
Dynamic Bayesian Networks

by

Michael C. Horsch

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of

Master of Science

in

The Faculty of Graduate Studies
Department of Computer Science

We accept this thesis as conforming
to the required standard

University of Br i t i sh Columbia
October 1990

© M i c h a e l C . Horsch, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

\

Department

The University of British Columbia
Vancouver, Canada

Date 12. QCTn&FfiL i^9n

DE-6 (2/88)

Abstract

Given the complexity of the domains for which we would like to use computers as reason­
ing engines, an automated reasoning process w i l l often be required to perform under some
state of uncertainty. Probabi l i ty provides a normative theory wi th which uncertainty can
be modelled. Wi thout assumptions of independence from the domain, naive computations
of probabili ty are intractible. If probability theory is to be used effectively in A I applica­
tions, the independence assumptions from the domain should be represented explicitly, and
used to greatest possible advantage. One such representation is a class of mathematical
structures called Bayesian networks.

This thesis presents a framework for dynamically constructing and evaluating Bayesian
networks. In particular, this thesis investigates the issue of representing probabilistic
knowledge which has been abstracted from particular individuals to which this knowl­
edge may apply, resulting in a simple representation language. This language makes the
independence assumptions for a domain explicit .

A simple procedure is provided for bui lding networks from knowledge expressed in this
language. The mapping between the knowledge base and network created is precisely
defined, so that the network always represents a consistent probabili ty distr ibution.

Final ly , this thesis investigates the issue of modifying the network after some evaluation
has taken place, and several techniques for correcting the state of the resulting model are
derived.

n

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures viii

Acknowledgements x

1 Introduction 1
1.1 Bayesian Networks 2

1.2 A dynamic approach to using Bayesian networks 5

1.2.1 Motivation 5

1.2.2 The approach 7

1.2.3 The realization of this approach 7

1.3 Related work 9

1.3.1 Inference using Bayesian networks 9

1.3.2 Other work on dynamic construction of Bayesian networks 10

1.4 The main contributions of this thesis 12

iii

1.5 An outline of this thesis 13

2 Dynamic Bayesian networks 14

2.1 The background knowledge base 14

2.1.1 Schemata 15

2.1.2 Ambiguities in schemata . 18

2.2 Combination nodes 22

2.2.1 Existential Combination 22

2.2.2 Universal Combination 24

2.2.3 Summary 26

2.3 Creating Bayesian networks 26

3 Using Dynamic Bayesian Networks 28

3.1 Influence: An interpreter for dynamic Bayesian networks 29

3.1.1 Declarations 29

3.1.2 Schemata 30

3.1.3 Combination Nodes 32

3.1.4 Creating networks 32

3.1.5 Queries 33

3.2 Diagnosis of multiple faults for digital circuits 33

3.3 Interpreting sketch maps 36

3.3.1 Sketch maps 38

3.3.2 A probabilistic knowledge base 38

3.4 The Burglary of the House of Holmes 41

3.5 Building knowledge bases for Dynamic Bayesian networks 47

3.6 Conclusions 50

iv

4 Implementing dynamic Bayesian networks 51
4.1 The general problem 51

4.2 A n Axiomat iza t ion for Probabil ist ic Reasoning in Prolog 54

4.2.1 The basic computational engine 54

4.2.2 A d d i n g the dynamic combination 55

4.2.3 Discussion 55

4.3 Pearl 's Distr ibuted Propagation and Belief Updat ing 56

4.3.1 Belief updating in singly connected networks 56

4.3.2 A d d i n g dynamic constructs 57

4.3.3 Propagation in general Bayesian networks 64

4.3.4 Discussion 65

4.4 Lauri tzen and Spiegelhalter's computation of belief 65

4.4.1 Belief Propagation on F u l l M o r a l Graphs 66

4.4.2 A d d i n g dynamic constructs 66

4.5 Probabil is t ic inference using Influence diagrams 66

4.5.1 A d d i n g dynamic constructs 67

4.6 Conclusions 69

5 Conclusions 70
5.1 W h a t dynamic Bayesian networks can't do 70

5.2 Other future possibilities 71

5.3 Some final remarks 71

A Influence code for the examples 76
A . l Diagnosis of multiple faults for digi ta l circuits 76

A . 2 Interpreting sketch maps 77

v

A . 3 The Burglary of the House of Holmes 79

B Source code to Influence 82

B . l probabili ty.pl 82

B.2 expand.pl 87

B.3 network.pl 91

B.4 priors.pl 92

B.5 combine.pl 94

B.6 combined.pl 95

B.7 consistent.pl 98

B.8 done.pl 99

B.9 infl.pl 99

v i

http://probability.pl
http://expand.pl
http://network.pl
http://priors.pl
http://combine.pl
http://combined.pl
http://consistent.pl
http://done.pl
http://infl.pl

List of Tables

1.1 The contingency tables for the network in Figure 1.1

vii

List of Figures

1.1 A small Bayesian network 4

1.2 A division of probabilistic knowledge 8

2.1 The Bayesian network created in Example 2.1-1 18

2.2 The network created by instantiating the parameterized unique schemata
from Section 2.1.2 19

2.3 The network created by instantiating the parameterized r ight-mult iple schema
from Section 2.1.2 20

2.4 The network created by instantiating the parameterized left-multiple schema
from Section 2.1.2 21

2.5 The Bayesian network created for Example 2.2-1 25

3.1 A simple circuit 35

3.2 The Bayesian network constructed by our simple knowledge base for the
circuit in Figure 3.1 37

3.3 A simple sketch map 38

3.4 The Bayesian network constructed by our simple knowledge base for the
sketch map in Figure 3.3 42

3.5 The network created for Holmes' decision 46

v i i i

4.1 A simple example of a dynamic network, (a) showing the original network,
and (b) showing the network after another individual of type t is observed.
See Section 4.1 52

4.2 A d d i n g a parent An+x to node C 59

4.3 A d d i n g a child Bn+i to node A 62

4.4 The problem of adding a node after arc reversals have been performed. . . 68

ix

Acknowledgements
I am very grateful to the many people who helped and supported me during the process
of researching and wri t ing this thesis.

Dav id Poole, my supervisor and friend, for patience, encouragement, financial support,
and lots of good ideas.

Dav id Lowe, for patience and enthusiasm during the final stages of revising.

M y parents, Hartmut and Heidi , and my siblings, Monika , Steven, and Andrea. For love
and support bridging the Euclidean distance which separates us.

Andrew Csinger and Manny Noik. For being invaluable colleagues, every-day heroes,
occasional maniacs, and friends in the truest sense.

The gang: N o r m Goldstein, Hilde Larsen, Steve and Sarah Mason, Sue Rathie, David
Sidilkover. For the.right things at the right times, more often than I should have hoped.

The heretics: Brad Cotteral l , K e n Gehrs, Maeghan Kenney, Michelle McMaste r , Jon
Mikkelsen, Ray Schultz, Joeane Zadrah. For imagination and community, for helping
to keep my life interesting and distinct from my occupation.

x

Chapter 1

Introduction

Given the complexity of the domains for which we would like to use computers as reasoning
engines, and the complexity of our world in general, an automated reasoning process will
often be required to perform under some state of uncertainty. For example, in applications
which perform some kind of diagnosis, a single fault or abnormal behaviour may be the
direct result of many factors, and determining which factor is responsible usually involves
choosing a best hypothesis from amongst many alternatives.

Probabilistic analysis is one means by which the uncertainty of many interesting domains
can be modelled.

Probability provides a normative theory with which uncertainty can be modelled. Without
assumptions of independence from the domain, naive computations are quite intractable.
For example, suppose we have five random variables, {A, B, C, D,E} 1 and we wanted
to calculate p(A). Without assuming any independencies, we would have to perform the
following summation:

p(A) = J2 p(AABACADAE)
B,C,D,E

which sums p(A ABACADAE) over every possible combination of the values taken by
the random variables {B, C, D, E}, possibly an exponential number of probabilities. By
exploiting independence assumptions for particular domains, we can drastically improve
the complexity of such computations.

*I denote random variables as upper case math italics. If X can take on a set of multiple values, I will
write them in lower case, as in {xi,... ,xn}. If Y is propositional, I will write +y for true and ->y for
false. More syntactic conventions will be clarified in later sections.

1

1. Introduction 2

If probability theory is to be used effectively in A l applications, the independence as­
sumptions from the domain should be represented explicitly, and used to greatest possible
advantage. One such representation is a class of mathematical structures called Bayesian
networks.
This thesis presents a framework for dynamically constructing and evaluating Bayesian
networks. The remainder of this chapter will outline the basic theory of Bayesian networks,
motivate the approach taken in this thesis, and outline the main issues discussed in future
chapters.

1.1 B a y e s i a n N e t w o r k s

Bayesian networks are known by many names. They are also called belief networks and
causal probabilistic networks. I will refer to them as Bayesian networks, emphasizing the
fact that they are based on the assumptions of Bayesian probability. A related network
formalism, which subsumes Bayesian networks, is known by the name influence diagram.
This section briefly introduces Bayesian networks; for a more thorough treatment, see Pearl
[Pearl, 1988]. For a good introduction to Bayesian probability, see [Lindley, 1965].

A Bayesian network is a directed acyclic graph2 (DAG) which represents in graphical form
the independence assumptions of the probability distribution for a set of random variables.
Nodes in the graph represent random variables, and the arcs connecting the nodes represent
the notion of direct dependence: if a random variable A, represented in the graph by a,
is known to be directly dependent on the random variable B, represented in the graph by
node b, an arc is drawn from b to a. The direction of the arc is often associated with the
notion of causality, directed from cause to effect.

The set of variables deemed to have direct causal or influential effect on a random variable
X are called the parents, or conditioning variables, of X; these are denoted in this thesis
by parents(X).

The strength of the direct dependency relation is quantified by a contingency table, which
are a complete specification of the conditional probabilities associated with a random
variable and its parents. Denoted p(X\parents(X)), this table specifies the effect of each
combination of the possible outcomes of parents (X) on X.

2 A directed acyclic graph is a graph with directed arcs such that no path following the arcs can lead
from a node to itself. For introductory presentation of graph theory, see [Aho et al., 1974].

1. Introduction 3

The conditional independence assumptions for the domain are represented explicitly in
Bayesian networks, and using these assumptions, probability calculations can be performed
more efficiently than the naive computation, requiring much fewer prior probabilities.

A Bayesian network, as Pearl [Pearl, 1988] argues, is a natural, intuitive framework for
writing down knowledge about a domain taking into consideration the ideas of likelihood,
relevance, dependency, and causality. These ideas help to provide guidelines for creating
networks for particular domains, as I will outline in Chapter 3.

A node in the network represents a random variable, which is used to represent possible
outcomes, events, or states in the domain. For instance, we could represent the possibility
of an earthquake happening by using a random variable, E, which takes on two values:
{+earthquake, -iearthquake}, or perhaps for simplicity, {true,false}.

The following example is borrowed from Pearl [Pearl, 1988]:

Example 1.1—1:
Mr Holmes receives a telephone call from his neighbour, Dr Watson, who states
that he hears the sound of a burglar alarm from the direction of Mr Holmes'
house. While preparing to rush home , Mr Homes recalls that Dr Watson is a
tasteless practical joker, and decides first to call another neighbour, Mrs Gib­
bons, who,despite occasional drinking problems, is far more reliable. Mr Holmes
remembers reading in the instruction manual of his alarm system that the de­
vice is sensitive to earthquakes, and can be accidentally triggered by one. He
realizes that if an earthquake had occurred, it surely would be on the news.

Figure 1.1 shows a a Bayesian network which explicitly represents the independence as­
sumptions for our example. The network corresponds to the following equality:

p(Alarm A Burglary A Earthquake A Gibbons A Newsreport A Watson)
= p(Alarm\Burglary A Earthquake)p(Gibbons\Alarm)p(Watson\Alarm)

p(Newsreport\Earthquake)p(Burglary)p(Earthquake)
This factorization is possible because of the conditional independence assumptions for this
example. Note that this equation makes no assumption about the values taken by the
random variables; it is true for any of the possible combinations.

Table 1.1 shows the contingency tables required for the network in Figure 1.1.

A Bayesian network with at most one path between any two nodes (ignoring the directions
of the arcs) is said to be singly connected, and possesses conditional independence proper­
ties which are exploitable computationally. Multiply-connected Bayesian networks, that

J. Introduction 4

Figure 1.1: A small Bayesian network.

1. Introduction 5

p(Alarm\Burglary A Earthquake)
+burglary -iburglary

+earthquake 0.95 0.15
-^earthquake 0.95 0.01

p(Newsreport Earthquake)
-^-earthquake 0.95
-^earthquake 0.001

p(Watson\Alarm)
+alarm 0.80
-lalarm 0.45

p(Gibbons\Alarm)
+alarm 0.60
-+alarm 0.25

p(Burglary) 0.10 p(Earthquake) 0.08

Table 1.1: The contingency tables for the network in Figure 1.1.

is, Bayesian networks with multiple paths between at least one pair of nodes, are more
general, and have fewer exploitable independencies. This topic will be discussed in more
detail in Chapter 4.

The graphical representation is used in various ways to analyze a problem probabilistically,
as Section 1.3 outlines. It is important to emphasize that the arcs in the graph are used as
guidelines for computation, and without the conditional independence assumptions which
are represented by the arcs in Bayesian networks, probabilistic analysis would be wildly
impractical.

1.2 A d y n a m i c a p p r o a c h t o u s i n g B a y e s i a n n e t w o r k s

1.2.1 Motivation

Bayesian networks used in typical applications represent static probability models; that
is, while the networks are designed to accept conditioning based on observations, they
typically do not change their structure. Consider the example in Figure 1.1. This network
can only be used as a model of the particular situation for which it was created, and cannot
be used, say, to tell us how likely it is that a burglary occurred given that Holmes' third
neighbour Bob (who is not represented at all in the network) calls up with a report that

1. Introduction 6

he hears an alarm.

In order to incorporate Bob in the model, we have to add a node representing Bob's report
and an arc between the node representing the alarm and our new node.

Adding a single node and arc in this situation is conceptually a simple matter, but it
required knowledge: we, the users of the system, needed to know that the independence
assumption for the random variable representing Bob's report is reasonable, and that no
other events of interest might cause Bob to report an alarm. As well, we needed to know
how Bob's report depends on the event that Holmes' alarm sounded. That is, we needed
to know the contingency table p(Bob\Alarm).

This example demonstrates the kind of modification to the network structure that this
thesis intends to address. However, the example is much too simple, for two reasons:
First, we need no special training to gain expertise in this toy domain. Second, the
example required very little expertise at building Bayesian networks, certainly no more
than the intuition a novice might use, to add the new information.

For more complicated domains, a user may have trouble adding nodes and arcs to a
Bayesian network because she is not an expert in the domain. However, it may be the
case that we are using a Bayesian network application precisely because we are not experts,
for consultation purposes perhaps. If, in fact, we know which new aspects of our domain
ought to be incorporated in our model, but are not able to change the network suitably,
then the application is useless for our situation.

There are at least three ways to address the static model problem. One way is to ask
the domain expert for a revision to the network when the need arises. The second is
for the domain expert to detail the domain so exactly that the need to add arcs never
arises. A third way is to automate the process of building Bayesian networks so that the
expert's knowledge can be accumulated in a knowledge base before hand; this generalized
knowledge could then be retrieved and applied whenever a user determines the need.

This thesis examines the third approach—automating the process of building Bayesian
networks from a background knowledge base of generalized probabilistic information. This
approach adds flexibility to Bayesian networks applications, and tends to keep the networks
required reasonably small.

1. Introduction 7

1.2.2 The approach

Domain knowledge can be divided into:

individuals: entities in the domain of interest

possible properties: the properties an individual may have and the relationship between
these properties

observed state: the properties an individual does have

In traditional approaches, a knowledge engineer, perhaps in consultation with a domain
expert, is responsible for knowing the individuals to be included in the domain, and the
properties these individuals may have. In other words, the knowledge engineer must build
the network. The user is responsible for supplying information as to the actual state of
the situation (i.e. the properties some of the the individuals do have). This division of
knowledge is demonstrated figuratively in Figure 1.2a.

In contrast, the dynamic approach taken in this thesis divides the knowledge differently.
The knowledge engineer provides a background knowledge base relating properties with­
out specifying the particular individuals. The user supplies two kinds of information: the
individuals known to be in the domain, which the dynamic system will use to build an
appropriate network automatically, and the observations pertaining to the state of the
model. This is figured in Figure 1.2b. In this way, the same background knowledge can
be used to model different situations in which only the set of individuals under consider­
ation changes. In the traditional approach, such changes would have to be made by the
knowledge engineer.3

The dynamic approach provides a flexibility previously unrealized in Bayesian network
applications.

1.2.3 The realization of this approach

To automate the process of building Bayesian networks, we need two steps. First, we
need to be able to represent domain knowledge which is abstracted away from particular

3The knowledge engineer-user distinction made here is deliberately simplified. In many cases, the user
of dynamic system like the one presented in this system may also be the knowledge engineer. No principle
prohibits the user from modifying the knowledge base, but in doing so, the user switches roles.

1. Introduction 8

(a) Traditional

Dependencies j

• \

between [Individuals Observations

Variables j

J
Knowledge Engineer User

(b) Dynamic Approach

Dependencies

between

Variables

Individuals Observations

Knowledge
Engineer

User

Figure 1.2: A division of probabilistic knowledge.

1. Introduction 9

individuals. Second, we need to be able to bui ld a network from this knowledge based on
the information we can gain from the user.

The first step corresponds roughly to knowledge of possible properties (as in Section 1.2.2),
which we elicit from the domain expert. These properties are modelled wi th random vari­
ables, and to abstract away from particular individuals, parameterized random variables
(PRVs) are used. The knowledge engineer supplies the relationships between P R V s in the
form of a background knowledge base.

The second step corresponds roughly to knowing the individuals that are to be considered
in the model, and which the user can supply at the time of consultation. The system
combines these two kinds of knowledge automatically, to create a Bayesian network for
the situation the user has specified. The user can then consult the system, supplying the
information about the observed state of the domain, and querying the network as necessary
to obtain the inferred probabilistic analysis.

It may arise that, as the user is working wi th the system, some individuals become known
after a network has already been constructed, and after observations have been submitted
to the network. The user is able to supply this information to the system, and the system
is able to use this information and modify the network structure appropriately.

1.3 R e l a t e d w o r k
In this section, I w i l l provide a brief introduction to some of the related work done on
Bayesian network technology. In particular, I w i l l introduce various methods used to
evaluate Bayesian networks, and review similar notions of dynamic Bayesian networks
presented by Goldman and Charniak [1990], and Breese [1990].

1.3.1 Inference using Bayesian networks

There are several methods by which Bayesian networks are used to calculate probabili­
ties. A more comprehensive discussion of much of the following w i l l be presented in later
chapters.

Pearl [Pearl, 1988] treats singly connected Bayesian networks as networks of communicating
processes. The processes use arcs to propagate causal and diagnostic support values, which
originate from the activation of evidence variables.

1. Introduction 10

Lauri tzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988] perform evidence absorp­
t ion and propagation by transforming the Bayesian network into a triangulated undirected
graph structure. Posterior probabilities are computed using specialized computations based
on this graph.

Shachter [Shachter, 1988] uses the arcs to perform arc reversals and node reduction on the
network. Evidence absorption and propagation can also be performed using arc reversals
and node reductions as well [Shachter, 1989]. 4

Poole and Neufeld [Poole and Neufeld, 1989] provide an axiomatization of probabili ty the­
ory in Prolog which uses the arcs of the network to calculate probabilities using "reasoning
by cases" wi th the conditioning variables. The prototype implementation of my approach
is based (but not dependent) on this work.

