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Abstract 

In pursuit-evasion problems, we are presented wi th one or more pursuers attempt
ing to capture one or more evaders. We consider pursuers and evaders l imited by 
a maximum speed moving in the two-dimensional plane wi th obstacles. We then 
investigate two problems in this domain. In the first, where we are given the starting 
configuration of pursuers and evaders, we identify all possible paths by the evaders 
that are not intercepted by pursuers, and the points reachable by the evaders be
fore the pursuers by following these paths. In the second problem, we consider a 
pursuer forced to maintain visibili ty wi th an evader. We construct an example that 
demonstrates there exists, in addition to the two standard outcomes of the pursuer 
capturing the evader and the evader losing sight of the pursuer, a th i rd tie outcome, 
where the pursuer never loses sight of the evader, but the evader can also avoid cap
ture indefinitely. We give the conditions under which each of these three outcomes 
occur for our specific situation. 
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L i s t of F igures 

2.1 A simple example of the pursuit-evasion Voronoi diagram in L\ for 
the evader e and the pursuer q, where the evader e has twice the speed 
of the pursuer. The thick black lines represent obstacles. Points in 
the region Re can be reached the evader taking a straight line path 
from e to the point in Re. Points in Ri can be reached by the evader 
taking a path from e to t\ and then to the point in R\, and so on. 
Some points, such as £ 4 , £ 7 , t% and £9 can be reached but do not have 
regions of their own 7 

2.2 Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the 
evader b when the pursuer and evader have the same speed. The 
solid line separates the region for a from the region for b (Same as 
the standard Voronoi diagram for two sites in L2). The evader region 
is Rf,, and consists of points which are al l reachable v ia a straight line 
path from the evader start point b 12 

2.3 Pursuit-evasion Voronoi diagram in L\ for the pursuer a and the 
evader b when the pursuer and the evader have the same speed. It 
is composed of a line at 45 degrees and vertical lines (Same as the 
standard Voronoi diagram for two sites in L\). The evader region is 
Rb, and consists of points which are all reachable v ia a straight line 
path from the evader start point b 12 

2.4 Another example of the pursuit-evasion Voronoi diagram in L\ for the 
pursuer a and the evader b when the pursuer and the evader have the 
same speed. The solid line and the grey region represent the region 
where the distance from a is the same as the distance from b, and 
therefore belongs to the pursuer a. Again , the boundaries are the 
same as in the standard Voronoi diagram for two sites i n L\. Rb is 
the region reachable by the evader, and consists of points that are al l 
reachable v ia a straight line path from the evader start point b. . . . 13 

v 



2.5 Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the 
evader b, where the pursuer is faster than the evader (Same as the 
multiplicative Voronoi diagram in L2). Rb is the region reachable by 
the evader, and consists of points that are all reachable v ia a straight 
line path from the evader start point b 14 

2.6 Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the 
evader b, where the evader is faster than the pursuer (Same as the 
crystal growth Voronoi diagram in L2). The region Ra consist of 
points whose shortest evasive path is a straight line path from a. 
The region R\ consists of points whose shortest evasive path is a 
straight line to the point t\, following the solid line boundary and 
then a straight line to the destination (Similarly for R2). The dotted 
circle inside is the circular boundary from the multiplicative Voronoi 
diagram, for comparison wi th the boundary which is composed of 
two logarithmic spirals starting at t\ and £2, and intersecting at the 
boundary between R\ and R2 15 

2.7 Pursuit-evasion Voronoi diagram in L\ for the pursuer a and the 
evader b, where the speed of the evader is greater than the speed of 
the pursuer. Rb is the region of points reachable v ia a straight line 
path from b. R\ is the region of points reachable v ia a path from b 
to t\ and then via a straight line to the destination, and similarly for 
R2 and R3 (which is reached via ti). Note that there is a degenerate 
situation in the region R23, between the points £2 and £3 . This is a 
region of equality, where paths v ia £2 a r e equal in distance to paths 

via t\, similar to the situation in Figure 2.4 18 
2.8 A n example demonstrating how an evader e may be able to reach a 

point q when considering the pursuers p i and P2 independently, but 
is unable to reach q if both pursuers are considered together 20 

