
Predic t ing Users' Next Access to the Web Server 

by 

Oxana Chakoula 

B.S., Moscow State University, 1994 

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF 

T H E REQUIREMENTS FOR T H E D E G R E E OF 

Master of Science 

in 

T H E F A C U L T Y OF G R A D U A T E STUDIES 

(Department of Computer Science) 

We accept this thesis as conforming 
to the required standard 

The Universi ty of Br i t i sh Columbia 

January 2003 

© Oxana Chakoula , 2003 



UBC Rare Books and Special Collections - Thesis Authorisation Form Page 1 of 1 

In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements 
fo r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I 
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference 
and study. I f u r t h e r agree that permission f o r extensive copying of 
t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my 
department or by h i s or her representatives. I t i s understood that 
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not 
be allowed without my written permission. 

The U n i v e r s i t y of B r i t i s h Columbia 
Vancouver, Canada 

Date 

http://www.library.ubc.ca/spcoll/thesauth.html 16/01/2003 

http://www.library.ubc.ca/spcoll/thesauth.html


Abstract 

The Wor ld Wide Web is experiencing a rapid growth both in the volume of traffic 
and complexity of web sites. Two of the main directions of research on improving 
users' web browsing experience are reduction of network latency perceived by users, 
and website personalization. Bo th tasks require the development of models that can 
predict a user's next request to a web server. 

Markov models trained on web logs have been found well suited for addressing 
this problem. Most of the variations of Markov models suggested for predicting a 
user's next request to a web server base their predictions on the data from the entire 
user population. Our hypothesis is that clustering users' web sessions to reflect 
browsing patterns of particular groups of users wi l l improve prediction accuracy. 

We consider two clustering techniques that use different representations of 
web sessions. One approach treats web sessions as Markov models of order zero, 
and the other represents them as Markov models of order one. We compare the two 
clustered prediction models to the state-of-the-art non-clustered Markov models of 
orders 0, 1, A l l -2 and A l l - 3 . We report empirical results based on web logs of U B C 
Computer Science department. 

We found clustering web sessions as Markov chains performed better than 
clustering them of Markov models of order zero, yet the former did not improve 
predictability over the non-clustered first order Markov model. 
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Chapter 1 

Introduction 

Websites are created with their users in mind. Their content, link structure, types 

of interactions available, and "look-and-feel" reflect their webmasters' view on how 

a site is intended to be used. Usually, webmasters do not receive much of direct 

feedback from users. Logs collected by web servers do provide feedback, albeit 

indirect. 

Web servers collect huge amounts of data every day. The server of the U B C 

Computer Science department web site, www.cs .ubc.ca , gathers about 50MB log 

entries daily. Near one tenth of those are requests for H T M L files, while the rest 

are requests for auxiliary files. 

Extract ing the trails users actually follow and comparing them to intended 

site usage can help with justification and optimization of a site link structure. 

Namely, it can suggest which links should be added, or how the information should 

be restructured. 

Being able to predict the next file requested from a web server makes it 

possible to pre-send this file to the client's computer. If predictions are correct 

often enough, the network latency perceived by users can be significantly reduced. 

Being able to elicit users' browsing patterns and preferences can help facili­

tate and personalize users' web experience in terms of adaptive web pages and agent 
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assisted navigation. 

It has been observed that users tend to repeat the trails they have followed 

once [18]. So, better prediction of a user's next request could be made on the data 

pertaining to that particular user, not all the users. However, this would require 

reliable user identification and tracking users between sessions. Th is is usually 

achieved by sending cookies to a client, browser, or by registering users. Bo th require 

user cooperation and might discourage some of potential site visitors. So many 

websites choose not to use these means of user tracking. Also, bui lding prediction 

models on individual data would reqiure that users have accessed enough pages to 

make a prediction, which is not, usually the case for a university website that has 

many casual users. 

We hypothesize that the population of users can be divided into groups, each 

of them having their distinct, browsing patterns. A n d , without storing information 

about particular users, we can st i l l benefit from the diversity of their interests. 

We concern ourselves with the task of learning users' web browsing behaviour 

from web logs, and uti l izing this knowledge for improving web site usability. Par­

ticularly, we consider the problem of predicting users' accesses to a Web server. 

Contributions 

Most of the approaches suggested for predicting a user's next request to a web server 

base their predictions on the data from the entire user population. 

