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Abstract 

Decision making under uncertainty addresses the problem of deciding which ac­

tions to take in the world, when there is uncertainty about the state of the world, and 

uncertainty as to the outcome of these actions. A rational approach to making good 

choices is the principle of maximum expected utility: the decision maker should act 

so as to maximize the expected benefits of the possible outcomes. 

The "textbook" approaches to decision analysis typically make the assump­

tion that the computational costs involved are negligible. This assumption is not 

always appropriate. When computational costs cannot be ignored, a decision maker 

must be able to choose a trade-off between computational costs and object value. 

This thesis proposes an approach to decision making called information re­

finement. It is an iterative, heuristic process which a decision maker can use to build 

a policy. We present three algorithms which use information refinement to construct 

policies for decision problems expressed as influence diagrams. The algorithms are 

intended for situations in which computational costs are not negligible, and are de­

signed to give the decision maker control of the trade-off involved in the decision 

making process. 

The first algorithm is an anytime algorithm for single stage decision prob-
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lems. It constructs a policy by increasing the use of information available to the 

decision maker. The second algorithm applies the single stage algorithm to multi­

stage decision problems using a fixed allocation of computational resources. The 

third algorithm is an anytime algorithm for multi-stage decision problems. 

We show empirically that these algorithms are able to make decisions with 

high expected value with small computational costs. We provide empirically evi­

dence for our claims, by applying our algorithms to a large number of large decision 

problems. 
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Chapter 1 

Introduction 

Agents that act in uncertain environments must be able to make make good deci­

sions with limited computational resources. 

Bayesian decision theory addresses the concerns of making good decisions 

[43, 48]. In particular, decision making under uncertainty addresses the problem 

of deciding what actions to take in the world, when there is uncertainty about the 

state of the world, and uncertainty as to the outcome of these actions. Uncertainty 

is modelled with probability, and the preference among outcomes is modelled with 

utility. 

A common approach to making good choices is the principle of maximum 

expected utility: the decision maker should act so as to maximize the expected 

benefits of the possible outcomes. Expected utility is the sum of the utilities of 

the possible outcomes weighted by the probability of those outcomes. Maximizing 

expected utility means that choices are made so that, under the explicit uncertainty 

of the situation, the outcome will be as good as can be expected. 
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This principle is simply stated, although there is much to be said about the 

application of this principle. A decision problem can be posed as a decision tree 

[40], a Markov decision process [35], an influence diagram [21], or as a variant 

of these representations. The "textbook" approaches which apply the principle of 

maximum expected utility to problems in these representations typically make the 

assumption of negligible computational costs [35, 21, 45]. 

There is considerable interest in how the principle of maximum expected 

utility can be realized in practice [11, 41, 42, 18, 47], since the assumption of neg­

ligible, computational costs is not always appropriate. In domains such as medical 

informatics, decision problems may be so large that computing an optimal policy 

is not possible in practice. In these cases, sub-optimal policies might be computed 

off-line. In the domain of intelligent agent architectures, on-line decision making 

may require that the agent respond to a dynamic environment without allowing for 

time to compute an optimal policy. In this case, a sub-optimal policy may be able 

to serve the agent well. 

A key insight to the problem of accounting for computational costs is that 

any computation performed in the service of choosing an action can also be consid­

ered an action [18, 42]. Computational actions have costs associated with time and 

memory, and outcomes in terms of the results of the computation. Given the tools 

of decision theory, a decision maker might try to reason explicitly about the costs 

and benefits of particular methods applied to a particular problem. Seen in this way, 

any choice between alternate computations would be as much a candidate for the 

principle of maximum expected utility as the choice of action. 
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It might seem that the problem of infinite regress would prevent the principle 

of maximum expected utility from being used at the meta-level, since any compu­

tation performed in the service of determining which computational method to use 

to solve a problem is itself a decision problem. 

To unravel this situation, it is helpful to distinguish between these two types 

of action; an action in the world will be called an object level action; a computa­

tional action is at a different level, the meta-level. It is also helpful to distinguish 

between two types of value: the value of an action without considering the computa­

tional costs is the object value; the value of the action accounting for computational 

costs is the comprehensive value. 

Under the assumption of negligible computational costs, the expected com­

prehensive value is maximized when the expected object value is maximized. When 

this assumption is not appropriate, the cost of maximizing expected object value 

could be prohibitive. In this case, a better comprehensive value may be obtained 

from an algorithm which finds an action which does not maximize expected object 

value, but is available with a smaller computational cost. 

According to the principle of maximum expected utility, a decision maker 

would always compute so as to maximize comprehensive value. In theory, this 

means that the decision maker finds an optimal trade-off between computational 

costs and object value. In practice, this means that a decision maker must be able to 

choose a trade-off between computational costs and object value. The choice of a 

suitable trade-off is restricted by the repertoire of methods available to the decision 

maker. Horvitz [18] uses the term flexible to describe an algorithm which is able to 
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make a trade-off between computational costs and object value. 
One way to solve the decision maker's meta-level problem is to assess the 

expected comprehensive value of applying each of the available methods, and pro­
ceed to apply the method which has the best expectation. If the assessment process 
is itself computationally negligible, we need not consider the assessment itself in the 
comprehensive value. However, if the assessment process involves significant com­
putation, the assessment process could be modelled as a meta-decision problem. As 
long as this meta-decision problem is simpler than the original decision problem, 
the infinite regress problem, mentioned above, can be avoided. The regress will 
terminate at the level at which the assessment process is so small as to be a trivial 
computation. While this is an interesting and important aspect of meta-reasoning, 
this thesis does not solve the problem of assessing the comprehensive value of com­
putation. Our focus is on providing methods for solving decision problems. 

This thesis proposes and studies three algorithms designed to give the de­
cision maker control of the trade-off involved in the decision making process. We 
present an approach to decision making called information refinement. It is an itera­
tive, heuristic process which a decision maker can use to build a policy. We propose 
three algorithms which use information refinement for constructing policies for de­
cision problems expressed as influence diagrams. The algorithms are intended for 
situations in which computational costs are not negligible. 

Two of our algorithms are anytime algorithms [7], which construct poli­
cies iteratively, improving them as the algorithms proceed; at any time, the decision 
maker can interrupt the deliberation process and take action according to the current 
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policy. In this way, the decision maker has control over the deliberation process. 

The third algorithm gives the decision maker control by requiring an a priori alloca­

tion of resources; a policy will be constructed according to the allocation provided 

by the decision maker. 

We show that these algorithms are able to make decisions with reasonably 

high expected value with reasonably small computational costs. The algorithms 

have the property that the object value of the result increases as computational re­

sources are invested in the method. We provide empirical evidence for our claims, 

by applying our algorithms to a number of large decision problems. These prob­

lems are large enough that traditional methods are infeasible. In this way, we have 

increased the repertoire of methods available to a decision maker. 

1.1 Overview 

In this section, we demonstrate our approach with a simple decision problem. In this 

problem, a decision maker is trying to determine whether to bring an umbrella on 

an outing. The decision maker has heard the radio weather report, and has seen the 

current local weather state by looking out the window. The problem is that neither 

source of information is perfect; the radio report has limited predictive ability, and 

the local weather may not predict how the weather will turn over the course of 

the outing. If it rains, the decision maker would prefer to have the umbrella, and 

prevent getting wet. On the other hand, the decision maker may have a distaste for 

being seen with an umbrella on a sunny day. The problem facing our hypothetical 

decision maker is this: given the current state of information, should she bring the 
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umbrella? 

Bayesian decision theory's answer is that a rational decision maker should 

act so as to maximize expected utility. In order to see how this is done, we introduce 

the following notation. Let S be the set of possible states of "the world," and O be 

the set of possible observations which can be made about the world. Let D be 

the set of choices available to the decision maker. Uncertainty about the states of 

the world are modelled with the probability distribution P(S). The uncertainty in 

the observations about the world can be modelled with the conditional probability 

distribution P(0\S), which says how likely it is to make a particular observation 

given that the world is in a certain state. The decision maker's preferences depend 

on the state of the world, and the action chosen; these preferences can be modelled 

with a utility function u(D, S), which maps all pairs of state and action to a real 

number. 

The problem is to choose a policy, which tells the decision maker how to act 

for every possible observation. Each policy S : O —» D has an expected value Eg, 

which is defined as follows: 

Es= YI u{5{o),s)P(0 = o\S = s)P{S = s) 

s6s,oeO 

The principle of maximum expected utility, applied without consideration of the 

cost of computation, states that the decision maker should choose the policy S* 

which maximizes Eg. 

In our example, the world states might be modelled with the two possibili­

ties, rain and sunshine. The possible observations come from the possible weather 

reports, and the possible ways the local weather could be described. Let us repre-
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sent the possible radio reports as one of sunny, cloudy or rainy, and for simplicity, 

we use the same three descriptions for the decision maker's observation of the lo­

cal weather. The possible observations are the set of combinations of these two 

sources. The decision maker must decide to take the umbrella or leave it at home. 

Finally, we suppose that the decision maker prefers to use an umbrella if necessary, 

but prefers not to carry the umbrella if it is sunny; if the decision maker gets wet 

because the umbrella is at home, it's very bad, and it's almost as bad if someone 

sees him carrying an umbrella on a sunny day. For brevity, we leave the probability 

distributions and the utility function unspecified.1 

Our decision maker can solve his problem by finding a policy, which tells 

him what to do for any observation. One way to find a policy is to enumerate the 

possible observations, and choose the best action for each. For our simple problem 

there are nine different observations which could be made. For each observation, 

and for each state of the world, and for each possible action, the decision maker 

could ask how likely the world would be in state S — s given the observation that 

0 = o, and determine the value of taking action D = d in state S = s. For a human 

decision maker, working with pencil and paper, this is not a trivial calculation, 

though for a properly programmed computer it is quite simple. 

The last wrinkle we throw into our problem is to suppose that the decision 

maker is under some time pressure: the decision maker intends to catch a bus which 

should arrive at the bus stop "shortly." Suppose that there will not be enough time 

find the optimal policy, and still catch the bus. 

'We return to this example in Chapter 2, with slightly different notation. The probabilities and 
utilities are fully specified there. 
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Our approach to solving this problem is to construct a policy iteratively. We 

first consider the best course of action without using any of the observations. In our 

example, the decision maker may decide that, based on the preferences and proba­

bilities, that rain is likely enough to warrant bringing an umbrella. If there is still 

time, this policy could be refined by choosing one of the possible observations, and 

using this piece of information to decide what to do. In our example, the decision 

maker may have time to consider how his action would change based on what was 

heard on the radio weather report. For example, if the radio says sunny, leave the 

umbrella at home; if the radio says cloudy or rainy, take the umbrella, as previously 

decided. At this point, the decision maker can be interrupted (by the need to catch 

the bus), and can take the action appropriate to his state of information. 

1.2 Outline 

We begin in Chapter 2 by presenting the background work upon which our work 

is based: influence diagrams, which are used as a representation for general class 

of decision problems; Bayesian networks, which are used in our implementation 

for computation of expected value and posterior probabilities; and decision trees, 

which are used to represent decision functions, mapping observation to action. 

Chapter 3 introduces information refinement in single stage decision prob­

lems. The core algorithm and representation are introduced, and several examples 

are given. We show that the algorithm converges to the optimal policy, and that 

convergence in single stage problems is asymptotically equivalent to current algo­

rithms which determine the optimal policy. The need for heuristics in the algo-
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rithm is presented, and several heuristics are presented and discussed. We apply 

the algorithm to a large number of single stage decision problems, to demonstrate 

the general behaviour of the heuristics. Our claim is that information refinement 

can construct non-optimal policies which are valuable to the decision maker, when 

computational costs are not negligible. To support this claim, we show empirically 

that for a range of computational resource expenditures, the information refinement 

approach provides more valuable policies than methods which construct optimal 

policies by exhaustive enumeration of the information space. 

Chapter 4 extends the information refinement approach to multi-stage prob­

lems. We present two algorithms, both of which are based on the single stage 

algorithm presented in Chapter 3. The first algorithm applies the single stage algo­

rithm to the stages of the multi-stage decision problem in the traditional dynamic 

programming sequence. It is a "contract" algorithm, which computes a policy for 

a given allocation of computational resources. The issue of determining a suitable 

allocation of resources is discussed. 

The second algorithm has the "anytime" property, namely that it maintains a 

current best policy throughout its execution, and expends computational resources 

to improve the policy. It applies the core of the the single stage algorithm to the 

stages in the multi-stage decision problem in any order; the actual ordering is ac­

cording to a heuristic measure of increase in expected value. The anytime algorithm 

makes use of an additional level of heuristic guidance. The behaviour of the algo­

rithms under various heuristics is demonstrated. 

These two algorithms are shown to converge to the optimal policy in a finite 
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number of steps. The time complexity of the contract algorithm is asymptotically 
equivalent to traditional dynamic programming algorithms; the anytime algorithm 
is asymptotically worse (by an exponential factor) than traditional dynamic pro­
gramming algorithms. The claim for both algorithms is that they provide valuable 
policies for multi-stage decision problems using a fraction of the resources required 
to determine the optimal policy. To support this claim, we apply the algorithms to a 
number of large decision problems (the information space of these problems is on 
the order of 2 6 0 states), and show that for a wide range of computational resource 
expenditures, the sub-optimal policies constructed using the information refinement 
approach are more valuable than any policy (or fraction thereof) constructed using 
exhaustive enumeration of the information space and dynamic programming. 

We summarize our contribution in Chapter 5 and outline the future directions 
of this research. 
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Chapter 2 

Background and Related Work 

We present Bayesian networks [32] as a representation of probabilistic knowledge, 

and as a basis for computation of posterior probabilities. Thereafter, we will discuss 

influence diagrams [21], which augment Bayesian networks with actions and pref­

erences. As well, much of the numerical computation that we require in decision 

making is performed using Bayesian network techniques. We follow this discus­

sion by a section covering the basics of decision tree learning, on which we base 

our iterative solution of decision problems. 

2.1 Bayesian networks 

A Bayesian network [32] represents a joint probability distribution as a directed 

acyclic graph (DAG). The nodes in the D A G represent random variables, which 

we assume have a finite number of discrete values. We denote random variables 

using upper case letters (e.g., X, Y, Z) or capitalized words (e.g., Alarm). For any 
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Figure 2.1: A simple Bayesian network. 

random variable X, we denote the set of its values using Q.x; a particular value 

from this set is denoted using lower case, e.g., Qx = {^0,^1,^2, • • • ,Xk}> e-g-> 

Q Alarm = {on,OjJ}. 

An arc from X to Y indicates that, in the model, X is considered to be a 

direct influence on Y. The parents for a node X is the set of direct predecessors of 

X in the DAG, denoted Ux. A node X and all of its parents Tlx is called a family; 

each family has an associated conditional probability distribution which quantifies 

the effects of the parents on the child node: P(X| iTx)- If X has no parents in the 

Bayesian network, P(X\UX) = P{X). 

The joint probability distribution of all the random variables assessed in the 

domain can be represented by a Bayesian network, and is factored as follows: 

P(X1,...,Xn) = f[P(Xi\UXi) 

1=1 

Each factor in the product corresponds to a family in the network: the conditional 

probability of a node given all its direct predecessors. 
Figure 2.1 shows a simple example of a Bayesian network. The factorization 
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for this example is as follows: 

P(A,B,C,D,E) = P(A)P(B\A)P(C\A)P(D\BC)P(E\C) 

This representation is valuable for two reasons. First, domain knowledge can 

be described in a highly modular fashion. Second, the resulting graph structure can 

be used as a computational engine for computing posterior probabilities far more 

efficiently than the naive use of the joint probability distribution. 

A Bayesian network encodes conditional independence: a node is indepen­

dent of its non-descendants given an assignment of values to its parents. A Bayesian 

network also allows computation of conditional independence between any two sets 

of nodes, by graphical analysis called d-separation, rather than by numeric compu­

tation [32]. 

2.1.1 Inference using Bayesian networks 

Bayesian networks are used to compute posterior probabilities, i.e., beliefs after all 

available evidence has been taken into account. This section outlines some infer­

ence procedures for computing posterior probabilities. Our discussion focusses on 

the use of so-called "clique-tree propagation" methods, because we use them to 

compute posterior probabilities and expected utilities during decision making. In 

principle, any of the methods described below could have been used in our algo­

rithms. 

The problem of computing posterior probabilities, exactly or approximately, 

in Bayesian networks is NP-hard in general [5, 6], but in many cases the domain 

knowledge can be structured or simplified so that computation is feasible. 
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Kim and Pearl [24, 32] developed a polynomial algorithm for computing 

posterior probabilities for a special class of Bayesian network, known as polytrees. 

A poly tree is a Bayesian network in which there is at most one undirected path be­

tween any two nodes. The algorithm works by message passing, each node passing 

probabilistic information it knows about evidence to any of its children and parents 

who have not already been informed. The polytree structure allows the evidence to 

be separated, and guarantees that a node does not receive multiple messages about 

a single piece of evidence. The complexity of the polytree algorithm is polynomial 

in the number of nodes in the network. 

For networks which are not polytrees, several exact techniques exist, al­

though in the worst case the problem is intractable. One method, called "cutset 

conditioning," decouples the general graph by finding a subset of nodes which, 

when their values are fixed, effectively creates a polytree [31]. The polytree al­

gorithm of Kim and Pearl can proceed on the decoupled network, once for each 

combination of values in the cutset; the results are combined, weighted by the joint 

probability of the cutset. The drawback to this method is that finding a small cutset 

is crucial; finding the smallest cutset is NP-hard, and even with a small cutset, the 

technique is prone to combinatorial explosion. 

Another technique for general DAGs precompiles a network into a sec­

ondary poly tree-like structure called a join tree. Several variations on this technique 

exist, and are based on the idea of clustering the nodes of the original DAG. A node 

in the D A G must appear in at least one cluster, and furthermore, it must appear in 

a cluster with all of its parents; the conditional probability distribution of a node 
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given its parents is placed in one of the clusters in which the node and its parents 

appear. The clusters are connected with undirected arcs such that there is only one 

path between any two clusters, and if a node from the D A G appears in two clusters, 

it must also appear in all the clusters on the path between the two. 

There are several techniques for computing a join tree from a Bayesian net­

work, the details of which can be found in [31, 25, 23, 46]. Computing an optimal 

join tree is an NP-complete problem, so heuristics are used to find good join trees. 

The cost of computing the join tree is amortized over the use of the network. For 

example, a Bayesian network representing diagnostic medical knowledge (e.g. [13]) 

can be compiled once and used thereafter for arbitrary consultations. 

The resulting join tree can be used to compute posterior probabilities us­

ing a variant of the polytree algorithm called "clique-tree propagation" [25, 23]. 

Each cluster in the join tree has a "potential function," which is a function of the 

variables in the cluster. The conditional probability table for a random variable in 

the Bayesian network is assigned to exactly one of the clusters in which the vari­

able appears. The potential function is initialized to the product of the conditional 

probability tables which appear in the cluster. 

Evidence is expressed as "likelihood functions" which describe the likeli­

hood of the evidence. When evidence is observed, a likelihood function is assigned 

to a cluster, and the potential of this cluster is revised by multiplying the likelihood 

function with the previous potential function. Typically, evidence is certain, and the 

likelihood function assigned to a cluster reduces the dimensionality of the potential 

by asserting that a value is known with certainty. 
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Evidence may affect variables outside the cluster; the propagation of evi­

dence to the rest of the join tree is performed by message passing. A message is 

passed from one cluster to an adjacent cluster; the message has the dimensions of 

the variables which are common to the two clusters. These messages represent the 

effect of evidence on the common variables, and are computed by marginalizing or 

"summing out" all the variables which are not dimensions of the message. When a 

cluster receives a message from its neighbour, it builds a new potential by taking the 

product of the message and its previous potential. The resulting potential represents 

the joint probability distribution of the variables in the cluster, given the evidence 

seen from all messages. The tree structure representation allows a cluster to send a 

message along any edge from which it did not receive a message. 

There are two ways to propagate the effects of evidence throughout the join 

tree. The first is called "DistributeEvidence," which sends the effects of observed 

evidence from a particular cluster to the remaining clusters. The process is started 

by a cluster containing evidence, which sends a message to each of its neighbour­

ing clusters. The process continues as clusters that have received a message send 

messages along edges from which it did not receive a message. The process ends 

when messages reach the leaves of the join tree. 

The second method is called "CollectEvidence," which gathers messages 

from all clusters. Clusters with only one edge start the process by sending messages 

along that edge; the remaining clusters propagate the messages to its neighbours 

from which it did not receive a message. The collecting cluster does not send out 

any messages; its potential is the product of its original potential, and the effects of 
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all evidence observed, i.e., it represents the joint distribution of the variables in the 

cluster and the evidence observed throughout the network. 

The complexity of computing posterior probabilities in a join tree depends 

on the size of the largest cluster i.e., the product of the number of values of each 

node in the cluster; for sparse networks, the number of nodes in a cluster will be 

small enough to make computations in join trees very effective. 

Clique-tree propagation has a very useful property which we exploit. For a 

fixed collection of evidence, the posterior probability for all nodes in the network 

can be computed once the evidence has been distributed to all the clusters in the 

cluster tree. 

A Bayesian network can be used to structure query-based computations of 

posterior probability [27, 52, 53]. For any given query, the posterior probability can 

be computed by marginalization, i.e., summing out the random variables not men­

tioned in the query. The remaining nodes are structured by the Bayesian network's 

factorization of the joint probability distribution, and the query can be computed 

by taking their product. This general technique depends highly on the elimination 

ordering; an effective ordering minimizes the number of summations and multipli­

cations in the process. 

Because the problem of computing posterior probabilities in Bayesian net­

works is NP-hard in general, approximation techniques have been developed. Ap­

proximating posterior probabilities to within a given error bound has also been 

shown to be an NP-hard problem [6]. Approximation schemes include those based 

on stochastic simulation [14, 4] and those based on search [34]. 
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2.2 Influence Diagrams 

An influence diagram (ID) is a directed acyclic graph representing a sequential de­

cision problem under uncertainty [21]. An ID models the subjective beliefs, pref­

erences, and available actions from the perspective of a single decision maker. An 

influence diagram augments the Bayesian network representation with the ability to 

represent events which the decision maker can control (decision nodes) and nodes 

which represent the decision maker's preferences (value nodes). 

Nodes in an ID are of three types. Circle shaped chance nodes represent 

random variables, i.e., events which the decision maker cannot control. Square 

shaped decision nodes represent decisions, i.e., sets of mutually exclusive actions 

which the decision maker can take. The diamond shaped value node represents the 

decision maker's preferences. See Figure 2.2. 

Arcs represent dependencies. Arcs into chance nodes represent probabilistic 

dependency. As in a Bayesian network, a chance node is conditionally independent 

of its non-descendants given its parents. There is a conditional probability distribu­

tion associated with every chance node, quantifying the probabilistic dependency 

of the child on the parent nodes. If a chance node has no parents, the probability 

distribution is unconditional. 

An arc into a decision node represents an information dependency. A deci­

sion maker will observe a value for each of a decision node's direct predecessors 

before an action must be taken. Therefore, the parents of a decision node are called 

information predecessors; they can be either chance nodes or decision nodes. 

The decision maker's preferences are expressed as a function of the value 
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Figure 2.2: The extended weather decision problem. 
This simple influence diagram describes the problem in which a decision maker 
must choose whether to bring an umbrella, based on information gained from lis­
tening to the radio and looking out the window. Only the dependency information is 
shown. The state space for the events, the conditional probabilities, and the value 
function are given in Table 2.1. 
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node's parents. Arcs into the value node represent functional dependency. 

The notation for random variables presented in the previous section w i l l be 

used for influence diagrams as well. The set of parents of a decision node D is 

denoted UD, and these w i l l be called information predecessors. The set Q,D is the 

set of available actions represented by the decision node D. The set fluD is the set 

of all possible combinations of values for decision node D 's direct predecessors. 

A n element in this set w i l l be called an information state for D. Value nodes take 

real (3?) values, and often we w i l l normalize these values to [0,1] or [0,100]. 

The conditional probability tables and the value function contain numerical 

information which represents the knowledge of the decision maker. In general, 

when posing a decision problem, this knowledge must be elicited from the decision 

maker, and it can be a painstaking process. For our examples, we w i l l present 

the numerical information as i f the elicitation process had already been completed 

beforehand. 

For example, Figure 2.2 shows a simple influence diagram, (Table 2.1 con­

tains the numerical information for this example). The ID represents the informa­

tion relevant to a hypothetical decision maker, whose problem is to decide whether 

to take an umbrella on an outing. The goal is to maximize the decision maker's ex­

pected Satisfaction, which depends on the Weather and decision maker's decision 

to Take Umbrella? The decision maker can choose to Bring Umbrella, or Leave 

Umbrella. 

The decision maker has two sources of information: a Radio Weather Re­

port, and the View From Window. These events are explicitly assumed to be inde-
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pendent given the weather, and both have three possible outcomes: sunny, cloudy, 

and rainy. The Weather is also an event, but it is not directly observable at the time 

an action must be taken; it has two states: sunshine and rain. 

The three chance nodes, and the arcs between them form a small Bayesian 

network. To complete the specification of the problem, conditional probability ta­

bles of the form P(Weather), P(Radio WeatherReport\Weather), and 

P'(View From Window\Weather) are needed. These probabilities represent the de­

cision maker's subjective assessment of the child's probabilistic dependence on its 

parents. For example, suppose the decision maker believes that sunshine is quite 

likely (probability 0.7), whereas rain is unlikely (probability 0.3). Also, suppose 

the decision maker believes that the radio weather report will likely predict sunny 

weather on a day which will turn out to be sunny, but may also predict cloudy or 

rainy weather. See Table 2.1. 

The value function, Satisfaction(Weather, Take Umbrella), is an assessment 

of the decision maker's preference. This numerical data is listed in Table 2.1. This 

table supposes that the decision maker prefers to be without the umbrella on a sunny 

day, but prefers to have the umbrella if it is raining. In this example the value func­

tion is expressed so that high values are preferred to low values. A l l the examples 

in this thesis will follow this convention. 

A policy prescribes an action (or sequence of actions, if there are several 

decision nodes) for each possible combination of outcomes of the information pre­

decessors. One of the possible policies for the above example directs the decision 

maker to take an umbrella, regardless of what the radio or the view from the window 
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P (Weather) 
sunshine rain 

0.700 0.300 

P( Radio Weather Report | Weather) P(ViewFromWindow| Weather) 
sunny cloudy rainy Weather 
0.700 0.200 0.100 
0.150 0.250 0.600 

Sunshine 
Rain 

sunny cloudy rainy Weather 
0.800 0.150 0.050 
0.100 0.150 0.750 

Sunshine 
Rain 

Satisfaction 
Weather Take Umbrella 

20.000 
100.000 
70.000 
0.000 

sunshine take it 
sunshine leave at home 

rain take it 
rain leave at home 

Table 2.1: Numerical data for the extended weather problem. 
This data completes the specification of the influence diagram in Figure 2.2. The 
conditional probability tables for the chance nodes in the influence diagram are 
listed, as well as the value function for the decision maker's satisfaction. 
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may indicate. An optimal policy is a policy which maximizes the decision maker's 

expected value, without regard to the cost of finding such a policy. 

