example:

Phase = 5, TC Id. = 0

(-Advertisement -, 1) (RegRequest RegReply -, 1)

(- Advertisement -, 1) (Datagram Datagram -, 1)

(DeRegRequest RegReply 1) (RegRequest RegReply -, 1)

Phase = 0, TC Id. = 0

(- Advertisement 1) (RegRequest RegReply -, 1)

(- Advertisement -, 1) (Datagram Datagram 1)

(RegRequest RegReply -, 1) (DeRegRequest RegReply -, 1)

In phase 0, test case 0 is selected and put into the file; In phase 5, test case 0

is selected and put into the file again. That means one more control sequence

and more duplicative test cases are collected later. From the algorithm above,

there should only be one test case 0 in the test cases set to T C .

3. Coverage: When 4 test control sequences are selected from 4 control sequences,

the coverage is 100%. This is reasonable. When no control sequence is selected,

Chapter 5. Applying Mobile IP to TESTGEN 66

the coverage should be 0 instead of -49.00. The formula used with no control

sequence is 1 — 100.0/2.0 = —49.0. This is incorrect.

4. Merging: From 641 test cases, 4 control sequences are discovered. After merg­

ing these 4 control sequences with data variation, there should be 641 test

cases. Because the merge module reproduces the selected test cases in the

original form, i.e., all of the original instances generated by T E S T G E N should

be included. But from the T E S T S E L , only 296 test cases are reproduced. We

lose more than half the original test cases. The same happens in the second

group.

5. B i g group test cases: T E S T S E L is more useful for selecting- more efficient

control sequences from a large number of control sequences generated from

the T E S T G E N tool.. In the first group, the number of control sequences is 4,

which is a bit small. Hence we have other groups wi th more control sequences.

The merging module does not work for the third and the fourth group. (The

error report is " Wrong result in idJ i l e and selectJile", but both id_file and

selectJile are internal files in the test selection tool.) So the complete selected

test cases can not be obtained. This defeats the function of T E S T S E L .

5.3 Resu l t s f r o m the E s t e l l e . Z parser

The Estelle.Z specification language is defined, and its parser is implemented and

linked with the T E S T G E N kernel. To test whether the parser functions correctly with

the T E S T G E N kernel, the specifications of the home agent in both Estelle.Z and Es­

telle. Y + A S N . l are fed into the T E S T G E N tool. If two exact test suites or two very

similar test suites are generated by T E S T G E N , then the parser of Estelle.Z is working

Chapter 5. Applying Mobile IP to TESTGEN 67

correctly.

From Figure 5.2, we can observe: i f we try to get exact or very similar test suites,

then we need to have exact or very similar data structure the P D S for the same protocol

specifications, because the T E S T G E N kernel generates test suites completely based on

all information in the P D S . A l l data in the P D S are stored in the internal file pds.file.

There are two P D S files, the P D S l and the P D S 2 , for two home agent specifications, a

specification in E s t e l l e . Y + A S N . l and a specification in Estelle.Z. After comparing the

P D S l and the P D S 2 , we observed the P D S 2 is the same as the P D S l . Besides, with

the same constraints of the T E S T G E N tool, 641 test cases are generated for both home

agent specifications. After fed into the T E S T S E L , two sets of 641 test cases result in the

same coverage and the same cost. The same results are developed for the three other

groups. From Table 5.2 and Table 5.1, we can conclude the the parser works well.

5.4 S u m m a r y

This chapter has discussed the algorithms of the T E S T G E N tool and the T E S T S E L

tool, the two test suites from the T E S T G E N tool for home agent specification in Es­

t e l l e . Y + A S N . l and in Estelle.Z, and the quality of the two test suites.

The results of the T E S T S E L has demonstrated that the parser of Estelle.Z can be

used to be the front part of the T E S T G E N tool, and the parser simplifies the protocol

specifications. In addition, there is s t i l l further work to make the T E S T G E N + environ­

ment more practical and more efficient

Chapter 5. Applying Mobile IP to TESTGEN

Figure 5.2: Two Parsers

Chapter 5. Applying Mobile IP to TESTGEN 69

Group T C CS Eps m_Eps MCos t Scale RCost Coverage SCS S T C
641 4 1.8 0.3 20 0.3 5 0.76 2 129
641 4 2.0 0.1 20 0.5 5 1.00 4 296

1 641 4 1.8 0.3 20 0.1 5 0.51 1 128
641 4 1.0 0.05 20 0.5 0 1.00 4 296
641 4 1.8 0.3 5 0.3 0 -49.0 0 0
641 4 1.8 0.3 10 0.3 5 0.76 2 129
529 7 1.8 0-3 20 0.5 6 0.88 3 257
529' 7 1.5 0.1 20 0.2 12 0.88 3 257

2 529 7 1.0 0.01 30 0.2 12 1.00 7 521
529 7 1.0 0.05 20 0.4 12 1.00 7 521
529 7 1.0 0.1 20 0.4 12 0.94 5 265

17425 13 1.8 0.3 20 0.5 6 0.88 3 X
17425 13 1.5 0.1 40 0.2 12 0.88 3 X

3 17425 13 1.0 0.01 50 0.5 12 0.99 9 X
17425 13 1.0 0.05 40 0.3 24 0.98 7 X
17425 13 1.0 0.01 40 0.1 36 1.00 13 X
27802 62 1.8 0.3 20 0.5 16 0.75 5 X

4 27802 62 1.5 0.1 40 0.2 33 0.88 7 X
27802 62 1.0 0.01 50 0.5 48 0.94 24 X
27802 62 1.0 0.01 70 0.5 37 0.99 39 X

Table 5.2: Results of the T E S T S E L for Specification in Estelle.Z

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a front end has been developed for the protocol specification language,

Estelle.Z, which is based on Estelle I S O / I E C ISO 9074:1989(E). This front end performs

the syntactic and semantic analysis of an Estelle.Z specification, and produces an an­

notated parse tree stored in the P D S as the output. It supports the main structures

of the Estelle language. The new parser can accept the declarations of specifications in

Estelle.Z instead of in A S N . l language, and can be easily expanded to complete Estelle

language.

A real world protocol, home agent - a component of Mobi le IP, was used to test the

parser. First , the protocol was specified in E s t e l l e . Y + A S N . l . Through its parser, the

P D S was developed. A test suite was generated by the T E S T G E N tool, then the test suite

was fed into the T E S T S E L tool, and a set of satisfactory test cases was developed. Also

a set of constraints for T E S T G E N and a set of parameters for T E S T S E L were obtained.

Second, the protocol was specified in Estelle.Z. Through the Estelle.Z parser, the same

P D S was developed as in the E s t e l l e . Y + A S N . l parser. A test suite was generated by

T E S T G E N , and the test suite was fed into T E S T S E L , the same set of selected test suite

was successfully obtained, wi th the same set of constraints for T E S T G E N and the same

set of parameters for the T E S T S E L tool. B y comparing the two sets of data obtained

70

Chapter 6. Conclusions and Future Work 71

through the two parsers, we observed that the Estelle.Z parser works correctly.