In this thesis we consider clustering user sessions prior to learning a prediction 

model. Firs t , we cluster web sessions as Markov models of order zero. Second, we 

cluster them as discrete Markov chains. We compare the two clustered prediction 

models with the state-of-the-art A l l - K t h Markov model. We report empirical results 

based on web logs of U B C Computer Science department. 
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Outline of the document 

The rest of the thesis is organized as follows. The related previous work is presented 

in Chapter 2. In Chapter 3 we outline our approach. We report our results in 

Chapter 4. In Chapter 5 we conclude and discuss future work. 
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Chapter 2 

Literature Review 

The problem of eliciting users' browsing patterns from web logs has been investigated 

for different purposes and in a variety of ways. 

Next request prediction can be used for latency reduction as well as for user 

characterization. We discuss this in Section 2.1. 

F ind ing groups of similarly minded users based on their browsing behaviour 

is used for user characterization and creating adaptive web pages. It can benefit 

prediction as well. We discuss clustering in Section 2.2. 

Web logs contain very raw data. Prepocessing is needed to transform a log 

into a set of user web sessions suitable for analysis. Web log preprocessing is a task 

separate from prediction; Yet, the assumptions made and the options chosen at this 

stage effect the performance and applicability of prediction models. Section 2.3 is 

devoted to this issue. 

2.1 M ar k o v Models and Next Request Predic t ion 

A web session is a sequence of pages traversed by a user during their single visit to 

a site. Web sessions can be extracted from a web log (Section 2.3). 

Markov models [16] have been widely used for modeling and predicting 

stochastic processes. Particularly, they proved to be an adequate and robust repre-
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sentation of web browsing behaviour [5], [27]. 

A Markov model of order K is a set of three parameters < S, C , T >. S is 

a set of al l possible states for which the model is built. C is a set of al l contexts 

of length K . A context is a sequence of states that have been observed in a given 

order, where there was a next state. T is a | C | x | S | transition probability matrix, 

where each entry T{j corresponds to the probability of state j occurring next given 

that the context i has been observed. 

The first order Markov model (Markov chain) predicts the next state by only 

looking at the last state. Here the set of contexts C is a subset of S. The zeroth order 

model does not look at history and always predicts the mode state. For this model 

the transition probability matrix is a l x | S | vector of state occurrence probabilities. 

In next web request prediction context, states correspond to al l web pages 

that can be requested by users. 

For prediction, a web log is usually divided into two parts, training set and 

test set. The training set is used to learn a set of contexts and a transition matrix. 

The test set is used to evaluate predictive performance of a model. ' 

For each sequence of states of length K in the test set, where there is a next 

state, the prediction is made. If the corresponding sequence of previous states is 

present in the set of contexts, the •prediction is a state having maximal transition 

probability. The prediction is correct i f the predicted next state is the same as 

the actual one, and incorrect otherwise. If there is no corresponding sequence of 

states in the set of contexts, the prediction is null, which is treated as an incorrect 

prediction. 

A n alternative setting of the problem implies making multiple predictions. 

Instead of a single prediction, a prediction set of a predefined maximal size is gen­

erated. In this setting a prediction is correct i f the prediction set is non-empty and 

the actual next request belongs to the set, and incorrect otherwise. 

A Markov model can be characterized by its predictive accuracy p(Hit) [27] 
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denned as the number of correct predictions ("hits") divided by the total number of 

states to be predicted. The coverage p(Match) of a model is the percentage of cases 

when the model is able to make a prediction, i.e. for a context encountered in the 

test set there is the matching entry in the set of contexts. The two are connected via 

conditional predictive accuracy, which is the probability of a hit i f there is a match: 

p(Hit) = p(Match)p(Hit\Match). The model complexity is the number of rows in 

its transition probability matrix. 

The model size grows exponentially with the model order [9], [19], [26], [27]. 

For the single prediction setting, higher order models typically have higher con­

ditional predictive accuracy but lower coverage [9], [19], [26], [27]. Their product 

p(Hit) shows no unique trend as the model order increases: it was higher for the 

second order model than for the first .order model as reported by Su et al. [26], Zuk-

erman et al. [27], and Deshpande and Karypis [9], but it was lower in experiments 

by Pi tkow and P i ro l l i [19]. 

Bestavros [5] employed a first order Markov model to implement a server-side 

page prefetching service. This considerably reduced server load and service time. 

Sarukkai [22] compared the performance of the first order Markov model for 

prediction of next user activity and next request, to the server. They found that, 

predictive accuracy of both models monotonically increases as the size of prediction 

set increases, and that the performance of next user activity prediction is better 

than that of server request prediction. 