The goal of maximizing the decision maker's expected Satisfaction can be 

achieved by finding an optimal policy, if computational costs are assumed to be 

negligible. If computational costs are not negligible, the decision maker may be 

better off with a policy which is not optimal in the above sense. 

A decision function for D is a mapping 5 : Qud —>• A policy for an 

influence diagram is a set A = i = 1 . . . k} of decision functions, one for each 

of the decision nodes di, i — 1 . . . k. 

An influence diagram is oriented if it has a value node; an oriented influence 

diagram indicates how the outcomes and choices are relevant to the decision maker. 

An influence diagram is regular if the value node has no successors and if there is 

a directed path containing all of the decision nodes. The directed path in a regular 

influence diagram indicates a temporal ordering. A regular influence diagram with 

k decision nodes is said to have k stages. An action taken at the ith stage, i.e., the ith 

decision node, occurs after all the actions at decision nodes which precede it, and 

before all actions at stages after it. An influence diagram is called "no-forgetting" 

if a decision node Di and all its parents are also parents of all decision nodes 

later in the sequence. The "no-forgetting" property implies that a decision maker 

can always remember the actions and information of the preceding stages. 
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2.2.1 Making decisions with influence diagrams 

An influence diagram represents a decision problem. Decision making is a deliber­

ative process, the result of which is a policy, mapping information states to actions. 

The decision maker executes the policy by observing the actual state of the informa­

tion predecessors, and taking the action dictated by the policy for this information 

state. As the decision maker moves forward during execution, the decision maker's 

history of observations and actions increases linearly with the number of actions 

taken. Thus, the assumption that a decision maker will not forget its own history is 

reasonable for small finite stage decision problems. 

Given an influence diagram, a policy can in principle be constructed by 

choosing a sequence of actions for each information state. For a decision node 

with k binary information predecessors, the number of information states for the 

decision node is 0(2h). The number of decision functions for a binary decision 

node with k predecessors is therefore 0(2 2*). 

Enumerating the possible policies is only feasible for very small problems. 

More efficient techniques are used to construct policies by enumerating the infor­

mation space, i.e., enumerating the possible histories of the agent. The information 

space is smaller than the space of possible policies, but it can still be quite large; 

if the k predecessors of the last decision node have b values each, then information 

space has bk states. 

A number of algorithms have been developed which are based on the idea 

of dynamic programming. The basic approach is presented first, followed by a 

brief account of some specific algorithms. Our presentation is based on [36], Chap-
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ter 7, This review has several purposes. It emphasizes the inductive nature of the 
approach, which constructs an optimal policy starting at the end of the decision 
sequence. As well, it demonstrates the importance of expected value during the 
computation of an optimal policy. In particular, we point out that expected value is 
denned in the dynamic programming approach because the information states are 
enumerated exhaustively. In the information refinement approach to policy con­
struction, we take special steps to define expected value for incomplete contexts 
(Chapter 4). 

The dynamic programming approach computes an optimal policy in stages. 
We define inductively the function vk, which measures the expected value of acting 
according to the optimal policy starting from stage k. 

We start with the base case of the induction. The value function for value 
node V is v : Onv —> 3?- We define vn+i = v to be a synonym for the value 
function. 

For the kth stage of the decision problem, the dynamic programming ap­
proach has constructed an optimal policy, denoted A£ + 1 = {°~k+i> • • • > S*}, for de­
cision nodes Dk+i,..., Dn. 

Let E[vk\d, w] represent the expected value of taking an action d G Qok at 
stage k in context w G ^nDk > followed by acting according to the optimal policy 
A£ + 1 for the remaining execution steps: 

E[vk\d,w]= 2 vk+l(x)P(x\d,w) 

The inductive step at this stage is to use this policy to determine a decision 

function 6k for decision node Dk. A case analysis of the information space for Dk 
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is performed such that, for every w € QnD the decision maker determines 

Sk(w) = arg max E[vk\d, w] 

The case analysis is performed to determine 5k because the optimal policy is not 

yet known for the decision nodes Di,..., Dk_i\ the case analysis examines all the 

possible sequences of action before stage k. 

The value of following this policy starting in an information state w e &nDk 

at stage k is given by the value function vk : &nDk —> 5ft-

vk(w) = E[vk\w,5*k(w)} 

Example: The Car Buyer 

The Car Buyer problem is a well known example from the literature [20, 36, 37] 

which we use to illustrate the techniques of this chapter. 

The influence diagram in Figure 2.3 represents the knowledge relevant to a 

decision maker deciding whether or not to buy a particular used car. 

The actual condition of the car is not observable directly at the time the de­

cision maker must act, but will influence the final value of the possible transaction. 

The car could be a "lemon" (a bad purchase) or a "peach" (a good purchase). A 

"lemon" is defined as a car with 6 defective subsystems, and a "peach" has only 

one defective subsystem. The decision maker's model of the car counts 10 subsys­

tems in total. The decision maker's prior beliefs about the car indicate that the car 

is probably a peach (with probability 0.8), but could be a lemon (with probability 

0.2). It will cost the decision maker $40 to make a "peach" road-worthy, but $200 

to repair a "lemon". 

26 



Buy 
Car? 

Figure 2.3: The Car Buyer influence diagram. 
The decision maker must decide to buy a particular car or not, based on the infor­
mation gathered in optional tests. 

The car's condition is modelled by a chance node, labelled Car Condition in 

the influence diagram. Its two values are peach and lemon. 

The decision maker has the option of performing a number of tests to various 

components of the car, and the results of these tests will provide information to the 

decision to buy the car. There are three test options available: check the steering 

subsystem alone, at a cost of $9; test both the fuel and the electrical subsystems, at 

a cost of $13; perform a two test sequence, starting with the transmission, at a cost 

of $10, then optionally, testing the differential, at an additional cost of $4. 

These tests are modelled in the influence diagram by a two decision node se­

quence. The first decision node is labelled Test 1, and its values are no test, steering, 

fuel and electrical system, and transmission. The second decision node completes 

the optional two test sequence of checking the transmission and differential; it is 
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labelled Test 2, and has values no test and differential. 

The test results are modelled using chance nodes which count the number 

of defects found in the test. The node Results from First Test has values no results, 

no defects, one defect, two defects. The tests are guaranteed to find a defect in a 

tested subsystem if the subsystem is actually defective. If no test were performed, 

no results are available; otherwise, the test could find no defects, or up to 2 defects. 

The Results from Test 2 are only available if the decision maker performed the 

first test on the transmission, and decided to follow through with the test on the 

differential. 

The third decision node, labelled Buy Car represents the options available 

to the decision maker with respect to purchasing the car. The decision maker can 

decide not to buy it, to purchase the car at the price of $1000, or to purchase the 

car at the higher price of $1060 which includes a guarantee that the dealer will pay 

the full repair cost if the car is a "lemon." Before making the decision to buy, the 

decision maker has all the test and result information available. 

The value function for this problem is an account of the dollar costs involved. 

The dealer's price for the car is $1000, and the blue-book price of the car is $1100; 

so the car is a good value if it is not a lemon. The tests are available at the indicated 

costs, so the decision nodes representing the tests are connected to the value node. 

A policy for this problem would indicate which tests to do under which 

circumstances, as well as a prescription to buy the car (or not) given the results of 

the tests. This problem is well known for its asymmetry; some combinations of 

tests and results are logical impossibilities. The conditional probability tables for 
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this problem can be found in Table 2.2. 
The exhaustive enumeration method reviewed in this section performs the 

following steps. We start with the last decision node, Buy Car. It has 3 actions, and 
4 informational predecessors, which combine to form an information space with 96 
states. For each information state, the process finds the optimal action by computing 
the expected value for all actions in the given state. Since the car's condition is not 
observable directly, the best action is based on the expectation of the car's condition. 
For each tuple (t\, r\, t2, r2) G finB 

h(ti,ri,t2,r2) = argmax ̂  v(t1,t2,b,c)P(c\r1,r2) 

where v represents the value function at the value node. In this notation, we have 
abbreviated the node labels using the initial letter, e.g., the node labelled Buy Car 

is denoted B, and b is a variable which is constrained to the set 0B; e.g., the first 
test is denoted T\, and t\ is a variable which is constrained to the set Q,T2 etc.. The 
expected value of starting in a given state (h,ri, t2,r2) and following the 53 is given 
by: 

V3(ti,ri,t2,r2) = YI v(ti,t2,S3(turi,t2,r2),c)P(c\r1,r2) 
cenc 

The decision node Test 2 has two actions, and 2 information predecessors; 
the information space has a total of 16 states. For each information state, the deci­
sion maker computes the expected value of all choices for this test, given the state. 
The expected value is computed assuming that the decision maker will follow the 
decision function S3. For each tuple (ti, r{) G O n T 2 

52(£i,ri) = arg max YI v3(h, ru t2, r2)P(r2|ti, rx, t2) 
t 2 e n T * r2enR2 
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P (CarCondition) 
peach lemon 

0.8 0.2 

P (Result 11 Test 1, CarCondition) 
no result zero one two Test 1 Car Condition 

1.0 0 0 0 no test all 
0 0.9 0.1 0 steering peach 
0 0.4 0.6 0 steering lemon 
0 0.8 0.2 0 fuel and elect. peach 
0 0.13 0.53 0.33 fuel and elect. lemon 

P(R2 Testl, Result 1, Test2, CarCondition) 
no result zero one Test 1 Result 1 Test 2 Car Condition 

1.0 0 0 no test all all all 
1.0 0 0 steering all all all 
1.0 0 0 fuel and elect. all all all 
1.0 0 0 transmission no result all all 
0 0.89 0.11 transmission zero differential peach 
0 0.67 0.33 transmission zero differential lemon 
0 1.0 0 transmission one differential peach 
0 0.44 0.56 transmission one differential lemon 

1.0 0 0 transmission two all all 

Table 2.2: Conditional probability tables for the Car Buyer problem. 
Because many of the entries in the tables are zero, not all of them are explicitly 
listed. The label "all" indicates that the probability distribution applies for all 
values of a random variable. 
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The expected value of starting in a given state (t\, ri) and following <52 and S3 is 

given by 

V2(h,r1)= W3(*i,r 1 ,<J2(*i,ri),r2)P(r2|ti,ri,<y 2(*i,n)) 

Finally, the last decision node has no predecessors; the optimal action at this 

stage is given by 

£ 1 = arg max Y] v2(ti,r1)P(ri\t1) 

The expected value of following the policy {61,82,83} is given by 

vi= £ v2(S1,r1)P(rl\S1) 

Algorithms for computing optimal policies 

The basic dynamic programming approach is employed in several algorithms. The 

original technique converts an ID to a symmetric decision tree [21]. A decision 

tree is a structure which explicitly represents all the combinations of action and 

outcome. The root node of a decision tree is the first decision, and a path from the 

root to a leaf in the tree identifies a sequence of actions to be taken, and a possible 

state that the decision maker might face. Each action is the root of a subtree which 

identifies the possible outcomes for that action, and the leaves of the tree identify the 

decision-maker's preference function for that state. The decision tree can be used 

to compute the optimal policy by folding back the value of the leaf state, weighted 

by the probability of that state occurring. A policy is created by selecting the action 

which leads to the highest expected value of the possible outcomes. 

Shachter [45] describes an algorithm which applies the dynamic program­

ming approach directly to the influence diagram. This algorithm works backwards 

31 



from the last decision, computing the optimal choice for each informational state by 
selecting the action which maximizes the expected value for the information state. 
This is accomplished by a sequence of value preserving reductions on the graph. 

An influence diagram can be converted into a Bayesian network [44, 22], 
and an optimal policy can be constructed by computing posterior probabilities in 
the network. One of the advantages to this technique is that the computation of pos­
terior probabilities can be done using efficient algorithms developed for Bayesian 
networks. 

In the transformation proposed by Shachter and Peot [44], the value node V 

is converted to a binary chance node with values {true, false}. To avoid ambiguity, 
the chance node derived from the value node in the influence diagram will be called 
the value/chance node in the Bayesian network. The parents of the value node are 
parents of the value/chance node. The value function v : flnv —>• is normalized 
to [0,1] and these normalized values are used as the probability distribution for the 
value/chance node, i.e., for each w € flnv, P(V = true\w) oc v(w). A decision 
node in the influence diagram is converted to a chance node with a uniform prob­
ability distribution over its possible values for all its direct predecessors. Chance 
nodes in the influence diagram are not changed. This transformation results in a 
Bayesian network whose probability model represents the expected object value of 
the decision maker's initial policy of acting randomly with uniform probability over 
its actions. 

Figure 2.4 shows a graphical example of the conversion. The conditional 
probabilities for the chance nodes Take Umbrella and Satisfaction are shown in 
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Figure 2.4: The transformation of an influence diagram. 
(a) The Extended Weather Problem influence diagram, and (b) a Bayesian network 
used to compute expected value. The decision node and the value node are con­
verted to chance nodes. 

Table 2.3 (the distributions for the remaining chance nodes are unchanged from 
Table 2.1). 

Shachter and Peot [44] show that, in general, the best action d* G £ID for 
a given information state w G Q.uD can be found by choosing the action d G £ID 

which maximizes P(d, w\V = true). The normalized expected value of taking 
action d G 0,D in information state w G fluD is given by P ( V = true\d, w): 

E[v\d,w] = v(d,u)P(u\d,w) 

oc Y, P{V = true\d,u)P(u\d,w) 

= P(V = true\d,w) 

where v(d, u) is the value function at the value node. The optimal action in a given 
context maximizes P(d |V = true, w). By Bayes' rule, we have: 

a.vg max E[v\d,w] = arg max P ( V = true\d, w) 
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P(TakeUmbrella|RadioWeatherReport, ViewfromWindow) 
Take It Leave At Home Radio Weather Report View from Window 

0.5 0.5 sunny sunny 
0.5 0.5 sunny cloudy 
0.5 0.5 sunny rainy 
0.5 0.5 cloudy sunny 
0.5 0.5 cloudy cloudy 
0.5 0.5 cloudy rainy 
0.5 0.5 rainy sunny 
0.5 0.5 rainy cloudy 
0.5 0.5 rainy rainy 

P (Satisfaction | Weather, TakeUmbrella) 
True False Weather Take Umbrella 
0.2 0.8 
1.0 0.0 
0.7 0.3 
0.0 1.0 

Sunshine Take It 
Sunshine Leave At Home 

Rain Take It 
Rain Leave At Home 

Table 2.3: Data for the Bayesian network in Figure 2.4b. 
In the transformation of the influence diagram, the value node Satisfaction is con­
verted to a binary chance node; its conditional probabilities are the normalized 
values. The decision node, Take Umbrella is converted to a chance node, and given 
a uniform conditional probability table. The conditional probability distributions 
for the remaining chance nodes are found in Table 2.1. 
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P(d|V = true,w)P(V = truelw) 
arg max — — — r 

&denD P(d\w) 

arg max Pfrfl V = true, w) 

The equality holds since P(d\w) is a uniform distribution, and does not affect the 
maximum; as well, P(V = true\w) is a constant. This result justifies the use of a 
Bayesian network, transformed from an influence diagram as described above, to 
compute expected value. 

Both of these quantities can be computed in a Bayesian network transformed 
from an influence diagram as described above. For example, the Bayesian net­
work can be compiled into a join tree, which can compute posterior probabilities 
efficiently, using DistributeEvidence and CollectEvidence operations [23]. As de­
scribed in Section 2.1, once evidence has been distributed throughout the network, 
the posterior probability of any chance node (given the evidence) in the network 
can be ascertained without additional cost. 

Each query for posterior probability is potentially expensive, since compu­
tation in Bayesian networks is NP-hard [5,6]. However, any method for computing 
expected value in an influence diagram is going to incur similar costs. 

Using this transformation, a decision problem can be solved by a series of 
computations in the Bayesian network. Starting with the last decision node, Dk, the 
process establishes an optimal decision function by making the query P(Dk\V = 

true, w) for each w G ̂ nDfc; this query returns a probability distribution over the 
possible actions in O^. The best action for each w maximizes this distribution, 
as shown above. The optimal decision function for the decision node is then in-
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P(D = d\w) = I 

stalled into the Bayesian network, by setting the conditional probability table of the 

decision node to: 
( 

1.0 xid = argmaxdgf^ P(d |V = true, w) 

0.0 otherwise 

This process is iterated over all the decision nodes in reverse time order: D f c , . . . , D\. 

The number of queries required depends on the number of direct predeces­

sors of the decision nodes. If the decision node has k direct predecessors, and each 

one has b values, there are bk information states. Therefore, the number of queries 

needed to find an optimal decision function for a decision node is bk. Under the as­

sumption of no-forgetting, k increases at least linearly with the number of decision 

nodes. 

The clique-tree propagation techniques, used to compute posterior probabil­

ities in Bayesian networks, can be augmented by a maximization operation [44,22]. 

The influence diagram is converted to a join tree; the potential functions for a clus­

ter are as for Bayesian networks: the products of the conditional probability tables 

assigned to a cluster. The decision nodes do not have probability distributions, 

so their appearance in a cluster does not affect the initial potential for the cluster. 

When a message needs to be sent to an adjacent cluster, the maximization operation 

can be used to remove a decision node from the message, just as the "summing 

out" operation removes a chance node from the message. With this operation, a 

single "CollectEvidence" phase can compute an optimal policy with a single pass 

through the network [44, 22]. This pass examines the entire information space, as 

determined by the decision nodes' direct predecessors. However, the computations 

of expected value and posterior probability are computed more efficiently than by 
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issuing queries. 

2.3 Decision Trees 

A decision tree is a representation for discrete functions. Decision trees are used in 
many ways: as the representation of a classification function in machine learning; 
as a representation of a decision problem in decision analysis. 

Decision trees can be used to represent functions extensionally. Specific 
classes of discrete functions can be represented extremely succinctly using decision 
trees, and many functions can be approximated using decision trees. 

In Chapter 3, an algorithm will be presented which uses decision trees to 
represent decision functions, i.e., the mapping from the observations which a deci­
sion maker will make, to the action to be taken. This algorithm is closely related to 
the machine learning technique of top-down induction of decision trees (TDIDT). 
This section lays the groundwork for Chapter 3 by introducing terminology and no­
tation, and emphasizes key issues for the comparison of TDfDT with the approach 
presented in Chapter 3. 

2.3.1 Terminology and notation 

A decision tree can be used to represent a discrete function. If Ax,..., Ak are finite 
sets (called attributes; elements of an attribute set are called values), and G is a finite 
set called the goal attribute, we can use a decision tree to represent the function: 

/ : Ax x ... Ak -> G 
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If the attributes are 6-ary, there are bk elements in the attribute space. 

The decision tree representation uses the attributes as internal vertices, with 

a branch for each value of the attribute. The leaf vertices are elements of the goal 

predicate. The function is evaluated for a given input by descending through the 

tree; at each internal vertex the branch corresponding to the input's value for that 

attribute is descended. When a leaf is reached, the leaf value is the output of the 

function. 

The path from the root of the decision tree to a given vertex is called a 

context. An attribute can appear at most once in any context. 

2.3.2 Induction of decision trees 

Decision tree induction is a machine learning technique which learns by example 

[38]. The object of decision tree induction is to learn a classification rule, repre­

sented by a decision tree, for a domain of interest. A set of examples of the domain 

are obtained, and are classified by an external agent. The examples consist of at­

tributes and values for the domain. Given this set, called the training set, a decision 

tree can be constructed or "learned" such that the decision tree will classify the ex­

amples in the training set by examining the attributes of the data. The purpose of 

learning decision trees is to be able to classify examples which are not part of the 

training set. 

A naive method for constructing decision trees is to generate all the pos­

sible trees which classify the training data and choose the smallest (the choice of 

the smallest tree which classifies the training data is a form of bias, and is usually 
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justified by appeals to Ockham's Razor). This method is very expensive computa­
tionally. Decision trees are usually constructed inductively, as follows. 

One of the attributes is chosen to be the root of the tree, the training set is 
split into k subsets, one subset for each value of the chosen attribute. The kth subset 
contains only those examples from the original set which are consistent with the kth 

value of the chosen attribute. A subtree is computed for each of the k subset using 
the remaining attributes 

A key research issue is the choice of attribute at any level of the inductive 
recursion. The intuition is that a good choice of an attribute will lead to a better 
tree. This issue is clouded by a number of factors. First, it is desirable that the 
tree be consistent with the training set. There are many possible trees which fit this 
description, and smaller trees may be preferred to larger trees. The choice of at­
tributes may have a significant impact on the size of the tree. Second, smaller trees 
are often preferred as a bias to prevent over-fitting, i.e., the mistake of assuming 
that chance correlations in the training set are correlations in the population. Third, 
it seems that many of the learning domains to which TDDOT has been applied are 
favourably predisposed to classification [15]; the accuracy of decision trees con­
structed for many domains are not much more accurate than single level decision 
trees, i.e., trees which use a single attribute to classify the domain. 

Many heuristics have been studied, including information gain [38], infor­
mation gain ratio [39], the GINI index [2], among many others. 

Decision tree inducing algorithms are typically presented recursively (as 
above), and the result of the algorithm is a tree which classifies the training set. 
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The algorithm can be expressed iteratively as well. The motivation for an iterative 

version comes from the idea of having partial solutions available. 

In the iterative approach, each leaf in the decision tree is associated with two 

sets: the set of training examples consistent with the path from root to leaf; and the 

set of attributes not used on the path from root to leaf. A leaf node is extensible 

if the list of unused attributes is not empty. An extension of the leaf consists of an 

internal node, representing one of the unused attributes, and a leaf node for each 

of the attributes values. The classification at each leaf is made by some criterion 

applied to the set of examples at the leaf; for example, simple majority can be used. 

For each new leaf, an attribute is chosen from the list of unused attributes, and 

each new leaf's training set is obtained by splitting the extended leaf's training set 

on the chosen attribute, i.e., the training set is split into k subsets, the kth subset 

containing all the elements of the training set which are consistent with the kth 

value of the attribute. 

The iterative algorithm shown in Figure 2.5 creates a sequence of trees; each 

is able to classify all the examples, although not necessarily correctly. The value of 

this algorithm is that it can be interrupted, and a useful tree is available. The iterative 

algorithm creates leaf nodes where the recursive algorithm would build a subtree. 

The iterative version also deletes extensible leaf nodes, refining the classification at 

that leaf. Thus the iterative version does more work than the recursive version, but 

has partial results available for use as a classifier. This approach may be of value 

to a learning agent which must build learn a classification when there is no time to 

learn a larger tree. 
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procedure Decision-Tree-Learn 
Input: 

training set T 
attribute set A 
default classification c 

Output: 
a decision tree 

Start with the tree as a single leaf, c 
Do{ 

Choose an extensible leaf 
Replace the leaf with an extension: 

Choose an unused attribute 
Split the leaf's training set 
Create new leaf nodes 

} While there are extensible leaf nodes 
Return the tree 

Figure 2.5: An algorithm for learning decision trees from data. 

41 



Our approach to constructing policies for influence diagrams is based on the 

induction of decision trees. Instead of training examples, we have an information 

space. Instead of classification at the leaf vertices, we will have actions. We also 

develop a number of heuristics which choose which internal vertices to create. 

2.4 Summary 

This chapter presented the problem of decision making under uncertainty. We pre­

sented Bayesian networks, which structure the probabilistic knowledge for efficient 

computation of posterior probabilities. Influence diagrams were presented as rep­

resentations of a class of sequential decision problems under uncertainty, and we 

outlined some methods which can compute optimal policies. We discussed the 

machine learning technique of decision tree learning, which is the basis for the 

algorithms to be proposed in the following chapters. Chapter 3 presents an algo­

rithm for single-stage influence diagrams; Chapter 4 develops similar algorithms 

for multi-stage problems. 
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Chapter 3 

Information Refinement 

This chapter presents information refinement, an incremental approach to the con­

struction of decision functions; each increment includes more of the information 

available to the decision maker at the time an action must be taken. Decision func­

tions are represented as decision trees, where internal vertices are information pre­

decessors, and leaf vertices are actions. This approach is similar to learning clas­

sification trees in machine learning as discussed in Section 2.3, and other work the 

compilation of decision models into simple rules which can be executed by human 

decision makers [12, 26]. 

The advantages of this approach are that information refinement is incre­

mental, and small decision trees which use only a small subset of the available 

information can be computed with relatively little cost. The optimal policy may 

not be representable by small decision trees; however, if the decision maker cannot 

assume negligible computational costs, small decision functions may have positive 

comprehensive value, whereas large decision trees may not. 
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This chapter presents information refinement for single stage decision prob­
lems. Chapter 4 extends the ideas to multi-stage decision problems. 

3.1 Decision trees as decision functions 

A decision function for a decision node maps information states to actions. In this 
section we formalize the representation of decision functions as decision trees. We 
emphasize that in this context, decision trees are used to represent the "solution" 
to decision problems; this is in contrast to the use of decision trees to represent 
decision problems (as in [40]). 

Let D be the decision node in a single-stage influence diagram. A decision 

tree t for D is either a leaf vertex labelled by one of the actions dj £ QD, or a 
tree whose root is a non-leaf vertex labelled with some information predecessor 
X G TLD, and whose subtrees are also decision trees. Each non-leaf labelled with 
X has an edge for every value xk € Slx; the edge for Xj e Q,x corresponds to the 
variable assignment X = Xj. An information predecessor A € II£> appears at most 
once in any path from the root to a leaf. Each vertex V has a context, jv, defined to 
be the conjunction of variable assignments on the path from the root of the tree to 
V. 

Given an information state w £ £luD, there is a corresponding path through 
a decision tree for D, starting at the root leading to a leaf (this is guaranteed by the 
fact that each internal vertex has an edge for each of its values). Such a path from 
root to leaf I is called a leaf context, and is written ji. 

Note that a leaf context need not contain an assignment for every node in 
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UD. If the context contains all elements of TlD, it is called complete; if every leaf 
on a decision tree has a complete context, the tree is called complete. 

The action at leaf I is the action to be taken for any information state which 
is consistent (in its variable assignments) with 7/. If a node is not included in a 
given leaf context, the action at the leaf is taken for all values of that node. Thus, 
a single leaf context can summarize many information states, and a single action is 
specified for all information states summarized by a leaf context. 

