
Towards Adaptive Rendering of Smooth Primitives on
GPUs

by

Jennifer Fung

B.Sc , The University of British Columbia, 2002

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T OF
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

October 2005

© Jennifer Fung 2005

ii

Abstract

Higher order surface primitives enable artists to create smooth, complex ob­

jects by manipulating only a few control points and allow for the generation of

smooth surfaces from a very compact representation. The implementation of

higher order primitives on Graphics Processing Units (GPUs) has the poten­

tial to significantly reduce the bandwidth requirements across the graphics bus.

Unfortunately, the GPU support for higher order primitives is still rudimentary.

We present an adaptive, depth-first tessellation algorithm for smooth sur­

faces. The algorithm takes a set of Bezier control points and tessellates them ac­

cording to criteria such as screen-space edge length. Other representations, such

as subdivision surfaces, can be handled through preprocessing. The algorithm

is designed to provide consistent, hole-free tessellations of adjacent patches. In

addition, the polygons generated by the tessellator reside on a space filling curve

on the 2D manifold of the surface. This guarantees the good memory coherence

for both framebuffer and texture memory access. While the current implemen­

tation of the method is purely CPU-based, we believe it is suitable for hardware

implementation on future generations of GPUs.

iii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

Acknowledgements viii

1 Introduction 1

1.1 Research Objectives 2

1.2 Overview 3

2 Related Work 4

2.1 Surface tessellation 5

2.2 Scanline surface tessellation in hardware 7

2.3 Mesh subdivision 9

2.3.1 Doo-Sabin Subdivision 9

2.3.2 Catmull-Clark Subdivision 10

2.3.3 Loop Subdivision 11

2.3.4 Discussion 13

2.4 Mesh subdivision in hardware 13

2.4.1 Pre-computed basis functions 13

Contents iv

2.4.2 Displacement mapping 15

2.5 PN-Triangles 16

2.6 Space-filling curves 17

2.7 Summary 19

3 Tessellation 20

3.1 Surface tessellation 21

3.1.1 Uniform tessellation 21

3.1.2 Adaptive tessellation 23

3.1.3 Edge tessellation criteria 25

3.2 Tessellation order 33

3.2.1 Space-filling curves 33

3.2.2 Adaptive tessellation curves 35

3.3 Hardware-friendly implementation 37

4 Results 39

4.1 Polygon counts 39

4.2 Texture accesses 40

4.3 Point Splatting 41

4.4 Tessellations of complex models '. 42

5 Conclusions and Future Work 47

5.1 Summary of research 47

5.2 Satisfaction of Research Objectives 48

5.3 Future work 49

Bibliography 50

V

List of Tables

3.1 Tessellation orders for all possible tessellation cases 36

4.1 Comparing polygon counts for different tessellation criteria. . . . 41

4.2 Comparison of the number of texture memory accesses 43

4.3 Comparison of point-splatting performance 43

vi

Lis t of Figures

2.1 Tessellating a mesh using coving triangles '6

2.2 Examples of surfaces where coving triangles has problems. . . . 7

2.3 An iteration of Doo-Sabin subdivision 10

2.4 An iteration of Catmull-Clark subdivision 11

2.5 An iteration of Loop subdivision 11

2.6 Triangles with similar connecting geometry 14

2.7 A displacement map 15

2.8 Projecting an edge onto a plane 16

2.9 Generating a Bezier control polygon over a triangle 17

2.10 Generating a Hilbert space-filling curve 18

3.1 Base polygon vertex placement 22

3.2 Tessellating a quadrilateral Bezier patch 22

3.3 Cracks form due to differing levels of tessellation 23

3.4 Possible tessellation cases in our algorithm 24

3.5 An illustration of the terms used by our edge criteria 25

3.6 Using the edge length criterion 26

3.7 Problems with the edge length criterion 27

3.8 An illustration of the terms used by the arc length criterion. . . 28

3.9 Illustration of angle (5 30

3.10 Illustration of angles as and ae 31

3.11 Problems with edge-based tessellation criteria 32

List of Figures vii

3.12 The Hilbert space-filling curve 33

3.13 The triangular space-filling curve we use in our algorithm. . . . 34

3.14 Maintaining coherence between top-level patches 34

3.15 Maintaining intra-patch and inter-patch coherency 35

3.16 A model being adaptively tessellated 37

4.1 Comparing tessellations using different criteria 39

4.2 Visualization of the space-filling curve over an object 42

4.3 A model rendered using simple point splats 44

4.4 A cartoon dog modelled with Bezier surfaces 45

4.5 A complex Bezier surface model 46

viii

Acknowledgements

I would like to thank my supervisor, Wolfgang Heidrich, for all his help and

encouragement. His comments and insights have been invaluable to this research

and it was a pleasure to work with him. I would also like to thank Alia Sheffer,

my second thesis reader, and Jocelyn Smith, my my proofreader, for helping me

write this thesis.

I would also like to thank everyone in the lab and at UBC for making my

time in the graduate program such an enjoyable experience.

Last, but not least, I would like to thank my parents, William and Mary

Fung, my brother, Jonathan Fung, and Allen Lin for all their support. I couldn't

have done it without them.

1

Chapter 1

Introduction

Higher order surfaces such as splines or subdivision surfaces have long been the

modeling primitive of choice in graphics applications. From a modeling point of

view, their primary advantage is that artists are able to create smooth, complex

objects by manipulating only a few control points. From a rendering point of

view, higher order primitives can be beneficial as well. They occupy less memory

on a GPU and also allow for the generation of smooth surfaces from a very com­

pact representation, which is important particularly for streaming applications

where bandwidth is an issue, such as transmission over a network or rendering

using graphics hardware. Geometry transmission over the graphics bus is one

of the major bottlenecks for real-time graphics systems. A compact, higher or­

der surface representation could dramatically reduce the transfer cost, thereby

speeding up the rendering process, if appropriate tessellators were available on

the GPU side.

One problem that such tessellators face is keeping the triangulation free of

cracks and T-vertices. There are essentially two ways to achieve this. On the one

hand, one can use a subdivision scheme such as Loop [24], Catmull-Clark [7], or

Doo-Sabin [14] as a surface representation. In this case, the tessellation requires

knowledge of a complete local neighbourhood, which can contain arbitrarily

many triangles (depending on the valences of the vertices involved). Because

a whole neighbourhood is used for subdivision, the resulting triangulation can

be made free of cracks, even if adaptive subdivision (say, based on screen area)

is used. Unfortunately, the necessity to encode a whole neighbourhood of the

Chapter 1. Introduction 2

surface does not map well to streaming architectures such as GPUs, and results

in the same data being transmitted over the graphics bus multiple times.

The second possibility is to use independent and self-contained patches (such

as tensor product Bezier patches or PN Triangles [36]) as the rendering primitive.

In this case, the resulting triangulation can be made consistent by enforcing

that the tessellation algorithm independently arrives at consistent subdivision

decisions for any two neighbouring patches. The easiest way to achieve this is

to fix the level of subdivision for all patches on an object. This is known as

uniform subdivision.

In this thesis, we document research done towards the development of an

adaptive GPU-friendly tessellation algorithm for higher-order patches.

1.1 Research Objectives

While an efficient implementation of any tessellation algorithm is not possible

on current graphics hardware, future hardware will contain a tessellator unit

specifically designed for these algorithms. Support for the tessellator unit is

already available on DirectX 9.0. Given that the actual tessellation will take

place in hardware, our goals were to develop a tessellation algorithm with the

following properties:

• Provides hole-free adaptive surface tessellation without requiring any in­

formation on the neighbouring surfaces

• Has low GPU-to-graphic memory bandwidth requirements

• Requires little GPU memory

We use bi-cubic Bezier patches, but any other parametric self-contained

patch representation could be substituted in. The patches could be pre-computed

from another representation used for modeling, such as a subdivision surface

with a polynomial limit surface.

Chapter 1. Introduction 3

To maintain consistency between patches during rendering, the subdivision

criterion is purely based on patch boundaries, both top-level and tessellated,

such that the algorithm will arrive at the same decision for two patches sharing

an edge. Our algorithm provides an additional benefit that is important for

high-performance rendering on GPUs: the tessellation is created in a depth-first

order that causes the resulting polygons to lie on a space-filling curve covering

the object surface. This way, we improve cache coherence for memory accesses

to both textures (during texture read), and the framebuffer. (while writing the

final pixel result). Again, this feature addresses one of the common bottlenecks

in GPU-based rendering, i.e., the bandwidth between the GPU and graphics

memory. Finally, our algorithm leaves a small GPU memory footprint by storing

vertex positions in parametric form when tessellating, instead of computing a

new control mesh for each new tessellated surface.

