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Abstract 

Given the complexity of the domains for which we would like to use computers as reason
ing engines, an automated reasoning process w i l l often be required to perform under some 
state of uncertainty. Probabi l i ty provides a normative theory wi th which uncertainty can 
be modelled. Wi thout assumptions of independence from the domain, naive computations 
of probabili ty are intractible. If probability theory is to be used effectively in A I applica
tions, the independence assumptions from the domain should be represented explicitly, and 
used to greatest possible advantage. One such representation is a class of mathematical 
structures called Bayesian networks. 

This thesis presents a framework for dynamically constructing and evaluating Bayesian 
networks. In particular, this thesis investigates the issue of representing probabilistic 
knowledge which has been abstracted from particular individuals to which this knowl
edge may apply, resulting in a simple representation language. This language makes the 
independence assumptions for a domain explicit . 

A simple procedure is provided for bui lding networks from knowledge expressed in this 
language. The mapping between the knowledge base and network created is precisely 
defined, so that the network always represents a consistent probabili ty distr ibution. 

Final ly , this thesis investigates the issue of modifying the network after some evaluation 
has taken place, and several techniques for correcting the state of the resulting model are 
derived. 
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Chapter 1 

Introduction 

Given the complexity of the domains for which we would like to use computers as reasoning 
engines, and the complexity of our world in general, an automated reasoning process will 
often be required to perform under some state of uncertainty. For example, in applications 
which perform some kind of diagnosis, a single fault or abnormal behaviour may be the 
direct result of many factors, and determining which factor is responsible usually involves 
choosing a best hypothesis from amongst many alternatives. 

Probabilistic analysis is one means by which the uncertainty of many interesting domains 
can be modelled. 

Probability provides a normative theory with which uncertainty can be modelled. Without 
assumptions of independence from the domain, naive computations are quite intractable. 
For example, suppose we have five random variables, {A, B, C, D,E} 1 and we wanted 
to calculate p(A). Without assuming any independencies, we would have to perform the 
following summation: 

p(A) = J2 p(AABACADAE) 
B,C,D,E 

which sums p(A ABACADAE) over every possible combination of the values taken by 
the random variables {B, C, D, E}, possibly an exponential number of probabilities. By 
exploiting independence assumptions for particular domains, we can drastically improve 
the complexity of such computations. 

*I denote random variables as upper case math italics. If X can take on a set of multiple values, I will 
write them in lower case, as in {xi,... ,xn}. If Y is propositional, I will write +y for true and ->y for 
false. More syntactic conventions will be clarified in later sections. 

1 
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If probability theory is to be used effectively in A l applications, the independence as
sumptions from the domain should be represented explicitly, and used to greatest possible 
advantage. One such representation is a class of mathematical structures called Bayesian 
networks. 
This thesis presents a framework for dynamically constructing and evaluating Bayesian 
networks. The remainder of this chapter will outline the basic theory of Bayesian networks, 
motivate the approach taken in this thesis, and outline the main issues discussed in future 
chapters. 

1.1 B a y e s i a n N e t w o r k s 

Bayesian networks are known by many names. They are also called belief networks and 
causal probabilistic networks. I will refer to them as Bayesian networks, emphasizing the 
fact that they are based on the assumptions of Bayesian probability. A related network 
formalism, which subsumes Bayesian networks, is known by the name influence diagram. 
This section briefly introduces Bayesian networks; for a more thorough treatment, see Pearl 
[Pearl, 1988]. For a good introduction to Bayesian probability, see [Lindley, 1965]. 

A Bayesian network is a directed acyclic graph2 (DAG) which represents in graphical form 
the independence assumptions of the probability distribution for a set of random variables. 
Nodes in the graph represent random variables, and the arcs connecting the nodes represent 
the notion of direct dependence: if a random variable A, represented in the graph by a, 
is known to be directly dependent on the random variable B, represented in the graph by 
node b, an arc is drawn from b to a. The direction of the arc is often associated with the 
notion of causality, directed from cause to effect. 

The set of variables deemed to have direct causal or influential effect on a random variable 
X are called the parents, or conditioning variables, of X; these are denoted in this thesis 
by parents(X). 

The strength of the direct dependency relation is quantified by a contingency table, which 
are a complete specification of the conditional probabilities associated with a random 
variable and its parents. Denoted p(X\parents(X)), this table specifies the effect of each 
combination of the possible outcomes of parents (X) on X. 

2 A directed acyclic graph is a graph with directed arcs such that no path following the arcs can lead 
from a node to itself. For introductory presentation of graph theory, see [Aho et al., 1974]. 
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The conditional independence assumptions for the domain are represented explicitly in 
Bayesian networks, and using these assumptions, probability calculations can be performed 
more efficiently than the naive computation, requiring much fewer prior probabilities. 

A Bayesian network, as Pearl [Pearl, 1988] argues, is a natural, intuitive framework for 
writing down knowledge about a domain taking into consideration the ideas of likelihood, 
relevance, dependency, and causality. These ideas help to provide guidelines for creating 
networks for particular domains, as I will outline in Chapter 3. 

A node in the network represents a random variable, which is used to represent possible 
outcomes, events, or states in the domain. For instance, we could represent the possibility 
of an earthquake happening by using a random variable, E, which takes on two values: 
{+earthquake, -iearthquake}, or perhaps for simplicity, {true,false}. 

The following example is borrowed from Pearl [Pearl, 1988]: 

Example 1.1—1: 
Mr Holmes receives a telephone call from his neighbour, Dr Watson, who states 
that he hears the sound of a burglar alarm from the direction of Mr Holmes' 
house. While preparing to rush home , Mr Homes recalls that Dr Watson is a 
tasteless practical joker, and decides first to call another neighbour, Mrs Gib
bons, who,despite occasional drinking problems, is far more reliable. Mr Holmes 
remembers reading in the instruction manual of his alarm system that the de
vice is sensitive to earthquakes, and can be accidentally triggered by one. He 
realizes that if an earthquake had occurred, it surely would be on the news. 

Figure 1.1 shows a a Bayesian network which explicitly represents the independence as
sumptions for our example. The network corresponds to the following equality: 

p(Alarm A Burglary A Earthquake A Gibbons A Newsreport A Watson) 
= p(Alarm\Burglary A Earthquake)p(Gibbons\Alarm)p(Watson\Alarm) 

p(Newsreport\Earthquake)p(Burglary)p(Earthquake) 
This factorization is possible because of the conditional independence assumptions for this 
example. Note that this equation makes no assumption about the values taken by the 
random variables; it is true for any of the possible combinations. 

Table 1.1 shows the contingency tables required for the network in Figure 1.1. 

A Bayesian network with at most one path between any two nodes (ignoring the directions 
of the arcs) is said to be singly connected, and possesses conditional independence proper
ties which are exploitable computationally. Multiply-connected Bayesian networks, that 
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Figure 1.1: A small Bayesian network. 
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p(Alarm\Burglary A Earthquake) 
+burglary -iburglary 

+earthquake 0.95 0.15 
-^earthquake 0.95 0.01 

p(Newsreport Earthquake) 
-^-earthquake 0.95 
-^earthquake 0.001 

p(Watson\Alarm) 
+alarm 0.80 
-lalarm 0.45 

p(Gibbons\Alarm) 
+alarm 0.60 
-+alarm 0.25 

p(Burglary) 0.10 p(Earthquake) 0.08 

Table 1.1: The contingency tables for the network in Figure 1.1. 

is, Bayesian networks with multiple paths between at least one pair of nodes, are more 
general, and have fewer exploitable independencies. This topic will be discussed in more 
detail in Chapter 4. 

The graphical representation is used in various ways to analyze a problem probabilistically, 
as Section 1.3 outlines. It is important to emphasize that the arcs in the graph are used as 
guidelines for computation, and without the conditional independence assumptions which 
are represented by the arcs in Bayesian networks, probabilistic analysis would be wildly 
impractical. 

1.2 A d y n a m i c a p p r o a c h t o u s i n g B a y e s i a n n e t w o r k s 

1.2.1 Motivation 

Bayesian networks used in typical applications represent static probability models; that 
is, while the networks are designed to accept conditioning based on observations, they 
typically do not change their structure. Consider the example in Figure 1.1. This network 
can only be used as a model of the particular situation for which it was created, and cannot 
be used, say, to tell us how likely it is that a burglary occurred given that Holmes' third 
neighbour Bob (who is not represented at all in the network) calls up with a report that 
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he hears an alarm. 

In order to incorporate Bob in the model, we have to add a node representing Bob's report 
and an arc between the node representing the alarm and our new node. 

Adding a single node and arc in this situation is conceptually a simple matter, but it 
required knowledge: we, the users of the system, needed to know that the independence 
assumption for the random variable representing Bob's report is reasonable, and that no 
other events of interest might cause Bob to report an alarm. As well, we needed to know 
how Bob's report depends on the event that Holmes' alarm sounded. That is, we needed 
to know the contingency table p(Bob\Alarm). 

This example demonstrates the kind of modification to the network structure that this 
thesis intends to address. However, the example is much too simple, for two reasons: 
First, we need no special training to gain expertise in this toy domain. Second, the 
example required very little expertise at building Bayesian networks, certainly no more 
than the intuition a novice might use, to add the new information. 

For more complicated domains, a user may have trouble adding nodes and arcs to a 
Bayesian network because she is not an expert in the domain. However, it may be the 
case that we are using a Bayesian network application precisely because we are not experts, 
for consultation purposes perhaps. If, in fact, we know which new aspects of our domain 
ought to be incorporated in our model, but are not able to change the network suitably, 
then the application is useless for our situation. 

There are at least three ways to address the static model problem. One way is to ask 
the domain expert for a revision to the network when the need arises. The second is 
for the domain expert to detail the domain so exactly that the need to add arcs never 
arises. A third way is to automate the process of building Bayesian networks so that the 
expert's knowledge can be accumulated in a knowledge base before hand; this generalized 
knowledge could then be retrieved and applied whenever a user determines the need. 

This thesis examines the third approach—automating the process of building Bayesian 
networks from a background knowledge base of generalized probabilistic information. This 
approach adds flexibility to Bayesian networks applications, and tends to keep the networks 
required reasonably small. 
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1.2.2 The approach 

Domain knowledge can be divided into: 

individuals: entities in the domain of interest 

possible properties: the properties an individual may have and the relationship between 
these properties 

observed state: the properties an individual does have 

In traditional approaches, a knowledge engineer, perhaps in consultation with a domain 
expert, is responsible for knowing the individuals to be included in the domain, and the 
properties these individuals may have. In other words, the knowledge engineer must build 
the network. The user is responsible for supplying information as to the actual state of 
the situation (i.e. the properties some of the the individuals do have). This division of 
knowledge is demonstrated figuratively in Figure 1.2a. 

In contrast, the dynamic approach taken in this thesis divides the knowledge differently. 
The knowledge engineer provides a background knowledge base relating properties with
out specifying the particular individuals. The user supplies two kinds of information: the 
individuals known to be in the domain, which the dynamic system will use to build an 
appropriate network automatically, and the observations pertaining to the state of the 
model. This is figured in Figure 1.2b. In this way, the same background knowledge can 
be used to model different situations in which only the set of individuals under consider
ation changes. In the traditional approach, such changes would have to be made by the 
knowledge engineer.3 

The dynamic approach provides a flexibility previously unrealized in Bayesian network 
applications. 

1.2.3 The realization of this approach 

To automate the process of building Bayesian networks, we need two steps. First, we 
need to be able to represent domain knowledge which is abstracted away from particular 

3The knowledge engineer-user distinction made here is deliberately simplified. In many cases, the user 
of dynamic system like the one presented in this system may also be the knowledge engineer. No principle 
prohibits the user from modifying the knowledge base, but in doing so, the user switches roles. 
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(a) Traditional 

Dependencies j 

• \ 
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Knowledge Engineer User 
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Individuals Observations 
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Figure 1.2: A division of probabilistic knowledge. 
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individuals. Second, we need to be able to bui ld a network from this knowledge based on 
the information we can gain from the user. 

The first step corresponds roughly to knowledge of possible properties (as in Section 1.2.2), 
which we elicit from the domain expert. These properties are modelled wi th random vari
ables, and to abstract away from particular individuals, parameterized random variables 
(PRVs) are used. The knowledge engineer supplies the relationships between P R V s in the 
form of a background knowledge base. 

The second step corresponds roughly to knowing the individuals that are to be considered 
in the model, and which the user can supply at the time of consultation. The system 
combines these two kinds of knowledge automatically, to create a Bayesian network for 
the situation the user has specified. The user can then consult the system, supplying the 
information about the observed state of the domain, and querying the network as necessary 
to obtain the inferred probabilistic analysis. 

It may arise that, as the user is working wi th the system, some individuals become known 
after a network has already been constructed, and after observations have been submitted 
to the network. The user is able to supply this information to the system, and the system 
is able to use this information and modify the network structure appropriately. 

1.3 R e l a t e d w o r k 
In this section, I w i l l provide a brief introduction to some of the related work done on 
Bayesian network technology. In particular, I w i l l introduce various methods used to 
evaluate Bayesian networks, and review similar notions of dynamic Bayesian networks 
presented by Goldman and Charniak [1990], and Breese [1990]. 

1.3.1 Inference using Bayesian networks 

There are several methods by which Bayesian networks are used to calculate probabili
ties. A more comprehensive discussion of much of the following w i l l be presented in later 
chapters. 

Pearl [Pearl, 1988] treats singly connected Bayesian networks as networks of communicating 
processes. The processes use arcs to propagate causal and diagnostic support values, which 
originate from the activation of evidence variables. 
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Lauri tzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988] perform evidence absorp
t ion and propagation by transforming the Bayesian network into a triangulated undirected 
graph structure. Posterior probabilities are computed using specialized computations based 
on this graph. 

Shachter [Shachter, 1988] uses the arcs to perform arc reversals and node reduction on the 
network. Evidence absorption and propagation can also be performed using arc reversals 
and node reductions as well [Shachter, 1989]. 4 

Poole and Neufeld [Poole and Neufeld, 1989] provide an axiomatization of probabili ty the
ory in Prolog which uses the arcs of the network to calculate probabilities using "reasoning 
by cases" wi th the conditioning variables. The prototype implementation of my approach 
is based (but not dependent) on this work. 

1.3.2 Other work on dynamic construction of Bayesian net
works 

During the wri t ing of this thesis, several authors have presented similar work on building 
Bayesian networks from schematic knowledge collected in a knowledge base. Goldman 
and Charniak [Goldman and Charniak, 1990], and Breese [Breese, 1990] have developed, 
independently of the work presented in this thesis, similar theories of dynamic Bayesian 
networks. Since their work is very similar to this approach (and each other's), I w i l l treat 
their work more deeply in following sections. 

Laskey [Laskey, 1990] presents a framework for using dynamically created Bayesian net
works in a reasoning system based on a hierarchical approach. Knowledge in the form of 
probabilistic schemata are used to form an argument, which is transformed into a Bayesian 
network. Conclusions or conflicting evidence which defeat the argument trigger knowl
edge in the schemata, forming an augmented argument. This process proceeds unti l no 
conflicting arguments are found. 

A quite different approach to creating Bayesian networks involves the statistical analysis of 
case data. Pearl [Pearl, 1988] provides a good introduction to the process, which identifies 
dependencies and independencies. This area of research is current, but essentially unrelated 
to the methods presented in this thesis. 

4Shachter's influence diagrams contain decision and test nodes, as well as other devices not being 
considered in this thesis. This thesis only looks at probabilistic nodes. 
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Goldman and Charniak 

Goldman and Charniak [Goldman and Charniak, 1990] describe a knowledge-based ap
proach to bui lding networks dynamically, as part of a story understanding application. 
A forward-chaining inference engine takes information in the form of propositions and 
builds a network according to rules in the knowledge base. These rules provide ways to 
combine the influence of different causes on common effects by providing specialized func
tions for the domain and by taking advantage of the occasions in which causes interact 
stereotypically. 

When the bui lding process is complete, an evaluation of the network takes place, and the 
network is simplified by accepting as true those statements which are highly probable, and 
rejecting those propositions which are considered too improbable. Simplifying the network 
in this way may lead to additional modification of the network. 

Breese 

The work done by Breese [Breese, 1990] on building Bayesian networks bears many similar
ities to Goldman and Charniak's work. Breese's approach includes the use of such decision 
analytic tools as value nodes and decision nodes, which are part of the influence diagram 
model. 

Knowledge is stored in a hybrid knowledge base of Horn clause rules, facts, and probabilistic 
and informational dependencies. The rules and facts are used to determine some of the 
probabilistic events which should be included in the model. The probabilistic dependencies 
are used to structure the network once it is determined which nodes ought to be included. 
Furthermore, these dependencies may identify other events which might play a part in the 
model, but are not definitely determined by the Horn clause rules. 

The bui lding process is started by the query entered by the user of the system, who also 
includes given information and evidence for the problem. The first step of the process is to 
determine the events which directly influence the query. Backward chaining through the 
probabilistic dependencies and the Horn clause rules identifies many nodes and arcs to be 
included in the model. Once this process stops, a forward chaining process identifies those 
events which are influenced by the nodes in the partial network from the previous step. 



1. Introduction 12 

Discussion 

There are many similarities in the approaches of Goldman and Charniak, and Breese. Both 
systems create Bayesian networks as a secondary reasoning tool after a primary inference 
engine determines which nodes to consider, and which dependencies to include in the 
network. In this respect, knowledge about the domain is found in two separate knowledge 
bases: the rules used to create the Bayesian networks, and the network itself. 

In contrast, the approach taken in this thesis uses only one knowledge base, and provides 
only a simple process by which Bayesian networks can be created using this knowledge. 
This approach is much simpler, and precisely defines the mapping between the knowledge 
base and the networks which can be created. 

Both approaches by Goldman and Charniak, and Breese could be used to implement the 
ideas presented in this thesis: the rule bases in both systems could be used to implement 
dynamic Bayesian networks as this thesis presents them. However, this thesis presents 
only a language for representing general probabilistic knowledge, and a simple process for 
creating Bayesian networks using this language; no work has been done herein on allowing 
another program to use this language to create networks as a sub-task. 

1.4 T h e m a i n c o n t r i b u t i o n s o f t h i s t h e s i s 

This thesis investigates the issue of representing probabilistic knowledge which has been 
abstracted from the knowledge of particular individuals, resulting in a simple representa
tion language. 

As well, a simple procedure for building networks from knowledge expressed in this lan
guage is provided. The mapping between the knowledge base and network created is 
precisely defined, so that the network always maintains a consistent probability distribu
tion. 

Finally, this thesis investigates the issue of modifying the network after some evaluation 
has taken place, and several techniques for correcting the state of the resulting model are 
derived. 
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1.5 An outline of this thesis 

In Chapter 2, dynamic Bayesian networks are presented formally. 