The probability of a context P(7) is the probability of the variable assign­
ments in the context according to the probability distribution represented in the 
influence diagram. The probability is marginalized over all the chance nodes not in 
the context. 

Example Recall the simple decision problem about umbrellas described in Chap­
ter 2 (see Figure 2.2 on page 19). A decision function in the form of a decision tree 
for this problem is shown in Figure 3.1. The root of the tree, namely View from 

Window, is an information predecessor for the decision. The three edges out of the 
root correspond to the three values for the node View from Window. Two of these 
three edges lead directly to leaf vertices, which are labelled with actions. The mid­
dle edge leads to the second information predecessor, Radio Weather Report. The 
three edges from this vertex correspond to the node's three values. Each edge from 
Radio Weather Report leads to a leaf. 

The tree can be interpreted as a policy for the influence diagram in Figure 2.2 
as follows. Suppose that the decision maker has already observed the world, and 
observes that the view from the window is cloudy, and the weather report from the 
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View from Window 

leave umbrella leave umbrella take umbrella 

Figure 3.1: A decision tree representation of a policy. 
A decision tree representation of a policy for the Weather problem in Figure 2.2. 

radio indicated sunny weather. Starting at the rootof the tree, the decision maker 

takes the middle branch, corresponding to the observation from the window, and 

then takes the left branch, corresponding to the radio report. The leaf indicates that 

the decision maker should leave the umbrella at home. If the view from the window 

had been either sunny or rainy, the information from the radio would not have been 

used, as both the left and right branches lead directly to actions which do not depend 

on the radio report. 

The value node V in an influence diagram represents a value function v : 

finv —> 3?- The expected value of an action d G fi# in context 7 is given by: 

E[v\d,*y] = ]T v{w)P(w\d,y) 

The expected object value of a decision tree t is denned as follows: 

Et = Y,E[v\dull\?{ll) 
let 
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where P(ji) is the probability of the context 7/ according to the probability distri­
bution represented in the influence diagram. The summation is over all leaves in t. 

This definition corresponds to the classical definition of expected value of a policy. 

Decision functions could also be represented as tables: each row in the table 
specifies a unique information state and the action prescribed for the state. This ta­
ble grows exponentially in the number of information predecessors for the decision 
node. A complete tree is equivalent to a complete table. Exhaustive enumeration 
of the information space (using any of the algorithms discussed in Section 2.2) is 
equivalent to building a complete tree, and specifying an optimal action for each 
leaf context. 

The key idea behind using decision trees to represent decision functions is 
that leaf contexts have the potential to summarize many information states. There 
are two situations in which decision trees have representational advantage over the 
tabular representation: 

• Small decision trees may be able to represent the optimal policy compactly. 

• Small decision trees may be able to approximate an optimal policy, or repre­
sent a policy which is approximately optimal. 

In the next section, we present an incremental algorithm for building decision trees 
for single stage decision problems. The algorithm is intended to build decision trees 
which are not complete, but are valuable to the decision maker. An incomplete 
decision tree will be valuable to the decision maker if it is the result of a good 
trade-off between object value and resource costs. 
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3.2 Information refinement 

Information refinement constructs decision functions in a manner similar to the way 

decision trees are learned in machine learning, [38, 39, 2]. In decision tree learning, 

a finite set of training examples is used to induce a decision tree which classifies 

the training set. The information refinement algorithm "classifies" the finite set of 

information states, where the "class" is an action to be taken in a context. Decision 

tree learning algorithms split the set of training instances using attributes; informa­

tion refinement splits incomplete leaf contexts using information predecessors. In 

both cases, heuristics are used to determine how to split the branch. 

A difference in the two tasks is the motivation for preferring "small" trees. 

In decision tree learning, small trees are often preferred to large trees, all else being 

equal: this preference is a bias used to avoid over-fitting. In contrast, information 

refinement prefers small decision trees if they represent a good trade-off between 

object value and computational costs. 

The main idea in information refinement is that a decision function is con­

structed incrementally, starting from a very simple tree. It is intended that each 

incremental step result in an improved policy. Furthermore, the tree always repre­

sents a policy, in the sense that it always has an action for every information state. 

Let D be the decision node in the influence diagram, and let t be a decision 

tree for D. The information predecessors which may be used in the decision tree 

are the parents YlD of the decision node D. For a given leaf I in t, its context 7; is 

extensible if it is not complete and if P ( 7 J ) > 0. Let & be the set of information 

predecessors which are not in the context; this set is called the possible extensions 
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fori. 

Let I be an extensible leaf with context 7/ and possible extensions The 

context 7/ is refined by choosing a single information predecessor X G £/, creating 

a new context Xj'ji for each of the values Xj G Q,x- For each new context, an action 

is chosen which maximizes the expected object value for the context 2^7/: 

dj = arg max E[v\di,Xj,7j] (3.1) 

This action will be called the MEV action. Section 3.3 shows how to compute the 

MEV action. 

The remainder of this chapter assumes that the action at the leaf of a decision 

tree is the MEV action for the given context. 

In terms of decision trees, refining an extensible leaf's context corresponds 

to constructing a subtree with root X, and a leaf labelled dj for each element of 

f ix , as above. This subtree is called an extension subtree for the context 7;. A 

new decision tree t' is derived from t by replacing the leaf I in t with the extension 

subtree for 7;. 

The basic information refinement algorithm is given in Figure 3.2. The al­

gorithm starts by determining the MEV action for the empty context. It proceeds 

thereafter by iteratively choosing an extensible leaf context, then choosing an infor­

mation predecessor from the possible extensions with which to replace the leaf. 

The algorithm produces a sequence of decision trees, each of which can be 

used by the decision maker at the time a decision must be made. The quality of the 

trees in this sequence depends in part on the choices made by the algorithm, and 

also on the properties of the decision problem. Because the M E V action is chosen at 
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procedure DTI 
Input: 

single stage influence diagram with decision node D 
Output: 

a decision tree for D 

1. Start with the tree as a single leaf, labelled with 
action dj = argmax d i e n £ ) 

2. Do { 
2a. Choose a leaf I whose context is extensible 
2b. Choose a node X 6 
2c. Construct an extension subtree for I using X 
2d. Replace I with the extension subtree 
2e. } Until stopping criteria are met or tree is complete 
3. Return the tree 

Figure 3.2: The information refinement algorithm for single stage influence 
diagrams. 
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each leaf, the expected object value is monotonically non-decreasing.1 The issues 

of choosing a leaf context to extend, and choosing a new node X are discussed in 

Sections 3.4.2 and 3.4.1, respectively. We discuss the effects of these choices in 

their respective sections. 

We can call D T I an anytime algorithm [7], since a best policy exists through­

out its execution, and the expected object value of the policy is non-decreasing as 

resources are allocated. 

There are three situations in which the algorithm could stop. First, the de­

cision maker may have computational resources to complete the decision tree. We 

will see that a complete tree represents the optimal policy. A second way to end 

the refinement process would be for the decision maker to interrupt the information 

refinement process, and take as its policy the best decision tree constructed so far. 

Finally, the information refinement algorithm could stop after it has consumed an 

a priori allocation of resources, which the decision maker has deemed sufficient. 

This will depend on the resource constraints on the decision maker's deliberation. 

3.2.1 Example: The Extended Weather Problem 

One possible trace of the D T I algorithm for the construction of the decision tree 

in Figure 2.2 follows. Let D, V, R, S stand for Take Umbrella, View from Window, 

Radio Weather Report and Satisfaction, respectively.2 This trace represents an ideal 

computation, making choices for steps 2a and 2b which are, from the point of view 

from an omniscient viewer, optimal; however, for purposes of the discussion, these 

'This is proved in Section 3.4.1. 
2D is for "decision." 
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(a) 

leave umbrella 

(b) 

View from Window 

leave umbrella leave umbrella take umbrella 

Figure 3.3: Two steps in the refinement process. 
Two decision trees in the refinement of the Weather problem in Figure 2.2 are shown. 
(a) The initial decision tree; a single action, leave umbrella, is prescribed for all 
information states, (b) The first refinement uses the information predecessor View 
from Window. The tree in Figure 3.1 is the third in this sequence of refinements. 

choices should be seen as arbitrary. The ways in which one might make these 

choices are discussed in later sections. 

Before the algorithm begins, there is no decision tree (in the previous sec­

tion, we used the description "the decision tree is empty"). If the decision maker is 

forced to act before any computation can be performed, the decision maker could 

choose some action from the possible actions at random. 

Under the assumption that each choice is equally probable, the expected 
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value of a random action is 

E[s1 = \ ( E ^ [ S P = t a k e > W = w]P(W = w) 
\weflnD 

+ Y E[S\D = leave, W = w]P(W = w)\ 
weunD J 

= 52.5 

The algorithm initializes the decision tree by choosing an action which max­

imizes the expected object utility for the empty context. For tie 

E[S\D = d]= Y E[S\D = d,W = w]P(W = w) 

In this example, d is one of take umbrella or leave umbrella. Using the numeric data 

from Section 2.2 (page 18), we have E[S\D=take umbrella] = 35.0 and E[S\D=leave 

umbrella] = 70.0. Thus the best choice, when none of the available information is 

in the decision function, is to leave the umbrella at home. The initial decision tree 

* i is shown in Figure 3.3(a), and the expected object value of this tree is 70.0. 

The iterative process begins by choosing a leaf, and there is currently only 

one leaf in the tree, which has the empty context. The empty context is extended by 

choosing one of the information predecessor, say View from Window. An action is 

chosen for each of the values for this node; for each d EQD and v G Oy-, 

E[S\d,v] = Y, E[S\d,v,r]P(r\v) 
renR 

The respective numerical values are as follows: 
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E[S\D=take umbrella, V=sunny] = 22.5424 

E[S\D=leave umbrella, V=sunny] = 94.9153 

E[S\D=take umbrella, V-cloudy\ = 35.0 

E[S\D=leave umbrella, V=cloudy] = 70.0 

E[S\D=take umbrella, V=rainy] = 63.2692 

E[S\D=leave umbrella, V=rainy] = 13.4615 

Choosing the MEV action for each observation, and replacing the single leaf with 

the extension subtree, results in the decision tree t2 shown in Figure 3.3(b). The 

expected object value for this tree is 82.95. 

The algorithm now chooses one of the three leaf vertices, say View from 

Window = cloudy. There is only one possible extension for this context, namely 

Radio Weather Report. An action is chosen for each of the possible radio reports; 

for each d G Q,D and r 6 £IR, we compute FfSldru], where v is the context of the 

leaf: the view from the window is cloudy. The respective numerical values are as 

follows: 

E[S\D=take umbrella, R=sunny, V=cloudy] = 24.2056 

E[S\D=leave umbrella, R=sunny, V=cloudy] = 91.5888 

E[S\D=take umbrella, R=cloudy, =cloudy] = 37.4419 

E[S\D=leave umbrella, R=cloudy, =cloudy] = 65.1163 

E[S\D=take umbrella, R=rainy, V=cloudy] - 56.0 

E[S\D=leave umbrella, R=rainy, V=cloudy] = 28.0 

Choosing the MEV action for each new leaf context and replacing the leaf with 

the extension subtree results in decision tree tz, as illustrated in Figure 3.1. The 

expected object value of the tree is 84.0. 
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The algorithm might proceed to extend the remaining two extensible leaf 

contexts. However, there is no value to the effort, since neither refinement will 

change the policy of the decision maker. For example, the algorithm could extend 

the leaf with context V=sunny. The split would consider the various values of the 

information predecessor R: 

E[S\D=take umbrella R=sunny V=sunny] = 20.5675 

E[S\D=leave umbrella R=sunny V=sunny] = 98.8651 

E[S\D=take umbrella R=cloudy V=sunny] = 23.1381 

E[S\D=leave umbrella R=cloudy V=sunny] = 93.7238 

E[S\D=take umbrella R=rainy V=sunny] = 32.1622 

E[S\D=leave umbrella R=rainy V=sunny] = 75.6757 

In all of the information states consistent with V=sunny, the optimal action is to 

leave the umbrella, which is exactly what the leaf had indicated. The policy would 

not change with this refinement, even though the tree would increase in size. This is 

due to the fact that the observation V=sunny is a strong indication that the weather 

will be sunny, even if the radio report gives different information. 

Refining the other leaf node would also result in a split which brought no 

value to the tree, and we do not show this detail. We leave the tree, for the purposes 

of our example, as in Figure 3.1, and end the trace. 

The policy as given in Figure 3.1 is the smallest decision tree representing 

the optimal policy for this problem. A table expressing this policy would require 9 

distinct entries (one for each combination of the two information predecessors. The 

decision tree representation requires only 5 distinct contexts. 
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The fact that the decision tree represents the optimal policy as well as it does 

is a property of the decision problem itself. The information predecessors are highly 

predictive of the actual weather in this model. One could modify the model (i.e., 

the conditional probabilities and the value function) so that the optimal policy can 

only be expressed as a complete tree. 

3.2.2 Properties of information refinement 

For a decision tree t, and extensible leaf I, the expected value of improvement, 

EVIt(l, X), is the increase in expected object value of the decision function when 

7/ is refined using X e resulting in a new tree t': 

EVIt{l,X) = Et, -Et 

This measure would be equivalent to the expected value of perfect informa­

tion [29] if X were not an information predecessor. Since X is by definition part 

of the available information, the increase in object value is a rough measure of how 

much of the available computational resources a decision maker should invest in 

making the refinement. In contrast, the expected value of perfect information mea­

sures the most a decision maker should pay to have the information made available. 

In this case, the decision maker might also have to pay an additional amount for any 

computation making use of the new information. 

We note that EVIt is a myopic measure of value. It is possible that a single 

information predecessor X has EVIt(l,X) = 0, at a particular leaf I, but when 

used in combination with some other possible extension, the expected object value 

of the tree would increase. A refinement which is known to result in no increase in 
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expected object value is treated in two separate cases. If there are several possible 

extensions, and they all fail to increase the value of the tree, one of them is chosen 

to refine the tree. It is possible that a combination of extensions will improve a 

tree, when any single refinement will not. However, if there is only one information 

predecessor left in the possible extensions for a leaf, and it does not increase the 

value of the tree, it can be discarded. This can result in a small savings in space 

when representing a complete information state in the decision tree.3 

The following proposition relates the EVIt to the refinement of a context. 

Proposition 1 Let t be a decision tree, with leaf / with context and X 6 £/. 

EVIt(l,X)=P(ll) ]T {EW^Xj^PixM-Elv^t}) 

where dj is the action labelling the leaf vertex corresponding to Xj £ Qx> and d\ is 

the action labelling leaf vertex I. 

Proof: By definition: 

^ = ££M*.7Jk]P(7Jb) 
ket 

where the sum is over the leaf vertices in the tree t. By definition, 

EVIt(l,X) = Etf-Et 

Thus 

EVIt(l,X) = £/#,K,7fc]P(7fe) -££M4,7fe]P(7fe) 
kef ket 

3 Note that a larger reduction may be attained by stopping the information refinement process 
before the contexts in the tree near completion. The value of such a tree is investigated in Section 3.5 
(p. 83). 
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Now t' differs from t only at leaf I. 

EVIt(l,X) = E(^[wl d*.7*]P(7fc)-^|dfc,7fc]P(7*)) 
k^l 

+ Y FbMJ-,xj,7,]P(̂ ,7i)-FbM(,7/]P(70 

The first term in the above expression sums to zero, since the trees are identical 

whenever k ^ I. The second term represents the value of the extension to t at I, and 

the third term is the previous value of the tree t at I. By the multiplication rule of 

probabilities: 

P(*„7/) = P(̂|7/)P(7<) 
Therefore: 

EVIt(l,X) = P(ll) Fb|̂ ,̂ ,7/]P(xi|70-̂ l̂ 7/]P(7/) 

from which the result follows. • 

The proposition justifies the incremental nature of the algorithm: the in­

crease in value due to extending each leaf can be computed independently. The 

value of an extension does not depend on the state of the rest of the tree. That is, 

the only context which can affect EVIt is the context being extended. Finally, the 

proposition does not depend on the choice of MEV action which labels every leaf 

vertex; it only depends on the fact that only one context is changing. Proposition 3 

will show that because the MEV action is used, EVIt is non-negative. 

The next property establishes that we can compare two different refinements 

to tree t at a given context by comparing the value of actions of the refined contexts. 
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Proposition 2 Let t be a decision tree with extensible leaf I, and X,Y G £/. Then 

EVIt(l, Y) > EVIt{l, X) if and only if 

Y E[v\duyi^l]V(yi\ll) > Y E^d^Xj^i^XjYn) 

where dt is the action labelling the leaf vertex corresponding to G Q,y and dj is 

the action labelling the leaf vertex corresponding to Xj G fix-

Proof: By Proposition 1, 

EVIt(l,X)-EVIt(l,Y) 

= p( 7o[ E ^|d„^]P(^l7/)-^M/,7/] 
\xjesix 

-P(7J ) ( E ^|^,%,7i]P(%l70- .̂M/,7/] 

= P(7/)( E F[W|̂ ,̂ ,7dP(̂ l7/)- E £M^-,M]P(%|70 

This difference is positive if and only if 

P(7/)( E ̂ bl^,^,7/]P(^|7/)- E ^Mdi,»i,7i]P(yil7i)) >0 

The result follows, since an extensible context has non-zero probability by defini­

tion. • 

Again, this proposition does not depend on the use of the MEV action at the 

leaf vertices, but only on the fact that the tree remains unchanged except at the leaf 

which is being refined. 

The next property establishes that E VIt is non-negative, provided that MEV 

actions are chosen to label the leaf vertices according to Equation 3.1. 
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Proposition 3 Let t be a decision tree for decision node D with extensible leaf I, 

and X G If t' is constructed from t by replacing the leaf I with an extension 

subtree rooted at X, having leaf vertices for each Xj G fix labelled with dj such 

that 

dj = arg max E[v\di,Xj,ji\ 

then 

EVIt(l,X) > 0 

Proof: Let d\ E flo be the action labelling the leaf I. B y Proposition 1, 

EVIt(l,X) = P(7l)( Y ^ 1 ^ , ^ , 7 ^ 1 7 0 - ^ 1 ^ . 7 * ] 
\xjefix 

Rewriting 

E[v\dhji}= Y E[v\di,xj,yi]P(xj\'yi) 

and rearranging the terms, we have: 

EVIt(l,X) = P ( 7 l ) [ Y Eivld^xj^inxM-mdiiXj^iFixM 
\xjenx 

= p(70 E (^|d J-,a; i ,7j]-^[t; |dj,a;j ,7i])P(a:j |7j) 
Xj€Q,x 

Since 

^ = arg max E[v\diXjji] 

E[v\dj, Xj,7i] > E[v\di, Xj, 7(], with equality whenever dj = d\ for all j. Because 

each term in the summation is non-negative, the sum is also non-negative. • 

This implies that the sequence of trees created by D T I is such that the ex­

pected object value of the next tree is never less than that of the previous tree. 
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However, there is no guarantee that the object value will always increase with every 

extension of the tree. If EVIi is zero, the MEV actions at each new leaf can be the 

same as the action at the leaf which the extension replaced. 

Proposition 4 A complete decision tree, constructed by DTI maximizes the deci­

sion maker's expected object value. 

Proof: The complete tree contains all complete contexts. Each leaf is labelled with 

an action which maximizes the expected object utility for the context. Therefore 

expected object value is maximized. • 

If DTI is run until a policy is complete, the resulting decision function is 

optimal (in the sense of maximizing expected object value). Note that this conver­

gence depends only on the choice of action at each leaf. Before this claim is stated 

formally, we will examine the possibilities for choices made in steps 2a and 2b. The 

formal statement of convergence is made as Corollary 7 at the end of Section 3.4. 

3.3 Computing expected value 

In order to compute extensions for decision trees, we need to be able to compute 

expected value of action d S f ) D in a given context, 7. The transformation of 

influence diagrams to Bayesian networks due to Shachter and Peot [44] can be used 

to compute expected value, (see 2.2). 

Our transformation departs from that of Shachter and Peot in the conversion 

of the decision node. In their transformation, the decision node's direct prede­

cessors are also direct predecessors of the decision/chance node in the Bayesian 
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Figure 3.4: The transformation of an influence diagram. 
(a) The Extended Weather Problem influence diagram, and (b) the Bayesian net­
work used to compute expected utility. The decision node is converted to a root 
chance node, and the value node is converted to a chance node whose dependen­
cies are that of the value function. 

network. Our conversion of the decision node creates a chance node with no prede­

cessors. Our transformation saves the trouble of building larger uniform CPTs, and 

the resulting clique tree is much simpler. 

This transformation is justified, since, at the start of our refinement process, 

none of the information predecessors are actually used in the policy. Furthermore, a 

uniform conditional probability distribution renders the chance node independent of 

its predecessors, making all arcs into the decision/chance node trivial. For example, 

if A and B are binary chance nodes, and if P ( B | A ) is a uniform distribution {i.e., 

?(B\A) = 0.5 for all values of A and B), P(B) = P(B\A) for any values of A and 

B. 

Figure 3.4 shows a graphical example of the conversion. The conditional 

probabilities for the chance nodes Take Umbrella and Satisfaction are shown in 

Table 3.3 (the distributions for the remaining chance nodes are unchanged from 
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P(TakeUmbrella) 
Take It Leave At Home 

0.5 05 

P (Satisfaction | Weather, TakeUmbrella) 
True False Weather Take Umbrella 
0.2 0.8 
1.0 0.0 
0.7 0.3 
0.0 1.0 

Sunshine Take It 
Sunshine Leave At Home 

Rain Take It 
Rain Leave At Home 

Table 3.1: Data for the Bayesian network in Figure 3.4b. 
In the transformation of the influence diagram, the utility node Satisfaction is con­
verted to a binary chance node; its conditional probabilities are the normalized 
values. The decision node, Take Umbrella is converted to a root chance node, and 
given a uniform conditional probability table. The conditional probability distribu­
tions for the remaining chance nodes are found in Table 2.1 (page 22). 

Table 2.1). Note that the information arcs into the decision node of the influence 

diagram are dropped in the Bayesian network. 

Shachter and Peot show that the best action d* £ ftp for a given infor­

mation state w G O n D can be found by choosing the action which maximizes 

P(d,w\V = true); see Section 2.2. We specialize this result in terms of choos­

ing an action which maximizes expected utility in a given leaf context 7 (recall 

that a leaf context may not include an assignment for every information predeces­

sor in n )̂. The normalized expected utility of an action d in context 7 is given by 

P ( V = true\d,Y-

E[v\d,i\ = Y E[v\d,w}P(w\j) 
weClnv 

oc Y P{V = true\d,w)P(w\-f) 
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= P(V = true\d,j) 

The optimal action in a given context maximizes P(d\V = true, 7): 

arg max £'[u|d7] = arg max P ( V = true\d, 7) 

PfdlV" = frue,7)P(y = trueh) 
= arg max —— ^ , ' . 

5 d e n D P(d |7) 

= arg max P(d| V = true, 7 )P(V = true\^) 

= arg max P(d| V = true, 7) 

The equality holds since P(d| V = true, 7) is a uniform distribution, and does not 

affect the maximum; as well, P(d| V = true, 7) is constant for all values ofd G QD-

This Bayesian network is used to compute expected utility, and posterior 

probabilities which are needed during the process of information refinement. A 

single query to the Bayesian network can establish the best action in a context, and 

a second query can determine the expected value of the best action. 

Both of these quantities can be computed in a Bayesian network transformed 

from an influence diagram as described above. The Bayesian network can be com­

piled into a join tree, which can compute posterior probabilities efficiently, using 

DistributeEvidence and CollectEvidence operations [23]. As described in Chap­

ter 2, once evidence has been entered, the posterior probability of any chance node 

(given the evidence) in the network can be ascertained without additional cost. 

Each query for posterior probability is potentially expensive, since compu­

tation in Bayesian networks is NP-hard [5, 6]. However, any method for computing 
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expected value in an influence diagram is going to incur similar costs. 

We are treating the Bayesian network as a "black box" which can return 

answers to our queries for the posterior probability of any single chance node given 

some evidence. We use a single query of posterior probability to the Bayesian 

network as an atomic step in our analyses of computational cost. We can compare 

our queries directly to the queries proposed by Shachter and Peot [44], in their query 

based algorithm, with one exception. In order to determine the optimal action in a 

context, we must first ensure that P(V = true]^) ^ 0; in other words, we must 

ensure that there is a possibility that some action will result in an outcome which is 

not the worst. This query could be avoided if we could query for P(D, V | 7 ) , from 

which we could determine if P(V = true\j) = 0 (by summing over QD) as well 

as P(Z)|V = true, 7) (by dividing by P(V = true\j) if this quantity is not zero) 

without further queries. 

3.3.1 Computing extensions 

Recall from Section 3.2 that an extension subtree is rooted by an information prede­

cessor which has an edge for each of the its values. Each child of this root is a leaf, 

labelled with an action which maximizes expected object utility in a given context. 

An algorithm for computing an extension subtree is given in Figure 3.5. 

Suppose the leaf we wish to replace has context 7/, and suppose this leaf is 

refined using information predecessor X G £/. We compute the posterior proba­

bility distribution P(X\ji), and then, for each value X = Xj, we construct a leaf 

labelled with the best action to be done in the new context Xjji. The MEV action 
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procedure build-extension 
Input: 

context 7 
information predecessor l £ ( | 

Output: 
an extension subtree for X at 7 

1. Determine P(X 17) 
2. Build a vertex for X 
3. for each Xj € Ox 
4. if P(V = true\xj,Y ^ 0 
5. Add a leaf to vertex X labelled with 

d* = argmaxQD P(D\V = true,Xj,^f) 
6. Label edge to leaf vertex Xj with P(XJ\J) 
7. Return the extension subtree 

Figure 3.5: An algorithm to compute an extension subtree for context 7 using 
information predecessor X. 

can be computed using a single query to the Bayesian network, P(D\v, Xjji), which 

returns a posterior probability distribution for D; the best action is the one which 

maximizes this distribution. Finally the expected value of the best action dj for leaf 

corresponding to Xj is computed, using a single query P(v\dj, Xj^i). 

In addition to the labels of the vertices in the decision tree, conditional prob­

ability tables P(A|7/) are stored at each internal vertex X. These values can be used 

to determine the probability of any context, using the chain rule for probabilities: 

P(Xj,ll) = P{Xj\ll)P{ll). 

and performing the multiplication by following the path from the root to the vertex 

X. This allows us to cache computations of posterior probability, so that we do not 

need to recompute them. 
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We note that before we can determine MEV action in context x^i, our im­

plementation performs a check to ensure that P(V = true\xjji) > 0. There are two 

explanations for this probability being zero. First, the probability P(xj,ji) = 0, in 

which case the event Xjji cannot occur, and so no action needs to be chosen for it. 