1.3.2 Other work on dynamic construction of Bayesian net­
works

During the wri t ing of this thesis, several authors have presented similar work on building
Bayesian networks from schematic knowledge collected in a knowledge base. Goldman
and Charniak [Goldman and Charniak, 1990], and Breese [Breese, 1990] have developed,
independently of the work presented in this thesis, similar theories of dynamic Bayesian
networks. Since their work is very similar to this approach (and each other's), I w i l l treat
their work more deeply in following sections.

Laskey [Laskey, 1990] presents a framework for using dynamically created Bayesian net­
works in a reasoning system based on a hierarchical approach. Knowledge in the form of
probabilistic schemata are used to form an argument, which is transformed into a Bayesian
network. Conclusions or conflicting evidence which defeat the argument trigger knowl­
edge in the schemata, forming an augmented argument. This process proceeds unti l no
conflicting arguments are found.

A quite different approach to creating Bayesian networks involves the statistical analysis of
case data. Pearl [Pearl, 1988] provides a good introduction to the process, which identifies
dependencies and independencies. This area of research is current, but essentially unrelated
to the methods presented in this thesis.

4Shachter's influence diagrams contain decision and test nodes, as well as other devices not being
considered in this thesis. This thesis only looks at probabilistic nodes.

1. Introduction 11

Goldman and Charniak

Goldman and Charniak [Goldman and Charniak, 1990] describe a knowledge-based ap­
proach to bui lding networks dynamically, as part of a story understanding application.
A forward-chaining inference engine takes information in the form of propositions and
builds a network according to rules in the knowledge base. These rules provide ways to
combine the influence of different causes on common effects by providing specialized func­
tions for the domain and by taking advantage of the occasions in which causes interact
stereotypically.

When the bui lding process is complete, an evaluation of the network takes place, and the
network is simplified by accepting as true those statements which are highly probable, and
rejecting those propositions which are considered too improbable. Simplifying the network
in this way may lead to additional modification of the network.

Breese

The work done by Breese [Breese, 1990] on building Bayesian networks bears many similar­
ities to Goldman and Charniak's work. Breese's approach includes the use of such decision
analytic tools as value nodes and decision nodes, which are part of the influence diagram
model.

Knowledge is stored in a hybrid knowledge base of Horn clause rules, facts, and probabilistic
and informational dependencies. The rules and facts are used to determine some of the
probabilistic events which should be included in the model. The probabilistic dependencies
are used to structure the network once it is determined which nodes ought to be included.
Furthermore, these dependencies may identify other events which might play a part in the
model, but are not definitely determined by the Horn clause rules.

The bui lding process is started by the query entered by the user of the system, who also
includes given information and evidence for the problem. The first step of the process is to
determine the events which directly influence the query. Backward chaining through the
probabilistic dependencies and the Horn clause rules identifies many nodes and arcs to be
included in the model. Once this process stops, a forward chaining process identifies those
events which are influenced by the nodes in the partial network from the previous step.

1. Introduction 12

Discussion

There are many similarities in the approaches of Goldman and Charniak, and Breese. Both
systems create Bayesian networks as a secondary reasoning tool after a primary inference
engine determines which nodes to consider, and which dependencies to include in the
network. In this respect, knowledge about the domain is found in two separate knowledge
bases: the rules used to create the Bayesian networks, and the network itself.

In contrast, the approach taken in this thesis uses only one knowledge base, and provides
only a simple process by which Bayesian networks can be created using this knowledge.
This approach is much simpler, and precisely defines the mapping between the knowledge
base and the networks which can be created.

Both approaches by Goldman and Charniak, and Breese could be used to implement the
ideas presented in this thesis: the rule bases in both systems could be used to implement
dynamic Bayesian networks as this thesis presents them. However, this thesis presents
only a language for representing general probabilistic knowledge, and a simple process for
creating Bayesian networks using this language; no work has been done herein on allowing
another program to use this language to create networks as a sub-task.

1.4 T h e m a i n c o n t r i b u t i o n s o f t h i s t h e s i s

This thesis investigates the issue of representing probabilistic knowledge which has been
abstracted from the knowledge of particular individuals, resulting in a simple representa­
tion language.

As well, a simple procedure for building networks from knowledge expressed in this lan­
guage is provided. The mapping between the knowledge base and network created is
precisely defined, so that the network always maintains a consistent probability distribu­
tion.

Finally, this thesis investigates the issue of modifying the network after some evaluation
has taken place, and several techniques for correcting the state of the resulting model are
derived.

1. Introduction 13

1.5 An outline of this thesis

In Chapter 2, dynamic Bayesian networks are presented formally.

The major c la im in this thesis is that Bayesian networks can be dynamic, flexible, and
simple to use. I demonstrate the abil i ty of my implementation in Chapter 3, thereby
giving evidence for my cla im. I apply my approach in such diverse areas as simple decision
problems, diagnosis of multiple faults, and interpretation of sketch maps.

In Chapter 4 I briefly discuss the details of adapting the various evaluation algorithms to
make use of dynamic Bayesian networks.

Final ly , in Chapter 5 I conclude that the approach to Bayesian probabili ty demonstrated
here is useful in domains for which a priori knowledge is of a general nature, and for which
specific details are most conveniently provided during the reasoning or decision-making
process.

Chapter 2

Dynamic Bayesian networks

In order to make Bayesian networks versatile and reasonably manageable in terms of size,
I have argued for an approach which creates networks by instantiating generalized proba­
bilistic knowledge for the individuals known to be in the model. Thus, when information
about new individuals is discovered, the system itself should be able to modify the net­
work, by combining the new information about individuals with the knowledge found in a
background knowledge base created by a domain expert.

This chapter first presents a simple and declarative language for expressing probabilistic
knowledge, which I demonstrate is too unconstrained for the purpose of providing a precise
framework for creating and modifying Bayesian networks dynamically. This language is
restricted to remove the possibility of ambiguous knowledge, and then augmented with
special purpose constructs which are based on Canonical Models of Multicausal Interac­
tions, as described in Pearl [Pearl, 1988]. The resulting language is shown to be at least as
expressive as Bayesian networks, and flexible enough to provide a tool for modelling many
kinds of domains.

I conclude this chapter by outlining a simple procedure to create Bayesian networks from
a knowledge base of statements in this language.

2.1 T h e b a c k g r o u n d k n o w l e d g e b a s e

Dynamic Bayesian networks are created from a parameterized background knowledge base
of schemata by combining it with individuals who are known to be part of the model. This

14

2. Dynamic Bayesian networks 15

section presents the syntax of the parameterized knowledge base, and describes the process
of instantiating schemata for individuals.

2 . 1 . 1 Schemata

It is necessary to represent parameterized probabilistic knowledge unambiguously, so that
the intended meaning of this knowledge is apparent from the syntax. In particular, the
statements in our language must clearly show how the parameters are to be instantiated,
and how the resulting instantiation is used in the Bayesian network built from this knowl­
edge base.

A n atom is any alphanumeric string beginning wi th a letter. A parameter is represented by
a capitalized atom. A n individual is represented by a lower case atom. A random variable
is an atom followed by a possible empty list of individuals; for convenience, an empty list
is usually dropped from the random variable notation. Random variables take values from
a finite set of discrete values called the range, and in many cases we use binary-valued
random variables, which take {true.false} as values.

A parameterized random variable (P R V) abstracts the notion of a random variable away
from any particular individual ; it is represented as a lower case atom with a list of parame­
ters, each of which stands in place of an individual . Instantiating a parameterized random
variable replaces a l l the parameters wi th individuals, creating a random variable.

Associated wi th parameters and individuals is a corresponding type, which constrains the
instantiation of a parameter to only individuals of the associated type.

A schema is the fundamental statement in this language. The syntax for a schema is as
follows:

a i , . . . , a n — • b

: = [u i , . . . , Ufc]

where b, a,- are parameterized random variables. The left hand side of the arc (—•) is a
conjunction of P R V s (called the parents), which directly influence the single P R V (called
the child) on the right hand side. The list [vi,..., vk] is a short-hand notation which lists
the probabilities for the contingency table corresponding to the schema. Recal l that a
contingency table must have a probability for each combination of values for the P R V s .
The short-hand list orders these probabilities by varying each parent over its set of values
wi th the left-most parent varying most quickly. This list contains 2 n probabilities when
the a ; are binary-valued, and even more when any have more than two possible values.

2. Dynamic Bayesian networks 16

In a collection (or knowledge base) of schemata, a P R V can occur any number of times
as a parent for some other P R V , but may occur as the child in only one schema. This
restriction is intended to simplify the task of wri t ing schemata: keeping the list of parent
P R V s in one schemata localizes relevant knowledge to one statement, and a knowledge
base is easier to maintain.

A schema is instantiated when al l P R V s in the schema have been instantiated. In the
scope of a single schema, parameters shared across P R V s are instantiated wi th the same
individual . The instantiated schema is used to bui ld new arcs in a Bayesian network by
creating a node for each random variable, and directing an arc from each parent variable
to the child variable.

For example, the schema:

alarm — • reports_alarm(X: person)
:= [0.9,0.01]

might occur in a knowledge base for the alarm example, of Chapter 1. It specifies a single
parent P R V , alarm, which has no parameters, and a child variable, reports_alarm(X:person),
which has a single parameter, X. Only individuals of the type person can be used to
instantiate this schema. In this example (as in most of the simple examples in this chapter,
unless otherwise stated), the P R V s are assumed to take values from {true, false}.

This example should be interpreted as representing the idea that an alarm might be re­
ported by a person, and explici t ly assumes that only the presence or absence of an alarm
sound has direct affect on the report the person might make.

The two numbers in square brackets give the contingency table for this schema, stating
consisely the following two probabilities:

p(reports_alarm(X)| alarm) = 0.9

p(reports_alarm(X)| -lalarm) = 0.01

These numbers quantify the effect of the parent variables on the chi ld variable. Note that
the probabilities

p(-ireports_alarm(X)| alarm) = 0.1

p(->reports_alarm(X)| -lalarm) = 0.99

2. Dynamic Bayesian networks 17

can be inferred by the Negation axiom of probability theory.

Discussion

When instantiated, each schema of the form •

a i , . . . , a n — • b

corresponds to a conditional probabili ty of the form p(b\a\,... ,an) Creating a Bayesian
network from these schemata corresponds to bui lding an expression for the joint probability
distr ibution from these conditional probabilities. Thus, the intended use of these schemata
is always well defined.

Example 2.1-1:
Consider the following schema:

alarm —> reports_alarm(X: person)

:= [0.9,0.01]

When instantiated wi th the set person = {John, mary}, the Bayesian network
in Figure 2.1 is created, which represents the following expression for the joint
probabil i ty distribution:

p(Alarm A Reportsjxlarm(john) A ReportsMlarm(mary))
= p(Alarm) p(Reportsjalarm(john)\Alarm) p(Reportsjalarm(mary)\Alarm)

This simple declarative language is at least as expressive as Bayesian networks. This
can be shown by taking a Bayesian network and wri t ing it in terms of unparameter-
ized schemata. The direct and unambiguous correspondence between unparameterized
schemata and Bayesian networks is obvious. Add ing parameters to the language allows us
to express knowledge which can be used several times by instantiating them differently.

However, the correspondence between the knowledge base and the Bayesian networks which
can be constructed from it is no longer guaranteed to be unambiguous. These ambiguities
arise as a direct result of attempting to parameterize probabilistic knowledge, as we shall
see in the next section, and are easily restricted.

2. Dynamic Bayesian networks 18

Figure 2.1: The Bayesian network created in Example 2.1-1.

2.1.2 Ambiguities in schemata

In the previous section, it was mentioned that allowing parameterized knowledge in our
language could lead to ambiguous knowledge bases. In this section the possible ambiguities
are il lustrated and a simple constraint is imposed on the language to remove possible
ambiguities.

It is useful to examine three extremes which can be attained when wri t ing schemata in
parameterized form, in order to bring to light the issues of parameterizing conditional
probabili t ies. 1 These extremes can be labelled as:

Unique schemata: every instantiation creates a set of random variables which no other
instantiation of the same schema shares

Right—multiple schemata: different instantiations may create child variables which have
identical parent variables

Left-multiple schemata: different instantiations may create different parents for a sin­
gle child variable

We w i l l look at each one of these in detail in the following sections. It is worth mentioning
that in general, schemata may exhibit the characteristics of several of these extremes.

As well, identifying these extremes will be helpful in the discussion of Chapter 4.

2. Dynamic Bayesian networks 19

Figure 2.2: The network created by instantiating the parameterized unique schemata from
Section 2.1.2.

Unique schemata

These are parameterized schemata in which every parameter in the parent variables (on
the left side) also occurs in the child variable. For example:

a(X,Y),b(X,Y) — c(X,Y)

This is called unique because every instantiation of X, Y creates a unique dependency
between parents and chi ld . If, for example, we instantiate X wi th {x i , X2} and Y wi th
{yi}, we get two distinct sets of arcs in our network, as in the network of Figure 2.2.

There are no ambiguities which result from unique schemata.

Right—multiple schemata
These are schemata in which parameters occurring in the child variable do not appear in
the parent variables, and al l other parameter in the schemata occur on both sides. For
example:

a,b — c(X,Y)

Each instantiation of X and Y results in a new child variable which may share parents with
other instantiations of the schema. If we instantiate X wi th {x^ X2} and Y wi th {y i} , we

2. Dynamic Bayesian networks 20

Figure 2.3: The network created by instantiating the parameterized right-multiple schema
from Section 2.1.2.

obtain the dependencies shown in the network of Figure 2.3.

No ambiguities arise as a result of right-multiple schemata.

Left-multiple schemata

These are schemata in which some parameters occurring in the parent variables do not
occur in the child variable. For example:

a(X) —-> c

Each instantiation adds a parent for the child variable. For example, if X is instantiated
with {xi, X2, . . . , x n}, we get the dependencies shown in the network of Figure 2.4.

This kind of schema is ambiguous as there is no way to know, when the schema is written
down, how many instantiations of the parent variables could be needed. However, since
we must provide a contingency table which can be used in numeric calculations, we must
supply a contingency table for every possible number of instantiations. This is clearly

2. Dynamic Bayesian networks 21

Figure 2.4: The network created by instantiating the parameterized left-multiple schema
from Section 2.1.2.

impossible. Even putt ing a bound on the number of possible instantiations is impractical
because of the fact that the size of each contingency table is exponential in the number of
parent variables. 2

Summary

This simple language of conditional dependencies is at least as expressive as Bayesian net­
works. Parameterizing these schemata adds flexibility to the language, but also introduces
possibilities for ambiguous knowledge.

The ambiguities arising from left-multiple schemata (or hybrid schemata which have their
characteristic) is an issue of pragmatics, and one possible solution is to disallow left-
multiple schemata from our language. This restriction should be taken as much the same
kind of restriction prohibit ing left-recursive programs in Prolog, for example.

The resulting restricted language now lacks the abil i ty to combine an arbitrary number
of causes (or influences) into a single common effect. The next section presents two con­
structs which help to redress this deficiency without reintroducing ambiguities or requiring
unreasonable numbers of contingency tables.

2In fact, if we were solely concerned with qualitative statements of dependency, this ambiguity would
not be a problem.

2. Dynamic Bayesian networks 22

2.2 C o m b i n a t i o n n o d e s

The main problem which arises from the ambiguity of left-multiple schemata is that the
number of instantiations of the parent variables required for a particular consultation is
unknown at the time the knowledge base is being created. If we assume that these instances
combine their effects in the domain in a simple and regular manner, providing the required
contingency table is only a matter of enumerating the instances.

In the following sections, two constructs are presented which assume a simple and regular
combination of the effects of an indeterminate number of parent variables on a single child
variable. Briefly, these are:

Existential Combination: i f one of the parent variables takes true, the child variable
takes the value true.

Universal Combination: i f a l l of the parent variables take the value true, the child takes
the value true.

These two are currently used in the language, but similar structures, exploit ing some other
regularities, might be added. For example, a combination mechanism could be defined
corresponding to the notion that exactly one parent variable (out of many) is true. The
two discussed in this section are based on the noisy-or and noisy-and gates as described
in Pearl [Pearl, 1988].

2.2.1 Existential Combination

This combination is intended to be used when it is known that any one of a number of
conditions is l ikely to affect another variable.

The syntax of this structure is as follows:

3 X 6 type-a(X) —• b

where a(X), b are binary P R V s , and X is a parameter of type type. The variable b depends
on the variable 3X € type • a(X), which is a binary P R V dependent (implici t ly) on every
instantiation of a(X).

2. Dynamic Bayesian networks 23

The contingency table p(b\3X G type • a(X)) for this schema is given in square brackets,
and is provided by the knowledge engineer in the knowledge base. The contingency table
for p(3X G type • a(X)\a(X)) is automatically generated by the system and takes the form
of an O r table based on each instantiation of a (X) .

Example 2.2-1:
People who smell smoke may set off a fire alarm, and the alarm actually making
a noise depends on at least one person sounding the alarm. Anyone who hears
an alarm is likely to leave the bui lding in which the alarm is found. Fire is a
likely cause for someone smelling smoke.

fire — • smel ls -smoke(X)

:= [0.7,0.2]

smel ls -smoke(X) — • sets_off_alarm(X)

:= [0.95,0.01]

3 Y G person • sets_off_alarm(Y) — • alarm-sounds

:= [0.98,0.1]

alarm-sounds — • leaves_building(Z)

:= [0.7,0.4]

Suppose we are given that John and mary are the only known members of the
set person. Th i s information combined wi th the above schemata creates the
network shown in Figure 2.5.

The combination node combines the effects of a l l known members of the set. In the
preceding example, it is not unreasonable to expect that some unknown person has set off
the alarm, and this possibility is granted in the contingency table for
3Y G person • sets -of f-alarm(Y):

p(alarm_sounds| 3 Y G person • sets_off_alarm(Y)) = 0.98

p(alarm_sounds| ->3Y G person • sets_of f .a larm(Y)) = 0.1

The first probabili ty indicates that wi th high probability, i f a person sets off the alarm,
the fire alarm w i l l make a noise. The second number indicates that wi th low probability,

2. Dynamic Bayesian networks 24

the alarm w i l l sound when no known member of the set person has set off the alarm. This
includes the possibili ty of a malfunction of the alarm, the possibility that some person
unknown to the system has set off the alarm, as well as other unknown causes. There is
no facility in our language for making hypotheses for these unknown causes.

2.2.2 Universal Combination

This combination is intended to be used when it is known that every one of a number of
conditions must hold to affect another variable.

The syntax of this structure is as follows:

VXetype-a(X) —-> b
:= [«I,M2]

where a(X), b are binary P R V s , and X is a parameter of type type. The variable b depends
on the variable VX G type • a(X), which is a binary P R V dependent (implici t ly) on every
instantiation of a(X).

The contingency table p(b\VX £ type • a(X)) for this schema is given in square brackets,
and is provided by the knowledge engineer in the knowledge base. The contingency table
for p(VX € type • a(X)\a(X)) is automatically generated by the system and takes the form
of an And table based on each instantiation of a(X).

Example 2 .2-2:
A board meeting for a large corporation requires the presence of a l l board mem­
bers, and the meeting may result in some actions, say, buying out a smaller
company. A board member may attend the meeting, depending on her relia­
bi l i ty and state of health.