The major c la im in this thesis is that Bayesian networks can be dynamic, flexible, and 
simple to use. I demonstrate the abil i ty of my implementation in Chapter 3, thereby 
giving evidence for my cla im. I apply my approach in such diverse areas as simple decision 
problems, diagnosis of multiple faults, and interpretation of sketch maps. 

In Chapter 4 I briefly discuss the details of adapting the various evaluation algorithms to 
make use of dynamic Bayesian networks. 

Final ly , in Chapter 5 I conclude that the approach to Bayesian probabili ty demonstrated 
here is useful in domains for which a priori knowledge is of a general nature, and for which 
specific details are most conveniently provided during the reasoning or decision-making 
process. 



Chapter 2 

Dynamic Bayesian networks 

In order to make Bayesian networks versatile and reasonably manageable in terms of size, 
I have argued for an approach which creates networks by instantiating generalized proba
bilistic knowledge for the individuals known to be in the model. Thus, when information 
about new individuals is discovered, the system itself should be able to modify the net
work, by combining the new information about individuals with the knowledge found in a 
background knowledge base created by a domain expert. 

This chapter first presents a simple and declarative language for expressing probabilistic 
knowledge, which I demonstrate is too unconstrained for the purpose of providing a precise 
framework for creating and modifying Bayesian networks dynamically. This language is 
restricted to remove the possibility of ambiguous knowledge, and then augmented with 
special purpose constructs which are based on Canonical Models of Multicausal Interac
tions, as described in Pearl [Pearl, 1988]. The resulting language is shown to be at least as 
expressive as Bayesian networks, and flexible enough to provide a tool for modelling many 
kinds of domains. 

I conclude this chapter by outlining a simple procedure to create Bayesian networks from 
a knowledge base of statements in this language. 

2.1 T h e b a c k g r o u n d k n o w l e d g e b a s e 

Dynamic Bayesian networks are created from a parameterized background knowledge base 
of schemata by combining it with individuals who are known to be part of the model. This 

14 
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section presents the syntax of the parameterized knowledge base, and describes the process 
of instantiating schemata for individuals. 

2 . 1 . 1 Schemata 

It is necessary to represent parameterized probabilistic knowledge unambiguously, so that 
the intended meaning of this knowledge is apparent from the syntax. In particular, the 
statements in our language must clearly show how the parameters are to be instantiated, 
and how the resulting instantiation is used in the Bayesian network built from this knowl
edge base. 

A n atom is any alphanumeric string beginning wi th a letter. A parameter is represented by 
a capitalized atom. A n individual is represented by a lower case atom. A random variable 
is an atom followed by a possible empty list of individuals; for convenience, an empty list 
is usually dropped from the random variable notation. Random variables take values from 
a finite set of discrete values called the range, and in many cases we use binary-valued 
random variables, which take {true.false} as values. 

A parameterized random variable ( P R V ) abstracts the notion of a random variable away 
from any particular individual ; it is represented as a lower case atom with a list of parame
ters, each of which stands in place of an individual . Instantiating a parameterized random 
variable replaces a l l the parameters wi th individuals, creating a random variable. 

Associated wi th parameters and individuals is a corresponding type, which constrains the 
instantiation of a parameter to only individuals of the associated type. 

A schema is the fundamental statement in this language. The syntax for a schema is as 
follows: 

a i , . . . , a n — • b 

: = [ u i , . . . , Ufc] 

where b, a,- are parameterized random variables. The left hand side of the arc (—•) is a 
conjunction of P R V s (called the parents), which directly influence the single P R V (called 
the child) on the right hand side. The list [vi,..., vk] is a short-hand notation which lists 
the probabilities for the contingency table corresponding to the schema. Recal l that a 
contingency table must have a probability for each combination of values for the P R V s . 
The short-hand list orders these probabilities by varying each parent over its set of values 
wi th the left-most parent varying most quickly. This list contains 2 n probabilities when 
the a ; are binary-valued, and even more when any have more than two possible values. 
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In a collection (or knowledge base) of schemata, a P R V can occur any number of times 
as a parent for some other P R V , but may occur as the child in only one schema. This 
restriction is intended to simplify the task of wri t ing schemata: keeping the list of parent 
P R V s in one schemata localizes relevant knowledge to one statement, and a knowledge 
base is easier to maintain. 

A schema is instantiated when al l P R V s in the schema have been instantiated. In the 
scope of a single schema, parameters shared across P R V s are instantiated wi th the same 
individual . The instantiated schema is used to bui ld new arcs in a Bayesian network by 
creating a node for each random variable, and directing an arc from each parent variable 
to the child variable. 

For example, the schema: 

alarm — • reports_alarm(X: person) 
:= [0.9,0.01] 

might occur in a knowledge base for the alarm example, of Chapter 1. It specifies a single 
parent P R V , alarm, which has no parameters, and a child variable, reports_alarm(X:person), 
which has a single parameter, X. Only individuals of the type person can be used to 
instantiate this schema. In this example (as in most of the simple examples in this chapter, 
unless otherwise stated), the P R V s are assumed to take values from {true, false}. 

This example should be interpreted as representing the idea that an alarm might be re
ported by a person, and explici t ly assumes that only the presence or absence of an alarm 
sound has direct affect on the report the person might make. 

The two numbers in square brackets give the contingency table for this schema, stating 
consisely the following two probabilities: 

p(reports_alarm(X)| alarm) = 0.9 

p(reports_alarm(X)| -lalarm) = 0.01 

These numbers quantify the effect of the parent variables on the chi ld variable. Note that 
the probabilities 

p(-ireports_alarm(X)| alarm) = 0.1 

p(->reports_alarm(X)| -lalarm) = 0.99 
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can be inferred by the Negation axiom of probability theory. 

Discussion 

When instantiated, each schema of the form • 

a i , . . . , a n — • b 

corresponds to a conditional probabili ty of the form p(b\a\,... ,an) Creating a Bayesian 
network from these schemata corresponds to bui lding an expression for the joint probability 
distr ibution from these conditional probabilities. Thus, the intended use of these schemata 
is always well defined. 

Example 2.1-1: 
Consider the following schema: 

alarm —> reports_alarm(X: person) 

:= [0.9,0.01] 

When instantiated wi th the set person = {John, mary}, the Bayesian network 
in Figure 2.1 is created, which represents the following expression for the joint 
probabil i ty distribution: 

p(Alarm A Reportsjxlarm(john) A ReportsMlarm(mary)) 
= p(Alarm) p(Reportsjalarm(john)\Alarm) p(Reportsjalarm(mary)\Alarm) 

This simple declarative language is at least as expressive as Bayesian networks. This 
can be shown by taking a Bayesian network and wri t ing it in terms of unparameter-
ized schemata. The direct and unambiguous correspondence between unparameterized 
schemata and Bayesian networks is obvious. Add ing parameters to the language allows us 
to express knowledge which can be used several times by instantiating them differently. 

However, the correspondence between the knowledge base and the Bayesian networks which 
can be constructed from it is no longer guaranteed to be unambiguous. These ambiguities 
arise as a direct result of attempting to parameterize probabilistic knowledge, as we shall 
see in the next section, and are easily restricted. 
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Figure 2.1: The Bayesian network created in Example 2.1-1. 

2.1.2 Ambiguities in schemata 

In the previous section, it was mentioned that allowing parameterized knowledge in our 
language could lead to ambiguous knowledge bases. In this section the possible ambiguities 
are il lustrated and a simple constraint is imposed on the language to remove possible 
ambiguities. 

It is useful to examine three extremes which can be attained when wri t ing schemata in 
parameterized form, in order to bring to light the issues of parameterizing conditional 
probabili t ies. 1 These extremes can be labelled as: 

Unique schemata: every instantiation creates a set of random variables which no other 
instantiation of the same schema shares 

Right—multiple schemata: different instantiations may create child variables which have 
identical parent variables 

Left-multiple schemata: different instantiations may create different parents for a sin
gle child variable 

We w i l l look at each one of these in detail in the following sections. It is worth mentioning 
that in general, schemata may exhibit the characteristics of several of these extremes. 

As well, identifying these extremes will be helpful in the discussion of Chapter 4. 
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Figure 2.2: The network created by instantiating the parameterized unique schemata from 
Section 2.1.2. 

Unique schemata 

These are parameterized schemata in which every parameter in the parent variables (on 
the left side) also occurs in the child variable. For example: 

a(X,Y),b(X,Y) — c(X,Y) 

This is called unique because every instantiation of X, Y creates a unique dependency 
between parents and chi ld . If, for example, we instantiate X wi th {x i , X2} and Y wi th 
{yi}, we get two distinct sets of arcs in our network, as in the network of Figure 2.2. 

There are no ambiguities which result from unique schemata. 

Right—multiple schemata 
These are schemata in which parameters occurring in the child variable do not appear in 
the parent variables, and al l other parameter in the schemata occur on both sides. For 
example: 

a,b — c(X,Y) 

Each instantiation of X and Y results in a new child variable which may share parents with 
other instantiations of the schema. If we instantiate X wi th {x^ X2} and Y wi th {y i} , we 
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Figure 2.3: The network created by instantiating the parameterized right-multiple schema 
from Section 2.1.2. 

obtain the dependencies shown in the network of Figure 2.3. 

No ambiguities arise as a result of right-multiple schemata. 

Left-multiple schemata 

These are schemata in which some parameters occurring in the parent variables do not 
occur in the child variable. For example: 

a(X) —-> c 

Each instantiation adds a parent for the child variable. For example, if X is instantiated 
with {xi, X2, . . . , x n}, we get the dependencies shown in the network of Figure 2.4. 

This kind of schema is ambiguous as there is no way to know, when the schema is written 
down, how many instantiations of the parent variables could be needed. However, since 
we must provide a contingency table which can be used in numeric calculations, we must 
supply a contingency table for every possible number of instantiations. This is clearly 
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Figure 2.4: The network created by instantiating the parameterized left-multiple schema 
from Section 2.1.2. 

impossible. Even putt ing a bound on the number of possible instantiations is impractical 
because of the fact that the size of each contingency table is exponential in the number of 
parent variables. 2 

Summary 

This simple language of conditional dependencies is at least as expressive as Bayesian net
works. Parameterizing these schemata adds flexibility to the language, but also introduces 
possibilities for ambiguous knowledge. 

The ambiguities arising from left-multiple schemata (or hybrid schemata which have their 
characteristic) is an issue of pragmatics, and one possible solution is to disallow left-
multiple schemata from our language. This restriction should be taken as much the same 
kind of restriction prohibit ing left-recursive programs in Prolog, for example. 

The resulting restricted language now lacks the abil i ty to combine an arbitrary number 
of causes (or influences) into a single common effect. The next section presents two con
structs which help to redress this deficiency without reintroducing ambiguities or requiring 
unreasonable numbers of contingency tables. 

2In fact, if we were solely concerned with qualitative statements of dependency, this ambiguity would 
not be a problem. 
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2.2 C o m b i n a t i o n n o d e s 

The main problem which arises from the ambiguity of left-multiple schemata is that the 
number of instantiations of the parent variables required for a particular consultation is 
unknown at the time the knowledge base is being created. If we assume that these instances 
combine their effects in the domain in a simple and regular manner, providing the required 
contingency table is only a matter of enumerating the instances. 

In the following sections, two constructs are presented which assume a simple and regular 
combination of the effects of an indeterminate number of parent variables on a single child 
variable. Briefly, these are: 

Existential Combination: i f one of the parent variables takes true, the child variable 
takes the value true. 

Universal Combination: i f a l l of the parent variables take the value true, the child takes 
the value true. 

These two are currently used in the language, but similar structures, exploit ing some other 
regularities, might be added. For example, a combination mechanism could be defined 
corresponding to the notion that exactly one parent variable (out of many) is true. The 
two discussed in this section are based on the noisy-or and noisy-and gates as described 
in Pearl [Pearl, 1988]. 

2.2.1 Existential Combination 

This combination is intended to be used when it is known that any one of a number of 
conditions is l ikely to affect another variable. 

The syntax of this structure is as follows: 

3 X 6 type-a(X) —• b 

where a(X), b are binary P R V s , and X is a parameter of type type. The variable b depends 
on the variable 3X € type • a(X), which is a binary P R V dependent ( implici t ly) on every 
instantiation of a(X). 
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The contingency table p(b\3X G type • a(X)) for this schema is given in square brackets, 
and is provided by the knowledge engineer in the knowledge base. The contingency table 
for p(3X G type • a(X)\a(X)) is automatically generated by the system and takes the form 
of an O r table based on each instantiation of a ( X ) . 

Example 2.2-1: 
People who smell smoke may set off a fire alarm, and the alarm actually making 
a noise depends on at least one person sounding the alarm. Anyone who hears 
an alarm is likely to leave the bui lding in which the alarm is found. Fire is a 
likely cause for someone smelling smoke. 

fire — • smel ls -smoke(X) 

:= [0.7,0.2] 

smel ls -smoke(X) — • sets_off_alarm(X) 

:= [0.95,0.01] 

3 Y G person • sets_off_alarm(Y) — • alarm-sounds 

:= [0.98,0.1] 

alarm-sounds — • leaves_building(Z) 

:= [0.7,0.4] 

Suppose we are given that John and mary are the only known members of the 
set person. Th i s information combined wi th the above schemata creates the 
network shown in Figure 2.5. 

The combination node combines the effects of a l l known members of the set. In the 
preceding example, it is not unreasonable to expect that some unknown person has set off 
the alarm, and this possibility is granted in the contingency table for 
3Y G person • sets -of f-alarm(Y): 

p(alarm_sounds| 3 Y G person • sets_off_alarm(Y)) = 0.98 

p(alarm_sounds| ->3Y G person • sets_of f .a larm(Y)) = 0.1 

The first probabili ty indicates that wi th high probability, i f a person sets off the alarm, 
the fire alarm w i l l make a noise. The second number indicates that wi th low probability, 
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the alarm w i l l sound when no known member of the set person has set off the alarm. This 
includes the possibili ty of a malfunction of the alarm, the possibility that some person 
unknown to the system has set off the alarm, as well as other unknown causes. There is 
no facility in our language for making hypotheses for these unknown causes. 

2.2.2 Universal Combination 

This combination is intended to be used when it is known that every one of a number of 
conditions must hold to affect another variable. 

The syntax of this structure is as follows: 

VXetype-a(X) —-> b 
:= [«I,M2] 

where a(X), b are binary P R V s , and X is a parameter of type type. The variable b depends 
on the variable VX G type • a(X), which is a binary P R V dependent ( implici t ly) on every 
instantiation of a(X). 

The contingency table p(b\VX £ type • a(X)) for this schema is given in square brackets, 
and is provided by the knowledge engineer in the knowledge base. The contingency table 
for p(VX € type • a(X)\a(X)) is automatically generated by the system and takes the form 
of an And table based on each instantiation of a(X). 

Example 2 .2-2: 
A board meeting for a large corporation requires the presence of a l l board mem
bers, and the meeting may result in some actions, say, buying out a smaller 
company. A board member may attend the meeting, depending on her relia
bi l i ty and state of health. 

VX € board-members • present(X) 

meeting 

healthy(X),reliable(X) 

— • meeting 
:= [0.8,0.1] 
— • buy-out 
:= [0.7,0.3] 
— • present(X) 
:= [0.9,0.4,0.6,0.1] 
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Figure 2.5: The Bayesian network created for Example 2.2-1 
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We note that at the time the schemata are written, it is not important to know 
how many board members there may be. However, we must know exactly who 
is a member on the board before the network can be created. Th i s informa
t ion is supplied at run-t ime, and the construction process can construct the 
appropriate network. Evidence concerning the reliabili ty and health of any 
board member can then be submitted to the network, providing appropriate 
conditioning for queries. 

2.2.3 Summary 

The combination nodes presented in this section are used to allow a number of conditioning 
P R V s to have direct influence on a single child P R V . The number of these conditioning 
variables is unknown when the knowledge base is created, and the user of the system 
can indicate as many instantiations as required in the model. The combination nodes 
effectively collect each relevant instantiation, and combines them using an or-rule for 
existential nodes, and an and-rule for universal nodes. 

These combination nodes have been implemented in the language, and another possibility 
would be to add a similar mechanism which performs a combination that exclusively selects 
a single individual as the causal agent. Others are possible in principle, but any similar 
mechanism should maintain the properties of being a simple and regular combination. 

2.3 C r e a t i n g B a y e s i a n n e t w o r k s 

Creating a Bayesian network from a knowledge base is a simple process. The in i t ia l state 
is a Bayesian network wi th no nodes and no arcs. 

The system takes every known individual (which was supplied by the user) and instantiates 
every schema which has a parameter of the corresponding type. W i t h i n a schema, sev
eral parameterized random variables may have shared parameters (i.e., parameters wi th 
the same name), and when the schema is instantiated, every occurance of the common 
parameter is replaced by a common individual . 

The instantiated schema relates random variables, and is interpreted by the system, adding 
nodes and arcs to the current Bayesian network. The system creates a node representing 
each random variable in the instantiated schema, and checks whether an identical node 
already exists in the network. If not, a node is entered into the network; i f a node already 
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exists in the network, it is not added again. An arc is directed from each node representing 
a parent random variable to the child variable. In this way, a complex structure can be 
created from a simple set of schemata. 

This procedure for creating Bayesian networks from parameterized knowledge could be 
used a number of ways. First, a user might be responsible for submitting the individuals 
of the model to the system, and then use the Bayesian network created by the system 
interactively. 

Alternatively, a higher level program might use the network creation/evaluation system as 
a sub-system, and submit individuals and make queries in order to perform some action 
or decision. 

The Influence implementation, described briefly in Chapter 3 and more extensively in 
[Horsch, 1990], can be used as a (somewhat simple) interface between the user and the 
system. It can also be used as a module for another program to manipulate. 



Chapter 3 

Using Dynamic Bayesian Networks 

In previous chapters, I presented the dynamic Bayesian network as a useful tool for reason
ing under uncertainty. Chapter 2 presented some simple examples showing the results of 
bui lding networks dynamically. Chapter 4 w i l l demonstrate that the dynamic constructs 
are independent of the method by which the posterior distributions are calculated. 

In this chapter, I demonstrate wi th some examples the usefulness of dynamic Bayesian 
networks. Since the examples are directly executable in the prototype implementation, 
the syntax for the In f l uence interpreter, presented in [Horsch, 1990], w i l l be used. I w i l l 
briefly introduce the syntax in the next section. 

