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Abstract 

Higher order surface primitives enable artists to create smooth, complex ob

jects by manipulating only a few control points and allow for the generation of 

smooth surfaces from a very compact representation. The implementation of 

higher order primitives on Graphics Processing Units (GPUs) has the poten

tial to significantly reduce the bandwidth requirements across the graphics bus. 

Unfortunately, the GPU support for higher order primitives is still rudimentary. 

We present an adaptive, depth-first tessellation algorithm for smooth sur

faces. The algorithm takes a set of Bezier control points and tessellates them ac

cording to criteria such as screen-space edge length. Other representations, such 

as subdivision surfaces, can be handled through preprocessing. The algorithm 

is designed to provide consistent, hole-free tessellations of adjacent patches. In 

addition, the polygons generated by the tessellator reside on a space filling curve 

on the 2D manifold of the surface. This guarantees the good memory coherence 

for both framebuffer and texture memory access. While the current implemen

tation of the method is purely CPU-based, we believe it is suitable for hardware 

implementation on future generations of GPUs. 
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Chapter 1 

Introduction 

Higher order surfaces such as splines or subdivision surfaces have long been the 

modeling primitive of choice in graphics applications. From a modeling point of 

view, their primary advantage is that artists are able to create smooth, complex 

objects by manipulating only a few control points. From a rendering point of 

view, higher order primitives can be beneficial as well. They occupy less memory 

on a GPU and also allow for the generation of smooth surfaces from a very com

pact representation, which is important particularly for streaming applications 

where bandwidth is an issue, such as transmission over a network or rendering 

using graphics hardware. Geometry transmission over the graphics bus is one 

of the major bottlenecks for real-time graphics systems. A compact, higher or

der surface representation could dramatically reduce the transfer cost, thereby 

speeding up the rendering process, if appropriate tessellators were available on 

the GPU side. 

One problem that such tessellators face is keeping the triangulation free of 

cracks and T-vertices. There are essentially two ways to achieve this. On the one 

hand, one can use a subdivision scheme such as Loop [24], Catmull-Clark [7], or 

Doo-Sabin [14] as a surface representation. In this case, the tessellation requires 

knowledge of a complete local neighbourhood, which can contain arbitrarily 

many triangles (depending on the valences of the vertices involved). Because 

a whole neighbourhood is used for subdivision, the resulting triangulation can 

be made free of cracks, even if adaptive subdivision (say, based on screen area) 

is used. Unfortunately, the necessity to encode a whole neighbourhood of the 
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surface does not map well to streaming architectures such as GPUs, and results 

in the same data being transmitted over the graphics bus multiple times. 

The second possibility is to use independent and self-contained patches (such 

as tensor product Bezier patches or PN Triangles [36]) as the rendering primitive. 

In this case, the resulting triangulation can be made consistent by enforcing 

that the tessellation algorithm independently arrives at consistent subdivision 

decisions for any two neighbouring patches. The easiest way to achieve this is 

to fix the level of subdivision for all patches on an object. This is known as 

uniform subdivision. 

In this thesis, we document research done towards the development of an 

adaptive GPU-friendly tessellation algorithm for higher-order patches. 

1.1 Research Objectives 

While an efficient implementation of any tessellation algorithm is not possible 

on current graphics hardware, future hardware will contain a tessellator unit 

specifically designed for these algorithms. Support for the tessellator unit is 

already available on DirectX 9.0. Given that the actual tessellation will take 

place in hardware, our goals were to develop a tessellation algorithm with the 

following properties: 

• Provides hole-free adaptive surface tessellation without requiring any in

formation on the neighbouring surfaces 

• Has low GPU-to-graphic memory bandwidth requirements 

• Requires little GPU memory 

We use bi-cubic Bezier patches, but any other parametric self-contained 

patch representation could be substituted in. The patches could be pre-computed 

from another representation used for modeling, such as a subdivision surface 

with a polynomial limit surface. 
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To maintain consistency between patches during rendering, the subdivision 

criterion is purely based on patch boundaries, both top-level and tessellated, 

such that the algorithm will arrive at the same decision for two patches sharing 

an edge. Our algorithm provides an additional benefit that is important for 

high-performance rendering on GPUs: the tessellation is created in a depth-first 

order that causes the resulting polygons to lie on a space-filling curve covering 

the object surface. This way, we improve cache coherence for memory accesses 

to both textures (during texture read), and the framebuffer. (while writing the 

final pixel result). Again, this feature addresses one of the common bottlenecks 

in GPU-based rendering, i.e., the bandwidth between the GPU and graphics 

memory. Finally, our algorithm leaves a small GPU memory footprint by storing 

vertex positions in parametric form when tessellating, instead of computing a 

new control mesh for each new tessellated surface. 

1.2 Overview 

In Chapter 2 we discuss related work. We then provide an overview of our 

method (Chapter 3), and describe the depth-first tessellation algorithm (Chap

ter 3.1), as well as a specific traversal order that creates polygons on a space

filling curve (Chapter 3.2). We conclude the paper with results in Chapter 4 

and a summary with discussion of future work in Chapter 5. 
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Related Work 

An obvious way to render higher-order surfaces is to tessellate them into polyg

onal meshes in software, and to then transfer those to the GPU for rendering 

(e.g. [21] and many others), but the CPU-to-GPU transfer overhead for these 

methods grows exponentially with the level of detail. In parallel, there has also 

been quite a bit of work on scan-converting higher order primitives directly on 

the graphics hardware [2, 8, 18, 26]. Unfortunately, it is difficult to incorpo

rate adaptive tessellation, and to prevent cracks between adjacent patches using 

these approaches. 

One solution to this problem is to tessellate the patch borders and the patch 

surface separately [15, 28]. The patch borders are tessellated to a fixed level and 

the uniformly tessellated surfaces are joined to the borders using triangle fans. 

Although the individual patches may undergo different levels of tessellation, 

adaptive tessellation within a spline surface is not supported. The number of 

polygons used to tessellate a single spline still grows exponentially with each 

level of detail. 

More recently, several groups have looked into the implementation of subdi

vision algorithms on GPUs [4, 6, 11, 33]. These approaches need to encode and 

transmit whole neighbourhoods of the control mesh in order to render a single 

surface patch. This results in the retransmission of surface data. To overcome 

this problem, PN triangles [36] were developed and implemented on recent ATI 

chips. They use normal information at the vertices instead of vertex position 

information from neighbouring triangles to define the subdivision rules. Thus, 
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every patch is completely self-contained, and can be subdivided independently. 

However, PN-triangles do not guarantee even tangent plane continuity across 

patch boundaries (except at the vertices) and only allow for uniform subdivision 

to maintain a coherent triangulation. 

In this chapter, we present an overview of previous work on rendering smooth 

surfaces, both in software and in hardware. We start with a discussion of Bezier 

polygon tessellation (Section 2.1) and scanline tessellation (Section 2.2.) In 

Section 2.3 we describe traditional mesh subdivision algorithms and discuss 

their hardware implementations in Section 2.4. The PN-triangles method is 

detailed in Section 2.5. 

Finally, we provide an introduction to the space-filling curves, which we use 

to draw polygons in a order that maintains memory coherence, in Section 2.6. 

2.1 Surface tessellation 

Surface tessellation is the process of converting a parametric surface, such as a 

Bezier surface, into polygons or points for rendering on a GPU. The simplest, 

most obvious way to render Bezier curves is to tessellate the surfaces in software, 

and then feed the tessellation polygons into the hardware for rendering. 