A l l of the Markov models discussed in this thesis except the following one 

use only page(s) requested previously to predict the page requested next. Zukerman 

et al . [27] modified this setting by using additional information from web log, 

namely the referrer of a current page (Section 2.3), instead of the page requested 

last. The two are the same i f pages are traversed sequentially without backtracking. 

Otherwise browser or proxy caching (Section 2.3) causes them to be different. The 

modification helps partially overcome session distortion introduced by caching by 
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taking into account the tree structure of the site. Zukerman et al. [27] use the name 

"space" for the modified models, while the original ones are referred to as "time 

models" as they are based on time ordered sequences of pages. 

Four variations of first and second order Markov models were considered by 

Zukerman et al . [27]: 

1. First order Time Markov model. The prediction is based on the document 

requested last. 

2. Second-order Time Markov model. The prediction is based on the document 

requested last and the document requested before that. 
< 

3. Space Markov model. The prediction is based on the referrer of the requested 

document. 

4. Linked Space-Time Markov model. The prediction is based on the document 

requested last and its referrer. 

The Linked model performs the best [27] as it takes into account both the order in 

which documents are requested and the structure of the site. 

The A l l - K t h order Markov model [19] combines Markov models of al l orders 

from 1 to K . Dur ing the prediction phase the models are tried in sequence from the 

highest order to the lowest. The prediction is taken from the highest order model 

that is able to make one, i.e. has a corresponding matching sequence of pages in its 

set of contexts. 

Palpanas [15] built a prefetching engine using A l l - K t h order Markov model, 

and tested its predictive accuracy, usefulness of predictions, and latency reduction 

effectiveness as functions of model order, prediction set size, session time threshold, 

and client cache size. 

The A l l - K t h model typically gives better prediction than any single order 

model [19], [26], as it combines high coverage of lower order models wi th better 
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predicting power of higher order models. However, the problem of model complexity 

is exacerbated further. 

W i t h its huge number of states the A l l - K t h order Markov model is highly 

redundant, and some of its states can be ignored without significantly affecting 

predictive performance. A number of ways has been developed to intelligently select 

subsets of higher order Markov models in order to reduce model complexity yet retain 

its high predictive power. 

Schechter et al. [23] and Pi tkow and P i ro l l i [19] constructed their prediction 

models by including all the paths of order one (i.e. single pages), and only those 

higher order paths that occurred more than once. Dur ing prediction step, longer 

matching paths were preferred to shorter ones; the most frequent, path was, chosen 

among those of equal length. 

This approach, called Longest Repeating Subsequence (LRS) in [19], is equal 

to All- infini ty Markov model, except that only the sequences that occured repeatedly 

(i.e. at least twice) contribute to the model. 

PitkOw and P i ro l l i [19] compared the L R S approach to A l l - K t h order Markov 

models for K from 1 to 7. They found that the L R S model has significantly lower 

complexity accompanied by only a slight decrease in predictive power. 

In this approach, an implicit frequency threshold of two is used to determine 

which sequences to include in the model. 

Deshpande and Karypis [9] generalized the L R S model by allowing for an 

arbitrary frequency threshold, and suggested two more techniques for model pruning. 

These techniques were also based on thresholds for confidence and number of errors 

respectively. The models compared were: 

1. Support-Pruned Markov model. A n L R S model wi th a variable frequency 

threshold. 

2. Confidence-Pruned Markov model. A sequence of states is retained only i f the 

probability of the most frequent next state is significantly different from the 
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probabilities of the other next states. 

3. Error-Pruned Markov model. Training data are divided into two parts. The 

first part is used to build the model; the second part (validation set) is used 

to prune it. 

The authors reported that al l three models achieved even better prediction 

accuracy than the ini t ia l A l l - K t h order model. From the first model to the last, the 

model complexity increases, and so does predictive accuracy. 

This may seem to contradict, wi th the results of [19]. Bu t different research 

groups used different, datasets and different preprocessing options. We discuss pre­

processing in Section 2.3. 

A l l prediction methods discussed so far are based on data for the entire user 

population, without dividing users into groups. 

2.2 Web Session Cluster ing 

Clustering web sessions can be used for web site personalization. Namely, sets of 

links that could be of interest, to a certain group of users are extracted to form new 

index pages. This index page can be just, added to the site, or it can be shown to 

the corresponding group of users as their personalized version of the main page. 