The rest of this chapter is organized in the following way. The first example takes the 
domain of diagnosing faults in simple electronic circuits. The second example takes the 
domain of interpreting simple sketch maps, which is the domain of the Mapsee project at 
U B C [Mulder et al, 1978], and has been treated logically by Reiter and Mackworth [Reiter 
and Mackworth , 1989], and wi th default logic by Poole [Poole, 1989]. The thi rd example is 
borrowed from Breese [Breese, 1990]. A summary section concludes this chapter wi th some 
observations about how knowledge bases for dynamic Bayesian networks can be created. 

28 
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3.1 : A n i n t e r p r e t e r f o r d y n a m i c B a y e s i a n 
n e t w o r k s 

The Influence interpreter is an implementation of the techniques of this thesis, written in 
Prolog. Writing a knowledge base using this implementation has two parts: declaring the 
PRVs, and writing the schemata. The knowledge base is used within the implementation 
to create the networks and evaluate queries. 

3.1.1 Declarations 

Parameterized random variables (PRVs) are represented by Prolog terms, and must be 
declared as being binary, i.e., taking a value from {true, false}, or multi-valued, i.e., 
taking a value from a given list of mutually exclusive and exhaustive values. The syntax 
is: 

where the prvi are PRVs, and arity is the number of parameters the node has. For multi
valued PRVs, the list of values must be separated by commas. 

Several variables, separated by commas, can be declared at once using either declaration 
command. In the case of multi-valued nodes, the intention is to declare several variables 
all taking values from the same set. 

The / arity can be omitted in place of the direct specification of the parameters, or, if the 
node has no parameters, then an arity of zero is assumed. Within a PRV, parameters are 
represented by Prolog variables, i.e., atoms which begin with a capital.1 

A special declaration is required for PRVs whose dependence can be written functionally 
in terms of the values taken by its parents values. For example, we might want to use a 
PRV for the subtraction operation, such that: 

xThis is the first and last time that parameters will be referred to as any kind of variable. To reinforce 
the correct understanding, parameters for parameterized random variables in a knowledge base of schemata 
are implemented here as Prolog variables. 

binary prv\ I arity. 
multi prv2 I arity 9 [value-lisf] . 
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The following declaration is used: 

f u n c t i o n prv. 

A n y function for a P R V must be a function of the values taken by its parent's P R V s , as 
opposed to being a function of the individuals which may later instantiate the schema. 
The function itself is writ ten wi th the schema in which i t appears as the chi ld . Wr i t ing 
schemata is the topic of the next section. 

It is important to emphasize that the parameterized random variables which appear in 
these declarations are neither random variables nor nodes in the network. A P R V must 
be instantiated to become a random variable, as described in Chapter 2, and the network 
creating procedure w i l l create a node in the Bayesian network corresponding to the in
stantiated P R V . However, the phrase the node representing the instantiated parameterized 
random variable {prv} quickly becomes tiresome, and often w i l l be simply referred to as 
node. It should be clear by context whether the strict meaning of node is intended. 

3.1.2 Schemata 

Once the P R V s for a knowledge base are declared, the schemata may be writ ten. The 
syntax is simply: 

p-prv\, ... , p-prvn => c-prv 
• = Lpi,-..,Pfc] • 

which is interpreted as indicating that instantiations of this schema w i l l be used to create 
a Bayesian network such that arcs w i l l be directed from the nodes representing the parent 
P R V s to the node representing the child P R V . A restriction on schemata is that every 
parameter which appears in the list of parent P R V s must also appear in the child P R V ; 
in the terminology of Chapter 2, schemata are not allowed to be left-multiple. The list 
[ p\,..., pk ] is a short-hand notation which lists the probabilities for the contingency 
table corresponding to the schema. Recal l that a contingency table must have a probability 
for each combination of values for the P R V s . The short-hand list orders these probabilities 
by varying each parent over its set of values (in the order of the value list given in the 
m u l t i declaration) wi th the left-most parent varying most quickly. If the child P R V is 
declared as b i n a r y , only the case i n which the child P R V takes the value t r u e is specified. 
Otherwise, the parent P R V s are varied for each value of the child P R V . 
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For P R V s declared as f u n c t i o n , the syntax is: 

p-prvi, . . . . p-prvn => c-prv 
:= {y(c-prv=c-val, [p-prvi=pi-val, p-prvn=pn-val\) 

- i f test then vtrue e l s e V f a i s e }. 

where test is a Prolog condition, vtrue and Vfaise are numbers in [0,1]. The 

E x a m p l e 3.1—1: 

Suppose we wanted to model a decision for someone to attend a baseball game. 
Assume that a baseball fan w i l l almost certainly have lots of fun at the game 
if it doesn't rain, but may find something fun to do elsewhere. The more rain 
at the game, the less likely it w i l l be that the fan has a lot of fun. 

b i n a r y a t t e n d s ( X ) . 
m u l t i r a i n s @ [ n o n e , d r i z z l e , p o u r s ] . 
m u l t i has - fun(X) @ [ l o t s , l i t t l e ] . 

a t t e n d s ( X : f a n ) , r a i n s => h a s - f u n ( X : f a n ) 
:= [0.95, 0.5, 0.65, 0.5, 0.2, 0.5, 

0.05, 0.5, 0.35, 0.5, 0.8, 0.5] . 

The ordering of the contingency table (the list [0.95, . . . , 0.5]) is as follows: 

p(has — fun(X) = lots\attends(X) A rains = none) = 0.95 

p(has — fun(X) = lots\->attends(X) A rains = none) = 0.5 

p(has — fun(X) = lots\attends(X) A rains = drizzle) = 0.65 

p(has — fun(X) = lots\->attends(X) A rains = drizzle) = 0.5 

p(has — fun(X) = lots\attends(X) A rains = pours) = 0.2 

p(has — fun(X) = lots\-iattends(X) A rains = pours) = 0.5 

p(has — fun(X) — little\attends(X) A rains — none) = 0.05 

pihas — fun(X) = little\-iattends(X) A rains = none) = 0.5 

p(has — fun(X) = little\attends(X) A rains = drizzle) — 0.35 

p(has — fun(X) = little\-yattends(X) A rains = drizzle) = 0.5 

p(has — fun(X) = little\attends(X) A rains = pours) = 0.8 
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pihas — fun(X) = little\->attends(X) A rains = pours) = 0.5 

As an example of using function declarations, consider the following example, which 
models the probability of taking the sum of two six-sided dice: 

multi dl,d2 Q [1,2,3,4,5,6]. 
multi sum® [2,3,4,5,6,7,8,9,10,11,12]. 

d l , d2 => sum 
:= { p(sum=Z, [dl=X, d2=Y]) 

= i f (Z is X + Y) then 1.0 else 0.0}. 

3.1.3 Combination Nodes 

Existential and universal combination PRVs must be declared using the reserved PRV 
names exists and f o r a l l : 

binary exists (param, type.prv) . 
binary f o r a l l (param, type.prv) . 

where param is a parameter which occurs in the PRV prv and is of type type. Declared 
combination PRVs can be used in schemata as follows: 

exists (param, type, p-prv) => c-prv 
:= \.vi,v2] . 

Note that a combination PRV must be the only parent of a child PRV, and is necessarily 
a binary PRV. 

3.1.4 Creating networks 

Given a set of schemata, the interpreter needs to be given individuals to create a network. 
An individual can be specified by the following: 
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observe type(indiv, type). 

where indiv is the name of an individual , and type is the individual 's type. 

3 .1 .5 Queries 

Querying the Bayesian network consists of asking the interpreter to compute the probability 
of a conjunction of random variables given a conjunction of conditioning knowledge. The 
syntax is: 

p( [query-conjunction] , [conditioning-knowledge] ) . 

The interpreter w i l l return the determined value, repeating the query information. This 
part of the interpreter uses the Bayesian network evaluation techniques of Poole and 
Neufeld [Poole and Neufeld, 1989] modified for dynamic Bayesian networks as outlined 
in Chapter 4. 

3.2 D i a g n o s i s o f m u l t i p l e f a u l t s f o r d i g i t a l c i r c u i t s 
In this section, I present a simple Influence knowledge base which can be used to cre
ate a probabili ty model for any digi tal circuit containing and-gates, or-gates, and x o r -
gates. Th i s is a simplification of a common diagnostic domain [Reiter, 1987, de Kleer and 
Wi l l i ams , 1987, Pearl , 1988], but the purpose of this example is not to demonstrate a new 
diagnostic technique, but to show how Bayesian networks can be built dynamically based 
on a carefully designed knowledge base of schemata. 

Assume that digi ta l gates exhibit random but non-intermittent behaviour when they are 
broken, and that they have a prior probabili ty of being broken. A gate that is working 
correctly has an output that is dependent directly on the inputs to the gate. A s well, the 
behaviour of a gate is the only criterion for diagnosis. 

A gate is assumed to have two inputs, and to distinguish them, we w i l l label them wi th 
input port numbers, as in input(and\_gate(gl57) ,1). 

First we define the variables used in our domain, indicating the parameter types used: 2 

2 Because this example is useful pedagogically, it is broken into several pieces, with discussion intermin
gled with code. The complete source is found in Appendix A. 
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binary ok(Gate:gate). 
binary output(Gate:gate). 
binary input(Gate:gate, Port:port). 
binary exists(conn(Gl, G2, Port), connections, output(Gl)). 

The node ok(Gate) has the value true iff the gate is functional. The node output (Gate) 
is true iff the output of the gate is on, and similarly input (Gate, Port) is true iff the 
input to the indicated port of a gate is on. The existential node exists(conn(Gl, G2, 
Port), c o n n e c t i o n s , output (GI)) tells us there is a connection between the output of 
a gate and an input port to another gate. We use this parameter conn(Gl, G2, Port) 
to allow us to submit observations of the network structure to the system, allowing it to 
create the corresponding network. 

The behaviour of the gates is modelled wi th the following schemata: 

/ * and—gates * / 
ok(and_gate(G):gates), 
input(and_gate(G):gates,1), 
input(and_gate(G):gates,2) => output(and_gate(G):gates) 

:= [1,0,0,0,0.5,0.5,0.5,0.5]. 

/ * or—gates * / 
ok(or_gate(G):gates), 
input(or_gate(G):gates,1), 
input(or_gate(G):gates,2) => output(or.gate(G):gates) 

:= [1,1,1,0,0.5,0.5,0.5,0.5]. 

/ * xor—gates * / 
ok(xor_gate(G):gates), 
input(xor_gate(G):gates,1), 
input(xor_gate(G):gates,2) => output(xor_gate(G):gates) 

:= [0,1,1,0,0.5,0.5,0.5,0.5]. 

which states the assumptions about gates. The first four entries in the contingency table 
for each gate is s imply the truth table for the boolean expression associated wi th each type 
of gate. The last four entries, a l l 0.5, merely makes explicit the assumption that i f the gate 
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7 

Figure 3.1: A simple circuit. 

is not working correctly due to a malfunction, the output of the gate w i l l be on or off wi th 
equal probability. 

The topological connections between the gates is modelled using an existential combination: 

This schema has several interesting features. Firs t , the use of the connection triple ensures 
that the output of the gate G I is associated wi th the input of the gate G 2 according to 
the observations to be supplied by the user. Furthermore, every input to a gate w i l l be 
associated wi th unique value—there w i l l be no more than one value coming into the input, 
and only a very t r iv ia l combination (of one value) w i l l be performed. This technique is 
discussed further in Section 3.5 

Note that by setting the contingency table differently, we can use the same schema to 
model the circuit under the assumption that the connections are not always faultless. 
For instance, using the following table [0 .85 ,0] says that the connection has a finite 
probabil i ty of being broken. 

Figure 3.1 shows a very simple circuit. Gate g l is an and-gate, g2 is an or-gate, and g3 

exists(conn(Gl ,G2 ,Port) , connections, output(Gl)) 
=> input(G2:gates,Port:ports). 

:= [ 1 , 0 ] . 
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is an xor-gate. The knowledge base w i l l be able to model this circuit i f we supply the 
following information about types: 

observe type(and_gate(gl).gates). 
observe type(or_gate(g2).gates). 
observe type(xor_gate(g3).gates). 
observe type(conn(and_gate(gl),xor_gate(g3) , 1), connections), 
observe type(conn(or_gate(g2),xor_gate(g3),2), connections). 

This information creates the Bayesian network shown in Figure 3.2, which we can use 
for a variety of tasks. We can model the correct behaviour of the circuit by conditioning 
our queries on the assumptions that every known gate is working correctly. We can also 
condition a query on the known inputs and outputs to determine the probabili ty of a 
particular configuration of gates working incorrectly. 

3.3 I n t e r p r e t i n g s k e t c h m a p s 

The domain of interpreting sketch maps provides a good test-bed for knowledge represen
tation techniques and automated reasoning tools. The Mapsee project at the University 
of Br i t i sh Co lumbia has used a variety of hierarchical knowledge structures and constraint 
satisfaction techniques to interpret hand drawn sketch maps (for a good overview, see [Mul
der et al, 1978]). To formalize the image interpretation problem, Reiter and Mackworth 
[Reiter and Mackworth , 1989] posed the problem wi th in a logical representation, showing 
that there is a notion of correct interpretations which a l l applications must provide (but 
which is much harder to prove for less rigorously well-defined programs). 

Th i s problem is of interest as an example of the application of Dynamic Bayesian networks 
because of the following two questions: 

1. Given several possible interpretations for objects in a sketch map, how can we choose 
a preferred one? 

2. How can we provide a Bayesian network which can model any possible sketch map 
we may want to interpret? 

The answer to the first question is: Use a Bayesian network. The answer to the second is: 
Use a dynamic Bayesian network. 



Figure 3.2: The Bayesian network constructed by our simple knowledge base for the circuit 
in Figure 3.1. 
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c2 
r l 

Figure 3.3: A simple sketch map. 

3.3.1 Sketch maps 

A sketch map is made up of chains 3 and regions, wi th the intention that, interpreted 
correctly, chains correspond to roads, rivers or shorelines, and regions correspond to either 
land or water. Figure 3.3 shows an example of a simple sketch map. Th i s example is 
ambiguous, as chain c l could be interpreted as either a road which meets a traffic loop 
(chain c2), or a river which flows into a body of water, region r2 (chain c2 being the 
shoreline), or a road which ends at a body of water. 

3.3.2 A probabilistic knowledge base 

The following schemata represents enough knowledge to provide answers to queries about 
sketch maps, like "What is the probabili ty that chain c2 is a road, given that it is a 
chain which meets another chain?" The contingency tables use probabilities of zero for 
impossible configurations, such as two rivers crossing, etc. For knowledge like "Given two 
chains which meet in a tee, the probabili ty that they are both rivers is p" the number p 
used is only a rough estimation, which is sufficient to demonstrate the dynamic qualities 
of schemata, but may not reflect the reality of occurrences of rivers or roads joining. 

3 A chain is a connected sequence of points. 
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'/,'/, scene objects can be linear or area objects 
multi isa-linear(X) <3 [road, river, shore] . 
multi isa-area(X) @ [land, water]. 

'/,*/, Image objects: 
binary tee(X.Y). '/,'/, chain X meets chain Y in a tee-shape 
binary chi(X,Y). VI* chain X and chain Y make a chi—crossing 
binary bounds(X.Y). '/,'/, chain X bounds area Y 
binary interior(X,Y). '/„'/» Area Y is in the interior of chain X 
binary exterior(X,Y). '/,'/, Area Y is exterior of chain X 

'/,% Scene descriptions: 
binary joins(X.Y). '/.'/.linear scene objects join in a tee shape 
binary crosses(X.Y). •/,'/, linear scene objects cross 
binary inside(X.Y). '/.'/, area object X is inside linear object X 
binary outside(X,Y) . '/.'/. area object X is outside linear object X 

°/.'/o Trick implementation of equality predicate! 
'1,7, Two distinct random variables, which have their 
VI, arguments as values: 
multi vall(X) @ [X, X]. 
multi val2(Y) « [Y, Y]. 

VL equality is then define i f the values are the same! 
function equal/2. 
vall(X), val2(Y) => equal(X.Y) 

{p(equal(X,Y),[vail(X)=X,val2(Y)=Y]) 
= i f (X=Y) then 1.0 else 0.0}. 

°/,4/. Two linear scene objects can join to form a tee 
isa-linear(X:chain), isa-linear(Y:chain), 
joins(X:chain,Y:chain), equal(X:chain,Y:chain) 

=> tee(X:chain,Y:chain) 
: - C . . ] . 4 

4There are 36 numbers in this list, and in some of the contingency tables for the remaining schemata 
there are even more than this, but none of them is crucial to the explanation of the dynamic nature of 
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'/,'/, two linear objects can cross to form a chi 
isa-linear(X:chain), isa-linear(Y:chain), 
crosses(X:chain,Y:chain), equal(X:chain,Y:chain) 

=> chi(X:chain,Y:chain) 
:= [...]. 

*/*/» linear objects can form closed loops 
isa-linear(X:chain), loop(X:chain) => closed(X:chain) 

:= [.. .3. 

4/,0/ linear scene object are found beside area objects 
isa-area(X:region), isa-linear(Y:chain), 
beside(X:region,Y:chain) => bounds(X:region,Y:chain). 

:= [...]. 

%% on the linear object which forms the boundary between two 
'/,'/„ area objects, we must constrain the objects involved 
°/o% e.g. A road is not a boundary between two bodies of water 
isa-area(X:region), isa-linear(Y:chain), isa-area(Z:region), 
inside(X:region,Y:chain), outside(Z:region,Y:chain) 

=> boundary-constraint(X:region,Y:chain,Z:region). 
:= [...]. 

There are several interesting features of this knowledge base. First of a l l , the use of 
multiple valued P R V s constrains the objects in the domain, e.g., a linear scene object 
can only be one of {river, road, shore}, and multi-valued P R V s express this succinctly. 
Observe also the use of type information; since only individuals of the correct type can 
be used to instantiate schemata, dividing the domain into two P R V s i s a - l i n e a r ( X ) and 
isa-area (X) assures that chains and regions are disjoint sets of objects. Final ly , the 
use of equals(X,Y) is required to ensure that when the schemata are instantiated we 
only consider interpretations in which, for example, linear scene objects do not intersect 
themselves. 

this example. For a complete listing, see Appendix A. 
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The user specifies the following individuals, and their types: 

type(cl,chain). 
type(c2,chain). 
type(rl,region). 
type(r2,region). 

which when combined wi th the knowledge base, creates the Bayesian network in Figure 3.4. 
The user is free to query the state of the network, conditioning on c2 being closed, and r l 
being on the outside of c2, etc. Note that this network could be used the opposite direction 
as well: conditioning on the scene objects allows the user to "predict" the image. 