Although tessellating the surface in software makes it easy to perform adap

tive tessellation thereby reducing the number of polygons in the tessellation 

without reducing the surface quality, software solutions suffer from one major 

problem: the high bandwidth requirements for transferring the polygons to the 

hardware. Software tessellation is especially taxing on GPU bandwidth because 

the number of polygons can increase exponentially with tessellation quality. 

Models with base meshes consisting of only hundreds of polygons may contain 

hundreds of thousands of polygons when fully tessellated. Many researchers 

have worked on developing software-based algorithms for reducing the CPU-to-

GPU bandwidth load, ([1, 11, 16, 21, 32] to name a few,) but the results are 
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generally geared towards high-end graphics processors. For instance, some algo

rithms make use of multiple parallel rendering pipelines which are not available 

on lower-end consumer-grade GPUs. 

At the same time, hardware implementations of the adaptive tessellation 

algorithms are difficult because the adaptive algorithms require information on 

neighbouring surface patches to ensure the tessellations of neighbouring patches 

align to form a crack-free surface. This results in multiple transfers of the same 

data. In addition, unlike with uniform tessellation where the positions of the 

tessellation polygons are fixed, vertices generated by an adaptive tessellation 

algorithm may appear at arbitrary points on the Bezier surface. Therefore, 

a polygon must remain in memory until the polygon's entire neighbourhood is 

tessellated. This poses problems because GPU memory space is limited, but the 

number of polygons has the potential to grow exponentially with each additional 

level of detail. 

Figure 2.1: An example of tessellating a mesh using coving triangles. Left: The 

boundaries are tessellated to a fixed degree and the surfaces are individually tes

sellated until each patch meets the tessellation criteria. Right: Coving triangles 

join the tessellated patches to the boundaries. 

Coving triangles [15, 28] is a way of implementing partially adaptive tessel

lation of a model in hardware. First, the patch boundaries are uniformly tes

sellated until the entire boundary meets the tessellation criteria, such as edge 

length or curvature. The boundary's level of tessellation is stored on the GPU 
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memory. Then, each surface patch is independently uniformly tessellated until 

the individual patch surfaces meet the criteria. Finally, the tessellated surfaces 

are joined to the tessellated boundary using triangle fans or strips called coving 

triangles. Vertices are evenly spaced apart in uniform tessellation, making it 

possible to recreate a patch's boundary tessellation using only the patch geom

etry and the boundary's tessellation level. This allows us to create a crack-free 

surface without any information on the neighbouring patch tessellations (see 

Figure 2.1.) 

Figure 2.2: Examples of surfaces where coving triangles has problems. 

The coving triangles tessellations are globally adaptive over the entire model 

surface, but are not locally adaptive within the individual surface patches. This 

global adaptivity is sufficient for models consisting of small to mid-sized low-

curvature surface patches, where the tessellation polygons are roughly the same 

size. However, local adaptivity is needed for models where the tessellation 

polygons' sizes can vary significantly over the surface of a single patch. For 

instance, perspective foreshortening on large patches causes the polygons closest 

to the viewer to appear larger than polygons further away. Tessellation polygons 

can also vary greatly in size due to the differing angles of orientation between 

the polygons and the camera (see Figure 2.2.) 

2.2 Scanline surface tessellation in hardware 

Forward differencing was introduced as a hardware-friendly rendering alterna

tive to software surface tessellation. In forward differencing, surfaces are not 
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tessellated into polygons. Instead, points on the surface are evaluated for each 

pixel and then drawn directly into the framebuffer. Cracks on the surface will be 

unnoticeable because they are smaller than a single pixel. Thus, the positions 

of previous rendered points don't need to be stored in GPU memory to ensure 

a crack-free surface. The forward differencing algorithm is well known in math

ematics literature. In this section, we describe the 2D version of the forward 

differencing algorithm for the sake of clarity. The 3D algorithm is similar. 

Given a parametric curve f(t), we can estimate the first and second deriva

tives of the curve using the following formulae. 

Let pt and di be approximations of f(iAx) and f/(iAx) respectively. Starting. 

with po = /(0) and do = //(0), we can trace out the full curve by recursively 

evaluating the equations 

Forward differencing is faster than simply evaluating the curve at the points 

f(iAx) because the second derivative / " computes faster than f(x) for poly

nomial functions. Unfortunately, forward differencing suffers from the accumu

lation of approximation and floating point errors, which may lead to cracks. 

Nevertheless, per-pixel forward differencing was implemented in the geometry 

engines of both the IRIS 1000 [9] and the Reality Engine [2]. 

Alleviating the approximation errors has been the subject of much research. 

Klassen [18] developed an integer-based forward differencing algorithm that does 

away with the floating point errors but it is still prone to approximation errors. 

A hole-free floating point-based algorithm was developed and implemented on 

NVIDIA graphics processing chips [26]. This method compensates for calcu

lation errors accumulated along the way, but is slower than the integer-based 

f(x+Ax)-f(x) 
A i 

fl(x+Ax)-fl(x 
Ax 

pi+i = pi + dtAx 

di+i = di + f//(x)Ax. 



Chapter 2. Related Work 9 

algorithm. 

Forward differencing is often used to render points on the surface directly 

to the framebuffer. Therefore, with uniform forward differencing, care must 

be taken to ensure the step size, Ax, is small enough that at least one point 

on the surface is evaluated per pixel. The fixed step-size, combined with the 

surface variability due to curvature, viewing angles, and perspective can lead 

to multiple surface points being evaluated within each pixel. Lien et al. [23] 

developed an adaptive forward-differencing algorithm that evaluates one point 

on the surface per pixel in screen space, thus avoiding evaluating and drawing 

unnecessary points. This method relies on the fact that connective geometry is 

unnecessary at the sub-pixel level and can be ignored. Because of this, adaptive 

forward differencing cannot generate tessellations involving polygons larger than 

a single pixel. This is especially wasteful for rendering low-curvature Bezier 

surfaces which may by adequately approximated with only a small number of 

flat polygons. 

2.3 Mesh subdivision 

Subdivision is a method of generating complex geometry by recursively refining 

and smoothing a coarse mesh representation based on a set of rules. Mesh 

edges and vertices can be tagged as "sharp", causing them to appear as creases 

and points in the subdivision limit surface. The most common subdivision 

algorithms are the Doo-Sabin [14], Catmull-Clark [7], and Loop [24] algorithms. 

Since then, several other subdivision methods have been proposed [17, 19, 20, 

34, 35, 38], 

2.3.1 Doo-Sabin Subdivision 

Intuitively, the Doo-Sabin algorithm recursively shaves off the mesh edges and 

vertices until it arrives at a smooth surface. The mesh faces "shrink" around 
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Figure 2.3: One iteration of Doo-Sabin subdivision. Left: the original mesh. 

Centre: shrinking the faces. Right: adding new polygons where the vertices 

and edges were pulled apart. 

the face centroid and polygons are added where the vertices and edges joining 

the faces once were (see Figure 2.3.) During the shrinking phase, each mesh 

face is reduced by half while its centroid remains in the same place, so that the 

mesh vertices lie halfway between the centroid and the original vertex position. 

While simple, the Doo-Sabin algorithm may produce non-planar polygons over 

vertices with valence greater than 3. 