Second, the expected value for all events consistent with the context Xjji could be 

zero. In this case, all actions lead to the same value, and the choice between actions 

is of no consequence. 

Thus, in our implementation, computing an extension subtree for a given 

leaf requires three queries to the Bayesian network for every value Xj € fix', an 

additional query for the posterior probability P(X\ji). Thus, for each possible 

extension, 3 6 + 1 queries are needed to compute the extension subtree, where b is 

the number of values in QX- The factor of three in this figure is the result of our 

implementation's effort to guard submitting impossible evidence to the Bayesian 

network. If it is possible to query P(D, VI7), the factor of three could be reduced 

to two. 

3.4 Heuristics and strategies for information refine­

ment 

The DTI algorithm does not indicate how the choices in steps 2a (the choice of a 

leaf in the tree) and 2b (the choice of an information predecessor with which the 

chosen leaf's context can be refined) are made. This section presents the heuristics 

which are used to choose a leaf to refine, and the strategies which are used to choose 
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an extension for a given leaf. The order in which leaf vertices are refined and the 

extensions made to the leaf vertices is not important if the decision maker intends 

to build a complete decision tree. However, if the algorithm is to be used as an 

anytime or flexible algorithm, the choices of leaf and extension become important. 

We want to build valuable policies with few splits. 

In Section 3.4.2 we explore heuristics which we use to determine where to 

refine a decision tree. These heuristics make use of information computed during 

the computation of extensions for a given leaf; relative to the cost of building ex­

tensions, these heuristics are negligible. We also explain the need for heuristics. 

Section 3.4.1 discusses strategies for choosing an extension for a given leaf. 

3.4.1 Strategies for choosing an extension for a given leaf 

A given leaf with an extensible context can be extended by choosing an information 

predecessor which is not already in the context. In this section we discuss three 

strategies: Maximal Extension, Greedy Extension, and Random Extension. Each 

strategy chooses a single information predecessor with which to refine the leaf's 

context. 

These strategies will choose an information predecessor by constructing a 

number of extension subtrees for the given leaf (at least one, but possibly more). 

The number of subtrees constructed during the refinement of a single leaf depends 

on the strategy used to choose an extension, as well as the EVIt. However, the 

number of subtrees constructed during the refinement of a given leaf is independent 

of the manner in which the leaf was chosen to be extended. 
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Maximal extensions 

The Maximal Extension strategy chooses the best extension subtree to a given leaf 

I on the basis of EVIt: 

X; = axgznaxEVIt&X) 

= argmax E[v\dj,xj,ji]P(xj\'ri) 

because of Proposition 2. Recall that dj is chosen to maximize E[v\dj, Xj, ji], as 

per Equation 3.1. The X* is determined by explicitly extending I with each possible 

extension in £/. 

The Maximal Extension strategy enumerates all possible extensions for a 

given leaf, but uses only one of these. Therefore, for each leaf in the sequence of 

trees constructed by DTI, many extension subtrees are constructed which will never 

be placed in the decision tree. However, the total number of extension subtrees com­

puted by this strategy to complete the decision tree is only a constant factor greater 

than the number of information states, as established by the following theorem. 

Theorem 5 Let n be the number of parents for decision node D in an influence 

diagram, and let b be the number of values for each of D's parents, b > 1. The 

total number of extension subtrees computed by the Maximal Extension strategy in 

constructing a complete decision tree for D is 0(bn), regardless of the manner in 

which the leaf vertices are chosen. 

Proof: This follows from the observation that the number of extensions considered 

by Maximal Extension strategy at a leaf depends only on the size of its context: 

if decision node D has n parents, and a leaf in the decision tree has k of these 
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in its context, then the number of extensions which are examined to choose the 

maximum is n — k. Recall that the algorithm replaces a leaf with an extension 

subtree; therefore, every internal vertex in the complete tree represents one out of 

n—k possible vertices. In the complete decision tree, there are bk internal vertices at 

depth k, for any k <n; therefore, the algorithm constructs n — k extension subtrees 

for each of the bk vertices at depth k. Extension subtrees are constructed for leaf 

vertices at depth 0 < k < n — 1, because the first decision tree in the sequence is 

a leaf with an empty context (k = 0); also, the leaf vertices of the complete tree 

have complete contexts (k = n), and are never extended. Summing over k, the total 

number of extension subtrees constructed by the Maximal Extension strategy is 

T(n-kVt - f + ' - M n + l ) + " 

• 

Each extension subtree requires 36 + 1 queries for a given context (see Sec­

tion 3.3.1). Therefore, using the Maximal Extension strategy for choosing an ex­

tension, the complete decision tree requires 0(^3b^^2

+1) = 0(bn) queries to the 

Bayesian network. Finally, the initialization step (step 1) requires 3 queries. We 

have assumed that no extra queries are needed to choose leaf vertices to extend; 

Section 3.4.2 proposes a number of methods for choosing a leaf to extend which do 

not require any extra queries. 

This implies that constructing a decision tree iteratively to completion re­

quires only a constant factor more computational effort than building a policy by 

enumerating the information states. In particular, when all the nodes in an influence 
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diagram are binary, i.e., 6 = 2, there are 2"+1 — (n + 2) extension subtrees con­

structed during the building of a complete decision tree, using 7(2n+1 — (n + 2)) 

queries. Including the step which initializes the decision tree, 7(2n+1 - (n + 2)) + 3 

queries are made in total. Exhaustive enumeration requires 2 n + 1 queries. In Sec­

tion 3.5, we will apply the information refinement approach to single stage prob­

lems in which n = 8. The Maximal Extension strategy will require 3517 queries 

to complete a decision tree for a influence diagram with 8 binary chance nodes. In 

contrast, the exhaustive enumeration technique will require 512 queries. 

Random myopic extensions 

Another strategy for choosing an extension is to pick an information predecessor 

from the possible extensions at random. This strategy does not make any compar­

ison of any extension subtrees, and thus will minimize the number of extension 

subtrees computed by DTI when a complete decision tree is constructed. 

Theorem 6 Let n be the number of parents for decision node D in an influence 

diagram. Furthermore, suppose that each of D's parents has at most b values, b > 1. 

The total number of extension subtrees computed by the Random Extension strategy 

in constructing a complete decision tree for d is 0(bn). 

Proof: This follows from the observation that only one extension is computed for 

every extensible leaf. Thus the number of extensions equals the number of internal 

nodes in the complete tree, which is: 

hn — 1 

k=0 u 1 
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Therefore the number of extensions computed by the Random Extension strategy is 

0(6"). • 

Each extension requires 36 + 1 queries to the Bayesian network; the initial­

ization of the tree requires 3 queries. Therefore, a complete tree constructed using 

the Random Extension strategy requires 0((36 + 1)6" + 3) = 0(bn) queries. 

In particular, if all the chance nodes in the influence diagram are binary (i.e., 

6 = 2), the Random Extension strategy requires 7 * 2" + 3 queries to construct a 

complete tree. Exhaustive enumeration would require 2 " + 1 queries. 

Greedy myopic extensions 

For a given extensible leaf I in decision tree t, the Greedy Extension strategy exam­

ines the possible extensions £/ in a fixed order, constructing extension subtrees until 

one, say X, is found for which EVIt(l, X) > 0. 

In the case that no extension increases the expected value of the tree, one 

is chosen at random. An extension is made even when EVIt(l, X) = 0 because 

of the myopic nature of the algorithm. The decision problem might be such that 

all single observations do not increase the expected utility, but a combination of 

observations might increase the expected utility. Obviously, if there is only one 

possible extension, and the EVIt(l,X) = 0 for that X 6 the leaf / is not 

replaced (See Section 3.2.1 for an example of this). 

The performance of this strategy depends on the ordering of the possible 

extensions, and many orderings are possible. 

The ordering used in our implementation of this strategy is consistent with 
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the intuition that "recent" observations are likely to be more important than less 
recent observations. The DAG structure of an influence diagram implies a partial 
ordering on the nodes, in which a node occurs before any of its children. The DAG's 
partial ordering can be determined and expressed as a total order before refinement 
begins [45]. The reverse of this total order puts recent observations before obser­
vations which are earlier temporally. Note that this ordering is applicable to any 
influence diagram, but is of particular interest to multistage problems (in which the 
decision nodes imply a time sequence). 

Clearly, other orderings could also be used. One of the criteria for choos­
ing an ordering is computational cost. The ordering we use involves no additional 
overhead during the refinement, as it can be computed once before the information 
refinement begins. 

Regardless of the method for ordering the extensions, the number of exten­
sion subtrees computed by the Greedy Extension strategy to find the complete tree 
is bounded above by the number required for the Maximal Extension strategy. At 
the other extreme, the Greedy Extension strategy requires only as much effort as 
the Random Extension strategy. 

Corollary 7 The series of decision trees constructed by DTI converges to a policy 
which maximizes expected object utility after 0(bn) Bayesian network computa­
tions. 
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Summary: Strategies 

This section has outlined three strategies which can be used to refine a given leaf's 
context. These strategies compare extension subtrees by computing the actual ob­
ject value of the subtree. The cost of using these strategies, in relation to the com­
putation of a complete decision tree, has been shown to be only a constant factor 
more effort than the cost of finding a policy by enumerating the information space; 
this assumes that the method by which the leaf vertices are chosen has negligible 
cost. The empirical behaviour of these strategies in single-stage influence diagrams 
is explored in Section 3.5. Chapter 4 uses these strategies in multi-stage influence 
diagrams. 

3.4.2 Heuristics for choosing a leaf to extend 

In this section, four heuristics are presented which are used to choose which leaf 
vertex to extend. The heuristics discussed in this section are domain independent, 
and do not require queries to the Bayesian network over and above those needed 
to construct the extension subtree. In other words, the information used by the 
heuristics described in this section make use of expected values and probabilities 
computed by the strategies of the previous section. In this way, the costs of the 
heuristics are negligible. 

The following definition will be helpful in discussing the issues involved; it 
presents a "gold standard" for making myopic choices. 

Definition 1 Let t be a decision tree for decision node D, with extensible leaf ver­
tex /. The maximum expected object value of improvement, MEVIt(l), is defined 
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as follows: 

MEVIt(l) = msx.EVIt{l,X) 
xeti 

• 

In other words, ME VI (I) is the most a decision tree could increase in value 

by a single refinement at leaf /. This is just the value of the maximal extension for 

a decision tree at a given leaf. 

Step 2a of the information refinement algorithm could choose to refine the 

leaf whose MEVI(l) was highest: I* = argmax/ e t MEVIt(l). In this case, 

MEVI(I*) is the most a decision tree could increase by a single refinement of any 

leaf in the tree. 

The MEVIt(l) can be computed by constructing all possible extension sub­

trees for a given leaf I, and keeping the one whose EVIt is maximal; Section 3.4.1 

discusses this approach, and presents two alternatives. The leaf I* can be deter­

mined by finding MEVIt(l) for all leaf vertices. In other words, to find the best 

leaf to extend, we have proposed to extend all the leaf vertices in the tree. This is a 

reasonable approach for building decision trees in a breadth first manner. However, 

it does not solve the problem of how to choose a single leaf to refine. 

It would also be reasonable to determine MEVIt{l) for all leaf vertices in 

the tree, but only change the tree at I*. A reasonable implementation of this strategy 

would save the results for the other leaf vertices in a cache, and only compute 

MEVIt(l) for the new leaf vertices. This is possible, since EVIt values at a given 

leaf will not change when a different leaf is extended, as implied by Proposition 1. 

The best MEVIt{l) can be chosen from the cache, and the new results. 
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We observe that the extensions in the cache could add significant value to 

the tree. For each leaf in the tree, this approach has already computed an extension 

which maximizes EVIt. If the nodes in the influence diagram are binary, the num­

ber of leaf vertices in the cache is double the number of leaf vertices in the tree. 

The expected value of the tree does not include the value of the extensions stored in 

the cache. 

This approach is reasonable if the goal is to keep the tree small, as in Lehner 

and Sadigh [26]; a more detailed discussion is found in Section 3.6. However, for 

an anytime algorithm, it makes sense to make use of the results of computation 

immediately. In other words, we want to avoid using a cache of stored results, 

favoring instead to put the results of extending a leaf directly in the tree, rather than 

in a cache. In this way, the value of the tree includes the value all the extensions 

computed. 

This choice implies that we cannot choose to extend the tree by maximizing 

MEVIt(l); if we compute MEVIt(l) for a given leaf I, the best myopic extension is 

placed in the tree immediately. This approach will result in a depth-first or breadth-

first construction of the decision tree. We have not solved our problem, which is to 

find the best single extension to the tree. 

The heuristics described in this section are used to choose a leaf vertex to 

extend. The general approach is as follows. When a leaf vertex is created during 

the refinement of a context, it is also assigned a heuristic value. A priority queue is 

used to contain the set of extensible leaf vertices in the tree, ordered by decreasing 

heuristic value. If a particular leaf's context has probability zero (i.e., P(a;j|7/) = 
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0), the leaf is not put into the queue. 

Example Recall the extended weather decision problem from Section 3.2.1, in 

which a sequence of three decision trees were constructed. The second tree t2 in 

this sequence is pictured in Figure 3.3b. The MEVIt2 values for the leaves are as 

follows: 

MEVIt2CV = sunny, R) = 0.0 

MEVIt2(V = cloudy, R) = 1.05 

MEVIt2iy = rainy, R) = 0.0 

where R stands for Radio Weather Report, and V stands for the View from Window. 

The discussion of each heuristic below will include the evaluation of the heuristic 

on the leaf vertices of t2 for this problem. 

The Most Likely Context heuristic 

This heuristic uses the probability of a leaf's context, P(7z); the leaf with the most 

likely context is always refined first. The most likely context is a good context to 

extend, since it invests computational effort in those contexts which, by the decision 

maker's model of the problem, are most likely to occur. 

To compute P( 7 j ) , we make use of the posterior probabilities of contexts 

which are stored in the internal vertices of the decision tree, as outlined in Sec­

tion 3.3.1. Thus this heuristic incurs a memory cost which is linear in the number 

of internal vertices in the tree (because the probabilities P(X\'yx) are stored at each 
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internal vertex labelled with information predecessor X), and a computational cost, 

which is linear in the depth of the given leaf. This can be much simpler than using 

the Bayesian network to compute P(7/). 

Example Recall the extended weather decision problem from Section 3.2.1, in 

which a sequence of three decision trees were constructed. The second tree t2 in 

this sequence is pictured in Figure 3.3b. Under the Most Likely Context heuristic, 

each leaf I of this tree is given the heuristic value P(7/); the three contexts have the 

following probabilities: 

P (V = sunny) = 0.59 

P(V = cloudy) = 0.15 

P(V = rainy) = 0.26 

The Most Likely Context heuristic suggests that the context V= sunny should be 

refined first. This heuristic is misleading in this particular instance, as only the 

middle branch has positive MEVIt2, and this branch is ranked last according to 

likelihood. Empirically (as shown in Section 3.5) this heuristic is often effective. 

The Post Hoc heuristic 

The intuition for this heuristic is that it may be valuable to invest computational re­

sources by refining contexts where previous refinement has provided the best previ­

ous results. This heuristic is also of interest as it is used implicitly by the algorithms 

described in [12, 26]. 
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When a context of decision tree t is refined, an extension subtree, rooted at 

some X e This extension subtree replaces a leaf I resulting in the new decision 

tree t'. The value of this subtree is EVIt(l, X)P(jt). The Post Hoc heuristic uses 

this value as a means for estimating the value of refining each leaf vertex of the 

extension subtree. That is, for each leaf lj in the subtree, the Post Hoc heuristic 

uses the value EVIt(l, X)P(^t) to estimate MEVIt>(lj). 

The first factor, EVIt(l, X), is computed when the extension to 72 is com­

puted. The second factor, P(7;)> can be computed using cached posterior probabili­

ties stored at the internal vertices, as described in the Most Likely Context heuristic. 

The Post Hoc heuristic is not obviously a good one, but it arises naturally 

from the attempt to choose the leaf which maximizes MEVIt. The following four 

paragraphs describe the process of maximizing MEVIt; we show that this is in 

fact, an implicit implementation of the Post Hocheuristic. Our implementation of 

the heuristic is explicit, and is described below. 

One way to maximize MEVIt is to search through every possible refine­

ment of every leaf in t; only the best refinement is used, and all other possible 

refinements are discarded. This is obviously too inefficient for practical use, since 

a large number of refinements are recomputed. 

A more efficient method for maximizing MEVIt is to find a possible exten­

sion which maximizes EVIt(^,X) for each leaf context 7. Proposition 1 implies 

that the best extension subtree for each leaf can be computed once (e.g., using the 

Maximal Extension strategy), and stored in a cache. 

With a cache of subtrees, the algorithm can choose the best extension subtree 
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from the cache (on the basis of MEVIt), and apply it to the tree; this is the approach 

of [26]. Such an algorithm would replenish the cache by extending, if necessary, 

each of the new leaf vertices which were just previously added to the tree. 

In effect, the cache places a delay between the construction of a subtree, 

and its placement in the tree. This delay can be removed, since the cache contains 

subtrees which could be added to the tree at the time they are added to the cache. 

In this way, the work of constructing an extension subtree brings immediate benefit 

to the value of the decision tree. The cache is therefore no longer a repository for 

subtrees, but a collection of pointers to the most recent subtrees added to the tree. 

The best subtree in the cache is the best subtree of those recently added to the tree; 

and when it is removed from the cache, each of its leaf vertices are refined. The 

best subtree has value EVIt(l, X)P(ji), and each of the leaf vertices is refined on 

account of this value. This is the Post Hoc heuristic, used implicitly.4 

In our algorithm, the Post Hoc heuristic is used explicitly, rather than im­

plicitly, as described above. A heuristic value is assigned to each leaf when the 

extension subtree is created, namely EVIt(l, X)P(TJ), where I is the leaf vertex 

which is being refined, and X is the root of the extension subtree. The Post Hoc 

heuristic uses the value of an extension subtree to estimate the value of refining the 

leaf vertices in the extension subtree. 

This heuristic uses value information which is already known, as opposed to 

making extra effort to estimate value information. The disadvantage of this heuristic 

is that the value of past effort doesn't always correspond to a good context for future 
4Both [12, 26] mention the use of a cache to make their algorithms more efficient. Thus, it 

seems their algorithms use the Post Hoc heuristic implicitly. However, the concerns are somewhat 
different; see Section 3.6 for a discussion. 
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effort. Another disadvantage is that all the leaves of the new extension have the 
same value. 

Example Recall the extended weather decision problem from Section 3.2.1, in 
which a sequence of three decision trees were constructed. Let t\ and i 2 be the first 
and second trees in this sequence, respectively; these are pictured in Figure 3.3a 
and 3.3b (page 52). Now EVItl(j0,V) = Et2 - Etl = 82.95 - 70.0 = 12.95, and 
P(7o) = 10 since t\ has only a single context accounting for the entire information 
space. Thus, under the Post Hoc heuristic, each leaf of this tree is given the heuristic 
value 12.95. This is a heuristic suggestion that, in refining t2, all possible leaf 
vertices have equally likely MEVIt2 extensions. In this case, the suggestion is 
misleading, as only the middle branch has positive MEVIt2. 

The second best action heuristic 

Recall that a leaf is labelled with an action which maximizes the expected object 
value for the context of the leaf (step 2c of DTI and Equation 3.1). The Second 
Best Action heuristic uses the expected value of the second best action (the runner 
up to the action labelling the leaf) to order the leaf nodes. 

The Second Best Action heuristic uses the probability distribution P(D\v*, 

which was computed to find the best action (for labelling the leaf); recall that this 
distribution contains values which are proportional to E[v\di, 7;]. The distribution 
is scanned for the second best value. For single stage decision problems, this value 
is used. For multi-stage decision problems, a minor modification is needed; this 
will be discussed in Chapter 4. 
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The intuition behind this heuristic is that a single action may be best on 

average for all information states covered by the context of a leaf. There are two 

reasons that an action can be best on average. First, this action might be the best 

action in all information states covered by the context. Second, this action might 

be the best compromise action for all the information states covered by the context. 

The value of the runner up action provides some insight to distinguishing these 

possibilities. If the second best action is relatively low in expected value, it seems 

likely that the best action is best in most of the information states covered by the 

context. If the second best action is relatively high, it seems likely that it might be 

preferable to the best action in a significant number of information states covered 

by the context. 

The expected value of the second best action may indicate contexts whose 

refinement will lead to different actions at the new leaf vertices (and therefore result 

in positive EVIt). It is also possible that the decision maker is indifferent to the two 

different actions in all information states consistent with the given context. 

Because this heuristic uses the values P(D\v*,Xj/yi), which are computed 

during the construction of an extension, this heuristic has the same cost as the Post 

Hoc heuristic. Unlike the Post Hoc heuristic, each leaf may have a unique second 

heuristic value. 

Example Recall the extended weather decision problem from Section 3.2.1, in 

which a sequence of three decision trees were constructed. The second tree i 2 in 

this sequence is pictured in Figure 3.3b. Under the Second Best Action heuristic, 

each leaf of this tree is given a heuristic value corresponding to the value of the 
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alternate action, as follows: 

£[S|D=takeit, V=sunny] = 22.5424 

£[S|D=takeit, V=cloudy] = 35.0 

£[S|D=leaveathome, V=rainy] = 13.4615 

Under this heuristic, the context V=cloudy is ranked the highest. This context hap­

pens to be the only context with positive MEVIt2. 

For this example, the various heuristics make different suggestions, and only 

the second best heuristic guesses correctly. This behaviour should not be seen as 

general behaviour; an empirical demonstration of the heuristics is found in Sec­

tion 3.5. 

The random leaf heuristic 

This heuristic chooses a leaf at random, with uniform probability. This is very cheap 

computationally. If any of the above heuristics are effective, they must perform 

better on average than random choices, considering the relative computational costs. 

3.5 Information Refinement Applied 

In Section 3.4.1, the information refinement algorithm was shown to converge to 

the optimal policy after 0(bn) steps; this is the same order as traditional methods 

using exhaustive enumeration of the information space. Because the information 

refinement algorithm summarizes information states using contexts, this approach 

may construct policies which are valuable to the decision maker without exploring 

the whole information space. 
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The degree to which a policy constructed by information refinement approx­

imates the optimal policy is an important way of evaluating the algorithm. The 

optimal policy could have expected object value as high as m a x w e n n ^ v(w), where 

v is the value function for the value node in the influence diagram. Therefore, a 

loose upper bound on the error in the expected value of an anytime policy is given 

by: 

Es* — E$ < max v(w) — E$ 
weQnv 

This estimate is exact for influence diagrams that have an optimal policy with ex­

pected object value equal to m a x w e n n y v(w). In general, the decision maker does 

not know Es* without computing a complete policy. 

In this section, we explore the space of single-decision influence diagrams, 

and show the performance of information refinement. We show that there are influ­

ence diagrams for which information refinement is able to produce good approxi­

mations for the optimal policy at lower cost than exploring the information space 

exhaustively. We argue that these problems have properties in common with in­

fluence diagrams which are instances of real decision problems for real decision 

makers. We will also see how well the various heuristics and strategies work. 

3.5.1 The sample space of influence diagrams 

The space of all influence diagrams with a single decision node is vast. The degrees 

of freedom include: 

• the number of chance nodes 

- in total 
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Figure 3.6: A template for a simple influence diagram. 
This template influence diagram has one decision node and n informational prede­
cessors. 

- which are parents of the decision node D: UD 

- which are parents of the value node V: riy 

• the number of values taken by a chance node 

• the interdependence of the chance nodes 

• the probability distribution over the chance nodes 

• the number of values taken by the decision node 

• the value function 

Because it is not feasible to sample this entire space, we investigate the empirical 

performance of information refinement on randomly generated influence diagrams, 

sampled from a specific class of influence diagram. This class is described below. 

The remainder of this subsection describes this class of problems, and shows how 

variations within this class result in problems with interesting properties. 
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This class of influence diagram is pictured in Figure 3.6. For brevity, this 

class is called the "l-TD(n)" class, where n is the number of chance nodes. For 

simplicity, we consider only binary-valued chance nodes, and a binary-valued deci­

sion node. 

The l-ID(n) class has the property that all the chance nodes are parents of 

the decision node and the value node. Any influence diagram with a single decision 

node can be reduced to an influence diagram which has this property by summing 

out all the chance nodes which are not information predecessors (using Shachter's 

algorithm [45], or variable elimination [53]). This does not change the probabil­

ity distribution represented by the influence diagram, but rather, it represents the 

probability distribution in terms of only the directly observable events. As well, the 

size of the information space does not change. This reduction does not limit the 

probability distributions which can be represented; rather, this reduction represents 

the same distribution differently, perhaps less compactly. 

In the l-ID(n) class, the chance nodes are conditionally independent, i.e., 

there is no interdependence between the chance nodes. The size of the informa­

tion space depends on the number of information predecessors, and not on their 

interdependence. Therefore, the total number of steps required to enumerate the 

information space exhaustively is not affected by this constraint. The conditional 

independence of the chance nodes does constrain the probability distributions which 

can be expressed. 

The above description of the class l-ID(n) leaves n unspecified. Informal 

experiments suggested that using n = 8 leads to sample problems which are large 
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enough to demonstrate the behaviour of information refinement, and small enough 

to let information refinement be applied to a large number of sample problems. 

The class also allows for some variation within the class in terms of the 

probability distributions for the chance nodes, and the value function. These di­

mensions affect the performance of information refinement, as follows. If the prob­

ability distributions are such that a small number of contexts contain a majority of 

the probability mass in the problem, an anytime policy which summarizes the least 

likely outcomes may be valuable. If the value function does not depend on all of its 

inputs, an anytime policy may be valuable, if it distinguishes the relevant outcomes. 

These two factors interact, since an unlikely outcome might be extremely good (or 

bad) in value. 

In order to demonstrate the dependence of information refinement on the 

probability distribution and the value function, we need to assess these aspects 

quantitatively. Below, we define two measures, which we call vsize and pr95, 

which are prior assessments of the value function and probability distribution, re­

spectively. For the 1-ED(8) influence diagrams, these measures can be computed 

fairly simply; for more general influence diagrams, it may be too expensive to com­

pute these measures. 

The dependency of a value function on the observable outcomes is assessed 

by determining the size of the smallest decision tree representation for the function. 

This measure, called vsize, is a property of the value function. We are interested 

in large problems, so we approximate the smallest decision tree by building a de­

cision tree for the value function using standard heuristic techniques. In particular, 
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we count the number of internal vertices in the decision tree representation com­

puted using the information gain heuristic [38]. This measure provides an a priori 

assessment of one aspect of the difficulty a given decision problem with respect to 

information refinement. Note that for l-ID(n), Iiv = RD U {D}-

The skewness of the probability distribution over the information states is 

assessed using the following measure: the smallest number of information states 

which are required to describe 95% of the probability mass for all the information 

states. We refer to this measure as pr95. 