VX € board-members • present(X)

meeting

healthy(X),reliable(X)

— • meeting
:= [0.8,0.1]
— • buy-out
:= [0.7,0.3]
— • present(X)
:= [0.9,0.4,0.6,0.1]

2. Dynamic Bayesian networks 25

Figure 2.5: The Bayesian network created for Example 2.2-1

2. Dynamic Bayesian networks 26

We note that at the time the schemata are written, it is not important to know
how many board members there may be. However, we must know exactly who
is a member on the board before the network can be created. Th i s informa­
t ion is supplied at run-t ime, and the construction process can construct the
appropriate network. Evidence concerning the reliabili ty and health of any
board member can then be submitted to the network, providing appropriate
conditioning for queries.

2.2.3 Summary

The combination nodes presented in this section are used to allow a number of conditioning
P R V s to have direct influence on a single child P R V . The number of these conditioning
variables is unknown when the knowledge base is created, and the user of the system
can indicate as many instantiations as required in the model. The combination nodes
effectively collect each relevant instantiation, and combines them using an or-rule for
existential nodes, and an and-rule for universal nodes.

These combination nodes have been implemented in the language, and another possibility
would be to add a similar mechanism which performs a combination that exclusively selects
a single individual as the causal agent. Others are possible in principle, but any similar
mechanism should maintain the properties of being a simple and regular combination.

2.3 C r e a t i n g B a y e s i a n n e t w o r k s

Creating a Bayesian network from a knowledge base is a simple process. The in i t ia l state
is a Bayesian network wi th no nodes and no arcs.

The system takes every known individual (which was supplied by the user) and instantiates
every schema which has a parameter of the corresponding type. W i t h i n a schema, sev­
eral parameterized random variables may have shared parameters (i.e., parameters wi th
the same name), and when the schema is instantiated, every occurance of the common
parameter is replaced by a common individual .

The instantiated schema relates random variables, and is interpreted by the system, adding
nodes and arcs to the current Bayesian network. The system creates a node representing
each random variable in the instantiated schema, and checks whether an identical node
already exists in the network. If not, a node is entered into the network; i f a node already

2. Dynamic Bayesian networks 27

exists in the network, it is not added again. An arc is directed from each node representing
a parent random variable to the child variable. In this way, a complex structure can be
created from a simple set of schemata.

This procedure for creating Bayesian networks from parameterized knowledge could be
used a number of ways. First, a user might be responsible for submitting the individuals
of the model to the system, and then use the Bayesian network created by the system
interactively.

Alternatively, a higher level program might use the network creation/evaluation system as
a sub-system, and submit individuals and make queries in order to perform some action
or decision.

The Influence implementation, described briefly in Chapter 3 and more extensively in
[Horsch, 1990], can be used as a (somewhat simple) interface between the user and the
system. It can also be used as a module for another program to manipulate.

Chapter 3

Using Dynamic Bayesian Networks

In previous chapters, I presented the dynamic Bayesian network as a useful tool for reason­
ing under uncertainty. Chapter 2 presented some simple examples showing the results of
bui lding networks dynamically. Chapter 4 w i l l demonstrate that the dynamic constructs
are independent of the method by which the posterior distributions are calculated.

In this chapter, I demonstrate wi th some examples the usefulness of dynamic Bayesian
networks. Since the examples are directly executable in the prototype implementation,
the syntax for the In f l uence interpreter, presented in [Horsch, 1990], w i l l be used. I w i l l
briefly introduce the syntax in the next section.

The rest of this chapter is organized in the following way. The first example takes the
domain of diagnosing faults in simple electronic circuits. The second example takes the
domain of interpreting simple sketch maps, which is the domain of the Mapsee project at
U B C [Mulder et al, 1978], and has been treated logically by Reiter and Mackworth [Reiter
and Mackworth , 1989], and wi th default logic by Poole [Poole, 1989]. The thi rd example is
borrowed from Breese [Breese, 1990]. A summary section concludes this chapter wi th some
observations about how knowledge bases for dynamic Bayesian networks can be created.

28

3. Using Dynamic Bayesian Networks 29

3.1 : A n i n t e r p r e t e r f o r d y n a m i c B a y e s i a n
n e t w o r k s

The Influence interpreter is an implementation of the techniques of this thesis, written in
Prolog. Writing a knowledge base using this implementation has two parts: declaring the
PRVs, and writing the schemata. The knowledge base is used within the implementation
to create the networks and evaluate queries.

3.1.1 Declarations

Parameterized random variables (PRVs) are represented by Prolog terms, and must be
declared as being binary, i.e., taking a value from {true, false}, or multi-valued, i.e.,
taking a value from a given list of mutually exclusive and exhaustive values. The syntax
is:

where the prvi are PRVs, and arity is the number of parameters the node has. For multi­
valued PRVs, the list of values must be separated by commas.

Several variables, separated by commas, can be declared at once using either declaration
command. In the case of multi-valued nodes, the intention is to declare several variables
all taking values from the same set.

The / arity can be omitted in place of the direct specification of the parameters, or, if the
node has no parameters, then an arity of zero is assumed. Within a PRV, parameters are
represented by Prolog variables, i.e., atoms which begin with a capital.1

A special declaration is required for PRVs whose dependence can be written functionally
in terms of the values taken by its parents values. For example, we might want to use a
PRV for the subtraction operation, such that:

xThis is the first and last time that parameters will be referred to as any kind of variable. To reinforce
the correct understanding, parameters for parameterized random variables in a knowledge base of schemata
are implemented here as Prolog variables.

binary prv\ I arity.
multi prv2 I arity 9 [value-lisf] .

3. Using Dynamic Bayesian Networks 30

The following declaration is used:

f u n c t i o n prv.

A n y function for a P R V must be a function of the values taken by its parent's P R V s , as
opposed to being a function of the individuals which may later instantiate the schema.
The function itself is writ ten wi th the schema in which i t appears as the chi ld . Wr i t ing
schemata is the topic of the next section.

It is important to emphasize that the parameterized random variables which appear in
these declarations are neither random variables nor nodes in the network. A P R V must
be instantiated to become a random variable, as described in Chapter 2, and the network
creating procedure w i l l create a node in the Bayesian network corresponding to the in­
stantiated P R V . However, the phrase the node representing the instantiated parameterized
random variable {prv} quickly becomes tiresome, and often w i l l be simply referred to as
node. It should be clear by context whether the strict meaning of node is intended.

3.1.2 Schemata

Once the P R V s for a knowledge base are declared, the schemata may be writ ten. The
syntax is simply:

p-prv\, ... , p-prvn => c-prv
• = Lpi,-..,Pfc] •

which is interpreted as indicating that instantiations of this schema w i l l be used to create
a Bayesian network such that arcs w i l l be directed from the nodes representing the parent
P R V s to the node representing the child P R V . A restriction on schemata is that every
parameter which appears in the list of parent P R V s must also appear in the child P R V ;
in the terminology of Chapter 2, schemata are not allowed to be left-multiple. The list
[p\,..., pk] is a short-hand notation which lists the probabilities for the contingency
table corresponding to the schema. Recal l that a contingency table must have a probability
for each combination of values for the P R V s . The short-hand list orders these probabilities
by varying each parent over its set of values (in the order of the value list given in the
m u l t i declaration) wi th the left-most parent varying most quickly. If the child P R V is
declared as b i n a r y , only the case i n which the child P R V takes the value t r u e is specified.
Otherwise, the parent P R V s are varied for each value of the child P R V .

3. Using Dynamic Bayesian Networks 31

For P R V s declared as f u n c t i o n , the syntax is:

p-prvi, p-prvn => c-prv
:= {y(c-prv=c-val, [p-prvi=pi-val, p-prvn=pn-val\)

- i f test then vtrue e l s e V f a i s e }.

where test is a Prolog condition, vtrue and Vfaise are numbers in [0,1]. The

E x a m p l e 3.1—1:

Suppose we wanted to model a decision for someone to attend a baseball game.
Assume that a baseball fan w i l l almost certainly have lots of fun at the game
if it doesn't rain, but may find something fun to do elsewhere. The more rain
at the game, the less likely it w i l l be that the fan has a lot of fun.

b i n a r y a t t e n d s (X) .
m u l t i r a i n s @ [n o n e , d r i z z l e , p o u r s] .
m u l t i has - fun(X) @ [l o t s , l i t t l e] .

a t t e n d s (X : f a n) , r a i n s => h a s - f u n (X : f a n)
:= [0.95, 0.5, 0.65, 0.5, 0.2, 0.5,

0.05, 0.5, 0.35, 0.5, 0.8, 0.5] .

The ordering of the contingency table (the list [0.95, . . . , 0.5]) is as follows:

p(has — fun(X) = lots\attends(X) A rains = none) = 0.95

p(has — fun(X) = lots\->attends(X) A rains = none) = 0.5

p(has — fun(X) = lots\attends(X) A rains = drizzle) = 0.65

p(has — fun(X) = lots\->attends(X) A rains = drizzle) = 0.5

p(has — fun(X) = lots\attends(X) A rains = pours) = 0.2

p(has — fun(X) = lots\-iattends(X) A rains = pours) = 0.5

p(has — fun(X) — little\attends(X) A rains — none) = 0.05

pihas — fun(X) = little\-iattends(X) A rains = none) = 0.5

p(has — fun(X) = little\attends(X) A rains = drizzle) — 0.35

p(has — fun(X) = little\-yattends(X) A rains = drizzle) = 0.5

p(has — fun(X) = little\attends(X) A rains = pours) = 0.8

3. Using Dynamic Bayesian Networks 32

pihas — fun(X) = little\->attends(X) A rains = pours) = 0.5

As an example of using function declarations, consider the following example, which
models the probability of taking the sum of two six-sided dice:

multi dl,d2 Q [1,2,3,4,5,6].
multi sum® [2,3,4,5,6,7,8,9,10,11,12].

d l , d2 => sum
:= { p(sum=Z, [dl=X, d2=Y])

= i f (Z is X + Y) then 1.0 else 0.0}.

3.1.3 Combination Nodes

Existential and universal combination PRVs must be declared using the reserved PRV
names exists and f o r a l l :

binary exists (param, type.prv) .
binary f o r a l l (param, type.prv) .

where param is a parameter which occurs in the PRV prv and is of type type. Declared
combination PRVs can be used in schemata as follows:

exists (param, type, p-prv) => c-prv
:= \.vi,v2] .

Note that a combination PRV must be the only parent of a child PRV, and is necessarily
a binary PRV.

3.1.4 Creating networks

Given a set of schemata, the interpreter needs to be given individuals to create a network.
An individual can be specified by the following:

3. Using Dynamic Bayesian Networks 33

observe type(indiv, type).

where indiv is the name of an individual , and type is the individual 's type.

3 .1 .5 Queries

Querying the Bayesian network consists of asking the interpreter to compute the probability
of a conjunction of random variables given a conjunction of conditioning knowledge. The
syntax is:

p([query-conjunction] , [conditioning-knowledge]) .

The interpreter w i l l return the determined value, repeating the query information. This
part of the interpreter uses the Bayesian network evaluation techniques of Poole and
Neufeld [Poole and Neufeld, 1989] modified for dynamic Bayesian networks as outlined
in Chapter 4.

3.2 D i a g n o s i s o f m u l t i p l e f a u l t s f o r d i g i t a l c i r c u i t s
In this section, I present a simple Influence knowledge base which can be used to cre­
ate a probabili ty model for any digi tal circuit containing and-gates, or-gates, and x o r -
gates. Th i s is a simplification of a common diagnostic domain [Reiter, 1987, de Kleer and
Wi l l i ams , 1987, Pearl , 1988], but the purpose of this example is not to demonstrate a new
diagnostic technique, but to show how Bayesian networks can be built dynamically based
on a carefully designed knowledge base of schemata.

Assume that digi ta l gates exhibit random but non-intermittent behaviour when they are
broken, and that they have a prior probabili ty of being broken. A gate that is working
correctly has an output that is dependent directly on the inputs to the gate. A s well, the
behaviour of a gate is the only criterion for diagnosis.

A gate is assumed to have two inputs, and to distinguish them, we w i l l label them wi th
input port numbers, as in input(and_gate(gl57) ,1).

First we define the variables used in our domain, indicating the parameter types used: 2

2 Because this example is useful pedagogically, it is broken into several pieces, with discussion intermin­
gled with code. The complete source is found in Appendix A.

3. Using Dynamic Bayesian Networks 34

binary ok(Gate:gate).
binary output(Gate:gate).
binary input(Gate:gate, Port:port).
binary exists(conn(Gl, G2, Port), connections, output(Gl)).

The node ok(Gate) has the value true iff the gate is functional. The node output (Gate)
is true iff the output of the gate is on, and similarly input (Gate, Port) is true iff the
input to the indicated port of a gate is on. The existential node exists(conn(Gl, G2,
Port), c o n n e c t i o n s , output (GI)) tells us there is a connection between the output of
a gate and an input port to another gate. We use this parameter conn(Gl, G2, Port)
to allow us to submit observations of the network structure to the system, allowing it to
create the corresponding network.

The behaviour of the gates is modelled wi th the following schemata:

/ * and—gates * /
ok(and_gate(G):gates),
input(and_gate(G):gates,1),
input(and_gate(G):gates,2) => output(and_gate(G):gates)

:= [1,0,0,0,0.5,0.5,0.5,0.5].

/ * or—gates * /
ok(or_gate(G):gates),
input(or_gate(G):gates,1),
input(or_gate(G):gates,2) => output(or.gate(G):gates)

:= [1,1,1,0,0.5,0.5,0.5,0.5].

/ * xor—gates * /
ok(xor_gate(G):gates),
input(xor_gate(G):gates,1),
input(xor_gate(G):gates,2) => output(xor_gate(G):gates)

:= [0,1,1,0,0.5,0.5,0.5,0.5].

which states the assumptions about gates. The first four entries in the contingency table
for each gate is s imply the truth table for the boolean expression associated wi th each type
of gate. The last four entries, a l l 0.5, merely makes explicit the assumption that i f the gate

3. Using Dynamic Bayesian Networks 35

7

Figure 3.1: A simple circuit.

is not working correctly due to a malfunction, the output of the gate w i l l be on or off wi th
equal probability.

The topological connections between the gates is modelled using an existential combination:

This schema has several interesting features. Firs t , the use of the connection triple ensures
that the output of the gate G I is associated wi th the input of the gate G 2 according to
the observations to be supplied by the user. Furthermore, every input to a gate w i l l be
associated wi th unique value—there w i l l be no more than one value coming into the input,
and only a very t r iv ia l combination (of one value) w i l l be performed. This technique is
discussed further in Section 3.5

Note that by setting the contingency table differently, we can use the same schema to
model the circuit under the assumption that the connections are not always faultless.
For instance, using the following table [0 .85 ,0] says that the connection has a finite
probabil i ty of being broken.

Figure 3.1 shows a very simple circuit. Gate g l is an and-gate, g2 is an or-gate, and g3

exists(conn(Gl ,G2 ,Port) , connections, output(Gl))
=> input(G2:gates,Port:ports).

:= [1 , 0] .

3. Using Dynamic Bayesian Networks 36

is an xor-gate. The knowledge base w i l l be able to model this circuit i f we supply the
following information about types:

observe type(and_gate(gl).gates).
observe type(or_gate(g2).gates).
observe type(xor_gate(g3).gates).
observe type(conn(and_gate(gl),xor_gate(g3) , 1), connections),
observe type(conn(or_gate(g2),xor_gate(g3),2), connections).

This information creates the Bayesian network shown in Figure 3.2, which we can use
for a variety of tasks. We can model the correct behaviour of the circuit by conditioning
our queries on the assumptions that every known gate is working correctly. We can also
condition a query on the known inputs and outputs to determine the probabili ty of a
particular configuration of gates working incorrectly.

3.3 I n t e r p r e t i n g s k e t c h m a p s

The domain of interpreting sketch maps provides a good test-bed for knowledge represen­
tation techniques and automated reasoning tools. The Mapsee project at the University
of Br i t i sh Co lumbia has used a variety of hierarchical knowledge structures and constraint
satisfaction techniques to interpret hand drawn sketch maps (for a good overview, see [Mul­
der et al, 1978]). To formalize the image interpretation problem, Reiter and Mackworth
[Reiter and Mackworth , 1989] posed the problem wi th in a logical representation, showing
that there is a notion of correct interpretations which a l l applications must provide (but
which is much harder to prove for less rigorously well-defined programs).

Th i s problem is of interest as an example of the application of Dynamic Bayesian networks
because of the following two questions:

1. Given several possible interpretations for objects in a sketch map, how can we choose
a preferred one?

2. How can we provide a Bayesian network which can model any possible sketch map
we may want to interpret?

The answer to the first question is: Use a Bayesian network. The answer to the second is:
Use a dynamic Bayesian network.

Figure 3.2: The Bayesian network constructed by our simple knowledge base for the circuit
in Figure 3.1.

3. Using Dynamic Bayesian Networks 38

c2
r l

Figure 3.3: A simple sketch map.

3.3.1 Sketch maps

A sketch map is made up of chains 3 and regions, wi th the intention that, interpreted
correctly, chains correspond to roads, rivers or shorelines, and regions correspond to either
land or water. Figure 3.3 shows an example of a simple sketch map. Th i s example is
ambiguous, as chain c l could be interpreted as either a road which meets a traffic loop
(chain c2), or a river which flows into a body of water, region r2 (chain c2 being the
shoreline), or a road which ends at a body of water.

3.3.2 A probabilistic knowledge base

The following schemata represents enough knowledge to provide answers to queries about
sketch maps, like "What is the probabili ty that chain c2 is a road, given that it is a
chain which meets another chain?" The contingency tables use probabilities of zero for
impossible configurations, such as two rivers crossing, etc. For knowledge like "Given two
chains which meet in a tee, the probabili ty that they are both rivers is p" the number p
used is only a rough estimation, which is sufficient to demonstrate the dynamic qualities
of schemata, but may not reflect the reality of occurrences of rivers or roads joining.

3 A chain is a connected sequence of points.

3. Using Dynamic Bayesian Networks 39

'/,'/, scene objects can be linear or area objects
multi isa-linear(X) <3 [road, river, shore] .
multi isa-area(X) @ [land, water].

'/,*/, Image objects:
binary tee(X.Y). '/,'/, chain X meets chain Y in a tee-shape
binary chi(X,Y). VI* chain X and chain Y make a chi—crossing
binary bounds(X.Y). '/,'/, chain X bounds area Y
binary interior(X,Y). '/„'/» Area Y is in the interior of chain X
binary exterior(X,Y). '/,'/, Area Y is exterior of chain X

'/,% Scene descriptions:
binary joins(X.Y). '/.'/.linear scene objects join in a tee shape
binary crosses(X.Y). •/,'/, linear scene objects cross
binary inside(X.Y). '/.'/, area object X is inside linear object X
binary outside(X,Y) . '/.'/. area object X is outside linear object X

°/.'/o Trick implementation of equality predicate!
'1,7, Two distinct random variables, which have their
VI, arguments as values:
multi vall(X) @ [X, X].
multi val2(Y) « [Y, Y].

VL equality is then define i f the values are the same!
function equal/2.
vall(X), val2(Y) => equal(X.Y)

{p(equal(X,Y),[vail(X)=X,val2(Y)=Y])
= i f (X=Y) then 1.0 else 0.0}.

