
Sound Synthesis for Virtual Reality and Computer

Games

by

Cornells Pieter van den Doel

Ph.D., University of California at Santa Cruz, 1984

M.Sc, University of British Columbia, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E DEGREE OF

Doctor of Philosophy

in

T H E FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The GnivefcSity of British Columbia

November 1998

© Cornelis Pieter van den Doel, 1998

I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s
f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h C olumbia, T
agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e
and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o x e x t e n s i v e c o p y i n g o f
t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e head o f my
department o r by h i s o r her r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t
c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not
be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n .

Dep; i r t m e n t of (^M^^^<" Sc^y^Oi-^
The U n i v e r s i t y o f B r i t i s h Columbia
Vancouver, Canada

Date

l o f 2 3/31/99 1:27 PI*

Abstract

The synthesis of audio in real-time computer simulations is investigated. A physics

based parameterized vibrat ion model for physical objects is constructed, and a real­

t ime synthesis algorithm is developed which allows the synthesis of the sound made

by such objects under any kind of interaction force.

Methods for obtaining the parameters of such models are investigated. We

study mathematical models with simple geometries, parameter fi t t ing to measured

data, and empirical models.

Models for interaction forces occurring during contacts between rigid bodies

such as impact and sliding interactions are developed, as well as models for the

dr iv ing forces for combustion engines and avalanches.

Studies were conducted of several objects which were successfully modeled

wi th these techniques. Several computer programs were wri t ten for the testing of

models, for the construction of models, and for the demonstration of the level of

realism that can be achieved with this type of synthesis.

It is concluded that this type of synthesis can generate realistic, interac­

tive audio using only a small fraction of available C P U power on modern personal

computers.

11

Contents

Abstract ii

Contents iii

List of Tables vii

List of Figures viii

Acknowledgements xii

1 Audio in Virtual Reality 1

1.1 Goals and Background 1

1.2 Example of an Audio Simulation 4

1.3 Contributions of this Thesis 9

2 Background 12

2.1 Sound Perception 12

2.2 Representation and Rendering of Computer Sound 14

2.3 Environment Modeling 17

2.4 Computer Music 19

m

3 Physics of Sound 22

3.1 Sound Propagation 23

3.2 Fundamental Equations for Gases 23

3.3 Linearized Equations for Acoustic Waves 26

3.4 Interaction of Acoustic Waves with Solids 29

3.5 Sound Generation 30

3.6 Vibration Theory 34

4 Contact Sounds 38

4.1 Overview 40

4.2 Vibration Modes from Shape 40

4.3 Mode Amplitudes from Impact Location 44

4.4 Sound Sources from Vibrating Shapes 48

4.5 Sounds and Material Properties 49

4.6 The Sound Map 53

4.7 Real-time Synthesis 55

5 Creating Vibration Models 61

5.1 Computing Model Parameters Analytically 62

5.2 Fitting Model Parameters to Empirical Data 65

5.3 Designing Model Parameters by Hand 80

6 Interaction Force Models 82

6.1 Impact Forces • 82

6.2 Continuous Contact Forces 84

6.3 Live Data Streams 86

6.4 Engine Forces 86

iv

7 Implementations 90

7.1 General System Architecture 90

7.1.1 SynthesisEngine 94

7.1.2 Controller . • 99

7.2 Authoring Tools . . . : 103

7.2.1 Off-line Model Tester 103

7.2.2 Vibration Model Generators 104

7.3 Demonstration Programs 105

7.3.1 Sonic Explorer 1.0 105

7.3.2 Sonic Explorer 2.0 106

7.3.3 Sonified Objects 108

7.3.4 Avalanche Sounds 110

7.3.5 Location Dependent Sounds of Mathematical Shapes I l l

7.3.6 Virtual Bell Tower 112

7.3.7 Real-time Model Tester 113

8 Conclusions and Extensions 121

8.1 Summary of Results 121

8.2 Extensions and Future Work 123

8.2.1 Faster Synthesis 123

8.2.2 Integrate Waveguide Models 123

8.2.3 Improve Parameter Fitting 124

8.2.4 Improve Interaction Models 125

8.2.5 Non-linear Models 125

Bibliography 128

v

Appendices 134

Appendix A File Format for Vibration Models 135

Appendix B Parameter Fitting Data 139

Appendix C Audio Synthesis Techniques for Music 162

vi

List of Tables

1.1 Graphics-Audio analogies 3

7.1 Performance of synthesis algorithm at a sampling rate of 22,050 Hz

on a 233 Mhz Pentium P C with M M X using a C implementation and

a Java implementation 98

vii

List of Figures

1.1 The stages of modeling needed to compute audio 4

1.2 Interactive environment: a hammer hitting a bar 6

1.3 Interactive environment: a hammer hitting a bar at different loca­

tions 8

4.1 First nine eigenfunctions of a square membrane 43

4.2 Excited frequencies of a square membrane struck near the corner. . . -46

4.3 Excited frequencies of a square membrane struck near the middle of

a side 47

4.4 Excited frequencies of a square membrane struck near the center. . . 47

4.5 Ratio of frequency/damping for the first 100 modes sorted by am­

plitude (left) and frequency (right) of a struck metal vase. Recon­

structed with a Fourier window of 4096 51

4.6 Ratio of frequency/damping for the first 100 modes sorted by am­

plitude (left) and frequency (right) of a struck hockey stick. Recon­

structed with a Fourier window of 1024 52

vm

4.7 Ratio of frequency/damping for the first 100 modes sorted by am­

plitude (left) and frequency (right) of a struck computer tower box.

Reconstructed with a Fourier window of 1024 52

4.8 Ratio of frequency/damping for the first 100 modes sorted by ampli­

tude (left) and frequency (right) of a struck sword (sword I). Recon­

structed with a Fourier window of 2048 53

5.1 Sonogram of recorded (left) and reconstructed (right) impulse re­

sponse of vase. The window size of the Fourier transform was 4096

and the sampling rate was 44100 Hz . 71

5.2 Identified modes for vase. Shown are the logarithmic amplitudes of

the frequency peaks and their linear fits 73

5.3 Identified modes for vase. Shown are the frequencies corresponding

to Figure 5.2 74

5.4 Identified modes for vase. The frequency response is shown. The

bottom figure shows a subset of the frequency range of the upper

figure 75

5.5 Frequency response of vase for three regions 79

6.1 Sample driving four stroke one cylinder engine 87

6.2 Sample driving four stroke one cylinder engine with fan 88

6.3 Sample driving four cylinder engine 89

7.1 System architecture for applications with real-time audio synthesis. . 91

7.2 Off-line model tester 103

7.3 A room modeled with the Sonic Explorer 105

7.4 A xylophone modeled with the Sonic Explorer 107

ix

7:5 A vase modeled with the Sonic Explorer > 107

7.6 Plastic swords with embedded contact mikes used to create metal

sword sounds. 109

7.7 Applet to generate avalanche sounds I l l

7.8 Applet to create location dependent sounds for a variety of objects. . 112

7.9 Applet for ringing a bell tower 114

7.10 Applet for ringing a bell tower 115

7.11 Real-time model tester. Main control panel 116

7.12 Real-time model tester. Interaction windows to scrape and hit objects. 117

7.13 Real-time model tester. Engine model editor 117

8.1 Pendulum is non-linear when colliding with the walls 127

B.l Top of vase with a window of 1024 140

B.2 Top of vase with a window of 2048 141

B.3 Top of vase with a window of 4096 142

B.4 Top of vase with a window of 8192 ! 143

B.5 Top of vase with a window of 1024: Material constant 144

B.6 Top of vase with a window of 2048: Material constant 144

B.7 Top of vase with a window of 8192: Material constant 145

B.8 Santur with a window of 1024 146

B.9 Santur with a window of 2048 147

B.10 Santur with a window of 4096 148

B . l l Santur with a window of 8192 149

B.12 Piano with a window of 1024 150

B.13 Piano with a window of 2048 151

x

B.14 Piano with a window of 4096 152

B.15 Piano with a window of 8192 153

B.16 Computer tower with a window of 512 154

B.17 Computer tower with a window of 1024 155

B.18 Computer tower with a window of 2048 . . . 156

B.19 Computer tower with a window of 4096 157

B.20 Computer tower with a window of 512: Material constant 158

B.21 Computer tower with a window of 2048: Material constant 158

B.22 Computer tower with a window of 4096: Material constant 159

B.23 Bell with a window of 1024: Material constant 160

B.24 Bell with a window of 2048: Material constant 160

B.25 Bell with a window of 4096: Material constant 161

B.26 Bell with a window of 8192: Material constant 161

xi

Acknowledgements

I would like to thank my thesis supervisor, Dinesh K. Pai, for his active participation

in this research and his support. I appreciate feedback and comments from the other

members of my thesis committee, Alain Fournier and Uri Ascher. Thanks to IRIS,

ASI, and IVL Technologies Ltd., for financial support.

C O R N E L I S P I E T E R V A N D E N D O E L

The University of British Columbia

November 1998

xii

Chapter 1

Audio in Virtual Reality

The research described in this thesis was conducted to create a methodology for the

rendering of audio in virtual reality environments such as simulations and computer

games. The focus is on a topic which has not been investigated very much at the time

of writing, namely the computation (synthesis) and rendering of "natural" sounds

produced by physical objects. Most research in sound synthesis has concentrated

on "computer music," where the primary interest is to create interesting sounds, or

to reproduce musical sounds, rather than to faithfully reproduce existing naturally

occurring sounds.

1.1 Goals and Background

Audio techniques [37] used in games and virtual reality (VR) are more inspired by

movie and television sound effects, than based on a physical simulation approach.

Unfortunately, because of the interactivity of games and V R , these techniques are

of limited use in such environments.

A common technique to generate audio in a game or simulation is to play

1

back a prerecorded sound (a "sample") when a certain event, such as one solid

object colliding with another, or a player of a video game killing the final monster,

takes place. For "effects" such as a triumphant fanfare after winning the game this

is appropriate, but for more subtle interactive sounds caused by physical objects

it is quite tedious to have the same sounds repeated over and over again. Other

types of environmental sounds, such as those caused by objects sliding and rolling,

are continuous and are driven by the momentary state of the physical objects that

cause them. They can not be prerecorded and some type of synthesis is necessary.

Synthesis is a form of modeling or simulation, so it is useful to compare audio

synthesis with simulation in a more general context.

A lot of research in "reality simulation", i.e., the creation of a sensory illusion

with the computer, has focused on computer graphics rather than on computer

sound. As a result, many techniques and software packages exist to display and

animate a scene using computer graphics at many levels of realism, but similar

techniques to recreate the sounds of the scene are still underdeveloped.

The study of creating sound with a computer is analogous to computer graph­

ics, just as the study of interpreting sound with a computer is analogous to computer

vision. However, the analogy between sound and graphics is not straightforward,

because vision and hearing are very different sensory modes. Nevertheless, it is use­

ful to try to draw analogies between the two. In Table 1.1 we have indicated some

possible connections one can make at various levels. The correspondences indicated

in the table are intended to stimulate the mind, rather than to show actual con­

nections between sound and graphics. For each of the correspondences one can find

arguments against and for the analogy.

The modeling and simulation of rigid bodies with contacts has been inves-

2

Sound Graphics
Sample Pixel
Sampled sound Digital picture
Stereo sound Perspective
Spatial sound Stereo display
F M synthesis Color-map animation
Sound emission Shading
Vibration analysis Surface modeling
Distance attenuation Haze or fog
Impact sounds Flashes
Scraping, rolling Animation
Material Color
Room acoustics Raytracing and radiosity

Table 1.1: Graphics-Audio analogies.

tigated widely [78, 79, 47, 42, 10, 9, 22] recently, and this type of simulation has a

lot in common with the simulation of audio. In both cases the task is to update

the state of the objects/audio-buffers in a manner consistent with the (simplified)

physical laws governing the simulation. A rigid body simulation would also be an

ideal environment to integrate with an audio simulation, as the information about

body contact forces, collisions, and contacts, which is usually directly available from

the simulation, can be used to drive the audio synthesis.

What are the physical factors determining the generation of audio? Sound

is most commonly created by accelerated bodies and their vibrating surfaces: Heat

and turbulence can also act as sources of sound. These bodies interact with the

medium (air, usually), and generate pressure waves that propagate through the air,

and scatter from other objects. The sound is scattered at the ear and passes through

the ear canal and is detected at the eardrum.

It is often possible to regard the sound production as occurring in several

3

Impact Vibration Emission Impact Vibration Emission Propagation Listener

Figure 1.1: The stages of modeling needed to compute audio.

stages that can be modeled independently. A force such as an impact is applied to

a material object, which vibrates. The object emits sound waves, which propagate

through the environment and are detected by the human ears. We have depicted

this audio "pipeline" in Figure 1.1.

To produce realistic simulated sounds with a computer we need to under­

stand the physics behind the sound generating phenomena as well as the nature of

human perception of sound. A simplified model of the complete physics of the sound

generation should be created, so that the associated sounds can be computed and

rendered in real-time. The computation should be based on physical laws, not on

"hacked" algorithms. This provides the possibility of systematic refinement, based

on knowledge of physical laws.

1.2 Example of an Audio Simulation

When we strike an object such as a metal bar, we hear a brief transient or'click

followed by a more or less sustained sound, which then decays. The click or onset

has some role in identifying the sound. For example, try listening to a recording of

a flute played backwards. The sound is no longer as clearly recognizable as a flute,

even though the sustained part of the sound is unchanged. See also [15, 51].

Nevertheless, a lot of information about the nature of the object is present in

the sustained part. To obtain this, we need to compute the vibrations of an object

when it is struck, and compute the resulting sound emitted.

The sound made by a struck object depends on many factors, of which we

consider the following:

1. The shape of the object. The propagation of vibrations in the object depends

on its geometry. This is why a struck gong sounds very different from a

struck piano string, for example. Shape and material together determine a

characteristic frequency spectrum.

2. The location of the impact. The timbre of the sound, i.e., the amplitudes of the

frequency components, depends on where the object is struck. For example,

a table struck at the edges makes a different sound than when struck at the

center.

3. The material of the struck object. The harder the material, the brighter the

sound. We also relate the material to the decay rate of the frequency compo-^

nents of the sound through the internal friction parameter, see below.

4. The force of the impact. Typically, the amplitude of the emitted sound is

proportional to the square root of the energy of the impact.

A l l these factors give important cues about the nature of an object and about what

is happening to an object in the simulation.

As an illustrative example, consider an environment where a user interacts

with a metal bar by hitting it with a (virtual) hammer. When the user hits the metal

bar, we want to synthesize the appropriate sound. Obviously, whatever processing

we do after the impact will have to be done very fast, or unrealistic latency will

appear. (Typically, for musicians, 20ms latency is considered acceptable, 3ms would

be ideal. 1)

'Andy Schloss, private communication.

5

Figure 1.2: Interactive environment: a hammer hitting a bar.

A simple approach is to record a sample of an actual bar being struck, and

load this sample in memory. When a strike event occurs the sample is then sent to

the audio hardware.

But in this approach the sound will always be the same, no matter how hard

or soft the user strikes the bar. One solution would be to record a set of samples

for various levels of impact. At the impact event the sample that corresponds best

with the actual force will be rendered. Another solution would be to change the

amplitude of the sample in real-time before rendering it, to correspond to the volume

of the sound for a particular strike force. This is generally such a low cost operation

that it can be done in software even on very modest equipment.

This is a very simple example of manipulating a sound by processing it with

a parameterized "effect", in this case the volume. A single "prototype" sound is

changed in real-time to create many sounds. This is also the simplest example of

parameterized synthesis. Synthesis by physical modeling is presently a very active

topic of research in computer music [20, 67], but the name is somewhat misleading.

The focus of most musical instruments research is not so much on the physical

modeling, but in parameterizing sound with physical events. The parameters of

interest to musicians for a simulated wind instrument are breath pressure, finger

holes, speed of closure of finger holes, mouth position (for flute), and tongue position

(for ney). A "physical model" of a wind instrument in this context is a synthesizer

that can create sounds that are parameterized by this set of physical characteristics.

In this case the parameter is the force of the impact, which is translated

into audio volume. One may argue whether this deserves the name "synthesis", but

it should be clear that there is a continuum between "samples with effects" and

"synthesis". In this case we are synthesizing the volume, using a sample for the

basic waveform. When using more complicated effects such as 3D spatialization and

reverberation effects, we add more synthesis, but still use some recorded data.

However, by doing this we have sacrificed some level of realism, because we

assume that the only effect of the force of the impact is a change in volume. This

may be true in a first approximation, but non-linear effects cause the "timbre" of

the sound to change also with the strike force. So we have sacrificed some level of

detail by reusing a sample.

Let us continue with the example of the virtual bar. What if we allow the

bar to be moved or allow the user to listen from different locations? This could

be incorporated in the synthesis by filtering the output of our synthesizer through

a set of HRTF filters (see 2.3). This can be done with off the shelf hardware or

software. It can be thought of as an independent "multiplexer". We now have three

parameters: volume, azimuth, and elevation. (We are ignoring room acoustics here.)

What if there were multiple bars in the scene? If the bars differ only in

length, their sound spectra are approximately related through a simple scale factor

in time, i.e., we can change the "pitch" of the stored sample depending oh the length

of the struck bar.

Many digital sampler synthesizers emulate musical instruments based on this

principle. Typically, a group of tones will be represented by one sample, which is

7

Figure 1.3: Interactive environment: a hammer hitting a bar at different locations.

played back at various rates. Because the timbral characteristics of instruments

vary a lot over the entire range of the instruments, the recorded sample can only be

transposed (scaled) to a certain extent, before it starts to sound "unnatural".

So far, we have been successful in synthesizing the sounds of different sizes

of bars, at different spatial locations, which can be struck with any force. A l l these

sounds can be obtained from a single recorded sample.

What if we strike the bar in the middle, and then near an end, as depicted in

Figure 1.3? The timbre of the sound should change, depending on the strike point,

because this will excite different resonance modes in different proportions. The same

effect is well known in music; for example a violin will sound much more nasal when

bowed near the bridge (which supports the strings).

A linear model (developed in detail in this thesis) predicts that the intensities

of the partials (constituent sinusoidal waves) of the sound change as the strike point

is changed. However, their frequencies remain the same, because the same vibration

modes are excited.

To deal with this, we can record some samples of the sounds corresponding to

various impact locations, and play back the closest one, or do a linear interpolation

between two. 2

2This could be called "sound morphing". It can be done in the time domain because the spectral
content of the two sounds is the same.

8

But what if we now want to have different hammers, made out of metal,

wood, and rubber? The sound will be different when hitting the bars with these

different sticks. Should we now also pre-record the samples of the bar being struck

by different sticks? If we want to have 10 different materials, 10 impact locations,

and 10 different length bars, we would need 1000 samples! This clearly pushes'

straightforward sample playback to its limits.

The sample based approach does not require much modeling, and allows

the use of recorded sounds, which will always (or at least for a very long time) be

better than synthesized sounds. On the other hand, since recorded samples are not

available to everyone, and are difficult to obtain, it restricts a designer of a virtual

reality environment. A synthesis approach has the advantage that no external data/

is needed, but it also requires detailed physical modeling. Especially for complicated,

structures, not enough data may be available to model the vibrations accurately.

However, in such a case one can use an experimental approach, and use recorded

sounds to extract the relevant synthesis parameters empirically from real objects.

If we also want realistic continuous sounds when we scrape the bar with a

stick, with velocity, direction, and speed under real-time user control, we can no

longer use sample playback directly. One can imagine looping a sample at different

speed/volume depending on the interaction, and this has been tried with limited

success, but this does not take into account the resonances of the touched object.

For these types of sound we need to synthesize the sounds in real-time.

1.3 Contributions of this Thesis

The work presented in this thesis is the first coherent effort to develop a physics

based real-time audio synthesis methodology for environmental sounds caused by

9

interacting solid objects. We develop a real-time synthesis technique specifically

tailored to the synthesis of sounds of solid objects under external forces. We ad­

dress model rendering (audio synthesis), model authoring, interaction modeling, and

software and system design issues. Using the techniques developed here, it is possi- -

ble to generate realistic, interactive audio in simulation or games applications using

only a small fraction of available C P U power on modern personal computers.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss .

general background material relevant to audio synthesis and environmental-sound

simulation, and we describe related work in this field.

In Chapter 3 we summarize the physical laws which govern acoustics and

,. which are the foundation upon which audio synthesis by physical modeling is built.

In Chapter 4 we derive a physics based parameterized vibration model for

physical objects from the linearized vibration equations for solid bodies. A real-

• • .time synthesis algorithm is developed which allows the synthesis of the sound of

such objects under any kind of interaction force.

In Chapter 5 we investigate methods for obtaining the parameters of the

vibration models from mathematical models of simple geometries, by automatic

parameter fitting to measured data, or by empirical means. Studies were conducted

of several objects which were successfully modeled with these techniques.

In Chapter 6, models for interaction forces during contacts between rigid

bodies (impulsive forces, and sliding interactions) are developed, as well as models

for the driving forces for combustion engines and avalanches.

In Chapter 7 we describe the software tools that were built to implement

the methodology developed. An object-oriented application programming interface

(API) is developed to interface the audio synthesis to user code, and implementations

10

in C++ and in Java are described. Several computer programs were developed for

the testing of models, for the construction of models, and for the demonstration of

the level of realism that can be achieved with this type of synthesis.

In Chapter 8 we present our conclusions and outline directions for future

research.

Some technical details such as the numerical results of parameter fitting, and

file formats are relegated to the appendices.

It is hard to describe audio verbally or graphically, and many of our results

should be heard in order to be appreciated. We have made several audio examples

as well as some interactive applications available online on [4]. This material is also

available on the accompanying C D .

11

[

Chapter 2

Background

In this Chapter we will discuss some general topics that are relevant to sound sim­

ulation, and describe related work in this field. The topics considered are

• Sound perception;

• Digital representation of sound;

• Environment modeling;

• Computer Music.

2.1 Sound Perception

To simulate sounds, we need to know some things about how humans perceive

sounds, since we do not want to waste effort on aspects of sound that are not

important perceptually. Knowledge of what is perceptually important may focus

sonic modeling on relevant phenomena.

The human ear can detect frequencies in the range 20 — 20,000 Hz and is

most sensitive in the 500 — 6,000 Hz region. The threshold of hearing is around ldB

12

(see Section 3.3 for a definition of dB), the threshold of pain is at about 140^5.:

A normal conversation at a distance of 1 meter is about 50dB. The sensitivity of

the ear at various levels of loudness can be depicted in sensitivity curves, see for

example [73]. When a sound is heard, various attributes are usually associated with

it by the human brain. For example one may hear it as a liquid sound, or as a distant

animal call, or as a metallic percussive sound coming from a specific direction. An

attempt at classifying sounds into categories (like liquid, metallic, etc.) was made

in [30].

The study of how sounds are processed by humans and grouped into auditory

streams, is called auditory scene analysis, and there exists a standard work on the

subject [15].

Considerable recent attention has focused on the localization of sound in

three dimensional space, i.e., on how we perceive sounds as coming from a specific

direction. A good review of the subject is [11]. In [94] psychophysical experiments

are described which are used to investigate how inter-aural time delays provide

cues for left-right localization. A good review of psychological aspects of sound

localization by humans can be found in [50].

For wavelengths greater than the size of the human head, the horizontal

position cues come from a phase difference in the waves at the ears. These waves

don't "see" the head and are therefore unaffected by it. Smaller waves are scattered

by the head and by the pinna. The primary cue for position at the onset of sound

with small wavelengths comes from the inter-aural delay time, and the manner in

which the sound is altered (filtered) by the head and the pinna. The brain has

learned to correlate these scattering effects with the position of the source. The

vertical position of a sound can also be perceived, though not as accurately. Cues

13

for this come entirely from the filtering of the sound through the head and pinna.

Percussive sounds are often perceived as having a distinct "onset", and a sustained

part. Localization cues obtained at the onset tend to be important.