The vsize and pr95 measures indicate some of the properties of a given 

influence diagram. For our experiments with l-ID(n), a large number of influence 

diagrams are constructed randomly, so as to vary in terms of these measures. We 

describe the construction process below. 

In order to create skewed probability distributions for the influence dia­

grams, the prior probability distribution for each chance node was selected at ran­

dom according to the parameterized probability density function (PDF): fp(x) = 

kxk~l for x e (0,1], where k = p/(l — p); the expected value of this distribution 

is p. By varying p, random numbers can be generated with any arbitrary mean. 

By carefully selecting p, probability distributions can be created which are very 

skewed. Since the chance nodes are independent, for each chance node Ci in the 

influence diagram, one parameter x» was drawn from fp for a fixed p; the condi­

tional probability table for the chance node given to the chance node is (X J , 1 — Xi). 

For l-ID(n), there are n independent quantities which determine the probability 

distribution for the influence diagram. Our experiments use several values for p. 
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In order to construct value functions with varying dependencies on its inputs, 

the following procedure was used. The parents of the value node were represented 

in a list. With probability 6, the first of these nodes would be used to split the value 

tree at the current position; with probability 1 — 6, the first node was discarded, 

and the procedure repeated for the next node in the list. This procedure is applied 

recursively until there are no more nodes to split on or to discard. The decision 

node was always used as the last split (i.e., with probability 1). The leaves of 

the value tree were selected from [0,1000] from a uniform probability distribution. 

By varying the parameter 6, value functions with more or less structure could be 

constructed. 

For value functions with n chance node predecessors, the expected number 

of splits in a value tree for a fixed 6 is given by the equation:5 

E(b,n) = 2(6 + 1)" - 1 (3.2) 

When 6 = 1 , every parent node is used in every branch of the tree, for a total of 

2" — 1 internal vertices. When 6 = 0 only the decision node is used, for a single 

internal vertex. 
5With probability b, the first node in the list is used to split the tree. Both of these trees have an 

expected number of splits equal to E(b, n — 1). With probability 1 — b, the first node in the list will 
be discarded and a tree will be constructed using n — 1 nodes. Thus we have the recurrence relation: 

E{b,n) = b(l + 2*E(b,n-l)) + {l-b)E(b,n-l) 
= E(b,n-l)(b+l) + b 

The decision node is always used in the tree as the last split; therefore E(b, 0) = 1. It can be verified 
that the solution to this recurrence relation is 

E(b,n) = 2 ( & + l ) n - l 
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Note that this procedure creates a decision tree structure with values at the 

leaves which are chosen from a uniform distribution. The assignment of random 

values at the leaf nodes will also have an effect on the over-all structure of the value 

function. By chance, some branches could have similar values (similar enough that 

the maximization of expected value does not distinguish between them). The point 

here is that the structure created by the above procedure does not determine the 

structure of the value function absolutely. The vsize measure could be smaller than 

the number of nodes used to create the value function. 

The two parameters p and b parameterize the creation of influence diagrams, 

but some variation is still expected. The two measures, vsize and pr95, were pre­

sented to characterize the influence diagrams which were created. For 1-ID(8), 

vsize e ( 1 , . . . , 511} (since 2 8 - 1 =511)andpr95 e { 1 , . . . , 486} (since 95% of 

2 8 is about 486). If vsize is small, then the value function has a small tree represen­

tation. If pr95 is small, the joint probability distribution of the information states is 

skewed. 

3.5.2 Experiment 

In order to judge the effectiveness of our algorithm, and the heuristic components, 

the information refinement algorithm was applied to several hundred influence dia­

grams with the topology of 1-ID(8), described above. 

The l-ID(n) class of influence diagram allows variation in three important 

dimensions. The choice of n = 8 makes the problem non-trivial in size. The class 

allows variation in the probability distribution and value function, which we explore 
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in this experiment. 

The conditional independence of the chance nodes in the l-ID(n) simplifies 

the sampling of probability distributions for our experiment. It also excludes more 

complicated probability distributions. However, our experiments are intended to 

explore the pr95 — vsize space, because these measures reflect general properties 

of influence diagrams that affect our algorithms. 

Four points in the pr95 — vsize space were chosen so that the influence dia­

grams created would exhibit differences in the skewness of probability distributions, 

and the structure of the value function. The point (pr95, vsize) = (10,10) was cho­

sen as an extreme in the space. The point (pr95, vsize) = (200, 200) was chosen as 

a point roughly in the center of the space. The points (pr95, vsize) = (10,200) and 

(pr95, vsize) = (200,10) were chosen to illustrate how the algorithm is affected 

by changes in one or other dimension. 

Influence diagrams were created to have these (pr95, vsize) properties on 

average. The parameters p and b were selected to create these four points as follows: 

p = 0.9757 for pr95 = 10; p = 0.55 for pr95 = 200; b = 0.2375 for vsize = 10; 

b = 0.7794 for vsize = 200. 

It happens that vsize is very strongly correlated with the number of splits 

used to build the value function: in most cases, the vsize of a value function is 

exactly the number of splits used to create the value function using b. Note that 

this is not necessarily true, since the method we used to create the value trees could 

result in a vsize which is smaller than the number of splits used to build the value 

tree. Equation 3.2 was used to build value functions of clustered around a specified 
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(10,200) (200,200) 
Value Avg STD Value Avg STD 

p 0.9757 pr95 8.53 2.2 p 0.55 pr95 192.5 61.9 
b 0.7794 vsize 201.0 72.4 b 0.7794 vsize 191.5 73.3 

(10,10) (200,10) 
Value Avg STD Value Avg STD 

p 0.9757 pr95 8.72 2.9 p 0.55 pr95 173.5 70.1 
b 0.2375 vsi^e 10.4 9.3 b 0.2375 vsize 10.4 9.0 

Table 3.2: Four points in pr9b-vsize space. 
One hundred influence diagrams were created at each point in this space. The given 
values for p and b resulted in influence diagrams clustered around these points in 
the space. The average pr95 and vsize of each set of 100 influence diagrams is 
shown, with standard deviations. 

vsize. 

The correspondence between p and pr95 was estimated by creating 10 influ­

ence diagrams at 10 equally spaced values for p, and computing pr95 for each. With 

this estimate of the relationship between p and pr9b, p values were interpolated to 

produce influence diagrams with the desired pr9b measures. 

One hundred influence diagrams were created for each of the four points in 

the space. The average (pr95, vsize) values are listed in Table 3.2. Note that the 

standard deviations are sometimes quite large. The influence diagrams are centered 

around the four points, but some of them are relatively far from the intended point. 

The information refinement algorithm was applied to each problem using 

each of the 12 heuristic/strategy combinations. Each application counted the num­

ber of refinements made to the tree, the number of queries needed for each re­

finement, and the value of the tree at each refinement. The algorithms were run 
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to completion; i.e., the complete decision tree was constructed for each influence 

diagram. 

We describe the behaviour of an implementation of the single stage algo­

rithm, running the procedure until the complete decision tree is achieved. The data 

points we collect represent decision trees in terms of the tree's expected object 

value, the number of leaf nodes in the tree, and the number of queries made to the 

Bayesian network during the construction of the tree. 

The point at which information refinement has constructed a policy worth 

100% of the optimal policy's expected value was recorded as the "100% point." 

The point at which the current policy is worth 95% of optimal was recorded as the 

"95% point." 

Averages for the number of queries used to reach the 95% and 100% points 

were computed for each set of influence diagrams and for each heuristic/strategy 

combination. As well, the average number of leaf vertices in the decision trees at 

the 95% and 100% points were computed. 

Note that the information refinement algorithm can not tell if the policy is 

optimal by looking at its expected value. However, if there are no more extensible 

leaf vertices, the policy is guaranteed to maximize expected object utility (Corol­

lary 7, page 73). The data points were recorded when the refinement process was 

complete. 

The data are summarized in tables: Table 3.3 and Table 3.4 report the aver­

age number of queries used by information refinement for all the problems.6 These 

6 A single table would have been ideal; however, such a table is too large to fit on a single page. 
The placement of these tables was chosen so that the variations in pr95 are horizontal, and variations 
in vsize are vertical. The results from the (10,10) influence diagrams are located in the lower left 
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two tables have two subtables each: Table 3.3 summarizes the data collected for the 

points (10,10) (lower subtable (b)), and (10,200) (upper subtable (a)); Table 3.4 

summarizes the data collected for the points (200,10) (lower subtable (b)) and 

(200,200) (upper subtable (a)). Each subtable lists means and standard deviations 

for a single set of influence diagrams, showing the number of queries used to con­

struct policies reaching 95% and 100% points. 

Table 3.5 and Table 3.6 report the average number of leaf vertices used to 

represent the anytime policies. The means and standard deviations of the size of 

the decision trees in terms of the number of leaf vertices are shown for the 95% 

and 100% points. This data indicates the size of the decision trees computed by 

information refinement. 

Note that for all the influence diagrams summarized by these tables, exhaus­

tive enumeration would require 512 queries to complete the optimal policy, using 

256 leaf vertices. 

We discuss the results of each of these points below. 

The point (10,10) 

Table 3.3b summarizes those influence diagrams with very skewed probability dis­

tributions, and very small value functions. Of the 100 problems in this set, 27 had 

optimal policies which could be expressed as a single action; i.e., after initialization, 

no refinement was needed to improve the policy. Of the remaining 73 problems, 43 

had policies for which the initial policy achieved 95% of the value of the optimal 

policy. The table shows that for these problems, the average number of queries 

hand corner, "the origin." 
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Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 42.4 43.1 895.0 193.9 
Second Best Maximal 76.0 71.0 1435.0 254.2 

Random 33.2 24.9 543.1 113.3 
Greedy 117.7 175.0 1171.9 364.2 

Post Hoc Maximal 76.1 67.7 1838.8 543.2 
Random 191.8 252.7 874.5 159.7 
Greedy 40.9 37.0 915.5 203.4 

Most Likely Maximal 74.8 66.4 1434.2 258.3 
Random 29.6 20.9 543.1 117.3 
Greedy 332.8 465.2 1446.5 267.0 

Random Leaf Maximal 134.7 258.6 2110.1 427.9 
Random 263.1 304.5 935.6 156.7 

(a) (10,200) 

Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 18.2 32.3 494.7 479.2 
Second Best Maximal 25.5 43.5 514.1 544.1 

Random 16.1 23.2 334.0 233.1 
Greedy 31.1 81.0 367.8 506.3 

Post Hoc Maximal 28.1 58.2 354.5 526.0 
Random 99.0 224.2 579.7 408.7 
Greedy 18.4 33.3 552.8 494.9 

Most Likely Maximal 25.7 44.9 550.3 565.2 
Random 16.3 23.7 371.7 253.3 
Greedy 48.8 175.8 670.7 711.8 

Random Leaf Maximal 31.4 76.7 691.5 754.7 
Random 124.9 261.6 631.8 456.0 

(b) (10,10) 

Table 3.3: Summary of results for 1-LD(8): queries (first half). 
These two tables show the results of information refinement applied to two sets 
of 100 influence diagrams, in terms of the number of queries used. The columns 
represent the mean (and standard deviation) for the number of queries needed to 
find policies whose value is at least 95% or 100% of the value of the optimal policy. 
The summary continues in Table 3.4. 
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Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Second Best 
Greedy 
Maximal 
Random 

840.1 
1276.4 
585.9 

299.2 
431.2 
194.1 

2404.8 
3335.9 
1724.0 

250.5 
290.4 
79.9 

Post Hoc 
Greedy 
Maximal 
Random 

1661.4 
2288.8 
1314.4 

518.8 
833.5 
325.1 

2416.3 
3392.9 
1768.5 

297.6 
242.3 

22.0 

Most Likely 
Greedy 
Maximal 
Random 

907.8 
1382.5 
628.5 

312.5 
456.0 
214.8 

2439.1 
3390.9 
1750.0 

258.1 
252.9 

66.8 

Random Leaf 
Greedy 
Maximal 
Random 

1916.7 
2516.8 
1402.9 

403.1 
632.2 
280.4 

2502.6 
3423.6 
1766.6 

135.7 
160.7 
31.4 

(a) (200,200) 

Heuristic Strategy 95% 
Mean S.D. 

100% 
Mean S.D. 

Second Best 
Greedy 
Maximal 
Random 

207.8 
197.5 
208.9 

299.9 
308.8 
221.4 

1003.2 
960.0 

1041.7 

1059.0 
1130.3 
684.5 

Post Hoc 
Greedy 
Maximal 
Random 

355.1 
333.2 
647.6 

649.2 
712.0 
645.9 

906.4 
895.7 

1207.3 

1116.4 
1202.2 
766.7 

Most Likely 
Greedy 
Maximal 
Random 

247.7 
223.7 
249.9 

352.6 
370.6 
256.2 

1100.0 
1044.1 
1202.1 

1139.9 
1239.1 
739.9 

Random Leaf 
Greedy 
Maximal 
Random 

648.0 
407.8 
690.7 

871.4 
766.2 
659.3 

1335.2 
1151.9 
1194.4 

1233.4 
1348.5 
764.4 

(b) (200,10) 

Table 3.4: Summary of results for 1-ID(8): queries (second half)-
This table summarizes the results from applying information refinement to two sets 
of 100 influence diagrams. This table is organized into two subtables, each corre­
sponding to one of the sets. This table, with Table 3.3, presents a summary of the 
data collected for all four sets of influence diagram. 
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Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 3.7 2.9 73.5 16.7 
Second Best Maximal 2.6 2.2 72.4 16.4 

Random 5.3 3.6 78.2 16.2 
Greedy 9.2 13.2 96.3 34.9 

Post Hoc Maximal 2.4 1.5 91.1 40.6 
Random 28.0 36.1 125.5 22.8 
Greedy 3.6 2.5 75.5 16.8 

Most Likely Maximal 2.5 1.9 72.6 16.7 
Random 4.8 3.0 78.2 16.8 
Greedy 28.3 40.0 127.2 26.8 

Random Leaf Maximal 5.5 13.2 121.8 32.3 
Random 38.2 43.5 134.2 22.4 

(a) (10,200) 

Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 1.8 1.9 29.4 29.3 
Second Best Maximal 1.4 1.1 24.2 28.0 

Random 2.9 3.'3 48.3 33.3 
Greedy 2.5 4.8 19.5 31.6 

Post Hoc Maximal 1.5 1.3 13.1 27.0 
Random 14.7 32.0 83.4 58.4 
Greedy 1.8 2.0 33.0 30.8 

Most Likely Maximal 1.5 1.2 26.3 29.5 
Random 2.9 3.4 53.7 36.2 
Greedy 3.8 11.5 43.3 49.2 

Random Leaf Maximal 1.8 3.3 36.9 44.4 
Random 18.4 37.4 90.8 65.1 

(b) (10,10) 

Table 3.5: Summary of results for 1-ID(8): size (first half). 
These two tables show the results of information refinement applied to two sets of 
influence diagrams, in terms of the size of the decision trees. The data represent the 
mean (and standard deviation )for the number of leaf vertices used in policies whose 
value is at least 95% or 100% of the value of the optimal policy. The summary 
continues in Table 3.6). 
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Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 68.9 27.5 236.0 28.1 
Second Best Maximal 58.0 25.3 234.8 28.9 

Random 84.3 27.7 246.9 11.4 
Greedy 154.4 56.2 237.5 35.7 

Post Hoc Maximal 135.9 68.1 240.3 27.6 
Random 188.3 46.4 253.2 3.1 
Greedy 75.3 29.1 240.4 27.4 

Most Likely Maximal 66.5 28.0 241.0 25.5 
Random 90.4 30.7 250.6 9.5 
Greedy 186.5 42.7 248.6 12.1 

Random Leaf Maximal 169.1 50.6 246.2 15.0 
Random 201.0 40.1 252.9 4.5 

(a) (200,200) 

Heuristic Strategy 95% 100% 
Mean S.D. Mean S.D. 

Greedy 11.8 17.6 72.8 83.5 
Second Best Maximal 7.4 12.8 56.0 72.7 

Random 30.4 31.6 149.4 97.8 
Greedy 22.4 46.4 63.2 88.1 

Post Hoc Maximal 15.6 38.9 49.4 78.0 
Random 93.1 92.3 173.1 109.5 
Greedy 14.3 22.3 81.2 91.3 

Most Likely Maximal 9.0 17.2 63.4 82.3 
Random 36.3 36.6 172.3 105.7 
Greedy 49.7 70.7 105.6 101.4 

Random Leaf Maximal 23.8 51.2 77.3 95.0 
Random 99.2 94.2 171.2 109.2 

(b) (200,10) 

Table 3.6: Summary of results for 1-ID(8): size (second half). 
This table, along with Table 3.5, summarizes the results of applying information 
refinement to the four sets of influence diagrams. 
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needed to reach the 95% point is very much less than 512. The data also shows 

that on average, to compute the optimal policy, five of the variations of the informa­

tion refinement algorithm required fewer than 512 queries; seven of the variations 

required more than 512. 

The least average number of queries to reach the 95% point on these prob­

lems was achieved by the Most Likely Context/Random Extension combination, 

which required only 16.1 queries on average. Recall that for 70 of these, the 95% 

point was reached during the initialization step of the algorithm. The remaining 

problems averaged 46.6 queries to reach the 95% point. The Most Likely Con­

text/Random Extension combination had very similar results. 

The Random Leaf/Random Extension Extension combination is shown to 

have the worst average performance for reaching the 95% point of all the combi­

nations. The combination required 124.9 queries on average, which is still much 

less than would be required by exhaustive enumeration. Of the 30 problems whose 

initial policy has less than 95% of the optimal expected utility, the average number 

of queries needed was 409.5. 

The averages for the Most Likely Context heuristic (all strategies) and the 

Second Best Action heuristic (all strategies) showed nearly identical averages for 

reaching the 95% point. When combined with the Greedy Extension strategy, the 

two heuristics differed on only one of the 100 problems. When combined with 

the Maximal Extension strategy, the two heuristics differed only on the very same 

problem. This nearly identical behaviour was not observed for these two heuris­

tics using the Random Extension strategy on a problem by problem basis, but the 
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average performance was quite similar. 

Another similarity is apparent between the Post Hoc heuristic and the Ran­

dom Leaf heuristic. For these two heuristics, the Random Extension strategy re­

quires more queries on average to reach the 95% point. The Maximal Extension 

strategy required marginally fewer queries than the Greedy Extension strategy. Due 

to the high variance of the data, this difference is not conclusive. However, a closer 

look at the raw data was more conclusive. On 5 problems, the Post Hoc/Greedy Ex­

tension combination found policies for the 95% point with fewer queries than the 

Random Leaf/Greedy Extension combination; on 3 problems, the Post Hoc/Greedy 

Extension combination found policies for the 95% point with more queries than the 

Random Leaf/Greedy Extension combination; on 92 of the problems, the two com­

binations required an identical number of queries to reach the 95% point. Recall 

that 70 of the problems have initial policies worth at least 95% of optimal; so for 22 

of the 30 problems which did not initialize to the 95% point, the Post Hoc/Greedy 

Extension and Random Leaf/Greedy Extension combinations reach the 95% point 

using identical numbers of queries. Another similarity between the Post Hoc heuris­

tic and the Random Leaf heuristic is the performance of the Random Leaf strategy: 

it had the poorest performance of the three strategies. Compare this to the fact that 

the Random Leaf strategy had the best performance for the Most Likely Context 

and Second Best Action heuristics. 

The standard deviations in the table reveals that there is a lot of variation in 

the raw data. This variation is due in part to the sampling of the influence diagrams. 

The method used to create "similar" influence diagrams created problems withpr95 
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between 3 and 21, and v between 1 and 63. Another factor in the large variance of 
the data is the degree to which the optimal policy can be approximated by a small 
decision tree. This factor is of interest, but it is not completely determined by the 
properties pr95 and v. 

The Second Best Action/Random Extension combination used the fewest 
queries on average to reach the 100% point, needing 334.0. The Most Likely Con­
text/Random Extension combination used 371.7 queries on average, which, given 
the large variation in the data, is comparable. Similarly, the Post Hoc/Maximal Ex­
tension combination required 354.5 queries on average, and the Post Hoc/Greedy 
Extension required 367.8 queries. These combinations used fewer queries on aver­
age than would be required by exhaustive enumeration. 

The data in Table 3.5b show the average size of the decision trees computed 
for these problems, in terms of the number of leaf vertices in the tree at the 95% 
and 100% points. The Maximal Extension strategy computed the smallest decision 
trees (e.g., 1.4 leaf vertices on average when combined with the Second Best Action 
heuristic), while the Random Extension strategy built trees which were on average, 
much larger. Complete trees have a maximum of 256 leaf vertices, but may be 
smaller if some information states have probability zero. The trees which achieved 
the 95% point were much smaller than the complete trees for these problems. 

The point (200,200) 

Table 3.4a summarizes the data collected from the influence diagrams whose prob­
ability distributions are much less skewed, and the value functions are much larger. 
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The table shows that information refinement requires more than 512 queries to reach 

the 95% point, and much more than 512 queries to find an optimal policy. 

The data in Table 3.4a has several qualitative similarities to Table 3.3b. The 

Second Best Action/Random Extension combination reached the 95% point with 

the smallest average number of queries, 585.9. This was closely followed by Most 

Likely Context/Random Extension which requires 628.5 queries on average. The 

difference, again, is too small to be conclusive. However, the raw data shows that 

for 71 of the 100 problems, Second Best Action/Random Extension required fewer 

queries to reach the 95% point than does Most Likely Context/Random Extension; 

for three of the problems, the number of queries needed was the same; for the 

remaining 26 problems, Most Likely Context/Random Extension required fewer 

queries than Second Best Action/Random Extension. The two heuristics, Second 

Best Action and Most Likely Context had comparable results for each strategy. 

This observation was also made for Table 3.3b. 

Table 3.4a also shows that the Post Hoc and Random Leaf heuristics required 

about double the number of queries to reach the 95% point, compared to the data 

for Second Best Action and Most Likely Context heuristics. 

On average, an optimal policy (i.e., the trees at the 100% point) was com­

puted with least average cost by the Second Best Action/Random Extension com­

bination. However, the table shows that, on average, the choice of heuristic was 

almost irrelevant when computing the optimal policy. The Random Extension strat­

egy used the fewest queries, and the Maximal Extension strategy used the most. The 

analysis in Section 3.4.1 demonstrated that the strategies would show this behaviour 
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when constructing complete trees. The complete trees for the influence diagrams of 

this set (200,200) have 255 non-leaf vertices; the trees at the 100% point averaged 

234.8 internal vertices; very close to complete trees. 

When a complete tree is constructed, the difference between the heuristics 

is mainly the order in which the information predecessors are added to the decision 

tree, although there will be some variation as to whether an information predecessor 

will be added to the tree as the last possible extension. Much more important, for 

the complete tree, is the strategy used to extend the context at a given leaf, as this 

affects the number of queries used to compute each extension. 

Table 3.6a shows the average size of the policies for these problems. For 

most of the heuristics, the Maximal Extension strategy constructed smaller trees. 

For the 95% point, the Random Leaf heuristic builds much larger trees on average 

than the other heuristics. However, the average size of the 100% point are roughly 

equal, and are only slightly smaller than the largest decision tree for 1-HD(8) prob­

lems. This means that for these problems, an optimal policy needs to consider most 

of the information predecessors. 

The points (10,200) and (200,10) 

The information refinement algorithm was applied to two other sets of influence 

diagrams. The data in Table 3.3a summarize the behaviour of the various heuris­

tic/ strategy combinations on 100 problems with highly skewed probability dis­

tributions, and large value functions, i.e., pr95 = 10 and vsize = 200. The 

data in Table 3.4b summarize the behaviour of the various combinations on 100 
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problems with less skewed probability distributions, and small value functions, i.e., 

pr9b = 200 and vsize = 10. 

Table 3.3a shows the results for the (10,200) problems. It shows that on 

average, all the combinations were able to reach the 95% point with fewer than 512 

queries. The Most Likely Context/Random Extension combination showed the best 

average performance with 29.6 queries, and the worst was Random Leaf/Greedy 

Extension, with 332.8 queries. 

Comparing the parts (a) and (b) of Table 3.3, some notable similarities can 

be observed under the 95% column. The Second Best Action heuristic and the 

Most Likely Context heuristic are very closely matched in both tables. The Random 

Extension heuristic obtained the highest average number of queries for each strategy 

in both tables. The Maximal Extension strategy obtained very similar results for all 

heuristics except the Random Extension heuristic. 

Many of these similarities are also true for the 100% column in parts (a) 

and (b) of Table 3.3. The Second Best Action and Most Likely Context heuristics 

had very similar average results, and the Random Extension heuristic obtained the 

highest average number of queries for each strategy in both tables. 

The results in Table 3.4b for the (200,10) problems share many of these 

similarities. In general, the Second Best Action and Most Likely Context heuristics 

had very similar results, and were superior to the other two heuristics. However, for 

these problems, the Maximal Extension strategy obtained the best performance in 

reaching the 95% and the 100% points. This is different from all the other tables, 

in which the Random Extension strategy obtained the fewest number of queries. 
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Another interesting observation about Table 3.4b is that the Post Hoc/Maximal 

Extension combination reached the 100% point with the fewest average number of 

queries. 

Convergence behaviour 

The data in Tables 3.3 and 3.4 represent one view of the data for the experiment. 

The tables show the average number of queries required to construct a "valuable" 

policy. The tables hide such details as the average value of a policy after a number 

of queries, and the actual convergence pattern. The choice of the 95% point as a 

valuable policy is somewhat arbitrary, made for comparison between problems of 

varying properties. 

In this section, we take another view of the behaviour of all the heuris­

tic/ strategy combinations of information refinement on the influence diagrams of 

the (200,200) set. We are interested in these in particular, since the data in Ta­

ble 3.4a show that information refinement reaches the 95% point with more than 

512 queries. The data we present show the value of the policies constructed by 

information refinement as a function of the number of queries. 

Table 3.4a is shown in Figure 3.7 plots the performance profile of the in­

formation refinement algorithm using the Random Extension strategy for each of 

the heuristics. The average expected value of the decision trees for the problems is 

plotted against the number of queries made to the Bayesian network. In this graph, 

the convergence of the various combinations can be compared. The vertical line 

in graph indicates the 512 query point, i.e., the point at which traditional methods 
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1-ID(8) at (200,200): Various Heuristic with Random Strategy 
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Figure 3.7: Performance profile for the Random Extension strategy. 
A graph of the average expected value of policies constructed by information refine­
ment as a function of the number of queries. This graph shows the results of all four 
heuristics paired with the Random Extension strategy, when applied to the prob­
lems in the (200,200) set. The error bars represent two standard deviations from 
the mean. Note that exhaustive enumeration would require 512 queries, marked in 
the graph by the vertical line to the right of the origin. This data is related to the 
data in Table 3.4a. 
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using exhaustive enumeration would complete an optimal policy. The error bars in 

the figure represent two standard deviations from the mean value. 