The framework established in this thesis is quite powerful. The syntax of Estelle.Z can

be expanded to the whole Estelle language easily. The tree structure is general and wi l l

be augmented to support all of Estelle without any difficulty. To add more information

in the tree structure, users simply augment the node structure.

B y analyzing the results, T E S T G E N and T E S T S E L , the thesis discussed the advan­

tage and l imitat ion of T E S T G E N and T E S T S E L .

6.2 Future Work

A number of features should be implemented or improved to enhance the function of the

test suite generation environment T E S T G E N - | - listed as the following:

Parser

The following needs to be done for the parser module in the future:

1. A t present, the parser has been tested successfully by a real protocol specification,

the home agent specification. Due to the time constraints, we only fed one real

protocol specification to test the parser. It would be better to have had more real

protocol specifications to test al l aspects of the parser.

2. A number of features should be implemented to enhance the parser. Such as adding

more data types, more statements, expanding the P D S to accommodate more infor­

mation on the Estelle language, expanding the Estelle.Z to whole Estelle language

to specify more complex real world protocols. This work needs to be done in con­

junction wi th extension to the T E S T G E N engine.

Chapter 6. Conclusions and Future Work 72

3. Furthermore, the parser for S D L and L O T O S can be established to make the T E S T -

G E N + environment more widely used.

T E S T G E N

The following needs to be done for the T E S T G E N module in the future:

1. Expand the T E S T G E N engine to support multiple modules. In-the real world pro­

tocols, there are more than one module. For instance, in Mobi le IP, there are three

modules: home agent, foreign agent and mobile host. To test the implementation

of the whole mobile IP protocol, the test suite for the whole Mobi le IP, including

the home agent, the foreign agent and the mobile host, should be developed. In

addition, with only one module, it is impossible to test the cooperation among the

modules.

2. Expand the T E S T G E N engine to process more information in the P D S . As the

parser processes the whole Estelle, the T E S T G E N engine should be able to process

all the information in the P D S to generate a test suite. Without the support

of the T E S T G E N engine, even i f the parser were expanded to whole Estelle, the

T E S T G E N tool st i l l does not make any more sense than before. Therefore, the

parser and the T E S T G E N engine should be expanded at the same time.

3. Resolve the problems in the T E S T G E N engine. The problems, such as the problems

in the processing of assignment statements, need to be resolved. These problems

prevent the T E S T G E N engine from generating meaningful test suites.

T E S T S E L

The following needs to be done for the T E S T S E L module in the future:

1. Output. The selected test cases are in an internal file. They are neither in subtours

Chapter 6. Conclusions and Future Work . 73

which are readable by people, nor in T T C N form which is standard test suite

notation. It is necessary to modify the output into T T C N form to have T E S T S E L

widely used.

2. Merging. Usually real protocols are huge, and the test cases are numerous, it is

thus necessary to improve the merging module to process large test suites.

3. Cost. The cost is one of the indices to evaluate the quality of the selected test

suite. From my practical experience on the home agent, the cost calculation does

not correctly reflect the related cost for the test suite. Therefore it is necessary to

improve this algorithm.

Bibliography

[Cho78] T. S. Chow. Testing Software Design Modeled by Fini te State Machines .
IEEE Transactions on Software Engineering, 4(3):178—187, March 1978.

[CVI89] W . Y . L . Chan, S. T . Vuong, and M . R . Ito. A n Improved Protocol Test
Generation Procedure Based on UIOs. In Proc. of the ACM SIGCOMM '89,
September 1989.

[Gon70] G . Gonenc. A Method for the Design of Fault Detection Experiments. IEEE
Transactions on Computers, 19(6) :551—558, June 1970.

[ISO] ISO DIS/9646-3, OSI Conformance Testing Methodology and Framework, Part
3: The Tree and Tabular Combined Notation, march 1990. and interim working
documents throughout 1990, particularly T T C N Extensions, I S O / I E C J T C
1/SC 21 N5077.

[LV93] Sangho Lee and Son T . Vuong. T E S T G E N + : A n environment for protocol
test suite generation, selection and validation, July 1993.

[MVC92] M . McAl l i s t e r , S. T . Vuong, and J . Curgus. Automated Test Case Selection
Based on Test Coverage Metrics. In Proc. of the IWPTS V, Montreal , Canada,
September 1992.

[Per96] Charles Perkins. IP mobil i ty support, draft-ietf-mobileip-protocol-15.txt, Feb
1996.

[Pro92] R . L . Probert. T T C N : the international notation for specifying tests of com­
munications. Computer Networks and ISDN Systems, 23:417-438, 1992.

[SD88] K . K . Sabnani and A . T. Dahbura. A Protocol Test Generation Procedure.
Computer Networks and ISDN Systems, 15(4):285-297, September 1988.

[VCI89] S. T . Vuong, W . Y . L . Chan, and M . R. Ito. The UIOv-Method for Proto­
col Test Sequence Generation. In Proc. of the IWPTS II, Ber l in , Germany,
October 1989.

74

Appendix A

A S N . l specification of the simplified Home Agent in Mobile IP

HomeAgent DEFINITIONS ::=

BEGIN

PduMessage ::= CHOICE

{

RegRequest,

DeRegRequest,

RegReply,

Datagram,

Datagrambak,

Advertisement

}

DeRegRequest ::= SEQUENCE

{

— IP f i e l d s

ipSourceAddr INTEGER,

ipDestAddr INTEGER,

— addr. from which the msg i s sent

— addr. of foreign agent / home agent

75

Appendix A. ASN.l specification of the simplified Home Agent in Mobile IP 76

— Mobile IP f i e lds

mipType INTEGER, — set to 1

INTEGER, — 1: simultaneous bindings"

INTEGER, — IP addr. of mobile node

INTEGER, — IP addr. of mobile node's home agent

INTEGER, — IP addr of the end of the tunnel

mipldentif ication INTEGER, — number constructed by mobile node

mipS

mipHomeAddr

mipHomeAgent

mipCOA

— Mobile-Home Authentication Extension

mipMHauthExtSPI INTEGER,

mipMHauthExtAuth INTEGER

}

Security Parameter Index (4 Bytes)

Authenticator, keyed MD5

RegRequest ::= SEQUENCE

{

— IP f i e lds

ipSourceAddr INTEGER,

ipDestAddr INTEGER,

addr. from which the msg i s sent

addr. of foreign agent / home agent

- - Mobile IP f i e lds

mipType INTEGER,

mipS INTEGER,

mipLifetime INTEGER,

set to 1

1: simultaneous bindings

time remaining before expired

Appendix A. ASN.l specification of the simplified Home Agent in Mobile IP 77

mipHomeAddr INTEGER, —

mipHomeAgent INTEGER, —

mipCOA INTEGER, —

mipldentif ication INTEGER, —

IP addr. of mobile node

IP addr. of mobile node's home agent

IP addr of the end of the tunnel

number constructed by mobile node

— Mobile-Home Authentication Extension

mipMHauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER - - Authenticator, keyed-MD5

}

RegReply ::= SEQUENCE

{

— IP f i e lds

ipSourceAddr INTEGER, — addr. from which the msg i s sent

ipDestAddr INTEGER, — addr. of foreign/home agent

— Mobile IP f i e lds

mipType INTEGER,

mipCode INTEGER,

mipLifetime INTEGER,

mipHomeAddr INTEGER,

mipHomeAgent INTEGER,

mipldentif ication INTEGER,

- - set to 3

- - the result of reg i s trat ion request

-- time remaining before expired

-- IP addr. of mobile node

-- IP addr. of mobile node's home agent

-- number constructed by mobile node

Appendix A. ASN.l specification of the simplified Home Agent in Mobile IP

— Mobile-Home Authentication Extension

mipMHauthExtSPI INTEGER, — Security Parameter Index- (4 Byt

mipMHauthExtAuth INTEGER — Authenticator, keyed MD5

}

Advertisement ::= SEQUENCE

{

— IP f i e lds

ipDestAddr INTEGER,

ipTTL INTEGER,

milt icase addr. or

— l imited broadcase addr.