3.4 T h e B u r g l a r y o f t h e H o u s e o f H o l m e s 

The following story is used by Breese [Breese, 1990] to demonstrate his network construc
tion application, and is derived from an example used by Pearl [Pearl, 1988]: 

M r . Holmes receives a telephone cal l from his neighbour, Dr . Watson, who 
states that he hears the sound of a burglar alarm from the direction of Holmes' 
home. A s he is preparing to rush home, M r . Holmes reconsiders his hasty 
decision. He recalls that today is A p r i l 1st, and in light of the A p r i l Fool 's 
prank he perpetrated on his neighbour last year, he reconsiders the nature of 
the phone cal l . He also recalls that the last time the alarm sounded, it had 
been triggered by an earthquake. If an earthquake has occurred, it w i l l surely 
be reported on the radio, so he turns on a radio. He also realizes that in the 
event of a burglary, the l ikelihood of recovery of stolen goods is much higher 
if the crime is reported immediately. It is therefore important, i f he in fact 
a burglary d id occur, to get home as soon as possible. O n the other hand, i f 
he rushes home he w i l l miss an important sales meeting wi th clients from B i g 
Corp. which could result in a major commission. Should M r . Holmes rush 
home? 

The knowledge needed to solve this problem can be expressed in the language of In f luence 
as follows. 
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Figure 3.4: The Bayesian network constructed by our simple knowledge base for the sketch 
map in Figure 3.3. 
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binary sale-obtained(X) . '/,'/. has a sale been obtained by X? 
binary burglary(X). 'IX was there a burglary in X's house? 
binary go-home(X). •/,'/. does (should) X go home IMMEDIATELY? 
binary meeting(X.Y). 'IX, was there a meeting between X and Y? 
binary earthquake. '/,'/, was there an earthquake? 
binary radio. 'IX, did the radio report an earthquake ? 
binary client(X). '/,'/, X has a client? 

function value(X). 'IX what is the value of X's decision? 
function losses(X). '/,'/, how much did X lose? 
function income(X). 'IX how much does X stand to gain? 

'IX, how much is a sale worth? 
multi sale-value(X) 9 [0,150,300]. 

'IX* how much of X's stolen goods were recovered? 
multi goods-recovered(X) 9 [0,500,5000]. 

'IX how much were X's stolen goods worth? 
multi stolen-goods-value(X) 0 [0,500,5000]. 

'IX, when did X report thre burglary? 
multi burglary-report(X) 0 [immediate, late, none]. 

*/,'/, compute the difference between X's income and losses 
'/,'/, ca l l i t value for X 
losses(X:alarm-owner), income(X:alarm-owner) 

* => value(X:alarm-owner) 
:= { . . . } . « 

'IX, X may recover some of his stolen goods depending on 
'IX, when X reported the burglary 

5 The function here, as well as the contingency table for the schemata in this example are not essential 
for the understanding of the dynamic nature of the schemata. The actual numbers are found in the 
complete listing in Appendix A. 
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burglary(X:alarm-owner), burglary-report(X:alarm-owner) 
=> goods-recovered(X:alarm-owner) 
:= [...]. 

Vh If X recovers stolen goods, then there is not loss 
goods-recovered(X:alarm-owner), 
stolen-goods-value(X:alarm-owner) => losses(X:alarm-owner) 

:= {...}. 

*/,*/, the income for Y depends on getting the sale from a client 
client(Y:alarm-owner), sale-obtained(Y:alarm-owner), 
sale-value(Y:alarm-owner) => income(Y:alarm-owner). 

:= {•••}• 

Vh - A meeting may take place between X and Y 
Vh i f X doesn't go home 
go-home(X:alarm-owner) => meeting(X:alarm-owner,Y) 

:= [ . . J . 

'/.'/. X wil l report a burglary i f one occurred, and X has gone home 
Vh to verify i t go-home (X: alarm-owner), burglary (X: alarm-owner) 

=> burglary-report(X:alarm-owner) 
:= [ . . . ] • 

Vh i f there was a burglary, then goods of some value have been 
Vh stolen 
burglary(Y:alarm-owner) => stolen-goods-value(Y:alarm-owner) 

:= [...]. 

*/,'/, X wil l meet with Y to talk sales. A sale may occur 
meeting(X:alarm-owner,Y:corporation) 

=> sale-obtained(X:alarm-owner,Y:corporation) 
:= [ . . . ] • 

Vh an alarm is affected by earthquakes and burglaries 
Vh - the alarm wil l almost definitely sound i f both an earthquake 
Vh and a burglary occur, and almost definitely wil l not sound i f 
Vh neither occur 
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burglary(Y:alarm-owner), earthquake => alarm(Y:alarm-owner) 
:= C . . ] . 

7,7, earthquakes tend to be reported on the radio. . . 
earthquake => radio 

:= [...]• 

7,7, Phone calls from neighbours about alarms. 
7,7, - neighbours usually only cal l when an alarm sounds 
7,7. - non-neighbours don't cal l at a l l ! 
neighbour(X:person,Y:alarm-owner), 

alarm(Y:alarm-owner) => phone-call(X:person,Y:alarm-owner) 
:= [...]• 

This example demonstrates the power of our simple network creating process. The user 
specifies the appropriate individuals: 

observe type(holmes.alarm-owner). 
observe type(watson,person). 
observe type(big-corp, corporation). 

and the network in Figure 3.5 is created. 

In [Breese, 1990], Breese makes use of influence diagram technology, such as decision 
nodes, which are useful in this problem. These types of nodes are not implemented in 
Influence. However, by conditioning on whether or not Holmes should go home, the user 
can determine the value of each decision by querying value (holmes). 

The value computed by this technique is not the same as the "value of a decision node" 
in Breese's program; Breese uses value nodes from influence diagram technology (as in 
[Shachter, 1986]) which computes an expected value based on the product of the possible 
values by their respective probability. In Influence there is no equivalent functionality 
built-in.6 

6 However, this computation can be simulated by querying each value of the node to obtain the posterior 
probability and performing the same sum-of-products by hand. 
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3.5 B u i l d i n g k n o w l e d g e b a s e s f o r D y n a m i c B a y e s i a n 
n e t w o r k s 

In this chapter several example knowledge bases have been presented for different do
mains. A s it may not be obvious how these knowledge bases were constructed, this section 
w i l l present some ideas which have been useful in creating the knowledge bases for these 
domains. Some common pitfalls are also identified, and alternatives are suggested. 

Separating properties from individuals 

This is a fundamental technique. It should be noted that many different concepts may 
classify as individuals, depending on the domain, and on the intent of the application. For 
example, a person in a story may be an individual , and the triple (Gatel, Gate2, InputPort) 
as used in Section 3.2 to represent connections in electronic circuits is also an individual . 
It seems useful to consider the kinds of information that a user might be able to observe. 

Direction 

In many cases, schemata are naturally written in a causal direction. For example, the 
behaviour of a logic gate is quite naturally described causally, since its output depends 
on the inputs. The schemata for a given domain need not be in the causal direction, but 
should be writ ten wi th a consistent direction. This is a general observation which seems 
to aid in keeping knowledge bases from creating directed loops in the Bayesian networks 
created from it . It may arise that some causal relationships are not easy to quantify, and 
care should be taken to avoid wri t ing "loops" in the knowledge base. 

Conditional probabilities and semantics 

W h i l e it is true that a conditional probability distribution may take any values which 
sum to one and remain consistent mathematically, it is important to remember that a 
contingency table has an intended meaning. When creating the knowledge base, one 
should be certain that every entry in the contingency table for a schema makes sense. For 
example, the following schema might look appropriate, according to the direction principle 
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above 

bird,emu — • flies 

because both birdness and emuness have some influence on a bird's abil i ty to fly. However, 
this schema requires an entry in the contingency table for the expression p(flies\-ibird, emu), 
which, i f we know anything about emus and birds is inconsistent semantically. 

Assigning this probabili ty is context dependent; that is, i f we have in addition to the 
schema about flying, a schema such as 

emu — • bird 

stating that a l l emus are birds, the actual value of p(flies\~>bird, emu) is irrelevant. Some 
axiomatizations may specify a particular value for a probabili ty wi th inconsistent condi
t ioning (for example, Alel iunas [Aleliunas, 1988] assigns a value of unity). Nevertheless, 
even i f the inconsistency may be easy to disregard in small knowledge bases, in larger ones, 
keeping track of a l l the irrelevant inconsistencies seems to be more work than redesign
ing the problematic schemata for consistency. In our bird example, we might rewrite the 
schemata as in the following: 

emu —> bird 

emu — • abJIying 

bird, ab-flying — • flies 

where ab_flying is a random variable representing the possibility that something is abnormal 
wi th respect to flying, i.e., it doesn't fly. Knowing that emus are certainly birds, and that 
emus tend to be exceptions to the generality that "birds fly" provides the required numbers 
for the contingency tables. 

Keeping the contingency tables semantically consistent and informative w i l l make modifi
cations and extensions of the knowledge base less troublesome. 

The use of combination nodes 

Combinat ion nodes, such as the existential and universal combinations discussed in Sec
t ion 2.2 are used to model multiple influences assuming a simple and regular combination 
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of effects. They can be used in a straightforward manner, as demonstrated in Example 3.5-
1, where the combination was performed over a simple set of individuals. In Section 3.2, a 
more complex k ind of individual was used to create a separate structure for each of these 
individuals. 

In many domains, causal or influential knowledge is best modelled by considering every 
cause for a particular effect (e.g., every disease which causes the same symptom) inde
pendently. Further, each cause is assumed to have an enabling/disabling condition. This 
kind of assumption is modelled in Pearl and others [Pearl, 1988] by a structure called a 
noisy-Or gate. It has the advantage of requiring a contingency table whose size is on the 
order of the number of causes, and each entry in the table considers only one cause at a 
time. 

The existential combination introduced in this thesis can be used to construct noisy-or 
gates. Suppose we wanted to model the causes of sneezing wi th a no i sy -Or gate, combining 
nodes like flu(X) and hay-fever(X), because it is known that either disease is l ikely to cause 
sneezing and that these diseases are independent. This is stated in the following: 

, flu(X) — > causes(flu(X), sneezing) 
hay — fever(Y) — • causes(hay — fever(Y), sneezing) 

3Z € causes • causes(Z, sneezing) — > sneezing 

The user would then have to tell the system which causes to consider in the model, and 
the system would create a structure which combines the causes. This behaves exactly as 
a noisy-or gate, since list ing the causes first is equivalent to enabling the cause, and any 
cause not explici t ly mentioned by the user is not considered by the combination at a l l , as 
if the cause were disabled. 

Avoiding too many instantiations 

It is possible to write a knowledge base of schemata without regard to the process which 
creates the network. However, it is often helpful to keep the process in mind, to avoid 
wri t ing schemata which w i l l be instantiated too often. The most obvious way to keep the 
instantiations l imited is to make use of the type constraint mechanism. For example, when 
wri t ing the schemata for interpreting sketch maps in Section 3.3, we could have used only 
one type of scene object for both linear and area objects. If the following schema had been 
used 
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isa(X), isa(Y), joins(X.Y), equal(X.Y) => tee(X.Y) 

(where isa(X) could take any value from [road, river, shore, water, land] ) instead 
of 

isa-linear(X), isa-linear(Y), joins(X.Y), equal(X.Y) => tee(X,Y) 

as actually used in Section 3.3, the network creation process would have instantiated 
schemata for a l l scene objects. No useful information would have been obtained from 
instantiating them wi th area scene objects. 

3.6 C o n c l u s i o n s 

The example knowledge bases discussed in this chapter demonstrate some of the abilities 
of dynamic Bayesian networks as presented in this thesis. 

It is clear that while most schemata are straight forward, some schemata make use of 
clever techniques which can only be learned by example, and by understanding the network 
bui lding process. Th i s seems to conflict wi th the simple declarative representation which 
seems to characterize the language, presented in Chapter 2. 

The process of bui lding networks is very simple; schemata are instantiated by every in
dividual of the appropriate type, and the instantitations are added to the network. A s 
we can see from the sketch map example, sometimes there are many instantiations which 
do not lead to useful information, and could be left out of the network completely, i f the 
bui lding process were more intelligent. 

In work done independently of this thesis, Goldman and Charniak [Goldman and Char
niak, 1990] and Breese [Breese, 1990] have presented their work on constructing Bayesian 
networks from knowledge bases. Bo th approaches address the representation issues dis
cussed in this thesis, but emphasis is placed on more sophisticated procedures for building 
networks. Goldman and Charniak use a domain specific rule base to construct networks 
for the domain, and Breese has domain knowledge in the form of Horn clauses which are 
used to determine which nodes to include in the network. 



Chapter 4 

Implementing dynamic Bayesian 
networks 

This chapter deals wi th the issue of implementing the dynamic features described in Chap
ter 2. I present a brief description of the algorithms of Poole and Neufeld [1989],Pearl 
[1988, 1986], Shachter [1986, 1988, 1989], and Lauri tzen and Spiegelhalter [1988], consid
ering how each might be adapted for dynamic Bayesian networks. 

4.1 The general problem 

Ideally, the dynamic constructs would be implemented so that when new individuals are 
added to the model, resulting in arcs and nodes being added to the network, the joint 
probabil i ty distr ibution w i l l be correct and obtainable without recomputation of the pre
vious evidence. That is, we want to give some preliminary observations to our system to 
get some results, possibly observe new individuals, and get the updated results without 
having to recompute the effects of the in i t ia l observations. 

Take the simple example of the following schemata: 

a —• b(X) 
3Xet-b(X) — • c 

This example contains both a right-mult iple schema and a combination schema, and F ig -

51 
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Figure 4.1: A simple example of a dynamic network, (a) showing the original network, and 
(b) showing the network after another individual of type t is observed. See Section 4.1. 
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ure 4.1a shows the result of instantiating the schemata for the individuals x\ and x2, 
which are of type t. This network represents the independence assumptions which gives 
the following equality: 

p(a, 6(ari), b(x2), 3X G t • b(X), c) 

= P(c\3X e t • b(x)) 

p(3X G * • 6(A-)|6(ari)6(ar2)) 

p(Kxi)\a)p(b(x2)\a) 
p(a) 

Suppose a new individual x3 is observed dynamically. The probability model changes as 
a result, and ideally, the algorithm used in the inference process can absorb the change in 
the model without too much recomputation. The network is shown in Figure 4.1b, and 
the joint distribution for our example becomes: 

p(a, bfa), b(x2), b(x3), 3X G t • b(X), c) 

= p(c\3X G t • b(X)) 

p(3X G t • b(X)\b(x1)b(x2)b(x3)) 
p(Kxi)\a)p(Kx2)\a)p(b(x3)\a) 

p(a) 

This equation demonstrates the change to the model. One new factor has been added, and 
the existential combination has one more conditioning variable, b(x3). It is important to 
note that the factor p(b(x3)\a) uses the same contingency table as p(b(x3)\a), so no new 
information is required. Since the existential combination uses a contingency table which 
takes the or of all the conditions, all the system needs to know is the number of conditions. 

To be able to use dynamic schemata efficiently, adding new arcs to the network should allow 
the algorithm which processes evidence and computes posterior distributions to modify 
the state of the network in a straightforward manner without recomputing the effects of 
evidence already submitted. 

This is not always easy to do, mainly because most of the algorithms perform some direct 
manipulation on the structure of the network, either to create a computationally tractible 
representation or to perform the calculations themselves. 

I will show that the addition of dynamic constructs to the work of Poole and Neufeld [Poole 
and Neufeld, 1989] is quite straight-forward, and that under certain conditions, Pearl's 
algorithm can be adapted as well. The algorithm due to Lauritzen and Spiegelhalter is not 
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difficult to adapt. Final ly , I show that Shachter's network evaluation algorithm performs 
too many structural changes on the the network to allow a feasible implementation of 
dynamic schemata. 

4 . 2 A n A x i o m a t i z a t i o n f o r P r o b a b i l i s t i c R e a s o n i n g 
i n P r o l o g 

The influence diagram interpreter described by Poole and Neufeld [Poole and Neufeld, 
1989] provides a sound axiomatization for probabilistic reasoning. The computation is 
goal directed, and only the computations necessary to compute solutions to queries are 
performed. The In f l uence implementation of dynamic Bayesian networks is based on 
this interpreter. 

4.2.1 The basic computational engine 

A Bayesian network is specified by a database of direct dependency relations and contin
gency tables associated wi th each variable. 

The basic computation is goal directed: the desired conjunction of variables which make 
up a query is supplied to the system together wi th the given evidence. Only those com
putations which are necessary to solve the query are performed, and no computation is 
performed outside the context of a query. Furthermore, each query is computed indepen
dently from any other query. 

The axiomatization of probabili ty theory is straight forward, and axioms such as the Nega
tion Rule, the Law of Mul t ip l ica t ion of Probabilit ies, and Bayes' Rule are are used to 
simplify and solve complex queries recursively. In particular, Bayes' Rule is used to refor
mulate diagnostic queries (i.e. queries which ask about causes given effects) into a causal 
form (i.e. queries which ask about effects given causes). 

The direct dependencies of variables, made explicit in the network structure, are compiled 
into Prolog rules which calculate posterior distributions by "reasoning by cases" wi th 
respect to a l l of the variable's direct parents. The independence assumption for the parents 
of a variable provides some simplification of the general reasoning by cases formula, and 
weights the cases according to the contingency table provided for the variable. 

A query can be seen as a proof of a symbolic probability expression, grounded in terms of 
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prior probabilities and given knowledge. This expression can be evaluated numerically to 
provide a quantitative result. 

4.2.2 Adding the dynamic combination 

Adding the dynamic constructs presented in Chapter 2 requires the addition of several 
axioms, recognizing the special syntax, and translating a query involving a combination 
node into a series of simpler queries. For existential combination nodes, the results of the 
simpler queries are combined using the following lemma: 

Lemma 1 If U = {u±,..., uk} is a set of random variables such that and Uj are con
ditionally independent given v for all i ^ j, then 

k 
p ( « i V «a V . . . V uk\v) = 1-11(1- p(Ui\v)) 

i=i 
k 

p(ui A u 2 A ... A uk\v) = "[Jp(ui\v) 
i= l 

The first step in the combination procedure is to gather the individuals of the correct 
type. Each individual instantiates the parameterized random variable given in the combi
nation node, and each instantiation is assumed to be independent, given the state of the 
combination. 

For existential combination, the collection of instantiations are combined using Lemma 1 
which combines the effects of all the instantiations using the first result. The universal 
combination is similar, using the second equality. 

The ability to observe individuals dynamically is provided by the independence of succes
sive queries. A probability model is based on the information provided by the query only, 
and therefore a new query, with new evidence in the form of individuals, builds a new 
probability model implicitly as the proof is generated. 

4.2.3 Discussion 

The simplicity of this implementation makes it very attractive, both formally and pedagog-
ically. The use of a logical specification helped to keep the developing theory of dynamic 
combinations correct as well as simple. 
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One advantage to this approach is that computation is goal driven, and only the calcula
tions necessary to compute the query are performed. The primary disadvantage is that, 
for consultations wi th multiple queries, many identical computations may be performed 
more than once. 