Perkovitz and Etzioni [17] built clusters of related but not, linked web pages. 

Their clustering is based on page co-occurrence frequencies in users' session. A n 

order in which pages are accessed is not taken into account. 

Kamdar and Joshi [14] clustered the user sessions based on pair-wise dis­

similarities between the sessions. Similari ty between two U R L s is measured as an 

overlap in the paths from the root of the web site tree to the corresponding nodes. 

Banerjee and Ghosh [2] clustered web sessions for user profiling. Their simi­

larity measure between any two paths is based on their longest common subsequence 
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( L C S ) . For each path, a sequence of times spent on the pages in the L C S is extracted. 

These two time vectors are aggregated into the similarity measure. 

A l l these authors used variations of the K-means algorithm [12]. This is a 

popular and robust algorithm for clustering. However, K-means algorithm requires 

specifying a distance measure, which is not always intuitive. 

Expectat ion-Maximizat ion ( E M ) is a probabilistic approach that does not 

require specifying a distance measure. 

Ridgeway [21] and de Freitas [8] developed the Expectat ion-Maximizat ion 

method for clustering Markov chains. Cadez et al. [6] used the E M clustering 

of web sessions for user browsing behaviour visualization. However, they did not 

apply clustering directly to web pages. Instead, they divided web pages into a small 

number of groups, and considered user sessions as sequences of transitions between 

these groups. 

Sen and Hansen [24] applied the E M to web log clustering for prediction. 

They found that for the larger prediction sets, clustered first order model outper­

formed the second order model. Yet they did not study this systematically with 

respect to model order and the size of prediction set. 

2.3 Web Log Preprocessing 

H T T P / 1 . 0 [4], the original version of H T T P , is a stateless protocol. A client com­

puter establishes a separate connection to a server for every file requested. The later 

version of the protocol, H T T P / 1 . 1 [10], allows a client to make multiple requests 

using the same connection. As both protocols are widely used, web log formats 

reflect the semantics of the former protocol. 

Table 2.1 presents a fragment of web log in Extended Web Log Format [1], 

[11]. These are log entries generated by user requesting a single page 

w w w . c s . u b c . c a / i n d e x . h t m l . The first entry is the request for an H T M L file, the 

rest are requests for auxiliary files embedded in the web page. 
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IP address Date and Time Method Item Protocol Status Bytes Referrer 

x.x.x.x 31/May/2002:00:32:01 G E T /index.html HTTP/1.1 200 9224 -

x.x.x.x 31/May/2002:00:32:02 G E T /style.css HTTP/1.1 200 439 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/index-03.gif HTTP/1.1 200 9224 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T / i m ages/Random 10.jpg HTTP/1.1 200 17456 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/announcement s-2.gif HTTP/1.1 200 898 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/UBC-Logo-down, gif HTTP/1.1 200 2088 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/research-over.gif HTTP/1.1 200 943 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/grad-over.gif HTTP/1.1 200 953 http://www.cs.ubc.ca/ 

x.x.x.x 31/May/2002:00:32:02 G E T /images/people-over, gif HTTP/1.1 200 663 http://www.cs.ubc.ca/ 

x.x.x.x v 31/May/2002:00:32:02 G E T /images/employment-over.gif HTTP/1.1 200 1116 http://www.cs.ubc.ca/ 

Table 2.1: Web log fragment 

Thus web logs bear no notion of user sessions. To extract user sessions from 

a web log, several preprocessing steps are needed. 

Common pre-processing tasks include [7]: 

Cleaning out erroneous requests 

The H T T P status code returned to the client [1], [11] indicates whether or not the file 

was successfully retrieved, and if not, what error message was returned. 2xx codes 

indicate successful retrieval, where 3xx, 4xx and 5xx codes indicate redirection, 

client side and server side errors respectively. Only 2xx log entries are retained for 

analysis. 

Identifying pageviews 

As in our example, several files usually contribute to a single pageview. Identifying 

pageviews includes cleaning out auxiliary files of certain types (e.g images, Java 

classes, cascade style sheets etc.). 

Identifying users 

In a web log, an IP address or domain name of a client computer is recorded. In the 

absence of cookies or user registration, this is the only means of user identification. 
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Usually an IP address corresponds to a single user. 

This is not the case, however, i f a proxy server is used to service a community 

of users. If the community is large enough chances are that more than one user from 

the same IP address wi l l browse the same site simultaneously, so the web log would 

erroneously record these overlapping activities as one session. 