°/,4/. Two linear scene objects can join to form a tee
isa-linear(X:chain), isa-linear(Y:chain),
joins(X:chain,Y:chain), equal(X:chain,Y:chain)

=> tee(X:chain,Y:chain)
: - C . .] . 4

4There are 36 numbers in this list, and in some of the contingency tables for the remaining schemata
there are even more than this, but none of them is crucial to the explanation of the dynamic nature of

3. Using Dynamic Bayesian Networks 40

'/,'/, two linear objects can cross to form a chi
isa-linear(X:chain), isa-linear(Y:chain),
crosses(X:chain,Y:chain), equal(X:chain,Y:chain)

=> chi(X:chain,Y:chain)
:= [...].

//» linear objects can form closed loops
isa-linear(X:chain), loop(X:chain) => closed(X:chain)

:= [.. .3.

4/,0/ linear scene object are found beside area objects
isa-area(X:region), isa-linear(Y:chain),
beside(X:region,Y:chain) => bounds(X:region,Y:chain).

:= [...].

%% on the linear object which forms the boundary between two
'/,'/„ area objects, we must constrain the objects involved
°/o% e.g. A road is not a boundary between two bodies of water
isa-area(X:region), isa-linear(Y:chain), isa-area(Z:region),
inside(X:region,Y:chain), outside(Z:region,Y:chain)

=> boundary-constraint(X:region,Y:chain,Z:region).
:= [...].

There are several interesting features of this knowledge base. First of a l l , the use of
multiple valued P R V s constrains the objects in the domain, e.g., a linear scene object
can only be one of {river, road, shore}, and multi-valued P R V s express this succinctly.
Observe also the use of type information; since only individuals of the correct type can
be used to instantiate schemata, dividing the domain into two P R V s i s a - l i n e a r (X) and
isa-area (X) assures that chains and regions are disjoint sets of objects. Final ly , the
use of equals(X,Y) is required to ensure that when the schemata are instantiated we
only consider interpretations in which, for example, linear scene objects do not intersect
themselves.

this example. For a complete listing, see Appendix A.

3 . ; Using Dynamic Bayesian Networks 41

The user specifies the following individuals, and their types:

type(cl,chain).
type(c2,chain).
type(rl,region).
type(r2,region).

which when combined wi th the knowledge base, creates the Bayesian network in Figure 3.4.
The user is free to query the state of the network, conditioning on c2 being closed, and r l
being on the outside of c2, etc. Note that this network could be used the opposite direction
as well: conditioning on the scene objects allows the user to "predict" the image.

3.4 T h e B u r g l a r y o f t h e H o u s e o f H o l m e s

The following story is used by Breese [Breese, 1990] to demonstrate his network construc­
tion application, and is derived from an example used by Pearl [Pearl, 1988]:

M r . Holmes receives a telephone cal l from his neighbour, Dr . Watson, who
states that he hears the sound of a burglar alarm from the direction of Holmes'
home. A s he is preparing to rush home, M r . Holmes reconsiders his hasty
decision. He recalls that today is A p r i l 1st, and in light of the A p r i l Fool 's
prank he perpetrated on his neighbour last year, he reconsiders the nature of
the phone cal l . He also recalls that the last time the alarm sounded, it had
been triggered by an earthquake. If an earthquake has occurred, it w i l l surely
be reported on the radio, so he turns on a radio. He also realizes that in the
event of a burglary, the l ikelihood of recovery of stolen goods is much higher
if the crime is reported immediately. It is therefore important, i f he in fact
a burglary d id occur, to get home as soon as possible. O n the other hand, i f
he rushes home he w i l l miss an important sales meeting wi th clients from B i g
Corp. which could result in a major commission. Should M r . Holmes rush
home?

The knowledge needed to solve this problem can be expressed in the language of In f luence
as follows.

3. Using Dynamic Bayesian Networks 42

Figure 3.4: The Bayesian network constructed by our simple knowledge base for the sketch
map in Figure 3.3.

3. Using Dynamic Bayesian Networks 43

binary sale-obtained(X) . '/,'/. has a sale been obtained by X?
binary burglary(X). 'IX was there a burglary in X's house?
binary go-home(X). •/,'/. does (should) X go home IMMEDIATELY?
binary meeting(X.Y). 'IX, was there a meeting between X and Y?
binary earthquake. '/,'/, was there an earthquake?
binary radio. 'IX, did the radio report an earthquake ?
binary client(X). '/,'/, X has a client?

function value(X). 'IX what is the value of X's decision?
function losses(X). '/,'/, how much did X lose?
function income(X). 'IX how much does X stand to gain?

'IX, how much is a sale worth?
multi sale-value(X) 9 [0,150,300].

'IX* how much of X's stolen goods were recovered?
multi goods-recovered(X) 9 [0,500,5000].

'IX how much were X's stolen goods worth?
multi stolen-goods-value(X) 0 [0,500,5000].

'IX, when did X report thre burglary?
multi burglary-report(X) 0 [immediate, late, none].

*/,'/, compute the difference between X's income and losses
'/,'/, ca l l i t value for X
losses(X:alarm-owner), income(X:alarm-owner)

* => value(X:alarm-owner)
:= { . . . } . «

'IX, X may recover some of his stolen goods depending on
'IX, when X reported the burglary

5 The function here, as well as the contingency table for the schemata in this example are not essential
for the understanding of the dynamic nature of the schemata. The actual numbers are found in the
complete listing in Appendix A.

3. Using Dynamic Bayesian Networks 44

burglary(X:alarm-owner), burglary-report(X:alarm-owner)
=> goods-recovered(X:alarm-owner)
:= [...].

Vh If X recovers stolen goods, then there is not loss
goods-recovered(X:alarm-owner),
stolen-goods-value(X:alarm-owner) => losses(X:alarm-owner)

:= {...}.

/,/, the income for Y depends on getting the sale from a client
client(Y:alarm-owner), sale-obtained(Y:alarm-owner),
sale-value(Y:alarm-owner) => income(Y:alarm-owner).

:= {•••}•

Vh - A meeting may take place between X and Y
Vh i f X doesn't go home
go-home(X:alarm-owner) => meeting(X:alarm-owner,Y)

:= [. . J .

'/.'/. X wil l report a burglary i f one occurred, and X has gone home
Vh to verify i t go-home (X: alarm-owner), burglary (X: alarm-owner)

=> burglary-report(X:alarm-owner)
:= [. . .] •

Vh i f there was a burglary, then goods of some value have been
Vh stolen
burglary(Y:alarm-owner) => stolen-goods-value(Y:alarm-owner)

:= [...].

*/,'/, X wil l meet with Y to talk sales. A sale may occur
meeting(X:alarm-owner,Y:corporation)

=> sale-obtained(X:alarm-owner,Y:corporation)
:= [. . .] •

Vh an alarm is affected by earthquakes and burglaries
Vh - the alarm wil l almost definitely sound i f both an earthquake
Vh and a burglary occur, and almost definitely wil l not sound i f
Vh neither occur

3. Using Dynamic Bayesian Networks 45

burglary(Y:alarm-owner), earthquake => alarm(Y:alarm-owner)
:= C . .] .

7,7, earthquakes tend to be reported on the radio. . .
earthquake => radio

:= [...]•

7,7, Phone calls from neighbours about alarms.
7,7, - neighbours usually only cal l when an alarm sounds
7,7. - non-neighbours don't cal l at a l l !
neighbour(X:person,Y:alarm-owner),

alarm(Y:alarm-owner) => phone-call(X:person,Y:alarm-owner)
:= [...]•

This example demonstrates the power of our simple network creating process. The user
specifies the appropriate individuals:

observe type(holmes.alarm-owner).
observe type(watson,person).
observe type(big-corp, corporation).

and the network in Figure 3.5 is created.

In [Breese, 1990], Breese makes use of influence diagram technology, such as decision
nodes, which are useful in this problem. These types of nodes are not implemented in
Influence. However, by conditioning on whether or not Holmes should go home, the user
can determine the value of each decision by querying value (holmes).

The value computed by this technique is not the same as the "value of a decision node"
in Breese's program; Breese uses value nodes from influence diagram technology (as in
[Shachter, 1986]) which computes an expected value based on the product of the possible
values by their respective probability. In Influence there is no equivalent functionality
built-in.6

6 However, this computation can be simulated by querying each value of the node to obtain the posterior
probability and performing the same sum-of-products by hand.

3. Using Dynamic Bayesian Networks 47

3.5 B u i l d i n g k n o w l e d g e b a s e s f o r D y n a m i c B a y e s i a n
n e t w o r k s

In this chapter several example knowledge bases have been presented for different do­
mains. A s it may not be obvious how these knowledge bases were constructed, this section
w i l l present some ideas which have been useful in creating the knowledge bases for these
domains. Some common pitfalls are also identified, and alternatives are suggested.

Separating properties from individuals

This is a fundamental technique. It should be noted that many different concepts may
classify as individuals, depending on the domain, and on the intent of the application. For
example, a person in a story may be an individual , and the triple (Gatel, Gate2, InputPort)
as used in Section 3.2 to represent connections in electronic circuits is also an individual .
It seems useful to consider the kinds of information that a user might be able to observe.

Direction

In many cases, schemata are naturally written in a causal direction. For example, the
behaviour of a logic gate is quite naturally described causally, since its output depends
on the inputs. The schemata for a given domain need not be in the causal direction, but
should be writ ten wi th a consistent direction. This is a general observation which seems
to aid in keeping knowledge bases from creating directed loops in the Bayesian networks
created from it . It may arise that some causal relationships are not easy to quantify, and
care should be taken to avoid wri t ing "loops" in the knowledge base.

Conditional probabilities and semantics

W h i l e it is true that a conditional probability distribution may take any values which
sum to one and remain consistent mathematically, it is important to remember that a
contingency table has an intended meaning. When creating the knowledge base, one
should be certain that every entry in the contingency table for a schema makes sense. For
example, the following schema might look appropriate, according to the direction principle

3. Using Dynamic Bayesian Networks 48

above

bird,emu — • flies

because both birdness and emuness have some influence on a bird's abil i ty to fly. However,
this schema requires an entry in the contingency table for the expression p(flies\-ibird, emu),
which, i f we know anything about emus and birds is inconsistent semantically.

Assigning this probabili ty is context dependent; that is, i f we have in addition to the
schema about flying, a schema such as

emu — • bird

stating that a l l emus are birds, the actual value of p(flies\~>bird, emu) is irrelevant. Some
axiomatizations may specify a particular value for a probabili ty wi th inconsistent condi­
t ioning (for example, Alel iunas [Aleliunas, 1988] assigns a value of unity). Nevertheless,
even i f the inconsistency may be easy to disregard in small knowledge bases, in larger ones,
keeping track of a l l the irrelevant inconsistencies seems to be more work than redesign­
ing the problematic schemata for consistency. In our bird example, we might rewrite the
schemata as in the following:

emu —> bird

emu — • abJIying

bird, ab-flying — • flies

where ab_flying is a random variable representing the possibility that something is abnormal
wi th respect to flying, i.e., it doesn't fly. Knowing that emus are certainly birds, and that
emus tend to be exceptions to the generality that "birds fly" provides the required numbers
for the contingency tables.

Keeping the contingency tables semantically consistent and informative w i l l make modifi­
cations and extensions of the knowledge base less troublesome.

The use of combination nodes

Combinat ion nodes, such as the existential and universal combinations discussed in Sec­
t ion 2.2 are used to model multiple influences assuming a simple and regular combination

3. Using Dynamic Bayesian Networks 49

of effects. They can be used in a straightforward manner, as demonstrated in Example 3.5-
1, where the combination was performed over a simple set of individuals. In Section 3.2, a
more complex k ind of individual was used to create a separate structure for each of these
individuals.

In many domains, causal or influential knowledge is best modelled by considering every
cause for a particular effect (e.g., every disease which causes the same symptom) inde­
pendently. Further, each cause is assumed to have an enabling/disabling condition. This
kind of assumption is modelled in Pearl and others [Pearl, 1988] by a structure called a
noisy-Or gate. It has the advantage of requiring a contingency table whose size is on the
order of the number of causes, and each entry in the table considers only one cause at a
time.

The existential combination introduced in this thesis can be used to construct noisy-or
gates. Suppose we wanted to model the causes of sneezing wi th a no i sy -Or gate, combining
nodes like flu(X) and hay-fever(X), because it is known that either disease is l ikely to cause
sneezing and that these diseases are independent. This is stated in the following:

, flu(X) — > causes(flu(X), sneezing)
hay — fever(Y) — • causes(hay — fever(Y), sneezing)

3Z € causes • causes(Z, sneezing) — > sneezing

The user would then have to tell the system which causes to consider in the model, and
the system would create a structure which combines the causes. This behaves exactly as
a noisy-or gate, since list ing the causes first is equivalent to enabling the cause, and any
cause not explici t ly mentioned by the user is not considered by the combination at a l l , as
if the cause were disabled.

Avoiding too many instantiations

It is possible to write a knowledge base of schemata without regard to the process which
creates the network. However, it is often helpful to keep the process in mind, to avoid
wri t ing schemata which w i l l be instantiated too often. The most obvious way to keep the
instantiations l imited is to make use of the type constraint mechanism. For example, when
wri t ing the schemata for interpreting sketch maps in Section 3.3, we could have used only
one type of scene object for both linear and area objects. If the following schema had been
used

3. Using Dynamic Bayesian Networks 50

isa(X), isa(Y), joins(X.Y), equal(X.Y) => tee(X.Y)

(where isa(X) could take any value from [road, river, shore, water, land]) instead
of

isa-linear(X), isa-linear(Y), joins(X.Y), equal(X.Y) => tee(X,Y)

as actually used in Section 3.3, the network creation process would have instantiated
schemata for a l l scene objects. No useful information would have been obtained from
instantiating them wi th area scene objects.

3.6 C o n c l u s i o n s

The example knowledge bases discussed in this chapter demonstrate some of the abilities
of dynamic Bayesian networks as presented in this thesis.

It is clear that while most schemata are straight forward, some schemata make use of
clever techniques which can only be learned by example, and by understanding the network
bui lding process. Th i s seems to conflict wi th the simple declarative representation which
seems to characterize the language, presented in Chapter 2.

The process of bui lding networks is very simple; schemata are instantiated by every in­
dividual of the appropriate type, and the instantitations are added to the network. A s
we can see from the sketch map example, sometimes there are many instantiations which
do not lead to useful information, and could be left out of the network completely, i f the
bui lding process were more intelligent.

In work done independently of this thesis, Goldman and Charniak [Goldman and Char­
niak, 1990] and Breese [Breese, 1990] have presented their work on constructing Bayesian
networks from knowledge bases. Bo th approaches address the representation issues dis­
cussed in this thesis, but emphasis is placed on more sophisticated procedures for building
networks. Goldman and Charniak use a domain specific rule base to construct networks
for the domain, and Breese has domain knowledge in the form of Horn clauses which are
used to determine which nodes to include in the network.

Chapter 4

Implementing dynamic Bayesian
networks

This chapter deals wi th the issue of implementing the dynamic features described in Chap­
ter 2. I present a brief description of the algorithms of Poole and Neufeld [1989],Pearl
[1988, 1986], Shachter [1986, 1988, 1989], and Lauri tzen and Spiegelhalter [1988], consid­
ering how each might be adapted for dynamic Bayesian networks.

4.1 The general problem

Ideally, the dynamic constructs would be implemented so that when new individuals are
added to the model, resulting in arcs and nodes being added to the network, the joint
probabil i ty distr ibution w i l l be correct and obtainable without recomputation of the pre­
vious evidence. That is, we want to give some preliminary observations to our system to
get some results, possibly observe new individuals, and get the updated results without
having to recompute the effects of the in i t ia l observations.

Take the simple example of the following schemata:

a —• b(X)
3Xet-b(X) — • c

This example contains both a right-mult iple schema and a combination schema, and F ig -

51

4. Implementing dynamic Bayesian networks 52

Figure 4.1: A simple example of a dynamic network, (a) showing the original network, and
(b) showing the network after another individual of type t is observed. See Section 4.1.

4. Implementing dynamic Bayesian networks
i

53

ure 4.1a shows the result of instantiating the schemata for the individuals x\ and x2,
which are of type t. This network represents the independence assumptions which gives
the following equality:

p(a, 6(ari), b(x2), 3X G t • b(X), c)

= P(c\3X e t • b(x))

p(3X G * • 6(A-)|6(ari)6(ar2))

p(Kxi)\a)p(b(x2)\a)
p(a)

Suppose a new individual x3 is observed dynamically. The probability model changes as
a result, and ideally, the algorithm used in the inference process can absorb the change in
the model without too much recomputation. The network is shown in Figure 4.1b, and
the joint distribution for our example becomes:

p(a, bfa), b(x2), b(x3), 3X G t • b(X), c)

= p(c\3X G t • b(X))

p(3X G t • b(X)\b(x1)b(x2)b(x3))
p(Kxi)\a)p(Kx2)\a)p(b(x3)\a)

p(a)

This equation demonstrates the change to the model. One new factor has been added, and
the existential combination has one more conditioning variable, b(x3). It is important to
note that the factor p(b(x3)\a) uses the same contingency table as p(b(x3)\a), so no new
information is required. Since the existential combination uses a contingency table which
takes the or of all the conditions, all the system needs to know is the number of conditions.

To be able to use dynamic schemata efficiently, adding new arcs to the network should allow
the algorithm which processes evidence and computes posterior distributions to modify
the state of the network in a straightforward manner without recomputing the effects of
evidence already submitted.

This is not always easy to do, mainly because most of the algorithms perform some direct
manipulation on the structure of the network, either to create a computationally tractible
representation or to perform the calculations themselves.

I will show that the addition of dynamic constructs to the work of Poole and Neufeld [Poole
and Neufeld, 1989] is quite straight-forward, and that under certain conditions, Pearl's
algorithm can be adapted as well. The algorithm due to Lauritzen and Spiegelhalter is not

4. Implementing dynamic Bayesian networks 54

difficult to adapt. Final ly , I show that Shachter's network evaluation algorithm performs
too many structural changes on the the network to allow a feasible implementation of
dynamic schemata.

4 . 2 A n A x i o m a t i z a t i o n f o r P r o b a b i l i s t i c R e a s o n i n g
i n P r o l o g

The influence diagram interpreter described by Poole and Neufeld [Poole and Neufeld,
1989] provides a sound axiomatization for probabilistic reasoning. The computation is
goal directed, and only the computations necessary to compute solutions to queries are
performed. The In f l uence implementation of dynamic Bayesian networks is based on
this interpreter.

4.2.1 The basic computational engine

A Bayesian network is specified by a database of direct dependency relations and contin­
gency tables associated wi th each variable.

The basic computation is goal directed: the desired conjunction of variables which make
up a query is supplied to the system together wi th the given evidence. Only those com­
putations which are necessary to solve the query are performed, and no computation is
performed outside the context of a query. Furthermore, each query is computed indepen­
dently from any other query.

The axiomatization of probabili ty theory is straight forward, and axioms such as the Nega­
tion Rule, the Law of Mul t ip l ica t ion of Probabilit ies, and Bayes' Rule are are used to
simplify and solve complex queries recursively. In particular, Bayes' Rule is used to refor­
mulate diagnostic queries (i.e. queries which ask about causes given effects) into a causal
form (i.e. queries which ask about effects given causes).

The direct dependencies of variables, made explicit in the network structure, are compiled
into Prolog rules which calculate posterior distributions by "reasoning by cases" wi th
respect to a l l of the variable's direct parents. The independence assumption for the parents
of a variable provides some simplification of the general reasoning by cases formula, and
weights the cases according to the contingency table provided for the variable.