1.2 Overview

In Chapter 2 we discuss related work. We then provide an overview of our

method (Chapter 3), and describe the depth-first tessellation algorithm (Chap­

ter 3.1), as well as a specific traversal order that creates polygons on a space­

filling curve (Chapter 3.2). We conclude the paper with results in Chapter 4

and a summary with discussion of future work in Chapter 5.

Chapter 2

4

Related Work

An obvious way to render higher-order surfaces is to tessellate them into polyg­

onal meshes in software, and to then transfer those to the GPU for rendering

(e.g. [21] and many others), but the CPU-to-GPU transfer overhead for these

methods grows exponentially with the level of detail. In parallel, there has also

been quite a bit of work on scan-converting higher order primitives directly on

the graphics hardware [2, 8, 18, 26]. Unfortunately, it is difficult to incorpo­

rate adaptive tessellation, and to prevent cracks between adjacent patches using

these approaches.

One solution to this problem is to tessellate the patch borders and the patch

surface separately [15, 28]. The patch borders are tessellated to a fixed level and

the uniformly tessellated surfaces are joined to the borders using triangle fans.

Although the individual patches may undergo different levels of tessellation,

adaptive tessellation within a spline surface is not supported. The number of

polygons used to tessellate a single spline still grows exponentially with each

level of detail.

More recently, several groups have looked into the implementation of subdi­

vision algorithms on GPUs [4, 6, 11, 33]. These approaches need to encode and

transmit whole neighbourhoods of the control mesh in order to render a single

surface patch. This results in the retransmission of surface data. To overcome

this problem, PN triangles [36] were developed and implemented on recent ATI

chips. They use normal information at the vertices instead of vertex position

information from neighbouring triangles to define the subdivision rules. Thus,

Chapter 2. Related Work 5

every patch is completely self-contained, and can be subdivided independently.

However, PN-triangles do not guarantee even tangent plane continuity across

patch boundaries (except at the vertices) and only allow for uniform subdivision

to maintain a coherent triangulation.

In this chapter, we present an overview of previous work on rendering smooth

surfaces, both in software and in hardware. We start with a discussion of Bezier

polygon tessellation (Section 2.1) and scanline tessellation (Section 2.2.) In

Section 2.3 we describe traditional mesh subdivision algorithms and discuss

their hardware implementations in Section 2.4. The PN-triangles method is

detailed in Section 2.5.

Finally, we provide an introduction to the space-filling curves, which we use

to draw polygons in a order that maintains memory coherence, in Section 2.6.

2.1 Surface tessellation

Surface tessellation is the process of converting a parametric surface, such as a

Bezier surface, into polygons or points for rendering on a GPU. The simplest,

most obvious way to render Bezier curves is to tessellate the surfaces in software,

and then feed the tessellation polygons into the hardware for rendering.

Although tessellating the surface in software makes it easy to perform adap­

tive tessellation thereby reducing the number of polygons in the tessellation

without reducing the surface quality, software solutions suffer from one major

problem: the high bandwidth requirements for transferring the polygons to the

hardware. Software tessellation is especially taxing on GPU bandwidth because

the number of polygons can increase exponentially with tessellation quality.

Models with base meshes consisting of only hundreds of polygons may contain

hundreds of thousands of polygons when fully tessellated. Many researchers

have worked on developing software-based algorithms for reducing the CPU-to-

GPU bandwidth load, ([1, 11, 16, 21, 32] to name a few,) but the results are

Chapter 2. Related Work 6

generally geared towards high-end graphics processors. For instance, some algo­

rithms make use of multiple parallel rendering pipelines which are not available

on lower-end consumer-grade GPUs.

At the same time, hardware implementations of the adaptive tessellation

algorithms are difficult because the adaptive algorithms require information on

neighbouring surface patches to ensure the tessellations of neighbouring patches

align to form a crack-free surface. This results in multiple transfers of the same

data. In addition, unlike with uniform tessellation where the positions of the

tessellation polygons are fixed, vertices generated by an adaptive tessellation

algorithm may appear at arbitrary points on the Bezier surface. Therefore,

a polygon must remain in memory until the polygon's entire neighbourhood is

tessellated. This poses problems because GPU memory space is limited, but the

number of polygons has the potential to grow exponentially with each additional

level of detail.

Figure 2.1: An example of tessellating a mesh using coving triangles. Left: The

boundaries are tessellated to a fixed degree and the surfaces are individually tes­

sellated until each patch meets the tessellation criteria. Right: Coving triangles

join the tessellated patches to the boundaries.

Coving triangles [15, 28] is a way of implementing partially adaptive tessel­

lation of a model in hardware. First, the patch boundaries are uniformly tes­

sellated until the entire boundary meets the tessellation criteria, such as edge

length or curvature. The boundary's level of tessellation is stored on the GPU

Chapter 2. Related Work 7

memory. Then, each surface patch is independently uniformly tessellated until

the individual patch surfaces meet the criteria. Finally, the tessellated surfaces

are joined to the tessellated boundary using triangle fans or strips called coving

triangles. Vertices are evenly spaced apart in uniform tessellation, making it

possible to recreate a patch's boundary tessellation using only the patch geom­

etry and the boundary's tessellation level. This allows us to create a crack-free

surface without any information on the neighbouring patch tessellations (see

Figure 2.1.)

Figure 2.2: Examples of surfaces where coving triangles has problems.

The coving triangles tessellations are globally adaptive over the entire model

surface, but are not locally adaptive within the individual surface patches. This

global adaptivity is sufficient for models consisting of small to mid-sized low-

curvature surface patches, where the tessellation polygons are roughly the same

size. However, local adaptivity is needed for models where the tessellation

polygons' sizes can vary significantly over the surface of a single patch. For

instance, perspective foreshortening on large patches causes the polygons closest

to the viewer to appear larger than polygons further away. Tessellation polygons

can also vary greatly in size due to the differing angles of orientation between

the polygons and the camera (see Figure 2.2.)

2.2 Scanline surface tessellation in hardware

Forward differencing was introduced as a hardware-friendly rendering alterna­

tive to software surface tessellation. In forward differencing, surfaces are not

Chapter 2. Related Work 8

tessellated into polygons. Instead, points on the surface are evaluated for each

pixel and then drawn directly into the framebuffer. Cracks on the surface will be

unnoticeable because they are smaller than a single pixel. Thus, the positions

of previous rendered points don't need to be stored in GPU memory to ensure

a crack-free surface. The forward differencing algorithm is well known in math­

ematics literature. In this section, we describe the 2D version of the forward

differencing algorithm for the sake of clarity. The 3D algorithm is similar.

Given a parametric curve f(t), we can estimate the first and second deriva­

tives of the curve using the following formulae.

Let pt and di be approximations of f(iAx) and f/(iAx) respectively. Starting.

with po = /(0) and do = //(0), we can trace out the full curve by recursively

evaluating the equations

Forward differencing is faster than simply evaluating the curve at the points

f(iAx) because the second derivative / " computes faster than f(x) for poly­

nomial functions. Unfortunately, forward differencing suffers from the accumu­

lation of approximation and floating point errors, which may lead to cracks.

Nevertheless, per-pixel forward differencing was implemented in the geometry

engines of both the IRIS 1000 [9] and the Reality Engine [2].

Alleviating the approximation errors has been the subject of much research.

Klassen [18] developed an integer-based forward differencing algorithm that does

away with the floating point errors but it is still prone to approximation errors.

A hole-free floating point-based algorithm was developed and implemented on

NVIDIA graphics processing chips [26]. This method compensates for calcu­

lation errors accumulated along the way, but is slower than the integer-based

f(x+Ax)-f(x)
A i

fl(x+Ax)-fl(x
Ax

pi+i = pi + dtAx

di+i = di + f//(x)Ax.

Chapter 2. Related Work 9

algorithm.

Forward differencing is often used to render points on the surface directly

to the framebuffer. Therefore, with uniform forward differencing, care must

be taken to ensure the step size, Ax, is small enough that at least one point

on the surface is evaluated per pixel. The fixed step-size, combined with the

surface variability due to curvature, viewing angles, and perspective can lead

to multiple surface points being evaluated within each pixel. Lien et al. [23]

developed an adaptive forward-differencing algorithm that evaluates one point

on the surface per pixel in screen space, thus avoiding evaluating and drawing

unnecessary points. This method relies on the fact that connective geometry is

unnecessary at the sub-pixel level and can be ignored. Because of this, adaptive

forward differencing cannot generate tessellations involving polygons larger than

a single pixel. This is especially wasteful for rendering low-curvature Bezier

surfaces which may by adequately approximated with only a small number of

flat polygons.