A s a general belief computation engine, the current implementation is l imited, as only very 
small networks can be queried in reasonable time. Various improvements to the compiler 
and probabil i ty axioms are possible, resulting in a loss of clarity and obvious correctness. 
Some of these issues are explored in [Horsch, 1990] 

4 .3 Pearl's Distributed Propagation and Belief Up
dating 

The work on belief propagation done by Pearl [Pearl, 1988] provides a probabilistic com
putational paradigm which is local in nature, and each local computation requires l i t t le 
or no supervision from a controlling agent. Pearl has proposed a highly parallel "fusion 
and propagation" algorithm for computing posterior marginal probabilities using singly 
connected Bayesian networks. I w i l l describe the algorithm abstractly at first, saving the 
mathematical details for later. 

4.3.1 Belief updating in singly connected networks 

In Pearl 's approach, a Bayesian network describes the channels of communication between 
related variables. For Bayesian networks which are singly-connected, there are simple rules 
which govern the way the network is affected by the submission of evidence. These rules 
deal wi th : 

• How a variable updates its own marginal distribution based on messages received 
from its direct parents or children. 

• The content of messages sent by a variable to its direct parents and children. 

For singly-connected graphs, the rules for updating a node's marginal distribution and 
communicating changes to its parents and children guarantee that the network w i l l con
verge to a stable equil ibrium and the marginal distributions w i l l be correct. 
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Evidence is submitted to a network by asserting a value for a variable (or a collection 
of values for different variables). This affects the marginal probabili ty of that particular 
variable, and this variable sends evidential support values to its parent variables, and 
causal support values to its children. Each parent or child variable then updates its own 
posterior distr ibution based on the information gained from its parents and children, and 
sends out messages to its parents and children. These messages take into account that 
some of the parents or children have already seen the evidence, thus ensuring that no 
support is received more than once. When al l variables in the network have updated their 
distributions in this manner, the propagation ceases. 

One of the features of belief propagation is the natural way it can be expressed as a 
distributed process: the message passing and belief updating are local computations and 
can be performed in a highly parallel computation. 

4.3.2 Adding dynamic constructs 

In this section I demonstrate how the dynamic combination nodes can be added to Pearl's 
singly connected message passing algorithm. In general, a combination node in a singly 
connected network could create a second path between two nodes. Therefore, to be com
pletely general, Pearl 's algorithm must be adapted to handle general graphs. I assume 
for s implici ty that no loops are created when an individual is observed dynamically. This 
assumption is valid i f any of the methods of Section 4.3.3 is used to evaluate the network 
in the general case of multiply-connected networks. 

There are three cases: r ight-mult iple schemata, combination nodes and unique schemata. 
Right -mul t ip le schemata involves the addition of a new child to a set of nodes. Combi
nation nodes involve the addition of a new parent to a single node. Unique schemata are 
merely attached to either another unique schema, or at the ta i l of a r ight-mult iple schema 
or at the head of a combination node. 

The presentation follows Pearl [1988, page 183ff, Equations 4.47 to 4.53], considering the 
general case of adding new parents or children to the network. The special syntax for 
combination nodes and r ight-mult iple schemata is important for determining where the 
new sections of network are to be added, but unimportant wi th respect to the propagation 
of support once added. 
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The dynamic addition of parents 

Suppose we have a node C in the network wi th parents parents(C) = {Ai,... ,An}, and 
children children(C) = {Bi,... ,Bm} as in Figure 4.2 (the dashed arc from An+\ to C 
indicates the arc I w i l l be adding). 

Intuitively, adding a parent to a node can be seen as revising an assumption about the 
domain. In principle, the new parent can be treated as i f it had always been connected, 
but having had no effect on the child variable. A d d i n g the new node by a real process only 
changes the effect the assumed node has on its child. 

In the case of an existential combination, we can treat the in i t ia l state of the parent as 
having a prior probabili ty of zero. Add ing the node can be seen as changing the message 
from zero to the value specified in the knowledge base for this node. Th i s assumption 
effectively states that "a l l unknown individuals do not have the property we are looking 
for." 

For universal combination nodes, the in i t ia l assumed message sent by the parent is unity, 
that is, we assume that the new node complies wi th the property being combined. Add ing 
the new parent in this case changes this value from unity to the prior specified in the 
knowledge base. 

Before the addition of An+i the internal state of C can be inferred from C ' s neighbours by 
the following: 

BEL(c) = p(c|e) (4.1) 
= P(^x\x)p(x\e^) (4.2) 
= aA(c)7r(c) (4.3) 

where e is the evidence submitted so far, e^ are those items of the evidence connected to 
C through its children, e^ are those items of evidence connected to C through its parents, 
and a; is a normalizing constant such that £ c aA(c)7r(c) = 1. Now 

A(c) = p(e-x\x) (4.4) 

= nw<o (4-5) 
i 

TT(C) = p(x\e+) (4.6) 

= P(c |a i , - . . ,an) I I 7 r c(a,-) (4.7) 
ai,...,a„ i 

The AB((C) are messages received by C from its children, and 7Tc(a;) are messages received 
by C from its parents. 
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Figure 4.2: Adding a parent An+i to node C. 
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The probabilities p(c\ai,an) are those supplied as contingency tables. In the case 
of combination nodes, these are functional: for existential combinations, we use a func
t ion which computes p(c\ai,..., an) = V"=ia,-, and for universal combination we use 
p ( c | a i , . . . , a B ) = A?=i a*-

A d d i n g a parent An+i to parents(C) requires an update for the state of C. Assume that 
no new evidence is submitted at the time of adding the new parent. Let BEL'(c) be the 
new state. Therefore: 

BEL'(c) = p(c\e) (4.8) 

= a\'(cW(c) (4.9) 

A'(c) = UXB.(C) (4.10) 

= A(c) (4.11) 

*'(c) = Yl P(c\ai,...,an+1)Y[TTc(ai) (4.12) 
ai,...,a n+i 

Note that A(c), which is the support gained from C ' s children doesn't change. The new 
7r'(c) reflects the addition of the new parent. The contingency table used before cannot in 
general be used in this new calculation; a new table must be supplied. However, in the 
case of combination nodes, these probabilities are functional and can be writ ten to accept 
an arbitrary number of dependent variables. 

Having updated its own internal state, C must send appropriate messages to a l l of its 
children and every parent except the new one. A s well , the new parent must be made 
aware of the evidence previously seen by the network. 

The content of the message sent by C to its parents due to the addition of A n + i can be 
writ ten as: 

n+l 

Ac(ai) = P^2\(c) ^2 p(c\au...,an+i)Y[7rc(ak)i^n + l (4.13) 

where (3 is any convenient constant. Note that each parent of C receives information from 
each of its mates, and about every child of C from A(c). 

The message C sends to An+\ should in one message provide information about a l l the 
evidence seen by C so far. The message sent can be written: 

Ac(o„+i) = (5y£j\(c) K c l a i > - • • > « « + ! ) I l M a i ) (4-1 4) 
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The message sent to each child Bi in children(c) is: 

*Bi(c) = (*l[\Bk(c) P (c |« i , . . . , an+l (4.15) 
k^j ai,...,a„+i 

BEL'(c) 
(4.16) 

Final ly , the added parent An+i can update its own state based on the message received 
from C and send messages to its children and parents in the manner originally outlined by 
Pearl . 

The dynamic addition of children 

Suppose we have node A in a network wi th parents parents(A) = {D±,..., D/} and children 
children(A) = {Bi,... ,Bn}, as in Figure 4.3 (again, the dashed arc from A to Bn+i 
indicates the one that w i l l be added). 

Intuitively, the addition of the new child is similar to the way parents were added in 
combination nodes. It can be assumed that the child has always been connected, but 
having had no in i t ia l effect on its parent. The assumed in i t ia l state gives no preference to 
the values of the child, that is, the assumed prior is 1/v, where v is the number of possible 
outcomes of the new child. Add ing the child has the effect of changing the assumed 
irrelevance to the value specified by the knowledge base. 

Before the addition of the new child Bn+i, the internal state is given by: 

BEL(a) = p(a|e) 

= a\(a)TT(a) 

(4.17) 

(4.18) 

where e is the evidence submitted so far, and a is a normalizing constant. Now 

(4.19) 
i 

^(a) = Y, p(a\du...,di)Y[irA(di) (4.20) 

A d d i n g a child Dn+i to children(A) requires an update for the state of A. Assume that 
no new evidence is submitted at the time of adding the new parent. Let BEL'(a) be the 
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Figure 4.3: Adding a child B n + i to node A. 
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new state. Therefore: 

BEL'(a) p{a\e) 

a\'(ay(a) 

nw«) 

(4.21) 

(4.22) 

(4.23) A'(a) 
i 

X(a)XBn+1(a) 

•••)rf/)II7rc(ai) 
(4.24) 

(4.25) 
di,...,di 

7T(o) (4.26) 

Note that 7r(a), which is the support gained from A ' s parents doesn't change. The new 
A'(a) reflects the addition of the new child. 

Having updated its own internal state, A must send appropriate messages to a l l of its 
children except the new one, and to every parent. A s well, the new child must be made 
aware of the evidence previously seen by the network. 

The content of the message sent by A to its parents due to the addition of Bn+i can be 
writ ten as: 

where (3 is any convenient constant. Note that each parent of A receives information from 
each of its mates from TrA(dk) and about every child of A from A'(a) and 

The message sent to each child Bi, i ^ n + 1 in children(A) is: 

xA(di) = £ p(c\d1,...,dl)H*A{dk) (4.27) 

TrBi(a) = aY[XBk{a) £ P(a\du ..., a{) fj 7 r A « ) (4.28) 

BEL'(a) 
XBi(a) 

(4.29) 

The message A sends to Bn+i can be written: 

n 
7T£„ + 1 = a]]XBk(a)Y2di,--.,dip(a\di,...,ai)'[l'irA(di) (4.30) 

(4.31) 

(4.32) 
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which is the previous state of A. 

Final ly , the added child Dn+\ can update its own state based on the message received 
from A and send messages to its children and parents in the manner originally outlined by 
Pearl . 

Adding unique schemata dynamically 

A d d i n g unique schemata requires no special handling. This is because they can be attached 
only to nodes which were added dynamically as part of a r ight-mult iple or combination 
structure. Their internal state is inferred from their parents and children, which are also 
new to the network. The standard computation applies to these nodes. 

When the message due to the change in network structure reaches the nodes of the unique 
schemata, the updating and subsequent message passing occurs in the manner described 
by Pearl . 

4.3.3 Propagation in general Bayesian networks 

For multiply-connected networks, Pearl's message passing scheme does not apply. The 
problem is that networks which have multiple causal chains between variables lose the 
conditional independence assumption which permitted the local propagation algorithm to 
distribute messages along each arc. Furthermore, then network can get caught in an infinite 
stream of messages. Solutions to this problem include: 

• Keeping a list of variables in the history of the propagation. Th i s requires message 
lengths exponential in the number of variables in the network. 

• Clustering sibling nodes along the multiple paths, creating a single chain. This 
requires possibly exponential time to identify loops and form the clusters. 

• Disconnecting the loop at the head (i.e. at the variable which begins the multiple 
chains). The variable at the head is instantiated to each value it can attain, and the 
effects of this instantiation are averaged. This requires computations exponential in 
the number of values the head of a loop can attain. 

• Stochastic simulation, in which the variables take random values according to the 
probabil i ty distr ibution derived from the current state of its direct parents. The 
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posterior distr ibution is then taken as the ratio of assigned values to the number of 
t r ia l runs made. The drawback to this approach is that convergence to the correct 
distr ibution is guaranteed under certain conditions, but the number of trials necessary 
for a particular accuracy is undetermined. 

4.3.4 Discussion 

I have shown how Pearl 's fusion and propagation algorithm can be modified to handle 
dynamic constructs in a way which correctly reflects the change in the probabili ty model. 

The adaptation is at a cost of locality: the purely local nature must be enhanced by 
a controlling program which adds nodes and arcs to the net and starts the appropriate 
message propagation. 

Final ly , I have only treated the special case where the dynamic constructs do not create 
loops in previously singly-connected networks. A dynamic scheme to handle this general 
case, using the ideas presented in Section 4.3.3, would be another interesting project. 

4.4 L a u r i t z e n a n d Sp iege lha l te r ' s c o m p u t a t i o n o f be 
l i e f 

Lauri tzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988] address the issue of per
forming local computations of beliefs using Bayesian networks as expert system inference 
engines. In particular, they are concerned wi th computing beliefs on large, sparse networks 
which are not necessarily singly connected. 

Briefly, their approach first modifies the structure of the Bayesian network representing 
the domain knowledge, creating a full moral graph. Cliques are identified, and the belief 
computation uses them to propagate support values throughout the network. 
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4.4.1 Belief Propagation on Full Moral Graphs 

Their algori thm can be described as consisting of three steps. 1 First , the Bayesian network 
is triangulated (and referred to as a full moral graph). Second, cliques in the triangularized 
network are ordered using a maximal cardinality search (i.e. starting from an arbitrary 
node, of a l l neighbour nodes yet to be labelled, the node having the most already labelled 
neighbours is labelled first), and each clique is treated as a compound variable in a tree 
structure connecting these cliques. Final ly , the ordering of the maximal cardinality search 
is used to direct the arcs in the tree, and the method of propagation in singly-connected 
networks is used to update probabilities. 

4.4.2 Adding dynamic constructs 

Briefly, Lauri tzen and Spiegelhalter's algorithm can be adapted to include the dynamic 
structures in the following manner. The new section of the network is added (dropping 
the direction of the arcs) to the extant triangularized structure. The network is retriangu-
larized, and following the above procedure, cliques are identified and a tree of compound 
nodes is created. A t this point the propagation procedes on the new structure in the 
familiar manner. 

The complication of adding the new nodes to the triangularized structure can be ap
proached by using the observation from Section 4.3.2, namely treating the arcs as i f they 
had always been in the network, but having had no effect on the rest of the network. This 
observation can be used to change the marginal distribution of each clique which has a 
new node in it or is a neighbour to a such a clique. 

4 .5 P r o b a b i l i s t i c i n f e r e n c e u s i n g I n f l u e n c e d i a g r a m s 

In Operations Research, influence diagrams have been used as a common analysis tool for 
decision analysis under uncertainty. The approach of Shachter is to provide a normative 
axiomatic framework for this domain, which has often used ad hoc methods [Shachter, 1986, 
Shachter, 1988, Shachter, 1989]. 

A n influence diagram is a network similar to a Bayesian network, relating random vari-

1This observation is due to Pearl, from his commentary on [Lauritzen and Spiegelhalter, 1988], and 
also noted by Shachter in [Shachter, 1989]. 
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ables and identifying probabili ty distributions graphically. In addition to random variables 
(called chance nodes in Operations Research), influence diagrams also have nodes to rep
resent expected outcomes and decisions. Influence diagrams without these special nodes 
are Bayesian networks, and in this overview, these w i l l only be considered in passing. 

For purposes of decision analysis, a l l probabilistic nodes are removed from the network, 
transferring their effect on decisions to a single table which ranks the decision options based 
on expected cost. For less specific applications, Shacter has shown [Shachter, 1989] that 
his algorithm can be used for evidence absorption and propagation by removing evidence 
nodes from the network. 

Network evaluation is performed using two techniques: arc reversal and node removal. A 
barren node, i.e. a node wi th no children, can be removed from a network without affecting 
the underlying distribution. A n arc can be reversed, that is, the arc from a node A to a 
node B can be tranformed into an arc from B to A, i f there is no other directed path from 
A to B. Th i s transformation reverses the conditional probabilities as well , and both A and 
B are "adopted" by each other's direct parents. When only probabilistic nodes are used 
in the diagram, the procedure of arc reversal corresponds to Bayes' theorem. A r c reversals 
are used to change nodes having children into barren nodes so they can be removed from 
the network. 

Network evaluation can be seen as the sequence of node removals and arc reversals neces
sary to remove al l nodes from the network. Queries to the network can be performed by 
the sequence of arc reversals necessary to remove the nodes which condition the query. 

4.5.1 Adding dynamic constructs 

Given the very dynamic network evaluation already inherent in Shachter's algorithm, it is 
not especially helpful to add the k ind of dynamic structures I have presented in Chapter 2. 

A s an example of the difficulties involved, consider the network in Figure 4.4a. Follow
ing Shachter's algorithm, evaluating the network wi th a series of node removals and arc 
reversals results in the network of Figure 4.4b. If a node B3 is added to the network in 
this state, perhaps because a user has just discovered a new individual in the model, the 
system must perform the evaluation again from the original network. 

In general, an influence diagram could be built by instantiating a collection of schemata, 
and Breese demonstrates this by taking a similar approach to building influence diagrams 
[Breese, 1990]. Shachter's evaluation could be adapted to use combination nodes (i.e., to 
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Figure 4.4: The problem of adding a node after arc reversals have been performed. 
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be used as a noisy-Or gate as in Section 3 . 5 , for example), but if individuals are observed 
after a network has already been created, and after some evaluation has been performed, 
a new network must be created, and all of the previous arc reversals and node removals 
must be repeated for the new network. 

4.6 Conclusions 

In this chapter I have presented several Bayesian network evaluation techniques, and dis
cussed how the dynamic techniques of Chapter 2 might be implemented. 

Some of these algorithms lend themselves well to dynamic schemata, and they benefit 
from the observation that the parts of the network which are added dynamically can be 
treated as if they had always been present in the network; the addition merely has the 
effect of changing how these nodes affect the rest of the network. There are other network 
evaluation algorithms in use or being developed which have not been discussed in this 
chapter. These may also be adaptable to dynamic constructs and may benefit from this 
same observation. 

The question of whether an evaluation algorithm can be modified to use dynamic schemata 
says more about the intended application than about the algorithm itself. For expert 
system use, a Bayesian network is a batch process, and the computation is designed to 
be autonomous and inflexible. These constraints are quite exploitable for implementing 
dynamic constructs for these algorithms. The fact that Shachter's algorithm is typically 
used in a very interactive consultation with a user, who is quite likely an expert in the 
domain she is modelling, means that the dynamic constructs are essentially unnecessary. 
The user herself can add to the network interactively should the necessity arise. 



Chapter 5 

Conclusions 

5.1 W h a t d y n a m i c B a y e s i a n n e t w o r k s c a n ' t d o 

In this section, we consider the l imitations and disadvantages of dynamic Bayesian networks 
as presented in this thesis. Some of these issues could be addressed as part of future research 
springing from this thesis. 