2.9 A n alternative way of looking at the algorithm is to view the process
ing of each tree node as "increasing" the region of certainty. After 
processing the evader starting point e , we dequeue p from the queue, 
and therefore al l points wi th shortest path arrival time earlier than 

p have the correct regions assigned, as shown by the grey region. . . 24 
2.10 After processing p, the algorithm wi l l proceed to process t 2 - There

fore al l points wi th shortest path arrival time earlier than t% have the 
correct regions assigned, as shown by the increased grey region. . . . 25 
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2.11 After processing the evader starting point e, we process the point in 
Q with the earliest arrival time, p, The outer dotted boundary is the 
boundary of Voronoi-Region(q, p), and is computed ignoring all the 
obstacles. The shaded region is Voronoi-Region(q, p) n Visible(q, O), 
the region C where the pursuer could intercept the evader, and con
siders the region inside the outer boundary that is visible from the 
pursuer starting point q. Heavy black lines indicate obstacles. The 
evader's starting position is e and there is a single pursuer starting at 
q. Note that C does not allow the pursuer to pass through obstacles, 
but the evader may pass through obstacles. Obstacle constraints for 
the evader will be dealt with in the next step 28 

2.12 Considering the region C and the obstacles as occluding visibility, the 
greyed region indicates all the points "visible" from p. In other words, 
all points in the region can be reached via a straight line evasive path 
from p 29 

2.13 From p's reachable region, we remove the set of points that have 
shortest evasive paths described in £. In this diagram, those points 
are the ones reachable via a straight line path from e 29 

2.14 Once the light grey region for tree node p is merged into the diagram 
with the dark grey region for the evader starting position e, we remove 
from the queue all potential tree nodes which no longer satisfy the 
criteria for a tree node. The larger dotted polygon is the region C 
computed for p. The smaller dotted polygon is the region C computed 
for e during the last iteration of the loop, and is responsible for the 
bend in the boundary of the grey reachable region between £ 2 and £ 3 . 
Note that £ 4 is in a degenerate position — although it is an obstacle 
vertex, the evader cannot take any paths via £ 4 as arrival time of the 
shortest evasive path for the evader at £ 4 is exactly the same as the 
arrival time of the shortest obstacle-avoiding path for the pursuer. . 30 

2.15 An example of the function t(x) that describes the arrival time of 
a pursuer p along the axis of an obstacle vertex or pursuer starting 
point o, when the pursuer takes a path via o. tQ is the arrival time 
of the shortest obstacle-avoiding path from p to o. The slope is the 
^ . Note that both the slope and the arrival time must be positive. . 37 
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2.16 The thick black line is an example of the function tmin(x) that de
scribes the minimum arrival time of any pursuer the axis of an obsta
cle vertex or pursuer starting point o , when the pursuers take paths 
via o. to, * i , 2̂ a n d £3 are the t(x) arrival time functions for four 
different pursuers. Note that tmin(x) is a continuous piecewise linear 
function with non-increasing slope, where each pursuer contributes 
at most one linear piece. Each piece, from left to right, has a smaller 
slope but a greater arrival time. Note that the pursuer line t\ does 
not contribute to tmin(x), as that pursuer arrived too late and was 
too slow 38 

2.17 An example of the function t'(x) that describes the arrival time of 
a pursuer pi along the axis of an obstacle vertex or pursuer starting 
point o , when the pursuer takes a path via a point o ; = (xi,yi) ^ o . 

U is the arrival time of the shortest obstacle-avoiding path from pi to 
the x-axis of o , which occurs at x = The slope is . Note that 
the arrival time must be positive 38 

2.18 An example of when the function t'(x) for a pursuer-point pair (pi, O;) 
intersects the function tmin(x) for the point o , where o ^ o ; . x shows 
an intersection where we can have a region for (pi,o\) to the left of 
a region for (p*,o), due to the slope for t'(x) being greater than the 
slope for tmin(x). To the left of the intersection point x, t'(x) has 
an earlier arrival time than tmin(x), indicating a region'that does not 
belong to a pursuer passing through o . To the right of x, tmin(x) 
has the earlier arrival times. Note that t'(x) cannot intersect tmin(x) 
after x, as tmin(x) has non-increasing slope 39 