IP f i e l d , must be set to 1

— ICMP f i e lds

icmpLifetime INTEGER,

icmpCode

- l i f e time of va l id advertisemt

— interval = 1/3 l i fe t ime

INTEGER, — 0: as a router too

— Mobil i ty Afent Advertisement Extension

extRegLifetime INTEGER, — longest time acceptable for reg

extH INTEGER (0..1) — 1: th is i s a home agent

}

Datagram ::= SEQUENCE

{

ipDestAddr INTEGER,

Appendix A. ASN.l specification of the simplified Home Agent in Mobile IP

data INTEGER

}

Datagrambak : := SEQUENCE

{

ipDestAddr INTEGER,

data INTEGER
}

User ::= CHOICE

{

Junki

}

Net ::= CHOICE

{

Junko

}

Junki ::= SEQUENCE

{

dummy INTEGER

}

Junko ::= SEQUENCE

{

dummy INTEGER

>

END

Appendix B

Estel le .Y specification of the simplified Home Agent in Mobile IP

specification home_agent ;

CONST

mipMHauthExtAuth

mipMHauthExtSPI

mipNodeHomeAddr

mipHomeAgent

mipS

localNetAddr

router

AdLifetime

100 : int;

200 : int;

821012 : int;

821045 : int;

1 : int;

82832 : int;

1 : int;

= 18000 : int;

RegLargestLifetime = 10 : int;

VAR

identification

careOfAddr

careOfAddrl

bindno

int;

int;

int;

int;

80

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

ISP

Junki User;

OSP

Junko Net;

PDU

RegRequest recv_in Junki;

DeRegRequest recv_in Junki;

RegReply recv_in Junki;

Datagram recv_in Junki;

Datagrambak recv_in Junki;

Advertisement recv_in Junki;

TIMER

STATE

ad_timer 600;

REGISTERED, IDLE ;

INITIALIZATION

TO IDLE

BEGIN

bindno := 0;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 82

i d e n t i f i c a t i o n := 0;

careOfAddr := 0;

END;

TRANS

FROM IDLE

TO IDLE

prov ided t imeout(ad_t imer)

output Advertisement

begin

Advert i sement . ipDestAddr := l o c a l N e t A d d r ;

A d v e r t i s e m e n t . i p T T L := 1;

Adver t i sement . i cmpLi fe t ime := A d L i f e t i m e ;

Advertisement. icmpCode := 1;

Advert i sement .extRegLi fe t ime := R e g L a r g e s t L i f e t i m e ;

Advert i sement .extH := 1;

end;

FROM IDLE

TO REGISTERED

when RegRequest

prov ided

(RegRequest .mipLifet ime > 0)

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

AND

(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

AND

(RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

AND

(R e g R e q u e s t . m i p l d e n t i f i c a t i o n > i d e n t i f i c a t i o n)

AND

(RegRequest . ipDestAddr = mipHomeAgent)

output RegReply

begin

RegReply . ipSourceAddr := mipHomeAgent;

RegReply . ipDestAddr := RegRequest . ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := mipS;

RegReply .mipLife t ime := RegRequest .mipLife t ime-1; „

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegRep ly .mip ldent i f i ca t ion :=RegReques t .mip ldent i f i ca t ion+1

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

i d e n t i f i c a t i o n := R e g R e q u e s t . m i p l d e n t i f i c a t i o n +1 ;

i f (mipS = 0)

then

begin

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 84

bindno := bindno + 1;

i f (bindno = 1)

then careOfAddr := RegRequest.mipCOA

else

careOfAddr1 := RegRequest.mipCOA;

end

else begin

careOfAddr := RegRequest.mipCOA;

bindno := 1;

end;

end;

FROM IDLE

TO IDLE

when Datagram;

FROM IDLE

TO IDLE

when RegRequest

provided

RegRequest.ipDestAddr = localNetAddr

output RegReply

begin

RegReply.ipSourceAddr := mipHomeAgent;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1

RegReply.mipCode := 136;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

end;

FROM REGISTERED

TO IDLE

when DeRegRequest

provided

(DeRegRequest.mipMHauthExtSPI = mipMHauthExtSPI

AND

(DeRegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

AND

(DeRegRequest.ipDestAddr = mipHomeAgent)

output RegReply

begin

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 86

RegReply . ipSourceAddr := mipHomeAgent;

RegReply . ipDestAddr := DeRegRequest . ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 0;

RegReply .mipLi fe t ime := 0;

RegReply.mipHomeAddr := DeRegRequest.mipHomeAddr;

RegReply.mipHomeAgent := DeRegRequest.mipHomeAgent;

R e g R e p l y . m i p l d e n t i f i c a t i o n : = D e R e g R e q u e s t . m i p l d e n t i f i c a t i o n +1;

i d e n t i f i c a t i o n := DeRegReques t .mip ldent i f i ca t i on ;

bindno := bindno - 1;

RegReply.mipMHauthExtSPI :=DeRegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=DeRegRequest.mipMHauthExtAuth;

i f (DeRegRequest.mipCOA = mipNodeHomeAddr)

then

begin

careOfAddr := 0;

careOfAddr l := 0;

end

e l s e

begin

i f (careOfAddr =DeRegRequest.mipCOA)

then careOfAddr := 0;

i f (careOfAddr1 =DeRegRequest.mipCOA)

Appendix B. Estelle. Y specification of the simplified Home Agent in Mobile IP 87

then careOfAddr l := 0;

end;

end;

FROM REGISTERED

TO REGISTERED

p r o v i d e d t imeout(ad_t imer)

output Advertisement

begin

Advert i sement . ipDes tAddr := l o c a l N e t A d d r ;

A d v e r t i s e m e n t . i p T T L := 1;

Adver t i sement . i cmpLi fe t ime := A d L i f e t i m e ;

Advertisement. icmpCode := 1;

Advert i sement .extRegLi fe t ime := RegLarges tL i f e t ime;

Advert i sement .extH := 1;

end;

FROM REGISTERED

TO REGISTERED

when Datagram

p r o v i d e d (bindno <> 0)

output Datagram

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 88

begin

Datagram.ipDestAddr := careOfAddr;