A symmetric case that violates the one-to-one assumption is a session com­

posed of temporarily overlapping activities inside one site initiated by a single user 

from several computers wi th different IP-addresses. Yet the evidence suggests [3] 

that this does not happen often. 

For many web log mining tasks, it is important to identify web browsing 

sessions made by human users, as opposed to those made by robots. Robots are 

automated agents that browse broadly, quickly, and in an order different from hu­

mans. Robots are required to request the file robo t s . t x t upon their entry to a site, 

so "well-behaved" robots can be detected using this rule. If a site does not have 

such a file, requests for it results in "404 - file not found" response. These can be 

detected but only before cleaning logs of erroneous requests. 

Identifying sessions 

Berendt et al. [3] evaluated the accuracy of several commonly used heuristics for 

dividing web logs into sessions. They reconstructed sessions from logs in three ways 

and compared the reconstructions with actual user activities they monitored. The 

sessionizing heuristics they compared were: 

1. A session is a sequence of pages traversed inside a 30-minute time l imit . 

2. A session is a sequence of pages each of which was viewed less than 10 minutes. 

3. A session is a sequence of pages where each page (except the first one) is 

reachable from one of the previously requested pages. 
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They found that the first two heuristics reconstructed true sessions well, while the 

last one often failed to do so. 

Inferring cached requests 

If a client browser has its cache enabled, after a (non-dynamic) page was requested 

once, its copy is placed in the cache, so al l the successive requests to this page wi l l 

bypass the server and wi l l be serviced from the cache. Particularly, this happens 

when a user hits the Back button, which comprises about one third of al l user's 

activities on the web. 

Some researchers think that such missed log entries should be inferred and 

added to the log during preprocessing step [7], [9]. 

The others claim that it is not needed since: 

• hi t t ing the Back button is often not a meaningful user action in the sense that 

the user really wanted to see the previous page again. More probably, the user 

wanted to see its sibling page [25]. 

• often only pages viewed for the first time are of special interest. In many 

applications such as shopping cart analysis the expert is interested in the 

pages accessed during a session but not in the order of access [3]. 

• reconstruction of cached requests from the site tree may result in several possi­

ble paths between two pages, i f the site is highly connected. Also, a user could 

have transferred to a page via History or Bookmark options, or by typing the 

U R L in. In this case, any reconstruction of this non-existing user path would 

be incorrect. 

Most preprocessing steps are heuristic in their nature. The set of preprocess­

ing steps is influenced by web log mining goals. Usually researchers whose goal is 

to predict next requests to the server include less preprocessing options than those 

who predict next actions of users. 
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Remove Add 
Erroneous Dynamic Cached 
requests Images pages Proxies Robots pages 

Bestavros [5] yes no 1 

Schechter et al. [23] yes/no' 2 

Zukerman et al, [27] yes 
Sarukkai [22] yes/no 3 yes 
Deshpande and Karypis [9] yes yes yes 4 

yes* 
yes yes 

Sen and Hansen [24] yes yes yes yes 
Su et al. [26] yes yes 

Table 2.2: Preprocessing options 

Table 2.2 summarizes the preprocessing options used by several research 

groups for different purposes. In the table yes entries denote options included in 

preprocessing, no denote options explicitly excluded, yes/no denote double exper­

iments with an option both included and excluded. Blank entries refer to prepro­

cessing steps not mentioned. Surprisingly, cleaning out erroneous requests is often 

among those. 

Study of influence of preprocessing options on model predictive performance 

is beyond the scope of this work. Yet preprocessing options as well as different, 

nature of web logs used are issues to be taken into account when comparing results 

of different web request prediction methods. 

1 Image files are treated in the same way as H T M L files. Time threshold is used to control 
the degree of dependency between pages. Low time threshold causes only auxiliary pages 
to be dependent, higher threshold includes transition pages as well. 

2 0ne experiment was run with dynamic pages included. The other one treated dynamic 
pages as static, ignoring parameters. 

3 An experiment with images was done for server load prediction; an experiment without 
images was done for user activity prediction. 

4Requests from proxy servers were detected and decomposed into individual user sessions. 
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Chapter 3 

Prediction models 

Our idea is to cluster sessions before learning prediction models. The goal is to 

obtain more specific models that reflect browsing patterns of particular groups of 

users, and to improve predictability in this way. 

We compare two clustering techniques that use different representations of 

web sessions. One approach treats web sessions as Markov models of order zero 

(texts), and the other represents them as Markov models of order one (Markov 

chains). 