A query can be seen as a proof of a symbolic probability expression, grounded in terms of

4. Implementing dynamic Bayesian networks 55

prior probabilities and given knowledge. This expression can be evaluated numerically to
provide a quantitative result.

4.2.2 Adding the dynamic combination

Adding the dynamic constructs presented in Chapter 2 requires the addition of several
axioms, recognizing the special syntax, and translating a query involving a combination
node into a series of simpler queries. For existential combination nodes, the results of the
simpler queries are combined using the following lemma:

Lemma 1 If U = {u±,..., uk} is a set of random variables such that and Uj are con­
ditionally independent given v for all i ^ j, then

k
p (« i V «a V . . . V uk\v) = 1-11(1- p(Ui\v))

i=i
k

p(ui A u 2 A ... A uk\v) = "[Jp(ui\v)
i= l

The first step in the combination procedure is to gather the individuals of the correct
type. Each individual instantiates the parameterized random variable given in the combi­
nation node, and each instantiation is assumed to be independent, given the state of the
combination.

For existential combination, the collection of instantiations are combined using Lemma 1
which combines the effects of all the instantiations using the first result. The universal
combination is similar, using the second equality.

The ability to observe individuals dynamically is provided by the independence of succes­
sive queries. A probability model is based on the information provided by the query only,
and therefore a new query, with new evidence in the form of individuals, builds a new
probability model implicitly as the proof is generated.

4.2.3 Discussion

The simplicity of this implementation makes it very attractive, both formally and pedagog-
ically. The use of a logical specification helped to keep the developing theory of dynamic
combinations correct as well as simple.

4. Implementing dynamic Bayesian networks 56

One advantage to this approach is that computation is goal driven, and only the calcula­
tions necessary to compute the query are performed. The primary disadvantage is that,
for consultations wi th multiple queries, many identical computations may be performed
more than once.

A s a general belief computation engine, the current implementation is l imited, as only very
small networks can be queried in reasonable time. Various improvements to the compiler
and probabil i ty axioms are possible, resulting in a loss of clarity and obvious correctness.
Some of these issues are explored in [Horsch, 1990]

4 .3 Pearl's Distributed Propagation and Belief Up­
dating

The work on belief propagation done by Pearl [Pearl, 1988] provides a probabilistic com­
putational paradigm which is local in nature, and each local computation requires l i t t le
or no supervision from a controlling agent. Pearl has proposed a highly parallel "fusion
and propagation" algorithm for computing posterior marginal probabilities using singly
connected Bayesian networks. I w i l l describe the algorithm abstractly at first, saving the
mathematical details for later.

4.3.1 Belief updating in singly connected networks

In Pearl 's approach, a Bayesian network describes the channels of communication between
related variables. For Bayesian networks which are singly-connected, there are simple rules
which govern the way the network is affected by the submission of evidence. These rules
deal wi th :

• How a variable updates its own marginal distribution based on messages received
from its direct parents or children.

• The content of messages sent by a variable to its direct parents and children.

For singly-connected graphs, the rules for updating a node's marginal distribution and
communicating changes to its parents and children guarantee that the network w i l l con­
verge to a stable equil ibrium and the marginal distributions w i l l be correct.

4. Implementing dynamic Bayesian networks 57

Evidence is submitted to a network by asserting a value for a variable (or a collection
of values for different variables). This affects the marginal probabili ty of that particular
variable, and this variable sends evidential support values to its parent variables, and
causal support values to its children. Each parent or child variable then updates its own
posterior distr ibution based on the information gained from its parents and children, and
sends out messages to its parents and children. These messages take into account that
some of the parents or children have already seen the evidence, thus ensuring that no
support is received more than once. When al l variables in the network have updated their
distributions in this manner, the propagation ceases.

One of the features of belief propagation is the natural way it can be expressed as a
distributed process: the message passing and belief updating are local computations and
can be performed in a highly parallel computation.

4.3.2 Adding dynamic constructs

In this section I demonstrate how the dynamic combination nodes can be added to Pearl's
singly connected message passing algorithm. In general, a combination node in a singly
connected network could create a second path between two nodes. Therefore, to be com­
pletely general, Pearl 's algorithm must be adapted to handle general graphs. I assume
for s implici ty that no loops are created when an individual is observed dynamically. This
assumption is valid i f any of the methods of Section 4.3.3 is used to evaluate the network
in the general case of multiply-connected networks.

There are three cases: r ight-mult iple schemata, combination nodes and unique schemata.
Right -mul t ip le schemata involves the addition of a new child to a set of nodes. Combi­
nation nodes involve the addition of a new parent to a single node. Unique schemata are
merely attached to either another unique schema, or at the ta i l of a r ight-mult iple schema
or at the head of a combination node.

The presentation follows Pearl [1988, page 183ff, Equations 4.47 to 4.53], considering the
general case of adding new parents or children to the network. The special syntax for
combination nodes and r ight-mult iple schemata is important for determining where the
new sections of network are to be added, but unimportant wi th respect to the propagation
of support once added.

4. Implementing dynamic Bayesian networks 58

The dynamic addition of parents

Suppose we have a node C in the network wi th parents parents(C) = {Ai,... ,An}, and
children children(C) = {Bi,... ,Bm} as in Figure 4.2 (the dashed arc from An+\ to C
indicates the arc I w i l l be adding).

Intuitively, adding a parent to a node can be seen as revising an assumption about the
domain. In principle, the new parent can be treated as i f it had always been connected,
but having had no effect on the child variable. A d d i n g the new node by a real process only
changes the effect the assumed node has on its child.

In the case of an existential combination, we can treat the in i t ia l state of the parent as
having a prior probabili ty of zero. Add ing the node can be seen as changing the message
from zero to the value specified in the knowledge base for this node. Th i s assumption
effectively states that "a l l unknown individuals do not have the property we are looking
for."

For universal combination nodes, the in i t ia l assumed message sent by the parent is unity,
that is, we assume that the new node complies wi th the property being combined. Add ing
the new parent in this case changes this value from unity to the prior specified in the
knowledge base.

Before the addition of An+i the internal state of C can be inferred from C ' s neighbours by
the following:

BEL(c) = p(c|e) (4.1)
= P(^x\x)p(x\e^) (4.2)
= aA(c)7r(c) (4.3)

where e is the evidence submitted so far, e^ are those items of the evidence connected to
C through its children, e^ are those items of evidence connected to C through its parents,
and a; is a normalizing constant such that £ c aA(c)7r(c) = 1. Now

A(c) = p(e-x\x) (4.4)

= nw<o (4-5)
i

TT(C) = p(x\e+) (4.6)

= P(c |a i , - . . ,an) I I 7 r c(a,-) (4.7)
ai,...,a„ i

The AB((C) are messages received by C from its children, and 7Tc(a;) are messages received
by C from its parents.

4. Implementing dynamic Bayesian networks 59

Figure 4.2: Adding a parent An+i to node C.

4. Implementing dynamic Bayesian networks 60

The probabilities p(c\ai,an) are those supplied as contingency tables. In the case
of combination nodes, these are functional: for existential combinations, we use a func­
t ion which computes p(c\ai,..., an) = V"=ia,-, and for universal combination we use
p (c | a i , . . . , a B) = A?=i a*-

A d d i n g a parent An+i to parents(C) requires an update for the state of C. Assume that
no new evidence is submitted at the time of adding the new parent. Let BEL'(c) be the
new state. Therefore:

BEL'(c) = p(c\e) (4.8)

= a\'(cW(c) (4.9)

A'(c) = UXB.(C) (4.10)

= A(c) (4.11)

*'(c) = Yl P(c\ai,...,an+1)Y[TTc(ai) (4.12)
ai,...,a n+i

Note that A(c), which is the support gained from C ' s children doesn't change. The new
7r'(c) reflects the addition of the new parent. The contingency table used before cannot in
general be used in this new calculation; a new table must be supplied. However, in the
case of combination nodes, these probabilities are functional and can be writ ten to accept
an arbitrary number of dependent variables.

Having updated its own internal state, C must send appropriate messages to a l l of its
children and every parent except the new one. A s well , the new parent must be made
aware of the evidence previously seen by the network.

The content of the message sent by C to its parents due to the addition of A n + i can be
writ ten as:

n+l

Ac(ai) = P^2\(c) ^2 p(c\au...,an+i)Y[7rc(ak)i^n + l (4.13)

where (3 is any convenient constant. Note that each parent of C receives information from
each of its mates, and about every child of C from A(c).

The message C sends to An+\ should in one message provide information about a l l the
evidence seen by C so far. The message sent can be written:

Ac(o„+i) = (5y£j\(c) K c l a i > - • • > « « + !) I l M a i) (4-1 4)

4. Implementing dynamic Bayesian networks 61

The message sent to each child Bi in children(c) is:

*Bi(c) = (*l[\Bk(c) P (c |« i , . . . , an+l (4.15)
k^j ai,...,a„+i

BEL'(c)
(4.16)

Final ly , the added parent An+i can update its own state based on the message received
from C and send messages to its children and parents in the manner originally outlined by
Pearl .

The dynamic addition of children

Suppose we have node A in a network wi th parents parents(A) = {D±,..., D/} and children
children(A) = {Bi,... ,Bn}, as in Figure 4.3 (again, the dashed arc from A to Bn+i
indicates the one that w i l l be added).

Intuitively, the addition of the new child is similar to the way parents were added in
combination nodes. It can be assumed that the child has always been connected, but
having had no in i t ia l effect on its parent. The assumed in i t ia l state gives no preference to
the values of the child, that is, the assumed prior is 1/v, where v is the number of possible
outcomes of the new child. Add ing the child has the effect of changing the assumed
irrelevance to the value specified by the knowledge base.

Before the addition of the new child Bn+i, the internal state is given by:

BEL(a) = p(a|e)

= a\(a)TT(a)

(4.17)

(4.18)

where e is the evidence submitted so far, and a is a normalizing constant. Now

(4.19)
i

^(a) = Y, p(a\du...,di)Y[irA(di) (4.20)

A d d i n g a child Dn+i to children(A) requires an update for the state of A. Assume that
no new evidence is submitted at the time of adding the new parent. Let BEL'(a) be the

4. Implementing dynamic Bayesian networks 62

Figure 4.3: Adding a child B n + i to node A.

4. Implementing dynamic Bayesian networks 63

new state. Therefore:

BEL'(a) p{a\e)

a\'(ay(a)

nw«)

(4.21)

(4.22)

(4.23) A'(a)
i

X(a)XBn+1(a)

•••)rf/)II7rc(ai)
(4.24)

(4.25)
di,...,di

7T(o) (4.26)

Note that 7r(a), which is the support gained from A ' s parents doesn't change. The new
A'(a) reflects the addition of the new child.

Having updated its own internal state, A must send appropriate messages to a l l of its
children except the new one, and to every parent. A s well, the new child must be made
aware of the evidence previously seen by the network.

The content of the message sent by A to its parents due to the addition of Bn+i can be
writ ten as:

where (3 is any convenient constant. Note that each parent of A receives information from
each of its mates from TrA(dk) and about every child of A from A'(a) and

The message sent to each child Bi, i ^ n + 1 in children(A) is:

xA(di) = £ p(c\d1,...,dl)H*A{dk) (4.27)

TrBi(a) = aY[XBk{a) £ P(a\du ..., a{) fj 7 r A «) (4.28)

BEL'(a)
XBi(a)

(4.29)

The message A sends to Bn+i can be written:

n
7T£„ + 1 = a]]XBk(a)Y2di,--.,dip(a\di,...,ai)'[l'irA(di) (4.30)

(4.31)

(4.32)

4. Implementing dynamic Bayesian networks 64

which is the previous state of A.

Final ly , the added child Dn+\ can update its own state based on the message received
from A and send messages to its children and parents in the manner originally outlined by
Pearl .

Adding unique schemata dynamically

A d d i n g unique schemata requires no special handling. This is because they can be attached
only to nodes which were added dynamically as part of a r ight-mult iple or combination
structure. Their internal state is inferred from their parents and children, which are also
new to the network. The standard computation applies to these nodes.

When the message due to the change in network structure reaches the nodes of the unique
schemata, the updating and subsequent message passing occurs in the manner described
by Pearl .

4.3.3 Propagation in general Bayesian networks

For multiply-connected networks, Pearl's message passing scheme does not apply. The
problem is that networks which have multiple causal chains between variables lose the
conditional independence assumption which permitted the local propagation algorithm to
distribute messages along each arc. Furthermore, then network can get caught in an infinite
stream of messages. Solutions to this problem include:

• Keeping a list of variables in the history of the propagation. Th i s requires message
lengths exponential in the number of variables in the network.

• Clustering sibling nodes along the multiple paths, creating a single chain. This
requires possibly exponential time to identify loops and form the clusters.

• Disconnecting the loop at the head (i.e. at the variable which begins the multiple
chains). The variable at the head is instantiated to each value it can attain, and the
effects of this instantiation are averaged. This requires computations exponential in
the number of values the head of a loop can attain.

• Stochastic simulation, in which the variables take random values according to the
probabil i ty distr ibution derived from the current state of its direct parents. The

4. Implementing dynamic Bayesian networks 65

posterior distr ibution is then taken as the ratio of assigned values to the number of
t r ia l runs made. The drawback to this approach is that convergence to the correct
distr ibution is guaranteed under certain conditions, but the number of trials necessary
for a particular accuracy is undetermined.

4.3.4 Discussion

I have shown how Pearl 's fusion and propagation algorithm can be modified to handle
dynamic constructs in a way which correctly reflects the change in the probabili ty model.

The adaptation is at a cost of locality: the purely local nature must be enhanced by
a controlling program which adds nodes and arcs to the net and starts the appropriate
message propagation.

Final ly , I have only treated the special case where the dynamic constructs do not create
loops in previously singly-connected networks. A dynamic scheme to handle this general
case, using the ideas presented in Section 4.3.3, would be another interesting project.

4.4 L a u r i t z e n a n d Sp iege lha l te r ' s c o m p u t a t i o n o f be ­
l i e f

Lauri tzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988] address the issue of per­
forming local computations of beliefs using Bayesian networks as expert system inference
engines. In particular, they are concerned wi th computing beliefs on large, sparse networks
which are not necessarily singly connected.

Briefly, their approach first modifies the structure of the Bayesian network representing
the domain knowledge, creating a full moral graph. Cliques are identified, and the belief
computation uses them to propagate support values throughout the network.

4. Implementing dynamic Bayesian networks 66

4.4.1 Belief Propagation on Full Moral Graphs

Their algori thm can be described as consisting of three steps. 1 First , the Bayesian network
is triangulated (and referred to as a full moral graph). Second, cliques in the triangularized
network are ordered using a maximal cardinality search (i.e. starting from an arbitrary
node, of a l l neighbour nodes yet to be labelled, the node having the most already labelled
neighbours is labelled first), and each clique is treated as a compound variable in a tree
structure connecting these cliques. Final ly , the ordering of the maximal cardinality search
is used to direct the arcs in the tree, and the method of propagation in singly-connected
networks is used to update probabilities.

4.4.2 Adding dynamic constructs

Briefly, Lauri tzen and Spiegelhalter's algorithm can be adapted to include the dynamic
structures in the following manner. The new section of the network is added (dropping
the direction of the arcs) to the extant triangularized structure. The network is retriangu-
larized, and following the above procedure, cliques are identified and a tree of compound
nodes is created. A t this point the propagation procedes on the new structure in the
familiar manner.

The complication of adding the new nodes to the triangularized structure can be ap­
proached by using the observation from Section 4.3.2, namely treating the arcs as i f they
had always been in the network, but having had no effect on the rest of the network. This
observation can be used to change the marginal distribution of each clique which has a
new node in it or is a neighbour to a such a clique.

4 .5 P r o b a b i l i s t i c i n f e r e n c e u s i n g I n f l u e n c e d i a g r a m s

In Operations Research, influence diagrams have been used as a common analysis tool for
decision analysis under uncertainty. The approach of Shachter is to provide a normative
axiomatic framework for this domain, which has often used ad hoc methods [Shachter, 1986,
Shachter, 1988, Shachter, 1989].

A n influence diagram is a network similar to a Bayesian network, relating random vari-

1This observation is due to Pearl, from his commentary on [Lauritzen and Spiegelhalter, 1988], and
also noted by Shachter in [Shachter, 1989].

4. Implementing dynamic Bayesian networks 67

ables and identifying probabili ty distributions graphically. In addition to random variables
(called chance nodes in Operations Research), influence diagrams also have nodes to rep­
resent expected outcomes and decisions. Influence diagrams without these special nodes
are Bayesian networks, and in this overview, these w i l l only be considered in passing.

For purposes of decision analysis, a l l probabilistic nodes are removed from the network,
transferring their effect on decisions to a single table which ranks the decision options based
on expected cost. For less specific applications, Shacter has shown [Shachter, 1989] that
his algorithm can be used for evidence absorption and propagation by removing evidence
nodes from the network.

Network evaluation is performed using two techniques: arc reversal and node removal. A
barren node, i.e. a node wi th no children, can be removed from a network without affecting
the underlying distribution. A n arc can be reversed, that is, the arc from a node A to a
node B can be tranformed into an arc from B to A, i f there is no other directed path from
A to B. Th i s transformation reverses the conditional probabilities as well , and both A and
B are "adopted" by each other's direct parents. When only probabilistic nodes are used
in the diagram, the procedure of arc reversal corresponds to Bayes' theorem. A r c reversals
are used to change nodes having children into barren nodes so they can be removed from
the network.

Network evaluation can be seen as the sequence of node removals and arc reversals neces­
sary to remove al l nodes from the network. Queries to the network can be performed by
the sequence of arc reversals necessary to remove the nodes which condition the query.

4.5.1 Adding dynamic constructs

Given the very dynamic network evaluation already inherent in Shachter's algorithm, it is
not especially helpful to add the k ind of dynamic structures I have presented in Chapter 2.

A s an example of the difficulties involved, consider the network in Figure 4.4a. Follow­
ing Shachter's algorithm, evaluating the network wi th a series of node removals and arc
reversals results in the network of Figure 4.4b. If a node B3 is added to the network in
this state, perhaps because a user has just discovered a new individual in the model, the
system must perform the evaluation again from the original network.

In general, an influence diagram could be built by instantiating a collection of schemata,
and Breese demonstrates this by taking a similar approach to building influence diagrams
[Breese, 1990]. Shachter's evaluation could be adapted to use combination nodes (i.e., to

4. Implementing dynamic Bayesian networks 68

Figure 4.4: The problem of adding a node after arc reversals have been performed.

4. Implementing dynamic Bayesian networks 69

be used as a noisy-Or gate as in Section 3 . 5 , for example), but if individuals are observed
after a network has already been created, and after some evaluation has been performed,
a new network must be created, and all of the previous arc reversals and node removals
must be repeated for the new network.

4.6 Conclusions

In this chapter I have presented several Bayesian network evaluation techniques, and dis­
cussed how the dynamic techniques of Chapter 2 might be implemented.

Some of these algorithms lend themselves well to dynamic schemata, and they benefit
from the observation that the parts of the network which are added dynamically can be
treated as if they had always been present in the network; the addition merely has the
effect of changing how these nodes affect the rest of the network. There are other network
evaluation algorithms in use or being developed which have not been discussed in this
chapter. These may also be adaptable to dynamic constructs and may benefit from this
same observation.

The question of whether an evaluation algorithm can be modified to use dynamic schemata
says more about the intended application than about the algorithm itself. For expert
system use, a Bayesian network is a batch process, and the computation is designed to
be autonomous and inflexible. These constraints are quite exploitable for implementing
dynamic constructs for these algorithms. The fact that Shachter's algorithm is typically
used in a very interactive consultation with a user, who is quite likely an expert in the
domain she is modelling, means that the dynamic constructs are essentially unnecessary.
The user herself can add to the network interactively should the necessity arise.