The reverberations of the room also have a role in sound localization. With­

out reverberations it is harder to localize sounds. Different frequencies decay(atten-

uate) at different rates in the atmosphere. This is why sounds coming from a great

distance can be heard as such, as they sound "muffled". Note that the propagation

of sound through the atmosphere is strongly influenced by the weather, giving a

distinct aural "feel" to various kinds of weather.

Blind people report that they can "feel" the presence of objects like a wall;

as a pressure on the face. I can reproduce this sensation also to some extent by

moving my head close to a wall in the dark. What actually happens is that small 1

sounds like that of your breathing reflect off nearby surfaces, which is detected by

your ears but somehow perceived as a kinesthetic sensation.

2.2 Representation and Rendering of Computer Sound

Various techniques exist to record and reproduce sound. For example, the sound

can be stored as a physical image of the vibrations in a gramophone, or as a pattern

of magnetization on a tape. These are analogue techniques, as they map pressure

variations directly to some other physical characteristics. It has even been speculated

that sound can leave imprints by accident, for example on drying paint, and might

be reconstructed [93].

A different method of storing sound is by digital sampling. The signal is

sampled at some rate and encoded as a set of numbers, which are typically stored on

some electronic device. Digitally stored sounds can be manipulated algorithmically

14

and recordings can be duplicated without any loss in quality. A good introduction

to digital audio techniques is [72].

The signal at each ear will be represented by a scalar function of time which,

apart from a multiplicative factor, specifies completely the perception at the ear.

Two such signals would give a complete description of a sound as perceived by a

human. There are also phenomena which are usually classified as "sound" that are

perceived not directly through the ears. For example, the deepest tones of a large

church organ are "felt" in the chest cavity.

The signal at the ear could represent the pressure at the entrance to the

ear canal, the deviation from equilibrium of the eardrum; or perhaps other relevant

parameters. How this function is precisely to be translated into a physical rendering

of the sound, with the aid of speaker, headphones, or other means, will depend on

the setup of the speakers or on the headphone characteristics. But it should be clear

that in principle any sound can be created in this manner.

With loudspeakers we have the complication of "leaks" between the speakers.

A simple minded setup with a speaker for the left ear and a speaker for the right

ear will not work, as the right ear will also pick up the signal from the left speaker.

But one could for example cancel out the "leak" from the left speaker to the right

ear with an additional signal from the right speaker that had the opposite phase.

Unfortunately, this requires a knowledge of the position of the listeners ear. Various

techniques, sometimes called "Surround Sound", "Dolby Surround", or "3D sound",

exist to partially overcome this problem.

The signal function is represented by a digital sample. The values of the

function are stored at time intervals of I/SR, where SR is the sampling rate. The

values can be given as floats or as 16 or 8 bit signed integers. The method of

15

sampling is usually indicated by specifying the sample width, which is the number

of bits used to represent the value, and the sampling rate.

To represent sounds with frequencies up to / Hz, the Shannon Sampling

Theorem [61] tells us that we must have

SR > 2/ ,

for an accurate representation of the function. If SR < 2 / , frequencies above /

will "fold back" into low frequencies and produce distortions. The human ear can

perceive frequencies of up to 20,000 Hz, [73]. A common sampling rate for sound

, (used also for commercial C D quality recordings) is 44,100 Hz. The lowest sampling

.rate in common use is 8,000 Hz, which is used often in Internet applications.

A wide variety of file formats is available for the storage of digital samples.

Some widely used formats are

au Used by SUN and currently the only format supported by Java. (Java version

1.1.) This format stores the wave form logarithmically.

wave This format can use a variety of encoding techniques, but most commonly is

used with linear encoding. It is used on PC's .

A I F C The format used by SGI. A linear encoding with a very complicated header

structure with descriptions of looping etc. This is an elaboration of the older !

A I F F format.

IFF The format used by Amiga.

Most computers have some hardware to play a stereo sample in real time

i.e., to output an electric signal that can be used with speakers or headphones to

16

generate sound. The sample will typically be located at some memory location of

the computer.

Depending on the available hardware, it is possible to dynamically manipu­

late a sample and change certain aspects of it in real time. Many things can be done

in software, but often one uses special DSP hardware to do the signal processing

in real time. Examples of such processors are the readily available "reverb" units,

which add simulated room acoustics and other effects to an input signal in real time.

Also emerging are "spatialization" engines, which modify a signal to position it at

a specified location in space. With increasing processor speeds there is a tendency

to assign more and more DSP tasks to the main C P U .

2.3 Environment Modeling

Suppose we have a virtual reality environment in which we want to compute the

sound perceived by an observer. That is, we want to generate a signal that drives

speakers or headphones that will lead to a correct perception of the sound.

In principle one should model the sound generating objects, compute the

resulting sound field at the eardrums of the simulated observer, and generate a

signal at the headphones or speakers such that the eardrum of the human subject

is exposed to the sound field computed.

To make this a somewhat manageable task, it is usually assumed that the

sources of the sound are sufficiently far from the observation point that we can

approximate the acoustic wave by a plane wave. We can then replace the sound

source with a suitable point source. We can then divide the simulation in three

parts: source modeling, sound propagation (reverberation), and sound reception.

By "reception" we mean the scattering of the sound waves around the head and

17

ears, which needs to be simulated if we want the sound to appear to come from

definite spatial locations. The vibrational modeling to compute the point source

is discussed in Sections 3.5 and 3.6. However, we can also record a sample of a

real sound. This is an approach often taken, as more is known about modeling the

propagation (reverberation) and reception (the scattering around the head and ears)

than about modeling the sound production.

Reverberation modeling involves computing reflections of the sound from

surfaces along the path from the source to the observer. For this we need to have a

good model of scattering of sound from materials. Some of the relevant physics will

be discussed in Section 3. Off-line computation of acoustical properties of perfor­

mance halls, in the context of graphical visualization techniques was investigated in

[74].

When the sources and observers are not stationary, the Doppler shift changes

the rate at which the wave arrives at the ear, which can be simulated by changing

the effective sampling rate of the stored sample.

The filtering of the sound at the ears and the head, which is direction depen­

dent, can be summarized by a set of direction dependent filters that simulate the

ears. These are called Head Related Transfer Functions (HRTF) and have received

much attention recently. The basic idea is to measure the sound inside the ear for

a standard source (usually white noise) positioned at various locations with respect

to the subject. The relation between the source and the measured sound is then

extracted as a finite impulse response filter (FIR) for every direction. These are

the H R T F filters. On playback, a given "dry" sound can then be spatialized by

convolving it with the appropriate H R T F .

A review of the scientific and technological issues of auditory displays can

18

be found in [26]. Takaia and Hahn introduced the concept of sound rendering for

computer animation [80]. They associated a characteristic sound with each object

which could then be rendered after filtering the sound to model the environmental

effects. Recently [31] they proposed "Timbre Trees," which, like shade trees, provide

a scene description language for sounds. In [17] complex sounds such as breaking

events are: analyzed and decomposed into individual components which can then

be reconstructed with adjustable parameters to obtain: a form of parameterized

synthesis.

2.4 Computer Music

Computer music has been around for a long time, but has traditionally been more

concerned with imitating the sounds of musical instruments, or with the creation

of totally new sounds, than with the reproduction of everyday sounds. Surprisingly

little can be learned from computer music that can be used in the synthesis of simple

sounds such as emitted by an object of known material and geometry being struck

or scraped.

Several synthesis techniques have been developed or are currently being in­

vestigated, which have some relevance to the synthesis of natural sounds: A com­

prehensive overview of musical synthesis techniques is given by Herbert Janfien, on

the W W W site [7]. As this material is not published anywhere else and may be

removed from this W W W site, we include a compilation of relevant material from

that source with the author's permission in Appendix C. '

In [36] audio synthesis is discussed from a more theoretical point of view and

synthesis techniques are analysed using various criteria.

Many of the synthesis techniques described there are based on specific al-

19

gorithms or specific hardware configurations to create periodic oscillations. Some

methods are general enough that they could be used to generate sound for some of

our purposes.

One such technique is additive synthesis, which builds a complex sound from

sinusoidal components with controllable amplitudes. Unfortunately,, there is no

obvious way to compute the amplitudes of the sinusoidal components of contact

sounds, except for struck objects, where they decay exponentially. i !

Sample playbackxs currently the only technique used for environmental sounds

in games and virtual reality. It has the capability of producing "photo-realistic"

sounds, but with little or no interactivity. For discrete sounds such as impacts this

is an excellent method. :

Granular synthesis [82] superimposes many short fragments of recorded sam­

ples in a controllable stochastic manner. It has some applications in the generation

of crowd sounds in computer games and seems to be well suited for other sounds

which involve a large number of events, such as rain.

Waveguides [67] provide models of one dimensional structures such as vibrat­

ing strings and air columns. Because such structures have a harmonic spectrum of

resonance frequencies, waveguides (a.k.a. comb filters) provide a very efficient means

of synthesis and are used for musical instruments. The disadvantage of waveguides

is that one has no control over the bandwidths and amplitudes of the resonances.

This synthesis method is not suited for the sound of vibrating solid bodies, which

usually have a non-harmonically spaced frequency spectrum.

Modal synthesis [52] has been used for percussive instruments with a non-

harmonic frequency spectrum such as marimba and bells. Because each resonance

requires additional computation, this synthesis technique is not well suited for har-

20

monic musical instruments which usually need many resonances. However it is very

well suited for our purposes, and in the following chapter we shall show that this

synthesis technique can be derived as an implementation of a real-time solution to

the linearized vibration equations for solid bodies.

Several research groups are actively pursuing the physical modeling approach

to music:

• The Center for Computer Music and Acoustics, C C R M A , at Stanford is devel­

oping physical models of musical instruments. They use mainly wave-guides

for their modeling, but they also have done some work on modal synthesis.

Musical instruments are modeled as filter banks to which an appropriate stim­

ulus is applied. An overview of work at C C R M A can be found on their W W W

site [1].

• The Center for New Music and Audio Technologies, C N M A T , at Berkeley

is developing a synthesis technique based on additive synthesis. A sound is

described in frequency space where a number of dominant partials are iden­

tified with a given time evolution. An efficient algorithm based on the F F T

allows this description to be inverted in real time for sound synthesis [24]. An

overview of the research at C N M A T can be found at the W W W site [3].

• The Institut de Recherche et Coordination Acoustique/Musique, I R C A M , in

their Modalys program has investigated synthesis techniques using modal mod­

els. Their interest is primarily in the synthesis of musical sounds and in the

specification of control algorithms, rather than in real-time techniques. Their

web site is [6] and their scientific publications are available on-line at [2].

21

Chapter 3

Physics of Sound

In this chapter the laws governing the propagation of pressure waves in gases and

the interaction of solids with these waves will be derived from fundamental physical

laws. This allows a clear understanding of the nature of the approximations involved

in the derivation, and thus shows under what conditions these simplified laws are

valid and where they might break down.

We will not consider any conditions under which the simplest linear wave

model of sound in air breaks down in this thesis, but this is a possible direction for

future research. The material in this chapter indicates how the construction of more

complicated equations for pressure wave propagation might proceed. It provides

enough background material to allow the reader to follow such a derivation.

Material in this chapter can be found in many standard works on acoustics,

see for example [13, 54, 45, 81]. We follow the notation of [81] here.

In the last section of this chapter we will give a brief introduction to the

theory of vibrating solids.

22

3.1 Sound Propagation

For sound propagation through fluids and gases we shall use the continuum model

for fluids. Such a model will be applicable when the Knudsen number is small

enough. The Knudsen number is defined by

Kn = A / / , (3.1)

where A is the mean free path, which is the average distance that a molecule travels

between collisions with other molecules and / is the length scale of the phenomenon

of interest, such as the wavelength of sound.

For example, a sound wave with a frequency of 20,000 Hz (at the limit of

the audible frequency range) has a wavelength of 1.7 cm. The mean free path in

air is 5 . 9 5 1 0 _ 8 m . The Knudsen number is 3.5 X 10~ 6, so the continuum model is

applicable in this case.

3.2 Fundamental Equations for Gases

We shall present the fundamental equations that govern the propagation of sound.

Derivations and more detailed discussions of the thermodynamic background can be

found in [81].

The local state of a simple fluid (whose composition is uniform) can be spec­

ified by two quantities. For example, at low pressures all gases obey the ideal gas

law,

p = RpT (3.2)

where R is the gas constant, T the absolute temperature, p the mass density

of the gas, and p the pressure. The local state of the gas can be described by p and

- 23

T, or by p and p, etc.

For gases in motion, we can formulate the law of conservation of mass in

terms of the mass density field p(x,t) and the velocity field u(x,t) as

(3.3)

To derive equations of motion for the gas we must specify a model for the

forces and stresses acting on an infinitesimal volume of the gas. External forces on

the gas are described by a vector field F, which represents the force per unit volume

acting on the gas.

Stresses are described by the symmetric stress tensor cr of rank two. The

component <r,-j is interpreted as the i-th component of the force per unit area acting

on an infinitesimal surface element perpendicular to a vector in the j direction.

For a Newtonian fluid, the fluid is governed by the Navier-Stokes equation

plus thermodynamic equations. Most gases and simple fluids can be accurately de­

scribed by the Newtonian fluid model. Fluids with complicated molecular structure

can not, but are not considered here.

For a Newtonian fluid, the stress tensor is given by

where S{j is the unit tensor. The deviatoric stress tensor dij is traceless (i.e., da = 0).

The quantity P is called the mechanical pressure. For small velocity gradients, the

deviatoric stress tensor is given by

where p, is the coefficient of viscosity (also called shear viscosity) of the gas and e;j

o~ij — P&ij ~\- dij, (3.4)

d^ = 2p(eij - -ASij) (3.5)

24

is the rate-of-strain tensor, given by

l.dui duj

e - = 2 f e + ^ (3 - 6)

The local rate of expansion A is defined as

A = e„-. (3.7)

The difference between the mechanical pressure P and the thermodynamic

pressure p is related to the local rate of expansion through

p-P = pvA (3.8)

where pv is the expansion coefficient of viscosity.

For reference, we will now give the complete set of equations for a Newtonian

gas assuming that temperature variations are small and that pv is constant.

1. Continuity:

2. Navier-Stokes:

| + ^) = 0. (3.9)

+ = ̂ + A / * + (3.10)

3. Energy:

VS VT_0TVP 1 8 BT &

P i p P i p P i pdx* y dx1' p K '

4. State:

p = p(p,S). (3.12)

25

Here we have defined

£=4+ (3.13)
Vt dt dx' v ;

The viscous dissipation function $ is defined by

d> = ^ (^ - I A 2) . (3.14)
P

The specific heat is denoted by cp and A; is the thermal conductivity of the gas. The

coefficient of thermal expansion, (3, is defined by

with

v* = 1/p. (3.16)

For the important case of an ideal fluid, the stress force is assumed to be

perpendicular to an infinitesimal surface element, and to have the same magnitude

independent of the direction of the normal to the surface element. In this case the

equations for the gas can be written as

and

where c is the local speed of sound. Thermodynamic considerations lead to c 2 =

(Ip)5' ' ^ n e S r a v i t y vector is given by g\

3.3 Linearized Equations for Acoustic Waves

For acoustic waves in an ideal gas we linearize Equations 3.17 and 3.18. We consider

small fluctuations of pressure p and density p around the background values p0 and

26

po. If the length scale for variations in velocity is much smaller than Cg/g, with Co

the velocity of sound and g the absolute value of the gravity vector, the linearized

equations are

1 " P + ^ = 0, (3.19,
Po{x)cl(x) dt dx l

du % 1 dp , n .
+ - ^ 7 = 0. 3.20

dt po ox 1

For uniform gases we can rewrite the linearized Equations 3.19 and 3.20 in

a different form. First, observe that the vorticityu),

.dv?
hi dx k v ;

is conserved. e^k is the antisymmetric rank-3 tensor (with e 1 2 3 = 1). If we assume

that the gas is at rest initially, we will have UJ = 0. For velocity fields with zero

vorticity, we can write

«' = |4 (3 ^) ox1

where (j) is the velocity potential. The acoustics equations can now be formulated in

terms of a single wave equation for <f>,

- ^ + c 2 W = 0 (3.23)

with = The pressure fluctuation p can also be obtained from the velocity

potential by

P=~Po^- (3-24)

The energy density of the acoustic field is given by

E=Ek + Ep (3.25)

where the kinetic energy is given by

Ek = i p o u V (3.26)

27

and the potential energy is given by

1
2p0c'o

In terms of the velocity potential c/>, this becomes

1 d<p dcf>
^ - ^ c V c V (3 - 2 8)

and

The energy-flux vector (the energy flow per unit area) is given by

l a = P U (3 - 3 0)

and its time average

I=<qa> (3.31)

is called the acoustic intensity. Its dimension is power per area, e.g. wat t /m 2 . It

is customary to express the acoustic intensity in decibels (dB). For this we define a

reference level

Iref = 1 0 - 1 2 w a t t / m 2 . (3.32)

It corresponds to the lowest intensity at which a sine wave of 1000 Hz can be heard

by the average human. The intensity level in decibels is given by

IL = 1 0 1 o g 1 0 (/ / / r e /) . (3.33)

We note that the linearized equations for acoustic waves can not deal with

dissipation. For this we must use the Newtonian fluid model, described in Sec­

tion 3.2. For sound waves in air, the decay rate is proportional to the frequency.

The amplitude decay over 1000 wavelengths (340m at 1000 Hz) is only 1-2% in air,

so it can be neglected in many applications.

28

3.4 Interaction of Acoustic Waves with Solids

Sound waves are reflected (scattered) by solids. Vibrating solids generate sound

waves. Both phenomena require an understanding of the fluid dynamics at the

boundary between the two media.

When a sound wave hits a surface, the surface will move in response. If the

surface is part of the boundary of a solid there will be waves passing through the

solid, and the solid will emit sound from its entire boundary. However, in many

situations the propagation of sound inside the solid can be ignored and we have >

to deal only with reflection and absorption at the surface. How much of the wave

is absorbed and how much is reflected depends on the material properties of the'

surface.

Since in general we do not know the dynamical equations of the surface, some

sort of phenomenological model is necessary. The specific acoustic impedance of a

boundary is used to characterize a surface as follows. We assume, that the velocity

of the boundary depends on the pressure variation of the air at the boundary'with

some time lag. For a monochromatic incident wave we assume the relation

un=p/za, (3.34)

where un is the surface normal component of the velocity of the surface and p is

the pressure fluctuation at the boundary. The specific impedance za depends on

the frequency of the incoming wave and is complex in general (inducing a phase

difference, i.e., a time lag, between the surface response and the pressure).

Some classical topics that can be solved analytically are the sound field in

a piston driven tube and transmission of waves through tubes as a function of the

tube diameter. An example of the latter is the human vocal tract. The vowel sounds

29

used in human speech are produced by changing the shape of the vocal tract with

the throat and tongue, thereby changing the transmission of the sound radiated by

the vocal chords, see [21].

The wave equation (Equation 3.23) has been studied thoroughly. The study

of spherical waves leads to an exact solution for the sound field of a pulsating

sphere. The sound field of a bursting balloon can be computed analytically. This is

an important topic, because one may consider a small pulsating sphere as a "point-

source" of sound leading to a field theory approach of sound. Such a point source

plays a similar role as the point charge and point mass do in electromagnetism and

gravity. Just as a finite body can be considered as an infinite collection of point

masses, so a complex sound source can be considered as an infinite collection of

point sound sources. The advantage of this approach is its similarity to the well

studied fields of electromagnetism and gravity.

3.5 Sound Generation

Vibrating bodies generate sound waves through boundary conditions imposed on

the wave equation (Equation 3.23) at the surface of a solid body. For an ideal fluid

the boundary condition is

u.n = U ij.n (3.35)

with n the surface normal and Ub the velocity of the surface. However, real gases

"stick" to the surface, in which case we have

u = Ub. (3.36)

For an ideal gas, the condition given in Equation 3.35 has to be used, as viscous

effects are not taken into account in the ideal gas model.

30

A particularly useful formulation of the equations governing sound generation

is the formulation in terms of Green's functions. An exact computation of the far

field generated by a pulsating sphere leads to the following simple source potential

for a point source (i.e., a source of volume) that is pulsating (with frequency.u)

with k = u/c0 and r the distance from the source (which is located at the origin).

The quantity Q0 represents the volume flow out of a small sphere enclosing the

source. The intensity of the acoustic wave described by Equation 3.37 is

(3-38)

and the total acoustic power is

n = ^ M . (3.39)

The solution 3.37 can be viewed as the solution of the inhomogeneous wave equation

--^ + c2

0V2cf> = clQ(x,t) (3.40)

which should be compared with Equation 3.23. The general solution to Equation

3.40 can be given as

1 r Oix t - \x~x'\)
= / jf—!-dV(x). (3.41)

47T JV \X — X \

A n important case is a surface distribution of the source Q. For a plane, the result

is

eik\x-x' \-iwt

r fa

where | ^ is just the normal velocity of the surface.

^ t) = -Yjs f Tn \x-x'\ d M x) ' (3"42)

31

file:///-iwt

Unfortunately, Equation 3.42 can not be used directly to compute the sound

emitted by a vibrating polyhedron. The problem is that the sound emitted by one

facet of the polyhedron is dependent on the overall shape of the polyhedron.

Some special problems can be analyzed analytically. An example is the sound

field of an oscillating piston in an infinite wall.

The problem of interest for simulating the sound field of vibrating solids leads

to an integral equation for <f>. This equation, known in slightly modified form as the

Kirchhoff-Helmholtz equation [46] plays a fundamental role for an analysis of the

emission of sound by vibrating bodies. It is derived in a particularly clear way in

[81]. The end of [27] is devoted to a discussion of problems and numerical techniques

associated with solving the Kirchoff-Helmholtz equation. One problem with the

equation is that it breaks down if there is resonancein the system. At certain driving

frequencies the amplitudes of the waves become infinite (as we have not incorporated

dissipation in our model) and the solution of the integral equation diverges. At

resonance, dissipation must be modeled. In this case the amplitudes often grow

large enough that nonlinear effects become important. In such a case, adequate

physical models are often not available. There is a section in [81] on nonlinear

effects. Nonlinear acoustics is an important field of research, see for example [12].

The study of nonlinear waves (see for example [90]) is anextensive research field.

We will now state the Kirchoff-Helmholtz equation. The free-field Green's

function (which is essentially the sound field of a harmonic point volume source with

frequency u) is defined by
Jk\x\

G{xM = j-r,-r (3-43)

where k — OJ/CO.

We consider a region V bounded by surface S, which does not have to be

32

connected. We can think of S as consisting of an outer boundary like the walls.of a

room and some boundaries of objects in the room which produce sound.

Let n(x) denote the outward normal (i.e., pointing into the region V) at

point x on S. We assume that every point y on S is oscillating harmonically with

frequency to and velocity v(y). The velocity potential is written as

<f>(xtt) = r <j>u(x)eiut-%L. (3.44)

The time independent potential (f>u satisfies

&,(*) = Js p (y) ^ G (x - y) - Mx)nk {y)- d2S(y) (3.45)
dy k

where n(y) is the outward normal at point y on S, and d2S(y) is an infinitesimal

surface element on S.

The boundary condition for an ideal gas, Equation 3.35, gives us the normal

derivative of <f> on S, which appears in the right side of Equation 3.45,

nk(y)^fL
 = n(y).v(y) (3-46)

with v(y) the velocity of S at y. We can consider this a given quantity (computed

from a model of the physics of the vibrations of the surface S). The value of (f>ui{y)

on S is related to the pressure fluctuation Pu(x) (in the frequency domain) through

PUJ(X) = -ipou<j>u{x) (3.47)

which follows from Equations 3.24 and 3.44. If the pressure on the boundary was

known, Equation 3.45 would give us the acoustic field on V.

By restricting x on S in Equation 3.24, and dividing S in n elements, we

formally obtain a system of n equations for the n values of p on S. However, there

are some problems with this approach.

33

Observe that if x lies on S in Equation 3.45, the Green's function defined

in Equation 3.43 is not defined for x = 0. In this case one should take the principal

.values of the integrals at the singular points. This entails a regularization of the

Green's function, by defining Gc(x) = 0 for |x| < e and letting e —» 0 at the end.