The most obvious disadvantage to the process of instantiating parameterized schemata to 
create Bayesian networks is the problem of finding individuals: the user of the system must 
be fully aware of the individual types, and the criteria for deciding types. Furthermore, 
the correctness of the model constructed by the process is dependent on the competence 
of the user who supplies the individuals. 

In a similar vein, the combination mechanisms presented in Chapter 2 take only known 
individuals into account when performing the combination. A facility for hypothesizing 
some unknown individual , perhaps based on the condition that a l l causes due to known 
individuals have been dismissed, seems to be a valuable addition. 

Another related issue is the type hierarchy itself. A s implemented, the network creating 
process requires that the user identify the individual 's type, and i f the individual belongs 
to more than one type (perhaps because private detectives are people too), the user must 
identify a l l the types to which an individual belongs. O f immediate benefit to the ideas pre
sented in this thesis would be a study on hierarchical types, wi th an eye towards efficiency 
considerations and representational adequacy. 

The fact that the knowledge base of schemata impl ic i t ly represents possibly infinitely many, 
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possibly infinitely large directed networks, the possibility that some of those networks are 
not acyclic, i.e., not Bayesian networks, is cause for concern. A d d i n g a loop check to the 
network creation process implementation is a simple matter, but it only identifies directed 
loops after the schemata are instantiated. Some ut i l i ty or theorem which assures that a 
knowledge base w i l l not result in cyclic networks would be a desirable result. Currently, 
the possibility of loops is treated in the same way left-recursive logic programs are treated 
by the logic programming community. 

5.2 O t h e r f u t u r e p o s s i b i l i t i e s 

One of the fundamental ideas of my approach was to keep the network construction process 
simple, so that the issue of representation could be more fully addressed. One obvious 
extension of this thesis would be to design a more sophisticated construction process which 
would maintain the consistency of the probability distribution and the precision of the 
mapping between the knowledge base and the networks which can be created from it. 

The existential and universal combination mechanisms presented in Chapter 2 are only 
two of many possible ways to combine information. It seems useful to consider how to 
implement a mechanism in which some fraction of a set of parent random variables must 
be true in order for an effect to be triggered. 

5.3 S o m e f i n a l r e m a r k s 

This thesis has presented a dynamic approach to the use of Bayesian networks. The 
approach was motivated by the need to model domains in which it would be difficult 
to anticipate some of the details. In particular, for domains which can be modelled by 
general knowledge of properties and their interactions, this general knowledge can be used 
in specific instances to create a probabilistic model. Changing the instances changes the 
model. 

A simple language of parameterized probabilistic knowledge, augmented wi th structures 
which dynamical ly combine the effects of several causes, was described. A procedure to 
create networks by instantiating statements in this language wi th particular individuals 
which have been submitted to the system, was outlined as well . 

A n implementation of this language was described briefly, and several examples were pre-
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sented using this implementation. The language seems to be versatile, but requires some 
careful programming for effective use. 

Several algorithms were discussed, due to Pearl [1988], Poole and Neufeld [1989], Lauri tzen 
and Spiegelhalter [1988], and Shachter [1986], currently used to evaluate Bayesian networks, 
and some modifications were suggested which would implement dynamic Bayesian networks 
in these systems. 

This thesis focussed on providing a precise framework for representing parameterized prob
abilistic knowledge, and a firm basis for building networks from this knowledge. Because 
the network construction process presented here was kept quite simple, the issue of rep
resentation could be more fully addressed. The result is a language for representing pa
rameterized probabilistic dependencies which precisely defines the mapping between the 
knowledge and the Bayesian networks created from it , as well as ensuring a consistent 
probabili ty distr ibution which is based on al l available knowledge. 
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A p p e n d i x A 

Influence c o d e f o r t h e e x a m p l e s 

A . l D i a g n o s i s o f m u l t i p l e f a u l t s f o r d i g i t a l c i r c u i t s 

The following is a complete listing of the knowledge base for modelling circuits. See 
Section 3.2. 

b i n a r y o k ( G a t e : g a t e ) . 
b i n a r y o u t p u t ( G a t e : g a t e ) . 
b i n a r y i n p u t ( G a t e : g a t e , P o r t : p o r t ) . 
b i n a r y e x i s t s ( ( G I , G2, P o r t ) , c o n n e c t i o n s , o u t p u t ( G I ) ) . 

/* a n d — g a t e s */ 
o k ( a n d _ g a t e ( G ) : g a t e s ) , 
i n p u t ( a n d _ g a t e ( G ) : g a t e s , 1 ) , 
i n p u t ( a n d - g a t e ( G ) : g a t e s , 2 ) => o u t p u t ( a n d . g a t e ( G ) : g a t e s ) 

:= [1,0,0,0,0.5,0.5,0.5,0.5]. 

/* o r — g a t e s */ 
o k ( o r _ g a t e ( G ) : g a t e s ) , 
i n p u t ( o r _ g a t e ( G ) : g a t e s , 1 ) , 
i n p u t ( o r _ g a t e ( G ) : g a t e s , 2 ) => o u t p u t ( o r _ g a t e ( G ) : g a t e s ) 

:= [1,1,1,0,0.5,0.5,0.5,0.5]. 

/* x o r — g a t e s */ 
o k ( x o r _ g a t e ( G ) : g a t e s ) , 
i n p u t ( x o r _ g a t e ( G ) : g a t e s , 1 ) , 
i n p u t ( x o r _ g a t e ( G ) : g a t e s , 2 ) => o u t p u t ( x o r _ g a t e ( G ) : g a t e s ) 

:= [0,1,1,0,0.5,0.5,0.5,0.5]. 
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exists((Gl,G2,Port), connections, output(Gl)) 
=> input(G2:gates,Port:ports). 

:= [1,0]. 

observe type(and-gate(gl).gates). 
observe type(or.gate(g2).gates). 
observe type(xor_gate(g3).gates). 
observe type((and-gate(gl),xor-gate(g3),1) connections), 
observe type((or_gate(g2),xor_gate(g3),2) connections). 

A . 2 I n t e r p r e t i n g s k e t c h m a p s 

The following Influence code creates dynamic Bayesian networks for the domain discussed 
in Section 3.3 

scene objects can be linear or area objects 
multi isa-linear(X) Q [road, r iver , shore], 
multi isa-area(X) ® [land, water]. 

7.7. Image objects: 
binary tee(X.Y). '/,'/. chain X meets chain Y in a tee-shape 
binary chi(X.Y). 7.7. chain X and chain Y make a chi—crossing 
binary bounds(X,Y). '/,'/, chain X bounds area Y 
binary interior(X,Y) . '/,'/, Area Y is in the interior of chain X 
binary exterior(X.Y) . '/.•/, Area Y is exterior of chain X 

7.7. Scene descriptions: 
binary joins(X,Y). '/,'/,linear scene objects join in a tee shape 
binary crosses(X,Y) . '/,'/, linear scene objects cross 
binary inside(X.Y). '/,'/, area object X is inside linear object X 
binary outside(X.Y) . 7.7. area object X is outside linear object X 

'I,'!, Trick implementation of equality predicate! 
'/,'!, Two distinct random variables, which have their 
Vl, arguments as values: 
multi vall(X) Q [X, X]. 
multi val2(Y) 8 [Y, Y]. 

7.7. equality is then define i f the values are the same! 
function equal/2. 
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v a l l ( X ) , val2(Y) => equal(X,Y) 

{p(equal(X,Y),[vall(X)=X,val2(Y)=Y]) 

= i f (X=Y) then 1.0 e lse 0.0}. 

'/,'/, Two l i n e a r scene objects can j o i n to form a tee 

i s a - l i n e a r ( X : c h a i n ) , i s a - l i n e a r ( Y : c h a i n ) , 

j o i n s ( X : c h a i n , Y : c h a i n ) , e q u a l ( X : c h a i n , Y : c h a i n ) 

=> t e e ( X : c h a i n , Y : c h a i n ) 

:= [1, '/.'/. a road can meet i t s e l f i n a t e e , but nothing else 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, •/.'/, equal o b j e c t s . . . 

1,1,0, '/,'/, a road or shore can j o i n a r o a d , a shore cannot 

1,1,0, 7,7, a road or a r i v e r can j o i n a r i v e r , a shore cannot 

1,1,0, 7.7. a road or a r i v e r can j o i n a shore, a shore cannot 

0,0,0,0,0,0,0,0,0]. 7.7. j o i n i s f a l s e 

7.7. two l i n e a r objects can cross to form a c h i 

i s a - l i n e a r ( X : c h a i n ) , i s a - l i n e a r ( Y : c h a i n ) , 

c r o s s e s ( X : c h a i n , Y : c h a i n ) , e q u a l ( X : c h a i n , Y : c h a i n ) 

=> c h i ( X : c h a i n , Y : c h a i n ) 

7.7. no scene objects cross themselves 

:= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 7.7. (equal i s true) 

1,1,0, 7.7. roads and r i v e r s can cross a r o a d , not shores 

1,0,0, 7.7. roads can cross a r i v e r , not r i v e r s or shores 

0,0,0, 7.7. shores cannot cross anything 

0,0,0,0,0,0,0,0,0]. 7.7. cross i s f a l s e , so c h i i s not p o s s i b l e 

7.7. l i n e a r objects can form closed loops 

i s a - l i n e a r ( X : c h a i n ) , loop(X:chain) => closed(X:chain) 

:= [1,0,1,0,0,0]. 7.7. only roads and shores form loops 

7.7. l i n e a r scene object are found beside area objects 

i s a - a r e a ( X : r e g i o n ) , i s a - l i n e a r ( Y : c h a i n ) , b e s i d e ( X : r e g i o n , Y : c h a i n ) 

=> b o u n d s ( X : r e g i o n , Y : c h a i n ) . 

:= [1,0, 7.7. only l a n d can be beside roads 

1.0, 7.7. only land can be beside r i v e r s 

1.1, 7.7. land and water can be beside shores 

0,0,0,0,0,0]. 7.7. beside i s f a l s e 

7.7. on the l i n e a r object which forms the boundary between two 

7,7. area objects , we must c o n s t r a i n the objects involved 

7.7. e . g . A road i s not a boundary between two bodies of water 

i s a - a r e a ( X : r e g i o n ) , i s a - l i n e a r ( Y : c h a i n ) , i s a - a r e a ( Z : r e g i o n ) , 

i n s i d e ( X : r e g i o n , Y : c h a i n ) , o u t s i d e ( Z : r e g i o n , Y : c h a i n ) 

=> b o u n d a r y - c o n s t r a i n t ( X : r e g i o n , Y : c h a i n , Z : r e g i o n ) . 

:= [1,0, 7.7. only land can be i n s i d e a road boundary 

0,0, 7.7. r i v e r boundaries are not allowed 
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0,1, '/,'/, shores have water inside, land outside 
0,0,0,0, 7.7. when water is outside, roads, rivers can't bound 
1,0, '/,'/, water outside, shore boundary then only land inside 
0,0,0,0,0,0,0,0,0,0,0,0, 7.7. inside and outside are false 
0,0,0,0,0,0,0,0,0,0,0,0]. 

A . 3 T h e B u r g l a r y o f t h e H o u s e o f H o l m e s 

The following Influence code models the problem of Section 3.4. 

binary sale-obtained(X). '/,'/, has a sale been obtained by X? 
binary burglary(X). '/,'/, was there a burglary in X's house? 
binary go-home(X). '/.'/. does (should) X go home IMMEDIATELY? 
binary meeting(X.Y). '/,*/, was there a meeting between X and Y? 
binary earthquake. '/.'/, was there an earthquake? 
binary radio. 7.7. did the radio report an earthquake ? 
binary client (X). '/,'/, X has a client? 

function value(X). '/,'/, what is the value of X's decision? 
function losses (X). '/,'/, how much did X lose? 
function income(X). '/,'/, how much does X stand to gain? 

7,7, how much is a sale worth? 
multi sale-value(X) 9 [0,150,300]. 

7.7. how much of X's stolen goods were recovered? 
multi goods-recovered(X) ® [0,500,5000]. 

7.7. how much were X's stolen goods worth? 
multi stolen-goods-value(X) (3 [0,500,5000]. 

7.7. when did X report thre burglary? 
multi burglary-report(X) (3 [immediate, late, none]. 

7.7. compute the difference between X's income and losses 
7.7. ca l l i t value for X 
losses(X:alarm-owner), income(X:alarm-owner) => value(X:alarm-owner) 

:= {p(value(X)=V,[losses(X)=V1,income(X)=V2]) 
i f (V is V2 - VI) then 1.0 else 0.0}. 

7.7. X may recover some of his stolen goods depending on 
7.7. when X reported the burglary 
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burglary(X:alarm-owner), burglary-report(X:alarm-owner) 
=> goods-recovered(X:alarm-owner) 
:= [0.01, 1, 0.5, 1 , 0 . 1 , 1 ] . 

7.7. If X recovers stolen goods, then there is not loss 
goods-recovered(X:alarm-owner), 
stolen-goods-value(X:alarm-owner) => losses(X:alarm-owner) 

:= {p(losses(X)=V,[goods-recovered(X)=V1,stolen-goods-value(X)=V2]) 
i f (V is V2 - VI) then 1.0 else 0.0}. 

7.7. the income for Y depends on getting the sale from a client 
client(Y:alarm-owner), sale-obtained(Y:alarm-owner), 
sale-value(Y:alarm-owner) => income(Y:alarm-owner). 

:= {p(income(Y)=V,[client(Y), sale-obtained(Y), 
sale-value(Y)=V1]) 

i f (V is VI) then 1.0 else 0.0}. 
'/,'/, - A meeting may take place between X and Y 
'/,'/, i f X doesn't go home 
go-home(X:alarm-owner) => meeting(X:alarm-owner,Y:corporation) 

:= [0, 0.75]. 
7.7. X may get a client i f X has a meeting with a corporation 
exists(X,corporation,meeting(Y:alarm-owner,X)) 

=> client(Y:alarm-owner) 
:= [0.75,0.0]. 

7.7. X wi l l report a burglary i f one occurred, and X has gone home 
*/,'/, to verify i t go-home (X: alarm-owner), burglary(X: alarm-owner) 

=> burglary-report(X:alarm-owner) 
:= [1.0, 7,7, X went home immediately and reported a burglary 

0.0, 7.7. so the report isn't l a t e . . . 
0.0, 7.7. . . . or not reported at a l l 
0.0, 7.7. didn't go home, so report can't be immediate 
1.0, 7.7. assume X reports a burglary eventually... 
0.0, 7.7. (X reported the burglary LATE, not NONE) 

7.7. no burglary, no report! 
0.0, 0.0, 1.0, 0.0, 0.0, 1.0]. 

7.7. i f there was a burglary, then goods of some value have been 
7.7. stolen 
burglary(Y:alarm-owner) => stolen-goods-value(Y:alarm-owner) 

:= [0.05, 7.7. burglary, but s-g-v=0 
0.55, 7.7. burglary, but s-g-v=500 
0.4, 7.7. burglary, but s-g-v=5000 
1.0, 7.7. no burglary, and s-g-v=0 
0.0, 7.7. no burglary, and s-g-v=500 
0.0] .7.7. no burglary, and s-g-v=5000 
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'/,'/, X w i l l meet w i t h Y t o t a l k s a l e s . A s a l e may o c c u r 
m e e t i n g ( X : a l a r m - o w n e r , Y : c o r p o r a t i o n ) 

=> s a l e - o b t a i n e d ( X : a l a r m - o w n e r , Y : c o r p o r a t i o n ) 
:= [0.5, 0.1]. 

7.7. an a l a r m i s a f f e c t e d by e a r t h q u a k e s and b u r g l a r i e s 
7,7. - t h e a l a r m w i l l a lmost d e f i n i t e l y sound i f b o t h an ea r t h q u a k e 
7,7. and a b u r g l a r y o c c u r , and almost d e f i n i t e l y w i l l n o t sound i f 
7.7. n e i t h e r o c c u r 
b u r g l a r y ( Y : a l a r m - o w n e r ) , earthquake => alarm(Y:alarm-owner) 

:= [0.99, 0.1, 0.8, 0.001]. 
7.7. e a r t h q u a k e s t e n d t o be r e p o r t e d on t h e r a d i o . . . 
e a r t h q u a k e => r a d i o 

:= [0.98, 0.0]. 

7.7. Phone c a l l s from n e i g h b o u r s about a l a r m s . 
7.7. - n e i g h b o u r s u s u a l l y o n l y c a l l when an a l a r m sounds 
7.7. - non - n e i g h b o u r s don't c a l l a t a l l ! 
ne i g h b o u r ( X : p e r s o n , Y : a l a r m - o w n e r ) , 

alarm(Y:alarm-owner) => p h o n e - c a l l ( X : p e r s o n , Y : a l a r m - o w n e r ) 
:= [0.6, 0.0, 0.2, 0.0]. 



Appendix B 

Source code to Influence 

B . l p r o b a b i l i t y . p l 

/* 
* p r o b a b i l i t y . p l 
* The s e t o f p r o b a b i l i t y axioms from which we can compute 
* many p r o b a b i l i t i e s w i t h o u t much e f f o r t . The r e a l 
* work i s i n t h e l a s t axiom, w h i c h i s Bayes' theorem, 
* and t h e c a l l t o dyn_p, where we r e a s o n by c a s e s . 
* 
* (The M u l t i p l i c a t i o n R u l e f o r p r o b a b i l i t i e s used here 
* i s r e a l l y s t u p i d . Improvements can be made here!) 
*/ 

'/.'/, The f i r s t two r u l e s a l l o w t h e u s e r t o query c o n v e n i e n t l y . 
'/,'/, And d i s p l a y s t h e answer n i c e l y , t o b o o t . . . 

p(A) 
:- p ( A , [ ] ) . 

7,7, F i r s t , check t o see i f t h e c o n d i t i o n i n g knowledge i s c o n s i s t e n t . . . 
p(A,B) :-

g i v e n _ i n c o n s i s t e n t ( B ) , 
w r i t e _ p ( A , B , ' u n d e f i n e d ' ) , n l . 

p(A,B) 
:- p ( A , B , P ) , 

w r i t e _ p ( A , B , P ) , n l . 
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7.7. p (+A, +Given, - P r o b a b i l i t y ) 

'/,'/, - c a l c u l a t e the p r o b a b i l i t y of l o g i c a l expression +A condit ioned 

VI, by +Given, to be returned i n - P r o b a b i l i t y 

7.7. - i f +A i s a l i s t , then t h i s l i s t i s a conjunct of p r o p o s i t i o n s 

VI, Check to see i f i t i s a p r i o r that we know i n the database. 

•/„•/. p ( X , A , P ) 

7.7. : - p r ( X , A , P , _ ) . 

7.7. I f X i s a predefined node type, then we do i t here. 

p ( X , A , P ) 

: - b u i l t _ i n _ p ( X , A , P ) . 