Chapter 5

Conclusions

5.1 W h a t d y n a m i c B a y e s i a n n e t w o r k s c a n ' t d o

In this section, we consider the l imitations and disadvantages of dynamic Bayesian networks
as presented in this thesis. Some of these issues could be addressed as part of future research
springing from this thesis.

The most obvious disadvantage to the process of instantiating parameterized schemata to
create Bayesian networks is the problem of finding individuals: the user of the system must
be fully aware of the individual types, and the criteria for deciding types. Furthermore,
the correctness of the model constructed by the process is dependent on the competence
of the user who supplies the individuals.

In a similar vein, the combination mechanisms presented in Chapter 2 take only known
individuals into account when performing the combination. A facility for hypothesizing
some unknown individual , perhaps based on the condition that a l l causes due to known
individuals have been dismissed, seems to be a valuable addition.

Another related issue is the type hierarchy itself. A s implemented, the network creating
process requires that the user identify the individual 's type, and i f the individual belongs
to more than one type (perhaps because private detectives are people too), the user must
identify a l l the types to which an individual belongs. O f immediate benefit to the ideas pre­
sented in this thesis would be a study on hierarchical types, wi th an eye towards efficiency
considerations and representational adequacy.

The fact that the knowledge base of schemata impl ic i t ly represents possibly infinitely many,

70

5. Conclusions 71

possibly infinitely large directed networks, the possibility that some of those networks are
not acyclic, i.e., not Bayesian networks, is cause for concern. A d d i n g a loop check to the
network creation process implementation is a simple matter, but it only identifies directed
loops after the schemata are instantiated. Some ut i l i ty or theorem which assures that a
knowledge base w i l l not result in cyclic networks would be a desirable result. Currently,
the possibility of loops is treated in the same way left-recursive logic programs are treated
by the logic programming community.

5.2 O t h e r f u t u r e p o s s i b i l i t i e s

One of the fundamental ideas of my approach was to keep the network construction process
simple, so that the issue of representation could be more fully addressed. One obvious
extension of this thesis would be to design a more sophisticated construction process which
would maintain the consistency of the probability distribution and the precision of the
mapping between the knowledge base and the networks which can be created from it.

The existential and universal combination mechanisms presented in Chapter 2 are only
two of many possible ways to combine information. It seems useful to consider how to
implement a mechanism in which some fraction of a set of parent random variables must
be true in order for an effect to be triggered.

5.3 S o m e f i n a l r e m a r k s

This thesis has presented a dynamic approach to the use of Bayesian networks. The
approach was motivated by the need to model domains in which it would be difficult
to anticipate some of the details. In particular, for domains which can be modelled by
general knowledge of properties and their interactions, this general knowledge can be used
in specific instances to create a probabilistic model. Changing the instances changes the
model.

A simple language of parameterized probabilistic knowledge, augmented wi th structures
which dynamical ly combine the effects of several causes, was described. A procedure to
create networks by instantiating statements in this language wi th particular individuals
which have been submitted to the system, was outlined as well .

A n implementation of this language was described briefly, and several examples were pre-

5. Conclusions 72

sented using this implementation. The language seems to be versatile, but requires some
careful programming for effective use.

Several algorithms were discussed, due to Pearl [1988], Poole and Neufeld [1989], Lauri tzen
and Spiegelhalter [1988], and Shachter [1986], currently used to evaluate Bayesian networks,
and some modifications were suggested which would implement dynamic Bayesian networks
in these systems.

This thesis focussed on providing a precise framework for representing parameterized prob­
abilistic knowledge, and a firm basis for building networks from this knowledge. Because
the network construction process presented here was kept quite simple, the issue of rep­
resentation could be more fully addressed. The result is a language for representing pa­
rameterized probabilistic dependencies which precisely defines the mapping between the
knowledge and the Bayesian networks created from it , as well as ensuring a consistent
probabili ty distr ibution which is based on al l available knowledge.

Bibliography

[Aho et al, 1974] A . V . Aho , J . E . Hopcroft, and J . D . U l l m a n . The Design and Analysis of
v Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

[Aleliunas, 1988] R . Alel iunas. A new normative theory of probabilistic logic. In Proc.
Seventh Conf. of the CSCSI, pages 67-74, 1988.

[Andreassen et al, 1987] S Andreassen, M . Woldbye, B . Falck, and S .K . Andersen.
Munin-—a causal probabilistic network for interpretation of electromyographic findings.
In Procedings of the Tenth International Joint Conference on Artificial Intelligence,
pages 366-372, 1987.

[Breese, 1990] Jack Breese. Construction of belief and decision networks. Rockwell Inter-
nation Science Center, forthcoming, 1990.

[Cheeseman, 1988] P. Cheeseman. In defense of probability. Computational Intelligence,
4(l) :58-66, 1988.

[Cooper, 1990] G . F . Cooper. The computational complexity of probabilistc inference
using bayesian belief networks (research note). Artificial Intelligence, 42(2-3):393-405,
1990.

[D'Ambrosio, 1989] Bruce D 'Ambros io . Incremental goal-directed probabilistic inference.
Dept. of Computer Science, Oregon State University (draft), 1989.

[de Kleer and Wi l l i ams , 1987] J . de Kleer and B . C . Wi l l i ams . Diagnosing multiple faults.
Artificial Intelligence, 32(1):97-130, 1987.

[Gardenfors, 1988] Peter Gardenfors. Knowledge in Flux. M I T Press, Cambridge, Mass.,
1988.

73

[Geiger, 1990] Dan Geiger. Graphoids: A qualitative framework for probabiolistic in­
ference. Technical Report R-142, Cognitive Systems Laboratory, Dept. of Computer
Science, U C L A , 1990.

[Goldman and Charniak, 1990] Robert P. Goldman and Eugene Charniak. Dynamic con­
struction of belief networks. In Proceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, pages 90-97, 1990.

[Horsch and Poole, 1990] Michael C . Horsch and David Poole. A dynamic approach to
probabilistic inference using bayesian networks. In Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, pages 155-161, 1990.

[Horsch, 1990] Michael C . Horsch. Influence: A n interpreter for dynamic bayesian net­
works. Dept. of Computer Science, University of Br i t i sh Columbia . In preparation.,
1990.

[Jensen et al, 1988] F . V . Jensen, K . G . Olesen, and S .K. Andersen. A n algebra of bayesian
belief universes for knowledge based systems. Technical Report R-88-25, Institute of
Electronic Systems, Aa lborg University, 1988.

[Jensen et al, 1990] F . V . Jensen, S.L Lauri tzen, and K . G Olesen. Bayesian updating in
recursive graphical models by local computations. To appear in : Networks, 1990.

[Laskey, 1990] K a t h r y n Blackmond Laskey. A probabilistic reasoning environment. In
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 415-
422, 1990.

[Lauritzen and Spiegelhalter, 1988] S. L . Lauri tzen and D . J . Spiegelhalter. Loca l compu­
tation wi th probabilities on graphical structures and their application to expert systems.
J. R. Statist Soc B, 50(2):157-224, 1988.

[Lindley, 1965] D . V . Lindley. Introduction to Probability & Statistics from a Bayesian
viewpoint. Part 1. Probability. Cambridge University Press, 1965.

[Mulder et al, 1978] J . A . Mulder , A . K . Mackworth, and W . S. Havens. Knowledge
structuring and constraint satisfaction: The mapsee approach. Technical Report 87-21,
Dept. of Computer Science, University of Br i t i sh Columbia , Vancouver., 1978.

[Neufeld and Poole, 1987] E . Neufeld and D . Poole. Towards solving the multiple extension
problem: Combining defaults wi th probability. In Procedings of the Third Workshop on
Uncertainty in Artificial Intelligence, pages 305-312, Seattle, 1987.

74

[Pearl, 1986] Judea Pearl . Fusion, propagation and structuring in belief networks. Artificial
Intelligence, 29(3):241-288, 1986.

[Pearl, 1988] Judea Pearl . Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Reasoning. Morgan Kauffman Publishers, Los Al tos , 1988.

[Poole and Neufeld, 1989] David Poole and Er ic Neufeld. Sound probabilistic inference in
prolog: A n executible specification of bayesian networks. 1989.

[Poole and Provan, 1990] David Poole and Gregory Provan. Wha t is an opt imal diagnosis.
In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages
46-53, 1990.

[Poole, 1989] Dav id Poole. A methodology for using a default and abductive reasoning
system. Technical Report 89-20, Dept. of Computer Science, University of Br i t i sh
Columbia , Vancouver, 1989.

[Reiter and Mackworth, 1989] R . Reiter and A . K . Mackworth. A logical framework for
depiction and image interpretation. Artificial Intelligence, 41(2):125-155, 1989.

[Reiter, 1987] R . Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(l) :57-95, 1987.

[Schubert, 1988] J . K . Schubert. Cheeseman: A travesty of truth. Computational Intelli­
gence, 4(1):118-121, 1988.

[Shachter, 1986] Ross D . Shachter. Evaluating influence diagrams. Opns Rsch, 34(6):871-
882, 1986.

[Shachter, 1988] Ross D . Shachter. Probabil ist ic inference and influence diagrams. Opns
Rsch, 36(4):589-604, 1988.

[Shachter, 1989] Ross D . Shachter. Evidence absorption and propagation through evi­
dence reversals. In Proceedings of the 9th Annual Workshop on Uncertainty in Artificial
Intelligence, pages 303-308, 1989.

75

A p p e n d i x A

Influence c o d e f o r t h e e x a m p l e s

A . l D i a g n o s i s o f m u l t i p l e f a u l t s f o r d i g i t a l c i r c u i t s

The following is a complete listing of the knowledge base for modelling circuits. See
Section 3.2.

b i n a r y o k (G a t e : g a t e) .
b i n a r y o u t p u t (G a t e : g a t e) .
b i n a r y i n p u t (G a t e : g a t e , P o r t : p o r t) .
b i n a r y e x i s t s ((G I , G2, P o r t) , c o n n e c t i o n s , o u t p u t (G I)) .

/* a n d — g a t e s */
o k (a n d _ g a t e (G) : g a t e s) ,
i n p u t (a n d _ g a t e (G) : g a t e s , 1) ,
i n p u t (a n d - g a t e (G) : g a t e s , 2) => o u t p u t (a n d . g a t e (G) : g a t e s)

:= [1,0,0,0,0.5,0.5,0.5,0.5].

/* o r — g a t e s */
o k (o r _ g a t e (G) : g a t e s) ,
i n p u t (o r _ g a t e (G) : g a t e s , 1) ,
i n p u t (o r _ g a t e (G) : g a t e s , 2) => o u t p u t (o r _ g a t e (G) : g a t e s)

:= [1,1,1,0,0.5,0.5,0.5,0.5].

/* x o r — g a t e s */
o k (x o r _ g a t e (G) : g a t e s) ,
i n p u t (x o r _ g a t e (G) : g a t e s , 1) ,
i n p u t (x o r _ g a t e (G) : g a t e s , 2) => o u t p u t (x o r _ g a t e (G) : g a t e s)

:= [0,1,1,0,0.5,0.5,0.5,0.5].

76

A. Influence code for the examples 77

exists((Gl,G2,Port), connections, output(Gl))
=> input(G2:gates,Port:ports).

:= [1,0].

observe type(and-gate(gl).gates).
observe type(or.gate(g2).gates).
observe type(xor_gate(g3).gates).
observe type((and-gate(gl),xor-gate(g3),1) connections),
observe type((or_gate(g2),xor_gate(g3),2) connections).

A . 2 I n t e r p r e t i n g s k e t c h m a p s

The following Influence code creates dynamic Bayesian networks for the domain discussed
in Section 3.3

scene objects can be linear or area objects
multi isa-linear(X) Q [road, r iver , shore],
multi isa-area(X) ® [land, water].

7.7. Image objects:
binary tee(X.Y). '/,'/. chain X meets chain Y in a tee-shape
binary chi(X.Y). 7.7. chain X and chain Y make a chi—crossing
binary bounds(X,Y). '/,'/, chain X bounds area Y
binary interior(X,Y) . '/,'/, Area Y is in the interior of chain X
binary exterior(X.Y) . '/.•/, Area Y is exterior of chain X

7.7. Scene descriptions:
binary joins(X,Y). '/,'/,linear scene objects join in a tee shape
binary crosses(X,Y) . '/,'/, linear scene objects cross
binary inside(X.Y). '/,'/, area object X is inside linear object X
binary outside(X.Y) . 7.7. area object X is outside linear object X

'I,'!, Trick implementation of equality predicate!
'/,'!, Two distinct random variables, which have their
Vl, arguments as values:
multi vall(X) Q [X, X].
multi val2(Y) 8 [Y, Y].

7.7. equality is then define i f the values are the same!
function equal/2.

A. Influence code for the examples 78

v a l l (X) , val2(Y) => equal(X,Y)

{p(equal(X,Y),[vall(X)=X,val2(Y)=Y])

= i f (X=Y) then 1.0 e lse 0.0}.

'/,'/, Two l i n e a r scene objects can j o i n to form a tee

i s a - l i n e a r (X : c h a i n) , i s a - l i n e a r (Y : c h a i n) ,

j o i n s (X : c h a i n , Y : c h a i n) , e q u a l (X : c h a i n , Y : c h a i n)

=> t e e (X : c h a i n , Y : c h a i n)

:= [1, '/.'/. a road can meet i t s e l f i n a t e e , but nothing else

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, •/.'/, equal o b j e c t s . . .

1,1,0, '/,'/, a road or shore can j o i n a r o a d , a shore cannot

1,1,0, 7,7, a road or a r i v e r can j o i n a r i v e r , a shore cannot

1,1,0, 7.7. a road or a r i v e r can j o i n a shore, a shore cannot

0,0,0,0,0,0,0,0,0]. 7.7. j o i n i s f a l s e

7.7. two l i n e a r objects can cross to form a c h i

i s a - l i n e a r (X : c h a i n) , i s a - l i n e a r (Y : c h a i n) ,

c r o s s e s (X : c h a i n , Y : c h a i n) , e q u a l (X : c h a i n , Y : c h a i n)

=> c h i (X : c h a i n , Y : c h a i n)

7.7. no scene objects cross themselves

:= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 7.7. (equal i s true)

1,1,0, 7.7. roads and r i v e r s can cross a r o a d , not shores

1,0,0, 7.7. roads can cross a r i v e r , not r i v e r s or shores

0,0,0, 7.7. shores cannot cross anything

0,0,0,0,0,0,0,0,0]. 7.7. cross i s f a l s e , so c h i i s not p o s s i b l e

7.7. l i n e a r objects can form closed loops

i s a - l i n e a r (X : c h a i n) , loop(X:chain) => closed(X:chain)

:= [1,0,1,0,0,0]. 7.7. only roads and shores form loops

7.7. l i n e a r scene object are found beside area objects

i s a - a r e a (X : r e g i o n) , i s a - l i n e a r (Y : c h a i n) , b e s i d e (X : r e g i o n , Y : c h a i n)

=> b o u n d s (X : r e g i o n , Y : c h a i n) .

:= [1,0, 7.7. only l a n d can be beside roads

1.0, 7.7. only land can be beside r i v e r s

1.1, 7.7. land and water can be beside shores

0,0,0,0,0,0]. 7.7. beside i s f a l s e

7.7. on the l i n e a r object which forms the boundary between two

7,7. area objects , we must c o n s t r a i n the objects involved

7.7. e . g . A road i s not a boundary between two bodies of water

i s a - a r e a (X : r e g i o n) , i s a - l i n e a r (Y : c h a i n) , i s a - a r e a (Z : r e g i o n) ,

i n s i d e (X : r e g i o n , Y : c h a i n) , o u t s i d e (Z : r e g i o n , Y : c h a i n)

=> b o u n d a r y - c o n s t r a i n t (X : r e g i o n , Y : c h a i n , Z : r e g i o n) .

:= [1,0, 7.7. only land can be i n s i d e a road boundary

0,0, 7.7. r i v e r boundaries are not allowed

A. Influence code for the examples 79

0,1, '/,'/, shores have water inside, land outside
0,0,0,0, 7.7. when water is outside, roads, rivers can't bound
1,0, '/,'/, water outside, shore boundary then only land inside
0,0,0,0,0,0,0,0,0,0,0,0, 7.7. inside and outside are false
0,0,0,0,0,0,0,0,0,0,0,0].

A . 3 T h e B u r g l a r y o f t h e H o u s e o f H o l m e s

The following Influence code models the problem of Section 3.4.

binary sale-obtained(X). '/,'/, has a sale been obtained by X?
binary burglary(X). '/,'/, was there a burglary in X's house?
binary go-home(X). '/.'/. does (should) X go home IMMEDIATELY?
binary meeting(X.Y). '/,*/, was there a meeting between X and Y?
binary earthquake. '/.'/, was there an earthquake?
binary radio. 7.7. did the radio report an earthquake ?
binary client (X). '/,'/, X has a client?

function value(X). '/,'/, what is the value of X's decision?
function losses (X). '/,'/, how much did X lose?
function income(X). '/,'/, how much does X stand to gain?

7,7, how much is a sale worth?
multi sale-value(X) 9 [0,150,300].

7.7. how much of X's stolen goods were recovered?
multi goods-recovered(X) ® [0,500,5000].

7.7. how much were X's stolen goods worth?
multi stolen-goods-value(X) (3 [0,500,5000].

7.7. when did X report thre burglary?
multi burglary-report(X) (3 [immediate, late, none].

7.7. compute the difference between X's income and losses
7.7. ca l l i t value for X
losses(X:alarm-owner), income(X:alarm-owner) => value(X:alarm-owner)

:= {p(value(X)=V,[losses(X)=V1,income(X)=V2])
i f (V is V2 - VI) then 1.0 else 0.0}.

7.7. X may recover some of his stolen goods depending on
7.7. when X reported the burglary

A. Influence code for the examples 80

burglary(X:alarm-owner), burglary-report(X:alarm-owner)
=> goods-recovered(X:alarm-owner)
:= [0.01, 1, 0.5, 1 , 0 . 1 , 1] .

7.7. If X recovers stolen goods, then there is not loss
goods-recovered(X:alarm-owner),
stolen-goods-value(X:alarm-owner) => losses(X:alarm-owner)

:= {p(losses(X)=V,[goods-recovered(X)=V1,stolen-goods-value(X)=V2])
i f (V is V2 - VI) then 1.0 else 0.0}.

7.7. the income for Y depends on getting the sale from a client
client(Y:alarm-owner), sale-obtained(Y:alarm-owner),
sale-value(Y:alarm-owner) => income(Y:alarm-owner).

:= {p(income(Y)=V,[client(Y), sale-obtained(Y),
sale-value(Y)=V1])

i f (V is VI) then 1.0 else 0.0}.
'/,'/, - A meeting may take place between X and Y
'/,'/, i f X doesn't go home
go-home(X:alarm-owner) => meeting(X:alarm-owner,Y:corporation)

:= [0, 0.75].
7.7. X may get a client i f X has a meeting with a corporation
exists(X,corporation,meeting(Y:alarm-owner,X))

=> client(Y:alarm-owner)
:= [0.75,0.0].