Datagram.data := Datagram.data;

end;

FROM REGISTERED

TO REGISTERED

when Datagram

p r o v i d e d (bindno = 0)

AND (Datagram.ipDestAddr = mipNodeHomeAddr)

output Datagram

begin

i f (r o u t e r = 0)

then

beg in

Datagram.ipDestAddr := 0;

Datagram.data := 0;

end

e l s e

Datagram.ipDestAddr := mipNodeHomeAddr;

end;

FROM REGISTERED

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 89

TO REGISTERED

when Datagram

prov ided (Datagram.ipDestAddr = mipNodeHomeAddr)

AND (bindno = 1)

output Datagram

begin

Datagram.ipDestAddr := careOfAddr ;

end;

FROM REGISTERED

TO REGISTERED

when Datagram

p r o v i d e d (Datagram.ipDestAddr = mipNodeHomeAddr)

AND (bindno = 2)

output Datagram, Datagrambak

begin

Datagram.ipDestAddr := careOfAddr ;

Datagrambak.ipDestAddr := c a r e O f A d d r l ;

Datagrambak.data := Datagram.data;

end;

FROM REGISTERED

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

TO REGISTERED

when RegRequest

provided

(RegRequest.mipMHauthExtSPI <> mipMHauthExtSPI)

OR

(RegRequest.mipMHauthExtAuth <> mipMHauthExtAuth)

output RegReply

begin

RegReply.ipSourceAddr := RegRequest.ipDestAddr;

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 131;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI := 0;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

end;

FROM IDLE

TO IDLE

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

when RegRequest

provided RegRequest.mipLifetime < 0 ;

FROM REGISTERED

TO REGISTERED

when RegRequest

provided RegRequest.mipLifetime < 0 ;

FROM IDLE

TO IDLE

when RegRequest

provided

(RegRequest.mipldentification < identification)

output RegReply

begin

RegReply.mipCode := 133;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

end;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

FROM REGISTERED

TO REGISTERED

when RegRequest

provided

(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

AND

(RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

AND

(RegRequest.mipldentification > ident i f i ca t ion)

AND

(RegRequest.mipLifetime > 0)

AND

(mipS = 0) AND

(bindno = 1)

output RegReply

begin

RegReply.ipSourceAddr RegRequest.ipDestAddr;

RegReply.ipDestAddr RegRequest.ipSourceAddr;

RegReply.mipType 3;

RegReply.mipCode mipS;

RegReply.mipLifet ime RegRequest.mipLifetime-1;

RegReply.mipHomeAddr RegRequest.mipHomeAddr;

RegReply.mipHomeAgent RegRequest.mipHomeAgent;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

bindno := bindno + 1;

careOfAddrl := RegRequest.mipCOA;

FROM REGISTERED

TO REGISTERED

when RegRequest

provided

(RegRequest.mipldentification < identification)

output RegReply

end;

begin

RegReply.ipSourceAddr := RegRequest.ipDestAddr;

RegReply.ipDestAddr RegRequest.ipSourceAddr;

RegReply.mipType 3;

RegReply.mipCode 133;

RegReply.mipLifetime RegRequest.mipLifetime-1;

RegReply.mipHomeAddr RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

when RegRequest

provided

not (RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

OR

not (RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

output RegReply

end;

FROM IDLE

TO IDLE

begin

RegReply.ipSourceAddr RegRequest.ipDestAddr;

RegReply.ipDestAddr RegRequest.ipSourceAddr;

RegReply.mipType 3;

RegReply.mipCode 131;

RegReply.mipLifetime RegRequest.mipLifetime-1;

RegReply.mipHomeAddr RegRequest.mipHomeAddr;

RegReply.mipHomeAgent RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

Appendix B. Estelle.Y specification of the simplified Home Agent in Mobile IP 95

RegReply.mipMHauthExtSPI := 0;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

i d e n t i f i c a t i o n := RegReques t .mip ldent i f i ca t ion+1;

end;

end.

Appendix C

Estelle.Z specification of the simplified Home Agent in Mobile IP

specification home_agent ;

const

var

mipMHauthExtAuth

mipMHauthExtSPI

mipNodeHomeAddr

mipHomeAgent

mipS

localNetAddr

router

AdLifetime

= 100 ;

= 200 ;

= 821012;

= 821045 ;

= i ;

= 82832 ;

= i ;

= 18000 ;

RegLargestLifetime = 10 ;

PduMessage : (RegRequest, DeRegRequest, RegReply, Datagram,

Datagrambak, Advertisement);

DeRegRequest :

96

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP 97

record

ipSourceAddr : integer;

ipDestAddr : integer;

mipType : integer;

mipS : integer";

mipHomeAddr : integer;

mipHomeAgent : integer;

mipCOA : integer;

mipldentification : integer;

mipMHauthExtSPI : integer;

mipMHauthExtAuth : integer;

end;

RegRequest :

record

ipSourceAddr

ipDestAddr

mipType

mipS

mipLifetime

mipHomeAddr

mipHomeAgent

mipCOA

mipldentification

integer;

integer;

integer;

integer;

integer;

integer;

integer;

integer;

integer;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP 98

end;

mipMHauthExtSPI : integer;

mipMHauthExtAuth : integer;

RegReply :

record

ipSourceAddr : integer;

ipDestAddr : integer;

mipType : integer;

mipCode : integer;

mipLifetime : integer;

mipHomeAddr : integer;

mipHomeAgent : integer;

mipldentification : integer;

mipMHauthExtSPI : integer;

mipMHauthExtAuth : integer;

end;

Advertisement :

record

ipDestAddr

ipTTL

icmpLifetime

icmpCode

integer;

integer -;

integer;

integer;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP 99

extRegLifetime : integer;

extH : integer;

end;

Datagram :

record

ipDestAddr : integer;

data : integer;

end;

Datagrambak :

record

ipDestAddr : integer;

data : integer;

end;

User : (Junki);

Junki : record

dummy : integer;

end;

Met : (Junko);

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

Junko : record

dummy : integer;

end;

identification : integer;

careOfAddr : integer;

careOfAddrl : integer;

bindno : integer;

channel SPchannel(other, Net);

by other:

Junki;

by Net :

Junko;

channel PDUchannel (pdu, other);

by pdu:

RegRequest ;

DeRegRequest ;

RegReply ;

Datagram ;

Datagrambak ;

Advertisement ;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

TIMER

ad_timer 600;

state

REGISTERED, IDLE ;

{ i n i t i a l i z a t i o n part }

i n i t i a l i z e to IDLE

begin

bindno := 0;

identification := 0;

careOfAddr := 0

end;

trans

FROM IDLE { 1 }

TO IDLE

provided timeout(ad_timer)

begin

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

Advert i sement . ipDestAddr := l o c a l N e t A d d r ;

A d v e r t i s e m e n t . i p T T L := 1;

Adver t i sement . i cmpLi fe t ime := A d L i f e t i m e ;

Advertisement. icmpCode := 1;