2.3.2 Catmull-Clark Subdivision 

The Catmull-Clark algorithm is a generalization of bi-cubic B-spline subdivision. 

During each subdivision step, new vertices are created at what are called the 

face, edge and vertex points. The new face points are placed at the centroids of 

each face and the new edge points are placed halfway between the centroids of 

each edge's adjacent faces. The new vertex point s is a convex combination of 

the following. 

• q, the average of the new face points sharing the old vertex 

• r, the average of the midpoints of all the old edges incident on the old 

vertex 

• s, the old vertex position 
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The new vertex point is 

„ 1 1 N-3 
S = N q + N r + — S 

(2.1) 

where N is the old vertex valence. New subdivision quadrilaterals are created 

joining together a new face point, one of the face's new vertex points, and the 

two new edge points of the common edges, as in Figure 2.4. 

Figure 2.4: An example of one iteration of Catmull-Clark subdivision. From left 

to right: the original mesh, adding the face and edge points, placing the vertex 

points, connecting the points with faces to get the final subdivided mesh. 

2.3.3 Loop Subdivision 

The Loop subdivision algorithm produces a set of curvature continuous quar-

tic Bezier patches in the limit. Unlike Doo-Sabin and Catmull-Clark, Loop 

subdivision only works on triangle meshes. 

Figure 2.5: An example of one iteration of Loop subdivision. Left: each triangle 

is subdivided into 4 new triangles. Right: the original mesh and the subdivided 

mesh. 
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When creating the next level of subdivision, each triangle is divided into 4 

new triangles and the entire mesh is smoothed, as in Figure 2.5. The vertices 

placed on the edge midpoints are called edge vertices. During the smoothing 

phase, the position of a new edge vertex e is 

e= |(ei +e2) + i(ai + a2) (2.2) 

where the e\ and e2 are the edge endpoints and a\ and a 2 are the remaining 

vertices of the adjacent faces. 

The new vertex positions v are 

v = a(N)v + (1 - a{N))q (2.3) 

where v is the old vertex position, N is its valence, q is the average of the 

positions of the old vertices that share an edge with v, and a(N) is defined as 

follows. 

a{N) = I+ {l+ \cos{2-w))2 (2'4) 

In Loop subdivision, vertices and edges may be tagged as sharp. Sharp 

vertices and edges are simply left alone during the smoothing stage, giving them 

a crisper, more defined appearance. Edges and vertices may also be given an 

integer sharpness value s where a sharpness value of oo means that the edge or 

point is infinitely sharp and a 0 means it is not sharp at all. Edges and vertices 

are left unsmoothed for s recursive iterations. Semi-sharp edges and vertices 

give a model a softer, more organic look, whereas perfectly sharp edges result 

in a crisp, artificial or industrial feel. 
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2.3.4 Discussion 

Subdivision is an attractive way of generating smooth surfaces because of its 

simplicity of implementation and the compactness of the base representation. 

It also allows the user to specify varying levels of detail corresponding to the 

number of levels of subdivision the model is to undergo. Unfortunately, software 

implementations of subdivision algorithms are very slow and transferring the 

subdivided mesh to the graphics hardware requires a lot of bandwidth, even if 

an adaptive algorithm is used to lower the polygon count. We discuss hardware 

implementations in Section 2.4. 

2.4 Mesh subdivision in hardware 

Subdivision algorithms have the ability to produce a smooth, attractive model 

from a simple mesh representation. Not surprisingly, considerable research has 

gone into implementing subdivision schemes in hardware, so subdivision can be 

used in interactive and real-time applications. There are two main approaches 

to implementing subdivision in hardware: one based on pre-computed basis 

functions and another that utilizes displacement maps. 

2.4.1 Pre-computed basis functions 

Loop [24] and Catumull-Clark [7] subdivision transform each mesh polygon into 

a NURBS patch in the limit. In addition, each NURBS patch is defined only by 

the positions of the vertices in the 1-neighbourhood surrounding the polygon, 

which means that any point on a limit surface patch over a mesh polygon can be 

expressed as a convex combination of the vertices in the 1-neighbourhood around 

the polygon. Furthermore, corresponding points on polygons with similar con

necting geometry use the same coefficients or basis functions. For example, the 

point defined by the barycentric coordinates (a,P,-y) on two triangles with the 
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same vertex valences (see Figure 2.6 for example) will be defined by the same 

convex combination of vertices in their respective 1-neighbourhoods. 

Figure 2.6: Triangles ( 0 1 , 0 2 , 0 3 ) and (6i,&2,&3) have similar connecting geome

try. 

Some hardware subdivision algorithms [4, 6, 12] take advantage of this fact 

by precomputing all the coefficients or basis functions needed to represent the 

subdivision surface of a mesh and storing them in tables in GPU memory. 

Then, subdividing a polygon is a simple matter of transferring the polygon's 

1-neighbourhood to the GPU, performing a table lookup to find the coefficients 

that match the vertex valences and applying the appropriate instructions in 

hardware to evaluate the vertex positions. The basis function method can be 

combined with forward differencing to speed up the calculation times [3]. 

Shiue et al. [33] take the basis function method one step further. They 

store the neighbourhood vertex positions in a "patch texture" and treat surface 

subdivision as a form of texture scaling. The scaling function is defined such 

that each pixel on the scaled texture corresponds to a vertex position on the 

subdivided mesh. Triangles with similar connective geometry can be stored in 

the same patch texture. The instructions for scaling the patch texture are stored 

in a lookup table. 

Hardware subdivision algorithms that use pre-computed basis functions can 



Chapter 2. Related Work 15 

be quite effective for meshes with limited vertex valence connectivity. In real 

applications, however, meshes may have arbitrary connectivity. The GPU mem

ory must store one basis function for each polygon on the mesh with differing 

vertex valences. This leaves less memory available for storing other information 

important for rendering, such as texture maps and BRDFs. 

2.4.2 Displacement mapping 

Displacement mapping is a compact way of representing detailed meshes. A 

coarse mesh is used to approximate the mesh surface and the finer geometric 

detail is stored in a displacement map that stores information on how to displace 

the surface of the coarse mesh to achieve a better representation of the detailed 

model (see Figure 2.7). The displacement map is sent to the graphics hardware 

as a texture accompanying the coarse mesh and the displacement is performed in 

the hardware. Displacement mapping works well when representing fine details 

over a simple geometry. For instance, a model of an intricate relief carving on 

a flat table would be well suited to displacement mapping. 

Figure 2.7: The displacement map (left) is applied to different simple surfaces 

(centre.) The resulting complex geometry is shown on the left. 

More recently, displacement mapping has been used to represent mesh subdi

vision limit surfaces in order to quickly subdivide meshes in hardware. During 

rendering, the displacement map contains information on how the base mesh 

surface is to be displaced to achieve the subdivision limit surface [13, 22] Unfor

tunately, this method suffers from surface smoothness artifacts across the patch 
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boundaries due to numerical round-off errors and texture stretching, making 

it unsuitable for generating high quality subdivision surfaces. Boo et al. [5] 

transmit the polygon neighbourhood, along with the actual polygon, to ensure 

smoothness across boundaries, but this technique leads to multiple transmis

sions of the same data, wasting precious GPU bandwidth. Also, a displacement 

map representation is less compact than a NURBS representation. 