2.3 Mesh subdivision

Subdivision is a method of generating complex geometry by recursively refining

and smoothing a coarse mesh representation based on a set of rules. Mesh

edges and vertices can be tagged as "sharp", causing them to appear as creases

and points in the subdivision limit surface. The most common subdivision

algorithms are the Doo-Sabin [14], Catmull-Clark [7], and Loop [24] algorithms.

Since then, several other subdivision methods have been proposed [17, 19, 20,

34, 35, 38],

2.3.1 Doo-Sabin Subdivision

Intuitively, the Doo-Sabin algorithm recursively shaves off the mesh edges and

vertices until it arrives at a smooth surface. The mesh faces "shrink" around

Chapter 2. Related Work 10

Figure 2.3: One iteration of Doo-Sabin subdivision. Left: the original mesh.

Centre: shrinking the faces. Right: adding new polygons where the vertices

and edges were pulled apart.

the face centroid and polygons are added where the vertices and edges joining

the faces once were (see Figure 2.3.) During the shrinking phase, each mesh

face is reduced by half while its centroid remains in the same place, so that the

mesh vertices lie halfway between the centroid and the original vertex position.

While simple, the Doo-Sabin algorithm may produce non-planar polygons over

vertices with valence greater than 3.

2.3.2 Catmull-Clark Subdivision

The Catmull-Clark algorithm is a generalization of bi-cubic B-spline subdivision.

During each subdivision step, new vertices are created at what are called the

face, edge and vertex points. The new face points are placed at the centroids of

each face and the new edge points are placed halfway between the centroids of

each edge's adjacent faces. The new vertex point s is a convex combination of

the following.

• q, the average of the new face points sharing the old vertex

• r, the average of the midpoints of all the old edges incident on the old

vertex

• s, the old vertex position

Chapter 2. Related Work 11

The new vertex point is

„ 1 1 N-3
S = N q + N r + — S

(2.1)

where N is the old vertex valence. New subdivision quadrilaterals are created

joining together a new face point, one of the face's new vertex points, and the

two new edge points of the common edges, as in Figure 2.4.

Figure 2.4: An example of one iteration of Catmull-Clark subdivision. From left

to right: the original mesh, adding the face and edge points, placing the vertex

points, connecting the points with faces to get the final subdivided mesh.

2.3.3 Loop Subdivision

The Loop subdivision algorithm produces a set of curvature continuous quar-

tic Bezier patches in the limit. Unlike Doo-Sabin and Catmull-Clark, Loop

subdivision only works on triangle meshes.

Figure 2.5: An example of one iteration of Loop subdivision. Left: each triangle

is subdivided into 4 new triangles. Right: the original mesh and the subdivided

mesh.

Chapter 2. Related Work 12

When creating the next level of subdivision, each triangle is divided into 4

new triangles and the entire mesh is smoothed, as in Figure 2.5. The vertices

placed on the edge midpoints are called edge vertices. During the smoothing

phase, the position of a new edge vertex e is

e= |(ei +e2) + i(ai + a2) (2.2)

where the e\ and e2 are the edge endpoints and a\ and a 2 are the remaining

vertices of the adjacent faces.

The new vertex positions v are

v = a(N)v + (1 - a{N))q (2.3)

where v is the old vertex position, N is its valence, q is the average of the

positions of the old vertices that share an edge with v, and a(N) is defined as

follows.

a{N) = I+ {l+ \cos{2-w))2 (2'4)

In Loop subdivision, vertices and edges may be tagged as sharp. Sharp

vertices and edges are simply left alone during the smoothing stage, giving them

a crisper, more defined appearance. Edges and vertices may also be given an

integer sharpness value s where a sharpness value of oo means that the edge or

point is infinitely sharp and a 0 means it is not sharp at all. Edges and vertices

are left unsmoothed for s recursive iterations. Semi-sharp edges and vertices

give a model a softer, more organic look, whereas perfectly sharp edges result

in a crisp, artificial or industrial feel.

Chapter 2. Related Work 13

2.3.4 Discussion

Subdivision is an attractive way of generating smooth surfaces because of its

simplicity of implementation and the compactness of the base representation.

It also allows the user to specify varying levels of detail corresponding to the

number of levels of subdivision the model is to undergo. Unfortunately, software

implementations of subdivision algorithms are very slow and transferring the

subdivided mesh to the graphics hardware requires a lot of bandwidth, even if

an adaptive algorithm is used to lower the polygon count. We discuss hardware

implementations in Section 2.4.

2.4 Mesh subdivision in hardware

Subdivision algorithms have the ability to produce a smooth, attractive model

from a simple mesh representation. Not surprisingly, considerable research has

gone into implementing subdivision schemes in hardware, so subdivision can be

used in interactive and real-time applications. There are two main approaches

to implementing subdivision in hardware: one based on pre-computed basis

functions and another that utilizes displacement maps.

2.4.1 Pre-computed basis functions

Loop [24] and Catumull-Clark [7] subdivision transform each mesh polygon into

a NURBS patch in the limit. In addition, each NURBS patch is defined only by

the positions of the vertices in the 1-neighbourhood surrounding the polygon,

which means that any point on a limit surface patch over a mesh polygon can be

expressed as a convex combination of the vertices in the 1-neighbourhood around

the polygon. Furthermore, corresponding points on polygons with similar con­

necting geometry use the same coefficients or basis functions. For example, the

point defined by the barycentric coordinates (a,P,-y) on two triangles with the

Chapter 2. Related Work 14

same vertex valences (see Figure 2.6 for example) will be defined by the same

convex combination of vertices in their respective 1-neighbourhoods.

Figure 2.6: Triangles (0 1 , 0 2 , 0 3) and (6i,&2,&3) have similar connecting geome­

try.

Some hardware subdivision algorithms [4, 6, 12] take advantage of this fact

by precomputing all the coefficients or basis functions needed to represent the

subdivision surface of a mesh and storing them in tables in GPU memory.

Then, subdividing a polygon is a simple matter of transferring the polygon's

1-neighbourhood to the GPU, performing a table lookup to find the coefficients

that match the vertex valences and applying the appropriate instructions in

hardware to evaluate the vertex positions. The basis function method can be

combined with forward differencing to speed up the calculation times [3].

Shiue et al. [33] take the basis function method one step further. They

store the neighbourhood vertex positions in a "patch texture" and treat surface

subdivision as a form of texture scaling. The scaling function is defined such

that each pixel on the scaled texture corresponds to a vertex position on the

subdivided mesh. Triangles with similar connective geometry can be stored in

the same patch texture. The instructions for scaling the patch texture are stored

in a lookup table.

Hardware subdivision algorithms that use pre-computed basis functions can

Chapter 2. Related Work 15

be quite effective for meshes with limited vertex valence connectivity. In real

applications, however, meshes may have arbitrary connectivity. The GPU mem­

ory must store one basis function for each polygon on the mesh with differing

vertex valences. This leaves less memory available for storing other information

important for rendering, such as texture maps and BRDFs.

2.4.2 Displacement mapping

Displacement mapping is a compact way of representing detailed meshes. A

coarse mesh is used to approximate the mesh surface and the finer geometric

detail is stored in a displacement map that stores information on how to displace

the surface of the coarse mesh to achieve a better representation of the detailed

model (see Figure 2.7). The displacement map is sent to the graphics hardware

as a texture accompanying the coarse mesh and the displacement is performed in

the hardware. Displacement mapping works well when representing fine details

over a simple geometry. For instance, a model of an intricate relief carving on

a flat table would be well suited to displacement mapping.

Figure 2.7: The displacement map (left) is applied to different simple surfaces

(centre.) The resulting complex geometry is shown on the left.

More recently, displacement mapping has been used to represent mesh subdi­

vision limit surfaces in order to quickly subdivide meshes in hardware. During

rendering, the displacement map contains information on how the base mesh

surface is to be displaced to achieve the subdivision limit surface [13, 22] Unfor­

tunately, this method suffers from surface smoothness artifacts across the patch

Chapter 2. Related Work 16

boundaries due to numerical round-off errors and texture stretching, making

it unsuitable for generating high quality subdivision surfaces. Boo et al. [5]

transmit the polygon neighbourhood, along with the actual polygon, to ensure

smoothness across boundaries, but this technique leads to multiple transmis­

sions of the same data, wasting precious GPU bandwidth. Also, a displacement

map representation is less compact than a NURBS representation.

2.5 PN-Triangles

Vlachos et al. [36] developed PN-triangles to overcome the problem of having to

transmit additional polygon neighbourhood information to the hardware in or­

der to draw smooth surfaces. The PN-triangles method draws a smooth surface

over a triangle based only on triangle vertex positions and normals, which would

normally be transmitted to the hardware for a traditional rendering pass. This

makes it easy to incorporate in projects where the artwork is already finalized

or there are limited resources to hire "touch-up" artists.