Advert i sement .extRegLi fe t ime := R e g L a r g e s t L i f e t i m e ;

Advert i sement .extH := 1;

output pdu.Advert i sement;

end;

FROM IDLE { 2 }

TO REGISTERED

when pdu.RegRequest

prov ided

(RegRequest .mipLifet ime > 0)

and

(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

and

(RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

and

(R e g R e q u e s t . m i p l d e n t i f i c a t i o n > i d e n t i f i c a t i o n)

and

(RegRequest . ipDestAddr = mipHomeAgent)

begin f

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP 103

RegReply . ipSourceAddr := mipHomeAgent;

RegReply . ipDestAddr := RegRequest . ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := mipS;

RegReply .mipLi fe t ime := RegRequest .mipLife t ime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

R e g R e p l y . m i p l d e n t i f i c a t i o n : = R e g R e q u e s t . m i p l d e n t i f i c a t i o n + 1 ;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

i d e n t i f i c a t i o n := R e g R e q u e s t . m i p l d e n t i f i c a t i o n +1 ;

i f (mipS = 0)

then

begin

bindno := bindno + 1;

i f (bindno = 1)

then careOfAddr := RegRequest.mipCOA

e l se

careOfAddr1 := RegRequest.mipCOA;

end

e l s e beg in

careOfAddr := RegRequest.mipCOA;

bindno := 1;

end;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

output pdu.RegReply;

end;

FROM IDLE { 3 }

TO IDLE

when pdu.Datagram

begin end;

FROM IDLE { 4 }

TO IDLE

when pdu.RegRequest

provided

(RegRequest.ipDestAddr = localNetAddr)

begin

RegReply.ipSourceAddr := mipHomeAgent;

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipCode := 136;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

i d e n t i f i c a t i o n := RegReques t .mip ldent i f i ca t ion+1;

output pdu.RegReply;

end;

FROM REGISTERED { 5 }

TO IDLE

when pdu.DeRegRequest

prov ided

(DeRegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

and

(DeRegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

and

(DeRegRequest. ipDestAddr = mipHomeAgent)

begin

RegReply . ipSourceAddr := mipHomeAgent;

RegReply . ipDestAddr := DeRegRequest . ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 0;

RegReply .mipLi fe t ime := 0;

RegReply.mipHomeAddr := DeRegRequest.mipHomeAddr;

RegReply. mipHomeAgent : = DeRegRequest. mipHomeAgent-;

R e g R e p l y . m i p l d e n t i f i c a t i o n : = D e R e g R e q u e s t . m i p l d e n t i f i c a t i o n +1;

i d e n t i f i c a t i o n := DeRegReques t .mip ldent i f i ca t i on ;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

bindno := bindno - 1;

RegReply.mipMHauthExtSPI :=DeRegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=DeRegRequest.mipMHauthExtAuth;

i f (DeRegRequest.mipCOA = mipNodeHomeAddr)

then

begin

careOfAddr := 0;

careOfAddr l := 0;

end

e l s e

begin

i f (careOfAddr = DeRegRequest.mipCOA)

then careOfAddr := 0;

i f (careOfAddr l = DeRegRequest.mipCOA)

then careOfAddr l := 0;

end;

output pdu.RegReply;

end;

FROM REGISTERED { 6 }

TO REGISTERED

p r o v i d e d t imeout(ad_t imer)

begin

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

Advert i sement . ipDestAddr := l o c a l N e t A d d r ;

A d v e r t i s e m e n t . i p T T L := 1;

Adver t i sement . i cmpLi fe t ime := A d L i f e t i m e ;

Advertisement. icmpCode := 1;

Advert i sement .extRegLi fe t ime := R e g L a r g e s t L i f e t i m e ;

Advert i sement .extH := 1;

output pdu.Advert isement;

end;

FROM REGISTERED { 7 }

TO REGISTERED

when pdu.Datagram

prov ided (bindno <> 0)

begin

Datagram.ipDestAddr := careOfAddr;

Datagram.data := Datagram.data;

output pdu.Datagram;

end;

FROM REGISTERED { 8 } .

TO REGISTERED

when pdu.Datagram

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

prov ided (bindno = 0)

AND (Datagram.ipDestAddr = mipNodeHomeAddr) •

begin

i f (r o u t e r = 0)

then

begin

Datagram.ipDestAddr := 0;

Datagram.data := 0;

end

e l s e

Datagram.ipDestAddr := mipNodeHomeAddr;

output pdu.Datagram;

end;

FROM REGISTERED { 9 }

TO REGISTERED

when pdu.Datagram

prov ided (Datagram.ipDestAddr = mipNodeHomeAddr)

AND (bindno = 1)

begin

Datagram.ipDestAddr := careOfAddr ;

output pdu.Datagram;

end;

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

FROM REGISTERED { 10 }

TO REGISTERED

when pdu.Datagram

prov ided (Datagram.ipDestAddr = mipNodeHomeAddr)

AND (bindno = 2)

begin

Datagram.ipDestAddr := careOfAddr ;

Datagrambak.ipDestAddr := c a r e O f A d d r l ;

Datagrambak.data := Datagram.data;

output pdu.Datagram;

output pdu.Datagrambak;

end;

FROM REGISTERED { 11 }

TO REGISTERED

when pdu.RegRequest

prov ided

(RegRequest.mipMHauthExtSPI <> mipMHauthExtSPI)

OR

(RegRequest.mipMHauthExtAuth <> mipMHauthExtAuth)

begin

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

RegReply.ipSourceAddr := RegRequest.ipDestAddr

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 131;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI := 0;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

output pdu.RegReply;

end;

FROM IDLE { 12 }

TO IDLE

when pdu.RegRequest

provided RegRequest.mipLifetime < 0

begin end;

FROM REGISTERED { 13 }

TO REGISTERED

when pdu.RegRequest

provided RegRequest.mipLifetime < 0

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

begin end;

FROM IDLE { 14 }

TO IDLE

when pdu.RegRequest

provided

(RegRequest.mipldentification < identification)

begin

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

output pdu.RegReply;

RegReply.mipCode := 133333;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

end;

FROM REGISTERED { 15 }

TO REGISTERED

when pdu.RegRequest

provided

(RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP 112

AND

(RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

AND

(R e g R e q u e s t . m i p l d e n t i f i c a t i o n > i d e n t i f i c a t i o n)

AND

(RegRequest .mipLifet ime > 0)

AND

(mipS = 0)

AND (bindno = 1)

begin

RegReply . ipSourceAddr ':= RegRequest . ipDestAddr;

:= RegRequest . ipSourceAddr;

:= 3;

:= mipS;

:= RegRequest .mipLife t ime-1;

:= RegRequest.mipHomeAddr;

:= RegRequest.mipHomeAgent;

R e g R e p l y . m i p l d e n t i f i c a t i o n : = R e g R e q u e s t . m i p l d e n t i f i c a t i o n + 1 ;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

i d e n t i f i c a t i o n := RegReques t .mip ldent i f i ca t ion+1;

bindno := bindno + 1 ;

careOfAddr l := RegRequest.mipCOA;

output pdu.RegReply '