Section 3.1 provides the data specification. Text clustering approach is pre­

sented in Section 3.2. Markov chain clustering is discussed in Section 3.3. Section 3.4 

explains the prediction step common to both models. 

3.1 Da ta 

A web log is a set of web sessions divided into two subsets, the training set and the 

test set. A web session is a sequence of web pages. Let the training set contain ns 

web pages, denoted by integers 1, 2, . . . , ns. 

Let the training set consist of n x sessions x/j = (xki,Xk2, • • • ,Xknk), where 

Xki belongs to the set {1,2,..., n s}, and k = 1,..., nx. 

Similarly, the test set consists of ny sessions = {yki,Vk2, • • •, Uknk), where 
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Dki belongs to the set { 0 , 1 , 2 , . . . , ns}, and k — 1 , . . . , ny. A n additional state 0 is 

introduced to denote pages that have not, been observed in the training set. 

The training set is used to learn the models. The test set is used to evaluate 

their predictive performance. 

3.2 Cluster ing web sessions as texts 

We use the Probabilist ic Latent Semantic Analysis model for the analysis of text by 

Hofmann [13]. 

The model represents texts as "bags of words", i.e. Markov models of ze-

roth order. Analogously, we treat web sessions as "bags of web pages". The key 

assumption is that this simplified representation wi l l preserve most of the relevant 

information needed for prediction. 

Each web session can be represented as a frequency vector M ^ . , where element 

Mjtk is the frequency of occurrence of page j in session k. 

These frequency vectors can be modeled by a multinomial distribution. To 

cluster these sequences into nc groups, we model these vectors as generated by a 

finite mixture of multinomial models: 

where 0 = {p(c),p(j\c)} is the set of the model parameters: p(c) is the 

probability of each cluster, p(j\c) is the probability of state j in cluster c. 

We assume that the parameters p(c) and p{j\c) are drawn from independent 

identical Dirichlet prior distributions with parameters a and B respectively. 

We obtain the parameter estimates from the training set via Expectation-

Maximizat ion algorithm for maximum a posteriori estimation. The process iterates 

between the following two steps: 

E step: computing the expected value of the complete log-likelihood function 

(3.1) 
c = l 
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using the set of parameters from the previous step. Essentially the step consists of 

computing cluster memberships of each session: 

p(c\k) *p{c)]\p(j\c)Mi* (3.2) 
j=i 

and normalising it over al l the clusters. 

M step: finding the new values of parameters that maximize the expected 

value of the complete log-likelihood function computed in the E step. 

?(c) . < - ' + S S , r t W ,3.3) 
nc(a -l)+nx 

m c ) = l - l + g=iMi.tf(°l*) 

' P [ J l ) ns((3 - 1) + E2=i MhkPm [ j 

Having computed cluster membership of each session p(c\k), we can calculate 

p(j\i,c), probabilities of transition from state i to state j in cluster c. Here Nij^ 

denotes the frequency of transition from page i to page j in session k. 

m c ) = S Z - i "ijMM ' ( 3 5 ) 

m , ) T^iT^iNijMclk) ( 3 - 5 ) 

3.3 Cluster ing web sessions as discrete Markov chains 

We apply clustering first order Markov models (Markov chains), the approach de­

veloped by de Preitas [8]. 

Each web session can be represented as a transition table , where element 

Nijtk is the frequency of transition from page i to page j in session k. 

These transition tables can be modeled by a multinomial distribution.To 

cluster these sequences into nc groups, we model these tables as generated by a 

finite mixture of multinomial models: 

Tic 

iid 

c = l 
n p ( j i c ) ^ a » ) n n p ( j i t , C ) j v ^ . * 

j=\ j=i i=i 
(3.6) 
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where 6 = {p(c),p(j\c),p(j\i, c)} is the set of the model parameters: p(c) 

is the probability of each cluster, p(j\c) is the prior probability of state j in the 

cluster c, and p{j\i,c) is the transition probability from state i to state j in cluster 

c. Ij(xki) is the ini t ia l state indicator: Ij(xki) = 1 i f 2;/ci = j and 0 otherwise. 

We assume that the parameters p(c), p(j\c), and p(j\i,c) are drawn from 

independent identical Dirichlet prior distributions wi th parameters a, /3, and 7 

respectively. 

We obtain the parameter estimates from the training set via Expectation-

Maximizat ion algorithm for maximum a posteriori estimation. 