2.5 PN-Triangles 

Vlachos et al. [36] developed PN-triangles to overcome the problem of having to 

transmit additional polygon neighbourhood information to the hardware in or

der to draw smooth surfaces. The PN-triangles method draws a smooth surface 

over a triangle based only on triangle vertex positions and normals, which would 

normally be transmitted to the hardware for a traditional rendering pass. This 

makes it easy to incorporate in projects where the artwork is already finalized 

or there are limited resources to hire "touch-up" artists. 

Figure 2.8: Projecting an edge onto a plane defined by one of the vertex normals. 

A cubic triangular Bezier control mesh is generated over each triangle based 

only on its triangle vertex positions and normals. The corner control points 

are placed at the triangle vertices. The 6 control points on the boundaries are 

generated by projecting the triangle edges onto the plane perpendicular to the 

normal of the closest vertex (see Figure 2.8) and scaling the projected edge by 
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| . The centre control point is placed at the position 

Cc + (Cc - Ct) (2.5) 

where Ct is the triangle centroid and Cc is the centroid of the six edge control 

vertices. 

Figure 2.9: Generating a cubic Bezier control polygon over a triangle. From left 

to right: the triangle and its vertex normals, adding the edge control points, 

placing the centre control point, the resulting control polygon. 

The resulting surface patches are smooth and hole-free, since adjacent tri

angles share the vertices that define the control mesh at the boundary, but it 

is impossible to guarantee smoothness between adjacent patches without neigh

bourhood information. In fact, adjacent patches are often only C° continuous 

to one another, meaning patch boundaries align but the tangent planes at the 

boundaries do not. This often results in sharp and disturbingly obvious dis

continuities along the mesh edges. Some of the discontinuities can be hidden 

by interpolating the normals separately from the geometry using quadratic, as 

opposed to cubic, interpolation, but this creates a disparity between the surface 

geometry and lighting. 

2.6 Space-filling curves 

A space-filling curve is a recursively defined curve that covers an entire 2-

dimensional area in its limit. We look at the Hilbert space-filling curve [30] 
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Figure 2.10: The first few iterations for generating a Hilbert space-filling curve. 

as an example. The limit of a Hilbert curve is a square. To generate the curve, 

we start with a square divided into 4 equal-sized squares. The curve connects 

the centres of the four squares in the base level, as in Figure 2.10. This is known 

as the base shape. Every level of recursion, the subsquares are replaced with 

smaller versions of the base shape, and the curves are joined together. The base 

shapes are oriented such that the joining line segments only cross a single edge. 

It has been known for some time that rasterizing polygons in the shape 

of a space-filling curve, such as the Hilbert curve [31], produce significantly 

improved texture and framebuffer cache when compared to standard scanline 

traversal [25, 37], at least when textures and the framebuffer are stored in 

tiled fashion instead of scanline order. Although specific information about the 

memory layout of commercial GPUs is difficult to come by, this seems to be the 

case in modern hardware. 

A nice property of many space-filling curves is that they can be easily created 

by hierarchical depth-first traversal procedures like our tessellation algorithm 

described in Section 3.1. All that is required are a few local rules at every level 

that determine in which order the subnodes are created. 
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2.7 Summary 

We discussed several methods for rendering smooth, complex surfaces from 

coarse representations, including polygon tessellation (Section 2.1), scanline sur

face tessellation (Section 2.2), mesh subdivision (Sections 2.3 and 2.4), and PN-

Triangles (Section 2.5). Although many of these methods support some com

bination of real-time rendering, improved memory coherence, and local surface 

tessellation adaptivity, none of them support all three features. 

Our proposed locally adaptive surface tessellation technique is suitable for 

implementation in hardware, making it possible to render smooth surfaces in 

real-time. We also use space-filling curves (Section 2.6) to improve performance 

through cache coherence. 
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Tessellation 

The algorithm presented in this thesis adaptively tessellates cubic tensor-product 

Bezier patches according to criteria that are only based on tessellation edge in

formation. The algorithm is depth-first recursive and the polygons are generated 

in space-filling curve order. 

Basing the tessellation criteria entirely on tessellation edge information en

sures that subdivision decisions are consistent across neighbouring patches, pre

venting cracks. Our method differs from the coving triangles methods intro

duced by Rockwood [29] and Filip et al. [15] in that the tessellation criteria are 

evaluated for boundaries created by the tessellation as well as for the top-level 

patch boundaries. 

Our tessellation is depth-first, which implies a logarithmic memory consump

tion (linear in the number of tessellation levels). The representation for each 

level is designed to optimize memory footprint: instead of explicitly generating 

and storing the control mesh for every level, we only store one control mesh for 

the whole patch. At every tessellation level, we store only the (u,v) parameter 

values for the corners of the of the subdivided regions. In addition to reduced 

memory cost, storing the patch corner parameter values also allows us to create 

both quadrilaterals and triangles in our tessellation algorithm. The latter helps 

simplify the crack-free adaptive tessellation process. This approach does come 

at the cost of having to recompute some vertex positions due to multiple poly

gons sharing the same vertex. However, the reduced memory footprint and the 

support for adaptive tessellations outweighs these costs. 
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In addition, we can generate the triangles in space-filling order at no extra 

cost. In a uniform subdivision setting, the center points of the resulting quadri

laterals reside on a Hilbert curve embedded in the 3D geometry. As shown by 

Voorhies [37], space-filling curves provide a dramatic improvement over scan

line traversal orders in terms of memory coherence if the image data (textures 

and the framebuffer) are stored in tiled rather than scanline order. As a result, 

our method simultaneously optimizes the accesses to graphics memory for both 

texture memory read and framebuffer read and write. This is similar in spirit 

to recent work on polygon scan conversion in Hilbert order [25], 

We expand on our surface tessellation process and the tessellation order in 

the rest of this chapter. 

3.1 Surface tessellation 

In this section we describe the tessellation process in more detail. We start with 

uniform subdivision and then discuss the adaptive case. Let S(u, v) with param

eter values (u, v)e[0, l]x[0,1] be the tensor-product Bezier patch that requires 

tessellating. 

3.1.1 Uniform tessellation 

Our algorithm uses a recursive depth-first method for generating uniform tes

sellations. The recursive property makes it easy to implement tessellations in a 

space-filling curve order. With uniform tessellation, surfaces are tessellated the 

same way for each level of detail regardless of what the surface geometry may 

look like. A level-of-detail variable £ specifies the number of tessellation steps a 

surface will undergo. This I is analogous to the level-of-detail variable used in 

subdivision schemes. 

The corners of the base quadrilateral (i.e. the £ = 0 surface) are located at 

the surface's corners, i.e. the points at parameter values 5(0, 0), 5(1,0), 5(1,1), 
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and 5(0,1). We generate the surface for the next tessellation level of detail by 

adding five new vertices, 1 on each of the 4 edges and 1 in the centre of the 

polygon, and subdividing each quadrilateral into four new quadrilaterals. 

5(»3..v3) 

S(u4,v4) 

SQi2,v2) 

,S'(;/1,v1) = .S(;/5,v5) 

Figure 3.1: Base polygon vertex placement. 

For example, given a quadrilateral with corner vertices at S(ui, Vi), 1 < i < 4. 

The new boundary edge vertices are placed on the Bezier surface at points 

-) where (us,vs) = (ui,v\) (see Figure 3.1.) These points 
2 ' Vi+Vi + 1 • 

correspond to the boundary midpoints. The new center vertex is placed at the 

surface's parametric centre S(j ]T Ui, \ _^Vi) . All vertices in the tessellation lie 

on the surface S(u, v), as in Figure 3.2. 