RegReply . ipDestAddr

RegReply.mipType

RegReply.mipCode

RegReply .mipLi fe t ime

RegReply.mipHomeAddr

RegReply.mipHomeAgent

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

end;

FROM REGISTERED { 16 }

TO REGISTERED

when pdu.RegRequest

provided

(RegRequest.mipldentification < identification)

begin

RegReply.ipSourceAddr := RegRequest.ipDestAddr;

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 133;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI :=RegRequest.mipMHauthExtSPI;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

output pdu.RegReply;

end;

FROM IDLE { 17 }

Appendix C. Estelle.Z specification of the simplified Home Agent in Mobile IP

TO IDLE

when pdu.RegRequest

provided

not (RegRequest.mipMHauthExtSPI = mipMHauthExtSPI)

or

not (RegRequest.mipMHauthExtAuth = mipMHauthExtAuth)

begin

RegReply.ipSourceAddr := RegRequest.ipDestAddr;

RegReply.ipDestAddr := RegRequest.ipSourceAddr;

RegReply.mipType := 3;

RegReply.mipCode := 131;

RegReply.mipLifetime := RegRequest.mipLifetime-1;

RegReply.mipHomeAddr := RegRequest.mipHomeAddr;

RegReply.mipHomeAgent := RegRequest.mipHomeAgent;

RegReply.mipldentification:=RegRequest.mipldentification+1;

RegReply.mipMHauthExtSPI := 0;

RegReply.mipMHauthExtAuth:=RegRequest.mipMHauthExtAuth;

identification := RegRequest.mipldentification+1;

output pdu.RegReply;

end;

end.

Appendix D

A S N . l specification of message parameters for the complete Home Agent

Home Agent processes five types of messages: Registration Request, DeRegistration Re­

quest, Registration Reply, Advertisement and datagram. We specify these messages in

A S N . l to describe their whole parameters.

HomeAgent DEFINITIONS ::=

BEGIN

PduMessage ::= CHOICE

{

RegRequest,

DeRegRequest,

RegReply,

Datagram,

Advertisement

}

RegRequest ::= SEQUENCE

115

Appendix D. ASN.l specification of message parameters for the complete Home AgentllQ

{

— IP f i e lds

ipSourceAddr INTEGER, — addr. from which the msg is sent

ipDestAddr INTEGER, — addr. of foreign/home agent

— UDP f i e lds

udpSourcePort INTEGER, — variable

udpDestPort INTEGER, — constant 434

Mobile IP f i e lds

mipType INTEGER, — set to 1 (registrat ion request)

mipS INTEGER, — 1: simultaneous bindings

mipB INTEGER, — 1: broadcase datagrams required

mipD INTEGER, — 1: decapsulation by mobile node

mipM INTEGER, — 1: minimal encapsulation

mipG INTEGER, — 1: GRE encapsulation.

mipV INTEGER, — 1: Van Jacobson header compression

mipRSV INTEGER, — reserved b i t s , sent as 0

mipLifetime INTEGER, — time remaining before expired

mipHomeAddr INTEGER, — IP addr. of mobile node

mipHomeAgent INTEGER, —IP addr. of mobile node's home agent

Appendix D. ASN. 1 specification of message parameters for the complete Home Agentl 17

mipCOA INTEGER, — IP addr of the end of the tunnel

mipldentification INTEGER,—number constructed by the mobile node

— Mobile-Home Authentication Extension

mipMHauthExtType INTEGER, -- 32

mipMHauthExtLength INTEGER, — 4 + length of authenticator

mipMHauthExtSPI INTEGER, -- Security Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER, -- Authenticator, keyed MD5

— Mobile-Foreign Authentication Extension, optional

mipMFauthExtType INTEGER, --33

mipMFauthExtLength INTEGER, — 4 + length of authenticator

mipMFauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipMFauthExtauth INTEGER, — authenticator, keyed MD5

— Foreign-Home Authentication Extension, optional

mipFHauthExtType INTEGER, — 34

mipFHauthExtLength INTEGER, — 4 + length of authenticator

mipFHauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipFHauthExtAuth INTEGER — Authenticator, keyed MD5

}

Appendix D. ASN. 1 specification of message parameters for the complete Home Agent!

DeRegRequest ::= SEQUENCE

{

— IP f i e l d s

ipSourceAddr INTEGER,

ipDestAddr INTEGER,

~ UDP f i e l d s

udpSourcePort INTEGER,

udpDestPort INTEGER,

— Mobi le IP f i e l d s

mipType INTEGER,

mipS INTEGER,

mipB INTEGER,

mipD INTEGER,

mipM INTEGER,

mipG INTEGER,

mipV INTEGER,

mipRSV INTEGER,

- addr . from which the msg- i s sent

- addr . of foreign/home agent

- v a r i a b l e

- constant 434

- set to 1 (r e g i s t r a t i o n request)

- 1: s imultaneous b i n d i n g s

- 1: broadcase datagrams r e q u i r e d

- 1: d e c a p s u l a t i o n by mobile node

- 1: minimal e n c a p s u l a t i o n

- 1: GRE encapsu la t ion

- 1: Van Jacobson header compression

- r e served b i t s , sent as 0

Appendix D. ASN. 1 specification of message parameters for the complete Home Agent! 19

mipHomeAddr INTEGER, — IP addr. of mobile node

mipHomeAgent INTEGER, — I P addr. of mobile node's home agent

mipCOA INTEGER, -- IP addr of the end of the tunnel

mipldentification INTEGER,—number constructed by the mobile node

— Mobile-Home Authentication Extension

mipMHauthExtType INTEGER, -- 32

mipMHauthExtLength INTEGER, — 4 + length of authenticator

mipMHauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER, — Authenticator, keyed MD5

— Mobile-Foreign Authentication Extension, optional

mipMFauthExtType INTEGER, — 33

mipMFauthExtLength INTEGER, — 4 + length of authenticator

mipMFauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipMFauthExtauth INTEGER, — authenticator, keyed MD5

— Foreign-Home Authentication Extension, optional

mipFHauthExtType INTEGER, — 34

mipFHauthExtLength INTEGER, — 4 + length of authenticator

mipFHauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

Appendix D. ASN. 1 specification of message parameters for the complete Home Agentl20

mipFHauthExtAuth INTEGER - - A u t h e n t i c a t o r , keyed MD5

}

RegReply ::= SEQUENCE

{

— IP f i e l d s

ipSourceAddr INTEGER, - - addr . from which the msg i s sent

ipDestAddr INTEGER, ~ addr. of foreign/home agent

~ UDP f i e l d s

udpSourcePort INTEGER, — v a r i a b l e

udpDestPort INTEGER, - - constant 434

— Mobi le IP f i e l d s

mipType INTEGER, — set to 3 (r e g i s t r a t i o n request)

endix D. ASN.l specification of message parameters for the complete Home Agentl21