If the volume V is finite, there may be no unique solution for the pressure

on the surface, for some values of the frequency. The physical reason is that at

resonance the acoustic field grows without limit. In this case a separate analysis is

required to identify the resonance frequencies. We refer to [27] for more details on

numerical approaches to the Kirchoff-Helmholtz equation.

3.6 Vibration Theory

Vibrating bodies are sources of acoustic waves and produce sound through the mech­

anism described in Section 3.5. In this section, we describe the equations governing

their behaviour.

Suppose the configuration of a vibrating system can be described by a vector

q(i) of n real numbers. At equilibrium, without motion, we assume q — 0. A typical:

example is a set of rigid bodies connected through (damped) springs. A solid body

such as a bar can be thought of as an infinite collection of infinitesimal rigid bodies

connected through generalized springs. They can be approximately described by

a discrete set of n coordinates q, provided n is large enough. Another route to

this conclusion is to note that the solution of the partial differential equation for the

vibration of a bar can be written as a discrete sum of basic functions (a generalization

of a Fourier transform series), which can be interpreted as the q in the above.

The vibrating system, for sufficiently small amplitudes q, is described by the

34

linear equation of motion

Mq + Cq + Kq — F (3.48)

where the dots denote differentiation with respect to time and F(t) is the external

force on the system. The matrices M, C, K, and the vector F can be found for a

given system by various means, depending on the system.

A case of particular interest to us is a system of many Finite Elements [58]

that approximates a given solid. The continuous system is divided into a number of

elements, each with appropriate elasticity properties and degrees of freedom. The

elements are then connected to approximate the continuous object. The degrees of

freedom corresponding to the finite elements obey an equation of the same structure

as Equation 3.48, in the linear approximation. The last Chapter in [66] discusses

Finite Element methods in vibration analysis.

We solve Equation 3.48 by writing

/

y =

The equation of motion 3.48 becomes

(3.49)

y = By + r (3.50)

with

B

and

r —
0 \

\ M~lF)

The solutions to Equation 3.50 with F — 0 are

0 1

^ -M~1K -M~XC)
(3.51)

(3.52)

y = ae lit (3.53)

35

where the eigenvectors a (of dimension 2n) and the eigenvalues /J, satisfy

(B - fil)a = 0. (3.54)

There are 2n eigenvalues, each representing an oscillation with frequency fi/(2n).

The reason we have two solutions for every degree of freedom is that there is also a

phase associated with this degree of freedom.

In the presence of an external force F the solution to Equation 3.50 can be

written as

y = T(t)y0+f tT(t-T)r(r)dr (3.55)
Jo

where the state transition matrix T is given by

- l (3.56)

where

T i =

0 0

and the 2n x 2n modal matrix is given by

* = [A, A2 »-2n

(3.57)

(3.58)

with A i the i-th eigenvector a, i.e., a solution of Equation 3.54. y0 in Equation 3.55

is given by the initial conditions on the system.

We conclude that a vibrating system can be characterized by a discrete set of

eigenvalues which correspond to the natural frequencies and their associated decay

rates. When the system is excited by an external force of finite duration some of

36

these frequencies will be excited. The relative amplitudes after the application of

the force depend on the nature of the excitation.

When an object is struck, the applied force is of very short duration and

contains many frequencies. Very shortly after the strike, many frequencies of the

system will be excited, but most decay very rapidly, leaving only a few. The object

will be perceived as having a definite "pitch" if one frequency decays much slower

than the others, such as is the case for a tuning fork, for example, or if the object has

a harmonic spectrum, as is the case for many melodic percussive musical instruments

such as the piano. The sound emitted when an object is struck is perceived as

containing a "click" of very short duration, which is a mixture of many frequencies,

and a sustained part, which contains only a few frequencies.

Continuous systems such as bars and plates lead to partial differential equa­

tions. For some simple systems exact solutions can be found. The classical problems

that can be tackled analytically are the vibrating string, the rectangular and the

circular membrane and plate, and bars, under various boundary conditions.

37

Chapter 4

Contact Sounds

In this chapter we investigate the computation and rendering of sounds emitted b y

solid bodies in contact. We will construct a parameterized vibration model that'

lends itself to real-time synthesis. Some of the material in this chapter has been

published previously by Dinesh Pai and the author in [84].

The computation of sound emitted by an object to which a time dependent

driving force is applied can be done in principle as follows.

1. Formulate the equations of motion of the object under external forces. In

general, this will be a partial differential equation.

2. Solve the resulting system of equations in the presence of the driving force.

3. Determine the surfaces that are exposed to air, where sound will be emitted.

Using the theory described in Section 3.5, determine the acoustic field at

relevant locations. Usually this will be at the ears of the (virtual) observer.

Note that we also have to take bounding surfaces such as walls into account.

We also have to model the scattering of sound at the pinna (the outer ear),

38

and at the head and shoulders.

To make this into a manageable task, we can make a number of simplifying assump­

tions:

• Often the observer will be "far" from the source, so we only have to compute

the distant field.

• Often we can bypass the entire computation of the acoustic field and just

replace the sound source with a point source. This point source oscillates in

a manner which is obtained from some combination of the vibrations of the

surfaces of the object which constitutes a reasonable approximation to the full

emission theory.

• Reflections of sound at the walls adds important reality value. Commercially

available digital reverb processors are available for this.

• Filters that model the scattering at the pinna (HRTF) have been measured

widely and are available on the Internet. There are commercial "spatializers"

available, that can model the scattering of sound at the pinna in real time.

At the time of writing, low cost soundcards for PC 's come equipped with

hardware support for 3D sound and the free DirectSound3D A P I has built in

spatialization support.

• The reverberation and H R T F contributions to the sound are, under certain

conditions, independent of the emission computation and can therefore be

dealt with separately and independently.

39

4.1 Overview

Based on material and shape properties, we do a pre-computation of the relevant

characteristic frequencies of each object in Section 4.2. In Section 4.3 we then divide

the boundary of the object into small regions and determine the amplitudes of the

excitation modes if an impulsive force is applied to a point in this region. This is

similar to the tesselation of a surface for graphics rendering. The whole procedure

is analogous to assigning a color to a surface and rendering it with some shading

model.

In Section 4.4, we normalize the energies of the vibrations associated with

the different impact points to some constant value, and scale them proportional to

the impact energy when rendered. In Section 4.5 we discuss the material properties

and their effect on sound. The decay rate of each mode is assumed to be determined

by the internal friction parameter, which is an approximate material property [91,

43]. In effect, the decay rate of a component is assumed to be proportional to the

frequency, with the constant determined by the internal friction parameter.

After the preprocessing, a sound parameter map is attached to an object,

which allows us to render sounds resulting from forces on the body. We discuss the

structure of this map and a possible approach to reduce its storage requirements in

Section 4.6. In Section 4.7 we will construct an algorithm to synthesize the sound

under any type of interaction in real-time.

4.2 Vibration Modes from Shape

We now introduce the framework for modeling vibrating objects. We will illustrate

it with a rectangular membrane, but the framework is quite general; we have used

40

it to generate sounds of strings, bars, plates and other objects. The framework is

based on the well developed models in the literature on vibration or acoustics, for

example [54] - for the calculus involved we refer to [75].

The vibration of the object is described by a function u(x,t), which reprer

sents the deviation from equilibrium of the surface, defined on some region S, which

defines the shape of the object. We assume that p obeys a wave equation of the

form

{ A - ^ M x , t) = F(x,t) (4.1)

with c a constant (related to the speed of sound in the material), and A is a self-

adjoint differential operator, under the boundary conditions on OS.

E x a m p l e : For the rectangular membrane we consider a rectangle

[0 — Lx, 0 — Ly] spanned by a membrane under uniform tension. For this

case the operator A is given by

A =

dx 2 dy2

The boundary conditions are that p(x,y,t) is fixed on the boundary of

the membrane, i.e., the membrane is attached to the rectangular frame.

We will take the following initial value conditions.

p(x,0) = y0{x),

i.e., the surface is initially in configuration yo{x), and

dfi(x, 0)
v0(x),

dt

where v0(x) is the initial velocity of the surface

41

The solution to Equation 4.1, in the absence of external forces, is written as

oo

fi(x,t) = ^2{an sin(u nct) + b n c o s (u > n c t) (4 - 2)
71=1

where an and bn are arbitrary real numbers, to be determined by the initial value

conditions. The u„ are related to the eigenvalues of the operator A under the •

^appropriate boundary conditions (which we specify below), and the functions ^n(x)

are the corresponding eigenfunctions. That is, we have

(A + u 2
n)Vn(x) = 0. (4.3)

The spectrum of a self-adjoint operator A is discrete, and the eigenfunctions are

orthogonal. Their norm is written as

E x a m p l e : For the rectangular membrane, the eigenfunctions and

eigenvalues are most naturally labeled by two positive integers nx and

ny and are given by

^nxny{x,y) = sm(nnxx/Lx)sm(Knyy/Ly),

and

In Figure 4.1, we show the first 9 eigenfunctions on a square membrane.

As Equation 4.3 is linear, we can normalize the eigenfunctions \P n (x) such

that an is independent of n, which often simplifies some of the algebra. Using the

42

Figure 4.1: First nine eigenfunctions of a square membrane.

43

orthogonality of the eigenfunctions we can find the coefficients in the expansion

given in Equation 4.2 as

an = / rf*,, (4.4)
Js cancon

and

Js ctn

The time averaged energy of the vibration is given by

E = constantX < J ^ ^ O M) ̂ p(x)d kx>, (4.6)

where p(x) is the mass density of the vibrating object. The <> indicates an average

over time. If the mass is distributed uniformly, we have

oo

E = constant x ^ anu>l(an + b 2
n). (4.7)

71=1

4.3 Mode Amplitudes from Impact Location

Next we compute the vibrations resulting from an impact at some point p, when

the body is initially at rest.

The initial value conditions are taken to be

y0(x) = 0, (4.8)

and

v0(x) = 5(x-p), (4.9)

with S(x) the fc-dimensional Dirac delta function.

We note that Equation 4.9 is not strictly correct as an initial value condition.

The reason is that the expression for the energy, given in Equation 4.6, involves the

square of the time derivative of n(x,t). But the integral of the square of the Dirac

44

delta function is infinite. One symptom of this is that the infinite sum appearing

in Equation 4.2 does not converge. A mathematically more correct method would

replace the delta function in the initial value conditions by some strongly peaking

external force function, representing the impact on a small region of the object

over a finite region and over a small but finite extension in time. However, this

would complicate things quite a bit, and we would gain little in terms of more

realistic sounds. Therefore we shall just assume an appropriate frequency cutoff in

the infinite sum appearing in Equations 4.7 and 4.2. Typically, we will only use the

frequencies in the audible range. For more details and a more rigorous treatment

of this problem for the special cases of the ideal string and the circular membrane,

see [54].

Using Equations 4.8 and 4.9, and substituting them in Equations 4.4 and

4.5 we obtain the amplitudes of the vibration modes as a function of the impact

location as

an = (4.10)
canun

and

6„ = 0.

The energy of the vibration is determined by the impact strength. It will be used

to scale the amplitudes of Equation 4.10. The energy is given by

E = constant X J2
71=1

where nj is determined by the frequency cutoff mentioned above.

E x a m p l e : In Figures 4.2 to 4.4 we show the amplitudes an, graphed

against the frequency of the modes (i.e., un) for a square membrane

45

0.16i

0.14

0.12 'm

0.1

0.02

o.oe

0.04

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency in Hz

Figure 4.2: Excited frequencies of a square membrane struck near the corner.

struck at the points (0.1,0.1), (0.1,0.4), and (0.5,0.4), using a cartesian

coordinate system with the origin (0, 0) in the corner and the opposite

corner at (1,1). We have taken the lowest frequency to be 500 Hz and

taken the first 400 modes into account. We can see clearly that the

higher frequencies become relatively more excited for strike points near

the boundary of the membrane. In other words, the membrane sounds

dull when struck near the center, and bright (or sharp) when struck near

the rim.

The method outlined above is very general, and allows the computation of

the vibrations under impact of any object governed by a differential equation of the

form given in Equation 4.1.

The frequency spectrum u>n and the eigenfunctions *&n(x) can be computed

analytically in a number of cases. In general one has to resort to numerical methods.

For membranes, the problem reduces to the solution of the Laplace equation on a

given domain, which is a well studied problem. We mention the method of particular

solutions [28], which we have adapted for the example of the L-shaped membrane,

46

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency in Hz

Figure 4.3; Excited frequencies of a square membrane struck near the middle of a
side.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency in Hz

Figure 4.4: Excited frequencies of a square membrane struck near the center.

47

described below in Section 5.1. For plates, the operator A is fourth order, and a

more general finite element method can be used. See for example [38]'.

4.4 Sound Sources from Vibrating Shapes

After obtaining the frequency spectrum and the eigenfunctions, using methods de­

scribed in Section 4.3, we have to model the relation between the vibration of the

object and the sound emitted. In general the sound-field around a vibration body

is very complicated and non-uniform. However, it is clear that the sound emitted

can be described as a sum of monochromatic components with frequencies unc, and

amplitudes , which will depend on the location of the observer with respect to

the object, as well as on the environment.

As a first approximation, we will identify the coefficients with the vibra­

tion amplitudes an, scaled with the inverse of the distance to the observer, as the

amplitude decays inversely proportional to the distance.

This is not strictly correct, but we argue that it is reasonable as follows. >

Consider a vibrating plate. At some point above the plate, waves emerging from all

locations on the plate arrive at this point. Some will be in phase, and some will be

out of phase. This interference will depend very sensitively on the location of the

observation point. However, in most real situations, the sound will not only arrive

directly from the source, but also from reflections from the walls and other objects

in the room. The total effect of this is to average out the phase differences, making

the sound-field less sensitive to the locations of the listener.

As a heuristic, we assume that the intensity (i.e., the energy) of the sound

48

emitted in frequency un , In, is given by

In = Enj Vl(x) = constant x tf* (p).

This seems reasonable, as it integrates the intensity of the vibration, but not the

phase. This means, we can identify the a^, which are the amplitudes of the heard

sound, with the an given in Equation 4.10, omitting the factor an. Note that since

we assumed that the eigenfunctions are normalized so that the an are independent

of n, this does not matter.

Finally, we obtain the amplitudes af as

5 _ ffimpact^n (p) (AT\\

uNQ{p)d ' (4 - U j

with d the distance from the sound source, i m p a c t the energy of the impact, and

Q (P) = X i > 2 (P) ,

\ i=l

with nj. a suitable frequency cutoff. Of course, the are only defined up to a

multiplicative constant (corresponding to the volume setting of the audio hardware).

For a more detailed treatment of the radiation of vibrating plates, we refer

to books on vibration analysis [65, 66, 27].

4.5 Sounds and Material Properties

When the object is struck, each frequency mode is excited with an initial amplitude

a{, which depends on where the object is struck. The relative magnitudes of the

amplitudes a; determines the "timbre" of the sound. Each mode is assumed to decay

exponentially, with decay time

1
nfi tan <

49

(4.12)

where <f> is the internal friction parameter. The internal friction parameter is roughly

invariant over object shape, and depends on the material only. In [91] a method was

proposed to identify the material type from the sound emitted by a struck object, by

extracting the internal friction parameter of the material via Equation 4.12. Such

a model is also used in [80] to simulate object sounds. Some experiments were

reported in [43], where it was concluded that a rough characterization of material

was indeed possible. However, the internal friction parameter is only approximately

invariant over object shape. See also [87].

To emulate external damping of the object, we add an overall decay factor

of e - * / T ° . This also allows us to adjust the length of the emitted sound, while

maintaining its "material character", which is determined by (j).

So we assume the sound-wave ps(t) to be given for t > 0 (for t < 0 it is zero)

by

ps(t) = e- '/ T 0 y ^ a f e - ^ t a n ^ s i n (2 7 r / t i) , (4.13)
i=l •

with the amplitudes af given in Equation 4.11, and

/ j ~ 2TT'

with the un determined by Equation 4.1.

Although this simple one-parameter characterization of material works per­

ceptually reasonably well, there is no advantage to restricting the damping coeffi­

cients in any way. When dealing with model parameters acquired from measure­

ments we will allow the damping coefficients to take on values independent of the

frequencies. In this case we will write the impulse response as

p s (t) = M5>.-e i n ' '), (4-14)
i=l

with Qi = u>i + idi, where di are the dampings.

50

70 80 90 100 10 20 30 40 50 70 80 90 100

Figure 4.5: Ratio of frequency/damping for the first 100 modes sorted by amplitude
(left) and frequency (right) of a struck metal vase. Reconstructed with a Fourier
window of 4096.

We have investigated the extent to which the ratio of frequency and damping

is constant in real objects, and found that this relation is only very approximately

valid. In Figure 4.5 we plot the ratio f/d for the first 100 modes of a metal vase

reconstructed with the techniques developed in Chapter 5. The average ratio f/d

is 477, characterizing metal, but still varies considerably, with a standard deviation

of 262.

In Figure 4.6 we plot the ratio f/d for the first 100 modes of a wooden hockey

stick. The average ratio f/d is about 35 which, as an order of magnitude, seems a

good characterization of wood. The standard deviation is 22.

In Figure 4.7 we plot the ratio f/d for the first 100 modes of a metallic

computer tower box. This is an extremely complex object with rattling parts inside,

and this seems to be reflected in the great variance in the ratio for this object.

In Figures 4.8 we plot the ratio f/d for the first 100 modes of a metal sword.

The average ratio f/d is 1005. The standard deviation 949 is very high.

51

0 10 20 30 40 50 60 70 BO 90 100 0 10 20 30 40 50 60 70 SO 90 100

Figure 4.6: Ratio of frequency/damping for the first 100 modes sorted by amplitude
(left) and frequency (right) of a struck hockey stick. Reconstructed with a Fourier'
window of 1024. . •

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 4.7: Ratio of frequency/damping for the first 100 modes sorted by amplitude
(left) and frequency (right) of a struck computer tower box. Reconstructed with a
Fourier window of 1024.

52

10 20 30 40 50 60 70 60 90 100 10 20 30 40 50 60 70 BO 90 100

Figure 4.8: Ratio of frequency/damping for the first 100 modes sorted by amplitude
(left) and frequency (right) of a struck sword (sword I). Reconstructed with a Fourier
window of 2048.

4.6 The Sound Map

In the preprocessing stage we first compute the frequency and damping spectrum,

and then the excitation spectrum a,- under a suitably normalized impact (i.e., with

fixed energy) for a number of locations on the surface. This gives us all the in­

formation needed to compute the sound under any kind of external force during

the real time simulation. This is somewhat analogous to texture mapping in com­

puter graphics. An interpolation of the timbre spectrum af between pre-computed

locations is also obvious to implement.

One may ask how many points on the surface need to be computed. In gen­

eral, the timbre of the sound changes non-uniformly over the surface. For example,

a string sounds "dull" when plucked near the center, and becomes dramatically

brighter when excited near the endpoints. In this case, one would need a denser set

of points near the ends.

Given two sounds Si and 52, a measure d(Si,S2) is needed, that tells us

53

how different sound Si "sounds" from sound S2, such that if d(Si,S2) < do, with

do a threshold (depending on the individual), S i and S2 can not be distinguished.

Perception of timbre is a complex subject, see for example [15, 51] for a discussion, so

we can not expect to be able to formulate such a sound-distance measure easily and

accurately. A complication is that a very important distinguishing factor between

pitched sounds is the perceived pitch, which is the same in our case, so our timbre

measure depends on subtle and poorly understood aspects of audio psychology.

As an initial proposal we take the sonic distance d(S\, S2) between two sounds

to be

d 2(S1,S2) = J2S(mH(\og(E}/Eo)) - H(\og(E?/E0)))2,

where E\ denotes the energy contribution of the i-th mode of sound r (= 1,2), i.e.,

E\ = (a S i) 2 / , 2 . We take the logarithm of the energy, as the human ear is sensitive

to the logarithm of intensity (measured in decibels). The function H(x) is zero for.

x < 0, and x otherwise. The constant Eo represents the lowest sound-level that

can be heard, so the term H (\og(E![/ Eo) vanishes if E± < Eo- The function S(f)

models the sensitivity of the ear to frequency. Without loss of generality we take

0 < S(f) < 1. The function S(f) has to be determined psychoacoustic experiments.

We have ignored the "masking" effect, which changes the sensitivity curve

of the ear in the presence of other stimuli. One could also argue that the threshold

energy Eo depends on frequency. We leave a refinement of the measure d as a topic

for future research.

In addition to encoding the location dependency of the interaction on the

surface, one can also extend this by taking into account the direction of the inter­

action at a given point. It is also possible to have different coupling coefficients at

different locations and orientation around the object, thereby encoding the spatial

54

field of sound around the object.

4.7 Real-time Synthesis

The vibration modeling developed thus far in this Chapter generalizes to more gen­

eral interactions besides impulsive forces. Because the model is linear, any inter­

action force can be represented as the sum of an infinite number of "impulses",

and the resulting equations lead to an efficient real time synthesis algorithm for the

synthesis of the sound of an object under any kind of external force.

We shall now derive the algorithm, show how it can be implemented most

efficiently, and we then show that it can be viewed as a discretization of a continuous

time spring-damper system.

According to our linear model, the sound produced by an impulsive force of

magnitude F at time s can be described by the imaginary part of the complex wave

form

• y (i) = E a n e ' n n (' " *) f f (* - s) F ' ' (4 / 1 5)

n

where the sum is over the complex eigenfrequencies Qn (the imaginary part deter­

mines the damping of a mode). H(t) = 0 for t < 0 and H(t) = 1 for t > 0. A

continuous stimulus force F(t) can be represented formally as an infinite sum of

infinitesimal impulses
/•oo

F(t) = / S(t- s)F{s)ds,
Jo

where 8(t) is the Dirac delta distribution, assuming the force is zero for negative

times. Using the principle of linearity, the output of the model driven by this force

can be written as a sum of infinitesimal contributions from each of these impulses:
/•oo

y(t)= dsTane t n^H(t-s)F(s).

55

Discretizing this equation in time, with sampling rate SR, gives

k

1=0 n

with y(k) = y{tk) and tk = k/SR. This can be rewritten as a recursion by defining

the functions yn{k), one for each partial. The complex signal is written as a sum of

modal contributions

y(k) = J2vn(k).
n

For the partials yn(k) we have

J/n(0) = a nF(.0)

and the recursion relation

yn(k) = e s*yn(k - 1) + anF(k) (4.16)

determines the audio signal Im(y). As | e t s « | < 1 , the recursion relation is always

stable. Equation 4.16 requires 5 multiplications per sample point, which can be'

reduced to 3 as we will now derive.

To simplify the notation, let us drop the subscripts n, labeling the mode,

and define a two-component vector

/ Re(y) X

y =

The recursion 4.16 can now be written as

y(k) = Ay(k-1) +
/ aF(k) ^

(4.17)

where

Cr C->

\ C{ cr J

56

with

and

cr = e-d/SR cos(w/5 f i),

d = e~d/SR sin(w/5fl),

d = Im(Q),

u = Re{Q).

Let us change variables to z by writing

y = Qz.

In terms of z, the recursion 4.17 reads

- l

where

z(k) = Bz(k- 1) + Q

B = Q~lAQ.

aF{k)

0

Since B has the same eigenvalues as A, this does not affect the stability of the

recursion. There are several (equivalent) choices for Q that reduce the number of

multiplications to 3, and we choose

Q
1 J l - c \

\ 0 c, J

Defining

and

C+ = Cr + yjl - C2

c_ = c,

57

we arrive at the following equation for B,

(*- -A
B =

V1 CW
In terms of the real variables u and v

z =

the recursion becomes

u(t) = c-u(t - 1) - v(t - 1) + aaF(t)

v(t) = u(t-l) + c+v(t-l).