2.19 This shows two examples {t\ and £2) where a function t'(x) for an 
evader taking a path through an internal tree node (as shown by 
the lines t\ and £2) intercepts a function tmin(x) for pursuers going 
through a point o . In both these examples, there are two interception 
points. For clarity, the interception points are marked 41 

3.1 The starting configuration when P is a regular hexagon (n=6). . . . 52 
3.2 An optimal path can only turn at the time fc where k € N. If A(t) is 

an optimal path that turns at a time A(k) where fc is not in N, we 
can construct a shorter optimal path A'(t) 52 

3.3 This shows an example situation where the optimal path for A has 
does not turn on a sight line S(k) at time fc 53 

3.4 We can replace the original path with a shorter path that goes from 
.<4(fc — e) directly to A(k + 5), which removes the turn p 54 
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3.5 Orbi ta l path for the pursuer. The pursuer can always keep the evader 
in sight, but can never catch the evader 55 

3.6 A close-up of the path for the pursuer to show Va-mcal 55 
3.7 When ^ > the distance v c r i t i c ai is longer than the distance to 

capture the evader directly. For example, when n = 4 (square), the 
distance from A(fc) to A( fc - f - l ) is longer than the distance from A(fc) 
t o B ( J f e + l ) 56 

3.8 W h e n cos > a / ( l + a), the shortest reachable point from the 
pursuer starting point is higher than or equal to the point reachable 
wi th speed vcriticai- The dashed line shows the path to the point on 
sight line 5(1) closest to the pursuer starting point 58 

3.9 The path A'(t) is parallel to the path A(t) between sight lines, but 
starts at a lower height at time k. Therefore, between any pair of 
successive sight lines, A'(t) wi l l be shorter than A(t). The path A'(t) 
can then cross sight lines at the same time as A(t), and A'(t) w i l l 
be between a sight line S(j) and S(j + 1) during the same time as 
A(t). Note that if we consider fc as a time when A(t) turns, when the 
pursuer passes sight line 5(fc + j), she w i l l be able to see the evader 
along the edges PkPk+i,Pk+iPk+2, • • • ,Pk+j-lPk+j- This is true for j 
up unti l j = i where S(k + i) is the sight line where A(t) turns next, 
and so between any two successive sight lines, if A(t) can keep the 
evader in sight, then A'(t) can keep the evader in sight 60 

3.10 The dashed line is the orbital path for height a, wi th the thick line 
segments indicating a length of a. If x is at a height less than a 
on sight line S(0), and the path A(t), starting at x, passes through 
the point x' on sight line 5(1) at a height greater than or equal 
to a, it must intersect al l subsequent sight lines at a height greater 
than a, since the orbital path forms a regular polygon at height a on 
every sight line. A straight line path starting inside a convex polygon 
cannot intersect the polygon more than once 62 

3.11 When cos(27r/n) < a / ( l + a), the lowest reachable point on 5(1) from 
the pursuer starting point is lower than the point reachable v ia the 
orbital path. Therefore, wi th speed vcriucai, the pursuer can reach 
a point wi th height less than a on sight line 5(1). The dashed line 
shows the path to the point on sight line 5(1) closest to the pursuer 
starting point 63 
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Chapter 1 

Introduction 

1 . 1 Pursuit-Evasion Problems 
Pursuit-evasion problems consider an asymmetric scenario where we have two classes 
of entities, pursuers and evaders. Pursuers attempt to "capture" evaders, whereas 
evaders attempt to avoid "capture", where "capture" can have meanings such as 
physical proximity or visual detection. We present here a sample of this rich problem 
area, providing some context for aspects pertinent to the rest of the thesis. 

In general, the environment in which the pursuers and the evaders can move 
depends on the application, and can also include additional elements that modify 
movement. The most general case would be to allow motion in al l three space 
dimensions[16], however, this is often simplified to a discretisation of the plane[13] or 
a graph[ l l ] . We choose an intermediate environment — the two-dimensional plane, 
wi th movement constrained by polygonal obstacles. This maintains correlation wi th 
the physical world while being rich enough to model applications in areas such as 
land and nautical movement. 