7.7. Otherwise, we have to do some c a l c u l a t i o n s . . .through axiom_p 

p ( X , A , P ) 

: - axiom_p(X,A,P). 

7.7. I f X i s a q u a n t i f i c a t i o n n o d e . . . 

p ( X , A , P ) 

: - quant_p(X,A,P). 

7.7. I f none of the axioms above can c a l c u l a t e a value, then 

7.7. we must r e s o r t to reasoning by cases, which i s performed 

7.7. by the r u l e s created during c o m p i l a t i o n , under the 

7.7. head of 'dyn_p' . 

p ( X , A , P ) 

: - dyn_p(X,A,P). 

quant_p(exists(Parameter,Type,Variable),Cond,P) 

: - get_indivs_of_type(Type,Cond,Indivs), 

i n s t a n t i a t e ( V a r i a b l e , Parameter, I n d i v s , Instances) , 

or_p(Instances,Cond,P). 

quant_p(foral l(Parameter.Type.Variable) ,Cond,P) 

: - get_indivs_of_type(Type,Cond,Indivs), 

i n s t a n t i a t e ( V a r i a b l e , Parameter, I n d i v s , Instances) , 

and_p(Instances,Cond,P). 

7.7. get_indivs_of_type(Type,Cond,Indivs) 

g e t _ i n d i v s _ o f . t y p e ( _ , [ ] , [ ] ) . 

get_indivs_of_type(Type,[type(Indiv,Type)|Conds],[Indiv|Indivs] ) 
• - i 

• * 

get_indivs_of_type(Type,Conds,Indivs). 

get_indivs_of_type(Type,[_|Conds],Indivs) 

: - get_indivs_of_type(Type,Conds,Indivs). 



B. Source code to Influence 84 

instantiate (_, _ , [], []). 
instantiate(Variable, Parameter, Indivs, Instances) 

: - bagof(Variable,member(Parameter,Indivs).Instances). 

built_in_p(X,L,P) 
: - and_node(X), 

i 

parents(X,PL), 
and_p(PL,L,P). 

built_in_p(X,L,P) 
: - or_node(X), 

! » 
parents(X,PL), 
or_p(PL,L,P). 

/ * theorem : 
i f a node X is a model of 'and', and 

i t has parents U=-Cul,.. ,un} then 
p(X|C) = p(ul unlC). 

Proof: t r i v i a l . :-) 
*/ 

and_p(L,C,P) 
: - p(L,C,P) . 

/ * theorem: 
i f a node X is a model of 'or' and 

i t has parents U={ul,..,un} then 
p(X|C) = p(ul ; . . . ;un |C) 

= p(ul|C) + p(u2;. . . ;un|"ul C)*p(~ul|C) 
= p(ul|C) + p(u2; . . . ;un | 'u l C)*( l - p(ul|C)) 

which is recursive. 

Proof: t r i v i a l . :-) 
*/ 

or_p([],_,0). 

or_p([A],C,P) 
: - p(A,C,P). 

or_p([A|L],C,P) 
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:- p(A,C,Pl), 
or_p(L,[-A|C],P2), 
P = PI + P2*(l-Pl). 

7.7. axiom_p(+A,+Given,-Prob) 
7,7. - some axioms for calculating probabilities. 
7.7. - variables the same as in p(A,Given,Prob) 

7.7. Multiplication rule for probabilities 
7,7. _ base case: one conjunct should be computed simply. 

axiom_p([A],B,P) :- !, 
p(A,B,P). 

7.7. Multiplication rule for probabilities 
7.7. - recursive step: find the probability of the f i r s t 
7,7. conjunct, and i f this is non-zero, find the probability 
7.7. of the remainder of the conjuncts conditioned on the f i r s t 
7.7. by multiplication. 
7,7. - this could be a lot smarter, I think. 
7.7. (by making use of conditional independence, for example) 
7,7. (or by using the fact that some variables may have no 
7.7. parents) 

axiom_p([B|A],C,P) :- !, 
p(B,C,PEval), 
eval(PEval,P2), 
(P2 =:= 0, P = 0; 
p(A,[B|C],Pl), 
P = Pl*PEval). 

7.7. Negation rule 
7.7. - pCAlC) = 1 - p(A|C) 

axiom_p(~A,B,P) :- !, 
p(A,B,Pl), 
P = 1-P1. 

7.7. Definiteness rule #1 
7.7. - p(A|A) = 1 

axiom_p(A,B,p(A,B,l)) :-
member(A,B),!. 

7,7, Definiteness rule #2 
7.7. - p(A|-A) =0 
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axiom_p(A,B,p(A,B,0)) :-
member(~A,B),! . 

7.7. D e f i n i t e n e s s r u l e #2 f o r m u l t i v a l u e d v a r i a b l e s 

axiom_p(A=X,B,p(A,B,0)) :-
member(A=Y,B),X \== Y,!. 

'/,'/, I n c o m p l e t e n e s s r u l e f o r m u l t i v a l u e d v a r i a b l e s 
'/,'/, - i f X i s n o t i n t h e l i s t o f known v a l u e s f o r 
'/,'/, A, t h e n sum a l l t h e p r o b a b i l i t i e s f o r a l l t h e v a l u e s 
7.7. w h i c h A can t a k e , and s u b t r a c t t h i s from 1. 
7.7. - assumes sum_p(A,L,B,P) <= 1 
7.7. - o n l y u s e f u l i f we a l l o w i n c o m p l e t e s p e c i f i c a t i o n o f 
7.7. v a l u e l i s t s . 

axiom_p(A=X,B,Pl) :-
m u l t i v a l u e d _ n o d e ( A , L ) , 
\+ member(X,L), 
sum_p(A,L,B,P), 
P I = 1 -P. 

axiom_p(A=X,B,Pl) :-
m u l t i v a l u e d _ n o d e ( A , _ ) , 
remove("A=Y,B,BB), 
p(~A=Y,BB,P2) ) 

p(A=X,BB,P3), 
P i = P3 / P2. 

7.7. Bayes' R u l e 
7.7. - i f t h e r e i s e v i d e n c e i n t h e g i v e n l i s t w h i c h i n f l u e n c e s 
7.7. t h e p r o p o s i t i o n H d i r e c t l y , t h e n do bayes' r u l e . . . 
7.7. - Why? Because we have knowledge about p(E|H) which 
7,7. i s f o u n d i n t h e p r i o r s . 

axiom_p(H,L,P) :-
remove(E,L,K), 
i n f l u e n c e s ( H , E ) , 
i 
• » 

p ( E , [ H | K ] , P E v a l ) , 
e v a l ( P E v a l , P l ) , 
( P I =:= 0, P = 0 
;p(H,K,P2), 
p ( E , K , P 3 ) , 
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(P3 = 0, 
! , format('Error: Division by zero: ~w."n',[p(E,K,P3)] ) , f a i l 

;P = PEval * P2 / P3)). 

7.7. Auxiliary predicate sum_p used in Indefiniteness rule for 
7.7. multivalued variables. 

7.*7.sum_p(_, [] ,_,0). 

sum_p(A,[V],B,P) : -
p(A=V,B,P). 

sum_p(A,[VlValues],B,P) : -
sum_p(A,Values,B,PI), 
p(A=V,B,P2), 
P = PI + P2. 

B . 2 e x p a n d . p l 
/* 

* expand — expand for multi-valued and binary variables. 
* no independence or any other clever tr ick . 
* expands propositional variables in the base manner 
* expands multivalued variables as i f X=xl were a proposition 
* / 

y////////////////////:/:///;///////////////;///.v.y;/x/////////.y//x/////.7.7. 
'/.'/. expand( +A, +T, +L, +CV, -Body, -P) 7, 
7//.7.7;/.r/.7.7.7.7//////////.7.7.7.7.7.7////////.7X/J.7.7////.7.7.7.7.7.7.7. 
7.7. expansion of binary proposition A on parents in T 
VI, Variables: 
7.7. + A is the variable around which we expand 
7.7. +T is a truth table entry for A; i n i t i a l l y empty l i s t ! 
7.7. + L is a l i s t of immediate parents of A, from which T is 
7,7. constructed recursively 
7.7. +CV is a l i s t of conditioning variables, not necessarily 
VI, parents of A 
7.7. -Body is the body of the rule which computes 
VI, subcalculations for p(A|CV) 
7,7. _ P is the algebraic expression which ' i s ' must use 
7,7. to compute p(A|CV) from the subcalcs done in -Body 
7.7. 

http://expand.pl
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'/.'/. p(A|T CV) = p(A|Pred T CV)p(Pred|T CV) + p(A|"Pred T CV)p("Pred|T CV) 

7.7. Method 1: (base case) 
7.7. - the parents of A which were in L have been transferred to 
'/,•/, the truth table l i s t T, leaving L = []. 
'/,'/, - in this case, we need the prior for this configuration T 
7,7, - ask Prolog for the prior, which in turn may ask the user, 
7,7. i f there is no such prior in the database. 
7.7. - returns the prior, as well as the Body 'true', meaning 
7.7. that there is no associated calculation necessary to 
7,7. compute the prior (it's a given quantity) 

expand(A,T,[],_,pr(A,T,P,_),P) . 
7.7.expand(A,T,[] ,_,true,pr(A,T,P)) :-

7.7.pr(A,T,P,_). 

7.7. Method 2: (multiple valued variables) 
7.7. - i f the f i r s t variable in the truth table is a multivalued variable, 
7.7. handle i t separately. 

expand(A,T,[ZlPred],CV,Body ,P) :-
multivalued_node(Z,Values), 

i 

expand.mult i(Z,Value s,A,T,Pred,CV,Body,P). 

7.7. Method 3: 
7.7. - to expand a binary variable, construct the truth table 
7.7. for i t by recursively calling expand, once with the 
7.7. f i r s t remaining parent Z, and once with Z negated. 
7,7. - return as the Body the sub-calculation of P(Z|CV), and 
7.7. the reasoning-by-cases formula which uses this value 
expand(A,T,[ZlPred],CV,Body ,(E1*PZ+E2*(1-PZ)) ) :-
expand(A,[Z|T],Pred,[Z|CV],Cl,El), 
expand(A,["Z|T],Pred,["Z|CV],C2,E2), 
simp_body((Cl,C2,p(Z,CV,PZ)).Body) . 

7.7. expand_multi(+Multi, +Values, +A, +T, +L, +CV, -Body, -P) :-
7.7. similar to expand but for multivalued variables 
7.7. +Multi is the multiply valued variable in question 
7.7. +Values is the l i s t of values for Multi 
7.7. +A is the variable we are expanding around (as in expand) 
7.7. +T, +L, +CV, -Body, -P are a l l exactly as in expand 
7,7. Basic description: for each value in +Values we find 
7,7. the expansion of Multi=value; kinda breadth-wise 
7.7. (we have to use each value here, whereas in expand 
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7.7. i t s u f f i c e d t o use p(Z|CV) and c a l c u l a t e p("Z|CV) 
7.7. as (1 - p ( Z | C V ) ) . When Z i s m u l t i v a l u e d , t h i s doesn't 
7.7. work. 

7,7. Method 1: (base case) 
7.7. - i f we have o n l y one v a l u e l e f t i n t h e l i s t o f v a l u e s , t h e n 
7,7. c a l l expand t o c o n t i n u e t h e e x p a n s i o n t o f u l l d e p t h 
7.7. - r e t u r n as Body t h e s u b c a l c u l a t i o n c a l l t o p ( M u l t i = V a l u e |CV), 
7.7. and as t h e n u m e r i c a l e x p r e s s i o n t h e p r o d u c t o f t h i s and 
7,7. t h e e x p r e s s i o n r e t u r n e d by expand. 

e x p a n d . m u l t i ( M u l t i , [ V a l u e ] , A, T, P r e d , CV, Body, (PM * E)) :-
e x p a n d ( A , [ M u l t i = V a l u e I T ] . P r e d , [ M u l t i = V a l u e | C V ] , B , E ) , 

s i m p _ b o d y ( ( p ( M u l t i = V a l u e , C V , P M ) , B ) . B o d y ) . 

7.7. Method 2: 
7.7. - r e c u r s i v e l l y expand A u s i n g each v a l u i e o f M u l t i i n t h e V a l u e s 
7.7. l i s t 
7.7. - t h e body r e t u r n e d i s t h e c o n j u n c t i o n o f t h e s u b c a l c s 
7.7. and t h e e x p r e s s i o n i s a s i m p l e a d d i t i o n . 

e x p a n d _ m u l t i ( M u l t i , [Value I V a l u e s ] , A, T, P r e d , CV, Body, ( E l + E2)) :-
expand.mult i ( M u l t i , V a l u e s , A , T , P r e d , C V , B l , E l ) , 
e x p a n d . m u l t i ( M u l t i , [ V a l u e ] , A , T , P r e d , C V , B 2 , E 2 ) , 
s i m p _ b o d y ( ( B l , B 2 ) , Body). 

7.7. R u l i f y ( + H , + B , - R u l e ) 
7.7. - c r e a t e s a Ru l e t o c a l c u l a t e p(H| A n y t h i n g ) by 
7.7. u s i n g r e a s o n i n g by c a s e s . 
7.7. +H i s t h e v a r i a b l e w h i ch i s t o be r u l i f i e d 
7.7. + B i s t h e l i s t o f immediate p a r e n t s o f H 
7.7. -Rule i s a p r o l o g r u l e w h i c h s h o u l d be a s s e r t e d . 

7.7. Method 1: m u l t i p l e v a r i a b l e s . 
7.7. - c r e a t e s a r u l e w h i ch h a n d l e s o n l y one v a l u e 
7.7. o f t h e v a r i a b l e . 
7.7. - u s i n g b a c k t r a c k i n g , a l l t h e r u l e s w i l l be g e n e r a t e d 
7.7. (so be su r e t o ' f a i l ' a f t e r a c a l l t o r u l i f y t o get 
7.7. a l l t h e a p p r o p r i a t e r u l e s ) . 
7.7. I s s u e : we t r e a t each 'H=value' t h e same as a b i n a r y v a r i a b l e 

r u l i f y ( H , B , ( d y n _ p ( H = V , C , P ) :- Body)) :-
m u l t i v a l u e d _ n o d e ( H , . V a l u e s ) , ! , 
7,*7. r e m o v e ( V , V a l u e s , _ ) , 

expand(H=V,[],B,C,R,E), 
simp_body((R, P = E ) , Body). 
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'/,'/, Method 2: Binary values 
'/,'/, - creates a rule for binary variables 
'/,'/, - doesn't succeed on backtracking 

•/.*y.rulify(H,B,((dyn_p(H,C,Combine) : - Body))) : -
y.*'/.binary_node(H) , 
'/.•'/.bagof (type(Param.Type) .remove(type(Param,Type) ,B,_) .TLis t ) , 
•/.••/.remove.KTList.B.NewB), 
'/.*y.expand(H, [] .NewB.C.R.E) , 
•/,*y.simp_body((R, P = E) , Prebody), 
'/.•"/.Body = (bagof (combine_p(Prebody,P,M) .mapmember(TList,C,M) .Combine) , 

y,*y,combine_p(H,C,Combine)), 
*/.*•/.!. 

rulify(H,B,((dyn_p(H,C,P) : - Body))) : -
binary_node(H), 

expand(H,[],B,C,R,E), 
simp_body((R, P = E) , Body). 

•/.•/, simp_body(+01d, -New) 
'/,'/, - does some simplemided simplification 
'/,'/, on the rules generated by expand, or ru l i fy . 
•/.'/, - easy 

simp_body((true,P),PS) : -
i 
simp_body(P,PS). 

simp_body((P,true),PS) : -
i 
simp_body(P,PS). 

simp_body((A;B),(AS;BS)) : -
• » 
simp_body(A,AS), 
simp.body(B,BS). 

simp_body((A,P),(AS,PS)) : -
i 

simp_body(A,AS), 
simp_body(P,PS). 

simp_body(P,P). 
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B . 3 n e t w o r k . p l 
•/.•/, add_to_net(Parents,Child) 
add_to_net(Parents.Child) 

:- listify(Parents,L), 
add_parents(Child,L), 
add_children(L,Child). 
'/.•/.(member(exists(X,T,V) ,L) 
'/,'/-> add_parents(exists(X,T,V), [V]) 
%%; true), 

7.7.(member(forall(X,T,V) ,L) 
7.7.-> add.parents(forall(X,T,V), [V]) 
7.7.; true) . 

add_parents(A,P) 
:- (retract(st_node(A,S,Pl,C)) 

-> append(P,PI,Pall), 
assert(st_node(A,S,Pall,C)) 

; assert(st_node(A,[bin],P,[]))), 
assert_check(chgd(A)). 

add_children([],_). 
add_children([P|Pl].Child) 

:- add.child(P,Child), 
add_children(Pl.Child),!. 

add_child(A,C) 
:- (retract(st_node(A,S,P,Cl)) 

-> assert(st_node(A,S,P,[C|C1])) 
; assert(st_node(A,[bin],[],[C]))). 

7.7.assert_check(chgd(A)). 

remove_from_net(Parent.Child) 
:- remove_child(Parent.Child), 

remove_parent(Parent.Child). 

remove_child(P,C) 
:- children(P,L), 

remove(C,L,NewL) 
-> retract(st.node(P,S,GP, L)), 

assert(st.node(P,S,GP.NewL)) 
; formatC'Can't delete "w from child l i s t of "w!"n", [C.P]). 

remove_parent(P,C) 
:- parents(C,L), 

http://network.pl
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remove(P,L,NewL) 
-> r e t r a c t ( s t _ n o d e ( C , S , L , G C ) ) , 

a s s e r t ( s t _ n o d e ( C , S , N e w L , G C ) ) , 
a s s e r t _ c h e c k ( c h g d ( C ) ) 

; f o r m a t ( " C a n ' t d e l e t e "w from p a r e n t l i s t o f ~w!~n", [ P , C ] ) . 

c h i l d r e n ( A , L ) 
:- s t _ n o d e ( A , _ , _ , L ) . 

p a r e n t s ( A , L ) 
:- s t _ n o d e ( A , _ , L , _ ) . 

node(A) 
:- s t _ n o d e ( A , _ , _ , _ ) . 