We have now only 3 multiplications per sample point (as ac,- can be pre-computed),

but because the physical quantity of interest, Im(y), is related to v by

it appears that we need another multiply per sample point to obtain this.. We

can avoid this by multiplying a with c; in the preprocessing phase. Assuming that

we have initially silence, i.e., u(t) = v(t) = 0 for t < 0, the linearity of the system

guarantees that multiplying the input signal with a factor c2- will multiply the output

signal with this factor also. We therefore arrive at the following synthesis recursion

for the individual modal contribution v(t):

Im(y(t)) - Civ(t)

u{k) c-u(k — 1) — v(k l) + aF{k)
(4.18)

v{k) u(k — 1) + c+v(k 1)

with

58

The intuitive picture of a set of spring-damper systems driven by an external

force is verified by considering the behaviour of u and i ; for large SR. In that case,

a continuous time differential equation should emerge, which describes a spring-

damper system under an external force. By substitution of

u(k — 1) = v(k) — c+v(k — 1)

in Equation 4.18 we obtain a second order recursion for v(k):

v(k + 1) - (c+ + c_)v(k) + (1 + c_c+)v(k - 1) = aF(k).

We now make the connection to the continuous time system by expanding v- to

second order in 1/SR. If we denote the continuous time limit of v by V, with

V(t) = v(tSR) wherever v is defined, we obtain

v(k + 1) = V(t) + V(t)/SR + V"(t)/2S2
R,

(dropping the arguments t)

v{k - 1) = V - V/SR + V/2S2
R}

c+ = 2- CI/SR - u2/S2
R ~ d 2/2S 2

R,

and

c_ = -d/SR - d 2/2S 2
R.

With some algebra we obtain

V + 2dV + {to 2 + d2)V = dS 2
RF,

which is precisely the equation for a spring-damper system driven by an external

force aSRF. In some applications we have found that the quantity u + v sometimes

59

produces a better sound, especially for car engine sounds. The quantity w = u + v

satisfies in the continuum limit

W + 2dW + (u 2 + d 2)W = aSR{dF - F).

This means that by using w instead of v for the audio signal, we can obtain the same

sound (up to a volume factor) as obtained by using v with input signal (dF — F).

Because of the derivative of F, this generally gives a brighter driving signal.

To synthesize the sound in real-time, we repeatedly compute an audio buffer

of length T. The synthesis algorithm fetches the values of the coefficient arrays c+,

c_, and a, as well as the external force F for the time interval T. Equation 4.18

is then used to sequentially add contributions of the modes vn until all modes have

been added or until a certain deadline has been passed. If the modes are sorted

in a decreasing order of importance, this allows for a graceful degradation in the

quality of the synthesized sound, when the time available for audio synthesis is not

constant. This algorithm is explained in more detail in Section 7.1.

60

Chapter 5

Creating Vibration Models

The linear vibration model presented in Chapter 4 parameterizes an object's acoustic

response by a set of frequencies, dampings, and a set of amplitude functions on the

surface that determine the coupling between an external force and the modes at that

location. The amplitudes will be sampled on a discrete set of locations and when

we are not interested in the location dependency of the sound, the coefficients a will

be a set of numbers. The number of parameters needed depends on the nature of

the model. Dense sounds like that of drums, or complex musical instruments will

require a large amount of modes, whereas sounds with a less dense spectra, such as

bars and plates, require much less.

The model parameters are stored in an ASCII file of a format that we denote

by sy, which is used by all our implementations. The file format is designed to be

human readable, and also contains some extra information which allows the user

to change overall characteristics of the model (such as the frequency scale of the

object) easily. This file format is explained in Appendix A .

The model parameters can be acquired from mathematical modeling of the

61

material and shape, or by parameter identification methods, or by "manual" means.

5.1 Computing Model Parameters Analytically

For simple shapes and simple material properties it is possible to write down an

explicit partial differential equation (PDE) for the vibration of the object, and for

very simple shapes it is even possible to solve the resulting P D E analytically for

some boundary conditions. For more complicated shapes and materials, a finite ele­

ment model [38, 58] could be used to compute the vibration modes and frequencies.

However, in many cases not enough information about the object's geometry and

material characteristics is available to do a sensible computation from first princi­

ples. We therefore have not pursued the finite element modeling approach in this

work.

We have explicitly computed the model parameters for a number of sim­

ple geometries, which allow an analytic solution of the vibration equations. These

shapes already provide a fairly rich set of objects for use in simulations and are very

useful if the goal is to provide generic interactive audio rather than the sound of

specific physical objects (which are usually too complicated to consider modeling

from first principles). We have obtained analytic model parameters for the following

shapes, which can be generated using the software described in Chapter 7.

1. The taut string. This is the simplest example of a vibrating system. The

eigenfunctions are simple sine functions. The sound becomes brighter for

impacts near the ends of the string. The frequency spectrum is harmonic,

i.e., all frequencies are integer multiples of the lowest (fundamental) frequency.

The amplitudes an are inversely proportional to n, for large n, in contrast to a

62

plucked string, considered in [80], where they decay as 1/n 2. This is one factor

accounting for the difference between a piano and a guitar sound, for example.

A derivation of the eigenfunctions and eigenfrequencies can be found in [54],

Chapter III. The nonlinear behaviour of the string (making it less suitable for

this type of modeling) was investigated in [16].

2. The rigid bar. For the rigid bar the operator A appearing in Equation 4.1

is given by

A ~ Ox*'

As A is a fourth order operator, we need to specify 4 boundary conditions.

We have computed a clamped-clamped bar, i.e., the bar is rigidly attached at

both ends, and a clamped-free bar. The boundary conditions are

••'«=»"("=(̂ L=(̂ L=o <5-»
for the clamped-clamped case and

• • « « - (^ L - (^ L - (^ L - ™
for the clamped-free bar, which is assumed to be clamped at x = 0 and free

at x = 1. The frequency spectrum is less dense than for the string, and not

harmonic, due to the different nature of the restoring forces on a bar. The

sparse spectrum makes this shape very suitable for efficient modeling with the

synthesis methods considered here. For details, see [54], Chapter IV.

3. The rectangular membrane. This is the simplest two-dimensional geom­

etry. This shape has been used as an illustrative example in Chapter 4. The

sound spectrum is extremely dense, giving a rich complex sound. Because of

this density, it does not lend itself well to the synthesis algorithm described in

63

this thesis, as many modes are needed to obtain a good sound. For details on

the rectangular membrane, see [54], Chapter V , Section 18.

4. The circular membrane. This corresponds to the vibrations of a drum,

ignoring the effects of the surrounding air on the drum membrane. The eigen-

functions are Bessel functions, and the eigenfrequencies can be computed,as•

the zeros of Bessel functions. The sound is also very dense, and is therefore

not well suited for our type of synthesis for real-time applications. The rect­

angular and the circular membrane can be thought of as idealized models for.

drums, which fall outside the scope of this work. For details on the circular

membrane, see [54], Chapter V , Section 19.

5. The circular plate. This is one of the few cases where the two-dimensional

plate equations can be separated, which allows an analytic solution. The eigen-

functions are a combination of Bessel functions and modified Bessel functions.

We have considered a plate clamped rigidly at the boundary. The spectrum is

much less dense than for the circular membrane. This is due, as for the bar,

to the larger restoring forces in a plate, compared to a membrane. Therefore

this model leads itself very well to our synthesis method. For details on the

circular plate, see [54], Chapter V , Section 21.

6. The simply supported rectangular plate. This is another of the few cases

where the two-dimensional plate equations can be separated, which allows an

analytic solution. The eigenfunctions are products of sine functions. The

spectrum is much less dense than for the rectangular membrane. This is

due, as for the bar, to the larger restoring forces in a plate, compared to a

membrane. Therefore this model leads itself very well to our synthesis method.

64

For details on the rectangular plate, see [55], page 389.

7. The L shaped membrane. A membrane supported by a domain consisting

of three unit squares in the shape of an L does not allow an analytic solution

of the wave equation. This problem has received some attention in the litera­

ture, as the resulting boundary value problem requires some refined numerical

methods. We have computed the eigenfunctions and the spectrum with an

adaptation of the method of partial solutions, see [28], which is available for

the L shaped membrane from within M A T L A B . As an aside, we note that the

first eigenfunction features prominently on the cover of the M A T L A B reference

guide [8].

5.2 Fitting Model Parameters to Empirical Data

An experimental approach to obtaining sound model parameters is to record sounds

of real objects and fit the model parameters to the recorded actual sounds. Because

of the linearity of the model, all we need is the response of the object to an impul­

sive force. By striking an object and recording the sound, we can fit the recorded

waveform with a function of the form given in Equation 4.15.

We can think of this as designing a digital filter of a specific type with a

given impulse response (the recording). Because recordings have a lot of noise in

them (we want a method that is applicable for "home users"), and objects can't be

excited with a true impulse, we need a robust parameter estimation method. The

extraction of sinusoidal signals from time-series data has attracted a lot of attention

in the statistics and signal processing literature. For a general introduction see [61].

For more recent work, see [44, 56, 14, 70, 69].

65

Experimentation in M A T L A B with the Prony method [23], and other filter

design methods such as the maximum entropy method [71] used in Linear Predictive

Coding gave very unsatisfactory results. We tried constructing IIR filters from

recorded sounds of several objects and then compared the reconstructed impulse

response to the originals. In most cases the reconstructed sounds were very distorted,

and often the damping coefficients were completely wrong (too large). We believe

this is because the actual sounds are only partially described by the linear model, and

non-linearities and external noise are known to cause problems with these methods.

Therefore we have not pursued this approach any further.

Similar difficulties were reported in [41] when trying to construct an IIR filter

for the impulse response of the body of a guitar. It was found that autoregressive

(AR) modeling using the autocorrelation method of linear prediction (LP) [48], as

well as the pole-zero (A R M A) model using Prony's method [57], require extremely

high order filters in order to accurately predict the decay rates reasonably well. The

general consensus seems to be that for complex noisy data and rough models (as we

are considering here), methods based on spectral analysis are more appropriate.

Better results were obtained with a more robust approach using windowed

Fourier transforms. We construct a spectrogram from the recorded audio signal, ;

and use this to determine the dominant frequencies, their decay rates, and their

amplitudes.

We will now describe the algorithm. The input consists of a recorded impulse

response of a real object. The recordings were made at a sampling rate of 44,100 Hz

and encoded as a 16 bit wav file. A brief fragment of silence before the strike is

(optionally) used to determine the noise level. The analysis consists of the following

steps:

66

To be computed: Arrays / , d, and a corresponding to the frequencies, damp­

ings, and coupling amplitudes of a modal model.

Perform the windowed D F T :

1. Set the following constants:

fs = sampling rate (44100)

N = size of D F T window (1024 - 8192)

M = desired number of modes (100)

X = signal to noise ratio (10)

Q = window overlap factor (4)

2. Load the sample y(i) from disk. Store as a floating point array of length

L. Total duration of the sample is L/fs-

3. Compute the overlapping windowed discrete Fourier transforms Wk(i),

i = 0 , . . . , N/2 — 1. Wk is obtained by windowing the vector y(i) over the

interval [kN/Q, kN/Q + N - 1] with a Hanning window [25, 72, 61], and

taking the D F T . The index k which labels the D F T ' s lies in the range

k = 0,...,[{L-N)Q/N - 1J.

Identify the part of the signal used for analysis

4. Compute the intensities

N/2-1

Ak= J2 î wi-
5. Find the k m a x for which Ak is maximal, and define ko = k m a x + 1. This

is the start of the impulse response.

67

6. Analyze the amplitudes Ak on the "silence" fragment k = 0 , . . . , kmax — Q

and compute the average A, and the standard deviation cr(A). Find the

smallest k, k > ko, such that Ak < A + Xo~(A), and call this value

kend- This is the end of the "signal". The constant A , together with the

background noise level determines this.

7. Define

Vjt(i) = log\Wko+k{i)\,

where k •= 0 , . . . , K — 1, with K = kend — ko. This is the part of the signal

we will use to extract the model parameters.

Estimate the frequency modes

8. Define an array of N/2 — 1 "bins":, B(i), i = 0 , . . . , N/2 — 1, each corre­

sponding to a frequency of fs(i + 1) / A . Initialize them to zero.

9. For k = 0 , . . . , K — 1, find the set of indices i, call them {imax}, for which

Vk(i) is a local maximum, i.e., Vk(i) > Vk(i + 1) and Vk(i) > Vk(i — 1).

(There is a different set {imax} for each value of k.) Select the M indices

i ™ 1 , . . . , i^ax with maximal values ofVk(i), and add 1 to B(i™ a x) for each

of these indices. We say these bins have been voted for as candidates for

a resonance mode. There are K voting rounds.

10. Select the M bins B(i) with most votes, call them i = IQ, .. .,IM-I and

obtain the estimated frequencies

fi = fs(h + l)/N,

for z = 0 , . . . , A f - 1.

Estimate the damping coefficients of the modes

68

11. For each /,-, fit Vk{U) as a function of k, k = 0 , . . . , K — 1, with a lin­

ear function —a{k + /?;, using a least squares algorithm. The damping

coefficients d{ are identified as

di = Qfsai/N,

for i = 0, ...,M- 1.

Estimate the coupling amplitudes

12. The amplitudes a; are obtained as

°< = T ^ 7 <

with pi = diN/fS-

13. Normalize the amplitudes a; so that max(a,) = 1, and sort /,-, di, and a;

by the value of a;.

The sample y(«)> ' = 0, — 1 is divided in a number of (overlapping) ••

windows of size N. The window size N is typically N = 1024,2048,4096,8192, or

about 25 — 200ms. The windows overlap, and the overlap of about 75%, corre­

sponding to Q = 4, was found to work well by trial and error. For each window,

a discrete Fourier transform W(j), j = 0 , . . . , N — 1 is computed, using a Hanning

window [25, 72, 61], in step 3. The value of determines the spectral resolution

as A / = fs/N, where fs is the sampling rate. For = 2048 this gives a resolution

of about 20Hz. For a typical pitch of about 400Hz this corresponds to a perceived

pitch error of (12/log(2)) log((400 + 20)/400) = .13 semitones, or 13 cents. This is

clearly audible, but in the types of sound we are concerned with, absolute pitch is

not an important factor. If so desired, an overall fine-tuning of the pitch can be made

69

later, either manually or by using a specific pitch detection algorithm [68; 62, 60].

See Figure 5.1 for an example of the recording of the sound of a metal vase struck

at the top, and its reconstruction using the parameter fitting described here. Dis­

played is the sonogram based on N = 4096 of the actual recording on the left, and

its reconstruction using 40 partials on the right. The best window size for a given

sound was determined experimentally, by reconstructing the impulse response and

comparing it "by ear" with the original. There seems to be no obvious way to au­

tomate this process. Often reconstructions with different window sizes would differ

audibly, but it was not possible to say which one was "closer" to the original sound.

Until we have a better understanding of timbre perception, the best approach seems

to be to provide interactive tools with humans making perceptual judgements.

For each window the norm of the Fourier transform is summed over all fre­

quencies, giving the average intensity of the signal as Ak = Y^iHo 1 l̂ fcWI m s * e P 4-

The window Wko after the window with maximum intensity Ak is chosen as the start

of the impulse response in step 5. Note that if the signal starts somewhere inside

an F F T window, this window may or may not register as the maximum intensity

window. In order to avoid artifacts from this, we throw away the first window and

start the analysis from the next one, which is guaranteed to contain only signal.

The beginning of the sample (before the impulse response) is analyzed in

step 6 for the average level (the background noise) and the standard deviation. This

section ends with the window indexed by k m a x — Q because the window indexed by

kmax contains the beginning of the impulse response, and we therefore have to go

back Q windows to obtain the previous non-overlapping window. This information

is used to determine the end of the impulse response, which is set at the point where

the signal amplitude falls below the background level plus some reasonable number

70

6400 Hz + I 6400 Hz +

5120 Hz + + + 5120 Hz +

-3840 Hz + -3840 Hz +

+ -256ini7~=F~

1280 Hz 1280 Hz

0.2 sec 0.4 sec 0.6 sec lT2*sec™ 0.4 sec 0.6 sec

Figure 5.1: Sonogram of recorded (left) and reconstructed (right) impulse response
of vase. The window size of the Fourier transform was 4096 and the sampling rate
was 44100 Hz.

71

(empirically set to 10) times the background standard deviation. This corresponds

roughly to what would be obtained by a visual inspection and cutting of the signal

when it "looks like noise".

The logarithms of the absolute values of the windows containing a signal

are identified in step 7 to extract frequencies, amplitudes, and dampings. For each

time-slice we find the frequency bins which are local maxima in step 9, and for the

M largest peaks we increase the counts of those bins by one (they are initialized to

zero, of course). After doing this for all time-slices, we keep the M bins with the

most votes and these are the frequencies identified in step 10. For each of those bins

i we fit V~k(i) as a function of k with a linear function, and we extract the damping

parameters in step 10 and the amplitudes in step 11.

In Figure 5.2 we show the first 100 frequency peak functions and their fits.

The plots are sorted left to right and top to bottom by the number of votes. We

have set the vertical scale for each subplot separately. Note that the strongest peaks

in amplitude don't necessarily get the most votes. We do it like this in order not

to miss weak frequencies, because perceptually the strongest are not always the

most audible ones. The corresponding frequencies are depicted in Figure 5.3. The

resulting vibration model can be visualized by plotting its frequency response in

Figure 5.4. Note that the highest peaks do not necessarily correspond to the largest

coupling coefficients, as the damping also plays a role in the spectral response.

Note that some modes seem to behave very linearly whereas others are almost

completely random. In a refinement of the parameter fitting one could reject modes

that did not produce an acceptable fit with a linear function. However, it is by no

means clear that this would improve the model.

Some of the linear fits to the modes (such as the mode in the lower left corner,

72

V \ \ \ \ . \ \ \ ^ \

v .

^ <

Figure 5.2: Id entified

\
^ V

frequency peaks and their linear fits.

73

4425 4005 3822 3758 3467 3424 3391 3316 2993 2649

2390 2261 2078 1992 183 4996 4576 4177 3973 3865

3790 3208 2229 2121 2046 1109 6105 5846 5028 4619

4242 3941 3908 3714 3499 3165 3058 3036 2595 ,1518

1270 301 97 65 8656 7558 6611 6298 5922 5814

5060 4113 3650 3230 2961 2778 2186 484 10444 9109

8829 8742 8355 6826 6686 6643 6578 6492 6385 6072

5394 5243 5179 5136 4953 4037 3112 2175 1324 678

624 420 388 10993 10476 9615 8775 8269 8236 8053

7203 6891 6460 6223 5986 5717 5663 5599 5523 5426

Figure 5.3: Identified modes for vase. Shown are the frequencies corresponding to
Figure 5.2.

74

Figure 5.4: Identified modes for vase. The frequency response is shown. The bottom
figure shows a subset of the frequency range of the upper figure.

75

one from the bottom) seem to be wrong. This is an artifact of the least squares

algorithm we used, which only works correctly if the best fit has negative slope,'

which corresponds to a positive damping coefficient. Negative damping modes are

artifacts caused by trying to fit noise. In all cases their amplitudes were so small that

they do not contribute to the resulting sound. We preferred to have the algorithm

produce positive damping always, even when a least-squares fit would result in a

negative damping, as an undetected negative damping coefficient causes instability

in the synthesis algorithm, and must be removed before using the data for synthesis.

This is straightforward but the result of forgetting this can be rather unpleasant. 1 ;

A very weak but positively damped spurious mode is harmless, on the other hand."

Some modes may appear to be oscillating, which can occur easily if two

frequencies are approximately degenerate. Degeneracy in the spectrum is closely

related to geometrical symmetries, with the exact degeneracy being broken by higher

order effects, and occurs frequently. Beating between the frequency doublet causes

apparent oscillations in a frequency. Such behaviour has been observed in bells [35] •,

kettledrums [53], and in timpani [77]. Such oscillating behaviour could be detected

and one could attempt to fit such spectral lines with two frequencies. For the purpose

of this research we have not found a compelling reason to pursue this further. :

Various other refinements of the fitting method are possible, but have not

been pursued in the context of this research. For example, one could work with a

spline interpolation of the windowed discrete Fourier transforms, to obtain a more

precise estimation of the frequencies. This would necessitate some form of frequency

tracking, as we don't have discrete bins. For this an adaptation of the McAulay-

Quatieri algorithm [49] for frequency tracking could be used. For rough models of

' i t results in a horribly loud squeak which may damage the ear.

76

"common" objects little seems to be gained by this, as an accurate determination!

of the frequencies is not so important (unlike in musical instruments). Polynomial

interpolated Hanning windowed Fourier transforms were used successfully in [77] to

identify the spectral lines for timpani sounds.

After acquiring the model parameters we usually have to make some manual

adjustments. Often background noise such as the hum of a refrigerator will show •

up as a spurious mode with zero decay constant. Often these modes are easily'

recognized by a visual inspection (or by some pruning code) and can be removed

easily. They are also very audible, so when importing the constructed model to the.

model tester described in Chapter 7, these spurious modes will be discovered.

In Appendix B we show results for the vase at different values of the window

size, as well as results for three other objects: a santur, a piano, and a metal com­

puter tower. The piano and the santur parameters did not produce a good vibration?

model. This was expected as musical instruments are much more complicated than !

"common" objects. In particular the santur is a very complicated instrument. It

consists of a set of strings on a wooden frame, three strings per note. The strings are-

struck with wooden hammers. Because of the coupling between the frame and the

strings if a single string is struck, the other strings resonate. The sound is therefore

extremely complex and thousands of modes would be needed in order to approxi­

mate even the linear response. We have included the analysis of this instrument to

indicate where our method breaks down. The piano string, whose data was obtained

by playing a note on a piano, produces a reasonable model, though hardly musically

satisfying. The vase and the computer tower produced very realistic sounding vi­

bration models for a modest number of modes, around 5 — 10. The original sounds

and the reconstructed impulse responses can be accessed on-line on [4], and on the

77

accompanying C D .

Our reconstruction assumed the recorded sound is the impulse response of

the system. However in reality the impulsive force will have some finite duration.

One could account for this if the exact force profile of the strike was known, by

correcting the amplitudes a obtained by the algorithm with a factor which depends

on the exact force profile of the interaction, as follows. The impulse response yo(t)

and the response J /F(0 to a finite duration force F(t), (non-zero only for 0 < t < r)

are related by

•yF(t) = [T yo{t- s)F(s)ds.
Jo

If the impulse response yo(t) is assumed to be of the form

Vo(t) = ± a l e ^ \
k=l

and the response yF{t) is assumed to be of the same form with different coefficients

ajT, we can relate a£ and a° by

ak - Ik afc)

where the correction coefficients 7 ^ are given by

7j f y/ (JT e d^sin(ukt)F(t)dt) 2 + (e d^cos(ukt)F(t)dt) 2.

We can now use the algorithm described previously, and divide the coupling coef­

ficients by the correction coefficients 7 ^ to obtain the impulse response. For this

the objects would need to be hit with a hammer equipped with a force sensor. We

attempted to use the initial part of the recorded impulse response as a profile for

the contact force, however this did not improve the results and we conclude that

this is not an acceptable approximation. The resulting reconstructed sounds can be

heard for the vase and the santur on the web page and on the C D .

78

90

80 h

0 1000 2000 3000 4000 5000 6000
Hz

Figure 5.5: Frequency response of vase for three regions.

We also have tested the models by applying various input forces to the models

taking into account different number of vibration modes and a selection of these

sounds can also be accessed on the web page and C D .

In Figure 5.5 we show the frequency response, as reconstructed by our

method, for three different locations on the vase at the top, middle, and bottom.

As can be seen, many frequencies and dampings (which show up as the widths of

the resonances) are shared but the amplitudes differ, as expected.

79

5.3 Designing Model Parameters by Hand

In addition to computing or measuring the parameters, there are also circumstances

where a less automated approach is desirable. For example, we have been able to

synthesize the sound of avalanches by a set of random resonances with frequencies

and dampings within a specified range. The avalanche models can be generated

on-line and heard on the Java applet on [4], and on the accompanying C D .

Also, the sound of "generic" objects such as unspecified structures of a certain

type of material can be generated by choosing a set of resonances and controlling

their distribution by stochastic methods. For example on the web page referred

to above there is an object denoted by "pseudo string" which consists of a set of

resonances which are spaced almost harmonically as in the ideal string model, but

with some random perturbation.