Figure 2.8: Projecting an edge onto a plane defined by one of the vertex normals.

A cubic triangular Bezier control mesh is generated over each triangle based

only on its triangle vertex positions and normals. The corner control points

are placed at the triangle vertices. The 6 control points on the boundaries are

generated by projecting the triangle edges onto the plane perpendicular to the

normal of the closest vertex (see Figure 2.8) and scaling the projected edge by

Chapter 2. Related Work 17

| . The centre control point is placed at the position

Cc + (Cc - Ct) (2.5)

where Ct is the triangle centroid and Cc is the centroid of the six edge control

vertices.

Figure 2.9: Generating a cubic Bezier control polygon over a triangle. From left

to right: the triangle and its vertex normals, adding the edge control points,

placing the centre control point, the resulting control polygon.

The resulting surface patches are smooth and hole-free, since adjacent tri­

angles share the vertices that define the control mesh at the boundary, but it

is impossible to guarantee smoothness between adjacent patches without neigh­

bourhood information. In fact, adjacent patches are often only C° continuous

to one another, meaning patch boundaries align but the tangent planes at the

boundaries do not. This often results in sharp and disturbingly obvious dis­

continuities along the mesh edges. Some of the discontinuities can be hidden

by interpolating the normals separately from the geometry using quadratic, as

opposed to cubic, interpolation, but this creates a disparity between the surface

geometry and lighting.

2.6 Space-filling curves

A space-filling curve is a recursively defined curve that covers an entire 2-

dimensional area in its limit. We look at the Hilbert space-filling curve [30]

Chapter 2. Related Work 18

•n n
• C ^ Lt

Figure 2.10: The first few iterations for generating a Hilbert space-filling curve.

as an example. The limit of a Hilbert curve is a square. To generate the curve,

we start with a square divided into 4 equal-sized squares. The curve connects

the centres of the four squares in the base level, as in Figure 2.10. This is known

as the base shape. Every level of recursion, the subsquares are replaced with

smaller versions of the base shape, and the curves are joined together. The base

shapes are oriented such that the joining line segments only cross a single edge.

It has been known for some time that rasterizing polygons in the shape

of a space-filling curve, such as the Hilbert curve [31], produce significantly

improved texture and framebuffer cache when compared to standard scanline

traversal [25, 37], at least when textures and the framebuffer are stored in

tiled fashion instead of scanline order. Although specific information about the

memory layout of commercial GPUs is difficult to come by, this seems to be the

case in modern hardware.

A nice property of many space-filling curves is that they can be easily created

by hierarchical depth-first traversal procedures like our tessellation algorithm

described in Section 3.1. All that is required are a few local rules at every level

that determine in which order the subnodes are created.

Chapter 2. Related Work 19

2.7 Summary

We discussed several methods for rendering smooth, complex surfaces from

coarse representations, including polygon tessellation (Section 2.1), scanline sur­

face tessellation (Section 2.2), mesh subdivision (Sections 2.3 and 2.4), and PN-

Triangles (Section 2.5). Although many of these methods support some com­

bination of real-time rendering, improved memory coherence, and local surface

tessellation adaptivity, none of them support all three features.

Our proposed locally adaptive surface tessellation technique is suitable for

implementation in hardware, making it possible to render smooth surfaces in

real-time. We also use space-filling curves (Section 2.6) to improve performance

through cache coherence.

Chapter 3

20

Tessellation

The algorithm presented in this thesis adaptively tessellates cubic tensor-product

Bezier patches according to criteria that are only based on tessellation edge in­

formation. The algorithm is depth-first recursive and the polygons are generated

in space-filling curve order.

Basing the tessellation criteria entirely on tessellation edge information en­

sures that subdivision decisions are consistent across neighbouring patches, pre­

venting cracks. Our method differs from the coving triangles methods intro­

duced by Rockwood [29] and Filip et al. [15] in that the tessellation criteria are

evaluated for boundaries created by the tessellation as well as for the top-level

patch boundaries.

Our tessellation is depth-first, which implies a logarithmic memory consump­

tion (linear in the number of tessellation levels). The representation for each

level is designed to optimize memory footprint: instead of explicitly generating

and storing the control mesh for every level, we only store one control mesh for

the whole patch. At every tessellation level, we store only the (u,v) parameter

values for the corners of the of the subdivided regions. In addition to reduced

memory cost, storing the patch corner parameter values also allows us to create

both quadrilaterals and triangles in our tessellation algorithm. The latter helps

simplify the crack-free adaptive tessellation process. This approach does come

at the cost of having to recompute some vertex positions due to multiple poly­

gons sharing the same vertex. However, the reduced memory footprint and the

support for adaptive tessellations outweighs these costs.

Chapter 3. Tessellation 21

In addition, we can generate the triangles in space-filling order at no extra

cost. In a uniform subdivision setting, the center points of the resulting quadri­

laterals reside on a Hilbert curve embedded in the 3D geometry. As shown by

Voorhies [37], space-filling curves provide a dramatic improvement over scan­

line traversal orders in terms of memory coherence if the image data (textures

and the framebuffer) are stored in tiled rather than scanline order. As a result,

our method simultaneously optimizes the accesses to graphics memory for both

texture memory read and framebuffer read and write. This is similar in spirit

to recent work on polygon scan conversion in Hilbert order [25],

We expand on our surface tessellation process and the tessellation order in

the rest of this chapter.

3.1 Surface tessellation

In this section we describe the tessellation process in more detail. We start with

uniform subdivision and then discuss the adaptive case. Let S(u, v) with param­

eter values (u, v)e[0, l]x[0,1] be the tensor-product Bezier patch that requires

tessellating.

3.1.1 Uniform tessellation

Our algorithm uses a recursive depth-first method for generating uniform tes­

sellations. The recursive property makes it easy to implement tessellations in a

space-filling curve order. With uniform tessellation, surfaces are tessellated the

same way for each level of detail regardless of what the surface geometry may

look like. A level-of-detail variable £ specifies the number of tessellation steps a

surface will undergo. This I is analogous to the level-of-detail variable used in

subdivision schemes.

The corners of the base quadrilateral (i.e. the £ = 0 surface) are located at

the surface's corners, i.e. the points at parameter values 5(0, 0), 5(1,0), 5(1,1),

Chapter 3. Tessellation 22

and 5(0,1). We generate the surface for the next tessellation level of detail by

adding five new vertices, 1 on each of the 4 edges and 1 in the centre of the

polygon, and subdividing each quadrilateral into four new quadrilaterals.

5(»3..v3)

S(u4,v4)

SQi2,v2)

,S'(;/1,v1) = .S(;/5,v5)

Figure 3.1: Base polygon vertex placement.

For example, given a quadrilateral with corner vertices at S(ui, Vi), 1 < i < 4.

The new boundary edge vertices are placed on the Bezier surface at points

-) where (us,vs) = (ui,v\) (see Figure 3.1.) These points
2 ' Vi+Vi + 1 •

correspond to the boundary midpoints. The new center vertex is placed at the

surface's parametric centre S(j]T Ui, \ _^Vi) . All vertices in the tessellation lie

on the surface S(u, v), as in Figure 3.2.

Figure 3.2: Tessellating a quadrilateral Bezier patch.

With uniform tessellation, a crack-free surface is guaranteed as long as neigh­

bouring surface patches undergo the same level of tessellation. However, uniform

recursive tessellation results in an exponential increase in the number of poly­

gons at each level of detail, making the surface slow to render at higher levels of

detail, even if the tessellation is performed in hardware. We use adaptive tes­

sellation to reduce the number of polygons in the tessellation without lowering

the final surface quality.

Chapter 3. Tessellation 23

3.1.2 Adaptive tessellation

Adaptive tessellation allows us to avoid drawing unnecessary polygons, giving

the algorithm more time to spend on areas that require further refinement. For

example, surface areas that are flat or smaller than a single pixel don't need to be

tessellated further, whereas areas that are curved or cover a significant amount

of screen space may require more attention. In addition, top-level patches may

be of drastically varying size, depending on the amount of detail necessary for

representing a particular part of the object. Uniform subdivision of such models

may result in extremely non-uniform polygon areas.

Figure 3.3: An example of a crack forming in the mesh due to differing levels of

tessellation on adjacent patches.

With adaptive tessellation, cracks in the surface may appear if adjacent areas

are subjected to different levels of tessellation (See Figure 3.3.) In CPU-based

algorithms that have access to the complete model geometry (such as [19], [27],

and others) a typical solution is to add some extra polygons to fill potential

cracks. However, we limit our GPU-friendly algorithm to have access to the

geometry of only a single surface at a time. This limited access avoids having to

transmit entire neighbourhoods, which may be of arbitrarily large size. Because

of this restriction, there is no way of knowing how the neighbouring surfaces

will be tessellated, making it difficult to maintain consistency across patches.