Note that the underlying data for each problem is discrete; the value of a 

decision tree changes in discrete steps. For clarity, however, the average data is 

drawn using lines. As well, the expected value of the optimal policy is likely to 

be different for each problem. For this reason, the expected value of each policy 

was normalized in the following way: the value of acting randomly with uniform 

distribution over the possible actions (the first point recorded for each problem) 

was translated to 0.0, and the value of the optimal policy was translated to 1.0. The 

average performance was computed by averaging the scaled data points for each 

problem. 

The graph demonstrates the similarities evident in the tables. The graph also 

shows that average expected value of the first few policies are the roughly equal for 

all the heuristics. After about 100 queries, distinct convergence patterns begin to 

become noticeable. 

As noted above, none of the combinations reach the 95% point before 512 

queries. However, the Second Best Action/Random Extension and Most Likely 

Context/Random Extension combinations produce trees which, on average, are 

worth 75.3% of the optimal policy after 206 queries (the average scaled value is 

0.753, with standard deviation 0.11). If a decision maker does not have the re­

sources to perform exhaustive enumeration, a policy worth 75% of the optimal pol­

icy may be sufficiently valuable. 

Similar graphs for the Greedy Extension and Maximal Extension strategies 

107 



1-ID(8) at (200,200): Various Heuristic with Greedy Strategy 
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Figure 3.8: Performance profile for the Greedy Extension strategy. 
A graph of the average expected value of policies constructed by information re­
finement as a function of the number of queries. This graph shows the results of 
all four heuristics paired with the Greedy Extension strategy, when applied to the 
problems in the (200,200) set. This data is related to the data in Table 3.4a. 
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1-ID(8) at (200,200): Various Heuristic with Maximal Strategy 

Figure 3.9: Performance profile for the Maximal Extension strategy. 
A graph of the average expected value of policies constructed by information re­
finement as a function of the number of queries. This graph shows the results of 
all four heuristics paired with the Maximal Extension strategy, when applied to the 
problems in the (200,200) set. This data is related to the data in Table 3.4a. 

are found in Figures 3.8 and 3.9, respectively. These graphs show that the Second 

Best Action and the Most Likely Context heuristics are very similar on average at 

all points. Note also that the Random Leaf heuristic shows the slowest average 

convergence in all cases. 

3.5.3 Conclusions 

The experiment was designed to compare the effects of the various heuristics and 

strategies on a restricted class of influence diagram, 1-00(8). The expected object 
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value of the policies was shown to increase on average with the computational re­

sources queries used. The data show that the Second Best Action and Most Likely 

Context heuristics are superior to the Post Hoc and Random Leaf heuristics terms 

of the number of queries needed to construct policies which attained 95% of the 

optimal expected value. 

The data also showed that the effectiveness of the combination of heuris­

tics and strategies depends on the qualities of the decision problem. The Random 

Extension strategy combined with the Second Best Action heuristic was often able 

to build valuable policies with fewer queries than any other combination. How­

ever, the Random Extension strategy consistently built larger trees than the other 

strategies, implying that more of the information predecessors may be used in the 

decision tree. 

The data shows that the pr95 and vsize properties are correlated to the be­

haviour of the heuristics and strategies used by information refinement. For highly 

skewed probability distributions, or very small value functions, information refine­

ment was able to find polices with 95% of the value of the optimal policy long 

before traditional methods could complete a policy. For problems with fairly flat 

probability distributions, and fairly large value functions, information refinement 

was unable, on average, to reach the 95% point using fewer than 512 queries. How­

ever, the Second Best Action and Most Likely Context heuristics were able to con­

struct policies which have fairly high expected value even for these problems. 

The next chapter applies the information refinement approach to multi-stage 

decision problems. Empirical data in that chapter demonstrate the value of the 
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approach in finding policies for which exhaustive enumeration of the information 

space would be infeasible. For those experiments, we apply the Second Best Ac­

tion heuristic and the Greedy Extension strategy, on the basis of the experiments 

presented here. The Random Extension strategy is not used in our multi-stage ex­

periments; this strategy constructs large decision trees at fairly low cost, in terms 

of the number of queries used. For influence diagrams with a single decision node, 

this may be a reasonable trade-off. However, as we show in the next chapter, large 

decision trees increase the connectivity of the Bayesian network which we use to 

compute expected value and posterior probability. For influence diagrams with sev­

eral decision nodes, the connectivity of the Bayesian network increases whenever 

a new information predecessor is included in a decision tree. This affects the effi­

ciency of the computation within the Bayesian network, as the efficiency of exact 

computation depends on the connectivity of the network. 

3.6 Related work 

Lehner and Sadigh [26] discuss the issue of compiling a decision problem into a 

situation-action tree. Their concerns do not emphasize computational cost; their 

goal is to take a complex problem and create rules for use by human decision mak­

ers. The goal is to find the best decision tree of a certain size, regardless of the cost 

of computing them. 

Their basic algorithm is equivalent to the Post Hoc/Maximal Extension vari­

ation of the information refinement algorithm presented in Section 3.2. It is in­

teresting to note that the algorithm is presented as greedy but without a heuristic 
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component. Their algorithm precomputes the best extension subtree for each leaf 

in the decision tree, and keeps the extension subtrees in reserve. The best extension 

in reserve is attached to the decision tree, and the reserve is augmented by refining 

the new contexts just added to the tree. In effect, the best reserved extension is used 

to invoke further extensions. This is equivalent to the Post Hoc heuristic, which 

orders refinements based on the value of previous refinement. 

Lehner and Sadigh extend their basic algorithm, proposing one which searches 

for combinations of n observations to refine the tree on each refinement step (when 

n = 1, the algorithm is roughly equivalent to DTI). The argument for looking for 

multiple observations is that the probability of an extension with zero EVIt is small 

when n = 1, but smaller when n > 1. The argument against this approach is based 

on the cost of examining all n step observation sequences. 

Heckerman et al. [12] discuss an algorithm which is the equivalent of Post 

Hoc/Maximal Extension variation discussed here. Their interest is in representing a 

policy which can be used effectively by the decision maker on-line, in the following 

sense. The approach is to construct a decision tree which most effectively allows the 

decision maker to choose an action on-line. The costs of building the decision tree 

are not taken into account; the costs of using the decision tree is compared to the 

cost of other on-line approaches. In contrast, the information refinement approach 

is primarily concerned with the cost of constructing a decision tree. 

Horvitz and Klein [19] describe a decision theoretic approach to categoriza­

tion based on the of utility of states or actions comprising the category. By aggre­

gating states with similar utility values, and actions with similar values, decision 

112 



models can be simplified for increased efficiency. This approach is the opposite of 

the refinement approach, which splits aggregate states by determining differences 

in expected value. 

Poh and Horvitz [33] present a greedy approach to exploring how random 

variables in a decision model might be refined, i.e., be given a more fine grained set 

of values, to increase the utility of a decision. This work is intended to automate 

some of the effort that a decision analyst would put into reframing a decision prob­

lem, that is, extending the possible actions or outcomes or utilities for a decision 

model that has been already been constructed. This work deals with the refine­

ment problem on a lower level than information refinement, which uses the random 

variables to split contexts. 

Zhang & Boerlage [51] simplify decision problems by removing inconsis­

tent information states and "insignificant details" before constructing a policy for 

the problem. The significance of the details in the information state is measured in 

terms of the effects of the information state on the posterior probabilities of (unob-

servable) state variables. This is similar to the approach taken by Horvitz and Klein 

[19], who measure significance by the effects of information state on the decision 

maker's expected utility. Both of these approaches construct their abstractions dur­

ing a preprocessing stage to decision making. This (and similar) preprocessing is 

still available for use before policies are constructed using information refinement. 

However, the preprocessing overhead can be significant (as there are many infor­

mation states to abstract). The information refinement approach requires very little 

preprocessing work. 
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For decision problems represented by Markov decision processes (MDPs) 

[1, 35], optimal policies have been approximated by aggregating states, e.g. [9, 8, 

47]. These approaches exploit modifed representations of the the decision problem. 

White and Scherer [50] present an approximation algorithm for solving partially ob­

servable MDPs by using only a subset of the observations which are available over 

time. White and Scherer approximate the entire history using m most recent ob­

servations, whereas information refinement chooses which observations to include 

based on heuristic value. 

Information refinement is closely related to "input generalization" which is 

used frequently to help deal with large state spaces. In reinforcement learning, the 

Q-learning algorithm [49] learns the expected value of acting in a given domain 

by compiling input, action and reward tuples. The so-called Q function which 

eventually determines the expected value function is simply implemented as a table. 

Chapman and Kaelbling [3] adapt the Q-learning algorithm for large input spaces 

by using a decision tree in place of the table to represent the Q-function. The 

decision tree is extended by "splitting" the function on significant input bits, as 

determined by a pair of significance tests (one for value significance, the other for 

perceptual significance). McCallum [30] describes a similar approach which makes 

distinctions in the Q-function based on selected past observations. 

3.7 Summary 

We have shown how a decision function for a decision node can be built incre­

mentally. Asymptotically, the algorithm is only a constant factor worse than any 
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algorithm which exhaustively enumerates the information set. The incremental al­

gorithm can be used to construct a sequence of decision trees, each of which can 

be used by the decision maker as an anytime policy. A number of heuristics and 

strategies were presented which can be used to guide the refinement process. 

The heuristics discussed in this chapter have minimal computational require­

ments. The strategies for choosing an extension dictate how much work goes into a 

single step of information refinement. 

The combination of heuristic and strategy were demonstrated on a large 

number of decision problems. These trials demonstrate that information refinement 

creates decision functions with high value using only a small subset of the infor­

mation available to the decision maker. We have shown that, for the problems we 

have created, the Most Likely Context and Second Best Action heuristics generate 

better anytime policies than the heuristic which makes refinements at random. For 

this reason, the Random Leaf and Post Hoc heuristics have been set aside from the 

investigation of multi-stage influence diagrams. 
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Chapter 4 

Multi-stage decision problems 

In this chapter, we apply information refinement to multi-stage decision problems. 

An algorithm is presented which applies information refinement sequentially to 

each decision node in an influence diagram. This algorithm constructs small deci­

sion trees for each decision node, approximating the optimal expected object utility 

at each stage. 

A second algorithm is presented in which the refinements do not follow an 

established ordering. Domain independent heuristics guide the algorithm applying 

refinements to decision trees in the problem. In both cases we show the effect of 

the algorithm on several multi-stage decision problems. 

4.1 Sequential refinement with resource allocation 

The sequential refinement approach applies the single stage algorithm DTI to each 

decision node in the influence diagram. Refinement starts at stage n, building a 
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procedure SDT 
Input: 

Multi-stage influence diagram with decision nodes D\,...', D., 
Resource allocation ri,...,rn 

Output: 
Policy A = {<5i,..., Sn}, a set of decision trees 

A «— empty set of decision trees 
For each decision node Di,(i — 1,..., n) 

S{ <— the result of applying DTI to Di 
until allocation is consumed 

Add Si to A 
Return the policy A 

Figure 4.1: The sequential refinement algorithm. 

decision tree for Dn, working backwards through the stages, until all the stages 

have decision trees. The size of the decision tree at a particular stage is determined 

by an a priori allocation of resources; refinement continues until the allocation for 

a particular stage is consumed. 

We begin with a high level view of the algorithm (Figure 4.1), and then 

approach the details. The algorithm assumes that the decision maker has determined 

how much computation can be afforded in the construction of the policy, and has 

provided an allocation of computational resources. The algorithm applies the single 

stage algorithm D T I to each decision node in the problem, starting from the last 

and working backwards. The decision trees are not completed; rather, each tree is 

refined until its portion of the allocation has been consumed. 

In the following sections, the details of the algorithm are presented. Because 

information refinement is intended to avoid exhaustive enumeration, there will be 
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situations in which we require the expected value of an action in a particular con­

text, without explicit resolution of all the decisions. In Section 4.1.1, we define 

expected value, accounting for these situations. Section 4.1.2 discusses the induc­

tive nature of the refinement process. Section 4.1.3 discusses the issue of allocation 

of resources to each stage. 

4.1.1 Expected value of a policy 

Let us assume that that a policy A £ + 1 has been constructed for decision nodes 

Dk+i, • • •, Dn. To construct a decision tree for decision node Dk, we need to be 

able to compute the expected value of an action in a context. 

The expected value of an action is well defined when all choices represented 

by decision nodes have been resolved. The dynamic programming approach re­

solves these choices by exhaustive enumeration, and induction, as described in the 

previous section. 

The information refinement approach is intended to avoid exhaustive enu­

meration, by constructing a decision tree which uses a few, relatively small con­

texts. In particular, a decision node Di (where i < k) may or may not appear in a 

given context, indicating that the action at the leaf does not depend on the action 

at Di. However, when computing expected value, it is not obvious what should be 

assumed about these actions. 

In order to resolve the choices in D\,..., Dk-\, we provide a probability 

distribution over the actions of each these decisions. This allows us to define the 

expected value of an action in a context assuming that actions are chosen randomly 
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through stages Di,..., D^-i, thereafter, actions are chosen according to the policy 

already established for Dk+i,..., Dn. In particular, we use uniform distributions 

for Di,..., -Dfc_i, giving no preference for one action over another in those stages 

in which deliberation has not yet occurred. 

For the kth stage of the problem, sequential refinement has constructed a 

policy, denoted Ak+l, for decision nodes D k + i , D n , as well as a corresponding 

value function vk+i : QnDk+1 —> 3?, which is the value of following the policy A £ + 1 

starting in information state w at stage k +1; the function vn+i is the value function 

at the value node in the influence diagram. 

The inductive step at this stage is to use this policy to determine a decision 

function 6k for decision node Dk. Let I be a leaf in the decision tree for Dk, with 

context 7;. The expected value of an action d E flok in the context 7/ is defined as: 

E[v\d,ll]= Y, E vk+l(x\d,w)P(x\d,w)P(w\ll) 
wennDk xennDk+i 

The above discussion has focussed on the the definition of expected value in 

an influence diagram at an intermediate step in the sequential refinement algorithm. 

In the remainder of this section, the computational aspects of these definitions are 

discussed. 

As in the single-stage algorithm, expected object value is computed by pos­

ing queries to a Bayesian network derived from an influence diagram. As before, 

the value node is converted to a chance node, whose probability distribution is the 

normalized value function. 

Following [44], the decision functions Sk+i,..., 5n are installed by setting 

conditional probabilities in the Bayesian network derived from the multi-stage in-
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fluence diagram. First, each information predecessor used in the decision tree 5k is 

connected by a directed arc to the chance node Dk. Second, a conditional probabil­

ity table is provided for the chance node representing Dk, such that for each leaf / 

in the decision tree and each d £ flDk, we have 

P(d|7/) 
1 ii5k{ll) = d 

0 otherwise 

For the decision nodes Di,..., Dk_\, a uniform probability distribution is installed; 

these nodes are treated as chance nodes without predecessors. These can be con­

structed once before any refinement occurs. After a new decision tree 5i has been 

computed, the new probability distribution for Di can be installed, as described 

above. 

4.1.2 Information refinement at stage k 

With the policy Ak+1 installed in the Bayesian network, the single stage algorithm 

DTI can be applied to Dk as if it were the only decision node in the influence di­

agram. The parents of Dk in the influence diagram include D\,..., Dk_i, since 

the influence diagram has no-forgetting arcs. These decision nodes have been con­

verted to chance nodes with uniform probability distributions, as described in Sec­

tion 3.3. 

In Chapter 3, all refinements were made using chance nodes from the in­

fluence diagram. For multi-stage problems, some of the refinements will be made 

using decision nodes as internal vertices. The discussion in Chapter 3, regarding ex­

tensions constructed using chance nodes, applies in multi-stage problems as well. 
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The single stage algorithm D T I can choose which leaf to extend, and which infor­

mation predecessor to split on according to the heuristics and strategies discussed in 

Chapter 3. In the remainder of this section, we discuss the issues which arise when 

decision nodes are used to construct extensions. In particular, we discuss how the 

extension is constructed, and the implications of the method. 

Suppose that the decision tree for stage k is being constructed, and that the 

refinement algorithm has chosen to refine a context 7 using one of the decision 

nodes, say Di e n ^ . During deliberation at stage k, the decision maker does 

not know which of the actions d e Q,Di will be chosen during future deliberation 

at stage i. This uncertainty is modelled by assuming the decision maker could 

choose any of these actions, using a uniform probability distribution as described 

in the previous section. Since it is uncertain which value of Di will have been 

taken, the internal vertex is labelled with Di, and every edge (corresponding to 

each d e ClDi) is given a uniform probability of being taken. Thus the decision 

tree for stage k has the uncertainty over previous actions built into its structure. 

Later, when the refinement process builds a decision tree for Di, the uncertainty 

over action represented in the decision tree for Dk might be resolved: it is possible 

(but not necessary) that the deliberation at stage i will determine a decision function 

Si which will make some of the structure built into Sk superfluous. In some cases, 

the uncertainty would be resolved entirely, such as when later deliberation chooses 

an action for Di in context 7. In other cases, such as when later deliberation chooses 

an action for Di in a context which is consistent with 7, the uncertainty may only 

be reduced. 
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4.1.3 Resource allocation 

The remaining issue for this approach is to determine how much computation to 
invest in each decision tree. A simple technique would threshold the expected object 
value of the tree; however, we cannot predict the expected value of the complete 
tree, so it is impossible to tell if a smaller tree is sufficiently close to the maximal 
expected object value. 

Instead, a fixed investment of computation for each stage is assigned a priori. 

The single stage algorithm is used as a procedure which stops when this allocation 
is consumed. The global resource allocation problem, that is, determining how to 
assign allocations to each stage is a meta-level problem. Our experiments, which 
are presented in Section 4.3.2 were performed to investigate this issue, suggest 
that considerable insight into the specific decision problem is necessary before an 
effective allocation can be made. 

In our experiments, the allocation is given in terms of the number of refine­
ments to be made in the tree. Alternatively, a more fine grained allocation could 
have been used: the number of queries to the Bayesian network. 

4.1.4 Example: The Car Buyer problem 

This particular decision problem is small enough that an exhaustive search through 
the space of possible resource allocations is feasible. Because of the asymmetries 
in the problem itself, very few of the observations are necessary to construct a 
policy which maximizes expected object value. As well, there are no information 
predecessors for the first decision node Test 7, so a single refinement {i.e., the ini-
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tialization of the tree) is all that is required for the last step. 

The sequential refinement algorithm was applied to this problem with four 

resource allocations, which are discussed below. The expected value of the final 

policy were recorded, as well as the expected value of the policies after the algo­

rithm stopped refining a stage. The number of queries required to construct the 

policy were also recorded. The initial policy, in which decision maker acts at ran­

dom with uniform probability, is included in the data as well, and forms a common 

starting point for the allocations. 

Figure 4.2 shows the smallest of the possible resource allocations. Each data 

set represents an allocation of resources, which was fixed a priori. Each data set 

is labelled using a triple, which indicates the resource allocation for the data set; 

the triple < a,b,c > indicates that the first decision node has been allocated a 

refinement steps, the second decision has be allocated b refinement steps, and the 

third has been allocated c refinement steps. An allocation of zero for any decision 

node means that the decision tree is initialized, but not refined. 

In the figure, the data for the four resource allocations are shown. Each 

allocation is represented by a line with four points. The first point for all four allo­

cations is common, and represents the policy in which the decision maker chooses 

actions at random with uniform probability. The four allocations also have the sec­

ond point in common; this point represents the initialization of the decision tree for 

Buy Car?, since this step is performed first by all allocations. 

The smallest allocation assigned only initialization to each decision node; 

this data set is labelled < 0,0,0 >, indicating that each decision tree is initialized, 
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but uses none of the available information. Its expected value is 0.816092. This 

policy is worth approximately 96% of the policy which maximizes expected object 

value, and requires only 9 queries to construct. 

The allocation labelled < 0,1,0 > requires more effort, but result in a policy 

with the same expected object value as the policy constructed using the < 0, 0,0 > 

allocation. The data set labelled < 0,0,1 > shows that a refinement is made in the 

decision tree for the third decision node Buy Car? which allows the process to find 

the optimal policy. The data set labelled < 0,1,1 > also results in a policy which 

maximizes expected object value; the extra refinement in the second stage does 

not result in higher value (in the graph, this refinement is seen as the horizontal 

line between 48 queries and 75 queries). Larger allocations are not shown, as they 

require more computational effort and do not construct superior policies. 

4.1.5 Summary 

A simple algorithm was presented which applies the single-stage information re­

finement procedure to each decision node, using a fixed sequence (i.e., the reverse 

temporal order of the decision nodes) and a priori resource allocation. 

A simple example was given in which it was observed that a fixed sequence 

of refinement steps could cause the decision maker to fail to find crucial observa­

tions. The refinement process is guided by heuristics (i.e., the heuristics and strate­

gies discussed in Chapter 3), and not all refinements result in increases to expected 

value. It may be better to spend more computation at some decision functions than 

others. 
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Car Buyer: Sequential refinement with various resource allocations 

<0, 0, 0> -•— 
<0, 0, 1> -t— 
<0, 1, 0> 
<0. 1. 1> * 

35 40 45 
# Queries 

50 55 60 65 70 75 80 

Figure 4.2: A performance profile for sequential refinement. 
The performance of the sequential refinement algorithm using various resource al­
locations applied to the Car Buyer problem. Each dataset is labelled with three 
integers representing the number of refinements made to a decision node in the 
problem; < a,b,c > means that a refinements were made to Test 1, b refinements 
to Test 2, and c refinements to Buy Car? The policy which maximizes EVi has an 
expected value o/0.844061, and this policy is constructed by two of these trials. 
The exhaustive enumeration of the information space would require more than 200 
queries. 
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Notably, the last decision tree to be completed in the sequential refinement 
approach is the first action the decision maker will have to take. A decision maker 
should avoid having to make random choices, especially as a first action in a se­
quence of action. As the results from single stage computations showed, even a 
simple decision function which uses no observations can make a significant differ­
ence to the object value of the decision tree. Therefore, the sequential refinement 
algorithm must be allowed to run to the limits of its resource allocation. Likewise, 
the resource allocation must be precise enough to allow the sequential refinement 
algorithm to complete its computation before the decision maker has to take action. 
In other words, it is not suitable as an anytime algorithm. 

Section 4.3 shows the behaviour of the sequential refinement algorithm on 
larger problems. The next section presents an algorithm which has the anytime 
property, and does not require an a priori allocation of computational resources. 

4.2 Random access refinement 

In this section, we present an anytime algorithm for computing policies for multi­
stage influence diagrams. A policy is represented by a collection of decision trees, 
one for each decision node in the influence diagram. As in Chapter 3, these decision 
trees prescribe actions for contexts which may not make use of all the information 
available to the decision maker. The policy is refined by choosing a leaf from one 
of these trees and applying a single refinement to the leaf, keeping the rest of the 
policy fixed. 

There is no a priori order in which the trees are refined, which is a departure 
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from standard dynamic programming techniques for building an optimal policy. 

Furthermore, the algorithm always has a current best-known policy available, re­

fining it until the decision maker interrupts the process to act. 

The refinement of a decision tree in the multi-stage problem is similar to the 

refinement of single stage decision functions. However, two additional elements are 

involved. First, the random access refinement algorithm treats the current policy as 

a stochastic policy, though the decision maker will not have to act stochastically; the 

reason and method for this is made clear in Section 4.2.1. Second, a refinement of 

the decision tree for Dk will have global effects on the current best policy. Section 

4.2.2 explains this effect and gives a simple algorithm for updating the effects of 

refinement throughout the current policy. 

4.2.1 Stochastic decision functions 

In the random access refinement approach, we maintain a current best policy, which 

is to be improved by refining of one of the decision trees. If refinement is to im­

prove the current policy, the refinement process must take into account the existing 

choices of the policy. In this section, we show how to represent the current best 

policy as a stochastic policy, so that a refinement at stage k improves the policy, 

without being overly constrained by it. 

In single stage problems, a policy was represented by a deterministic de­

cision tree: one action is prescribed at every leaf of the tree. This is a sufficient 

representation for decision functions in which a single action maximizes the deci­

sion maker's expected object utility. 
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Testl Test 2 

1 transmission i no test 

Buy Car? 

1 Results from Test 1 1 

i no . / X^v^ 0
 i 

1 result / / \ ^^defects 1 

i / not \ buy i i / not 
one \ < 

\ buy defec,s defect\ guaranteed J 

i buy buy 1 

guaranteed \ 

Figure 4.3: Three decision trees. 
These decision trees form a policy for the Car Buyer influence diagram in Fig­
ure 2.3. There is one tree for each decision node: Test 1, Test 2 and Buy Car?. 

For multi-stage problems, random access refinement keeps a current best-

known policy. This policy serves two purposes. First, the policy indicates what the 

decision maker should do if the refinement process were to halt before more refine­

ment occurs; for this purpose, we desire a deterministic policy, which indicates the 

MEV action for each information state. Second, a policy gives a basis upon which 

the refinement process can build an improved policy; for this purpose we need a 

stochastic policy. The reason for this can be made clear by example. 

Consider Figure 4.3, which shows three decision trees, one tree for each 

decision node in the Car Buyer problem (Figure 2.3, page 27). The decision tree 

for Test 7 is a single leaf, which tells the decision maker to perform the test on the 

transmission. Since there are no information predecessors for this decision node, 
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this decision tree is complete. 

The decision tree for Test 2 tells the decision maker not to perform the test. 

Note that this decision node has 2 information predecessors. The decision tree does 

not make use of the available information; every information state is mapped to the 

action no test. 

The decision tree for Buy Car? is a non-trivial tree, using one of four infor­

mation predecessors. This decision function tells the decision maker to check the 

result from the first test: if any defects were found the decision maker should take 

the guarantee option. 

These three decision trees represent a deterministic policy, which the deci­

sion maker might follow. However, this deterministic policy overly constrains the 

refinement process. 

The problem with deterministic decision functions can be seen if the deci­

sion function for Buy Car? were to be refined at the context one defect by Test 

2. If Test 2 were used to refine the decision function for Buy Car? after the algo­

rithm determined that no test should be performed at Test 2, the refinement could 

not increase the expected value of the policy. The reason is that only one value 

of Test 2 is possible according to the policy which has been computed so far. The 

refinement using Test 2 would create a subtree structure with only one non-zero 

probability context, and the action at this context would be the same as the action 

the refinement replaced. Thus, the refinement using Test 2 would not result in a 

positive increase in expected object value for the policy, since the decision tree for 

Buy Car? would increase in size, but the decision function would not change. 
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In effect, a deterministic decision function is too committed to the current 

policy for the purposes of information refinement. If deterministic decision func­

tions are used by the refinement process, splitting a decision function using a deci­

sion node would never change the deterministic policy. 