To generate the sounds of combustion engines, described in more detail in

Chapter 6, a stochastic model for the resonances is also found to be very effective.

In an application described in Chapter 7 we constructed a xylophone ob­

ject, which was obtained by adding resonances with frequencies corresponding to

the seven white piano keys (using just intonation) and adding a bar-like spectrum

for each on top with coupling and damping coefficients adjusted by hand until it

"sounded right". The xylophone was examined in great detail in [18], with particular

attention to the mallet-bar interaction.

We have also tried to extract the model parameters from a recorded sound

of a church bell "by hand". For this we used a software package to analyze the

sound, do Fourier transforms, plot spectrograms etc., in order to identify important

frequencies. After a time consuming analysis, it was found that the first 20 or

so modes identified were also found by our parameter fitting software, and the

80

weaker modes were not audible. This provides a nice validation of the parameter

identification method.

Although the "manual" approach did not give us a better model, in gen­

eral one can take more extensive measurements of vibrating structures under a

variety of interactions to arrive at a modal model. For example, steel drums [63],

harpsichords [64], and guitar bodies [41] have been investigated using a variety of

measurements.

81

Chapter 6

Interaction Force Models

To create sounds we need an interaction force model as well as a vibration model.

In this chapter we consider four types of interaction models:

• Impact forces

• Continuous contact forces (sliding and rolling)

• Engine forces

• Live data streams

6.1 Impact Forces

When two solid bodies collide, large forces are applied for a short period of time.

The precise details of the contact force will depend on the shape of the contact areas

as well as on the elastic properties of the involved materials. For example, a rubber

ball colliding with a concrete floor will experience a contact force which will increase

faster than linearly with the compression of the ball, because the contact area also

82

increases during the collision. A generic model of contact forces based on the Hertz

model and the radii of curvatures of the surfaces in contact was considered in [39].

A Hertzian model was also used to create a detailed model of the interaction forces

between the mallet and the bars of a xylophone [18].

To create the simplest model of a collision force to drive the audio synthesis,

we assume that the two most important distinguishing characteristics of an impact

on an object is the energy transfer in the strike and the "hardness" of the contact/

A psychophysical study of perceived mallet hardness [29] of xylophones showed that

this is indeed a very perceptible parameter of an acoustic event. The hardness

translates directly in the duration of the force, and the energy transfer translates

directly in the magnitude of the force profile.

We have experimented with a number of force profiles and found that the

exact details of the shape is relatively unimportant. A phenomenological model

of a finite duration impact has been constructed and implemented. The model

approximates the contact force by a function of the form

for 0 < t < T, with T the total duration of the contact. This function has the qual­

itative correct form for a contact force. The force increases slowly in the beginning,

representing a gradual increase in contact area, and then rises rapidly, representing

the elastic compression of the materials. An implementation of this contact profile

can be found on the interactive demo's on the accompanying C D and on [4]and is

found to be quite effective. The sounds of soft contacts (with large T) are recog­

nizable as such, which shows that this model can produce this perception. We have

also adopted this contact force model in a real time synthesis program described in

Chapter 7, as well in other testing modules.

(6.1)

83

The spatial extension of the contact area will have an influence on the result­

ing sound. This effect can be incorporated easily in the linear model by averaging

the amplitudes a over a region, which will have only a small effect on the sound for

small contact areas. This is not an important effect and it will be ignored.

More complex interactions during contact such as damping effects may have

an important effect in some cases. For example, the hammers in a piano are covered

with felt, so during the contact between the hammer and the string they damp the

higher modes of vibration. How this actually occurs is quite complicated [32, 33,

34, 76] and potentially important, especially for high quality musical instrument

modeling. Another example is a ringing sword. When the sword is sliding over

a surface, the continuous contact will provide extra damping, compared to a free

ringing sword. This can be taken into account by adjusting the damping parameters

appropriately during continuous contact.

6.2 Continuous Contact Forces

An important ingredient in synthesizing realistic scraping and rolling sounds is a

surface interaction model. A lot of research has been conducted on models of contact

interactions between solids [78, 79, 47, 42, 10, 9], but they usually focus on predicting

forces at a coarser time scale than needed for our purposes. An recent exception

is [83]. Nevertheless a rigid body simulator would be able to provide information

about the contact force magnitudes and the friction forces at the contact areas which

may be used as inputs for a high sampling rate contact force model.

This model should be able to generate contact forces for a specific type

of contact depending on the contact force and the sliding speed. The roughness

profile of both surfaces will determine the effective force stimulus to the object

84

and therefore have an important effect on the sound. Initial experiments indicated

that bandwidth limited white noise and Gaussian noise (in the time domain) are'

reasonably satisfactory, but they lack a surface property parameter.

We have also experimented with scaling (fractal) noise. This is noise with

a spectral content which behaves as fa (at least over a sizable region), for some

constant a. Such noise (of which white noise is a simple example with a = 0) sounds

the same when played back at any speed, and is extremely common in nature [89].

Especially 1/ / noise [85, 88] occurs frequently, and is afield of study by itself. The

exponent a can be used as a roughness parameter, a = 0 being a very rough surface,

and a = 1 representing a smoother surface.

The most satisfactory solution we found is to use a looping digital sample

with pitch shifting and volume control to adjust the speed and force of the contact.

With a small set of short samples representing a variety of textures a great variety of

contact surface profiles can be imposed upon the vibration models. Surface profiles

were created by simply scraping a real object with a contact microphone. See the

accompanying C D or [4]for a palette of scraping sounds and their use.

The physical picture behind this contact model is that the sample encodes

the shape of the surface and the object scraping it is following this surface profile

exactly. In reality microscopic deformations and breaking of contacts will complicate

the mechanism whereby the interaction force is generated. These interactions are so

complex that it seems hopeless to try to model the physics behind this in real time.

We therefore believe the pitch-shifting sample playback approach is the best way to

model these type of contacts. If it is necessary to take into account that the contact

force does not simply scale in time at different speeds, one can have a numbers of

samples for different contact speeds and cross-fade between them. In essence, this is

85

the technique used presently for wave table synthesis of musical instrument sounds,

but used here for the contact force. Viewed in this way, our synthesis can be thought

of as an "effect" added to a recorded sample, in this case representing an interaction

force, instead of a sound.

6.3 Live Data Streams

An interesting interface to this type of synthesizer is a sensor that measures real

interaction forces. We have implemented this very simple (and cheap) with a contact

microphone (designed to be attached to a guitar body) attached to a real object.

When touching and scraping real objects the audio signal is sent to our real-time

simulator and the audio signal is interpreted as a force to whatever vibration model

is currently loaded. We can then scrape some interface object and transfer the

measured signal to the audio synthesis to create the impression of touching a virtual

object. Another type of application is to use the output of an electrical guitar as

the driving force for some virtual guitar body. In Chapter 7 we will describe some

applications written around this idea.

6.4 Engine Forces

Engine sounds are very difficult to achieve in computer games, as they are continuous

sounds. Racing games are very popular and a properly modeled car sound that

responds in a realistic way to input parameters would greatly enhance the audio in

such games.

It is not obvious that combustion engines can be modeled with our tech­

niques, as the sources of sound are explosions and very complicated gaseous phe-

86

Figure 6.1: Sample driving four stroke one cylinder engine.

nomena. Rather surprisingly, we found that very good sounding interactive models

can be made by driving some resonance object (a lumped model of everything that

is vibrating) with a rather simple-minded model of a combustion engine.

The first model we created is a 4-stroke engine. The driving force is obtained

by constructing a looping audio sample divided into four regions which represent

the 4 stages of the engine. The sample depicted in Figure 6.1 contains an intake

stroke, a compression stroke (silence), a combustion stroke, and an exhaust stroke.

The intake stroke was modeled as white noise enveloped with a bell curve. The

exhaust stroke is modeled as white noise, rapidly decaying in time, inspired by a

high pressure gas mixture being released when the valve opens. The combustion

stroke consists of an enveloped burst of 1// noise. It was found, after trying various

l/fa noises, that this gives the most realistic sound. The reason is probably that

the combustion takes place inside the cylinder, so the shock wave is transmitted to

the mass of metal of the engine block, which acts as a low pass filter.

The sample is looped at adjustable rate, corresponding to the running speed

of the engine, but we keep track of the four stages in the sample and allow the volume

of the intake, combustion, and exhaust stages to be set in real-time independently

of each other. This gives extra dimensions of control to map for example to driving

87

Figure 6.2: Sample driving four stroke one cylinder engine with fan.

uphill, with a large load, etc.

This simple driving force model can generate a variety of engine sounds

by coupling it to various vibration models. Models with relatively high frequency

resonances with high damping give a "lawn mower" effect, whereas a low frequency

object gives a very convincing motorcycle sound. The best motorcycle sound was

obtained by using a mathematical model of a rectangular plate with dimensions 7

•by 1 and lowest resonance at 50Hz. About 7 modes gives an optimal result.

A slightly different sound is produced by addinga background pitched sound

to the sample at all four stages. This simulates the sound of the fan, and perhaps

other rotating parts. For the pitched sound, a short noisy note played on a 70cm

long pipe with holes (a.k.a. a ney) was used, which is very satisfactory. The driving

sample is depicted in Figure 6.2.

A race car engine sound was obtained by creating a four cylinder version.

We assume the four cylinders fire VT/2 out of phase and simply add the samples from .

the one cylinder engine four times, with a relative phase shift of 7r/2. The resulting

sample is depicted in Figure 6.3. If we just use this driving force as is the result is not

very good. The reason is that in a real engine the four cylinders are attached to the

intake manifold at different locations and therefore sound different. To incorporate

this we adjust the volumes of the four one cylinder samples individually and when

88

t tIL±

Figure 6.3: Sample driving four cylinder engine.

they are set all different the resulting sound is very convincing.

In a real game application one would probably spend more time on the actual

modeling of the car engine than we have done here. But our simple models show

that a convincing result can already be obtained using extremely simple models. To

create richer engine sounds, different cylinders may be coupled to different exhaust

manifolds or muffler pipes. It is interesting that the Harley Davidson motorcycles

are designed specifically to generate their characteristic sound. Sub optimal engine

performance is tolerated, just to get their characteristic sounds. An interesting

article on the audio aspects of the Harley Davidson motorcycle by Joel C. Moser

appeared as the 1996 winner of the Streuben essay competition of the College of

Engineering at the University of Wisconsin-Madison. The article is available on the

W W W at [5].

89

Chapter 7

Implementations

The theory presented in the previous chapters was tested in practice in order to

evaluate the quality of interactive audio created with the methodology in several

applications. ,

In this chapter we will first describe the general architecture of applications

with real-time audio synthesis and describe the software components for audio1 syn­

thesis that have been implemented in C++ and in Java. Following this, we wi l l ,

discuss authoring tools that we created, and finally we will describe several demon­

stration programs that have been constructed to illustrate what can be done with

the audio synthesis.

7.1 General System Architecture

In order to apply the theory developed here to the creation of interactive audio in

software applications (such as simulations) we need to implement software compo­

nents which will have to be integrated with the application. The low level audio

synthesis and the control algorithms should be designed as orthogonal as possible.

90

Synthesis Engine

Sampling rate
Buffer size
CPU load

c_[]
c+[]

a[]

force[]

OS Audio API

Controller

Vibration model

Geometry model

Interaction model

Model Database
C + + classes
Vibration models

User Input

Real-time Application

Physical object

Interaction state

Offline Authoring Tools

Mathematical shapes

Parameter fitting

Figure 7.1: System architecture for applications with real-time audio synthesis.

We therefore have divided the runtime system into two main components:

• SynthesisEngine. This component represents a real-time thread or process

that continuously writes computed audio buffers to the audio rendering hard­

ware. This object implements the core synthesis algorithm at the lowest level.

• Controller. This controls the SynthesisEngine by feeding it the necessary

parameters. This object encapsulates composite models of objects and inter­

actions and computes the filter coefficients and input buffers from higher level

parameters such as sliding speed, throttle settings, etc.

The SynthesisEngine communicates with the audio hardware by repeatedly

submitting a computed audio buffer of duration T using the audio A P I of the operat-

91

ing system. The operating system will provide an abstraction of the audio hardware

in the form of a queue on which audio buffers can be placed. The SynthesisEngine

must submit buffers at a rate of 1/T, or the queue will underflow, resulting in spu­

rious noises. The buffer size T will determine the latency of the synthesis algorithm

(the delay between an interaction and when it is heard) and the control overhead.

We discuss this in more detail in Section 7.1.1. Before computing the next buffer,

the SynthesisEngine will obtain information from the application about the object

whose sound it should render and about the force applied to it. This information

is obtained through the Controller class, which is responsible for making the coeffi­

cients c + , c_, a, and the force F (see Equation 4.18) available for the duration T of

the buffer.

The SynthesisEngine will then compute the modal contributions of each mode

as defined by the parameters obtained from the Controller one by one. After each

mode is added, it checks if it has time to compute another mode. If its allotted

time has run out or if all modes have been computed, it will place the computed

audio buffer on the output queue and start computing the next buffer. The time

allowed for the computation of a single buffer should be less than T, in order to

insure an uninterrupted audio stream. By allowing significantly less time than T for

the completion of the buffer, one can effectively force the synthesis algorithm to use

only a small fraction of the available computational resources of the system. If more

resources become available (for example when a computationally intensive task in

a game is finished), more modes can be added and the quality of the synthesized

sounds will adjust dynamically to the load on the system.

For a buffer length of T, the latency of the synthesis will be between T and

2T. The force F(t) will become available after a time interval T, and the synthesis

92

algorithm will have to finish its computation of the audio buffer after another time

interval T, because after that the next buffer F will have to be processed. In

practice, the audio synthesis will often be required to use only a small fraction of

the computational resources of the host machine, and will be required to finish in a

time much shorter than T. To achieve minimum latency, we should choose T to be

as small as possible. However, there is additional overhead for each buffer, as the

model parameters may change. For large values of T this overhead can be made as

small as desired, at the expense of more latency.

Let us denote the computational cost of a multiplication by C(mult) and the

computational cost of an addition by C(add), and let SR be the sampling rate and

n the number of modes. The computational load per second of the synthesis will be

L s y n t h = (3C(mult) + 4C(add))n5R. (7.1)

The control overhead is assumed to have a computational cost of C(control) per

mode, and the control parameters are recomputed every T seconds. The control

overhead will be

-^control = nC(control)/T (7.2)

per second. As an illustrative example let us consider an object whose overall

frequency scale will be modified in real time. In this case the frequencies will have

to be multiplied by a scale factor which will cost TiC(mult). Then the coefficients

c + and c_ appearing in Equation 4.18 have to be recomputed giving a total cost per

mode of

C(control) = C(exp) + 2C(trig) + 2C(div) + 4C(mult) + 2C(add) + C(sqrt),

where C(exp) is the cost of an exponentiation, C(trig) is the cost of computing a

trigonometric function, C(div) is the cost of a division, and C(sqrt) is the cost of

93

taking a square root.

The condition under which the control cost can be neglected, ^control <C

^synth, reads • . ;

C(control)/T < (3C(mult) + 4C(add))5 R (7.3)

In practice a buffer length of about 50 ms, corresponding to about 1000

samples at 22, 050 Hz was used. The interface to the audio hardware on the computer

introduces additional latency and requires a certain minimum buffer length for the

audio queues^ In practice this also determines the buffer length used in the synthesis

implementation. In this case the condition given by Equation 7.3 becomes

C(control) < (3308C(mult) + 4410C(add)),

which is easily satisfied.

The runtime components are implemented as C++ and/or Java classes. The

application writer will create a properly configured SynthesisEngine object, which

will start the low level synthesis thread, but not interact with it directly. The Syn­

thesisEngine is given access to a Controller object, which encapsulates the task of

translating physical parameters such as resonance frequencies and excitation forces

into appropriate control parameters for the low level synthesis algorithm. The rela- •

tion between the components and the application is depicted in Figure 7.1.

We will now describe the run-time components in more detail.

7.1.1 SynthesisEngine

The SynthesisEngine implements the audio synthesis algorithm defined by Equa- •

tion 4.18. The class definition in simplified form is as follows:

class SynthesisEngine {

94

private: <

int samplingRate;

int bufferSize; // =T*samplingRate

double cpuFraction; '

SynthesisEngineController *sec;

public:

// Define controller object

int setSynthesisEngineController(SynthesisEngineController *sec);

// Set output buffer size

int setBufferSize(int bufsz);

// Set fraction of CPU load to use

int setCPUFraction(double fraction);

// sampling rate in Hertz ,

int setSamplingRate(int samplingRate);

// Create synthesis thread

int run();

// Destroy synthesis thread

int stopO ;

};

When a SynthesisEngine object is created and its run() method is called,

thread is started which implements the following pseudo code:

buf[bufsz]; // Audio buffer to be computed

uPrev[] = vPrev[] = 0 ; // Zero'd arrays

while(not_stopped) {

Obtain arrays a[] , c_[], and c+[] from Controller;

95

// See Equation 4.18 for these coefficients

Obtain array F[bufsz] from Controller;

N = length of c[] array, ie., number of modes;

buf[] =0;

time_allowed = fraction * bufsz / srate;

start_time = getTimeO;

for(i=0;i<N && (getTime()-start_time)<time_allowed;i++) {

// Add contribution of mode i to buf [] and

// recover the state variables from the previous time slice

u_prev = uPrev[i];

v_new = vPrev[i];

// Load parameters for this mode in register

ccplus = c_ [i] ;

ccminus = c+ [i] ;

aa = a[i] ;

// Add this mode to output buffer

for(k=0;k<bufsz;k++) {

u_new = ccminus * u_prev - v_new + aa * F[k];

v_new = ccplus * v_new + u_prev;

u_prev = u_new;

buf [k] += u_new;

>

// Save state variables for next buffer

uPrev[i] = u_new;

vPrev[i] = v_new;

96

}

// Computed as many modes as time allows, now send to audio hardware.

submitBufferToAudioHardware(buf);

}

The inner loop adds the contributions from the modes one by one, until

either all modes are computed or the allotted time has run out. If other processes

are running at high priority on the machine, less modes will be added in the time

allotted than if the synthesis thread has more resources available. In this case there

will be a graceful degradation of the audio, provided that there is enough time

to computed the "essential" modes of the object. 1 When the computed buffer is

submitted to the audio hardware, it will be put on a playback queue and the function

submitBuf ferToAudioHardwareO is assumed to block if the queue is full, thereby 1

taking care of the timing of the synthesis loop. This function needs to be called at a

rate of samplingRate/buf f erSize to keep the audio stream moving at the correct

rate.

How submitBuf ferToAudioHardwareO is implemented depends on the op­

erating system on which the application is built. The operating system's audio A P I

will also impose restrictions on latency, in addition to those associated with the

value of the buffer size used in the actual synthesis algorithm.

We have implemented the SynthesisEngine on top of the SGI IRIX A L audio

A P I and on top of the Microsoft DirectSound A P I . On A L , we were able to achieve

a total latency of about 50ms at a sampling rate of 22,050 Hz. Using DirectSound,

the lowest latency we could achieve was about 100 ms. It is to be expected that

the latter figures will come down when the DirectSound implementation matures.

'We assume that the granularity of the thread scheduling on the processor is fine enough.

97

C Java (Compiled) Java (JIT)
Max. modes 450 250 150
C P U load for 10 modes 2.2% 4% 6.7%

Table 7.1: Performance of synthesis algorithm at a sampling rate of 22,050 Hz on a
233 Mhz Pentium P C with M M X using a C implementation and a Java implemen­
tation.

The latency of the IRIX implementation is caused by the minimum length ofithe

input queue buffer. If necessary, this buffer can be bypassed and the latency can be

made as small as desired. As the achieved latency is quite satisfactory, we have not

pursued this possibility. Bypassing this buffer also requires the process to run with

root privileges, which severely limits its deployability.

In order to test the speed of the algorithm, we timed the inner synthesis'

loop on a Pentium 233 M M X P C . The results are summarized in Table 7.1. At

the sampling rate of 22,050 Hz, using a C implementation of the synthesis loop,

we found that we can synthesize a maximum of 450 modes. This means we can

compute about 5 modes utilizing 1% of the computational resources on average. 2

We also benchmarked the algorithm in Java. With the Symantec JIT compiler

version 3.00.029(i) we were able to synthesize a maximum of 150 modes, about three

times slower. Compiling the Java code into an executable allowed us to increase the

performance to 250 modes, which is slightly better than twice as slow as the C

implementation. We have not implemented the algorithm in assembly language,

which could provide a significant performance boost.
2This estimate assumes that there are no exceptional events such as page faults, context switches,

etc.

98

7.1.2 Controller

The Controller class is an abstract base class and is subclassed by the application

writer to encapsulate concrete audio models of objects. The Controller will usually

load data from a database of vibration models created with various authoring tools

described in more detail below. It translates parameters such as throttle setting or

contact sliding speed into the low level parameters that the SynthesisEngine needs.

In bare-bones form the class is given by:

class SynthesisEngineController {

public:

// Callback function to get current f i l t e r parameters .

virtual RTSFilter *callBack(

int *location_index,const double *force,int srate.int buflen) = 0;

>;

The function callBackO is called by the SynthesisEngine thread and re­

turns a pointer to a struct, RTSFilter (real Time Synthesis Filter) which has the

following form:

ttdefine MAX_SPECTRUM 100 // Max. of 100 modes

#define MAX_L0C 10 // Max. of 10 locations

typedef struct {

int nf; /* Number of components */

int np; /* Number of points on object*/

double c_plus[MAX_SPECTRUM];

double c_minus[MAX_SPECTRUM];

double a[MAX_L0C][MAX_SPECTRUM];

99

} RTSFilter;

This struct contains the parameters necessary to set the coefficients in Equa­

tion 4.18, for a set of "locations" on the object. A "location" is just an integer

0 < i < np, which indexes the arrays a[][}. The translation to this linear array

of "locations" from geometrical concepts used in the application will be done at a

higher level in the code layers.

The floating point array force [] represents the force applied to the ob­

ject. The parameter buflen indicates the number of samples to be returned in

the force buffer and is set by the SynthesisEngine thread. Similarly the parameter

srate is used to inform the application of the current sampling rate used by the

SynthesisEngine.

The member function SynthesisEngineController::callBack() is over­

ridden by the user (application programmer) of the SynthesisEngine class and also

returns the location index of the vibration model in the pointer variable int *location_index.

Example: MouseTouchableObject

The first example (used in the demonstration program described in Section 7.3.7)

uses this base class to define a controller allowing the user to scrape virtual objects

with the mouse:

class MouseTouchableObject : public SynthesisEngineController {

private:

double m_scrapeSpeed;

double m_scrapeForce;

double *m_heightProfile;

100

SonicObject *sob;

public:

int setScrapeSpeed(double);

int setScrapeForce(double);

int setSonicObject(SonicObject *sob);

int setSurfaceProfile(double *heightProfile,int buflen);

};

// Implementation of callBackO

RTSFilter *MouseTouchableObject::

callBack(int *location_index,const double *force,int srate.int buflen)

{

*location_index = 0 ; // Only one location

// Maintain a circular pointer m_p in the buffer m_heightProfile. Copy

// a section of length buflen*m_scrapeSpeed into tmpbuf [], and advance

// m_p by this amount. Resample tmpbuf [] to contain buflen samples,

// scale with a factor m_scrapeForce and copy in force []. This is a

// pitch-shifted segment of the height profile buffer,

return sob->getRTSFilter(srate); // return the f i l t e r parameters

}

The interface metaphor used in this class is a surface profile, whose shape

is stored in the array mJieightProf ile. This surface is touched by an object with

force m_scrapeForce and speed m_scrapeSpeed, and the resulting excitation force

can be obtained by looping through the circular array mJieightProf i l e at speed

m_scrapeSpeed, resulting in a pitch shift of the buffer.