In particular, this rules out subdivision criteria based on surface curvature or

area.

Our algorithm solves this problem by using tessellation criteria entirely based

on boundary information. While the idea of tessellation criteria that completely

Chapter 3. Tessellation 24

ignore the surface interior may seem limiting, it works well in practice. Uni­

formly tessellating the surfaces a few levels-of-detail before applying adaptive

tessellation creates boundaries in the patch interiors. So, when the tessella­

tion criteria are applied, the criteria are actually basing their decisions on the

patch inner geometry, even though the tessellation criteria themselves are en­

tirely boundary-based. Pre-tessellating the surfaces 1 level-of-detail should be

sufficient for cubic Bezier surfaces like the ones generated from subdivision sur­

faces, and 2 levels-of-detail will effectively deal with non-convex and non-concave

surface patches.

The tessellation criteria are re-evaluated at every tessellation level for every

new polygon boundary created, resulting in an adaptive tessellation of the entire

spline surface. Assuming the Bezier patches are at least boundary continuous,

the tessellated geometry of a shared boundary will remain the same, regardless

of which patch is currently processed by the GPU. Therefore, since the decision

whether or not a boundary needs tessellation is based solely on the boundary

geometry, then a shared boundary will be divided the same number of times

and at the same places in two adjacent patches and the boundary vertices will

line up.

Figure 3.4: Possible tessellation cases in our algorithm.

How the interior of the surface of the patch is tessellated depends on which

edges require further refinement. The tessellations must only introduce new

vertices on edges that need refinement and must leave edges that don't need re­

finement intact. Figure 3.4 lists all possible configurations based on which edges

Chapter 3. Tessellation 25

need to be subdivided and which do not. When a boundary between S(ui,vi)

and 5 (M 2 , H 2) requires subdivision, the new boundary vertex is always placed

at the point 5 (^ ± ^ , ^ ± ^) . ' The centre vertex is placed at S(± _>i . \ J>i)if

needed.

Note that two of the quadrilateral cases actually create triangles rather than

quadrilaterals, and that in one case the quadrilaterals are no longer aligned with

the major coordinate axes. Since we now have triangular surface pieces as well,

we also define subdivision rules for those (see Figure 3.4.) It is worth pointing

out that the surfaces over those subdivided regions cannot be represented exactly

as bi-cubic Bezier patches unless trimming curves are used. In our approach this

is not a problem, however, since we do not explicitly represent the subdivided

surface pieces. Rather, as pointed out in the overview of Chapter 3, we store

the positions of the vertices only in parameter space, and use point evaluation

to compute the corresponding 3D locations from the representation of the full

(i.e. top-level) patch.

3.1.3 Edge tessellation criteria

This section describes the four different boundary tessellation criteria we use

with our algorithm. This list of tessellation criteria is not exclusive. Other

criteria may be used as long as only edge information is involved.

P,

Figure 3.5: An illustration of the terms used by our edge criteria.

We first define a few terms, illustrated in Figure 3.5 for the sake of clarifi­

cation. Let ps = S(us,vs) and pe = S(ue,ve) be the start and end vertices of

an edge of a tessellated face. Some of the tessellation criteria described in this

Chapter 3. Tessellation 26

section require evaluating the vertex at the center point pm = S(u"~2~Ue, v"12

v').

Also, let ei = ps — pm and e2 = pm — Pe be the vectors between the boundary

endpoints and its midpoint.

We define a boundary tessellation function T(S,us,vs,ue,ve) £ {yes,no}

where if T(S,us,vSlue,ve) = yes then the boundary between S(us,vs) and

S(ue,ve) needs tessellating. Otherwise, the boundary is left alone. The four

possible tessellation functions we propose are the edge length function Xi, the

arc length function Ta, the straightness function T s , and the tangent function

Edge length criterion

The edge length criterion simply uses the distance between the points pe and

p s as a coarse estimate of the the tessellation boundary arc length. The edge is

tessellated if this distance is larger than the threshold <5;.

Calculating the distance \ \pe -ps\ \ = \/{Pe — Ps) • (pe - Ps) can be problem­

atic because the square root operation takes a while to evaluate and may have

significant round-off errors. We modified the criterion to speed it up as follows.

Ti(us,vs,ue,ve)
yes, if \\Pe -Ps\\2 < Sf

otherwise

Figure 3.6: The edge length criterion becomes a better approximation of the

surface arc length after a few iterations of the tessellation algorithm.

Chapter 3. Tessellation 27

This criteria is the quickest to evaluate of the four we propose and is effective

for low curvature surfaces. The edge length criterion is useful on splines that are

relatively flat. While this is not common for model base surfaces, the tessellation

boundaries become less rounded and the point pm grows closer to the edge

joining points ps and pe as the tessellation progresses. Therefore, the edge

length criterion becomes a viable approximation of the arc length after a few

iterations of the tessellation algorithm are performed with a different criterion.

Figure 3.7: The edge length criterion would be a poor choice for a boundary

curve such as this one.

Unfortunately, it is not view dependent and so may drastically over-estimate

the screen-space arc-length when the boundary is viewed from certain angles.

Also, it may be a poor estimator of the actual arc length of high-curvature

boundaries. The boundary curve shown in Figure 3.7 is an example where this

may be the case. The boundary endpoints lie close enough together that = no

and the boundary is not tessellated further, even though it is a poor estimate

of the boundary arc length and requires more tessellation. Incorporating the

boundary midpoint pm into the boundary length estimation as in the arc length

criterion will give us a better approximation.

A r c length cr i ter ion

The arc length function uses additional information provided by prn to estimate

the arc length of the boundary curve in pixels when rendered. The boundary

needs tessellating if the estimated arc length is greater than the threshold <5a.

Instead of computing the actual arc length of the curve, we estimate the

Chapter 3. Tessellation 28

Chapter 3. Tessellation 28

Figure 3.8: An illustration of the terms used by the arc length criterion.

screen distance between points ps, pm, and pe. Let r be the screen resolution, d

be the distance from the object to the camera, and v be the viewing direction

(see Figure 3.8.) Also, let 9i be the angle between edge e; and the plane per­

pendicular to the viewing direction. Then, the approximate length L(ei) of the

edge ei in pixels is

L{ei) = 11 kill cos#j. a

The approximate arc length a of the boundary curve is

«• = 1 (Ikill cos6*i + ||e2|| cos<92)-d

We use the dot products v • ei to avoid evaluating the cosine and square root

functions.

v • ei = ||ei|| cos(0j + 90)

= ||ei||sin(0i)

(v • ei)2 = ||ei||2sin2#

= | | e i | | 2 (l-cos 2 0)

1 - cos2 0
„„„2 n _ i (•"•ei)2

- I - n̂ip
Then, we derive the arc length approximation a as follows.

Chapter 3. Tessellation 29

a'

a
2

2

<

<

5(||ei||cos»i + | | e 2 | | cose 2)

(a) 2(||ei|| 2 cos2 <9X +2||e1||||e2||cos(91cos6>2 + ||e2||2 cos2 02)
(5)2(||e1||2cos201 + | | e 2 | | 2cos 20 2 + 2||e1||||e2||)

(5)2(||ei||2cos201 + ||e2||2cos202 + 2|| e i|| 2|| e 2|| 2)

(;) 2 (I M | 2 (1 - fef) + I k 2 | | 2 (l - + (e i • e i) (c 2 • e 2))

(^) 2 (! | e i | | 2 + ||e 2 || 2 - (v • e i) 2 - (u • e 2) 2 + (e i • e i) (e 2 • e 2))

Finally, the arc length criterion is as follows.

Ta(us,vs,ue,ve) =
yes, if a2 < 82

a

no, otherwise

The arc length criterion works best when a per-pixel tessellation is desired,

because it estimates the arc length in screen space. It also works well for point-

splatting, where the model is rendered entirely in points instead of triangles,

because it controls the distance between vertices.

The arc length criterion does nothing to ensure transitions between polygons

are smooth and so the model may have a jaggy or faceted appearance in the

lower levels of detail. The straightness and tangent tessellation criteria presented

below are more appropriate if the desired final tessellation is to have fewer

polygons.

Straightness criterion

A common way of deciding whether or not to continue tessellating a patch is

to tessellate if the inner surface of the patch has a high curvature and to stop

if it is relatively flat. The straightness criterion is similar in spirit, but since

our tessellation criteria can only use patch boundary information, we use the

boundary curvature instead.