Pursuers and evaders may also Have other movement constraints. A maxi
mum speed or acceleration may be imposed, and the entities may have a maximum 
turning rate[13, 16]. We consider a simple movement model — the pursuers and 
evaders are modelled as point sources wi th a maximum speed and infinite accelera
tion. This is a reasonable approximation if we consider a zoomed out point of view, 
and a relatively large time scale. 

The definition of capture can also vary. To capture the evader, a pursuer may 
have to close within a certain distance of the evader[13] or occupy the same position 
as the evader[8, 11]. In other applications, establishing or maintaining visibil i ty can 
be sufficient [13, 18]. We shall consider the simplest model for capture, when the 
pursuer and the evader occupy the same position. These conditions are sufficient to 
create interesting interactions between pursuers and evaders. 

1 



The information provided to the pursuers and evaders can also be varied. A 
pursuer may be given an evader's entire strategy[13, 8], or it may be given a model of 
the evader's behaviour[13, 18, 11]. Likewise, an evader may have information about 
the pursuers. A pursuer may be required to discover the location of an evader, or it 
may have sensors which only provide information about the position of the evaders 
when certain a criteria is fulfilled, such as being wi thin a maximum range from that 
pursuer. We consider the worst-case scenario for the evaders — the evaders wish to 
guarantee that capture by the pursuers is impossible. 

Addit ionally, we consider visibili ty constrained motion in the latter portion 
of this paper. This problem, also known as target-tracking, is another form of the 
pursuit-evasion problem[13, 10, 8]. In this case, the pursuer can be considered a 
camera which sees the evader. The "capture" goal for the pursuer is relaxed or 
modified — the objective for the pursuer may be to maintain sight of the evader 
while minimising the distance to the evader (the classic "capture" situation) or 
minimising its own movement. In this situation, both the pursuer and the evader 
have l imited speed, and move in an environment where obstacles can both impede 
movement and occlude visibility. Predictable evaders, where the path of the evader 
is known in advance, and unpredictable evaders are both considered. In this problem 
instance, the relationship between the pursuer and the evader can be viewed as much 
less confrontational — often, the evading entity may not be actively attempting to 
avoid capture, but may be following a preplanned route. 

1.2 Evader's Worst-Case Pursuit-Evasion 

In the subsequent chapters of this thesis, we consider two situations of worst-case 
(from the evader's perspective) pursuit-evasion, where the pursuer is given complete 
knowledge of the evader's movements in advance. In these situations, an evader 
avoids capture only if no possible combination of pursuer movements can capture 
the evader. 

In Chapter 2, we are given a starting configuration for the pursuers and the 
evaders. We then demonstrate a method for computing the set of al l the points 
that the evader can reach without chance of capture by the pursuer. Using L\ 
distance, we show that this set can be described using polygonal boundaries that 
are polynomial in size and. which can be computed in polynomial time. 

In Chapter 3, we consider a pursuer forced to maintain visibil i ty to an evader. 
The addition of the visibil i ty constraint creates the possibility of a tie situation 
between the pursuer and the evader, when we consider evader paths of infinite 
length. The pursuer cannot capture the evader without losing sight of the evader. 
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However, there is an infinite length path for the pursuer where the visibil i ty criteria 
is never violated, even though the distance between the pursuer and the evader 
is upper-bounded and lower-bounded by finite values. We demonstrate using a 
specific instance that three outcomes (pursuer can capture the evader, the evader 
can always break line-of-sight and the pursuer can tie) are possible, and give the 
conditions necessary for each outcome. 

Again , in both situations, we consider the environment to be the two-dimensional 
plane. We also consider obstacles in the environment that block movement and 
occlude visibility. We limit the movement of each pursuer and each evader to a 
maximum speed. 
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Chapter 2 

P u r s u i t - E v a s i o n V o r o n o i 
D i a g r a m 

2.1 Introduction 

Let P be the set of m pursuers. Let there be an evader e. For each site p (one 
of the pursuers or the evader in the set P U {e}), we w i l l provide a starting point 
p, a speed vp and a starting time tp. Let O be the set of line segment obstacles 
wi th n vertices that block the movement of both pursuers and evaders. The task is 
to partit ion the plane into regions reachable by the evader without any chance of 
capture by the pursuer and regions where capture by the pursuers is possible. Each 
region reachable by the evader includes a description of how the evader can reach 
the points in the region. This partition wi l l be called the pursuit-evasion Voronoi 
diagram. 