E step: computing cluster memberships of each session: 

p(c\k) oc p(c) 

M step: finding the new values of parameters: 

P{xki\c) Y[Ylp{j\i,c)NiJ ,j,k (3.7) 

p(c) 

P{j\c) 

« - l + £ £ i P ( < W 
nc(a - 1) + nx 

£ - l + £ £ i H^)p{c\k) 
ns(8-l)+r:n

k^p(c\k) . 

n.(8-l) + Z%i22k^NijMc\Q 

(3.8) 

(3.9) 

(3.10) 

3.4 Predic t ion from clustered models 

Let the test set consist of ny sessions: = (yki,yk2, • • • ,Vknk)i where belongs 

to the set { 0 , 1 , 2 , . . . , ns}, and k — 1 , . . . , ny. 

In text clustering model, we have learnt p(c) and p{j\c) from the E M process 

( 3.3 - 3.4) and computed p(j\i, c) from session transition matrices ( 3.5). In Markov 

chain clustering model, we have learnt p(c), p(j\c), and p(j\i, c) from the E M process 

( 3.8 - 3.10). 
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For each beginning of a test session, y* = {yki, Vk2i • • •, Vkt}, we compute its 

membership to each cluster: 

( n3 ns ns \ 

Then the probabilities of next step can be calculated as follows: 

ric 

p(y*+i = M = i) = J ^ P O ' I * .
 cMc\y*) (3'12) 

c = l 

The state j = argmax(p(j\i)) comprises a model prediction. If an experiment 

setting allows making multiple predictions (Section 2.1), the prediction set is the 

set of states j wi th top transition probabilities p(j\i). 

The predictive accuracy of a model is calculated as the number of correct 

predictions divided by the total number of states to be predicted (Section 2.1). 
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Chapter 4 

Results 

Our task is to compare predictive performance of text clustering to that of Markov 

chain clustering, and to compare them to non-clustered Markov models of orders 0, 

1, A l l -2 and Al l -3 (section 2.1). 

4.1 Da ta 

We ran our experiments on U B C Computer Science department web log data. 

In order to make a comparison across several datasets, we extracted four 

subsets from the logs: graduate, undergraduate, and prospective students' pages, 

and pages for the Computational Intelligence textbook [20]. We refer to the datasets 

as Grad, Ugrad, Prospective, and Book respectively. 

Web server logs for January and February were used as training dataset, and 

logs for March were used as test dataset. 

Our preprocessing included removing images and auxiliary files, and session-

izing according to the 10 minute per page heuristic [3]. 

We excluded sessions of length 1 both from modeling and prediction. Also, 

we restricted upper bound of session length by 100 by truncating the longer sessions. 

We assumed that each IP-address corresponded to a different user. 

The descriptive statistics of the datasets are presented in Table 4.1. The 
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Dataset Session length 
No. Sessions No. Transitions M i n M a x Mean Var 

Book Training 3724 23473 2 100 7.3 13.7 
Test 1723 16986 2 100 10.9 20.5 

Grad Training 4393 11718 2 100 3.7 4.0 
Test 1617 4776 2 100 4.0 5.9 

Ugrad Training 15237 54156 2 100 4.6 7.4 
Test 7552 25737 2 100 4.4 6.1 

Prospective Training 5096 14184 2 66 3.8 2.6 
Test 2282 5915 2 28 3.6 2.4 

Table 4.1: Descriptive statistics of datasets 

datasets show that the subsites have different usage patterns. For al l but one dataset 

average session length is rather low. Lower mean can indicate that many of a subsite 

visitors are either users whose browsing goal is simple and well defined, or casual 

users whose goal pages do not belong to this subsite. 

4.2 Experiments 

4.2.1 Text clustering vs Markov chain clustering 

We compare text clustering to Markov chain clustering as the number of clusters 

varies from 1 to 6. We allow making multiple predictions, varying the size of pre­

diction set from 1 to 10. We set a = 1 and (3 = 2 for text clustering, and a = 1, 

(3 = 2, and 7 = 2 for Markov chain clustering. 

Since E M clustering algorithms converge to a local, not global, maximum of 

likelihood function, different runs of Expectat ion-Maximizat ion clustering result in 

different sets of clusters, some of which are inferior with respect to predictability. 

We report maximal predictability over 10 runs of experiment. The rationale 

is that if we are able to find predictive clusters, we could detect them using a 

validation dataset, and then apply to the test dataset. 