Figure 3.2: Tessellating a quadrilateral Bezier patch. 

With uniform tessellation, a crack-free surface is guaranteed as long as neigh

bouring surface patches undergo the same level of tessellation. However, uniform 

recursive tessellation results in an exponential increase in the number of poly

gons at each level of detail, making the surface slow to render at higher levels of 

detail, even if the tessellation is performed in hardware. We use adaptive tes

sellation to reduce the number of polygons in the tessellation without lowering 

the final surface quality. 
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3.1.2 Adaptive tessellation 

Adaptive tessellation allows us to avoid drawing unnecessary polygons, giving 

the algorithm more time to spend on areas that require further refinement. For 

example, surface areas that are flat or smaller than a single pixel don't need to be 

tessellated further, whereas areas that are curved or cover a significant amount 

of screen space may require more attention. In addition, top-level patches may 

be of drastically varying size, depending on the amount of detail necessary for 

representing a particular part of the object. Uniform subdivision of such models 

may result in extremely non-uniform polygon areas. 

Figure 3.3: An example of a crack forming in the mesh due to differing levels of 

tessellation on adjacent patches. 

With adaptive tessellation, cracks in the surface may appear if adjacent areas 

are subjected to different levels of tessellation (See Figure 3.3.) In CPU-based 

algorithms that have access to the complete model geometry (such as [19], [27], 

and others) a typical solution is to add some extra polygons to fill potential 

cracks. However, we limit our GPU-friendly algorithm to have access to the 

geometry of only a single surface at a time. This limited access avoids having to 

transmit entire neighbourhoods, which may be of arbitrarily large size. Because 

of this restriction, there is no way of knowing how the neighbouring surfaces 

will be tessellated, making it difficult to maintain consistency across patches. 

In particular, this rules out subdivision criteria based on surface curvature or 

area. 

Our algorithm solves this problem by using tessellation criteria entirely based 

on boundary information. While the idea of tessellation criteria that completely 
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ignore the surface interior may seem limiting, it works well in practice. Uni

formly tessellating the surfaces a few levels-of-detail before applying adaptive 

tessellation creates boundaries in the patch interiors. So, when the tessella

tion criteria are applied, the criteria are actually basing their decisions on the 

patch inner geometry, even though the tessellation criteria themselves are en

tirely boundary-based. Pre-tessellating the surfaces 1 level-of-detail should be 

sufficient for cubic Bezier surfaces like the ones generated from subdivision sur

faces, and 2 levels-of-detail will effectively deal with non-convex and non-concave 

surface patches. 

The tessellation criteria are re-evaluated at every tessellation level for every 

new polygon boundary created, resulting in an adaptive tessellation of the entire 

spline surface. Assuming the Bezier patches are at least boundary continuous, 

the tessellated geometry of a shared boundary will remain the same, regardless 

of which patch is currently processed by the GPU. Therefore, since the decision 

whether or not a boundary needs tessellation is based solely on the boundary 

geometry, then a shared boundary will be divided the same number of times 

and at the same places in two adjacent patches and the boundary vertices will 

line up. 

Figure 3.4: Possible tessellation cases in our algorithm. 

How the interior of the surface of the patch is tessellated depends on which 

edges require further refinement. The tessellations must only introduce new 

vertices on edges that need refinement and must leave edges that don't need re

finement intact. Figure 3.4 lists all possible configurations based on which edges 
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need to be subdivided and which do not. When a boundary between S(ui,vi) 

and 5 ( M 2 , H 2 ) requires subdivision, the new boundary vertex is always placed 

at the point 5 ( ^ ± ^ , ^ ± ^ ) . ' The centre vertex is placed at S(± _>i . \ J>i)if 

needed. 

Note that two of the quadrilateral cases actually create triangles rather than 

quadrilaterals, and that in one case the quadrilaterals are no longer aligned with 

the major coordinate axes. Since we now have triangular surface pieces as well, 

we also define subdivision rules for those (see Figure 3.4.) It is worth pointing 

out that the surfaces over those subdivided regions cannot be represented exactly 

as bi-cubic Bezier patches unless trimming curves are used. In our approach this 

is not a problem, however, since we do not explicitly represent the subdivided 

surface pieces. Rather, as pointed out in the overview of Chapter 3, we store 

the positions of the vertices only in parameter space, and use point evaluation 

to compute the corresponding 3D locations from the representation of the full 

(i.e. top-level) patch. 

3.1.3 Edge tessellation criteria 

This section describes the four different boundary tessellation criteria we use 

with our algorithm. This list of tessellation criteria is not exclusive. Other 

criteria may be used as long as only edge information is involved. 

P, 

Figure 3.5: An illustration of the terms used by our edge criteria. 

We first define a few terms, illustrated in Figure 3.5 for the sake of clarifi

cation. Let ps = S(us,vs) and pe = S(ue,ve) be the start and end vertices of 

an edge of a tessellated face. Some of the tessellation criteria described in this 
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section require evaluating the vertex at the center point pm = S(u"~2~Ue, v"12

v'). 

Also, let ei = ps — pm and e2 = pm — Pe be the vectors between the boundary 

endpoints and its midpoint. 

We define a boundary tessellation function T(S,us,vs,ue,ve) £ {yes,no} 

where if T(S,us,vSlue,ve) = yes then the boundary between S(us,vs) and 

S(ue,ve) needs tessellating. Otherwise, the boundary is left alone. The four 

possible tessellation functions we propose are the edge length function Xi, the 

arc length function Ta, the straightness function T s , and the tangent function 

Edge length criterion 

The edge length criterion simply uses the distance between the points pe and 

p s as a coarse estimate of the the tessellation boundary arc length. The edge is 

tessellated if this distance is larger than the threshold <5;. 

Calculating the distance \ \pe -ps\ \ = \/{Pe — Ps) • (pe - Ps) can be problem

atic because the square root operation takes a while to evaluate and may have 

significant round-off errors. We modified the criterion to speed it up as follows. 

Ti(us,vs,ue,ve) 
yes, if \\Pe -Ps\\2 < Sf 

otherwise 

Figure 3.6: The edge length criterion becomes a better approximation of the 

surface arc length after a few iterations of the tessellation algorithm. 
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This criteria is the quickest to evaluate of the four we propose and is effective 

for low curvature surfaces. The edge length criterion is useful on splines that are 

relatively flat. While this is not common for model base surfaces, the tessellation 

boundaries become less rounded and the point pm grows closer to the edge 

joining points ps and pe as the tessellation progresses. Therefore, the edge 

length criterion becomes a viable approximation of the arc length after a few 

iterations of the tessellation algorithm are performed with a different criterion. 

Figure 3.7: The edge length criterion would be a poor choice for a boundary 

curve such as this one. 

Unfortunately, it is not view dependent and so may drastically over-estimate 

the screen-space arc-length when the boundary is viewed from certain angles. 

Also, it may be a poor estimator of the actual arc length of high-curvature 

boundaries. The boundary curve shown in Figure 3.7 is an example where this 

may be the case. The boundary endpoints lie close enough together that = no 

and the boundary is not tessellated further, even though it is a poor estimate 

of the boundary arc length and requires more tessellation. Incorporating the 

boundary midpoint pm into the boundary length estimation as in the arc length 

criterion will give us a better approximation. 