We can view the evader as a robber, escaping the scene of a jewelry heist, 
and the pursuers as the cops. The robber can compute the pursuit-evasion Voronoi 
diagram, where the evader starting position is the location of the jewelry store and 
the pursuer starting positions are the nearby police stations. The obstacles model 
regions wi th no streets such as parks and rivers. The evader starting time is the 
amount of time it takes the robber to load a car full of ill-gotten gains, and the 
starting time for each of the pursuers is the delay for the cops at that police station 
to wake up and get into their cars. 

The pursuit-evasion Voronoi diagram computes "safe" regions. For any point 
in a "safe" region, the point can be reached by the robber without danger of capture 
by any of the cops, and the diagram describes a path to the point for the robber. 
The robber may wish to ensure a safe haven or the border crossing into another 
country lies within a "safe" region. 
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This does not mean that paths that pass through the regions not marked 
"safe" guarantee capture, but only that the possibility for capture exists along these 
paths. For example, there may be many cops leaving each police station taking 
different paths, whereupon following "safe" paths may be a better choice. However, 
there may be very few cops on duty, whereupon the robber may be unmolested 
even when taking paths that pass .through the regions not marked "safe" in the 
pursuit-evasion Voronoi diagram. 

Therefore, the pursuit-evasion Voronoi diagram provides a diagram which 
separates "safe" escape routes from risky ones, leaving the actual decisions to the 
user. As well, the robber can recompute the pursuit-evasion Voronoi diagram during 
the escape, as the position of the robber changes and new information about the 
positions of the cops becomes available, resulting in a new pursuit-evasion Voronoi 
diagram. 

We also propose a method to merge the pursuit-evasion Voronoi diagram for 
several evaders. We shall refer to the set E be the set of s evaders. We can combine 
the pursuit-evasion Voronoi diagram of several evaders to obtain a combined diagram 
that identifies the points in the plane reachable by some evader, and a shortest path 
without capture that reaches the points in each region. Alternatively, given the set 
E of evaders and the pursuit-evasion Voronoi diagram for each evader, we provide 
a method to compute the region reachable by all the evaders. 

We now give several precise mathematical definitions that w i l l enable us to 
specify the exact meaning of capture and evasion. 

Definition 2.1.1. Given a speed v, the travel time for a path wi th length I is I/v. 
Therefore, if we are given a starting time t, the absolute arrival time for a path 
length I, given speed v and starting time t, is - + t. 

A n evader e can reach a point p v ia an evasive path if there exists a path <f> 
from e to p such that for every point q along the path, the arrival time for the evader 
e along the path to q is shorter than the shortest arrival time for any pursuer to q. 
To make this more precise, let us consider a path 4>, and points x and y on the path </>. 
Let c^(x, y) be the distance along the subpath of cf> from x to y, where cĴ (x, y) = oo 
if the subpath of 4> from x to y crosses an obstacle in O. For convenience, let 

= G^(x,y) if (f> is a path from x to y. Let d(a,p) = m i n p e $ ( a p ) dp(a, p), where 
<5(a, p) is the set of al l paths from a to p. In other words, d(a, p) is the length of the 
shortest obstacle-avoiding path from a to p if such a path exists, or oo otherwise. 

Definition 2.1.2. A path <j> from e to p is an evasive path for the evader e if and 
only if 

Vq e <f>,d(t>(e,q)/ve + te < mind(f , q)/t>/ + */ 
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Let d*(e,p) be the length of the shortest evasive path to p for evader e if such a 
path exists, or oo otherwise. 

Definition 2.1.3. A n evader e can reach a point p if there is an evasive path from 
e to p for the evader e. 