mipCode INTEGER, — the result of registration request

mipLifetime INTEGER, — time remaining before expired

mipHomeAddr INTEGER, — IP addr. of mobile node

mipHomeAgent INTEGER, — IP addr. of mobile node's home agent

mipldentification INTEGER, —number constructed by the mobile node

— Mobile-Home Authentication Extension

mipMHauthExtType INTEGER, -- 32

mipMHauthExtLength INTEGER, — 4 + length of authenticator

mipMHauthExtSPI INTEGER, --S e c u r i t y Parameter Index (4 Bytes)

mipMHauthExtAuth INTEGER, — Authenticator, keyed MD5

— Mobile-Foreign Authentication Extension, optional

mipMFauthExtType INTEGER, -- 33

mipMFauthExtLength INTEGER, -- 4 + length of authenticator

mipMFauthExtSPI INTEGER, — Security Parameter Index (4 Bytes)

mipMFauthExtauth INTEGER, -- authenticator, keyed MD5

— Foreign-Home Authentication Extension, optional

mipFHauthExtType INTEGER, — 34

mipFHauthExtLength INTEGER, — 4 + length of authenticator

Appendix D. ASN. 1 specification of message parameters for the complete Home Agentl22

mipFHauthExtSPI INTEGER, ~ Security Parameter Index (4 Bytes)

mipFHauthExtAuth INTEGER -- Authenticator, keyed MD5

}

Advertisement ::= SEQUENCE

{

— Link-Layer f i e l d s

linkDestAddr INTEGER,

— IP f i e l d s

ipTTL INTEGER,

ipDestAddr INTEGER,

— ICMP f i e l d s

- link layer dest. addr.

IP f i e l d , must be set to 1

- milticase addr. or

— limited broadcase addr.

icmpCode

icmpLifetime

INTEGER,

INTEGER,

icmpRouterAddr INTEGER,

icmpNumAddrs INTEGER,

— 0: as a router too

— i : not handle common t r a f f i c

— l i f e time of va l i d advertisemt

— interval = 1/3 lifetime

— may be set to 0

Appendix D. ASN. 1 specification of message parameters for the complete Home Agentl23

— Mobility Afent Advertisement Extension

extType INTEGER, — 16

extLength INTEGER, -- 6 + 4 * N

— N = No. Of Care of Addresses

extSeqNum INTEGER, — 0 .. Oxffff - 256

extRegLifetime INTEGER, — longest time acceptable

extR INTEGER, — 1: for FA, Reg. required

extB INTEGER, — 1: busy

extH INTEGER, — 1: this i s a home agent

extF INTEGER, — 1: this i s a foreign agent

extM INTEGER, — 1: minimal encapsulation

extG INTEGER, — 1: GRE encapsulation

extV INTEGER, — l:Van Jacobson header compression

extReserved INTEGER, — reserved, 0

extCOA INTEGER — for foreign agent, Care Of Addr.

— Prefix-Lengths Extension, optional

PLextType INTEGER, — 19

PLextLength INTEGER, — length

PLextPrelen INTEGER, — Prefix Length(s)

Appendix D. ASN. 1 specification of message parameters for the complete Home Agentl24

— One-byte Padding E x t e n s i o n , o p t i o n a l

OBType INTEGER — 0

}

Datagram ::= SEQUENCE

{ — there i s not datagram format i n t h i s document

— here only n e c e s s a r y / r e l a t e d f i e l d s are d e c l a r e d

ipDestAddr INTEGER,

data ' INTEGER

}

END

Appendix E

Selected Control Sequences and Test Cases

There are 529 test cases generated by T E S T G E N , in which there are 7 control sequences.

We feed the 7 control sequences into T E S T S E L , then we got 5 control sequences with

the coverage 94.5% and the cost 12. The 7 control sequences and the 5 control sequences

are as the follows:

1.

Advertisement - RegRequest RegReply - - Advertisement

Datagram Datagram - RegRequest RegReply - DeRegRequest RegReply -

2.

RegRequest RegReply - - Advertisement - Datagram Datagram -

RegRequest RegReply - DeRegRequest RegReply - - Advertisement -

3.

RegRequest RegReply - - Advertisement - RegRequest RegReply -

Datagram Datagram - DeRegRequest RegReply - - Advertisement -

4

RegRequest RegReply - Datagram Datagram - - Advertisement -

RegRequest RegReply - DeRegRequest RegReply - - Advertisement -

5.

RegRequest RegReply - Datagram Datagram - RegRequest RegReply -

- Advertisement - DeRegRequest RegReply - - Advertisement -

125

Appendix E. Selected Control Sequences and Test Cases 126

6.

RegRequest RegReply - RegRequest RegReply - - Advertisement -

Datagram Datagram - DeRegRequest RegReply - - Advertisement -

7.

RegRequest RegReply - RegRequest RegReply - Datagram Datagram -

Advertisement - DeRegRequest RegReply - - Advertisement

The parameters used in T E S T S E L are:

Eps = 1.000000, MinJEps = 0.100000, Scale = 0.4, MaxCos t = 20

The selected control sequences are:

Phase = 0, TC Id. = 0

(- Advertisement 1)(RegRequest RegReply -, 1)(- Advertisement 1)

(Datagram Datagram -, 1) (RegRequest RegReply 1)

(DeRegRequest RegReply -, 1)

Phase = 1, TC Id. = 2

(RegRequest RegReply -, 1)(- Advertisement -, 1)

(RegRequest RegReply -, 1) (Datagram Datagram -, 1)

(DeRegRequest RegReply -, 1)(- Advertisement -, 1)

Phase = 1, TC Id. = 36

(RegRequest RegReply -, 2) (Datagram Datagram 1)

(- Advertisement -, 1) (DeRegRequest RegReply -, 1)

Appendix E. Selected Control Sequences and Test Cases

(- Advertisement -, 1)

Phase = 2, TC Id. = 1

(RegRequest RegReply -, 1) (- Advertisement 1)

(Datagram Datagram 1) (RegRequest RegReply -, 1)

(DeRegRequest RegReply -, 1)(- Advertisement 1)

Phase = 2, TC Id. = 19

(RegRequest RegReply -, 1)(Datagram Datagram -, 1)

(RegRequest RegReply -, 1) (- Advertisement -, 1)

(DeRegRequest RegReply -, 1) (- Advertisement -, 1)

Coverage = 0.945312 with Cost : 12

Appendix E. Selected Control Sequences and Test Cases 128

** 0

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

Datagram 1 1 - - - - / Datagram 821020 1 _ / _ _ _ _ _ _ _

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 200 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 1

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 200 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - - - - / Datagram 821020 1 _ _ / _ _ - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200. 100-/ RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

Appendix E. Selected Control Sequences and Test Cases 129

** 2

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 200 150 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - - - - / Datagram 821020 \ - - - - / - - - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 3

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 250 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - - / Datagram 821020 1 - - / - - - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

Appendix E. Selected Control Sequences and Test Cases 130

/Advertisement 82832 1 18000 110 1 /

** 4

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 250 150 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - / Datagram 821020 1 - - - - / - - - - - . - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 / -

/Advertisement 82832 1 18000 110 1 /

** 5

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 20 200 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - - / Datagram 821020 l - - - - / - - - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