A r c length cr i ter ion 

The arc length function uses additional information provided by prn to estimate 

the arc length of the boundary curve in pixels when rendered. The boundary 

needs tessellating if the estimated arc length is greater than the threshold <5a. 

Instead of computing the actual arc length of the curve, we estimate the 
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Figure 3.8: An illustration of the terms used by the arc length criterion. 

screen distance between points ps, pm, and pe. Let r be the screen resolution, d 

be the distance from the object to the camera, and v be the viewing direction 

(see Figure 3.8.) Also, let 9i be the angle between edge e; and the plane per

pendicular to the viewing direction. Then, the approximate length L(ei) of the 

edge ei in pixels is 

L{ei) = 11 kill cos#j. a 

The approximate arc length a of the boundary curve is 

«• = 1 (Ikill cos6*i + ||e2|| cos<92)-d 

We use the dot products v • ei to avoid evaluating the cosine and square root 

functions. 

v • ei = ||ei|| cos(0j + 90) 

= ||ei||sin(0i) 

(v • ei)2 = ||ei||2sin2# 

= | | e i | | 2 (l-cos 2 0) 

1 - cos2 0 
„„„2 n _ i (•"•ei)2 

- I - n̂ip 
Then, we derive the arc length approximation a as follows. 
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a' 

a 
2 

2 

< 

< 

5(||ei||cos»i + | | e 2 | | cose 2 ) 

(a) 2(||ei|| 2 cos2 <9X +2||e1||||e2||cos(91cos6>2 + ||e2||2 cos2 02) 
(5)2(||e1||2cos201 + | | e 2 | | 2cos 20 2 + 2||e1||||e2||) 

(5)2(||ei||2cos201 + ||e2||2cos202 + 2|| e i|| 2|| e 2|| 2) 

( ; ) 2 ( I M | 2 ( 1 - fef) + I k 2 | | 2 ( l - + ( e i • e i ) ( c 2 • e 2 ) ) 

( ^ ) 2 ( ! | e i | | 2 + ||e 2 || 2 - (v • e i ) 2 - (u • e 2 ) 2 + ( e i • e i ) ( e 2 • e 2)) 

Finally, the arc length criterion is as follows. 

Ta(us,vs,ue,ve) = 
yes, if a2 < 82

a 

no, otherwise 

The arc length criterion works best when a per-pixel tessellation is desired, 

because it estimates the arc length in screen space. It also works well for point-

splatting, where the model is rendered entirely in points instead of triangles, 

because it controls the distance between vertices. 

The arc length criterion does nothing to ensure transitions between polygons 

are smooth and so the model may have a jaggy or faceted appearance in the 

lower levels of detail. The straightness and tangent tessellation criteria presented 

below are more appropriate if the desired final tessellation is to have fewer 

polygons. 

Straightness criterion 

A common way of deciding whether or not to continue tessellating a patch is 

to tessellate if the inner surface of the patch has a high curvature and to stop 

if it is relatively flat. The straightness criterion is similar in spirit, but since 

our tessellation criteria can only use patch boundary information, we use the 

boundary curvature instead. 

The straightness function estimates how straight the boundary curve is. Let 

(3 be the angle between e\, and e2. The value of cos/3 is lowest when the 



Chapter 3. Tessellation 30 

Figure 3.9: (5 is the angle between ps, prn, and pe. 

j3 = 180° i.e. when the boundary is perfectly straight. Therefore, if the cosine 

of the angle is greater than the threshold 5S, then the boundary is considered 

not straight enough and requires further tessellation. 

{ yes, if cos (3 > Ss 

no, otherwise 

We use an approximation to avoid evaluating the cosine function. 

c o s Q — e i " e 2 ^ e i ' e 2 _ e i ' e 2 

l l e i l l l l e 2 | | ~ | ] e i | | 2 e x • e i 

This assumes that e\ and e2 are approximately the same length, which is 

the case in many cubic Bezier surfaces. 

{ yes, if zi-ei. > Ss 

no, otherwise 

The straightness criterion is good at detecting large, flat areas. It works best 

on models with a large variety of surface curvatures, but can result in skinny 

triangles in the higher levels of detail. 

Tangent criterion 

The tangent criterion guarantees a certain amount of smoothness between adja

cent patches at the patch corners by continuing to tessellate an edge if the angle 

between the edge and the surface tangent at its endpoints is too large. In many 

Bezier models, neighbouring Bezier patches are at least C 1 continuous to one 

another, i.e. tangents of adjacent surfaces are equal at the patch boundaries. 
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Figure 3.10: as and ae are the angles between the tessellation and the surface 

normals. 

Therefore, the tessellation will be completely smooth at the patch corners if it 

is parallel to the tangent planes at the corners. 

Let ns and n e be the surface normals at points ps and pe. The tangent 

planes are perpendicular to the surface normals. as and ae are the angles 

between the current tessellation and the surface normals ns and ne. The edge 

requires further tessellation if one of the angles as or ae is too far away from 

90° or 270°, i.e. if either |cos(as)| or |cos(at)| is too large. For a tangent cosine 

angle threshold value St the tangent plane function is defined as follows. 

{ yes, if | cosa s| > 5t 

or | cosa e\> 6t 

no, otherwise 

After squaring both sides of the equation in order to avoid evaluating the 

cosine functions, we get the following: 

cos ai = — 
l l e l l 

{ yes, if cos2 as > 5f 

or cos2 ae > <52 

no, otherwise 

The tangent criterion is best at obscuring the boundaries between patches. 

However, it is not view dependent, even though its calculations are heavily based 

on vectors which may change with the application of a perspective transforma

tion. It is possible to transform the vectors before performing the calculations. 
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This introduces no computational overhead because the vectors must be trans

formed prior to rendering anyway. 

Discussion 

These edge tessellation criteria introduce very little computational overhead to 

the algorithm. The positions ps and pe should already be stored in memory 

from the previous recursive call. Determining pm for evaluating the tessellation 

criteria does not introduce any significant overhead because pm needs to be 

calculated anyway if the edge requires tessellation or if uniform tessellation 

is being performed. The screen resolution, distance from the object to the 

camera, and viewing direction only need to be computed once per frame. Also, 

the normals at ps and pe which are used in the tangent criterion need to be 

computed anyway, since they are required for shading. 

Figure 3.11: In some cases, the tessellation may be planar even when the surface 

has a high curvature. 

With the arc length and straightness tessellation criteria, it is possible to 

drastically underestimate the arc length or overestimate the straightness of the 

curve if the points ps, pm, and pe are almost linear when the curve is not (see 

Figure 3.11.) Adding more points to the calculation would result in a more 

accurate estimation but would require more operations and there would be 

additional overhead required to compute the new point positions. In the vast 

majority of cases this isn't a problem since Bezier polygons generated from a 

subdivision surface are generally either concave or convex, so the case where the 

points are linear when the surface is not does not occur very often. 
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3.2 Tessellation order 

As mentioned in Section 3, it is possible to generate the polygons of the tessella

tion the order of a space-filling curve to improve the coherence of memory access 

patterns during texture mapping and writing to the framebuffer. This addresses 

the problems with data transfers between the G P U and graphics memory. 

In the following, we describe how this can be achieved for both uniform and 

adaptive subdivision. While the number of different cases may at first seem 

daunting, Section 3.3 discusses an efficient and straightforward implementation 

using lookup tables. 

3.2.1 Space-filling curves 

The order in which our uniform quadrilateral tessellations are generated follows 

the shape of the Hilbert curve, shown in Figure 3.12. 