Definition 2.1.4. A point p belongs to the region for evader e if and only if 

d*(e,p)/ve +te <mmd(j,p)/vj + tj 
j€P 

Definition 2.1.5. A point p belongs to the region for pursuer q iff 

d(q,p)/vq + tq < mmd(i,p)/vj + tj 

We call the parti t ion of the plane into regions belonging to each pursuer or 
evader the pursuit-evasion Voronoi diagram. This part i t ion w i l l describe al l the 
points which can be reached by the evader without being captured by the pursuer, 
and wi l l also give a shortest path to reach these points. In the following sections, 
we propose an algorithm to calculate the pursuit-evasion Voronoi diagram that runs 
in polynomial time under the L\ distance metric (See Figure 2.1 for an example of 
a pursuit-evasion Voronoi diagram). We also note that this parti t ion can be used 
to upper and lower bound the Li diagram, and provide methods of merging the 
diagrams of multiple evaders. 

2.2 Related Work 
The pursuit-evasion Voronoi diagram is a variation of the traditional Voronoi dia
gram that integrates many properties of several other well-known variations of the 
Voronoi diagram. In particular, we shall show that the pursuit-evasion Voronoi 
diagram incorporates elements of the compoundly weighted and the constrained 
Voronoi diagrams [3, 17], while adding restrictions similar to the crystal growth 
Voronoi diagram[21, 20]. 

In a traditional Voronoi diagram in two dimensions, we are given a set of 
generator points, also known as sites. The plane is partitioned into regions, where 
all points in a region are closer to one site than any other site, wi th distance being 
calculated using a particular distance metric, such as Li. We can note that although 
the distance to a point is used to partit ion the plane, this is equivalent to using the 
arrival time along a straight line path, if we consider al l sites as having a speed of 
1. 

The compoundly weighted Voronoi diagrams [4, 17] allow sites to have both 
an additive weight and a multiplicative weight. We can model starting time and 
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Figure 2.1: A simple example of the pursuit-evasion Voronoi diagram in L\ for the 
evader e and the pursuer q, where the evader e has twice the speed of the pursuer. 
The thick black lines represent obstacles. Points in the region Re can be reached 
the evader taking a straight line path from e to the point in Re. Points in R\ can 
be reached by the evader taking a path from e to t\ and then to the point in R\, 
and so on. Some points, such as £ 4 , £ 7 , tg and tg can be reached but do not have 
regions of their own. _ 



(the inverse of) speed in the context of arrival time using additively weighted and 
multiplicatively weighted sites. The Voronoi diagram partitions the plane into re
gions, where a point is in the region for a site if the arrival time of a straight line 
path from the site is the earliest out of the arrival times of straight line paths from 
all the sites. 

In an additively weighted Voronoi diagram, every site is assigned an additive 
weight. Again , if we consider al l sites to have speed 1, the travel time along a 
straight line wi l l be equivalent to the distance. Therefore, the arrival time at a 
point from a site is the distance between the point and the site plus the additive 
weight associated wi th the site. 

In a multiplicatively weighted Voronoi diagram, every site is assigned a mul
tiplicative weight. The travel time of the straight line path to a point from a site, in 
this case, is the distance between the site and the point multiplied by the multiplica
tive weight associated wi th the site. Therefore, we can consider the multiplicative 
weight to be the inverse of the speed for a site. 

In a compoundly weighted Voronoi diagram, we define the arrival time at a 
point from a site as the distance given by the distance function multiplied by the 
multiplicative weight, plus the additive weight. This is equivalent to assigning each 
site a starting time and speed, and considering the arrival time of straight line paths 
to points. 

The constrained Voronoi diagram [9, 2, 3] introduces a set of edges, also 
known as obstacles. The distance from a site to a point is defined to be the length 
of the shortest obstacle-avoiding path from the site to the point. We can view 
constrained Voronoi diagrams as a partit ion of the plane into regions. A point is in 
the region for a site if the arrival time to the point from the site, along a shortest 
obstacle-avoiding path, is the earliest of al l the arrival times of obstacle-avoiding 
paths to the point from a site. 

The multiplicatively weighted crystal growth Voronoi diagram introduces 
another constraint on the paths taken to the points in the region for a site — paths 
cannot pass through points passed through earlier by another site. This models 
the region obtained where each site represents a crystal and each crystal grows 
outwards simultaneously at the constant speed associated wi th the respective site. 
The crystals may only grow on empty space, and therefore must grow around the 
regions established by other sites. Schaudt and Drysdale[21, 20] detail an numerical 
expanding wavefront method to construct the crystal Voronoi diagram in L^, as 
well as an event-driven expanding wavefront algorithm for computing the crystal 
Voronoi diagram for convex polygon distance functions, including L\. 