The straightness function estimates how straight the boundary curve is. Let

(3 be the angle between e\, and e2. The value of cos/3 is lowest when the

Chapter 3. Tessellation 30

Figure 3.9: (5 is the angle between ps, prn, and pe.

j3 = 180° i.e. when the boundary is perfectly straight. Therefore, if the cosine

of the angle is greater than the threshold 5S, then the boundary is considered

not straight enough and requires further tessellation.

{ yes, if cos (3 > Ss

no, otherwise

We use an approximation to avoid evaluating the cosine function.

c o s Q — e i " e 2 ^ e i ' e 2 _ e i ' e 2

l l e i l l l l e 2 | | ~ |] e i | | 2 e x • e i

This assumes that e\ and e2 are approximately the same length, which is

the case in many cubic Bezier surfaces.

{ yes, if zi-ei. > Ss

no, otherwise

The straightness criterion is good at detecting large, flat areas. It works best

on models with a large variety of surface curvatures, but can result in skinny

triangles in the higher levels of detail.

Tangent criterion

The tangent criterion guarantees a certain amount of smoothness between adja­

cent patches at the patch corners by continuing to tessellate an edge if the angle

between the edge and the surface tangent at its endpoints is too large. In many

Bezier models, neighbouring Bezier patches are at least C 1 continuous to one

another, i.e. tangents of adjacent surfaces are equal at the patch boundaries.

Chapter 3. Tessellation 31

Figure 3.10: as and ae are the angles between the tessellation and the surface

normals.

Therefore, the tessellation will be completely smooth at the patch corners if it

is parallel to the tangent planes at the corners.

Let ns and n e be the surface normals at points ps and pe. The tangent

planes are perpendicular to the surface normals. as and ae are the angles

between the current tessellation and the surface normals ns and ne. The edge

requires further tessellation if one of the angles as or ae is too far away from

90° or 270°, i.e. if either |cos(as)| or |cos(at)| is too large. For a tangent cosine

angle threshold value St the tangent plane function is defined as follows.

{ yes, if | cosa s| > 5t

or | cosa e\> 6t

no, otherwise

After squaring both sides of the equation in order to avoid evaluating the

cosine functions, we get the following:

cos ai = —
l l e l l

{ yes, if cos2 as > 5f

or cos2 ae > <52

no, otherwise

The tangent criterion is best at obscuring the boundaries between patches.

However, it is not view dependent, even though its calculations are heavily based

on vectors which may change with the application of a perspective transforma­

tion. It is possible to transform the vectors before performing the calculations.

Chapter 3. Tessellation 32

This introduces no computational overhead because the vectors must be trans­

formed prior to rendering anyway.

Discussion

These edge tessellation criteria introduce very little computational overhead to

the algorithm. The positions ps and pe should already be stored in memory

from the previous recursive call. Determining pm for evaluating the tessellation

criteria does not introduce any significant overhead because pm needs to be

calculated anyway if the edge requires tessellation or if uniform tessellation

is being performed. The screen resolution, distance from the object to the

camera, and viewing direction only need to be computed once per frame. Also,

the normals at ps and pe which are used in the tangent criterion need to be

computed anyway, since they are required for shading.

Figure 3.11: In some cases, the tessellation may be planar even when the surface

has a high curvature.

With the arc length and straightness tessellation criteria, it is possible to

drastically underestimate the arc length or overestimate the straightness of the

curve if the points ps, pm, and pe are almost linear when the curve is not (see

Figure 3.11.) Adding more points to the calculation would result in a more

accurate estimation but would require more operations and there would be

additional overhead required to compute the new point positions. In the vast

majority of cases this isn't a problem since Bezier polygons generated from a

subdivision surface are generally either concave or convex, so the case where the

points are linear when the surface is not does not occur very often.

Chapter 3. Tessellation 3 3

3.2 Tessellation order

As mentioned in Section 3, it is possible to generate the polygons of the tessella­

tion the order of a space-filling curve to improve the coherence of memory access

patterns during texture mapping and writing to the framebuffer. This addresses

the problems with data transfers between the G P U and graphics memory.

In the following, we describe how this can be achieved for both uniform and

adaptive subdivision. While the number of different cases may at first seem

daunting, Section 3.3 discusses an efficient and straightforward implementation

using lookup tables.

3.2.1 Space-filling curves

The order in which our uniform quadrilateral tessellations are generated follows

the shape of the Hilbert curve, shown in Figure 3.12.

F | F

L U bthH I
Figure 3.12: The Hilbert space-filling curve.

Our adaptive tessellation algorithm generates triangles as well as quadrilat­

erals, but the Hilbert curve only applies to rectangular domains. We therefore

came up with the space filling scheme depicted in Figure 3.13.

Like the Hilbert curve, the triangular curve never self-intersects for all re­

cursive levels. The proof goes as follows.

We partition the base shape into 4 identical convex partitions to show that

the non-limit curves are not self-intersecting. The curve at the top-level passes

• r-4—1

Chapter 3. Tessellation 34

Figure 3.13: The triangular space-filling curve we use in our algorithm.

through the centres of each of the 4 partitions. It lies completely within the

partitions and is not self-intersecting. At any level of refinement, the curve con­

sists of non-intersecting copies of the original pattern contained within convex

non-intersecting partitions, as well as the line segments connecting the copies

in neighbouring partitions. In the limit, the endpoint of the curve segment in

one partition and the start point of the segment in the next partition converge

to a point that is shared by both partitions. Since the partitions are convex,

the connecting line segments do not introduce self-intersections either, and the

non-limit curves are not self-intersecting.

Figure 3.14: Coherence between top-level patches is maintained if they are

specified in a quadrilateral strip, a triangle strip, or a triangle fan.

An interesting feature of this approach is that coherence can even be main-

Chapter 3. Tessellation 35

tained from one top-level patch to the next if they are specified in an order

resembling a quadrilateral strip (Figure 3.14). A similar result applies to trian­

gular patches specified in triangle strip or triangle fan order.

3.2.2 Adaptive tessellation curves

Figure 3.15: Left: The last vertex and the first vertex of two adjacent tessellated

polygons are the same, maintaining coherence between adjacent tessellated poly­

gons. Right: The first and last vertices traversed on the top-level Bezier patch

are the same regardless of tessellation level-of-detail, maintaining inter-patch

coherency.

The Hilbert rules cannot directly be used for adaptively tessellated surfaces

because adaptive tessellation does not necessarily create 4 subpatches at every

level. Instead, the polygons are drawn in an order that tries to preserve the

cache coherent properties of the space-filling curve. Specifically, we preserve

inter-patch and intra-patch coherence.

Inter-patch coherence is maintained by ensuring the last vertex of a tes­

sellated polygon and the first vertex of the next tessellated polygon are the

same. This way, the vertex ordering never skips back and forth between poly­

gons needlessly. The vertices are presented in one continuous, non-intersecting

chain.

We need to preserve intra-patch coherence or coherence between patches

because the Bezier surfaces may be oriented to maintain coherency between

top-level patches as mentioned in Section 3.2.1. Our algorithm respects this

Chapter 3. Tessellation 36

inter-patch coherency by organizing the tessellation such that the first and last

vertices traversed on the entire Bezier patch are always the same, regardless of

the tessellation level.

Preserving both inter- and intra-patch coherency results in a tessellation

path that is continuous and not self-intersecting. In addition, the path will

traverse all vertices in a subpatch before continuing onto a neighbouring patch.

Therefore if the texture for two subpatches are contained in separate cache

blocks in memory, the rasterization process will only require a single cache

swap.

1 boundary

Table 3.1: Tessellation orders for all possible tessellation cases.

There is a different tessellation order for every adaptive case and for every

possible direction. In Table 3.1, we list the individual cases. We try to draw

the adaptive tessellation of a triangular patch in an order that preserves the

Chapter 3. Tessellation 37

memory coherency properties of the triangular space-filling curve in all tessella­

tion cases. When only 1 boundary requires refinement on a quadrilateral patch,

all the tessellations begin and end on the first and last vertex of the parent

quadrilateral, allowing for easy integration with other tessellations. When 2

or 3 boundaries need to be refined, the curve may not necessarily end at the

bottom right corner, resulting a slight loss of inter-patch coherence. However,

in one of the 2-boundary conditions, the tessellation stops on an edge that will

not be subdivided further, so loss of coherence will be small.

Figure 3.16: A model being adaptively tessellated using the arc length criterion.

3.3 H a r d w a r e - f r i e n d l y imp lemen ta t i on

Although the number of different cases for adaptive tessellation may seem in­

timidating at first, an implementation is actually not very complex. For every

subpatch we create a bit vector describing which edges need to be subdivided

and which don't. This bit vector references a lookup table with sixteen entries

for the quadrilateral case and 8 entries for the triangular case.