To solve this problem, the current policy is represented using a stochastic 

mapping from information state to action. For each context 7 in each decision 

tree, each available action has an associated probability, representing the belief that 

future refinement w i l l endorse the action as best in all more refined contexts. We 

show our approach to computing this belief below. Intuitively, this belief is based 

on the idea that the decision maker w i l l act according to the MEV action for a given 

context i f no future refinement is made; however, the belief also acknowledges that 

there is some possibility that future refinement w i l l uncover contexts in which the 

original MEV is no longer the best. 

The belief P(dj|7) that future refinement wi l l endorse the action di as best 

in all contexts which are refinements of 7 is defined by reasoning by cases, as 

follows. Let q be the probability that further refinement w i l l occur after the current 

refinement step. Let rrii be the probability that action di w i l l be taken in any future 

context refined from the given context, i f future refinement occurs. If no further 

refinement occurs, the policy should prescribe the MEV action for each context. 

Let the parameter r» = 1.0 i f action di is the MEV action in context 7; = 0.0 

for all other actions in the context. If there are several MEV actions, one of them is 

assigned r; = 1.0. Using reasoning by cases, we define 

P(di\j) = qrrii + (1 - q)n 
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We assess the parameters q and m; by the following meta-level considerations. 

We argue that rrii should be close to unity if the expected value of action 

di is high relative to the value of possible outcomes. If the expected value of dt 

is relatively high for a context, it is possible that a better action is available for a 

refinement of that context. However, di is probably a good choice in all refinements 

of the context. If there is a much better action dj for some particular refinement of 

7, the context must have relatively low probability; otherwise, the expected object 

value of di in 7 would be lower. Similarly, rrii should be close to zero if the expected 

object value of di in context 7 is relatively low. A simple way to realize this intuition 

is to use rrii oc E[v\di, 7]; that is, rrii is proportional to the expected value of action 

di in context 7. We note that this is a convenient heuristic, since the value E[v\di, 7] 

is a quantity which is computed during the construction of an extension subtree 

(Section 3.3.1, page 65). 

The probability q is the probability that the anytime algorithm will complete 

at least one more refinement without being interrupted. Given that refinements 

consume finite portions of finite computational resources, the probability of being 

interrupted during the next refinement step will increase as these resources are con­

sumed, so the rate at which q decreases is problem dependent. After a number of 

informal experiments, we found that it works well to decrease q at a rate of decrease 

which is inversely proportional to the number of refinements made so far, i.e., if k 

refinements have been made in total, q = This is a very simple approach which 

seems to work fairly well (as shown in Section 4.3). The parameter q is similar to 

the learning rate parameter found in machine learning algorithms. 
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We end this section with a definition. A stochastic decision tree represents 

the incomplete decision functions during the random access refinement process. It 

differs from the decision trees discussed in Section 3.1 only at the leaf vertices. 

Instead of a single action (the M E V action), the stochastic decision tree labels the 

leaf I with a probability distribution over the actions d € flDk, P(d\li)-

When the refinement process halts, the uncertainty over action in a given 

context is resolved by setting q = 0.0. 

4.2.2 The global effects of local refinement 

The second complication is that the refinement process has global effects. For the 

purpose of refining a particular context 7 within a decision tree, we keep the re­

mainder of the policy fixed. Before refining the decision tree for Dk at context 7, 

the decision function currently prescribes an action d. After the refinement of 7, the 

decision function may indicate that actions different from d are better for the new 

contexts derived from 7 . 1 Other decision trees may have been constructed assuming 

Dk — d; now that this decision has been changed, the value of the policy may be 

different, and the probabilities of the possible outcomes may have changed. 

The data structures used by our algorithm are updated to account for these 

changes. Since our stochastic decision trees store probabilities and expected utili­

ties, we must update them appropriately. 

The expected value of each leaf in each tree must be recomputed (we store 

the expected value at the leaf of the decision tree). As well, we store in our decision 

'For refinements to have a positive effect on expected value, a refinement needs to prescribe a 
different action for at least one of the extended contexts. 
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trees the probability of each vertex in every context, given the information which 
precedes it (from the root). These are recomputed as well. 

The algorithm for the global update is quite simple. Let Dk be the decision 
tree which has just been refined. The algorithm recomputes the posterior proba­
bility of each internal vertex in the decision trees for Dk+i, ...,£>„. These can be 
computed most efficiently using a depth first traversal of each tree. We observe 
that changing these probabilities will also have a cumulative effect on the expected 
value of the policy. 

After the internal vertices' posterior probabilities have been updated, the 
expected value of all the leaf vertices needs to be recomputed. This computation 
is necessary because if the probability of any context has changed, the expected 
value will change: the expectation will put more or less weight on the value of a 
particular action, according to the probability of the context in which that action is 
taken. Starting with the decision tree Dn, and working backwards to Di. for each 
leaf /, we compute the value of action di in context 7/. 

Figures 4.5, 4.4 and 4.6 give the global update procedure which performs 
these two processes. The processes are illustrated in Figure 4.7. 

The global update algorithm becomes more costly as the decision trees be­
come larger. Each update requires one computation of posterior probability for each 
internal vertex and an expected value computation for each leaf. In the worst case 
all the stages have probabilities and expected values updated. The total number of 
leaf nodes on all the trees is 0((b — 1)N + D), where N is the number of refine­
ments which have been made in total, and D is the number of decision nodes in the 
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procedure update-probabilities 
Input: 

Context 7 
Decision node D 

Let 8 be the decision tree for D 
Let X be the vertex at context 7 in 8 

If X is a leaf 
Return 

Otherwise X is an internal vertex 
Compute P(X\j) and store at vertex 
For each x 6 Six 

Apply update-probabilities(:r7, D) 

Figure 4.4: A procedure to update the probabilities stored in a decision tree. 

procedure update-expected-value 
Input: 

Context 7 
Decision node D 

Let d be the decision tree for D 
Let X be the vertex at context 7 in 8 

If X is a leaf 
Compute P(D\V = true, 7) and store at the leaf 
Compute P(V = true\, )D = d*,7 where 
d* = argmax d en 0 V{D\V = true,-/) 

Otherwise X is an internal vertex 
For each x G Ox 

Apply update-expected-value(a;7, D) 

Figure 4.5: A procedure to update the expected values of a decision tree. 
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procedure global-update 
Input: 

an index i for a decision node 

For j = i + 1,..., n 
update-probabilities(t^,£)j) 

For j = n,..., 1 
update-expected-value(f/),7Jj) 

Figure 4.6: The global update procedure for random access refinement. 

D k , D k , 

(a) Refine decision tree 

(b) Update probabilities — — — 

(c) Update expected value 

Figure 4.7: The two steps in the global update of a policy. 
Following the refinement at stage k (a), the probabilities of events in later stages 
are updated (b). Thereafter, the expected values are updated for all stages (c). 
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influence diagram. The total number of internal vertices in all the decision trees is 

0((b - 1)N + D). Therefore, each global update 0((b - 1)N + D) computations 

of expected value and posterior probability, in the worst case. 

We apply the global update process after every refinement of the policy. An 

avenue for further research would investigate the behaviour of the random access 

refinement algorithm using the global update process in a more judicious manner. A 

trade-off exists here, between computation and expected value, which bears further 

study. 

4.2.3 Computing expected value 

Policies are stored as stochastic decision trees. The influence diagram models the 

decision problem. As in single stage problems, the algorithm will assess the value 

of a refinement by comparing expected value before and after the refinement. In 

this section, we will show how the expected value of a decision tree is computed 

for multi-stage problems. 

As in Chapter 3, the random access refinement algorithm uses a Bayesian 

network to compute posterior probabilities and expected values. The influence di­

agram is converted to a Bayesian network as described in Section 3.3, except that 

decision functions are treated differently. Each decision function is installed into the 

Bayesian network by constructing a conditional probability table consistent with the 

stochastic decision function and P(D\ryi) at each leaf I. 

Let 7; be the context of a leaf I in decision tree 5k- The value of an action d 
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in this context is defined as: 

E[v\d,li}= E v(w,d)P(w\7l) 

w £ t t n v 

In this definition all other decision functions are stochastic. 

The expected value of a decision tree t for Dk is defined: 

^ = 5>Md? > 7 t]P(7i) 
let 

where d* maximizes E[v\d, 7;] for all actions d E VtD. We note that Et is defined 

assuming the decision maker will take the best action d\ for the context 71; the 

uncertainty over action does not enter into this definition. 

4.2.4 The random access refinement algorithm 

The high level description of the algorithm is given in Figure 4.8. The algorithm is 

discussed briefly step by step. We note that the policy returned by the algorithm is 

stochastic, in the sense that the leaf vertices contain probability distributions over 

the possible actions. This stochastic policy is easily made deterministic; the MEV 

action at a leaf is the one whose probability is highest. 

Initialization: The initialization process considers each decision node in 

order Dn,..., D\. For each decision node, the probability distribution P(A) is 

determined for the empty context. This step requires three queries to the Bayesian 

network for each decision node, as described in Section 3.3.1. 

Choosing a decision function to refine: We maintain a priority queue of 

extensible leaf vertices, ordered by heuristic value. The queue contains pairs ( D j , I) 

where Di is a decision node, and I is a leaf on the decision tree for Di. Thus, the 
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procedure Random Access Refinement 
Input: 

Multi-stage influence diagram with decision nodes 
Di,...,Dn 

Output: 
Policy A = {S\,..., Sn}, a set of decision trees 

For each Di, initialize Si as a single leaf 
Do{ 

Choose an extensible decision tree Si 
Choose a leaf from Si 
Replace the leaf with an extension 
Update the global policy 

} Until (stopping criteria are met or policy is complete) 
Return the policy 

Figure 4.8: The random access refinement algorithm. 

heuristic value assigned to a leaf determines not only the order in which the leaf 

vertices for a single tree are extended, but also the the order in which the decision 

functions are refined. As a result, decision functions are refined in order of the 

heuristic importance of the refinement, rather than a predetermined sequence. The 

heuristics discussed in Section 3.4.2 are used for this purpose. 

Replace the leaf with an extension: As in the single stage algorithm, an 

extension is chosen for a given leaf. This can be done by one of the strategies de­

scribed briefly in Section 3.4.1. An extension is chosen from the list of possible 

extensions to the context of the given leaf. The leaf represents the probability dis­

tribution over the possible actions, and is computed as described in Section 4.2.1. 

Updating the global policy: Each decision tree A+i, • • •, A» has its obser­

vation probabilities updated: for each vertex X, recompute P(X\^X)- The chance 
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node representing the decision in the Bayesian network is changed to match the 

update. 

Each decision tree Dn,..., Di has its expected value updated. For each leaf 

vertex, a single query for P(D\v, 7) will provide a vector of values, from which 

we can compute P(£)j|7) as in Section 4.2.1. The query P(V|fi*,7) will give the 

expected value of the best action. Finally, the chance node representing the decision 

in the Bayesian network is changed to match the update. 

Returning the policy The policy is made up of a sequence of stochastic 

decision trees; the probability distributions at the leaf vertices of these trees can be 

removed, and replaced by the action which maximizes the distribution. As shown 

in Section 4.2.1, this action also maximizes expected utility for the context. 

4.2.5 Complexity 

We can analyze the cost of this procedure as follows. Suppose a decision node has n 

information predecessors, each with at most b values. To find a maximal extension 

for a single leaf requires 0(b(n — k)) expected value computations, where k is the 

number of internal vertices already in the context for the leaf. 

As discussed in Section 4.2.2, a single global update phase requires 0((b — 

1)N + D) computations of expected value and probability, where iV is the number 

of refinements which have been made in total, and D is the number of decision 

nodes in the influence diagram. Computing a single expected value or posterior 

probability requires a single query to the Bayesian network. 

Thus, the total cost, in terms of the number of queries to a Bayesian network, 
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of the a single refinement and update is 0(b(n — k) + 3((6 — l)N + £))). 

If the algorithm is not stopped before all the policies are complete, the pro­

cedure requires 0(bn+1) queries just for the refinements. In the worst case, the 

updates after each refinement add 0(b2n) total queries when the decision trees are 

complete. This is substantially more effort than is required by an exhaustive enu­

meration of the state space; however, we do not intend our algorithm to be used 

to build a complete policy. For decision problems with large information spaces, a 

policy is available for use by the decision maker with much smaller cost than the 

limit of a complete policy. The value of such a policy is still at issue. We will 

first provide an example, using the Car Buyer influence diagram; in Section 4.3, the 

algorithm will be applied to a number of larger decision problems. 

4.2.6 Example: The Car Buyer problem 

The Car Buyer problem was introduced in Section 2.2.1; here we show some of the 

results of applying the random access refinement algorithm to it. Figure 4.9 shows 

the results from several heuristic/strategic variations. The data for these variations 

were collected using an upper limit of the number of refinements made to the policy; 

here we use 10 refinements only. 

The x axis of the graph measures the number of queries made to the Bayesian 

network, and the y axis measures the expected object value. Each line in this figure 

connects the sequence of policies constructed by one variation of the algorithm. 

Each point on a line represents the expected object value of a policy. The first point 

is common to all lines, as it represents the value of acting randomly, with a uniform 
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probability distribution over all actions; this is the "policy" which exists before any 

deliberation has occurred. The second point on each line is also common to all 

variations of the algorithm, since all variations initialize the decision trees in the 

same way. 

Recall from Section 4.1 that a policy which maximizes expected object value 

can be constructed after initialization and a single (well chosen) refinement: observ­

ing the Results from Test 2. This particular refinement was made as the very first 

refinement after initialization by two of the four variations shown: Second Best 

Action/Maximal Extension and Post Hoc/Maximal Extension. The resulting policy 

is not the optimal policy, since the initialization phase initialized the first decision 

to prefer not performing a test. The global update phase eventually corrects this 

policy; this happens after nine refinements for Post Hoc/Maximal Extension. 

The first few global updates have little effect on the initial policy, since the 

probability q that computation will end after the current refinement is finished is still 

fairly low. As long as q is small, commitment to buying the car is weak, and the 

decision function for Test 1 is "conservative," directing the decision maker to refrain 

from any testing. As computational resources are consumed, i.e., as q increases, this 

conservatism is abandoned, as it becomes clear that testing the Fuel & Electrical 

Systems will result in a better value. 

The next section applies the random access refinement algorithm to some 

large decision problems, demonstrating that the process constructs valuable policies 

at a fraction of the cost of computing the optimal policy using exhaustive enumera­

tion. 
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Car Buyer: Random Access Refinement using various heuristics/strategies 

Post Hoc / Maximal Extension 
Second Best/Maximal Extension 
Second Best / Greedy Extension 

Random Leaf / Random Extension 

100 150 200 250 300 350 400 450 500 550 600 650 
# BN Computations 

Figure 4.9: A performance profile for random access refinement. 
The performance of the random access refinement algorithm using various resource 
allocations applied to the Car Buyer problem. The policy which maximizes EVi has 
an expected value of0.844061, and is attained by the Post Hoc/Maximal Extension 
variation after 9 refinement operations and 420 queries. Exhaustive enumeration 
would compute the optimal policy after more than 200 queries. 
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4.3 Empir ica l Results 

The random access refinement process is intended to find valuable policies with 

a relatively small investment of computational resources. A number of large in­

fluence diagrams were constructed to demonstrate that the algorithm does achieve 

this intention. The influence diagrams are identical in topology, but the conditional 

probabilities vary. The problems have a real interpretation, in contrast to the ran­

domly generated problems of Chapter 3. The purpose of running the algorithm on 

slightly varying problems is to demonstrate the effect of variations in the problem 

on the performance of the algorithms. 

4.3.1 The problems 

The decision problems are based on the model of an agent traversing a maze. The 

mazes consist of walls and open space, and are represented by square tiles whose 

size correspond to the agent's single step. See Figure 4.10. The agent has five 

available actions: it can move a single step in any of the four compass directions N, 

S, E, W, or stay in place. The agent has four sensors NS, ES, SS, WS, one in each 

compass direction. 

The agent can only detect walls (with or without noise); the agent's position 

is not directly observable. The goal of the agent is to arrive at a specified location 

in the maze from any starting point. 

The problem of choosing an action can be represented by an influence di­

agram; the representation imposes a finite structure on the problem, namely that 

the agent is limited to a fixed number of actions. A single stage is shown in Fig-
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Goal 

Maze 1 

Goal; 

Maze 2 

Goal 

Maze 3 

Goal 

Maze 4 

Figure 4.10: The mazes for the maze walker problem. 
The shaded tiles are obstacles, and there are walls around the perimeter of the 
maze. The problem is to find a policy which directs the agent to the goal from any 
unoccupied position in the maze. 

144 



Figure 4.11: An influence diagram fragment for the Maze Walker. 
This influence diagram fragment shows a single stage for variations of the maze 
walker problem. The problems solved in this chapter iterate this structure ten times. 

ure 4.11. The four sensors are directly connected to the decision node. The two 

state variables affect the sensors directly, but are themselves not directly observable 

by the agent. In principle, the single stage can be repeated any number of times; 

no-forgetting arcs connect the maze walker's previous sensors and actions to the the 

current action. In the figure, the no-forgetting arcs have not been drawn. 

The probabilistic information required by this influence diagram forms the 

agent model. Sensors can be modelled with the conditional probability distribu­

tions P(NS\X, Y), etc. Actuators can be modelled by the conditional probability 

distributions P(NewX\X, Y, Action) and P(NewY\X, Y, Action, NewX). 

Four agent models were used in this test. These correspond to two sensor 

models: perfect and noisy; and two actuator models: perfect and noisy. The perfect 
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sensors always detect a wall when there is one, and never detect a wall when there 

isn't one. The noisy sensor correctly detects walls with probability 0.9, and fails to 

detect a wall with probability 0.1. The noisy sensor may detect a wall when there 

is none, with probability 0.05, and will correctly report the absence of a wall with 

probability 0.95. The perfect actuators always put the agent in the correct square 

for a given action. 

The noisy actuator model is as follows. Taking a given action from its cur­

rent position, the agent may move to the correct square, may fail to move from the 

current position, or may move to one of the squares adjacent to the current position. 

No movement is possible to squares which are not adjacent to the current position. 

If there are no walls adjacent to the current position, the noisy actuator model in­

dicates that it is ten times more likely that the agent moves to the correct square 

than to stay in the current position; the agent moves to an incorrect adjacent square 

with one-tenth the probability of staying in the current position. For example, if the 

agent is in a square with no adjacent walls, and attempts to move north, there are 5 

possible outcomes. The agent ends up in the right place for a given action with a 

probability of about 0.885 (100/113), and with probability about 0.0885 (10/113), 

the agent fails to move from its current position; there is a very small probability of 

about 0.00885 (1/113) of moving to one of the three incorrect adjacent squares. The 

model changes slightly when there are walls in adjacent squares. The probability of 

moving to occupy a wall square is reduced to zero, and the probability distribution 

above is renormalized. Thus, if the agent tries to move in the direct of an adjacent 

wall, it is likely that it will stay in its current position. 
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The value function is not shown in the ID fragment. It depends only on the 

position of the agent in the final stage, and puts full value (1.0) on being at the goal, 

and zero elsewhere. In terms of vsize, presented in Chapter 3, the value function is 

quite large, even though its dependence on the state is quite simple (i.e., it can be 

described by a decision tree which uses the final X and Y position variables only). 

This is because the state is "hidden" from the decision maker; if these hidden vari­

ables are summed out by expectation (say, using Shachter's algorithm to eliminate 

the chance nodes NewX and NewY), the value function becomes a function of all 

the sensor variables, and the decision nodes. 

The mazes used in our experiments are shown in Figure 4.10; Maze 1 is an 

example from [28]. In our experiments, the agent is allowed ten stages to reach the 

goal, which makes it possible to reach the goal from each starting position. Using 

10 stages, the tenth decision node has 49 direct predecessors, and an information 

space of about 2 6 0 . 

Maze 1 has a simple policy which guides the perfect agent to the goal from 

each possible starting position. The policy guides the agent south whenever possi­

ble, or otherwise east whenever possible. If neither south nor east is possible, the 

agent moves west, if possible, and otherwise stays in place. This decision function 

is repeated for the first 8 stages. The final two steps of the policy direct the agent 

north one step and east one step. This policy has an expected value of 1.0, and can 

be represented by 8 decision trees which use 3 internal vertices each, followed by 

two decision trees which need no internal vertices. 

Optimal policies for the perfect Maze Walker in Mazes 2, 3 and 4 are not 
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as obvious, but it turns out that all the there exist policies which guide the perfect 

agent to the goal from all starting positions; applications of the our algorithms have 

constructed policies with expected value of 1.0 (these results are included in the 

next section). 

The optimal policies for the agents with imperfect sensors or actuators are 

unknown; the value of the optimal policy depends in part on the difficulty of the 

maze, and in part on the abilities of the agent. 

4.3.2 Results for sequential refinement 

The sequential refinement algorithm, using the Second Best Action/Greedy Exten­

sion combination, was applied to these sixteen problems. For this experiment, three 

different resource allocations were made. The first scheme allocated two refinement 

steps to each decision tree; the second scheme allocated three steps, and the third 

scheme allocated four steps. The purpose of this experiment is to demonstrate how 

allocation affects the value of the policies. 

Figure 4.12 shows the results of the four agents in Maze 1, using 2 refine­

ment steps per stage. Each dataset in the graph corresponds to one of the agents 

navigating the maze. The x-axis of the graph measures computational costs in 

terms of queries to the Bayesian network. The y-axis measures expected value. 

Each mark on a line represents the state of a policy at a particular time. The initial 

point represents the completely random policy, and is a common starting point for 

each problem. Each subsequent point represents a refinement step, according to the 

allocation. The policy is given a value as discussed in Section 4.1.1: if no decision 
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Maze Walker 1: Sequential Refinement for various agent models 

Figure 4.12: Sequential refinement with 2 refinements per stage. 
The performance of the sequential refinement algorithm using various agent models 
for the Maze Walker problem (Maze I). The Second Best Action/Greedy Extension 
combination was used to construct policies for the problems. The resource alloca­
tion scheme allowed two refinements per decision node. 
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tree has yet been constructed at a decision node, the policy is valued as if an action 

were to be chosen at random using a uniform probability distribution. 

The graph shows how the policies' value increases with expenditure of com­

putational resources. The perfect agent's dataset is marked with plateaus. These 

plateaus are the result of the algorithms' search through the possible extensions, 

but finding none which can improve the policy. The plateaus get shorter because 

the set of possible extensions decreases for each decision node: the first decision 

node has only 4 information predecessors; the tenth decision node has 49 informa­

tion predecessors. Recall that the refinements are applied in reverse of the execution 

ordering; that is, the first refinement occurs at the last decision node in the execution 

ordering, so the largest plateaus will occur earlier. 

The first of these plateaus is a consequence of the layout of Maze 1. In order 

for the agent to reach the goal in the last step, the agent must be in the goal position 

already, or must be one step away from it. In Maze 1, there is only one position 

adjacent to the maze. Choosing to step west will get the agent from the adjacent 

square to the goal. However, there are no observations which will improve the pol­

icy significantly, since there are no other positions adjacent to the goal. Therefore 

none of the observations which could be made (neither the current sensor readings, 

nor any of the readings or actions in the past) will improve the policy. A l l four 

agents have this plateau; the agents with perfect sensors are longest, and the agent 

with noisy sensors and noisy actuators is shortest. 

The remaining plateaus in the policy of the perfect agent are consequences 

of its sensor model. For example, a perfect agent will not be able to improve a 
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policy by using corroborating evidence: if a pair of sensor readings is sufficient to 

determine the position of the agent, a third sensor reading will only tell the agent 

what it already has inferred from its first two readings. In this case, the policy 

cannot improve by making another observation. On the other hand, if imperfect 

sensors are used, a third sensor reading may corroborate the readings of the first 

two. In this case, the third sensor reading may be able to improve the expected 

object value of the policy. 

The remaining agents' policies increase in value with fewer plateaus. This 

is a consequence of the fact that a noisy sensor reading can usually corroborate 

other noisy readings, bringing at least a small increase in expected value to the 

policy. Recall that the Greedy Extension strategy stops looking through the possible 

extensions when a positive increase in value is found. Because it is likely that 

a sensor reading will increase the expected value a little, the number of queries 

is substantially smaller for the agents with noisy sensors than for the agents with 

perfect sensors. However, because the sensors are noisy, the probability of correctly 

identifying the current location is smaller than for agents with perfect sensors. 

The graph in Figure 4.12 shows the results for Maze 1; the results for the 

remaining mazes are summarized in Table 4.3.2. Given a resource allocation of 3 

refinements per stage, the sequential refinement algorithm constructed a policy with 

expected value of 0.9565 for the perfect agent after 2167 queries. The difference 

from the optimal policy is about 5%. The other agents' policies had lower value, 

due to the noise in sensors or actuators. We do not know the optimal policies for 

the remaining agents. The expected value of the policies constructed by sequen-
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Figure 4.13: Sequential refinement with 3 refinements per stage. 
The performance of the sequential refinement algorithm using all agent models for 
the Maze Walker problem (Maze 1). The Second Best Action/Greedy Extension 
combination was used to construct policies for the problems. The resource allo­
cation scheme allowed three refinement steps per decision node in addition to the 
initialization. 

tial refinement depends on the agent model: the perfect agent's policy is higher in 

expected value than the others' policies. The perfect agent's policy required more 

queries because of the plateaus described above. 

The average runtime of the algorithm on these 16 problems was 299.6 sec­

onds (standard deviation: 258.9) on a SPARC Ultra-2. 

Figure 4.13 shows the results of applying sequential refinement using three 

refinements per stage to the agents in Maze 1; this is one more refinement per 

stage than Figure 4.12. The policies constructed are of higher value, but with a 

fairly substantial increase in the number of queries used. In particular, the policy 
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constructed for the perfect agent is optimal, after 4071 queries. The relative increase 

in expected value is 4.5% and the the number of queries increased by a factor of 1.9 

over the policy constructed using only 2 refinements per stage. The expected value 

for this agent increases with plateaus, as in Figure 4.12, but the plateaus are longer. 

The other agents' policies were improved from Figure 4.12, but the graph 

shows a number of plateaus which were not present with the smaller allocation. For 

the agent with noisy sensors and noisy actuators, the relative increase in expected 

value was 3.9%; the number of queries used increased by a factor of 3.7. The extra 

refinement has helped find better policies, but not all of the refinements resulted in 

positive changes in expected value. 

The average runtime of the algorithm on these 16 problems was 673.2 sec­

onds (std: 423.9) on a SPARC Ultra-2. 