The pursuit-evasion Voronoi diagram problem wi l l handle the presence of ob-
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stacles and allow sites to be assigned velocities (multiplicative weights) and starting 
times (additive weights). In addition, our definition of evasive path distance treats 
points where the pursuer can capture the evader as additional obstacles the evader 
cannot pass through. However, rather than requiring every site's path to avoid ev
ery other site's region (as is the case for crystal Voronoi diagrams), we require that 
the evaders avoid the pursuers' regions, and allow pursuers to move freely through 
evaders' regions. 

2.3 Motivation 

Unlike most variations of the Voronoi diagram, we have asymmetry in the manner in 
which sites are dealt with, as we classify sites as either pursuers or evaders. Pursuers 
behave in a manner similar to sites in a constrained, compoundly weighted Voronoi 
diagram, considering all paths avoiding obstacles, whereas evaders behave similarly 
to sites in a constrained, compoundly weighted crystal growth Voronoi diagram, 
considering only paths that avoid both obstacles and capture by pursuers. 

A natural way to view the pursuit-evasion Voronoi diagram is as the diagram 
obtained by the growth of two types of agents. Commonly-used examples in other 
Voronoi diagrams include the spread of bacteria in a petri dish or the growth of 
crystals[21, 20, 3]. In this case, one agent (modelled by the pursuer) is not l imited 
by anything other than its speed, but the other (modelled by the evader) may only 
grow into clear space. For example, we can consider two bacterial strains, one strain 
that can be kil led by the presence of an antibiotic, and the other strain producing 
that particular antibiotic and being immune to its effects. The first strain cannot 
grow into regions occupied by the second, as it would be kil led by the presence of the 
antibiotic being produced, whereas the second strain does not have this problem. In 
a more generalised setting, we could also consider approximating other asymmetric 
populations of predators and prey. 

Another setting which considers the growth of two types of agents is the 
spread of a biological or chemical agent. The pursuer in this case represents a 
counter-agent that controls the spread of the agent. The evader region describes 
the area that is contaminated by the agent before the arrival of the counter-agent. 
For example, the spread of the Black Death in Europe and the spatial spread of 
rabies among foxes [15] have both been modelled as epidemics wi th wavefronts which 
expand outwards at constant rate. 

The pursuit-evasion Voronoi diagram can also be viewed in the context of 
worst-case motion planning. For example, we can consider the agent we are moving 
to be the evader, and moving objects in the world to be the pursuers. In this 
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simplification, we consider the pursuers and the evaders as points moving in a plane. 
Interception by a pursuer, in this example; corresponds to the potential of collision 
between the agent and an object. For any point in the evader's reachable region, 
there is a path guaranteed to be free of collisions for the agent. Instead of modelling 
the behaviour of the other agents, we assume the worst possible case. This allows 
us to generate paths which can never be intercepted, given the specified constraints. 
Many real-world motion planning applications, such as those which involve danger to 
human life, cannot tolerate collisions. For example, traffic control, camera operation 
in telesurgery and other vir tual presence applications [14] are situations where any 
possibility of collision is unacceptable. Other Voronoi diagrams have also been used 
in this context — Kobayashi and Sugihara[12] use the an approximation of the 
crystal Voronoi Diagram to find a worst-case optimal path for an arbitrarily shaped 
evader among circular pursuers. 

The concepts of growth and motion planning can also be combined. There 
are pathfinding applications that, in addition to fixed obstacles, also incorporate 
the idea of growing impediments. We can use the pursuit-evasion Voronoi diagram 
to determine the regions that can be reached before being rendered impassible by 
some expanding impediment to movement, such as the spread of a forest fire[19] or 
inundation by an expanding body of water. In this case, we treat the pursuer sites 
as a growing source which the evaders must avoid. 

We shall show that Euclidean distance (the L2 metric), although arguably 
the most natural measure of distance in the plane, results in diagrams which can 
involve circular arcs and spirals. We ultimately use the L\ distance metric i n our 
algorithm. L\ distance is also known as rectilinear distance, and can be used to 
model distance travelled along city streets, when the streets run either North-South 
or East-West[l]. We shall also show a method to approximate the Li pursuit-evasion 
Voronoi diagram using the L\ pursuit-evasion Voronoi diagram. 