F | F 

L U bthH I 
Figure 3.12: The Hilbert space-filling curve. 

Our adaptive tessellation algorithm generates triangles as well as quadrilat

erals, but the Hilbert curve only applies to rectangular domains. We therefore 

came up with the space filling scheme depicted in Figure 3.13. 

Like the Hilbert curve, the triangular curve never self-intersects for all re

cursive levels. The proof goes as follows. 

We partition the base shape into 4 identical convex partitions to show that 

the non-limit curves are not self-intersecting. The curve at the top-level passes 

• r-4—1 
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Figure 3.13: The triangular space-filling curve we use in our algorithm. 

through the centres of each of the 4 partitions. It lies completely within the 

partitions and is not self-intersecting. At any level of refinement, the curve con

sists of non-intersecting copies of the original pattern contained within convex 

non-intersecting partitions, as well as the line segments connecting the copies 

in neighbouring partitions. In the limit, the endpoint of the curve segment in 

one partition and the start point of the segment in the next partition converge 

to a point that is shared by both partitions. Since the partitions are convex, 

the connecting line segments do not introduce self-intersections either, and the 

non-limit curves are not self-intersecting. 

Figure 3.14: Coherence between top-level patches is maintained if they are 

specified in a quadrilateral strip, a triangle strip, or a triangle fan. 

An interesting feature of this approach is that coherence can even be main-
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tained from one top-level patch to the next if they are specified in an order 

resembling a quadrilateral strip (Figure 3.14). A similar result applies to trian

gular patches specified in triangle strip or triangle fan order. 

3.2.2 Adaptive tessellation curves 

Figure 3.15: Left: The last vertex and the first vertex of two adjacent tessellated 

polygons are the same, maintaining coherence between adjacent tessellated poly

gons. Right: The first and last vertices traversed on the top-level Bezier patch 

are the same regardless of tessellation level-of-detail, maintaining inter-patch 

coherency. 

The Hilbert rules cannot directly be used for adaptively tessellated surfaces 

because adaptive tessellation does not necessarily create 4 subpatches at every 

level. Instead, the polygons are drawn in an order that tries to preserve the 

cache coherent properties of the space-filling curve. Specifically, we preserve 

inter-patch and intra-patch coherence. 

Inter-patch coherence is maintained by ensuring the last vertex of a tes

sellated polygon and the first vertex of the next tessellated polygon are the 

same. This way, the vertex ordering never skips back and forth between poly

gons needlessly. The vertices are presented in one continuous, non-intersecting 

chain. 

We need to preserve intra-patch coherence or coherence between patches 

because the Bezier surfaces may be oriented to maintain coherency between 

top-level patches as mentioned in Section 3.2.1. Our algorithm respects this 



Chapter 3. Tessellation 36 

inter-patch coherency by organizing the tessellation such that the first and last 

vertices traversed on the entire Bezier patch are always the same, regardless of 

the tessellation level. 

Preserving both inter- and intra-patch coherency results in a tessellation 

path that is continuous and not self-intersecting. In addition, the path will 

traverse all vertices in a subpatch before continuing onto a neighbouring patch. 

Therefore if the texture for two subpatches are contained in separate cache 

blocks in memory, the rasterization process will only require a single cache 

swap. 

1 boundary 

Table 3.1: Tessellation orders for all possible tessellation cases. 

There is a different tessellation order for every adaptive case and for every 

possible direction. In Table 3.1, we list the individual cases. We try to draw 

the adaptive tessellation of a triangular patch in an order that preserves the 
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memory coherency properties of the triangular space-filling curve in all tessella

tion cases. When only 1 boundary requires refinement on a quadrilateral patch, 

all the tessellations begin and end on the first and last vertex of the parent 

quadrilateral, allowing for easy integration with other tessellations. When 2 

or 3 boundaries need to be refined, the curve may not necessarily end at the 

bottom right corner, resulting a slight loss of inter-patch coherence. However, 

in one of the 2-boundary conditions, the tessellation stops on an edge that will 

not be subdivided further, so loss of coherence will be small. 

Figure 3.16: A model being adaptively tessellated using the arc length criterion. 

3.3 H a r d w a r e - f r i e n d l y imp lemen ta t i on 

Although the number of different cases for adaptive tessellation may seem in

timidating at first, an implementation is actually not very complex. For every 

subpatch we create a bit vector describing which edges need to be subdivided 

and which don't. This bit vector references a lookup table with sixteen entries 

for the quadrilateral case and 8 entries for the triangular case. 

Every table entry stores the subpatches that need to be created in the order 

required according to Section 3.2. Every subpatch is specified in terms of the 

vertex positions (in parameter space relative to the current level). Sub-patch 

orientation is implicit in the order that the vertices are listed in the table. 

For example, suppose we are tessellating a quadrilateral patch where the first 



Chapter 3. Tessellation 38 

boundary requires tessellation and the second, third, and fourth boundaries do 

not. The corresponding bit vector for such a patch would be 1000 in binary 

notation or 8 in decimal notation. Entry 8 in the lookup table will contain 

information describing how the surface should be tessellated. 

With this table-based approach, the evaluation of the surface points, com

putation of the adaptive subdivision criteria, and computation of the next sub

division level are easily implemented given the feature sets of vertex shaders for 

current GPUs. The fundamental missing feature from current PC-based GPUs 

is the ability to generate new triangles in a vertex program, although the graph

ics chips of some game consoles such as the Playstation 2 do support this. This 

feature will soon be making its way onto the next generation of PC-based GPUs 

and is already supported by DirectX 9.0. 
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Chapter 4 

Results 

To evaluate the performance of the proposed method, we compare the number of 

polygons generated by the different adaptive tessellation criteria with different 

threshold values. We also analyze spatial coherence of the polygon ordering 

both visually and quantitatively. 

4.1 Polygon counts 

Figure 4.1: A comparison of a model tessellated using different tessellation cri

teria. The criteria used are, from left to right, no criteria (uniform tessellation), 

the edge length criterion, the arc length criterion, the straightness criterion, and 

the tangent criterion. 

Table 4.1 shows a comparison of the number of polygons generated by the 

various methods for the cube with holes composed of 288 top-level patches 
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(compare Figure 4.1). The columns of the table correspond to different threshold 

values for the different edge subdivision criteria. The 8 = 0 column corresponds 

to uniform tessellation. As expected, we can see that the adaptiveness of the 

subdivision can result in a drastically reduced number of polygons generated 

over uniform tessellation. 

The straightness criterion performs best with this model because it contains 

a variety of flat and highly-curved surfaces. The tangent criteria also performs 

well, but does not evaluate the angle around the boundary midpoint until an 

additional level of tessellation is performed. This explains why the tessellation 

with 6 — 10 at tessellation level £ = 5 using the tangent criteria contain approx

imately 4 times more polygons (i.e. undergo about 1 more level of tessellation) 

than the tessellations using the straightness criterion. 

4.2 Texture accesses 

Figure4.2 shows the resulting tessellations and polygon orders both in 3D and in 

the parameter domain for a simple blob object. From visual inspection, it is easy 

to see that the polygons created close together in time are also grouped together 

spatially. This is the property we are after for memory coherence during texture 

lookup and framebuffer writes. 