7.7. X wi l l report a burglary i f one occurred, and X has gone home
*/,'/, to verify i t go-home (X: alarm-owner), burglary(X: alarm-owner)

=> burglary-report(X:alarm-owner)
:= [1.0, 7,7, X went home immediately and reported a burglary

0.0, 7.7. so the report isn't l a t e . . .
0.0, 7.7. . . . or not reported at a l l
0.0, 7.7. didn't go home, so report can't be immediate
1.0, 7.7. assume X reports a burglary eventually...
0.0, 7.7. (X reported the burglary LATE, not NONE)

7.7. no burglary, no report!
0.0, 0.0, 1.0, 0.0, 0.0, 1.0].

7.7. i f there was a burglary, then goods of some value have been
7.7. stolen
burglary(Y:alarm-owner) => stolen-goods-value(Y:alarm-owner)

:= [0.05, 7.7. burglary, but s-g-v=0
0.55, 7.7. burglary, but s-g-v=500
0.4, 7.7. burglary, but s-g-v=5000
1.0, 7.7. no burglary, and s-g-v=0
0.0, 7.7. no burglary, and s-g-v=500
0.0] .7.7. no burglary, and s-g-v=5000

A. Influence code for the examples 81

'/,'/, X w i l l meet w i t h Y t o t a l k s a l e s . A s a l e may o c c u r
m e e t i n g (X : a l a r m - o w n e r , Y : c o r p o r a t i o n)

=> s a l e - o b t a i n e d (X : a l a r m - o w n e r , Y : c o r p o r a t i o n)
:= [0.5, 0.1].

7.7. an a l a r m i s a f f e c t e d by e a r t h q u a k e s and b u r g l a r i e s
7,7. - t h e a l a r m w i l l a lmost d e f i n i t e l y sound i f b o t h an ea r t h q u a k e
7,7. and a b u r g l a r y o c c u r , and almost d e f i n i t e l y w i l l n o t sound i f
7.7. n e i t h e r o c c u r
b u r g l a r y (Y : a l a r m - o w n e r) , earthquake => alarm(Y:alarm-owner)

:= [0.99, 0.1, 0.8, 0.001].
7.7. e a r t h q u a k e s t e n d t o be r e p o r t e d on t h e r a d i o . . .
e a r t h q u a k e => r a d i o

:= [0.98, 0.0].

7.7. Phone c a l l s from n e i g h b o u r s about a l a r m s .
7.7. - n e i g h b o u r s u s u a l l y o n l y c a l l when an a l a r m sounds
7.7. - non - n e i g h b o u r s don't c a l l a t a l l !
ne i g h b o u r (X : p e r s o n , Y : a l a r m - o w n e r) ,

alarm(Y:alarm-owner) => p h o n e - c a l l (X : p e r s o n , Y : a l a r m - o w n e r)
:= [0.6, 0.0, 0.2, 0.0].

Appendix B

Source code to Influence

B . l p r o b a b i l i t y . p l

/*
* p r o b a b i l i t y . p l
* The s e t o f p r o b a b i l i t y axioms from which we can compute
* many p r o b a b i l i t i e s w i t h o u t much e f f o r t . The r e a l
* work i s i n t h e l a s t axiom, w h i c h i s Bayes' theorem,
* and t h e c a l l t o dyn_p, where we r e a s o n by c a s e s .
*
* (The M u l t i p l i c a t i o n R u l e f o r p r o b a b i l i t i e s used here
* i s r e a l l y s t u p i d . Improvements can be made here!)
*/

'/.'/, The f i r s t two r u l e s a l l o w t h e u s e r t o query c o n v e n i e n t l y .
'/,'/, And d i s p l a y s t h e answer n i c e l y , t o b o o t . . .

p(A)
:- p (A , []) .

7,7, F i r s t , check t o see i f t h e c o n d i t i o n i n g knowledge i s c o n s i s t e n t . . .
p(A,B) :-

g i v e n _ i n c o n s i s t e n t (B) ,
w r i t e _ p (A , B , ' u n d e f i n e d ') , n l .

p(A,B)
:- p (A , B , P) ,

w r i t e _ p (A , B , P) , n l .

82

http://probability.pl
http://probability.pl

B. Source code to Influence 83

7.7. p (+A, +Given, - P r o b a b i l i t y)

'/,'/, - c a l c u l a t e the p r o b a b i l i t y of l o g i c a l expression +A condit ioned

VI, by +Given, to be returned i n - P r o b a b i l i t y

7.7. - i f +A i s a l i s t , then t h i s l i s t i s a conjunct of p r o p o s i t i o n s

VI, Check to see i f i t i s a p r i o r that we know i n the database.

•/„•/. p (X , A , P)

7.7. : - p r (X , A , P , _) .

7.7. I f X i s a predefined node type, then we do i t here.

p (X , A , P)

: - b u i l t _ i n _ p (X , A , P) .

7.7. Otherwise, we have to do some c a l c u l a t i o n s . . .through axiom_p

p (X , A , P)

: - axiom_p(X,A,P).

7.7. I f X i s a q u a n t i f i c a t i o n n o d e . . .

p (X , A , P)

: - quant_p(X,A,P).

7.7. I f none of the axioms above can c a l c u l a t e a value, then

7.7. we must r e s o r t to reasoning by cases, which i s performed

7.7. by the r u l e s created during c o m p i l a t i o n , under the

7.7. head of 'dyn_p' .

p (X , A , P)

: - dyn_p(X,A,P).

quant_p(exists(Parameter,Type,Variable),Cond,P)

: - get_indivs_of_type(Type,Cond,Indivs),

i n s t a n t i a t e (V a r i a b l e , Parameter, I n d i v s , Instances) ,

or_p(Instances,Cond,P).

quant_p(foral l(Parameter.Type.Variable) ,Cond,P)

: - get_indivs_of_type(Type,Cond,Indivs),

i n s t a n t i a t e (V a r i a b l e , Parameter, I n d i v s , Instances) ,

and_p(Instances,Cond,P).

7.7. get_indivs_of_type(Type,Cond,Indivs)

g e t _ i n d i v s _ o f . t y p e (_ , [] , []) .

get_indivs_of_type(Type,[type(Indiv,Type)|Conds],[Indiv|Indivs])
• - i

• *

get_indivs_of_type(Type,Conds,Indivs).

get_indivs_of_type(Type,[_|Conds],Indivs)

: - get_indivs_of_type(Type,Conds,Indivs).

B. Source code to Influence 84

instantiate (_, _ , [], []).
instantiate(Variable, Parameter, Indivs, Instances)

: - bagof(Variable,member(Parameter,Indivs).Instances).

built_in_p(X,L,P)
: - and_node(X),

i

parents(X,PL),
and_p(PL,L,P).

built_in_p(X,L,P)
: - or_node(X),

! »
parents(X,PL),
or_p(PL,L,P).

/ * theorem :
i f a node X is a model of 'and', and

i t has parents U=-Cul,.. ,un} then
p(X|C) = p(ul unlC).

Proof: t r i v i a l . :-)
*/

and_p(L,C,P)
: - p(L,C,P) .

/ * theorem:
i f a node X is a model of 'or' and

i t has parents U={ul,..,un} then
p(X|C) = p(ul ; . . . ;un |C)

= p(ul|C) + p(u2;. . . ;un|"ul C)*p(~ul|C)
= p(ul|C) + p(u2; . . . ;un | 'u l C)*(l - p(ul|C))

which is recursive.

Proof: t r i v i a l . :-)
*/

or_p([],_,0).

or_p([A],C,P)
: - p(A,C,P).

or_p([A|L],C,P)

B. Source code to Influence 85

:- p(A,C,Pl),
or_p(L,[-A|C],P2),
P = PI + P2*(l-Pl).

7.7. axiom_p(+A,+Given,-Prob)
7,7. - some axioms for calculating probabilities.
7.7. - variables the same as in p(A,Given,Prob)

7.7. Multiplication rule for probabilities
7,7. _ base case: one conjunct should be computed simply.

axiom_p([A],B,P) :- !,
p(A,B,P).

7.7. Multiplication rule for probabilities
7.7. - recursive step: find the probability of the f i r s t
7,7. conjunct, and i f this is non-zero, find the probability
7.7. of the remainder of the conjuncts conditioned on the f i r s t
7.7. by multiplication.
7,7. - this could be a lot smarter, I think.
7.7. (by making use of conditional independence, for example)
7,7. (or by using the fact that some variables may have no
7.7. parents)

axiom_p([B|A],C,P) :- !,
p(B,C,PEval),
eval(PEval,P2),
(P2 =:= 0, P = 0;
p(A,[B|C],Pl),
P = Pl*PEval).

7.7. Negation rule
7.7. - pCAlC) = 1 - p(A|C)

axiom_p(~A,B,P) :- !,
p(A,B,Pl),
P = 1-P1.

7.7. Definiteness rule #1
7.7. - p(A|A) = 1

axiom_p(A,B,p(A,B,l)) :-
member(A,B),!.

7,7, Definiteness rule #2
7.7. - p(A|-A) =0

B. Source code to Influence 86

axiom_p(A,B,p(A,B,0)) :-
member(~A,B),! .

7.7. D e f i n i t e n e s s r u l e #2 f o r m u l t i v a l u e d v a r i a b l e s

axiom_p(A=X,B,p(A,B,0)) :-
member(A=Y,B),X \== Y,!.

'/,'/, I n c o m p l e t e n e s s r u l e f o r m u l t i v a l u e d v a r i a b l e s
'/,'/, - i f X i s n o t i n t h e l i s t o f known v a l u e s f o r
'/,'/, A, t h e n sum a l l t h e p r o b a b i l i t i e s f o r a l l t h e v a l u e s
7.7. w h i c h A can t a k e , and s u b t r a c t t h i s from 1.
7.7. - assumes sum_p(A,L,B,P) <= 1
7.7. - o n l y u s e f u l i f we a l l o w i n c o m p l e t e s p e c i f i c a t i o n o f
7.7. v a l u e l i s t s .

axiom_p(A=X,B,Pl) :-
m u l t i v a l u e d _ n o d e (A , L) ,
\+ member(X,L),
sum_p(A,L,B,P),
P I = 1 -P.

axiom_p(A=X,B,Pl) :-
m u l t i v a l u e d _ n o d e (A , _) ,
remove("A=Y,B,BB),
p(~A=Y,BB,P2))

p(A=X,BB,P3),
P i = P3 / P2.

7.7. Bayes' R u l e
7.7. - i f t h e r e i s e v i d e n c e i n t h e g i v e n l i s t w h i c h i n f l u e n c e s
7.7. t h e p r o p o s i t i o n H d i r e c t l y , t h e n do bayes' r u l e . . .
7.7. - Why? Because we have knowledge about p(E|H) which
7,7. i s f o u n d i n t h e p r i o r s .

axiom_p(H,L,P) :-
remove(E,L,K),
i n f l u e n c e s (H , E) ,
i
• »

p (E , [H | K] , P E v a l) ,
e v a l (P E v a l , P l) ,
(P I =:= 0, P = 0
;p(H,K,P2),
p (E , K , P 3) ,

B. Source code to Influence 87

(P3 = 0,
! , format('Error: Division by zero: ~w."n',[p(E,K,P3)]) , f a i l

;P = PEval * P2 / P3)).

7.7. Auxiliary predicate sum_p used in Indefiniteness rule for
7.7. multivalued variables.

7.*7.sum_p(_, [] ,_,0).

sum_p(A,[V],B,P) : -
p(A=V,B,P).

sum_p(A,[VlValues],B,P) : -
sum_p(A,Values,B,PI),
p(A=V,B,P2),
P = PI + P2.

B . 2 e x p a n d . p l
/*

* expand — expand for multi-valued and binary variables.
* no independence or any other clever tr ick .
* expands propositional variables in the base manner
* expands multivalued variables as i f X=xl were a proposition
* /

y////////////////////:/:///;///////////////;///.v.y;/x/////////.y//x/////.7.7.
'/.'/. expand(+A, +T, +L, +CV, -Body, -P) 7,
7//.7.7;/.r/.7.7.7.7//////////.7.7.7.7.7.7////////.7X/J.7.7////.7.7.7.7.7.7.7.
7.7. expansion of binary proposition A on parents in T
VI, Variables:
7.7. + A is the variable around which we expand
7.7. +T is a truth table entry for A; i n i t i a l l y empty l i s t !
7.7. + L is a l i s t of immediate parents of A, from which T is
7,7. constructed recursively
7.7. +CV is a l i s t of conditioning variables, not necessarily
VI, parents of A
7.7. -Body is the body of the rule which computes
VI, subcalculations for p(A|CV)
7,7. _ P is the algebraic expression which ' i s ' must use
7,7. to compute p(A|CV) from the subcalcs done in -Body
7.7.

http://expand.pl

B. Source code to Influence 88

'/.'/. p(A|T CV) = p(A|Pred T CV)p(Pred|T CV) + p(A|"Pred T CV)p("Pred|T CV)

7.7. Method 1: (base case)
7.7. - the parents of A which were in L have been transferred to
'/,•/, the truth table l i s t T, leaving L = [].
'/,'/, - in this case, we need the prior for this configuration T
7,7, - ask Prolog for the prior, which in turn may ask the user,
7,7. i f there is no such prior in the database.
7.7. - returns the prior, as well as the Body 'true', meaning
7.7. that there is no associated calculation necessary to
7,7. compute the prior (it's a given quantity)

expand(A,T,[],_,pr(A,T,P,_),P) .
7.7.expand(A,T,[] ,_,true,pr(A,T,P)) :-

7.7.pr(A,T,P,_).

7.7. Method 2: (multiple valued variables)
7.7. - i f the f i r s t variable in the truth table is a multivalued variable,
7.7. handle i t separately.

expand(A,T,[ZlPred],CV,Body ,P) :-
multivalued_node(Z,Values),

i

expand.mult i(Z,Value s,A,T,Pred,CV,Body,P).

7.7. Method 3:
7.7. - to expand a binary variable, construct the truth table
7.7. for i t by recursively calling expand, once with the
7.7. f i r s t remaining parent Z, and once with Z negated.
7,7. - return as the Body the sub-calculation of P(Z|CV), and
7.7. the reasoning-by-cases formula which uses this value
expand(A,T,[ZlPred],CV,Body ,(E1*PZ+E2*(1-PZ))) :-
expand(A,[Z|T],Pred,[Z|CV],Cl,El),
expand(A,["Z|T],Pred,["Z|CV],C2,E2),
simp_body((Cl,C2,p(Z,CV,PZ)).Body) .

7.7. expand_multi(+Multi, +Values, +A, +T, +L, +CV, -Body, -P) :-
7.7. similar to expand but for multivalued variables
7.7. +Multi is the multiply valued variable in question
7.7. +Values is the l i s t of values for Multi
7.7. +A is the variable we are expanding around (as in expand)
7.7. +T, +L, +CV, -Body, -P are a l l exactly as in expand
7,7. Basic description: for each value in +Values we find
7,7. the expansion of Multi=value; kinda breadth-wise
7.7. (we have to use each value here, whereas in expand

B. Source code to Influence 89

7.7. i t s u f f i c e d t o use p(Z|CV) and c a l c u l a t e p("Z|CV)
7.7. as (1 - p (Z | C V)) . When Z i s m u l t i v a l u e d , t h i s doesn't
7.7. work.

7,7. Method 1: (base case)
7.7. - i f we have o n l y one v a l u e l e f t i n t h e l i s t o f v a l u e s , t h e n
7,7. c a l l expand t o c o n t i n u e t h e e x p a n s i o n t o f u l l d e p t h
7.7. - r e t u r n as Body t h e s u b c a l c u l a t i o n c a l l t o p (M u l t i = V a l u e |CV),
7.7. and as t h e n u m e r i c a l e x p r e s s i o n t h e p r o d u c t o f t h i s and
7,7. t h e e x p r e s s i o n r e t u r n e d by expand.

e x p a n d . m u l t i (M u l t i , [V a l u e] , A, T, P r e d , CV, Body, (PM * E)) :-
e x p a n d (A , [M u l t i = V a l u e I T] . P r e d , [M u l t i = V a l u e | C V] , B , E) ,

s i m p _ b o d y ((p (M u l t i = V a l u e , C V , P M) , B) . B o d y) .

7.7. Method 2:
7.7. - r e c u r s i v e l l y expand A u s i n g each v a l u i e o f M u l t i i n t h e V a l u e s
7.7. l i s t
7.7. - t h e body r e t u r n e d i s t h e c o n j u n c t i o n o f t h e s u b c a l c s
7.7. and t h e e x p r e s s i o n i s a s i m p l e a d d i t i o n .

e x p a n d _ m u l t i (M u l t i , [Value I V a l u e s] , A, T, P r e d , CV, Body, (E l + E2)) :-
expand.mult i (M u l t i , V a l u e s , A , T , P r e d , C V , B l , E l) ,
e x p a n d . m u l t i (M u l t i , [V a l u e] , A , T , P r e d , C V , B 2 , E 2) ,
s i m p _ b o d y ((B l , B 2) , Body).

7.7. R u l i f y (+ H , + B , - R u l e)
7.7. - c r e a t e s a Ru l e t o c a l c u l a t e p(H| A n y t h i n g) by
7.7. u s i n g r e a s o n i n g by c a s e s .
7.7. +H i s t h e v a r i a b l e w h i ch i s t o be r u l i f i e d
7.7. + B i s t h e l i s t o f immediate p a r e n t s o f H
7.7. -Rule i s a p r o l o g r u l e w h i c h s h o u l d be a s s e r t e d .

7.7. Method 1: m u l t i p l e v a r i a b l e s .
7.7. - c r e a t e s a r u l e w h i ch h a n d l e s o n l y one v a l u e
7.7. o f t h e v a r i a b l e .
7.7. - u s i n g b a c k t r a c k i n g , a l l t h e r u l e s w i l l be g e n e r a t e d
7.7. (so be su r e t o ' f a i l ' a f t e r a c a l l t o r u l i f y t o get
7.7. a l l t h e a p p r o p r i a t e r u l e s) .
7.7. I s s u e : we t r e a t each 'H=value' t h e same as a b i n a r y v a r i a b l e

r u l i f y (H , B , (d y n _ p (H = V , C , P) :- Body)) :-
m u l t i v a l u e d _ n o d e (H , . V a l u e s) , ! ,
7,*7. r e m o v e (V , V a l u e s , _) ,

expand(H=V,[],B,C,R,E),
simp_body((R, P = E) , Body).

B. Source code to Influence 90

'/,'/, Method 2: Binary values
'/,'/, - creates a rule for binary variables
'/,'/, - doesn't succeed on backtracking

•/.*y.rulify(H,B,((dyn_p(H,C,Combine) : - Body))) : -
y.*'/.binary_node(H) ,
'/.•'/.bagof (type(Param.Type) .remove(type(Param,Type) ,B,_) .TLis t) ,
•/.••/.remove.KTList.B.NewB),
'/.*y.expand(H, [] .NewB.C.R.E) ,
•/,*y.simp_body((R, P = E) , Prebody),
'/.•"/.Body = (bagof (combine_p(Prebody,P,M) .mapmember(TList,C,M) .Combine) ,

y,*y,combine_p(H,C,Combine)),
/.•/.!.

rulify(H,B,((dyn_p(H,C,P) : - Body))) : -
binary_node(H),

expand(H,[],B,C,R,E),
simp_body((R, P = E) , Body).

•/.•/, simp_body(+01d, -New)
'/,'/, - does some simplemided simplification
'/,'/, on the rules generated by expand, or ru l i fy .
•/.'/, - easy

simp_body((true,P),PS) : -
i
simp_body(P,PS).

simp_body((P,true),PS) : -
i
simp_body(P,PS).

simp_body((A;B),(AS;BS)) : -
• »
simp_body(A,AS),
simp.body(B,BS).

simp_body((A,P),(AS,PS)) : -
i

simp_body(A,AS),
simp_body(P,PS).

simp_body(P,P).