Figure 4.14 shows the results of using four refinements per stage for the 

agents in Maze 1. The number of plateaus has increased from Figure 4.13 for all 

agent models. The policies, however, have not improved for all agent models. The 

perfect agent's policy is optimal; the extra refinement step was not needed. The 

policy for the agent with noisy sensors and noisy actuators improved by 17.2% over 

the policy constructed with three refinements per stage. For this agent, the number 

of queries increased by a factor of 1.7. This increase is due to the fact that the 

additional refinement step allowed by the allocation causes the algorithm to search 

for a refinement with positive increase in expected value. However, this search fails 

frequently, since the sensor information is perfect, and additional information may 

be redundant. 
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Maze Walker 1: Sequential Refinement for various agent models 
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Figure 4.14: Sequential refinement with 4 refinements per stage. 
The performance of the sequential refinement algorithm using all agent models for 
the Maze Walker problem (Maze I). The Second Best Action/Greedy Extension 
combination was used to construct policies for the problems. The resource allo­
cation scheme allowed four refinement steps per decision node in addition to the 
initialization. 
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The policies for the remaining two agents actually decreased as a result of 

the extra refinement per stage. The expected value of the policy for the agent with 

perfect sensors and noisy actuators decreased by 1.4%; for the agent with noisy 

sensors and perfect actuators, the decrease in value was 3.4%. The decrease is a 

result of Greedy Extension strategy. The extra refinement step has not made any 

possible extension less valuable; rather, the extra refinement step has caused the 

Greedy Extension strategy to choose a less valuable possible extension. 

The average runtime of the algorithm on these 16 problems was 1112.9 sec­

onds (standard deviation: 653.5) on a SPARC Ultra-2. 

Table 4.3.2 summarizes the results for all four agents in all four mazes, and 

the three allocations. The expected value of of the best policy constructed is listed, 

together with the number of queries used to construct it. The table shows how the 

allocation of refinement steps affects the expected object value of the policies. 

The expected value of policies constructed using 3 refinements per stage in­

creased by 0% to 18% of the value of policies constructed using only 2 allocations 

per stage. The corresponding increase in number of queries ranged from 1.7 to 6.9 

times. The expected value of policies constructed using 4 refinements per stage 

changed by —11% to 17%, with a corresponding increase in the number of queries 

used ranging from 0.5 to 3.2 times. As described above, the decreases in the ex­

pected value are a result of the Greedy Extension strategy choosing less valuable 

extensions. 
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2 Refinements 3 Refinements 4 Refinements 
per stage per stage per stage 

Agent Model Best Best Best 
(Sensor/Actuator) Policy Queries Policy Queries Policy Queries 
Perfect/Perfect 0.9565 2167 1.0 4071 1.0 5918 
Perfect/Noisy 0.7719 1069 0.8950 1915 0.8822 3342 
Noisy/Perfect 0.7280 605 0.8514 1665 0.8226 2503 
Noisy/Noisy 0.5568 321 0.5785 1190 0.6780 2027 

Maze 1 

Perfect/Perfect 0.8462 1889 1.0 3257 1.0 5115 
Perfect/Noisy 0.5175 184 0.6488 699 0.6440 1869 
Noisy/Perfect 0.5349 237 0.5873 455 0.6379 1489 
Noisy/Noisy 0.4176 673 0.5021 1797 0.5141 2124 

Maze 2 

Perfect/Perfect 0.9259 2011 1.0 3754 1.0 5607 
Perfect/Noisy 0.6208 233 0.6224 1371 0.6559 2286 
Noisy/Perfect 0.5503 302 0.6330 780 0.6799 1462 
Noisy/Noisy 0.4445 212 0.5008 1478 0.4455 850 

Maze 3 

Perfect/Perfect 1.0 2112 1.0 3845 1.0 5921 
Perfect/Noisy 0.7585 584 0.8381 1334 0.9095 2093 
Noisy/Perfect 0.7852 1034 0.8580 1885 0.8646 3208 
Noisy/Noisy 0.6105 177 0.6463 699 0.7086 1939 

Maze 4 

Table 4.1: Sequential refinement summary. 
A summary of results of applying sequential refinement to the Maze Walker prob­
lems. Three allocation schemes were used. The expected value of the best policy 
is listed, together with the number of queries to the Bayesian network used by the 
algorithm. 
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4.3.3 Discussion 

The experiment showed that increasing the allocation of refinements resulted in an 

increase in expected value of a policy. As well, the increase in expected value is 

accompanied by an increase in the number of queries needed to construct the policy. 

The increase in the number of plateaus, as shown for Maze 1, suggests that there 

is some value in knowing when to stop refining at a particular stage, or how many 

refinements to make at a stage. For example, in the case of Maze 1, there is only one 

square from which the goal position is accessible. This information could have been 

used to avoid the long plateaus which were the result of refining the last decision 

tree (it gets refined first). This would have decreased the number of queries needed 

substantially. In the case of Maze 1, this could have been predicted. In general, 

it may be harder to know when extra refinements are not going to improve the 

expected object value of a decision function. 

The increase in refinement allocations sometimes brought a decrease in ex­

pected value. This is a result of the Greedy Extension strategy. It is likely that the 

Maximal Extension strategy would have constructed more valuable policies than 

the Greedy Extension strategy, but at a much higher cost, in terms of queries to 

the Bayesian network. To get a picture of the potential cost of the Maximal Exten­

sion strategy, consider that each increase in expected value is accompanied by an 

increase in the number of queries roughly the size of the closest plateau. Because 

of this, no experiments were performed using the Maximal Extension strategy with 

sequential refinement for these problems. 

The allocation of refinement steps was intended to be a rough allocation of 

157 



computational resources. The results of this experiment are positive, in the sense 

that a small allocation of resources resulted in valuable policies. The variation in the 

actual resources used is a benefit of the Greedy Extension strategy. The resources 

were allocated uniformly across all stages. The Greedy Extension strategy was able 

to make positive contributions to the value of the policy, often with a small cost in 

terms of queries. 

The Random Extension strategy was not used. The maze walker problems 

have the property that the information available from previous stages is less valuable 

than the sensor information available at the current stage. That is, the past sensor 

information does not, on its own tell as much about the agent's current state as 

the current sensor readings. Thus, choosing 4 random extensions from the set of 

information predecessors at each stage is likely to result in a poor policy. 

4.3.4 Results for random access refinement 

The random access refinement algorithm was applied to the Maze Walker problems, 

using two variations. The Second Best Action heuristic was used to select leaf 

vertices to extend, combined with the Maximal Extension and Greedy Extension 

strategies to extend each leaf. The algorithm had 30 extensions in total allocated 

for each problem. This allocation provided a resource constraint for the algorithm, 

but one in which it seemed possible that an optimal policy could be found for the 

perfect agent. 

Figure 4.15 shows 4 datasets, each dataset corresponding to all agent models 

navigating Maze 1. The x-axis measures computational costs, in terms of the num-
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Figure 4.15: Random access refinement using the Greedy Extension strategy. 
The performance of the random access refinement algorithm using various agent 
models for the Maze Walker problem (Maze 1). The Second Best Action/Greedy 
Extension combination was used to construct policies for the problems. 

ber of posterior probabilities and expected values computed (queries to the Bayesian 

network). The y-axis measures expected value of each policy. Each point on a curve 

represents the expected value of a policy in the sequence of policies constructed by 

the algorithm. Here we show the expected value of the deterministic version of the 

policy. The first policy is the same for each of the problems, and represents the value 

of acting randomly (before any deliberation has occurred). The data in Figure 4.15 

was collected using the Second Best Action/Greedy Extension combination. 

The average run time on a SPARC Ultra-2 for these four problems was 54.1 

minutes. Three of the agents had run times of less than 25 minutes, and the problem 

with the agent with perfect sensors and noisy actuators required 156 minutes. 
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For the perfect agent, the algorithm does not find the optimal policy using the 

allotted resources, but levels off at an expected value of 0.9130 after 2373 queries. 

The policy guides the agent to the goal from 21 of the 23 starting positions. The 

error here is 8.7% from optimal. 

Also of note is the fact that the algorithm is able to find a policy for the 

agent with perfect sensors and noisy actuators which exceeds the value of the best 

policy for the perfect agent. This behavior is due to the heuristics used by the 

algorithm. The different probability distribution in the problems will give rise to 

different heuristic values for the possible refinements. 

For some of the agent models, the algorithm produces policies which de­

crease in value (for example, in the range of 122 to 219 queries in Figure 4.15). 

This behaviour is the result of making refinements when the commitment to the 

current policy is weak. The refinement takes advantage of the relatively high prob­

ability of a non-MEV action. When the effects of the refinement are made global, 

the non-MEV action drops in probability, and any action which was chosen based 

on the probability that a non-MEV action might be taken will drop in value. This 

drop in value is temporary, and further refinement, stronger commitment, and global 

updates correct for the decrease. 

The curves in Figure 4.15 give an indication of how the conditional proba­

bilities underlying the agent model affect the performance profile. When the prob­

abilities are very sharp, and a few states contain most of the probability mass (as 

in the case of the perfect agent), the increases tend to be steep and plateaus are 

common. As the probability mass of is distributed over many more states (as in the 
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agent with noisy sensors and noisy actuators), the increases tend to be less steep, 

and the plateaus shorter. 

The curve for the agent with perfect sensors and noisy actuators also shows 

decreases in expected value: in the range of 122 to 169 queries, the expected value 

drops by about 12%; in the range of 1152 to 1242 queries, the expected value 

drops by about 2% These decreases have the same explanation as the decreases 

mentioned above. The effect is smaller as the number of queries increases, since 

the commitment to the MEV action is stronger. 

These curves are typical (see Appendix B for all the graphs for all the agents 

in all four mazes). 

Table 4.2 summarizes the performance of the various agents in the various 

mazes for the Second Best Action/Greedy Extension combination. The expected 

value of the best policy is shown, with the number of queries used to compute this 

policy is given, and the number of refinement operations after which the policy was 

available. Where the number of refinement steps is less than the limit of 30, the 

refinements which followed did not increase the expected value of the policy. The 

algorithm was able to find good policies for the perfect agent in Mazes 1 and 4; the 

optimal policy for the perfect agent in Maze 4 was constructed after 16 refinement 

steps, and 1267 queries. For Maze 2, information refinement using the Second Best 

Action/Greedy Extension combination constructed a policy for the perfect agent 

worth only 0.5769, which is just more than half of the optimal policy. For Maze 3, 

the best policy constructed by the algorithm for the perfect agent had an expected 

value of 0.7407; the difference between this policy and optimal is about 26%. 
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The average runtime for these 16 problems was 33.2 minutes; thirteen of 

these problems required less than 25 minutes. Dynamic programming using ex­

haustive enumeration would require more than 2 6 0 queries to compute complete 

policies.2 

The Second Best Action/Maximal Extension combination was applied to 

these problems. The performance of the agents in Maze 1 is shown in Figure 4.16. 

The optimal policy for the perfect agent was found after 7447 queries and 29 re­

finement steps. The best policies constructed for the other agents in this maze were 

higher than the best policies for these agents using the Greedy Extension strategy. 

Note that the scale of the Figure 4.16 is higher than in Figure 4.15; on average, 

the Maximal Extension strategy requires more queries than the Greedy Extension 

strategy to determine an extension to a given leaf. 

The results for the Second Best Action/Maximal Extension combination are 

summarized in Table 4.3. The optimal policy for the perfect agent in Maze 4 was 

constructed after 9678 queries, and 30 refinement steps. For mazes 2 and 3, the 

best policies for the perfect agent were 0.6923 and 0.7037, a difference of about 

30% from the optimal policy. The other agents' best policies are somewhat higher 

here than the policies constructed using the Greedy Extension strategy. The relative 

changes ranged from -5% to 38%. The number of queries needed to compute the 

best policies is substantially larger for the Maximal Extension strategy than for the 

greedy strategy, from 2.2 to 7.6 times larger. 
2To get an idea of the scale of this number: the figure is about 10 cm wide; at this scale, 26 0 

queries is approximately 32 light-hours to the right. It would take about 587 million years to compute 
according to the average reported above. 
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Maze 1 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 1.0 3149 28 
Perfect/Noisy 0.8805 3482 30 
Noisy/Perfect 0.7666 2765 28 
Noisy/Noisy 0.7409 2750 30 

Maze 2 

Maze 3 

Maze 4 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 0.6923 1976 24 
Perfect/Noisy 0.4534 3005 30 
Noisy/Perfect 0.5294 2825 30 
Noisy/Noisy 0.3983 3206 30 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 0.7407 1716 20 
Perfect/Noisy 0.5851 3420 30 
Noisy/Perfect 0.6347 2872 24 
Noisy/Noisy 0.4724 3009 30 

Agent Model Best 
(Sensor/ Actuator) Policy Queries Steps 
Perfect/Perfect 1.0 1267 17 
Perfect/Noisy 0.8216 2398 28 
Noisy/Perfect 0.8377 2202 26 
Noisy/Noisy 0.6966 3339 30 

Table 4.2: A summary of results for random access refinement. 
The value of the best policies for the maze walkers, found using the Second Best 
Action/Greedy Extension combination of random access refinement and a resource 
limit of 30 refinements. The expected value of the best policy constructed is listed; 
The column labelled "Steps " indicates the number of refinement steps which were 
performed to reach the best policy; if the number of steps is fewer than 30, the 
remaining steps did not improve the policy. The optimal policy for the perfect agents 
is known to have expected value 1.0 for all mazes. Dynamic programming would 
require about 260 queries to compute an optimal policy. 
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Maze Walker 1: Random Access Refinement for various agent models 
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Figure 4.16: Random access refinement using the Maximal Extension strategy. 
The performance of the random access refinement algorithm using various agent 
models for the Maze Walker problem (Maze I). The Second Best Action/Maximal 
Extension combination was used. 
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Maze 1 

Maze 2 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 1.0 7447 29 
Perfect/Noisy 0.9544 9622 30 
Noisy/Perfect 0.8795 9911 30 
Noisy/Noisy 0.7853 9054 29 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 0.6923 5435 29 
Perfect/Noisy 0.6260 9336 29 
Noisy/Perfect 0.6203 10677 30 
Noisy/Noisy 0.5230 9470 30 

Maze 3 

Maze 4 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 0.7037 4522 16 
Perfect/Noisy 0.6236 7741 25 
Noisy/Perfect 0.6468 9939 30 
Noisy/Noisy 0.5719 8753 28 

Agent Model Best 
(Sensor/Actuator) Policy Queries Steps 
Perfect/Perfect 1.0 9678 30 
Perfect/Noisy 0.8189 9718 30 
Noisy/Perfect 0.8954 10103 30 
Noisy/Noisy 0.7147 9938 30 

Table 4.3: A summary of results for random access refinement. 
The value of the best policies for the maze walkers, found using the Second Best Ac­
tion/Maximal Extension combination of random access refinement and a resource 
limit of 30 refinements. The expected value of the best policy constructed is listed, 
along with the number of queries used, and the number of refinement operations 
used. The optimal policy for the perfect agents is known to have expected value 1.0 
for all mazes. Dynamic programming would require about 2 6 0 queries to compute 
an optimal policy. 
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4.4 Discussion 

This chapter has presented two procedures for solving multi-stage decision prob­
lems using the information refinement technique of Chapter 3. The first technique 
allocates a fixed amount of computational resource towards the solution of each 
individual decision node in the network. The difficulty with this procedure is in 
assigning the resource allocation a priori. 

A second procedure was motivated by the difficulties of the first. An "any­
time" algorithm was developed which could make refinements to the policy any­
where in the decision sequence. The procedure is very expensive asymptotically, 
but has been shown to construct valuable policies with relatively small amounts of 
computational resources. 

The sequential refinement algorithm generally produced policies with higher 
expected value and lower computational costs than the random access refinement 
algorithm. However, the random access refinement algorithm uses the results of its 
previous computation to guide future refinement, whereas the sequential refinement 
algorithm requires that the available resources be allocated prior to deliberation. 

For the larger of the problems "solved" in this chapter, no optimal policy is 
known. These problems are too large to enumerate the information space exhaus­
tively. 

It is possible to construct an influence diagram for which the optimal policy 
can only be expressed as a set of complete decision trees. Nevertheless, the data 
shown in this chapter demonstrate that information refinement constructs reason­
ably valuable policies using reasonable allocations of computational resources. The 
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Car Buyer problem and the Maze Walker (perfect sensors and actions) both have 

a relatively large number of impossible information states; policies which summa­

rize a large subspace of the information set can exploit these asymmetries, never 

refining impossible contexts. Druzdzel [10] argues that it is common for a few 

states to cover a large portion of the total probability mass in a joint probability 

distribution. Thus, while states with small but non-zero probability are likely to be 

(non-optimally) abstracted together with more likely states, if these states are suf­

ficiently improbable, this approximation will not result in too great a reduction in 

expected value. 

Finally, it is important to acknowledge that the space of EDs is very large, and 

the set of problems treated in this section is a small sample from a highly restricted 

subclass of IDs. The evidence in this section shows that there exist large problems 

for which random access refinement can find policies which are reasonably valuable 

policies using reasonable amounts of computational resources. These problems are 

too large to solve using traditional methods. 
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Chapter 5 

Conclusions 

The goal of this dissertation was to understand how to make good decisions. A 

good decision depends on the the way the world works, the way choices affect the 

world, and on the computational resources available to the decision maker. Our 

approach is based on the idea that computational actions are choices which must 

be considered when computational resources are finite, and computational costs are 

not negligible [18, 42]. 

We have presented a flexible approach for constructing policies for sequen­

tial decision problems expressed as influence diagrams. This approach allows the 

decision maker to choose a trade-off between the computational costs and object 

value. 

We have proposed and studied three heuristic algorithms which allow a de­

cision maker make such a trade-off, based on the idea of information refinement. 

These algorithms can construct valuable policies for very large decision problems, 

or more generally, situations in which the decision maker does not have the com-
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putational resources available to compute the optimal policy. These algorithms can 

be used in decision analysis and artificial intelligence, particularly in the areas of 

planning under uncertainty and medical informatics. 

Information refinement is a process which iteratively improves the value of 

a decision function (a mapping from available information to action). The initial 

decision function does not make use of any of the information available to the de­

cision maker; incremental improvements to the decision function are made by in­

cluding available information as refinements to the contexts in which actions might 

be taken. This approach is similar to the machine learning technique of learning de­

cision trees (also called classification trees) from examples [38], and has parallels 

in reinforcement learning [3, 30]. 

We have proposed and studied a number of heuristics which are used to se­

lect information to be included in the decision function. These heuristics are domain 

independent in the sense that they have been devised without explicit consideration 

of any particular domain; they make use of domain information provided in the 

influence diagram representation, and have been shown to be superior to random 

selection. We feel that the domain independence of these heuristics is valuable as 

a starting point for understanding how to incorporate domain dependent heuristics 

into the approach. 

The information refinement approach was implemented in three algorithms. 

A simple anytime algorithm for single stage decision problems was presented. The 

algorithm was shown to build policies which are valuable to a decision maker over a 

range of computational expenditures. Asymptotically, this algorithm was shown to 
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require 0(bn) computations of expected value and posterior probability ("queries"), 

where n is the number of information predecessors, and b is the maximum number 

of values taken by any of these nodes. This is a constant factor difference from 

exhaustive enumeration of the state space performed by algorithms which maximize 

expected object value. The benefit of the anytime approach is that a valuable policy 

is available to the decision maker with smaller computational cost than the optimal 

policy. 

Two novel algorithms for sequential decision making under uncertainty were 

developed for multi-stage problems. The first of these, sequential refinement, ap­

plies the single stage algorithm to each decision node in the traditional "backwards 

induction" sequence; decision trees are constructed according to an a priori allo­

cation of computational resources. The resource allocation was specified in terms 

of the size of each decision tree. With this approach, we were able to investigate 

the effects of allocating resources, without assuming particular resource constraints 

for a particular decision maker. The drawback of this approach is that it may be 

difficult to determine a priori which decision functions should be allocated more 

(or less) of the available computational resources. 

The second multi-stage algorithm, random access refinement, is an anytime 

algorithm; that is, a policy is always available, and computational resources are 

expended to improve the current policy. The decision maker can interrupt the de­

cision making process at any time, and use the current policy. The algorithm takes 

a novel approach to decision making, in that the refinement process can be applied 

to the decision functions in any order. This approach requires the decision making 
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process to determine which of the decision functions to refine. This algorithm is 

a partial response to the problem of how to allocate resources among the decision 

functions. We used the same domain independent heuristics which guide the refine­

ment of a given decision function to select which decision function to refine. Each 

iteration of the random access refinement algorithm has two phases: the refinement 

of a decision function, followed by a global update phase. The global update phase 

is necessary to maintain consistency between the decision functions, and as the 

decision trees get larger, this phase becomes more expensive. 

We applied the multi-stage algorithms to a number of large problems for 

which exhaustive enumeration of the information space would be impossible. The 

sequential refinement algorithm was shown to construct valuable policies using an 

allocation scheme which constructed decision trees of equal depth for all decision 

nodes. We showed empirically that a collection of very small decision trees (rel­

ative to the size of the information space) can form the basis of valuable policies. 

We expect that more informed allocations, which distributes the computation less 

uniformly according to domain specific information, can be used to the benefit of 

the decision maker's comprehensive value. 

The random access refinement algorithm was also shown to construct valu­

able policies. Initial investments of computation resulted in steep increases in value; 

as policies became more refined, costs increased, and the incremental values tended 

to level off. 
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5.1 Future Work 

Our account of computational costs is very coarse grained. Our unit of cost is a 
single posterior probability computation (query) in a Bayesian network. This is 
sufficient for purposes of comparison to approaches which enumerate the informa­
tion space exhaustively, since these approaches must make similar computations. A 
more fine grained approach would acknowledge that some of our queries are more 
expensive than others. For example, the early queries in the information refine­
ment approach are less expensive than later queries, because refinement increases 
the connectivity of the Bayesian network in which the query is made in our algo­
rithms. In algorithms which enumerate the state space exhaustively, the cost of a 
query does not depend on when it is made, since the connectivity of the network 
doesn't change. The connectivity of the information refinement approach reaches a 
maximum when all information predecessors have been included in the policy; this 
maximum is the connectivity used by traditional algorithms which enumerate the 
information space. More fine-grained accounting of the cost of a query would give 
the decision maker more control over the deliberation process. 

The initialization step of our algorithms puts a single action (or a probability 
distribution over the possible actions) as the leaf of a tree, and information refine­
ment is used thereafter to improve the policy. There may be considerable advantage 
to an alternative approach, which is to initialize each decision tree using a small 
subset of the available information, and refine the decision trees using one of our 
refinement techniques. For some problems, this initial set can be determined from 
the domain. For example, in the maze walker problems (Chapter 4), the informa-
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tion space includes all the sensor readings of the past, as well as a set of new sensor 

readings at each stage. For this problem, the initial information set could be the 

set of "new" information available at the stage. Informal experiments have shown 

that this initialization would be extremely valuable. In general, domain informa­

tion might make the choice of initial information obvious. We expect that a good, 

domain independent initial set may be the new information available at a decision. 

More experiments with multi-stage decision problems will be necessary. 

The random access refinement algorithm could be used to implement an 

algorithm which reasons explicitly about the costs and values associated with com­

putation. Because the approach is myopic, and can exhibit plateau behaviour, the 

comprehensive value function (the combination of cost and value of computation) 

may have local maxima. Thus, maximization of comprehensive value is not as sim­

ple as detecting a slope of zero. Refinement need not stop at the first maximum; 

rather, the deliberation should end when the expectation of increase in value is less 

than the cost of the next refinement. One of the open problems is to find a way 

to estimate the value of the next refinement (our EVI estimates the value of a re­

finement at a given leaf using a given information predecessor). It is possible that 

the expectation of future value can be based on experience; that is, assessing future 

value based on the performance of the algorithm on other problems. 

The heuristic component of our algorithms requires further development and 

experimentation. While we studied our heuristics used individually, it might be 

valuable for the algorithm to have several heuristics available, and to choose be­

tween them. For example, the Greedy Extension approach to selecting a refinement 
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often resulted in a very cheap extension with only marginal improvement to the 

policy, when the Maximal Extension approach would have resulted in a very ex­

pensive extension, with more substantial improvement to the policy. A compromise 

approach to selecting a refinement could examine a small number of possible ex­

tensions, and choose the one which resulted in the highest increase in value. 
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Appendix A 

Data for 1-ID(8) 

This appendix contains summaries of the data collected by applying information 

refinement to the 1-ID(8) problems in Chapter 3. The graphs presented here show 

how the expected object value of the anytime policies change as resources are con­

sumed. Each graph summarizes the data collected for a particular strategy (i.e., 

Random Extension, Maximal Extension or Greedy Extension), combined with each 

of the four heuristics (Second Best Action, Post Hoc, Most Likely Context, Ran­

dom Leaf). There are four sets of influence diagrams to which the information 

refinement algorithm was applied: (10,10), (10,200), (200,10) and (200,200). The 

vertical line in each graph shows the point at which exhaustive enumeration would 

have an optimal policy. 
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1-ID(8) at (10,10): Various Heuristic with Random Strategy 
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1-ID(8) at (10,10): Various Heuristic with Maximal Strategy 
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1-ID(8) at (10,200): Various Heuristic with Greedy Strategy 
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1-ID(8) at (200,10): Various Heuristic with Random Strategy 
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1-ID(8) at (200,10): Various Heuristic with Maximal Strategy 
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1-ID(8) at (200,200): Various Heuristic with Greedy Strategy 
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Appendix B 

Data for Maze Walker 

This appendix contains the data reported in Chapter 4 for the random access refine­
ment algorithm. The graphs show the expected value of the policies as a function of 
the computational resource consumption for the maze walker influence diagrams. 
Each graph contains data for the four agent models in one of the mazes. Each point 
represents an anytime policy. The first set of four graphs was collected using the 
Second Best Action/Greedy Extension combination; the next set of four graphs was 
collected using the Second Best Action/Maximal Extension combination. The last 
set of four graphs compare how the various combinations performed on the influ­
ence diagram representing the agent with noisy sensors and noisy actuators. 
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Maze Walker 3: Random Access Refinement for various agent models 
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Second Best Action/Maximal Extension 
Maze Walker 1: Random Access Refinement for various agent models 
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Maze Walker 3: Random Access Refinement for various agent models 
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B.3 A comparison of methods 

These graphs make a direct comparison for the two algorithms proposed for multi­
stage influence diagrams. Each graph shows five data sets, one for each of the 
combinations reported in Chapter 4. Each graph corresponds to one of the mazes, 
and the agent model used here is the one with noisy sensors and noisy actuators. 
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Maze Walker 2: Comparison of methods 
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Maze Walker 4: Comparison of methods 
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