B .4 priors.pl 
a l l _ p r i o r s ( _ , [ ] , L ) 

:- a s s e r t a _ l i s t ( L ) . 

a l l _ p r i o r s ( V a r , [ n e w _ p r i o r ( A , B , P ) | L ] , L 2 ) 

w r i t e _ p ( A , B , P ) , n l , 
w r i t e ( ' C h a n g e t h i s v a l u e ? ' ) , 
r e a d ( A n s ) , 
( p r i o r ( A , B , P ) . r e t r a c t ( p r i o r ( A , B , P ) ) 
; n e w _ p r i o r ( A , B , P ) , r e t r a c t ( n e w _ p r i o r ( A , B , P ) ) ) , 
(Ans == y, 

a s s e r t _ c h e c k ( c h g d ( V a r ) ) , 
a s k _ p r i o r ( A , B , P l ) , 
a l l _ p r i o r s ( V a r , L , [ n e w _ p r i o r ( A , B , P l ) | L 2 ] ) 
; a l l . p r i o r s ( V a r , L , [ n e w . p r i o r ( A , B , P ) | L 2 ] ) ) . 

a s k _ p r i o r ( P r o p , L , P ) 
:- n e w _ p r ( P r o p , L , P , L 2 ) , ! , 

r e t r a c t ( n e w _ p r i o r ( P r o p , L 2 , P ) ) . 

a s k _ p r i o r ( P r o p , L , P ) 
:- \+ \+ w r i t e _ p r o b a b i l i t y ( P r o p , L ) , 

r e a d ( P ) . 

g e t _ p r i o r s ( P r o p , _ , _ ) 

http://priors.pl
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:- h i d d e n i . n o d e ( P r o p ) , 
; 

g e t _ p r i o r s ( P r o p , [ ] , L ) 
:- m u l t i v a l u e d _ n o d e ( P r o p , V a l u e s ) , 

i 

e a c h ( ( 
r e m o v e ( V , V a l u e s , _ ) , 
a s k _ p r i o r ( P r o p = V , L , P ) , 
*/,'/, u n n u m b e r v a r s ( p r i o r ( P r o p = V , L , P ) ,NP), 
a s s e r t a ( p r i o r ( P r o p = V , L , P ) ) ) ) . 

g e t _ p r i o r s ( P r o p , [ ] , L ) :-
a s k _ p r i o r ( P r o p , L , P ) , 
7.7. unnumbervars ( p r i o r ( P r o p , L,P) ,NP), 
a s s e r t a ( p r i o r ( P r o p , L , P ) ) . 

g e t _ p r i o r s ( P r o p , [ A I L i s t ] , L i s t 2 ) 
:- m u l t i v a l u e d _ n o d e ( A , V a l u e s ) , 

* 9 
each. ( ( r e m o v e ( V , V a l u e s , . ) , 

g e t _ p r i o r s ( P r o p , L i s t , [ A = V | L i s t 2 ] ))). 

7 . * 7.get_priors(Prop, [A | L i s t ] ,List2) 
7.*7.:- b l o c k s (A,B2,Prop), 

7.*7.remove(B2.List .NewList) , 
7.*7.get_priors ( P r o p , L i s t , [A|List2]), 
7.*7.get_priors ( P r o p , N e w L i s t , ["A | List2] ) . 

7 . * 7.get_priors(Prop, [ t y p e ( _ , _ ) | L i s t ] ,List2) 
7.*7.:~ ! , g e t . p r i o r s ( P r o p , L i s t ,List2). 

g e t _ p r i o r s ( P r o p , [ A l L i s t ] , L i s t 2 ) 
:- g e t _ p r i o r s ( P r o p , L i s t , [ A | L i s t 2 ] ) , 

g e t _ p r i o r s ( P r o p , L i s t , [ ~ A | L i s t 2 ] ) . 

c h a n g e _ p r i o r s ( A ) 
:- m u l t i v a l u e d _ n o d e ( A , _ ) , 

( s e t o f ( n e w _ p r i o r ( A = V , B , P ) , p r i o r ( A = V , B , P ) , B a g ) 
; s e t o f ( n e w _ p r i o r ( A = V , B , P l ) , n e w _ p r i o r ( A = V , B , P l ) , B a g ) ) , 
a l l _ p r i o r s ( A , B a g , [ ] ) . 

c h a n g e _ p r i o r s ( A ) 
:- ( s e t o f ( n e w _ p r i o r ( A , B , P ) , p r i o r ( A , B , P ) , B a g ) 

; s e t o f ( n e w _ p r i o r ( A , B , P l ) , n e w _ p r i o r ( A , B , P l ) , B a g ) ) , 



B. Source code to I n f l u e n c e 94 

a l l _ p r i o r s ( A , B a g , [ ] ) . 

a s s i g n _ p r i o r s ( A = V , L , P ) 
:- m u l t i v a l u e d _ n o d e ( A , V a l u e s ) , 

member(V,Value s ) , 
( p r i o r ( A = V , _ , _ ) , f o r m a t ( ' P r i o r s e x i s t f o r ~w. Use "change ~w".~n',[A,A]) 
; a s s e r t ( n e w _ p r i o r ( A = V , L , P ) ) ) , 
j . 

a s s i g n _ p r i o r s ( A , L , P ) 
:- b i n a r y _ n o d e ( A ) , 

( p r i o r ( A , _ , _ ) . f o r m a t ( ' P r i o r s e x i s t f o r "w. Use "change ~w"."n',[A,A]) 
; a s s e r t ( n e w _ p r i o r ( A , L , P ) ) ) , 
; 

l i s t _ p r i o r s :-
p r i o r ( A , L , P ) , 
w r i t e _ p ( A , L , P ) , 
f a i l . 

l i s t _ p r i o r s :-
n e w _ p r i o r ( A , L , P ) , 
w r i t e _ p ( A , L , P ) , 
f a i l . 

l i s t _ p r i o r s . 

p r ( A ) L , p r ( A ) L , P ) , L ) 
:- prior(A ,L2,P), 

match(L,L2),!. 

new.pr(A,L,P,L2) 
:- new_prior(A ,L2,P), 

match(L,L2),!. 

B .5 combine.pl 

p(A,C,P) 
:- ground(A,C,GroundedA), 

c o m b i n a t i o n _ m o d e l ( A , M o d e l ) , 
combine_p(Model,GroundedA,C,P). 

http://combine.pl
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ground ( [ ] , [ ] ) . 
g r o u n d ( [ A | L ] , L 1 ) 

:- ground(A,NewA), 
ground(L.NewL), 
append(NewA,NewL,Ll). 

gr o u n d ( A , [ A ] ) 
:- atom(A). 

g r o u n d ( A , [ A ] ) 
:- f u n c t o r ( A , N a m e , A r g s ) , 

a l l _ g r o u n d e d ( A , A r g s ) . 

ground(A,GA) 
:- f u n c t o r ( A , N a m e , A r g s ) , 

f i r s t _ n o t _ g r o u n d e d ( A , A r g s , N ) , 
c o l l e c t _ i n d i v i d u a l s ( A , N , N e w _ A ) , 
ground(New_A,GA). 

c o l l e c t _ i n d i v i d u a l s ( P r o p , A r g , L i s t ) 

a l l _ g r o u n d e d ( A , N ) 
:- f i r s t _ n o t _ g r o u n d e d ( A , N , 0 ) . 

f i r s t _ n o t . g r o u n d e d ( A , 0 , 0 ) . 
f i r s t _ n o t _ g r o u n d e d ( A , N , N ) 

:- a r g ( N , A , X ) , 
v a r ( X ) . 

f i r s t _ n o t _ g r o u n d e d ( A , N , M ) 
:- a r g ( N , A , X ) , 

\+ v a r ( X ) , 
NI i s N - l , 
f i r s t _ n o t _ g r o u n d e d ( A , N l , M ) . 

B .6 c o m b i n e d . p l 
'/,'/, From p r e p r o c e s s . p l 

d i r _ i n f l ( A , B ) 

http://combined.pl
http://preprocess.pl


B. Source code to Influence 96 

:- c o n s i s t e n t ( A , B ) , 
l i s t ( A , P ) , 
c o l l e c t _ f r e e ( P , N e w P , P a r a m s ) , 
combine(NewP,B,Params). 

combine(P,B,[]) 
:- ! , a d d _ t o _ n e t ( P , B ) . 

combine(P,B,Params) 
:- f u n c t o r ( B , N a m e , A r g s ) , 

gensym(Name.NewName), 
l e n g t h ( P a r a m s , L ) , 
NewArgs i s Args + L, 
functor(NewB,NewName,NewArgs), 
declare_combined(Name/Args), 
declare_bin(NewName/NewArgs), 
declare_hidden(NewName/NewArgs), 
unify_args(B,Args,NewB,NewArgs,Params), 
add_to_net(P,NewB), 
add_to_net([NewB|Params],B). 

u n i f y _ a r g s ( _ , 0 , _ , _ , [ ] ) . 

unify_args(Old, 0,New,NewArgs,[type(X,_)I O t h e r A r g s ] ) 
:- arg(NewArgs,New,X), 

N e x t A r g i s NewArgs - 1, 
u n i f y _ a r g s ( O l d , 0 , N e w , N e x t A r g , O t h e r A r g s ) . 

u n i f y _ a r g s ( O l d , A r g s , N e w , N e w A r g s , O t h e r A r g s ) 
:- a r g ( A r g s , O l d , X ) , 

arg(Args,New,X), 
N e x t A r g i s Args - 1, 
u n i f y _ a r g s ( O l d , N e x t A r g , N e w , N e w A r g s , O t h e r A r g s ) . 

c o l l e c t . f r e e ( [ ] , [ ] , [ ] ) 
: - ! . 

c o l l e c t _ f r e e ( P , N e w , [ t y p e ( X . T y p e ) | P a r a m s ] ) 
:- remove(type(X,Type),P,NewP), 

i 
• > 

c o l l e c t _ f r e e ( N e w P , N e w , P a r a m s ) . 
c o l l e c t _ f r e e ( P , P , [ ] ) . 

'/•'/• ******************* 
'/,'/, From p r o b a b i l i t y . p l 
•/,*/, ******************* 

http://probability.pl
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'/,'/, I f t h e node i s p a r a m e t e r i z e d and has ' f r e e ' p a r a m e t e r s , t h e n 
'/,'/, we have t o d e a l w i h t i t s p e c i a l l y . . . 
p(A,B,C) 

:- combined_p(A,B,C). 

combined_p(X,L,P) 
:- combined_node(X), 

i 
• > 

p a r e n t s ( X , [ H i d d e n I T y p e s ] ) , 
c o l l e c t _ t y p e s ( H i d d e n , T y p e s , L , C o m b i n e ) , 
or_p(Combine,L,P). 

c o l l e c t _ a l l _ t y p e s ( L , [ ] , _ , L ) . 
c o l l e c t _ a l l _ t y p e s ( [ ] , _ , _ , [ ] ) . 
c o l l e c t _ a l l _ t y p e s ( [ H i d d e n I O t h e r s ] . T y p e s , G i v e n , O u t ) 

:- c o l l e c t _ t y p e s ( H i d d e n , T y p e s , G i v e n , O u t l ) , 
c o l l e c t _ a l l _ t y p e s ( O t h e r s . T y p e s . G i v e n , O u t 2 ) , 
append(Outl ,0ut2,0ut) . 

c o l l e c t _ t y p e s ( H i d d e n , _ , _ , [ H i d d e n ] ) 
:- i n s t a n t i a t e d ( H i d d e n ) . 

c o l l e c t _ t y p e s ( H i d d e n , T y p e s . G i v e n , O u t ) 
:- p a r e n t s ( H i d d e n , P ) , 

mapmember(P,Given,Outl), 
r e m o v e ( O u t l . G i v e n , N G i v e n ) , 
c o l l e c t _ t y p e s ( H i d d e n , T y p e s , N G i v e n , O u t ) . 

c o l l e c t _ t y p e s ( H i d d e n , [ t y p e ( Z . T y p e ) i T y p e s ] . G i v e n , O u t ) 
:- b a g o f i ( t y p e ( Z , T y p e ) , H i d ) , ( m e m b e r ( t y p e ( Z , T y p e ) . G i v e n ) , 

Hidden = Hid),Comb), 
e x t r a c t _ h i d ( C o m b , E x t r a c t ) , 
c o l l e c t _ a l l _ t y p e s ( E x t r a c t . T y p e s . G i v e n , O u t ) . 

i n s t a n t i a t e d ( F ) 
:- f u n c t o r ( F , _ , A r i t y ) , 

i n s t a n t i a t e d ( F , A r i t y ) . 
i n s t a n t i a t e d ( _ , 0 ) . 
i n s t a n t i a t e d ( F , A r i t y ) 

:- a r g ( A r i t y . F . X ) . 
\+ v a r ( X ) , 
AA i s A r i t y - 1, 
i n s t a n t i a t e d ( F , A A ) . 
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B . 7 consistent.pl 

TI. c o n s i s t e n t ( + A , + B ) 
'/,'/, - c o m p l a i n i f t h e u s e r t r i e s any k i n d o f s t u p i d i t y 
'/.'/. - +A, wh i c h may be a l i s t , a re i n t e n d e d t o be d i r e c t p a r e n t s o f +B 
'/,'/, - we don't want d i r e c t e d c y c l e s i n our network! 

c o n s i s t e n t ( ( A , L ) , B ) 

c o n s i s t e n t ( A , B ) , 
c o n s i s t e n t ( L , B ) . 

c o n s i s t e n t ( A , B ) 
:- \+ \+ ( n u m b e r v a r s ( ( A , B ) , 0 , _ ) , A = B ) , 

!, f o r m a t ( ' E r r o r : "w cannot i n f l u e n c e i t s e l f . ~ n ' , [ A ] ) , f a i l . 

c o n s i s t e n t ( A , B ) 
:- p a r e n t s ( B , L ) , 

member(A,L), 
i 
• > 

f o r m a t ( ' E r r o r : A l r e a d y know ~w => ~w.~n',[A,B]), 
f a i l . 

c o n s i s t e n t ( A , B ) 
:- c h i l d r e n ( B , L ) , 

member(A,L), 
i 
• i 
f o r m a t ( ' E r r o r : A l r e a d y know ~w => ~w.~n',[B,A]), 
f a i l . 

c o n s i s t e n t ( A , B ) 
:- i n f K B . A ) , 

! » 
f o r m a t ( ' E r r o r : ~w i n f l u e n c e s "w a l r e a d y . ~ n ' , [ B , A ] ) , 
f a i l . 

c o n s i s t e n t ( _ , _ ) . 

g i v e n _ i n c o n s i s t e n t ( [ _ ] ) :- f a i l . 
g i v e n _ i n c o n s i s t e n t ( [ " A | L ] ) :-

member(A,L). 
g i v e n _ i n c o n s i s t e n t ( [ A | L ] ) :-

member("A,L). 
g i v e n _ i n c o n s i s t e n t ( [ _ | L ] ) :-

g i v e n _ i n c o n s i s t e n t ( L ) . 

http://consistent.pl
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B . 8 d o n e . p l 

p r o c e s s _ a n d _ c o m p i l e 
:- e a c h ( ( c h g d ( A ) , 

( m u l t i v a l u e d _ n o d e ( A , _ ) 
-> r e t r a c t ( p r i o r ( A = _ , _ , _ ) ) , 

each( r e t r a c t ( s t _ i n f l ( A , B ) ) ) , 

e a c h ( ( s t _ n o d e ( A , _ , _ , _ ) , 
s t _ n o d e ( B , _ , _ , _ ) , 
i n f l ( A , B ) , 
a s s e r t ( s t . i n f l ( A , B ) ) ) ) , 

e a c h ( ( c h g d ( A ) , 
p a r e n t s ( A , L ) , 
g e t _ p r i o r s ( A , L , [ ] ) ) ) , 
•/. • / , b u i l d _ p r i o r _ s t r ( A , P S ) , 
'/.'/.assert(PS) ) ) , 

e a c h ( ( c h g d ( A ) , 
'/,*/. ( b i n a r y _ n o d e ( A ) ; m u l t i v a l u e d _ n o d e ( A , _ ) ) , 
p a r e n t s ( A , L ) , 
r e v e r s e d . , R L ) , 
r u l i f y ( A , R L , R ) , 
a s s e r t ( R ) ) ) , 

each( r e t r a c t ( c h g d ( _ ) ) ) , 

each( r e t r a c t ( n e w _ p r i o r ( _ , _ , _ ) ) ) . 

B . 9 i n f l . p l 

•/.•/. d i r _ i n f l ( A , ( B , C ) ) 
ll :- !, 

ll d i r _ i n f l ( A , B ) , 
•/.*/. d i r _ i n f l ( A , C ) . 

r e t r a c t ( ( d y n _ p ( A = _ , _ , _) 
r e t r a c t ( p r i o r ( A , _ , _ ) ) , 
r e t r a c t ( ( d y n _ p ( A , _ , _ ) :- ))) ) ) , 

_)) 

http://done.pl
http://infl.pl
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'/.*/. d i r _ i n f l ( A , B ) 
'/,'/, :- c o n s i s t e n t (A, B ) , 

•/,•/, ! , a d d _ t o _ n e t ( A , B ) . 

d i r _ i n f l ( A , B ) 
:- c o n s i s t e n t ( A , B ) , 

! , a d d _ t o _ n e t ( A , B ) . 

d e l e t e _ i n f l u e n c e s ( [ ] , _ ) 
: - ! . 

d e l e t e _ i n f l u e n c e s ( _ , [ ] ) 
: - ! . 

d e l e t e _ i n f l u e n c e s ( [ A IL] ,B) 
:- d e l e t e _ i n f l ( A , B ) , 

d e l e t e _ i n f l u e n c e s ( L . B ) . 

d e l e t e _ i n f l u e n c e s ( A , [ B I L ] ) 
:- d e l e t e _ i n f l ( A , B ) , 

d e l e t e _ i n f l u e n c e s ( A . L ) . 

d e l e t e . i n f 1 ( A , B ) 
:- n o d e ( A ) , 

n o d e ( B ) , 
remove_from_net(A,B), 
a s s e r t _ c h e c k ( c h g d ( B ) ) . 

i n f l ( A , " B ) :-
i n f l ( A . B ) . 

i n f l ( A = _ , B ) :-
i n f l ( A . B ) . 

i n f l ( A , B = _ ) :-
i n f l ( A , B ) . 

i n f l ( A . B ) :-
c h i l d r e n ( A , L ) , 
member(B,L). 

i n f l ( A , B ) :-
c h i l d r e n ( A , L ) , 
member(C,L), 
i n f l ( C , B ) . 
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i n f l u e n c e s ( A , ~ B ) :-
i n f l u e n c e s ( A . B ) . 

i n f l u e n c e s ( A = _ , B ) :-
i n f l u e n c e s ( A . B ) . 

i n f l u e n c e s ( A , B = _ ) :-
i n f l u e n c e s ( A , B ) . 

'///.influences (A ,B) :-
y.'/.childrenCA.L), 
'/,7,member(B,L). 

'///.influences(A,B) :- » 
'///.children(A,L), 
'///.member(C,L), 
'///.influences(C,B). 

i n f l u e n c e s ( A . B ) 
s t _ i n f l ( A , B ) . 