Appendix E. Selected Control Sequences and Test Cases 131

/Advertisement 82832 1 18000 110 1 /

** 6

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 20 200 150 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 .- / Datagram 821020 1 - - /

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

* * 7

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 20 250 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 / Datagram 821020 1 /

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

Appendix E. Selected Control Sequences and Test Cases 132

/Advertisement 82832 1 18000 110 1 /

** 8

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 20 250 150 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 - - - - / Datagram 821020 1 - - - - / - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 9

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 / ° - -

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100./

Datagram 1 1 - - - - / Datagram 821020 \ - - - - / - - - - - - -

Appendix E. Selected Control Sequences and Test Cases 133

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 -/ RegReply

821045 821012 3 0 0 821012 821045 51 200 100 / "

/Advertisement 82832 1 18000 110 1 /

** 10

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 /

RegReply 821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 150 /

RegReply 821045 8285 3 133 9 821012 821045 6'200 1 0 0 /

Datagram 1 1 - - - - / Datagram 821020 1 _ _ / - _ _ _ _ _ _

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 /

RegReply 821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 11

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 250 100 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100 /

Datagram 1 1 - - - - / Datagram 821020 1 - - - - / _ _ _ _ _

Appendix E. Selected Control Sequences and Test Cases 134

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 12

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 250 150 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100 /

Datagram 1 1 - - - - / Datagram 821020 1 - - - - / - - - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 / -

** 13

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 20 200 100 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100 /

Datagram 1 1 / Datagram 821020 1 - / - -

Appendix E. Selected Control Sequences and Test Cases 135

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advert i sement 82832 1 18000 1 1 0 1 /

* * 14

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advert i sement 82832 1 18000 1 1 0 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 20 200 150 / RegReply

821045 8285 3 133 9 821012 821045 6 "200 100 / • -

Datagram 1 1 / Datagram 821020 1 / -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 1 0 0 /

/Advert i sement 82832 1 18000 1 1 0 1 /

* * 15

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advert i sement 82832 1 18000 1 1 0 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 20 250 100 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100 /

Datagram 1 1 - - / Datagram 821020 1 - - - - / - - -

Appendix E. Selected Control Sequences and Test Cases 136

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 16

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

/Advertisement 82832 1 18000 110 1 /

RegRequest 8285 821045 1 1 10 821012 821045 821020 20 250 150 / RegReply

821045 8285 3 133 9 821012 821045 6 200 100 /

Datagram 1 1 - - - - / Datagram 821020 l - ' - - ' - / - - - - - - -

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

/Advertisement 82832 1 18000 110 1 /

** 17

RegRequest 8285 821045 1 1 10 821012 821045 821020 5 200 100 / RegReply

821045 8285 3 1 9 821012 821045 6 200 100 /

RegRequest 8285 82832 1 1 10 821012 821045 821020 5 200 100 / RegReply

82832 99 3 131 98 99 99 21 0 150 /

Datagram 1 1 / Datagram 821020 1 /

/Advertisement 82832 1 18000 110 1 /

DeRegRequest 821012 821045 1 1 821012 821045 0 50 200 100 / RegReply

821045 821012 3 0 0 821012 821045 51 200 100 /

_ /Advertisement 82832 1 18000 110 1 /

Appendix F

4 Typical Control Sequences and Typical test cases in T T C N . M P

1. Datagram - - RegRequest RegReply - - Advertisement -

RegRequest RegReply - DeRegRequest RegReply -

2. RegRequest RegReply - - Advertisement - Datagram Datagram -

DeRegRequest RegReply - RegRequest RegReply -

3. RegRequest RegReply - Datagram Datagram - -

Advertisement - DeRegRequest RegReply - RegRequest RegReply -

4. RegRequest RegReply - RegRequest RegReply -

Advertisement - DeRegRequest RegReply - Datagram - -

Test Cases i n TTCN.MP:

$Sui te

$Su i te Id suiteOOOl

$ D e c l a r a t i o n s P a r t

$Begin_TS_ConstDcls

$TS_ConstDcl

$TS_ConstId mipMHauthExtAuth

$TS_ConstType INTEGER

$TS_ConstValue 100

$End_TS_ConstDcl

137

Appendix F. 4 Typical Control Sequences and Typical test cases in TTCN.MP 138

$TS_ConstDcl

$TS_ConstId mipMHauthExtSPI

$TS_ConstType INTEGER

$TS_ConstValue 200

$End_TS_ConstDcl

$Begin_ASNl_PDU_TypeDef

$PDU_Id DeRegRequest

$PC0_TypeId

$Comment

$ASNl_TypeDef in i t ion

SEQUENCE

{

ipSourceAddr INTEGER,

ipDestAddr INTEGER,

mipType INTEGER,

mipS INTEGER,

mipHomeAddr INTEGER,

mipHomeAgent INTEGER,

mipCOA INTEGER,

m i p l d e n t i f i c a t i o n INTEGER,

mipMHauthExtSPI INTEGER,

mipMHauthExtAuth INTEGER

>

Appendix F. 4 Typical Control Sequences and Typical test cases in TTCN.MP 139

$End_ASNl_TypeDefinition

$End_ASNl_PDU_TypeDef

$Begin_ASNl_PDU_Constraint

$ConsId RegRequest_62

$PDU_Id RegRequest

$DerivPath

$ASNl_ConsValue

{

ipSourceAddr 8285 ,

ipDestAddr 821045 ,

mipType 1 ,

mipS 1 ,

mipLifetime 10 ,

mipHomeAddr 821012 ,

mipHomeAgent 821045 ,

mipCOA 821020 ,

mipldentification 5 ,

mipMHauthExtSPI 200 ,

mipMHauthExtAuth 100

>

$End_ASNl_PDU_Constraint

$Begin_TestCase

Appendix F. 4 Typical Control Sequences and Typical test cases in TTCN.MP

$TestCaseId test30

$TestPurpose test_test30

$BehaviourDescription

$End_BehaviourDescription

$BehaviourLine

$Label

$Line [4] ! RegReply

$Cref RegReply_215

$Verdict

$Comment

{

ipSourceAddr 821045 ,

ipDestAddr 821012 ,

mipType 3 ,

mipCode 0 ,

mipLifetime 0 ,

mipHomeAddr 821012 ,

mipHomeAgent 821045 ,

mipldentification 51 ,

mipMHauthExtSPI 200 ,

mipMHauthExtAuth 100 ,

>

$End_BehaviourLine

$BehaviourLine

Appendix F. 4 Typical Control Sequences and Typical test cases in TTCN.MP 141

$Label

$Line [5] ? RegRequest

$Cref RegRequest_216

$Verdict

$Comment

{

ipSourceAddr 8285

ipDestAddr 82832

mipType 1

mipS 1

mipLifetime 10

mipHomeAddr 821012

mipHomeAgent 821045

mipCOA 821020

mipldentification 20

mipMHauthExtSPI 250

mipMHauthExtAuth 100 }

$End_BehaviourLine

$End_BehaviourDescription

$End_TestCase

$End_TestCases

$End_DynamicPart

$End_Suite