Every table entry stores the subpatches that need to be created in the order

required according to Section 3.2. Every subpatch is specified in terms of the

vertex positions (in parameter space relative to the current level). Sub-patch

orientation is implicit in the order that the vertices are listed in the table.

For example, suppose we are tessellating a quadrilateral patch where the first

Chapter 3. Tessellation 38

boundary requires tessellation and the second, third, and fourth boundaries do

not. The corresponding bit vector for such a patch would be 1000 in binary

notation or 8 in decimal notation. Entry 8 in the lookup table will contain

information describing how the surface should be tessellated.

With this table-based approach, the evaluation of the surface points, com­

putation of the adaptive subdivision criteria, and computation of the next sub­

division level are easily implemented given the feature sets of vertex shaders for

current GPUs. The fundamental missing feature from current PC-based GPUs

is the ability to generate new triangles in a vertex program, although the graph­

ics chips of some game consoles such as the Playstation 2 do support this. This

feature will soon be making its way onto the next generation of PC-based GPUs

and is already supported by DirectX 9.0.

39

Chapter 4

Results

To evaluate the performance of the proposed method, we compare the number of

polygons generated by the different adaptive tessellation criteria with different

threshold values. We also analyze spatial coherence of the polygon ordering

both visually and quantitatively.

4.1 Polygon counts

Figure 4.1: A comparison of a model tessellated using different tessellation cri­

teria. The criteria used are, from left to right, no criteria (uniform tessellation),

the edge length criterion, the arc length criterion, the straightness criterion, and

the tangent criterion.

Table 4.1 shows a comparison of the number of polygons generated by the

various methods for the cube with holes composed of 288 top-level patches

Chapter 4. Results 40

(compare Figure 4.1). The columns of the table correspond to different threshold

values for the different edge subdivision criteria. The 8 = 0 column corresponds

to uniform tessellation. As expected, we can see that the adaptiveness of the

subdivision can result in a drastically reduced number of polygons generated

over uniform tessellation.

The straightness criterion performs best with this model because it contains

a variety of flat and highly-curved surfaces. The tangent criteria also performs

well, but does not evaluate the angle around the boundary midpoint until an

additional level of tessellation is performed. This explains why the tessellation

with 6 — 10 at tessellation level £ = 5 using the tangent criteria contain approx­

imately 4 times more polygons (i.e. undergo about 1 more level of tessellation)

than the tessellations using the straightness criterion.

4.2 Texture accesses

Figure4.2 shows the resulting tessellations and polygon orders both in 3D and in

the parameter domain for a simple blob object. From visual inspection, it is easy

to see that the polygons created close together in time are also grouped together

spatially. This is the property we are after for memory coherence during texture

lookup and framebuffer writes.

To quantitatively assess the gain in coherence, we evaluated the number of

changes between texture tiles as we render the generated tessellation in space­

filling order (see Table 4.2.) The texture over each face consists of 4 texture

tiles. We compare this against a uniform scanline order tessellation (leftmost

column). The results confirm Voorhies' earlier findings of superior performance

for space filling traversal orders [37].

Chapter 4. Results 41

i 6 = 0 6= 1 3 = 2 5 = 5 6= 10

Ti 1 1152 1152 1152 1152 792

3 18432 18408 15992 5760 1464

5 294912 120502 31674 6192 1464

Ta 1 1152 1152 1152 1152 1152

3 18432 18432 18432 18432 10688

5 294912 294912 294912 163982 17644

T3 1 1152 1056 1056 936 840

3 18432 13594 12164 7296 1896

5 294912 134222 53684 9366 1896

Tt 1 1152 1056 1056 986 840

3 18432 13038 11326 7484 2706

5 294912 120354 41308 12582 4789

Table 4.1: Number of polygons generated for a model of a cube with holes in it

consisting of 288 Bezier patches at different tessellation levels using the different

tessellation criterion with varying thresholds. The threshold <5 is in angles for

criteria Ts and Tt, pixels for Ta, and percentage of model width for Te.

4.3 Point Splatting

Table 4.3 shows the number of vertices drawn to render the ball and cube

with holes model with simple 5-pixel point splats. Both uniform and adaptive

splatting the models using different tessellation criteria are compared. The

tessellation stopping thresholds are adjusted to be the largest values possible

without creating any gaps in the tessellation. Some of the results are shown

in Figure 4.3. The tessellation created using the arc length criterion results in

a relatively uniform distribution of points in screen space. This makes the arc

length criterion better suited to point-splatting than the edge length criterion

where the distribution is denser in the parts of the model further away from the

Chapter 4. Results 42

Figure 4.2: The space-filling curves drawn over a ball model tessellated with

maximum tessellation level £ = 3 (left) and the corresponding pattern of texture

accesses in texture space (right). The model is tessellated using no (top), arc

length (second), straightness (third), and tangent (bottom) tessellation criteria.

Each square in the texture space represents one texture tile. Red line segments

indicate texture accesses that require loading a new texture tile into memory.

camera.

The straightness and tangent criteria are clearly unsuitable for point splat­

ting. On the cube with holes model, the flat surfaces are never tessellated under

these criteria unless the threshold is set to the lowest possible value, 0. Adaptive

tessellation with the arc length criterion performs better than adaptive tessel­

lation with the edge length criterion and uniform tessellation because it takes

into account perspective foreshortening (as seen in Figure 4.3).

4.4 Tessellations of complex models

Finally, we show several examples of more complex models tessellated with our

method in Figures 4.4 and 4.5.

Chapter 4. Results 43

e 6 = 0 <5= 1 <5 = 5 5 = 10

uniform 1 576 576 576 576

(top/bottom,left / right) 3 2880 2880 2880 2880

5 6720 6720 6720 6720

uniform 1 95 95 95 95

(space-filling) 3 383 383 383 383

5 1247 1247 1247 1247

T a 1 72 72 72 56

3 380 380 376 68

5 1200 1200 928 68

Ts 1 72 72 72 72

3 360 360 360 216

5 1224 1224 1080 264

Tt 1 72 72 72 72

3 360 360 360 360

5 1224 1224 984 360

Table 4.2: Comparison of the number of times a new texture tile is loaded into

memory when rendering a textured ball model using a uniform left-right, top-

bottom tessellation order versus our algorithm at different subdivision levels.

Low numbers indicate higher cache coherence.

model £ uniform Te Ta rs Tt

ball 5 98304 53567 28184 91152 88416

cube with holes 4 294912 155308 89786 294912 294912

Table 4.3: Comparison of the number of vertices drawn to render the ball and

cube with holes model with simple 5-pixel point splats, while tessellating the

models using different tessellation criteria. Se = 0.02, 8a = 3.11, 5S = 1.2, and

St = 1.1 for the ball model and 5e = 0.15, Sa — 9.2, 5S = 0, and 8t = 0 for the

cube with holes model.

Chapter 4. Results 44

Figure 4.3: An example of a model rendered using simple point splats. From

left to right: uniform tessellation, adaptive tessellation with the edge length

criterion and with the arc length criterion. The model with 5-pixel point splats

is shown in the top row and the same model with 2-pixel point splats is shown

in the bottom row.

Chapter 4. Results 45

Figure 4.4: A cartoon dog modelled with Bezier surfaces. Top: The model at

tessellation level t = 0. Bottom: The model at tessellation level i = 3.

Chapter 4. Results 46

Figure 4.5: Top: The model at tessellation level t = 0. Bottom: The model at

tessellation level I = 3. The improved visual quality of the left arm is especially

noticeable.

47

Chapter 5

Conclusions and Future

W o r k

5.1 Summary of research

In this thesis we have presented an adaptive, depth-first tessellation algorithm

for smooth surfaces suitable for implementation on a GPU. In our particular

implementation, we have chosen to process only cubic tensor-product Bezier

patches, but other representations are possible. We chose Bezier patches since

they allow us to derive a smooth object representation composed of many con­

tinuous patches.

Our tessellation algorithm avoids inconsistencies in the resulting mesh by

basing the subdivision decision purely on boundary information. In this way,

adjacent patches independently arrive at the same decision for the boundary

they share. The adaptive algorithm will generate quadrilaterals as well as tri­

angles, which is enabled by not explicitly generating and storing the control

meshes for the individual parts of a subdivided patch.

One restriction of boundary-based subdivision is that it is possible to con­

struct top-level patches with very short edge lengths that nonetheless have a

large surface area, simply by locating the boundary control points close to each

other, but pulling the center control points out by a certain distance. Such

patches do not occur often in practice, and even if encountered, an artist can

Chapter 5. Conclusions and Future Work 48

easily work around this restriction simply by subdividing the patch once. We

therefore do not believe that this limitation poses a serious restriction in prac­

tice.