B. Source code to Influence 91

B . 3 n e t w o r k . p l
•/.•/, add_to_net(Parents,Child)
add_to_net(Parents.Child)

:- listify(Parents,L),
add_parents(Child,L),
add_children(L,Child).
'/.•/.(member(exists(X,T,V) ,L)
'/,'/-> add_parents(exists(X,T,V), [V])
%%; true),

7.7.(member(forall(X,T,V) ,L)
7.7.-> add.parents(forall(X,T,V), [V])
7.7.; true) .

add_parents(A,P)
:- (retract(st_node(A,S,Pl,C))

-> append(P,PI,Pall),
assert(st_node(A,S,Pall,C))

; assert(st_node(A,[bin],P,[]))),
assert_check(chgd(A)).

add_children([],_).
add_children([P|Pl].Child)

:- add.child(P,Child),
add_children(Pl.Child),!.

add_child(A,C)
:- (retract(st_node(A,S,P,Cl))

-> assert(st_node(A,S,P,[C|C1]))
; assert(st_node(A,[bin],[],[C]))).

7.7.assert_check(chgd(A)).

remove_from_net(Parent.Child)
:- remove_child(Parent.Child),

remove_parent(Parent.Child).

remove_child(P,C)
:- children(P,L),

remove(C,L,NewL)
-> retract(st.node(P,S,GP, L)),

assert(st.node(P,S,GP.NewL))
; formatC'Can't delete "w from child l i s t of "w!"n", [C.P]).

remove_parent(P,C)
:- parents(C,L),

http://network.pl

B. Source code to Influence 92

remove(P,L,NewL)
-> r e t r a c t (s t _ n o d e (C , S , L , G C)) ,

a s s e r t (s t _ n o d e (C , S , N e w L , G C)) ,
a s s e r t _ c h e c k (c h g d (C))

; f o r m a t (" C a n ' t d e l e t e "w from p a r e n t l i s t o f ~w!~n", [P , C]) .

c h i l d r e n (A , L)
:- s t _ n o d e (A , _ , _ , L) .

p a r e n t s (A , L)
:- s t _ n o d e (A , _ , L , _) .

node(A)
:- s t _ n o d e (A , _ , _ , _) .

B .4 priors.pl
a l l _ p r i o r s (_ , [] , L)

:- a s s e r t a _ l i s t (L) .

a l l _ p r i o r s (V a r , [n e w _ p r i o r (A , B , P) | L] , L 2)

w r i t e _ p (A , B , P) , n l ,
w r i t e (' C h a n g e t h i s v a l u e ? ') ,
r e a d (A n s) ,
(p r i o r (A , B , P) . r e t r a c t (p r i o r (A , B , P))
; n e w _ p r i o r (A , B , P) , r e t r a c t (n e w _ p r i o r (A , B , P))) ,
(Ans == y,

a s s e r t _ c h e c k (c h g d (V a r)) ,
a s k _ p r i o r (A , B , P l) ,
a l l _ p r i o r s (V a r , L , [n e w _ p r i o r (A , B , P l) | L 2])
; a l l . p r i o r s (V a r , L , [n e w . p r i o r (A , B , P) | L 2])) .

a s k _ p r i o r (P r o p , L , P)
:- n e w _ p r (P r o p , L , P , L 2) , ! ,

r e t r a c t (n e w _ p r i o r (P r o p , L 2 , P)) .

a s k _ p r i o r (P r o p , L , P)
:- \+ \+ w r i t e _ p r o b a b i l i t y (P r o p , L) ,

r e a d (P) .

g e t _ p r i o r s (P r o p , _ , _)

http://priors.pl

B. Source code to Influence 9 3

:- h i d d e n i . n o d e (P r o p) ,
;

g e t _ p r i o r s (P r o p , [] , L)
:- m u l t i v a l u e d _ n o d e (P r o p , V a l u e s) ,

i

e a c h ((
r e m o v e (V , V a l u e s , _) ,
a s k _ p r i o r (P r o p = V , L , P) ,
*/,'/, u n n u m b e r v a r s (p r i o r (P r o p = V , L , P) ,NP),
a s s e r t a (p r i o r (P r o p = V , L , P)))) .

g e t _ p r i o r s (P r o p , [] , L) :-
a s k _ p r i o r (P r o p , L , P) ,
7.7. unnumbervars (p r i o r (P r o p , L,P) ,NP),
a s s e r t a (p r i o r (P r o p , L , P)) .

g e t _ p r i o r s (P r o p , [A I L i s t] , L i s t 2)
:- m u l t i v a l u e d _ n o d e (A , V a l u e s) ,

* 9
each. ((r e m o v e (V , V a l u e s , .) ,

g e t _ p r i o r s (P r o p , L i s t , [A = V | L i s t 2]))).

7 . * 7.get_priors(Prop, [A | L i s t] ,List2)
7.*7.:- b l o c k s (A,B2,Prop),

7.*7.remove(B2.List .NewList) ,
7.*7.get_priors (P r o p , L i s t , [A|List2]),
7.*7.get_priors (P r o p , N e w L i s t , ["A | List2]) .

7 . * 7.get_priors(Prop, [t y p e (_ , _) | L i s t] ,List2)
7.*7.:~ ! , g e t . p r i o r s (P r o p , L i s t ,List2).

g e t _ p r i o r s (P r o p , [A l L i s t] , L i s t 2)
:- g e t _ p r i o r s (P r o p , L i s t , [A | L i s t 2]) ,

g e t _ p r i o r s (P r o p , L i s t , [~ A | L i s t 2]) .

c h a n g e _ p r i o r s (A)
:- m u l t i v a l u e d _ n o d e (A , _) ,

(s e t o f (n e w _ p r i o r (A = V , B , P) , p r i o r (A = V , B , P) , B a g)
; s e t o f (n e w _ p r i o r (A = V , B , P l) , n e w _ p r i o r (A = V , B , P l) , B a g)) ,
a l l _ p r i o r s (A , B a g , []) .

c h a n g e _ p r i o r s (A)
:- (s e t o f (n e w _ p r i o r (A , B , P) , p r i o r (A , B , P) , B a g)

; s e t o f (n e w _ p r i o r (A , B , P l) , n e w _ p r i o r (A , B , P l) , B a g)) ,

B. Source code to I n f l u e n c e 94

a l l _ p r i o r s (A , B a g , []) .

a s s i g n _ p r i o r s (A = V , L , P)
:- m u l t i v a l u e d _ n o d e (A , V a l u e s) ,

member(V,Value s) ,
(p r i o r (A = V , _ , _) , f o r m a t (' P r i o r s e x i s t f o r ~w. Use "change ~w".~n',[A,A])
; a s s e r t (n e w _ p r i o r (A = V , L , P))) ,
j .

a s s i g n _ p r i o r s (A , L , P)
:- b i n a r y _ n o d e (A) ,

(p r i o r (A , _ , _) . f o r m a t (' P r i o r s e x i s t f o r "w. Use "change ~w"."n',[A,A])
; a s s e r t (n e w _ p r i o r (A , L , P))) ,
;

l i s t _ p r i o r s :-
p r i o r (A , L , P) ,
w r i t e _ p (A , L , P) ,
f a i l .

l i s t _ p r i o r s :-
n e w _ p r i o r (A , L , P) ,
w r i t e _ p (A , L , P) ,
f a i l .

l i s t _ p r i o r s .

p r (A) L , p r (A) L , P) , L)
:- prior(A ,L2,P),

match(L,L2),!.

new.pr(A,L,P,L2)
:- new_prior(A ,L2,P),

match(L,L2),!.

B .5 combine.pl

p(A,C,P)
:- ground(A,C,GroundedA),

c o m b i n a t i o n _ m o d e l (A , M o d e l) ,
combine_p(Model,GroundedA,C,P).

http://combine.pl

B. Source code to Influence 95

ground ([] , []) .
g r o u n d ([A | L] , L 1)

:- ground(A,NewA),
ground(L.NewL),
append(NewA,NewL,Ll).

gr o u n d (A , [A])
:- atom(A).

g r o u n d (A , [A])
:- f u n c t o r (A , N a m e , A r g s) ,

a l l _ g r o u n d e d (A , A r g s) .

ground(A,GA)
:- f u n c t o r (A , N a m e , A r g s) ,

f i r s t _ n o t _ g r o u n d e d (A , A r g s , N) ,
c o l l e c t _ i n d i v i d u a l s (A , N , N e w _ A) ,
ground(New_A,GA).

c o l l e c t _ i n d i v i d u a l s (P r o p , A r g , L i s t)

a l l _ g r o u n d e d (A , N)
:- f i r s t _ n o t _ g r o u n d e d (A , N , 0) .

f i r s t _ n o t . g r o u n d e d (A , 0 , 0) .
f i r s t _ n o t _ g r o u n d e d (A , N , N)

:- a r g (N , A , X) ,
v a r (X) .

f i r s t _ n o t _ g r o u n d e d (A , N , M)
:- a r g (N , A , X) ,

\+ v a r (X) ,
NI i s N - l ,
f i r s t _ n o t _ g r o u n d e d (A , N l , M) .

B .6 c o m b i n e d . p l
'/,'/, From p r e p r o c e s s . p l

d i r _ i n f l (A , B)

http://combined.pl
http://preprocess.pl

B. Source code to Influence 96

:- c o n s i s t e n t (A , B) ,
l i s t (A , P) ,
c o l l e c t _ f r e e (P , N e w P , P a r a m s) ,
combine(NewP,B,Params).

combine(P,B,[])
:- ! , a d d _ t o _ n e t (P , B) .

combine(P,B,Params)
:- f u n c t o r (B , N a m e , A r g s) ,

gensym(Name.NewName),
l e n g t h (P a r a m s , L) ,
NewArgs i s Args + L,
functor(NewB,NewName,NewArgs),
declare_combined(Name/Args),
declare_bin(NewName/NewArgs),
declare_hidden(NewName/NewArgs),
unify_args(B,Args,NewB,NewArgs,Params),
add_to_net(P,NewB),
add_to_net([NewB|Params],B).

u n i f y _ a r g s (_ , 0 , _ , _ , []) .

unify_args(Old, 0,New,NewArgs,[type(X,_)I O t h e r A r g s])
:- arg(NewArgs,New,X),

N e x t A r g i s NewArgs - 1,
u n i f y _ a r g s (O l d , 0 , N e w , N e x t A r g , O t h e r A r g s) .

u n i f y _ a r g s (O l d , A r g s , N e w , N e w A r g s , O t h e r A r g s)
:- a r g (A r g s , O l d , X) ,

arg(Args,New,X),
N e x t A r g i s Args - 1,
u n i f y _ a r g s (O l d , N e x t A r g , N e w , N e w A r g s , O t h e r A r g s) .

c o l l e c t . f r e e ([] , [] , [])
: - ! .

c o l l e c t _ f r e e (P , N e w , [t y p e (X . T y p e) | P a r a m s])
:- remove(type(X,Type),P,NewP),

i
• >

c o l l e c t _ f r e e (N e w P , N e w , P a r a m s) .
c o l l e c t _ f r e e (P , P , []) .

'/•'/• *******************
'/,'/, From p r o b a b i l i t y . p l
•/,*/, *******************

http://probability.pl

B. Source code to Inf luence 97

'/,'/, I f t h e node i s p a r a m e t e r i z e d and has ' f r e e ' p a r a m e t e r s , t h e n
'/,'/, we have t o d e a l w i h t i t s p e c i a l l y . . .
p(A,B,C)

:- combined_p(A,B,C).

combined_p(X,L,P)
:- combined_node(X),

i
• >

p a r e n t s (X , [H i d d e n I T y p e s]) ,
c o l l e c t _ t y p e s (H i d d e n , T y p e s , L , C o m b i n e) ,
or_p(Combine,L,P).

c o l l e c t _ a l l _ t y p e s (L , [] , _ , L) .
c o l l e c t _ a l l _ t y p e s ([] , _ , _ , []) .
c o l l e c t _ a l l _ t y p e s ([H i d d e n I O t h e r s] . T y p e s , G i v e n , O u t)

:- c o l l e c t _ t y p e s (H i d d e n , T y p e s , G i v e n , O u t l) ,
c o l l e c t _ a l l _ t y p e s (O t h e r s . T y p e s . G i v e n , O u t 2) ,
append(Outl ,0ut2,0ut) .

c o l l e c t _ t y p e s (H i d d e n , _ , _ , [H i d d e n])
:- i n s t a n t i a t e d (H i d d e n) .

c o l l e c t _ t y p e s (H i d d e n , T y p e s . G i v e n , O u t)
:- p a r e n t s (H i d d e n , P) ,

mapmember(P,Given,Outl),
r e m o v e (O u t l . G i v e n , N G i v e n) ,
c o l l e c t _ t y p e s (H i d d e n , T y p e s , N G i v e n , O u t) .

c o l l e c t _ t y p e s (H i d d e n , [t y p e (Z . T y p e) i T y p e s] . G i v e n , O u t)
:- b a g o f i (t y p e (Z , T y p e) , H i d) , (m e m b e r (t y p e (Z , T y p e) . G i v e n) ,

Hidden = Hid),Comb),
e x t r a c t _ h i d (C o m b , E x t r a c t) ,
c o l l e c t _ a l l _ t y p e s (E x t r a c t . T y p e s . G i v e n , O u t) .

i n s t a n t i a t e d (F)
:- f u n c t o r (F , _ , A r i t y) ,

i n s t a n t i a t e d (F , A r i t y) .
i n s t a n t i a t e d (_ , 0) .
i n s t a n t i a t e d (F , A r i t y)

:- a r g (A r i t y . F . X) .
\+ v a r (X) ,
AA i s A r i t y - 1,
i n s t a n t i a t e d (F , A A) .

B. Source code to Inf luence 98

B . 7 consistent.pl

TI. c o n s i s t e n t (+ A , + B)
'/,'/, - c o m p l a i n i f t h e u s e r t r i e s any k i n d o f s t u p i d i t y
'/.'/. - +A, wh i c h may be a l i s t , a re i n t e n d e d t o be d i r e c t p a r e n t s o f +B
'/,'/, - we don't want d i r e c t e d c y c l e s i n our network!

c o n s i s t e n t ((A , L) , B)

c o n s i s t e n t (A , B) ,
c o n s i s t e n t (L , B) .

c o n s i s t e n t (A , B)
:- \+ \+ (n u m b e r v a r s ((A , B) , 0 , _) , A = B) ,

!, f o r m a t (' E r r o r : "w cannot i n f l u e n c e i t s e l f . ~ n ' , [A]) , f a i l .

c o n s i s t e n t (A , B)
:- p a r e n t s (B , L) ,

member(A,L),
i
• >

f o r m a t (' E r r o r : A l r e a d y know ~w => ~w.~n',[A,B]),
f a i l .

c o n s i s t e n t (A , B)
:- c h i l d r e n (B , L) ,

member(A,L),
i
• i
f o r m a t (' E r r o r : A l r e a d y know ~w => ~w.~n',[B,A]),
f a i l .

c o n s i s t e n t (A , B)
:- i n f K B . A) ,

! »
f o r m a t (' E r r o r : ~w i n f l u e n c e s "w a l r e a d y . ~ n ' , [B , A]) ,
f a i l .

c o n s i s t e n t (_ , _) .

g i v e n _ i n c o n s i s t e n t ([_]) :- f a i l .
g i v e n _ i n c o n s i s t e n t ([" A | L]) :-

member(A,L).
g i v e n _ i n c o n s i s t e n t ([A | L]) :-

member("A,L).
g i v e n _ i n c o n s i s t e n t ([_ | L]) :-

g i v e n _ i n c o n s i s t e n t (L) .

http://consistent.pl

B. Source code to Influence 99

B . 8 d o n e . p l

p r o c e s s _ a n d _ c o m p i l e
:- e a c h ((c h g d (A) ,

(m u l t i v a l u e d _ n o d e (A , _)
-> r e t r a c t (p r i o r (A = _ , _ , _)) ,

each(r e t r a c t (s t _ i n f l (A , B))) ,

e a c h ((s t _ n o d e (A , _ , _ , _) ,
s t _ n o d e (B , _ , _ , _) ,
i n f l (A , B) ,
a s s e r t (s t . i n f l (A , B)))) ,

e a c h ((c h g d (A) ,
p a r e n t s (A , L) ,
g e t _ p r i o r s (A , L , []))) ,
•/. • / , b u i l d _ p r i o r _ s t r (A , P S) ,
'/.'/.assert(PS))) ,

e a c h ((c h g d (A) ,
'/,*/. (b i n a r y _ n o d e (A) ; m u l t i v a l u e d _ n o d e (A , _)) ,
p a r e n t s (A , L) ,
r e v e r s e d . , R L) ,
r u l i f y (A , R L , R) ,
a s s e r t (R))) ,

each(r e t r a c t (c h g d (_))) ,

each(r e t r a c t (n e w _ p r i o r (_ , _ , _))) .

B . 9 i n f l . p l

•/.•/. d i r _ i n f l (A , (B , C))
ll :- !,

ll d i r _ i n f l (A , B) ,
•/.*/. d i r _ i n f l (A , C) .

r e t r a c t ((d y n _ p (A = _ , _ , _)
r e t r a c t (p r i o r (A , _ , _)) ,
r e t r a c t ((d y n _ p (A , _ , _) :-))))) ,

_))

http://done.pl
http://infl.pl

B. Source code to Influence 100

'/.*/. d i r _ i n f l (A , B)
'/,'/, :- c o n s i s t e n t (A, B) ,

•/,•/, ! , a d d _ t o _ n e t (A , B) .

d i r _ i n f l (A , B)
:- c o n s i s t e n t (A , B) ,

! , a d d _ t o _ n e t (A , B) .

d e l e t e _ i n f l u e n c e s ([] , _)
: - ! .

d e l e t e _ i n f l u e n c e s (_ , [])
: - ! .

d e l e t e _ i n f l u e n c e s ([A IL] ,B)
:- d e l e t e _ i n f l (A , B) ,

d e l e t e _ i n f l u e n c e s (L . B) .

d e l e t e _ i n f l u e n c e s (A , [B I L])
:- d e l e t e _ i n f l (A , B) ,

d e l e t e _ i n f l u e n c e s (A . L) .

d e l e t e . i n f 1 (A , B)
:- n o d e (A) ,

n o d e (B) ,
remove_from_net(A,B),
a s s e r t _ c h e c k (c h g d (B)) .

i n f l (A , " B) :-
i n f l (A . B) .

i n f l (A = _ , B) :-
i n f l (A . B) .

i n f l (A , B = _) :-
i n f l (A , B) .

i n f l (A . B) :-
c h i l d r e n (A , L) ,
member(B,L).

i n f l (A , B) :-
c h i l d r e n (A , L) ,
member(C,L),
i n f l (C , B) .

B. Source code to Inf luenc

i n f l u e n c e s (A , ~ B) :-
i n f l u e n c e s (A . B) .

i n f l u e n c e s (A = _ , B) :-
i n f l u e n c e s (A . B) .

i n f l u e n c e s (A , B = _) :-
i n f l u e n c e s (A , B) .

'///.influences (A ,B) :-
y.'/.childrenCA.L),
'/,7,member(B,L).

'///.influences(A,B) :- »
'///.children(A,L),
'///.member(C,L),
'///.influences(C,B).

i n f l u e n c e s (A . B)
s t _ i n f l (A , B) .