101

The SonicObject class is a wrapper around a parameter set for a vibration

model of an object. It contains data members for frequencies, dampings, and ampli­

tudes, and can be loaded and saved from file. It stores its data in the sy file format

explained in Appendix A . The member function getRTSFilter(int srate) com­

putes the actual coefficient arrays c_, c + , and a (see Chapter 4) from the higher

level model parameters. 3 It also provides member functions to change the material

properties by rescaling frequencies, changing the material constant, etc.

Example: AudioSignalProcessor

The second example (used in the demonstration programs described in Section 7.3.7, •

and in Section 7.3.3) uses the base class to define a controller that will obtain the

input force from the input channel of the audio hardware. In this manner, the

SynthesisEngine can be viewed as an audio effects processor.

class AudioSignalProcessor : public SynthesisEngineController {1

private:

SonicObject *sob;

public:

int setSonicObject(SonicObject *sob);

};

// Implementation of callBackO

RTSFilter *AudioSignalProcessor::

callBack(int *location_index,const double *force,int srate,int buflen)

{

*location_index = 0 ; // Only one location
3It caches the result and computes this only once, unless model parameters change.

102

getlnputBufferFromAudioHardware(force.buflen); // Get input from audio

return sob->getRTSFilter(srate); // return the f i l t e r parameters

}

The function getlnputBufferFromAudioHardware(double *,int) uses the

operating system's audio A P I to obtain a buffer representing the input audio signal.

This can originate for example from a microphone.

7.2 Authoring Tools

In this section we will discuss some authoring tools that were created to facilitate

the creation of vibration models.

7.2.1 Off-line Model Tester

File Help

onicObiect Tester ;

nm

Seconds of sound j '

Damping p i

Mallet Hardness

O X

Sampling Rate 144100 3

Number of modes 1 10

Interaction Type | Strike j j j Freq. scale jT

Soft

Figure 7.2: Off-line model tester.

This utility allows the testing of a vibration model by applying various forces

103

to it and writing the resulting audio to disk as a wav file. This allows a user to

fine-tune the model parameters and to analyze in detail the sounds made. The

interface (shown in Figure 7.2) requires the user to select a vibration model from

disk by loading an sy file. The vibration model can then be excited in three ways.

The object can be struck with a virtual mallet with adjustable "hardness". This

parameter corresponds to the width of the peak of the excitation force, which has

the form given in Equation 6.1. The object can be scraped with white noise and

the interaction force can also be loaded from disk as a wav file.

The parameters of the vibration model can be modified in a number of ways.

The dampings and frequencies can be scaled by constants, the sampling rate can be

set, and the number of modes can be set.

The sounds on the web page [4], and on the accompanying C D referred to

in Section 5.2 were generated with this tool. The tool is written in portable C + + i

with a command-line interface. A GUI written in Java was wrapped around this.

7.2.2 Vibration Model Generators

Two command-line tools were used to construct vibration models. A parameter

fitting module implemented in M A T L A B was discussed in detail in Section 5.2.

We have used it to create models of vases, pots and pans, stringed instruments,

hockey sticks, bells, boxes, plates, glasses, cups, basketballs, swords, and more. At

a sampling rate of 44,100 Hz we would typically generate models with 100 modes

at window sizes of N = 1024,2048,4096,8192, or about 25 - 200ms. We would

then try the resulting models with the off-line tester described in Section 7.2.1.

Sometimes spurious modes need to be eliminated manually. These modes arise from

constant background noise and lead to frequencies with zero decay rate. They are

104

immediately audible, and can also be recognized by inspecting the s y file. Usually

one or two window sizes give results that are considerably better than the others

and those would be selected. As expected, the results were best for objects with a

rather simple spectrum. None of the sounds were "photo-realistic", except perhaps

the hockey stick. But in an interactive setting the sounds were convincing.

A tool to create vibration models of mathematical shapes as described in

Section 5.1 was implemented in C. The shape, material, size, and other relevant pa­

rameters are given as command line arguments and the module produces a sequence

of s y files.

7.3 Demonstration Programs

7.3.1 Sonic Explorer 1.0

We have constructed a test bed application in C++ for SGI, called the "Sonic

Explorer", which demonstrates the enhancement interactive audio can bring to a

three dimensional graphics environment.

Figure 7.3: A room modeled with the Sonic Explorer

105

The first version of the Sonic Explorer presents to the user a three dimen­

sional model of a room with various objects as depicted in Figure 7.3. The user

can view the room from any point by moving a virtual camera. The purpose of

this program is to evaluate the quality and usefulness of simple impact sounds in a

real environment. This demo does not use real-time synthesis, it is intended to test'

impact sounds only.

Several objects in the room were modeled by vibration models of mathemat­

ical shapes. The impulse responses of these objects were computed on a grid of

locations using 10 points in each dimension and the resulting audio samples were

stored on disk. The user can move a virtual drumstick around and hit objects at

various locations and the corresponding audio sample is identified and played back.

The material of the objects was modeled by the method described in Section 4 .5. :

Even though the interactivity is very limited in the demo, the effect of chang­

ing sound as objects are struck at different locations and the material of the objects

are conveyed quite well with these simple models.

7.3.2 Sonic Explorer 2.0

The second version of the Sonic Explorer implements a real-time synthesis engine

as outlined in Section 7.1 using the IRIX audio library. Geometrical models of a

vase (see Figure 7.5) and of a xylophone (see Figure 7.4) were created using the

Open Inventor toolkit. A vibration model of the vase was constructed using the

parameter fitting module discussed in Section 7.2.2. Data from three regions on

the vase the top, middle, and bottom, was used and integrated manually into an

sy file with three locations. The vibration models for the eight xylophone bars

were constructed manually from the solutions of the free bar equations and the

106

107

base frequencies were tuned to form a "white key" scale of pitches tuned in just

temperament.

A special interaction device, called the Sonic Probe was constructed to allow

the user to touch these objects by tapping and scraping. The probe utilizes a

graphics tablet to move the mouse pointer. When the mouse pointer is on a the

vase or on a xylophone bar the appropriate action is taken by the controller, as

described in Section 7.1.2, and the SynthesisEngine will model the corresponding

vibration model. The stimulus force on the virtual object is obtained from a contact

microphone embedded in the pen. When the user touches the graphics tablet the

local interaction, caused by tapping or scraping, is picked up by the contact mike

and used as the input signal for the audio synthesis as described in Section 7.1.2.

A small cover of rough wood was optionally placed over the graphics tablet. The,

surface of the wood is rougher than the smooth plastic of the tablet and in this way

we obtain a more interesting signal. In this manner we effectively map the surface

structure of the wood to the object being modeled.

An additional feature is that the vase can be resized in the vertical direction,

stretching or shrinking it, and the frequencies of the modes are scaled according to

the length of the vase. Even though this is not the actual way the modes will change

if the geometry of a vase is changed in this manner, it illustrates the concept quite

well.

7.3.3 Sonified Objects

This application uses the idea of picking up real interaction forces with contact

microphones and mapping them on virtual sonic objects in a non-graphical context.

The SynthesisEngine was extended to process two independent input streams and

108

Figure 7.6: Plastic swords with embedded contact mikes used to create metal sword
sounds.

apply the virtual forces to two independent objects and to render the audio to

different speakers. We attached contact microphones to various objects and obtained

interesting effects by feeding these data streams to various vibration models.

Two plastic toy swords were equipped with contact mikes and two different

metal sword audio models were used to render the sounds. See Figure 7.6. Amusing

effects could be obtained by changing the model to church bells or other inappro­

priate sounds.

We have also used this setup (with one data stream) to create a digital effect

box for an electric guitar. Very interesting effects were obtained by hooking the

guitar up to vibration models of plates, objects with randomized modal structures,

109

bells, etc.

7.3.4 Avalanche Sounds

A n implementation of the synthesis algorithm was made in Java. Unfortunately

Java 1.1 does not provide any method to render computed sound in real time. It

even doesn't provide a method to render computed sounds by any means* whatso­

ever. Fortunately an "unofficial" audio A P I (the "sun.audio" library) does provide

a minimal A P I to allow the playback of computed arrays of 8-bit audio data at the

sampling rate 8,000 Hz.

We have created a small package of classes to allow the creation of sonic

objects and forces. The force can then be "applied" to the sonic object' and the

resulting audio can be saved in a buffer and rendered later. A n advantage of this is

that the sounds are created locally and need not be transmitted over the network.

Viewed in this way the synthesis is the ultimate compression method.

The class hierarchy and the complete documentation for the Java synthesis

classes are available on the accompanying C D and on [4]. The classes were used

to create parameterized avalanche sounds in the applet depicted in Figure 7.7. A n

avalanche sound is generated by applying white noise to a vibration model contain­

ing an adjustable number of modes with frequencies randomly generated within a

selectable frequency band. These are called the "rumbling frequencies". The stim­

ulus force consists of modulated white noise whose time envelope can be controlled

by four set-points. The avalanche sound is computed when the button "Compute"

is pressed and played by pressing "Trigger". By repeatedly pressing the trigger but­

ton overlayed sections of the pre-computed sounds can generate a certain amount

of interactivity. It is possible to re-compute the sounds while they are playing and

110

i Trigger avalanche (press repeatedly to layer)

I Compute soundeffect (slightly indeterministic)

Trigger

Compute

Minimum rumbling frequency

Maximum rumbling frequency

Rumbling damping factor

Number of modes (sound quality)

100.0

150.0

0.87

25

Time to full level

Time to start fade

Time to end avalanche

Time to end all sound

1.2

3.0

6.0

10.0

Figure 7.7: Applet to generate avalanche sounds.

every time a new set of random modes will be created, providing never repeating

sounds. By setting the maximum frequency to higher values other interesting sounds

reminiscent of wind or even eerie musical effects can be created.

7.3.5 Location Dependent Sounds of Mathematical Shapes

If the ideas presented here are to be used in a virtual reality environment, better

tools will need to be provided to the user to specify the sonic attributes of objects.

A graphical design tool that allows a user to define the types of sounds made by

an object interactively would be very useful. For example, a user will describe

an object as a circular metallic plate with a base frequency of 415 Hz. The user

should then be allowed to poke and scratch the virtual object and adjust the model

parameters until the object behaves as desired. A prototype has been implemented

as a Java Applet, which allows a small class of objects to be created. See Figure 7.8.

The object selected is depicted graphically and the user can hit it and scrape it

111

F o r c e

C HRI

C Hit 2
C Ptusk
(~ Scrap ft (whftft note*)

<• S-f*|:ft (0*J?SI*t> rwis*>

Object

r Bart

(~ Bat?

P CtreularPhK*

f~" P$€l»dOSW«fi

Grid EKB

Duration

Scrape time

PtuckBmg

Hammtf hardness

Figure 7.8: Applet to create location dependent sounds for a variety of objects.

and adjust the model parameters. Besides as a prototype of a sonic design tool,

the program is also useful to test contact models. For example, the finite duration

contact model described in Section 6.1 is currently implemented and this allows an

immediate evaluation of the model.

By repeatedly hitting an object, possibly at different locations, some inter­

active control can be exercised. Every mouse click generates an audio thread and

many can be overlayed, through which dynamic effects can be created.

7.3.6 Virtual Bel l Tower

A third Java applet was created to show an application which is both entertaining,

small, and musically interesting. The applet maintains models of eight bells (a bell

tower) and allows the user to select among different bell models, retune the bells

using various presets or custom, play them interactively with the mouse, change

the hardness of the mallet used to strike the bells, and sequence "change ringing"

patterns.

English bell ringing [40, 92, 19] is a complex mathematical art-form based

112

on ringing tuned bells in a steady rhythm in such a way that the bells ring all, or a

subset of, the possible permutations of the bells. Typically six, eight, ten or twelve

bells are used, but as few as three or as many as sixteen tower bells can also be rung

to "changes".

A mathematical notation system to describe a "method" exists. This "place

notation" system can be viewed as an algorithm for generating permutations. The

applet implements a place notation parser to allow the interested virtual change

ringer to try out methods. A collection of ancient traditional methods can also be

selected from the pull-down menu.

Apart from the synthesized bell sounds, it is also possible to use wave table

playback. For this purpose, eight recordings of actual church bells have to be loaded.

Though the quality of the sound is somewhat better, all interactivity is lost, as the

bells can not be tuned, or struck with different mallets etc. Under Netscape 4,

the digital samples are not loaded from the server until the samples are actually

used. The very noticeable delay while the audio samples are loaded illustrates the

advantage of creating the sounds locally rather than downloading them over the

network.

7.3.7 Real-time Model Tester

This demonstration program runs on Windows 95/98 using the DirectSound audio

A P I . It is intended as a test-bed for object models, interaction models, and A P I

design, as well as a demonstration program of the versatility of the audio synthesis

methodology. The main control window is depicted in Figure 7.11. The check boxes

allow the selection of various operation modes.

In the basic mode, when all boxes are unchecked, except possibly the "3D"

113

l i M i r H i i R i . * J t n f c . « . . .AjarMK.lt. . 4j*n—.4 *jf
^ ^ ^ K ^ * * ^ ^^^^4p*"" ^ ^ ^ P u J P ^ ^ ^ ^ W 4 P ^ ^ ^ ^^^M^^^ ^ ^ * W M p " ^ ^ ^ * W J p ^ ^

12345878
d 12346678 d

21438587
12483857
21648375
26143857
62413375
62148735
26417853
624

Start
Faster

Slower

Irregular
c

B

A K
G

F I*
E I*
D K
C K

Method Regular

200.0

187.5

150.0

133.33

125.0

Help
C Be l l i (• Bell2B

C Bell 2 f Sample

Ed* pitch strike Modes (1-30)

Sharp 20

scRaMbLe

Apply

Dull

Ready

X.38.X. 14.X. 1258.X.36 X . 14.X.58.X. 18 .X.78 . X . 16 .X.58 . X . 14.X.: Tuning

Cambridge Surprise Major

iCamtiridge Surprise Major
Grandsire Doubles
Plain Bob Minor
Little Bob Minor
Reverse Canterbury Pleasure Place Doubles
Norwich Surprise Minor
Birmingham Carter Triples

Major 3

Figure 7.9: Applet for ringing a bell tower.

114

http://AjarMK.lt

«kK». .jjuiraujL. jLa<>tJL J L * « k ^ . .&J*M».4. jL*

Method Regular

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

—^ Start
F aster 12345678

12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

—^ Start
Slower

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

I

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

Irregular
C

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

Irregular
B Is/

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824

B

12345678
12345678 -
21436587
12463857
21848375
28143857
82418375
82148735
28417853
824 - - A

- - G

- ~ : F

- E

D
± J J

D
± J J : — 1 C

187.5

166.66

133.33

125.0

112.5

100.0

Help
C Bel l i (• Bell2B

C Bell 2 f Sample
Edit pitch strike Modes (1-30)

Sharp 20

scRaMbLe

Appfc

Dull
Ready

X.38.X. 14.X. 1258.X.38 X . 14.X.58 X . 16 X.78.X. 16 .X.58 X . 14.X.; Tuning

Cambridge Surprise Major

For You the Bells Toll (If you press STA

Major

Major
Dorian
Phrygian
Lyd i a n
Mixo-Lydian

w 1

Figure 7.10: Applet for ringing a bell tower.

115

IP Synthesis Engine

Object-
randobjectl .txt
randstringl .txt
;rectplate1 .txt
beil.sy
desklamp.sy
guitar.sy
vase.sy
computertower. <

stick, sy
<

Contact Model
white.wav
1 overt. 5.wav
1 overf.wav mmrnrn
wood.wav
metal.wav J
plastic.wav
sandpaper.wav
grid.wav

Scrape -Hit Vol

r i f

Force Speed
Frequency

Min Max
10K . j -

Force Elast
i Damping

10.0
Modes

50

30

50 8060 1.07

100

Fr1

S0
Restart

F Mike
F 3D

r Car
r Joystick _

Aspect

25 - r

7.05

Stop

Object

Contact Model

Realtime Modifiers
Freq. Damp. Fwrpl

T'

Figure 7.11: Real-time model tester. Main control panel.

116

Slow Scrape.. .Fast Scrape

Figure 7.12: Real-time model tester. Interaction windows to scrape and hit objects.

Car Engine Parameter

Intake

Combustion

Exhaust

Beatupness

- i

Figure 7.13: Real-time model tester. Engine model editor.

117

box, the program allows the user to interact with several virtual objects. The object

is selected from the "object" list, or can be loaded from disk as an "sy" file (see

Appendix A) or as a "txt" file. The sy file is expected to contain a vibration model

of an object with one location. If a "txt" file is selected, the object is specified by its

shape, base frequency, damping constant, maximum frequency, number of modes,

and its aspect ratio (if applicable). We currently have implemented the ideal string,

the rectangular plate and a "random" object, which creates randomized resonances

and dampings.

An example of a "txt" file specifying a rectangular plate is

rectplate

base_frequency:

50.000000

damping:

5.559740

maximum_frequency:

8060.745000

number_of_modes:

13

npoints_x((must_be_l_for_now)or_npoints_in_l_dimension):

1

npoints_y((must_be_l_for_now)unused_in_l_dimension):

1

aspect_ratio_rectangle(unused_for_others):

7.052800

After a model is loaded from a "txt" or "sy" file, the user can alter its

118

properties with the sliders labeled "Frequency", "Damping", "Modes", "Aspect".

This requires a restart of the synthesis by pressing the button in the upper right.

The three sliders labeled "Realtime Modifiers" can be adjusted during synthesis:

They allow the frequencies and the dampings to be scaled uniformly, and the slider

labeled "Fwrp l" applies a more complicated transformation to the vibration model.

This transformation is intended to demonstrate the capability of real-time "sound

morphing" with this synthesis method.

After the vibration model is selected, the user can interact with it in various

manners. If the "Mike" option is selected, the audio input channel is interpreted

as the applied force, as in the demo described in Section 7.3.3. A problem with

DirectSound causes very high latency of up to half a second, making this mode:

very awkward. Nevertheless we have used it to test vibration models stimulated by

real-time interactions. ; >

If the "Mike" option is not checked, the user can stimulate the object in

various other manners. If the "Car" and "Joystick" modes are not selected, 'the

user interacts with the object by selecting a contact model from the second list

box or from disk. The contact model is stored as a wav file and represents the

surface texture of the virtual object, according to the model explained in Chapter 6.

Mathematical models using scaling noise, as well as recorded dry scraping sounds

have been used. Once the object and the contact model are selected, the user can

scrape the object by moving the mouse over the upper interaction window depicted

in Figure 7.12. The position of the mouse on the interaction rectangle determines

the scraping normal force (top to bottom) and the scraping speed (left to right).

The range of the force and speed can be adjusted with the "Scrape" sliders. If the

"3D" option is selected, the horizontal position of the mouse is mapped to left-right

119

spatialization of the resulting sound.

The second interaction window depicted in Figure 7.12 allows the user to hit

the object by clicking the mouse at various points on the interaction window. The

vertical position is mapped to force, while the horizontal position is mapped to the

hardness of the virtual hammer, using the contact model for hitting described in

Chapter 6.

Sounds of a four stroke combustion engine are obtained by selecting the "Car"

option. The interaction with the engine models is similar to the interaction with

scraping models, except that one now controls the engine speed through the upper

window. For this purpose, several wav files representing models for combustion

engines as discussed in Chapter 6 can be selected.

If the mouse pointer leaves the window, the engine sound continues at this

rpm. If the "Joystick" option is selected, the user can control the rpm and the

spatial position of the sound with the joystick. In this case the idling speed, and

the maximum rpm can also be adjusted in real time with the joystick buttons.

In "Car" mode, a third interaction window is present, depicted in Figure 7.13,

which allows the user to adjust the volumes of the four stages of the four stroke

engine model independently, to create different sounds interactively.

The "Realtime Modifiers" allow the user to change the resonance properties

of the engine and exhaust system while running the engine interactively with the

joystick. Very convincing sounds of motorcycles, race cars, lawn mowers, and chain

saws, can be created using relatively simple vibration and interaction models.

120

Chapter 8

Conclusions and Extensions

8.1 Summary of Results

In this thesis we have constructed a methodology to synthesize audio in real-time

in simulation or game environments. We have shown how the physics of vibrating

objects (using linear approximations) leads to a parameterized vibration model suit­

able for real-time synthesis of interactive audio. The synthesis algorithm maps the

eigenvalues of the associated P D E to resonances and maps the mode shapes of phys­

ical objects to coupling coefficients. We believe the connection between the physics

and the synthesis method is important as it allows a refinement of the method if so

desired. In contrast to synthesis methods such as F M , our method provides a clear

path to extension and improvement: include more physics.

We have investigated mathematical models of simple geometries and com­

puted the vibration models directly. A one parameter model for the material was

found to convey the perception of wood versus metal versus glass quite well.

A parameter fitting algorithm was implemented, which reconstructs a vibra-

121

tion model from a recording of a struck object. A large number of vibration models

of objects have been reconstructed and the method performs satisfactorily.

We have investigated interaction models for collisions, continuous contact,

engines, and more abstract forces such as avalanches. It was concluded that a simple

one parameter model of impact suffices to convey the perception of the "hardness"

of a virtual mallet. For continuous contacts, we conclude that looped wave-table.

playback of a small sample (representing knowledge about the surface contact) is

the best solution. It conveys the perception of "roughness" and of contact speed

quite well and it has a solid physical justification to be used as the first order

approximation for contact force.

The synthesis algorithm was implemented on several platforms and its per­

formance in terms of speed, latency, and quality was analyzed in some detail, both

experimentally and theoretically. It was found that the synthesis is efficient enough

to allow a real-time synthesis of reasonably complex objects using just a few percent

of C P U cycles on modern personal computers.

We have designed and implemented an A P I for synthesis around the idea

of a SynthesisEngine (which implements the low level synthesis) and a Synthesis-

Controller (which implements models of interaction). The A P I was implemented

in C++ and Java and was used to create several demonstration programs, some of

which can be found on the accompanying C D or W W W site [4].

From the performance and quality of the sound obtained in the demon­

stration programs we conclude that this type of audio synthesis can be used to

significantly enhance the feeling of immersion in interactive environments. Current

wave-table technologies are not able to provide the level of interactivity required

in audio for continuous sounds. The synthesis method presented here is the most

122

efficient and realistic method to obtain contact sounds of interacting objects. The

method also produces very good engine and rumbling sounds.

8.2 Extensions and Future Work

Several directions for future work present themselves naturally. Some are obvious

and straightforward, some are more challenging.

8.2.1 Faster Synthesis

The performance of the synthesis algorithm can be improved in several ways. A sig­

nificant performance boost can be expected by implementing the inner loop of the

synthesis algorithm in assembly language instead of C. Another possible improve­

ment is to implement the algorithm at multiple resolutions. For a resonance mode

of 100 Hz, a sampling rate of 200 Hz should be high enough to accurately compute

the contribution of this mode to the total vibration. It is perhaps more efficient to

compute each resonance at the minimum sampling rate for that specific resonance

and "up-sample" the result when adding all the modes together. It remains to be

seen if the overhead of down-sampling the interaction force once for every mode and

up-sampling the resulting modal contribution is computationally more efficient than

a straightforward computation at a fixed sampling rate.

8.2.2 Integrate Waveguide Models

For linear structures such as strings and air-tubes (exhaust pipes!), waveguide mod­

els [67] provide a more efficient method to model resonance properties. The reason

is that the resonances in those structures are linearly spaced and are much denser

than in solid structures. These systems can be modeled with the modal techniques

123

pursued in this thesis, but this will be computationally expensive because each res­

onance takes a fixed percentage of the C P U . Waveguides provide a large set of

harmonic resonances for the price of a single mode. Though the amplitudes and

dampings can not be individually controlled as in modal synthesis, the performance

gain is considerable.

Extending the entire methodology presented here to incorporate waveguide

models of vibrating structures is completely straightforward.

8.2.3 Improve Parameter Fitting

How can the linear models be improved? The parameter fitting module produces a

set of vibration models which depend on how several parameters such as the window

size for the windowed Fourier transform, but there is no systematic or automatic

way to chose the "best". As discussed in Section 4.6, this requires a measure on

perceptual audio space that would allow us to determine if sound A is a better

approximation to sound C than sound B . This appears to be a very difficult problem,

which probably requires more understanding of audio perception.