In addition to these advantages, a simple modification of the traversal or­

der ensures that the polygons of the final tessellation are generated in an order

corresponding to a space-filling curve. This ensures coherence in both image

and texture space, and therefore helps to alleviate performance problems aris­

ing from memory accesses to the graphics RAM, which are often a bottleneck

on modern GPUs. The adaptive tessellation in space-filling order is based on a

thorough analysis of the different cases that can be encountered, a simple im­

plementation using lookup tables has been described. This approach should be

amenable to hardware implementations on the tessellator unit on future GPUs.

5.2 Satisfaction of Research Objectives

Our algorithm satisfies all our research objectives.

• It provides hole-free locally and globally adaptive surface tessellation with­

out requiring any information on the neighbouring surfaces by using a

boundary-based tessellation criteria.

• It has low GPU-to-graphics memory bandwidth requirements because it

draws the tessellation polygons in an order that preserves the memory

coherence properties of a space-filling curve.

• It uses little GPU memory because it stores patches in parametric form

instead of calculating and storing new control meshes for every tessellation

level-of-detail.

Chapter 5. Conclusions and Future Work 49

5.3 Future work

In principal we could apply the same subdivision method not only to smooth

surfaces, but also to polygonal representations. This way it would be possible

to create a scan-conversion engine that hierarchically subdivides polygons or

patches into sub-pixel-sized micro polygons, and then renders these using point

splatting. This would be similar in spirit to the original Reyes architecture [10],

but due to the specific traversal order, the memory access patterns should be

significantly improved.

50

Bibliography

[1] Salim S. Abi-Ezzi. The graphical processing of B-splines in a highly dynamic

environment. PhD thesis, Rensselaer Polytechnic Institute, 1990.

[2] Kurt Akeley. Reality engine graphics. In Computer Graphics (SIGGRAPH

'93 Proceedings), pages 109-116, 1993.

[3] Stephan Bischoff, Leif P. Kobbelt, and Hans-Peter Seidel. Towards hard­

ware implementation of Loop subdivision. In Proceedings of the 2000 EU-

RO GRAPHICS/SIGGRAPH workshop on Graphics Hardware, pages 41-

50. ACM, 2000.

[4] Jeffrey Bolz and Peter Schroder. Rapid evaluation of Catmull-Clark sub­

division surfaces. In Proceeding of the 7th International Conference on 3D

Web Technology, pages 17-11. ACM, 2002.

[5] Montserrat Boo, Margarita Amor, Michael Doggett, Johannes Hirche, and

Wolfgang Strasser. Hardware support for adaptive subdivision surface ren­

dering. In SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hard­

ware 2001, pages 33-40, 2001.

[6] David Brickhill. Practical implementation techniques for multi-resolution

subdivision surfaces. In Proceedings of the 2001 Game Developers Confer­

ence, 2001.

Bibliography 51

[7] Edwin Catmull and James Clark. Recursively generated B-spline surfaces

on arbitrary topological meshes. Computer Aided Design, 10(6):350-355,

1978.

[8] James H. Clark. A fast scan-line algorithm for rendering parametric sur­

faces. ACM SIG'GRAPH Computer Graphics, 13(2):174, 1979.

[9] James H. Clark. The geometry engine: A VLSI geometry system for graph­

ics. In Computer Graphics (SIGGRAPH '82 Proceedings), pages 127-133,

July 1982.

[10] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes image

rendering architecture. In Computer Graphics (SIGGRAPH '87 Proceed­

ings), pages 95-102, July 1987.

[11] Tony DeRose, Mary L. Bailey, Bill Barnard, Robert Cypher, David Do-

brikin, Carl Ebeling, Smaragda Konstantinidou, Larry McMurchie, Haim

Mizrahi, and Bill Yost. Apex: two architectures for generating parametric

curves and surfaces. The Visual Computer, 5(5):264-276, 1989.

[12] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in

character animation. In Proceedings of SIGGRAPH '98, pages 85-94. ACM,

1998.

[13] Michael Doggett and Johannes Hirche. Adaptive view dependent tessel­

lation of displacement maps. In Proceedings of SIGGRAPH 2000, pages

59-66. ACM, 2000.

[14] Donald Doo. A subdivision algorithm for smoothing down irregularly

shaped polyhedrons. In Proc. Interactive Techniques in Computer Aided

Design 1978, pages 157-165, 1978.

Bibliography 52

[15] Daniel Filip, Robert Magedson, and Robert Markot. Surface algorithms

using bounds on derivatives. Computer Aided Geometric Design, 3(4):295-

311, 1987.

[16] David R. Forsey and Robert Victor Klassen. An adaptive subdivision algo­

rithm for crack prevention in the display of parametric surfaces. In Proceed­

ings on Graphics interface '90, pages 1-8. Canadian Information Processing

Society, 1990.

[17] Bin Han, Michael L. Overton, and Thomas P.-Y. Yu. Design of hermite sub­

division schemes aided by spectral radius optimization. Society for Indus­

trial and Applied Mathematics Journal of Scientific Computing, 25(2):643-

656, 2003.

[18] Robert Victor Klassen. Integer forward differencing of cubic polynomials:

Analysis and algorithms. ACM Transactions on Graphics, 10(2):152-181,

1991.

[19] Leif Kobbelt. y/3 subdivision. In Proceedings of SIGGRAPH 2000, pages

103-112. ACM, 2000.

[20] Frans Kuijt and Ruud van Damme. Hermite-interpolatory subdivision

schemes. Technical report, University of Twente, Faculty of Mathemat­

ical Sciences, 1998.

[21] Subodh Kumar, Dinesh Manocha, and Anselmo Lastra. Interactive display

of large-scale nurbs models. In Proceedings of the 1995 Symposium on

Interactive 3D Graphics, pages 51-58. ACM, 1995.

[22] Aaron Lee, Henry Moreton, and Hugues Hoppe. Displaced subdivision

surfaces. In Proceedings of SIGGRAPH 2000, pages 85-94. ACM, 2000.

Bibliography 53

[23] Sheue-Ling Lien, Michael Shantz, and Vaughan Pratt. Adaptive forward

differencing for rendering curves and surfaces. In Proceedings of SIG­

GRAPH 87, pages 111-118. ACM, 1987.

[24] Charles Loop. Smooth subdivision surfaces based on triangles. Master's

thesis, University of Utah, Department of Mathematics, 1987.

[25] Michael McCool, Chris Wales, and Kevin Moule. Incremental and hierarchi­

cal hilbert order edge equation polygon rasterization. In Proc. of Graphics

Hardware, 2001, 2001.

[26] Henry Moreton. Watertight tessellation using forward differencing. In Pro­

ceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph­

ics hardware, pages 25-32. ACM, 2001.

[27] Heinrich Muller and Reinhard Jaeschke. Adaptive subdivision curves and

surfaces. In Proceedings of Computer Graphics International '98, pages

48-58. ACM, 1998.

[28] Alyn P. Rockwood. A generalized scanning technique for display of para-

metrically defined surfaces. In IEEE Computer Graphics and Applications,

pages 15-26. IEEE, 1987.

[29] Alyn P. Rockwood. Real-time rendering of trimmed surfaces. In IEEE

Computer Graphics and Applications, pages 15-26. IEEE, 1987.

[30] Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[31] I. Schoenberg. On the Peano curve of Lebesgue. Bulletin of the American

Mathematical Society, 44(519), 1938.

[32] Michael Shantz and Sheue-Ling Chang. Rendering trimmed NURBS with

adaptive forward differencing. In Proceedings of the 15th Annual Conference

on Computer Graphics and Interactive Techniques, pages 189-198. ACM,

1988.

Bibliography 54

[33] Le-Jeng Shiue, Ian Jones, and Jorg Peters. A realtime GPU subdivision

kernel. In Proceedings of SIGGRAPH '05. ACM, 2005.

[34] Jos Stam and Charles Loop. Quad/triangle subdivision. Computer Graph­

ics Forum, 22(1), 2002.

[35] Luiz Velho and Denis Zorin. 4-8 subdivision. Computer-Aided Geometric

Design: Special Issue on Subdivison Techniques, 18(5):397-427, 2001.

[36] Alex Vlachos, Jorg Peters, Chas Boyd, and Jason L. Mitchell. Curved

PN-triangles. In Proceedings of the 2001 Symposium on Interactive 3D

• Graphics, pages 159-166. ACM, 2001.

[37] Douglas Voorhies. Graphics Gems II, chapter Space-Filling Curves and a

Measure of Coherence. Academic Press, 1991.

[38] Denis Zorin and Peter Schroder. A unified framework for primal/dual

quadrilateral subdivision schemes. Computer Aided Geometric Design,

18(5):429-454, 2001.