Figure 4.1 shows the predictability p(Hit) for clustering sessions as texts. 
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From the bottom to the top, the 10 plots indicate p(Hit) for the size of prediction 

set from 1 to 10 respectively. 

1.5 2 25 3 35 4 45 5 55 S 1 1.5 2 2.5 3 35 4 45 5 55 6 

Number of clusters Number of clusters 

(a) Book (b) Prospective 

Number of clusters Number of clusters 

(c) Ugrad (d) Grad 

Figure 4.1: Text clustering predictability for 1 to 10 predictions. From the bottom 
to the top, the 10 plots indicate p(Hit) for the size of prediction set from 1 to 10 
respectively. 

A l l datasets show decline in predictability as the number of clusters increases. 

This trend is common for the whole range of size of prediction set. 

This indicates that clustering web sessions as texts is generally an inferior 

option for prediction. So, our assumption that the content of sessions wi l l retain 

enough information needed for prediction does not hold. 
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Figure 4.2 shows the respective p(Hit) for clustering sessions as Markov 

chains. From the bottom to the top, the 10 plots indicate p(Hit) for the size of 

prediction set from 1 to 10 respectively. 

(a) Book (b) Prospective 

(c) Ugrad (d) Grad 
Figure 4.2: Markov chain clustering predictability for 1 to 10 predictions. From the 
bottom to the top, the 10 plots indicate p(Hit) for the size of prediction set from 1 
to 10 respectively 

Markov chain clustering increases predictability for a l imited range of predic­

tion set sizes for the Book and Prospective datasets. For the other datasets, there 

is only a slight difference in predictability. 

Markov chain clustering performed better than text clustering, yet it d id not 
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Dataset Basic model No.Clusters 
1st Al l -2 Al l -3 2 3 4 5 6 

Book 671 7732 17820 1342 2013 2684 3355 4026 
Prospective 218 1316 3669 436 654 872 1090 1308 
Ugrad 498 4193 12298 996 1494 1992 2490 2988 
Grad 329 1872 4350 658 987 1316 1645 1974 

Table 4.2: Number of states for different models 

sufficiently improve predictability over the first order Markov model. 

4.2.2 Markov chain clustering vs All-Kth Markov models 

We compare the predictive power p(Hit) of Markov chain clustering wi th two clus­

ters to four baseline models as the size of prediction set varies from 1 to 20. F ig ­

ures 4.3 - 4.6, plots (a) - (c) show the comparison of Markov chain clustering to the 

0th and 1st, Al l -2nd , and Al l -3 rd order Markov models with no clustering. 

For the Book dataset the zeroth order model is completely inferior to the 

other models. For Grad and Prospective the performance ot the zeroth order model 

is comparable to that of the other models for lower sizes of prediction set, and is 

inferior otherwise. For the Ugrad, dataset, the zeroth order model is superior for a 

single prediction, and inferior for prediction sets larger than 2. 

For a l l datasets the clustered model gets close to that of the higher order 

models starting with a certain size of prediction set. This is because when a predic­

tion set is large enough, it covers nearly a l l possible user activities from the page, 

so higher order models cannot improve prediction further. For Ugrad, higher order 

models are inferior to the first order model for prediction sets smaller than 12. 

Table 4.2 presents the comparison of model complexity. For a clustered 

model, the number of model states is that of the first order model times the number 

of clusters. The complexity of clustered model is significantly lower than that of 

Al l -2 and Al l -3 Markov models. 
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Chapter 5 

Conclusions and Future Work 

We considered the problem of predicting user's access to the web server. We studied 

performance of two predictive models with clustering. We clustered web sessions in 

two ways: as texts and as discrete Markov chains, and compared these models to 

non-clustered Markov models of orders 0, 1, A l l -2 and A l l - 3 . 

We did the comparison across four subsets of Computer Science department 

web logs, namely, web pages for Graduate, Undergraduate, and Prospective stu­

dents, and web pages for the Computational Intelligence textbook. 

The experiments showed that the subsets had very different usage patterns. 

Hence there was no common ranking of baseline models and the clustered models 

over the subsets. So for a large heterogeneous web site a composite model may 

perform better than a uniform one. 

Generally, Markov chain clustering performed better than text clustering, 

yet the former did not improve predictability over the first order Markov model. 

Future work would include adding more attributes to web sessions for clus­

tering, such as time spent by a user at a web page, distinguishing local and global 

users where appropriate, and building composite models for large heterogeneous web 

sites. 
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