A less ambitious project would be to formally evaluate the quality of the

models by psycho-acoustic experiments. It would be interesting to see if a more

objective classification of physical objects with respect to their suitability to be

modeled with modal vibration models can be obtained.

On the technical level, as discussed in Section 5.2, several improvements and

refinements of the parameter fitting algorithm could be attempted.

124

8.2.4 Improve Interaction Models

The interaction models presented in Chapter 6 are all "first-cut" models and could

potentially be improved. The one-parameter impulse model could be refined to

include properties relating to the detailed shape of the force profile.

The continuous contact model essentially assumes that the surface profile

of the object is followed exactly during contact. In reality there are deformation,

hysteresis effects, and contact is frequently broken when one object slides across

another. Unfortunately the actual physics of contact is prohibitively complex, and

it is not clear how to improve the model in an obvious and simple manner. We

suggest investigation of a model where one object frequently "goes ballistic", i.e.,

at higher contact speeds the objects break contact frequently. Perhaps a simple

inelastic collision model would be computationally tractable enough to refine the

contact models driving scraping and sliding sounds.

The engine excitation models were constructed in an ad-hoc manner, using

simple-minded ideas about explosions and hissing sounds in a four stroke cylinder.

Many different types of engines such as diesel engines, two stroke engines,- multi-

cylinder configurations with accurately modeled firing sequences, could be modeled

and investigated.

8.2.5 Non-linear Models

The resonance models are strictly linear. Though non-linear effects can be obtained

by coupling vibration models with feedback loops, objects in the real world do not

behave in a linear fashion to various degrees. If you hit an object harder and harder,

the resulting sounds are not related by just a volume factor. This is partly due to

the interaction, which changes non-linearly, and partly due to the actual vibration

125

equation of the object, which is linear only in first order approximation.

A general theory of non-linear vibration does not exist. In general, non­

linear phenomena are extremely complicated and no universal unified method for

analysis exists [90]. Some work has been done on non-linear extensions to harmonic

oscillators [59], but a physical motivation seems to be lacking.

An interesting observation is that many objects, such as glasses, behave

approximately linearly when struck, but then suddenly change their behaviour com­

pletely: they break. The interesting thing to note is that after the breaking event

we again have an approximately linear system of glass fragments that fall within the

scope of the present method. After the breaking event we will have to model many

objects and their collisions in order to correctly synthesize the sound of the glass

fragments falling. Presumably, some stochastic method of generating the impulsive

forces and the distribution of the sizes of the fragments could drive the synthesis.

If we consider the breaking characteristic of the glass as part of the glass model,

we can view this as a piecewise linear simulation. Before the glass breaks we use

a linear model and after the glass break we have a (different) linear model. See

also [30, 17, 86] for other work on this topic.

This type of piecewise linear behaviour occurs very frequently in reality. For

example, an old rattly car consists of many parts which collide against each other as

a result of the oscillations of the different parts. This line of reasoning would lead

to a generalization of the modal audio synthesis model where different components

are allowed to collide and impulsive forces are generated internally by collisions.

A simple example of a non-linear model of this kind is a constrained pen­

dulum, depicted in Figure 8.1. The pendulum behaves approximately linearly as

long as the amplitude of the oscillation is small, but as soon as the pendulum starts

126

Figure 8.1: Pendulum is non-linear when colliding with the walls.

colliding with the walls, it is only piecewise linear. Such a constrained pendulum

could perhaps be used as a generalization of the spring-damper systems on which

the audio synthesis described in this thesis is built.

127

Bibliography

[1] http://ccrma-www.stanford.edu.

[2] http://mediatheque.ircam.fr/articles/index-e.html.

[3] http://www.cnmat.berkeley.edu.

[4] http://www.cs.ubc.ca/nest/lci/thesis/kvdoel.

[5] http://www.engr.wisc.edu/epd/steuber/motorcycle.html.

[6] http://www.ircam.fr.

[7] http://www.neuroinformatik.ruhr-uni-bochum.de/ini/people/heja/sy- •
prog/nodel.html.

[8] MATLAB Reference Guide. The MathWorks, Inc., 1992.

[9] D . Baraff. Dynamic simulation of non-penetrating flexible bodies. Computer
Graphics, 26(2):303-308, 1992.

[10] D . Baraff. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis,
Cornell University, 1992.

[11] Durand R. Begault. 3-D Sound for Virtual Reality and Multimedia. Academic

Press, London, 1994.

[12] R. T. Beyer. Nonlinear Acoustics. Department of the Navy, Sea Systems
Command, Washington, D . C , 1974.

[13] W . G . Bickley and A . Talbot. An Introduction to the Theory of Vibrating
Systems. Oxford University Press, London, 1961.

[14] S. Braun and Y . M . Ram. Determination of structural modes via the prony
model: System order and noise induced poles. J. Acoust. Soc. Am., 81(5):1447-
1459, 1987.

128

http://ccrma-www.stanford.edu
http://mediatheque.ircam.fr/articles/index-e.html
http://www.cnmat.berkeley.edu
http://www.cs.ubc.ca/nest/lci/thesis/kvdoel
http://www.engr.wisc.edu/epd/steuber/motorcycle.html
http://www.ircam.fr
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/people/heja/sy-

[15] Albert S. Bregman. Auditory Scene Analysis. M I T Press, London, 1990.

[16] G . F . Carrier. On the non-linear vibration problem of the elastic string. Q.
Appl. Math, 3:157-165, 1945.

[17] Michael Anthony Casey. Auditory Group Theory with Applications to Statistical
Basis Methods for Structured Audio. PhD thesis, Massachusetts Institute of
Technology, 1998.

[18] Antoine Chaigne and Vincent Doutaut. Numerical simulations of xylophones, i .
time domain modeling of the vibrating bars. J. Acoust. Soc. Am., 101(1):539-
557, 1997.

[19] A . W . T. Cleaver. The theory of change ringing: an introduction. J . Hannon
and Co., Oxford, 1976.

[20] Perry R. Cook. Physically informed sonic modeling (phism): Percussive syn­
thesis. In Proceedings of the International Computer Music Conference, pages
228-231, Hong Kong, 1996.

[21] Perry Raymond Cook. Identification of Control Parameters in an Articulatory
Vocal Tract Model, with Applications to the Synthesis of Singing. PhD thesis,
Stanford University, 1991.

[22] J . Cremer and A . J . Stewart. The architecture of newton, a general-purpose
dynamics simulator. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1806 - 1811, 1989.

[23] Baron Gaspard Riche de Prony. Essai experimental et analytique: sur les
lois de la dilatabilite de fluides elastique et sur celles de la force expansive de la
vapeur de Palkool, a differentes temperatures. Journal de VEcole Polytechnique,
l(22):24-76, 1795.

[24] P. Depalle and X . Rodet. Synthese additive par F F T inverse. Technical report,
IRC A M , Paris, 1990.

[25] James F . Doyle. An FFT-Based Spectral Analysis Methodology. Springer-
Verlag, New York, 1989.

[26] N . I. Durlach and A . S. Mavor, editors. Virtual Reality, Scientific and techno­
logical challenges. National Academy Press, Washington, D. C , 1995.

[27] Frank Fahy. Sound and Structural Vibration. Radiation, Transmission and
Response. Academic Press, London, 1985.

129

[28] L. Fox, P. Henrici, and C. Moler. Approximations and bounds for eigenvalues
of elliptical operators. SIAM J. Num. Analy., 4:89-102, 1967.

[29] Daniel J . Fried. Auditory correates of perceived mallet hardness for a set of
recorded percussive sound events. J. Acoust. Soc. Am., 87(1):311-321, 1990.

[30] W . W . Gaver. What in the world do we hear?: An ecological approach to
auditory event perception. Ecological Psychology, 5(l) : l -29, 1993.

[31] James K . Hahn, Joe Geigel, Jong Won Lee, Larry Gritz, Tapio Takala, and
Suneil Mishra. An integrated approach to motion and sound. Journal of Visu­
alization and Computer Animation, 6(2):109-123, 1992.

[32] Donald E . Hall. Piano string excitation in the case of small hammer mass. J.
Acoust. Soc. Am., 9(1):141-147, 1986.

[33] Donald E . Hall. Piano string excitation II: General solution for a hard narrow
hammer. J. Acoust. Soc. Am., 81(2):535-545, 1987.

[34] Donald E . Hall . Piano string excitation III: General solution for a soft narrow
hammer. J. Acoust. Soc. Am., 81(2):547-555, 1987.

[35] H . L. F . Helmholtz. On the Sensations of Tone. Dover, New York, 1954.

[36] David Jaffe. Ten criteria for evaluating synthesis and processing techniques.
Computer Music Journal, 19(l):76-87, 1995.

[37] David Javelosa. Sound and Music for Multimedia. Henry Holt & Company'
Inc., New York, 1997.

[38] Claes Johnson. Numerical solutions of partial differential equations by the finite
element method. Cambridge University Press, Cambridge, 1987.

[39] K . L . Johnson. Contact Mechanics. Cambridge University Press, Cambridge,
1985.

[40] Ron Johnston and Allsopp Graham. An atlas of Bells. Blackwell Reference,
Cambridge, Mass., 1990.

[41] Matt i Karjalainen and Julius Smith. Body modeling techniques for string in­
strument synthesis. In Proceedings of the International Computer Music Con­
ference, pages 232-239, Hong Kong, 1996.

[42] J . B . Keller. Impact with friction. Journal of Applied Mechanics, 53(l) : l -4,
1986.

130

[43] Eric Krotkov and Roberta Klatzky. Robotic perception of material: Experi­
ments with shape-invariant acoustic measures of material type. In Preprints
of the Fourth International Symposium on Experimental Robotics, ISER '95,

Stanford, California, 1995.

[44] Debassis Kundu. Estimating the parameters of undamped exponential signals.
Technometrics, 35(2):215-218, 1993.

[45] Horace Lamb. The Dynamical Theory of Sound. Edward Arnol, London, 1910.

[46] Strutt Lord Rayleigh. The Theory of Sound. Dover, New York, 1896. '

[47] Per L0tstedt. Numerical simulation of time-dependent contact and friction
problems in rigid body mechanics. SIAM J. Sci. Stat. Comput., 5(2):370-393,
1984.

[48] J . D . Markel and A . H . Gray. Linear Preciction of Speech. Springer Verlag,
New York, 1976.

[49] Robert J . McAulay and Thomas F . Quatieri. Speech analysis/synthesis based
on a sinusoidal representation. IEEE Trans. Acous., Speech, Signal Processing,
ASSP-34(4):744-754, 1986.

[50] John C. Middlebrooks and David M . Green. Sound localization by human1

listeners. Annu. Rev. Psychol, 42:135-159, 1991.

[51] Brian C. J . Moore. An Introduction to the Psychology of Hearing. Academic
Press, London, 1986.

[52] J .D. Morrison and J . - M . Adrien. Mosaic: A framework for modal synthesis.
Computer Music Journal, 17(1), 1993.

[53] P. M . Morse and K . U . Ingard. Theorectical Acoustics. Princeton University
Press, Princeton, N J , 1986.

[54] Philip Morse. Vibration and Sound. American Institute of Physics for the
Acoustical Society of America, fourth edition, 1976.

[55] D . E . Newland. Mechanical Vibration Analysis and Computation. Longman
Scientific and Technical, New York, 1989.

[56] M . R. Osborne and G . K . Smyth. A modified prony algorithm for fitting func­
tions defined by difference equations. SIAM J. Sci. Stat. Comput., 12(2):362-
382,1991.

131

[57] T. W . Parks and C. S. Burrus. Digital Filter Design. John Wiley and Sons,
Inc, New York, 1987.

[58] Maurice Petyt. Introduction to Finite Element Vibration Analysis. Cambridge
University Press, Cambridge, 1990.

[59] John R. Pierce and Scott A . van Duyne. A passive nonlinear digital filter de­
sign which facilitates physics-based sound synthesis of highly nonlinear musical
instruments. J. Acoust. Soc. Am., 101(2):1120-1122, 1997.

[60] L . R. Rabiner, M . J . Cheng, A . E . Rosenberg, and C. A . McGonegal. A com­
parative performance study of several pitch detection algorithms. IEEE Trans,
on Acoustics, Speech and Signal Processing, 24(5):399-418, 1976.

[61] Clifford T. Mullis Richard A . Roberts. Digital Signal Processing. Addison-
Wesley, Reading, Massachusetts, 1987.

[62] M . J . Ross, H . L . Schaffer, A . Cohen, R. Freudberg, and H . J . Manley. Aver­
age maginitude difference function pitch extractor. IEEE Trans, on Acoustics,
Speech and Signal Processing, 22(5):353-362, 1974.

[63] Thomas D . Rossing, D. Scott Hampton, and Uwe J . Hansen. Music from oil
drums: the acoustics of the steel pan. Physics Today, March:24-29, 1996.

[64] William R. Savage, Edward L. Kottick, Thomas J . Hendrickson, and Ken-,
neth D . Marshall. Air and structural modes of the harpsichord. J. Acoust. Soc.
Am., 91(4):2180-2189, 1992.

[65] A . A . Shabana. Theory of Vibration, Volume I: An Introduction. Springer-

Verlag, London, 1991.

[66] A . A . Shabana. Theory of Vibration, Volume II: Discrete and Continuous
Systems. Springer-Verlag, London, 1991.

[67] J . O. Smith. Physical modeling using digital waveguides. Computer Music
Journal, 16(4):75-87, 1992.

[68] M . M . Sondhi. New methods of pitch extraction. IEEE Trans, on Audio and
Electro Acoustics, 16(2):262^266, 1968.

[69] William M . Steedly, Chinghui J . Ying, and Randolph L. Moses. Statistical
analysis of tls-based prony techniques. Automatica, Special Issue on Statistical
Processing and Control, 1994.

132

William M . Steedly, Chinghui J . Ying, and Randolph L. Moses. A modified tls-
prony method using data decomation. IEEE Transactions on Signal Processing,
42(9):2292-2303,1995.

Ken Steiglitz. Classic maximum entropy. In: Maximum Entropy and Bayesian
Methods. Kluwer Academic, Norwell, M A , 1989.

Ken Steiglitz. A Digital Signal Processing Primer with Applications to Digital
Audio and Computer Music. Addison-Wesley, New York, 1996.

R. W . B . Stephens. Acoustics and Vibrational Physics. Edward Arnold (Pub­
lishers) Ltd. , London, 1966.

Adam Stettner and Donald P. Greenberg. Computer graphics visualization for
acoustic simulation. Proc. SIGGRAPH'89, Computer Graphics, 23(3):195-206,
1989.

Gilbert Strang. Introduction to Applied mathematics. Wellesley-Cambridge
Press, 1986.

Anatoli Stulov. Hysteretic model of the grand piano hammer felt. J. Acoust.
Soc. Am., 97(4):2577-2585, 1995.

Donald L . Sullivan, accurate frequency tracking of timpani spectral lines. J.
Acoust. Soc. Am., 101(l):530-538, 1997.

Frank W . Sinden Suresh Goyal, Elliot N . Pinson. Simulation of Dynamics of
Interacting Rigid Bodies Including Friction I: General Problem and Contact
Model. Engineering with Computers, 10:162-174, 1994.

Frank W . Sinden Suresh Goyal, Elliot N . Pinson. Simulation of Dynamics of
Interacting Rigid Bodies Including Friction II: Software System Design and
Implementation. Engineering with Computers, 10:175-195, 1994.

Tapio Takala and James Hahn. Sound rendering. Proc. SIG'GRAPH'92, ACM
Computer Graphics, 26(2):211-220, 1992.

Samuel Temkin. Elements of Acoustics. John Wiley and Sons, Inc., New York,
1981.

Barry Truax. Real-time granular synthesis with a digital signal processor. Com­
puter Music Journal, 12(2):14-26, 1988.

133

C. Ullrich and Dinesh K . Pai. Contact response maps for real time dynamic
simulation. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1019 - 1025, Leuven, May 1998.

Kees van den Doel and Dinesh K . Pai. The sounds of physical shapes. Presence,
7(4):382-395, 1998.

Richard F . Voss and John Clarke. 1/f noise in music: Music from 1/f noise. J.
Acoust. Soc. Am., 63(l):258-263, 1978.

R. M . Warren and R. R. Verbrugge. Auditory perception of breaking and
bouncing events: A case study in ecological acoustics. Journal of Experimental
Psychology: Human Perception and Performance, 10:704-712, 1984.

C. A . Wert. Internal friction in solids. Journal of Applied Physics, 60(6):1888-
1895,1986.

Bruce J . West and Michael Shlesinger. On the ubiquity of 1/f noise. Inernational
Journal of Modern Physics B, 3(6):795-819, 1989.

Bruce J . West and Michael Shlesinger. The noise in natural phenomena. Amer­
ican Scientist, 78:40-45, 1990.

G. B . Whitham. Linear and Nonlinear Waves. Wiley, New York, 1974.

Richard P. Wildes and Whitman A . Richards. Recovering material properties
from sound. In Whitman Richards, editor, Natural Computation, Cambridge,
Massachusetts, 1988. The M I T Press.

Wilfred G . Wilson. Change ringing : the art and science of change ringing on
church and hand bells. Faber and Faber, London, 1965.

Richard Woodbridge. Acoustic Recordings from Antiquity. In Proceedings of
the I.E.E.E., pages 1465-1466, 1965.

P. M . Zurek. The precedence effect and its possible role in the avoidance of
interaural ambiguities. J. Acoust. Soc. Am., 67(3):952-964, 1980.

134

Appendix A

File Format for Vibra t ion

Models

We give the specification of the "sy" file format used by our applications to define

a vibration model of an object.

The lines with text are comments, indicating the meaning of the following

data. The nactive_freq: field describes how many modes should be used by the

synthesis software to render the sound. It should be less than or equal to n_freq:

which is the number of modes stored. The n_points: field indicates how many

discrete "locations" are available for the amplitudes a. These "locations" may cor­

respond to actual geometric locations on the contact surface of the objects, or to

directional parameters. The fields frequencyjscale:, damping_scale:, and ampli-

tude_scale: multiply the following frequency, damping, and amplitude parameters

by a constant scale factor. These fields allow a quick manual edit by shifting all

frequencies, increasing the damping, or boosting the coupling strength of the model.

After the frequencies: header field, the frequencies are listed in Hertz, after the

135

damping: header the damping coefficients (the factors d in the impulse response

a e (- d t + 2 i r i f t) Q f a n individual mode), and after the amplitudes[point][freq]: the

amplitudes; first the amplitudes of the first "location", then the second location,

etc. The end of file is indicated by the string E N D . Below we give a short example

of an sy-file for an ideal string with coupling data for three locations.

nactive_freq:

10

n_freq:

10

n_points: -

3

frequency_scale:

1.000000

damping_scale:

1.000000

amplitude_scale:

1.000000

frequencies:

440.000000

880.000000

1320.000000

1760.000000

2200.000000

2640.000000

3080.000000

3520.000000

3960.000000

136

4400.000000
dampings:

1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.000000
amplitudes[point][freq] :

0.258819
0.250000
0.235702
0.216506
0.193185
0.166667
0.137989
0.108253
0.078567
0.050000
0.707107
0.500000
0.235702
0.000000
0.141421

137

0.166667
0.101015
0.000000
0.078567
0.100000
0.965926
0.250000
0.235702
0.216506
0.051764
0.166667
0.036974
0.108253
0.078567
0.050000
END

A p p e n d i x B

Parameter Fi t t ing Data

In this section we present the results of the models obtained by parameter fitting

for several objects. The corresponding sounds can be heard on the accompanying

C D or on [4].

Each figure shows the linear fits overtime to the identified frequency peaks

(in dB), the estimated frequencies in Hz, and the frequency response of the resulting

model on two different scales. The sampling rate was 44100 Hz and we show the

results of various size Fourier windows. The material constant plots show the ratio

of frequency and damping for the first 100 modes (sorted by amplitude), which

should be constant according to the simplest material model.

139

\ \
^ V \
N _ x~

\ S v \

\ _̂
>— \ \ V - ^

W "S* W S>» S** V^,

3316 1507 1120 172 4436 474 4006 1249 1981 61 IS

2412 3790 2584 7537 4737 4565 4264 10724 9733

4996 3445 15590 12575

1134 3402 2196 13652

6288 5814 3058 8742 ' 7192 5383

11628 9087 8269 7321 6891 6632

12489 11757 10422 8053 7020 5512 3015 2239 18217 17786

17485 16710 16150 13135 12877 12705 12317 9647 9259 8355

7B81 5642 3833 2627 18906 14815 13351 13264 12059 11413

10982 10465 10034 9432 9130 8096 7752 684B 5943 5657

5211 5082 4608 43 , 15805 15719 15418 15159 14427 14384

14126 14040 13480 13006 11B43 11542 11370 11283 11240

1000 2000 3000 4000 5000 7000 6000

Figure B . l : Top of vase with a window of 1024

140

\ v. V

^ ^ \

\ x

v^. S« v^ .

3424 3316 2606 1507 4436 2390 2003 1120 49 S 4005

2261 172 1270 301 6115 4177 3165 2067 5922 4587

2175 4996 4242 3876 689 5383 4759 10573 9755

8656 7558 7321 6223 5814 3790 2778 2649 11003

9109 8829 8742 7214 6998 6891 5663 5233 4350

3611 3704 3510 3208 3058 1034 10444 10034 9022

6355 8053 7773 7687 7515 6632 6611 6417 5986

5620 5534 5340 5146 5060 4845 4134 3639 3036

2326 2196 1680 1615 775 624 388 43 16710

11348 10939 10788 10702 10422 9668 8979 8506 8419

Figure B.2: Top of vase with a window of 2048

141

X X \ \ V . X

\ \ \ ^ X.