To quantitatively assess the gain in coherence, we evaluated the number of 

changes between texture tiles as we render the generated tessellation in space

filling order (see Table 4.2.) The texture over each face consists of 4 texture 

tiles. We compare this against a uniform scanline order tessellation (leftmost 

column). The results confirm Voorhies' earlier findings of superior performance 

for space filling traversal orders [37]. 
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i 6 = 0 6= 1 3 = 2 5 = 5 6= 10 

Ti 1 1152 1152 1152 1152 792 

3 18432 18408 15992 5760 1464 

5 294912 120502 31674 6192 1464 

Ta 1 1152 1152 1152 1152 1152 

3 18432 18432 18432 18432 10688 

5 294912 294912 294912 163982 17644 

T3 1 1152 1056 1056 936 840 

3 18432 13594 12164 7296 1896 

5 294912 134222 53684 9366 1896 

Tt 1 1152 1056 1056 986 840 

3 18432 13038 11326 7484 2706 

5 294912 120354 41308 12582 4789 

Table 4.1: Number of polygons generated for a model of a cube with holes in it 

consisting of 288 Bezier patches at different tessellation levels using the different 

tessellation criterion with varying thresholds. The threshold <5 is in angles for 

criteria Ts and Tt, pixels for Ta, and percentage of model width for Te. 

4.3 Point Splatting 

Table 4.3 shows the number of vertices drawn to render the ball and cube 

with holes model with simple 5-pixel point splats. Both uniform and adaptive 

splatting the models using different tessellation criteria are compared. The 

tessellation stopping thresholds are adjusted to be the largest values possible 

without creating any gaps in the tessellation. Some of the results are shown 

in Figure 4.3. The tessellation created using the arc length criterion results in 

a relatively uniform distribution of points in screen space. This makes the arc 

length criterion better suited to point-splatting than the edge length criterion 

where the distribution is denser in the parts of the model further away from the 
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Figure 4.2: The space-filling curves drawn over a ball model tessellated with 

maximum tessellation level £ = 3 (left) and the corresponding pattern of texture 

accesses in texture space (right). The model is tessellated using no (top), arc 

length (second), straightness (third), and tangent (bottom) tessellation criteria. 

Each square in the texture space represents one texture tile. Red line segments 

indicate texture accesses that require loading a new texture tile into memory. 

camera. 

The straightness and tangent criteria are clearly unsuitable for point splat

ting. On the cube with holes model, the flat surfaces are never tessellated under 

these criteria unless the threshold is set to the lowest possible value, 0. Adaptive 

tessellation with the arc length criterion performs better than adaptive tessel

lation with the edge length criterion and uniform tessellation because it takes 

into account perspective foreshortening (as seen in Figure 4.3). 

4.4 Tessellations of complex models 

Finally, we show several examples of more complex models tessellated with our 

method in Figures 4.4 and 4.5. 
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e 6 = 0 <5= 1 <5 = 5 5 = 10 

uniform 1 576 576 576 576 

(top/bottom,left / right) 3 2880 2880 2880 2880 

5 6720 6720 6720 6720 

uniform 1 95 95 95 95 

(space-filling) 3 383 383 383 383 

5 1247 1247 1247 1247 

T a 1 72 72 72 56 

3 380 380 376 68 

5 1200 1200 928 68 

Ts 1 72 72 72 72 

3 360 360 360 216 

5 1224 1224 1080 264 

Tt 1 72 72 72 72 

3 360 360 360 360 

5 1224 1224 984 360 

Table 4.2: Comparison of the number of times a new texture tile is loaded into 

memory when rendering a textured ball model using a uniform left-right, top-

bottom tessellation order versus our algorithm at different subdivision levels. 

Low numbers indicate higher cache coherence. 

model £ uniform Te Ta rs Tt 

ball 5 98304 53567 28184 91152 88416 

cube with holes 4 294912 155308 89786 294912 294912 

Table 4.3: Comparison of the number of vertices drawn to render the ball and 

cube with holes model with simple 5-pixel point splats, while tessellating the 

models using different tessellation criteria. Se = 0.02, 8a = 3.11, 5S = 1.2, and 

St = 1.1 for the ball model and 5e = 0.15, Sa — 9.2, 5S = 0, and 8t = 0 for the 

cube with holes model. 
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Figure 4.3: An example of a model rendered using simple point splats. From 

left to right: uniform tessellation, adaptive tessellation with the edge length 

criterion and with the arc length criterion. The model with 5-pixel point splats 

is shown in the top row and the same model with 2-pixel point splats is shown 

in the bottom row. 
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Figure 4.4: A cartoon dog modelled with Bezier surfaces. Top: The model at 

tessellation level t = 0. Bottom: The model at tessellation level i = 3. 
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Figure 4.5: Top: The model at tessellation level t = 0. Bottom: The model at 

tessellation level I = 3. The improved visual quality of the left arm is especially 

noticeable. 
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Chapter 5 

Conclusions and Future 

W o r k 

5.1 Summary of research 

In this thesis we have presented an adaptive, depth-first tessellation algorithm 

for smooth surfaces suitable for implementation on a GPU. In our particular 

implementation, we have chosen to process only cubic tensor-product Bezier 

patches, but other representations are possible. We chose Bezier patches since 

they allow us to derive a smooth object representation composed of many con

tinuous patches. 

Our tessellation algorithm avoids inconsistencies in the resulting mesh by 

basing the subdivision decision purely on boundary information. In this way, 

adjacent patches independently arrive at the same decision for the boundary 

they share. The adaptive algorithm will generate quadrilaterals as well as tri

angles, which is enabled by not explicitly generating and storing the control 

meshes for the individual parts of a subdivided patch. 

One restriction of boundary-based subdivision is that it is possible to con

struct top-level patches with very short edge lengths that nonetheless have a 

large surface area, simply by locating the boundary control points close to each 

other, but pulling the center control points out by a certain distance. Such 

patches do not occur often in practice, and even if encountered, an artist can 
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easily work around this restriction simply by subdividing the patch once. We 

therefore do not believe that this limitation poses a serious restriction in prac

tice. 

In addition to these advantages, a simple modification of the traversal or

der ensures that the polygons of the final tessellation are generated in an order 

corresponding to a space-filling curve. This ensures coherence in both image 

and texture space, and therefore helps to alleviate performance problems aris

ing from memory accesses to the graphics RAM, which are often a bottleneck 

on modern GPUs. The adaptive tessellation in space-filling order is based on a 

thorough analysis of the different cases that can be encountered, a simple im

plementation using lookup tables has been described. This approach should be 

amenable to hardware implementations on the tessellator unit on future GPUs. 

5.2 Satisfaction of Research Objectives 

Our algorithm satisfies all our research objectives. 

• It provides hole-free locally and globally adaptive surface tessellation with

out requiring any information on the neighbouring surfaces by using a 

boundary-based tessellation criteria. 

• It has low GPU-to-graphics memory bandwidth requirements because it 

draws the tessellation polygons in an order that preserves the memory 

coherence properties of a space-filling curve. 

• It uses little GPU memory because it stores patches in parametric form 

instead of calculating and storing new control meshes for every tessellation 

level-of-detail. 
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5.3 Future work 

In principal we could apply the same subdivision method not only to smooth 

surfaces, but also to polygonal representations. This way it would be possible 

to create a scan-conversion engine that hierarchically subdivides polygons or 

patches into sub-pixel-sized micro polygons, and then renders these using point 

splatting. This would be similar in spirit to the original Reyes architecture [10], 

but due to the specific traversal order, the memory access patterns should be 

significantly improved. 
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