\ V \ x x \

X X \ \ X

\ ^ ^ X X

X . X x~ X \ X

X x

\ X \ \
X \ \

\ \
\ \

\ X

x

X

X

X V X X

4425 4005 3822 3758 3467 3424 3391 3316 2993 2649

2390 2261 2078 1992 163 4996 4576 4177 3973 3865

3790 3208 2229 2121 2046 1109 6105 5846 5028 4619

4242 3941 3908 3714 3499 3165 3058 3036 2595 1518

1270 301 97 65

5060 4113 3650 3230

7558 6611 6298 5922 5814

2778 2186 484 10444 9109

X ^ X- ^

8829 8742 8355 6826 6686 6643 6578 6492 6385 6072

5394 5243 5179 5136 4953 4037 3112 2175 1324 678

624 420 388 10993 10476 961S 8775 8269 8236 8053

7203 6891 6460 6223 5986 5717 5663 5599 5523 5426

7000 aoco

Figure B.3: Top of vase with a window of 4096

142

502B 4177 4005 3978 3908 3871 3822 3795 375B 3467

3424 3391 3079 3063 3031 2993 2600 2579 2390 2261

2186 2078 1997 1513 1114 7558 6616 6422 6298 6110

Figure B.4: Top of vase with a window of 8192

143

10 20 30 40 50 60 70 80 90 100
n

Figure B.5: Top of vase with a window of 1024: Material constant

3000

25001-

2000 k

Figure B.6: Top of vase with a window of 2048: Material constant

144

145

V- \ . 2713 689 345 2369 2024 3747 1680 1034 7450 3058

X . W >»-
4823 4479 5556 5943 3402 1335 5428 17270 4134 5211

V, V . s - V
6503 16279 9819 1652 7063 11154 8613 12B77 10508 15590

V . 6675 7838 8226 43 9991 62B8 172 15805 6158 1895

W V •v. 16581 14212 13308 12532 6848 5771 11542 10250 9044 13738

V . v. X*
11585 8398 3919 16624 10680 5814 12403 12274 9388 861

s» 13824 6115 1378 16925 152B9 13049 12618 5728 2541 ' 1206

W 14901 14686 14556 11929 11499 10379 B18 16451 15935 15719

11843 10939 10637 10207 9561 6891 4091 3445 1163 474

8r—

ft* w *1 S V 18863 18734 18131 17743 15073 14858 13523 10810 10164 9690

Figure B.8: Santur with a window of 1024

146

V x.

k.
v.

w. ^
1012 3424 3079 2046 1357 2390 1873 1701 668

4479 2735 3747 4134 883 452 5211 1104 G5

5556 4414 14S4 1120 17270 1572 538 5426 4070

129 9819 4823 8613 7063 11S20 818 10508 5922

16279 12B77 1H76 7838 603 15590 6675 1249 10659

5103 258 12920 12855 11133 B226 5943 10487 4845

585 9970 9044 6288 1787 840 172 16258 16042

2713 2153 193B 1637 8247 7795 6848 6309 6115

5448 4113 3725 2821 2239 2175 495 237 13394

1443 775 22

Figure B.9: Santur with a window of 2048

147

\ K w V- \ \ V- \ 2724 334 4479 2379 1012 678 3736 1357 4081 3424

\ \ K s. 7450 4124 3779 2035 1873 3068 484 1701 1120 452

\ V. 118 883 54 5932 5200 4425 1314 1249 592 183

X V V, s. B6 7074 5416 1572 1464 624 1647 1637 1443 1174

"»» w V 840 12886 10497 9819 8613 6492 5566 1195 947 549

•»» fcv 538 420 301 258 i i 17270 11574 11176 10659 8236

"s. s. 5803 5556 4834 3391 1475 969 829 818 388 237 - s. V, 65 15579 11520 9830 5114 1916 1690 1184 1087 1066

X. <** V. S» i — 894 775 743 506 269 22 16290 16268 15590 11133

\ . 7429 5760 5448 5426 5211 3079 2089 1755 1744 1669

7000 BOOO

Figure B.10: Santur with a window of 4096

148

\ \ \ \- X

^. I V V X \ > \
3758 2708 2385 1696 678 3424 1674 1249 1233 1120

\ \ \ . k .̂ v .
1017 883 834 4124 3052 1873 1448 1319 1303 624

• \ \ \ \ \ 452 178 92 59 7074 7052 5932 4829 4479 1626

\ \ \ \
1195 818 544 479 382 301 6498 5206 4420 1642

\ V V V , h 1475 1470 1044 974 904 592 275 „ 12866 10497

\ . S- v . \ 7429 5566 '5561 4129 3391 3047 2089 1647 1577 1211

s , \ X 1206 1179 1098 1039 969 899 700 635 608 436

V ¥ 312 264 258 237 215 210 188 167 156 32

K X \ V 16268 9819 8236 7849 6691 5421 5416 5200 4064 1933

7000 8000

Figure B . l l : Santur with a window of 8192

149

X. \ \ >v
1766 1593 1421 661 689 517 345 172 2326 1938

N \ S. 1249 2110 2885 2670 2498 1034 3445 3058 3833 3230

»«• v.,
3618 4608 5383 4221 5943 6158 3273 9776 4996 4760

*~
4005 11025 5556 4436 4048 10207 8829 4953 15332 15246

»m W Km ** 6675 43 16322 13178 12059 9948 8613 6288 17528 t5676

** >*»
11800 11197 10724 8226 8053 7838 7278 6417 3144 19078

Sir. •* 17657 15073 14083 14040 13781 13264 8441 7537 7020 6546

>» ft*
6503 5211 5168 4393 18777 14815 14212 13910 11972 11671

*r »» *~
10637 9862 9173 9001 B742 7795 7666 7623 7192 6804

1" m fV.
6374 6331 6115 1077 18519 16882 16064 15590 14901 14772

8000
»10* Hz

Figure B.12: Piano with a window of 1024

150

V \ X. \ \
1766 1593 1227 883 345 172 1400 711 517

Vv. 2304 2864 3252 1938 105S 2498 65 2692 3833

> s» S. 3058 3639 4587 4027 9778 6137 4221 4996 4436

V V. V* >* 258 5383 5190 5577 2799 5556 4802 4242 1960

"n 15892 14707 10573 9109 7795 6934 6503 5426 5082

tl *•* N 3575 3553 3316 3122 2670 2067 16107 13738 12425
>•* M *r 10357 10164 10056 9388 8786 8269 7106 6998 6891

fa *k 6675 5900 5685 3984 3919 2218 1120 18691 17227

*t ^ « 16042 15827 15676 15052 14750 14643 13910 13501 12985

fa fa 12511 11951 11929 11779 10831 10336 9819 9755 9647

Figure B.13: Piano with a window of 2048

151

\ \ \ \ 231S 2132 1766 1410 1227 700 528 172 1949

V , \ V, X \ 1583 872 355 3252 2638 2498 1055 3058 3833

X. N s. \ >• 3639 2B75 3445 65 4231 2078 6137 5383 1873

s. N s W s V- 4791 2864 301 9776 9765 5566 4996 4597 2455

Sr v. - > 118 54 22 5954 4393 3435 2175 1680 1130

W> V. *• T- '—i s. 441 398 280 248 129 108 11 7644 4985

V* V " - r w« 3682 3564 3305 2379 2272 1303 1195 1044 947

V. v. s- M <-*
592 463 420 291 269 226 97 32 16645

*t ** 3>V| 12705 11326 11197 1092B 10810 10250 9991 9841 9033

ton V IN h> 6557 6514 6180 5792 4436 4425 4188 4081 3962

Figure B.14: Piano with a window of 4096

152

\ X X N \ X
1766 1588 877 700 350 2869 2681 1949 1410

X x
3252 2498 1233 1039 528 172 59 2638 2132

X x X X 9771 3440 3058 4592 3833 2309 1879 140 4990

\ x V W. x X 2315 371 318 226 124 70 4430 4027 3634

X x. x X S 2482 2277 1750 1308 1249 910 565 501 312

"•>. TN v . X 108 38 ii 9528 6508 5572 6383 5184 4791

X w- s~ 3558 2126 2105 2078 2073 1620 1292 1184 1168

V< H~ X , S 743 732 554 463 425 393 328 291 280

V- X . X . x x- 269 248 242 221 215 210 205 129 97

A * M 75 43 22 5 17636 16511 16145 15832 14713

7000 8000

Figure B.15: Piano with a window of 8192

153

v. \ \ \ \
1895 21792

»l >
\

\ \ \ v,
20586 18519 10680 7149 6115 4048 3790 1550 1292 517

>» y >i i. *« k, h k,
16710 16193

V s \. \ \
16107 15504 15246 14987 14384 14040 13867 12834 9905 8958

\ \ s \ \ \ 8527 6891 6029 5512 5254 3101 2929 2670 1723 861

M f h V V \. 21275 21016 19638 19466 18863 17916 14729 14212 13954 13178

V ^ v, \ v. \. v. \ 12575 12489 11972 11886 11628 ,„„ 10250 10164 9647 9130

V \ s \ V \ 8096 5599 3445 2412 2326 1378 775 21533 21447 20930

k ll V 1. V. 2075B 20413 19552 19380 18949 18002 17140 17054 16882 16796

v. V, V, V. i \ 16538 16451 15935 15848 15676 15332 14643 13695 13351 13006

0 o.z 000 2000 3000 4000 5000 6000 7000 8000

Figure B.16: Computer tower with a window of 512

154

155

\ \ \ \ \ \ \
2907 1895 7429 5146 4974 2390 538 474 280 7257

\ \ \ \ \ \ V \
\

6546 6115 6051 5857 5642 5469 5383 5254 5190 4845

\ \ \ \ \ \ \
4694 4479 4199 3854 3704 3575 3316 3230 2993 2713

\ \ \ V \ \
2649 2498 1960 1680 1615 1357 1055 818 775 689

\ \ .V \ V \ \
\ \ \ \ \ V \

\
\ 8204 7687 7192 7149 7041 6891 6804 6740 6266 6094

\ \ \ \ V \ \ \ \
5965 5922 5900 5749 5728 5663 5577 5534 5340 5297

\ \ \ \ \ \ \ \ \ 5103 4931 4910 4780 4759 4716 4651 4587 4565 4393

\ \ \ \ \ \ \ 4350 4221 4156 4113 4091 4005 3790 3747 3639 3510

\ \ \ \ \ \ \ \ \ 3424 3402 3338 3187 3165 3122 3101 3036 2842 2821

Figure B.18: Computer tower with a window of 2048

156

2B64 1680 614 5146 4963 4920 4587 4091

3790 3338 3316 3090 2896 2832 2659 2616 2541 2487

2444 2412 2304 2239 2207 1884 1830 1615 1540 1497

1475 1357 1281

398 248

1087 1012 807

11940 11402

10336 10271 10142 10088 10034 9905 9701

528 420

9442 7978

7644 7429 7418 7257 6740 6621 6546 6492

6331 6105 6094 6062 6051 5965 5911 5846 5545 5437

5329 5297 5276 5254 5243 5233 5179 5103 4974 4877

4845 4802 4791 4716 4651 4630 4554 4522 4479

Figure B.19: Computer tower with a window of 4096

157

1500

10 20 30 40 50 60 70 80 90 100
n

Figure B.20: Computer tower with a window of 512: Material constant

1500 r 1 1 1 1 1 1 1 1 r

1000^

500 k

0 10 20 30 40 50 60 70 80 90 100
n

Figure B.21: Computer tower with a window of 2048: Material constant

158

159

g 4000

Figure B.23: Bell with a window of 1024: Material constant

Figure B.24: Bell with a window of 2048: Material constant

160

g 4000y

Figure B.25: Bell with a window of 4096: Material constant

2 4000

Figure B.26: Bell with a window of 8192: Material constant

161

Appendix C

Audio Synthesis Techniques for

Music

A comprehensive overview of musical audio synthesis techniques is given by Herbert

JanBen, on the W W W site [7], from which the following material is compiled.

• Additive Synthesis, Fourier Synthesis

Any sound, however complex it may be, can be described as a mixture of a

number of sine wave components with different phases and amplitudes. These

are the partials of a sound, which are also called harmonics if their frequencies

are an integer multiple of the fundamental frequency.

The method to generate a complex sound spectrum as the sum of (many)

simple sine waves is called Fourier synthesis, after Joseph Fourier who found

its mathematical basis. The more general term additive synthesis can also be

used if the waveforms added are not sine waves.

Ideally, a lot of sine oscillators are needed for Fourier synthesis. How many

162

depends on the required range and brightness: a bright bass note, think of a

slap bass, may need more than hundred, while a high pitched harmonic sound

will probably need only a dozen.

For dynamical sounds and expressive play of an additive synth very many

parameters are needed: ideally, each oscillator should have its own amplitude

envelope, pitch envelope, velocity sensitivity and modulation routing.

Although this may sound like the hardware is the limiting factor, the usability

is even more so. Most of the many parameters have only little influence on

the sound and generally it is very hard to estimate how the spectrum of a

desired sound looks like. Thus the simulation of acoustic instruments seems

to be impossible without appropriate analysis hardware and software.

• Subtractive Synthesis

This is just the classical method of synthesis used in most analog synths and

in most sample playback synths and samplers.

Subtractive synthesis means that you take a sound (preferably a spectral rich

one like a sawtooth or a square/pulse wave, or a sample of a grand piano) and

route it trough a modulatable filter and amplifier to change its timbre. This

way you reduce the level of some partials of the original spectrum and hence

the term. The terminology is a bit fuzzy for the real world, since almost any

synth uses filters. The general usage of the term tends to refer to the classical

"oscillator/filter/amplifier" trinity though.

What is nice about subtractive synthesis is that by selecting the oscillator

waveform or sample, the basic timbre is rather well determined and the usual

filter and amplifier parameters allow to effectively tweak it to make it brighter,

163

duller, more percussive etc.

The main problem with subtractive synthesis is that its tools are rather bold:

the oscillator waveforms or samples have a distinct character that is hard to

overcome and the usual filters do not allow for very subtle changes.

• Analog Synthesis

Analog Synthesis is not really a synthesis method, but rather a hardware issue:

analog synths use analog instead of digital electronics to create their sounds.

What most of them can do in terms of synthesis methods is quite simple

subtractive synthesis. However some more advanced machines and especially

modular synths may use a great variety of synthesis methods including F M ,

wave shaping, vector synthesis and others.

Analog synths are considered "cool" nowadays, because of their supposedly

"warm" and "fat" sound. So what is so special about analog synthesis then?

First, most analog synths have an extensive user interface with dedicated knobs

and switches for every function. This gives a very intuitive access and results

in instant gratification for sound tweaking. This is possible because typical

analog synths offer a limited number of control parameters, but those param­

eters are highly effective.

Second, rather simple analog circuitry can perform the functions needed for

subtractive synthesis rather well: the resulting sound will be artificial but

with slight variations and instability. Thus, the sound quality is lively in a

way similar to acoustic instruments. On the other hand most digital synths

compromise in sound quality to achieve the high number of voices many buyers

seem to be fond of today.

164

Modular analog synths have the additional advantage that there is no distinc­

tion between audio and control signals. Everything is just a control voltage

which results in a vast number of patching possibilities. These beasts are very

rare and pricy nowadays, but are probably still the best way to learn about

synthesizing sounds, and can be used as a musical instrument of exceptional

power.

• Sample Playback (P C M , A W M , A W M 2 , AI , ...)

This is a form of subtractive synthesis that is also called P C M (Pulse Code

Modulation), A W M (Advanced Wave Memory), A W M 2 (Advanced Wave.Mem­

ory Version 2) AI (?) by manufacturers. Usually all those terms refer to ba­

sically the same thing: A n audio signal e.g. a miked acoustic instrument or

an electrical or electronical instrument is sampled (digitized) and the record­

ing is stored in R A M or R O M . If a device is able to sample and store the

result in R A M or to disk, it is called a sampler. A device that can playback

samples (from R A M , R O M or disk) at different pitches is called a sample

playback synth. Most samplers and sample-based synths use subtractive syn­

thesis although there are some samplers and synths that offer only very limited

processing.

The term P C M refers to the coding technique which is used in virtually all

digital instruments. The terms A W M and A W M 2 are Yamaha marketing slang

for 16-bit sample playback and 16-bit sample playback with filters. Korg uses

the term AI synthesis for their M l , which is just another sample playback

synth, synthesis wise.

Sample playback is what has made synths realistic sounding. On the other

165

hand sampling per se offers less options for expressive play than almost any

other synthesis scheme. Samples that have a lot of inherent character or are

easily recognized as an acoustic instrument are hard to shape, so filters and

other processing options will merely adjust the timbre of the sample.

There are however unique possibilities in sample synthesis, but these are of­

ten not implemented in commercial synths. I'm talking about modulation of

the sample playback parameters itself: extreme transposition of multisamples,

modulation of sample start and sample loop length, multiple sample loops and

more. Among others, various Ensoniq and Emu synths and samplers are capa­

ble of some of these. On many synths (including the SYs) even transposition

(the changing of sample playback rate) can only be achieved with the trick of

a constantly biased pitch envelope.

• Frequency Modulation (F M , A F M)

Frequency Modulation is usually abbreviated F M or A F M (for Advanced Fre­

quency Modulation). This is the family of synthesis methods that brought a

breakthrough for commercial digital instruments in the eighties. Basically it

means that you control the frequency of an audio oscillator by the frequency

of another audio oscillator. The interesting aspect sound-wise is that you can

generate a very wide variety of spectra plus many transient sound characteris­

tics with F M (and not only the never ending variations of electric pianos and

bells).

F M was "invented" by John M . Chowning at Stanford and used in the aca­

demic computer music scene long before Yamaha marketed it. The commercial

Yamaha implementation introduced some restrictions, but also some useful ex-

166

tensions like feedback.

F M exists in many different flavours: some analog synths resp. digital/analog

hybrids are able to do a very basic F M . But F M relies mainly on the frequency

ratios of the oscillators involved, and therefore requires very high tuning stabil­

ity. Also F M becomes a versatile synthesis technique only if you have multiple

oscillators with multiple envelopes to control their amplitude which results in

a big number of components/modules needed in the analog realm. Maybe this

is why it was and is not as popular with analog synths.

Yamahas digital F M implementations use custom chips to reduce cost. In

case of digital F M , there are also many variants: depending on the number

of oscillators (minimum is 2, most synths use 4 or 6, I recall to have heard

of 10 in some Yamaha organs), whether there is a real envelope per oscillator

(some very simple Yamaha sound chips like the one used in the old Atari STs

miss them) and of course how variable the routing between the oscillators is

(number of "algorithms, modulation and feedback paths).

• R C M (Real-Time Convolution and Modulation) Synthesis

This is another marketing term by Yamaha and is mainly an extension to F M .

The background is that you use a whole AWM2-element as modulator input

for an AFM-operator, which also means that you can apply the filter on the

sample before you put it through the FM-process. The former fact may be

used to motivate the term modulation, the latter the term convolution (one

possible algorithm for a filter is the convolution of the signal with a kernel).

In my opinion the term R C M is ill defined and misleading. In lack of a better

term, I will use R C M to denote the capability to use feed the A W M section

167

into the A F M section and vice versa.

Phase Distortion (PD) and Interactive Phase Distortion (iPD)

The terms phase distortion and interactive phase distortion were used by Casio

for their synths (CZ and V Z series).

Actually the two methods seem to be very different. The phase distortion

synths (the C Z series) offer eight basic waveforms (saw, pulse, resonance, etc)1.

Each of them can be morphed continuously from and to a sine wave via an

eight-stage envelope, thus emulating the use of a low-pass filter on a basic

analog synthesizer. Another two envelopes are used for pitch and amplitude

and for two-oscillator patches a ring modulator can be used.

Wave Shaping

Wave shaping refers to a sound manipulation (not generation) technique which

applies a (nonlinear) function on the original signal (i.e. the output of an

oscillator). This scheme is similar in principle to analog distortion in a guitar

amp or fuzz unit, but offers much more sound variation possibilities including

resonance-like effects. Wave shaping can be used as an advanced synthesis

method in a way similar to F M .

L A (Linear Arithmetic) Synthesis This buzzword was used by Roland to

describe their approach to digital sound synthesis in the eighties. It is based

on the observation that the attack transient of a sound is its most important

part with respect to human perception. Therefore the LA-synths (D-50, M T -

32 and others, but most notably not the D-70) used a combination of sampled

attack transients and simple digital oscillators with only sawtooth and pulse

waveforms to generate the sustained part of the sound.

168

Ring Modulation, Amplitude Modulation

Ring modulation and amplitude modulation are not complete synthesis meth­

ods, but rather processing techniques that are quite common on advanced

analog and digital synths. Sometimes these features are wrongly named or

used when the actual implementation is quite different. Manufacturer specific

terminology for similar schemes includes the terms cross modulation and F X M

(frequency cross modulation).

Ring modulation is the multiplication of two signals. The output of a ring

modulator will contain the sum and the difference of all available input fre­

quency pairs.

Amplitude modulation is the multiplication of two signals, where one signal is

always positive.

Vector Synthesis

The first synth to implement this paradigm was the SCI Prophet V S . The VS

can mix four oscillators with different waveforms in real-time via a joystick

controller and a multistage envelope. While this is a really simple concept, it

is effective for expressive play and nice evolving sounds.

The Korg Wavestations and the Yamaha SY22, TG33 and SY35 are other

"vectorized" synths. The Yamahas can mix up to two F M and two sample

elements, while the Wavestations mix up to four sample based wave sequencing

oscillators.

In principle most synths can do real-time vector synthesis, when fed with MIDI

joystick data to cross-fade oscillators. If you like to try that you can rewire a

P C game joystick to fit your synths pedal jacks.

169

Wave Table Synthesis

This term is used for two completely different things: Many sound card com­

panies call their R A M based sample playback capabilities like this (because

the samples are stored in a table in R A M) .

For the P P G Wave and the Waldorf Microwave and Wave synths this term

is used to describe the ability to produce a sound by sequencing through a

table of different waveforms during the duration of a single note. For the wave

tables and waves there is a preset R O M area as well as a user loadable R A M

area provided. Which entry of the wave table is selected may be controlled

by an envelope, L F O or any other modulation source in real-time. Also these

synths can interpolate between subsequent waveforms in the wave table thus

smoothing the timbral change. The waveforms are single cycle ones, so realistic

acoustic emulations are out of reach for this technique, but the vastly improved '•

modulation capabilities, compared to sample playback, more than make up for

this.

Wave Sequencing

This term means that a sequence of different sample segments can be used to

generate a sound. Korg implemented this on their famous Wavestation synths.

The Wavestations oscillators can sequence through programmable patterns of

samples. Each of the patterns consists of a number of individually tunable

sample snippets and each sample in the sequence is assigned its own level

and duration. Typical for the Wavestation (and rather easy to program) are

"rhythmic" wave sequences in which an oscillator steps through a number of

samples in a predefined periodic rhythm. The Wavestations also combine this

170

with vector synthesis capabilities.

Granular Synthesis

Granular Synthesis means sequencing through very many very short sound

(sample) snippets. The difference to wave sequencing is that the single samples

are played for such a short time, that the sequencing is heard more as a timbre

than as a rhythm. Granular synthesis has been developed in the academic

computer music scene and has not found its way into commercial products so

far.

Physical Modeling Synthesis

Physical modeling (PM) is a whole class of synthesis methods that do not syn­

thesize sound based on an abstract mathematical description, like the Fourier

transform for additive synthesis or by classical signal processing means like

filtering for subtractive synthesis, but rather tries to model the diverse instru­

ments themselves: e.g. the bow, string and resonance corpus of a cello or the

plucking finger, string and body for an acoustical guitar.

There are many different physical modeling algorithms including relatively

simple ones like Karplus-Strong synthesis and rather complex ones like the

waveguide [67] approach which uses multiple delay lines (comb filters) to model

strings or air columns.

The biggest advantage of physical modeling is the real-time control it offers.

While other synthesis methods offer some algorithm specific and rather arbi­

trary control parameters like filter cutoff or modulation index, physical mod­

eling enables the use of control parameters that are more musical and have

a more complex influence on the timbre and phrasing. Examples for such

171

parameters are embouchure or tonguing.

Another, advantage of P M is that the sound generation is context sensitive:

a note on a clarinet model will sound different if it is played with legato

binding to its predecessor or with a little pause in between. The dependency

is much more complex than with the traditional synthesizer portamento or

glide function. Another example: the pitch bend of a clarinet patch will not

just linearly shift the frequency of the note, but the synth will respond in a

similar way to a real clarinet, i.e., it will shift the frequency and timbre for a

while but then jump to the octave.

P M has its disadvantages though: Instrument models have to be designed with

great care and a lot of knowledge of both instrument acoustics and the nec­

essary math. On the available P M instruments by Korg and Yamaha, editing

is only possible via macro parameters of the otherwise hard coded instrument

models, probably the only practicable way to provide sound programming to

the "normal" user.

• Karplus-Strong Synthesis

This synthesis method uses a percussive sound, like a noise burst or a single

pulse, which excites a delay unit with feedback. If the feedback is high enough

(90-99%) an exponentially decaying sound with definite pitch will result. It is

the delay time that determines the pitch in this case. To be exact the delay

time equals the period of the resulting periodical wave. This synthesis method

is particularly well suited for emulating plucked strings and other percussive

harmonic sounds. To make the decay more realistic, one can include a low-pass

filter in the feedback path, so that higher harmonics are damped faster.

172

Karplus-Strong synthesis is actually a very simple form of physical modeling

and shares the most important physical modeling advantage: since the perr

cussive sound acts as an exciter for the delay loop that produces the harmonic

sound, one can change the plucking/fingering of the model-led string by chang- >

ing the percussive sound, and change the string by controlling the delay line

parameters.

• Modal Synthesis

This synthesis techniques uses a bank of resonators with individually ad­

justable frequencies and dampings, which is driven by some input signal.

Non-harmonic percussive instruments such as bells and marimba have been

successfully modeled with this technique [20]. For general musical instrument

synthesis this technique has the disadvantage that a resonator is needed for

every partial, and the partials are spaced linearly for most musical instru­

ments, with the exception of non-harmonic percussive instruments like bells.

The many resonators needed leads to a large computational cost, which can

be avoided by using waveguides or comb filters, which by themselves already

have a complete harmonic spectrum and are therefore better building blocks.

1 7 3