2.4 Voronoi Diagrams 

The distance between two points wi l l be defined using a distance metric. A distance 
metric d(x, y) satisfies three properties: 

• d(x, y) is always non-negative, and is zero if and only if x = y 

• d(x, y) = d(y, x) (reflexivity) 

• d(x, y) < d(x, z) + d(z, y) (triangle inequality) 

Common distance metrics are the Lk distance metrics, where given points a and b 
with Euclidean coordinates (xa, ya) and (xb, yb), d(a, b) = ty(\xa - xb\)k + (\ya - yb\)k. 
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Definition 2.4.1. A compoundly weighted Voronoi diagram for two points a and 
b, wi th multiplicative weights va and Vb, additive weights ta and %, is a parti t ion of 
the plane into a region for a and a region for b, where a point p is in the region for 
a if and only if d(&,p)/va + ta < d(b,p)/vb + fy,. 

In the remainder of this section, we shall investigate several simple exam
ples of the pursuit-evasion Voronoi diagram, and show the relationship between the 
pursuit-evasion Voronoi diagram and other kinds of Voronoi diagrams. 

2.4.1 Pursuit-Evasion Voronoi Diagram for a single Pursuer and a 
single Evader 

Let us consider the case when there is one pursuer a and one evader b w i th no 
obstacles. We shall note the differences between the use of the L2 norm and the L\ 
norm. To simplify, we shall consider when both the pursuer and evader start at the 
same time (ta = %) and in the absence of obstacles. 

If the speed of the pursuer is equal to the speed of the evader, the pursuit-
evasion Voronoi diagram is a normal Voronoi diagram. Note that by definition, 
the boundary between the regions belongs to the pursuer. In the L2 norm, this 
partitions the plane into two regions separated by a straight line, the perpendicular 
bisector of the line ab (See Figure 2.2). We note that the asymmetry between the 
pursuer and evader does not impact the diagram in this case as all the paths taken 
by the evader are straight line paths that cannot be intercepted by the pursuer, and 
all the points owned by the pursuer cannot be reached by any path by the evader 
in a shorter amount of time. 

For the L\ norm, the pursuit-evasion Voronoi diagram is the normal L\ 
Voronoi diagram. Let a = (xa,ya) and b = (xb,yb)- W i t h i n the box bounded 
by x = xa, x = Xb, y = ya, V — Vb, w e have a separator slanted at a 45 degree 
angle. Once the boundary intersects this bounding box, it w i l l change direction. If 
the separator intersects the top or bottom edge of the bounding box, the separator 
continues as a vertical line. If the separator intersects the left or right sides of 
the bounding box, it continues as a horizontal line (See Figure 2.3). Note that if 
it intersects wi th a corner of the bounding box, we can have a region of equality 
in addition to a boundary line of equality, which is owned by the pursuer (See 
Figure 2.4). Again , all the points in the evader region are reachable by straight line 
paths that cannot be intercepted by the pursuer. 

If the pursuer is faster than the evader, the pursuit-evasion Voronoi diagram 
is a multiplicatively weighted Voronoi diagram. In L2, the boundary is formed by 
an Apollonius circle[4, 17, 21, 20] (See Figure 2.5 for an example). Wi thout loss 
of generality, let us translate and rotate the diagram such that b is at the origin 
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Figure 2.2: Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the evader 
b when the pursuer and evader have the same speed. The solid line separates the 
region for a from the region for b (Same as the standard Voronoi diagram for two 
sites in L2). The evader region is Rb, and consists of points which are al l reachable 
via a straight line path from the evader start point b. 

Figure 2.3: Pursuit-evasion Voronoi diagram in L\ for the pursuer a and the evader 
b when the pursuer and the evader have the same speed. It is composed of a line at 
45 degrees and vertical lines (Same as the standard Voronoi diagram for two sites 
in L i ) . The evader region is Rb, and consists of points which are al l reachable v ia a 
straight line path from the evader start point b. 

• b 
•a 

Rb 
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Figure 2.4: Another example of the pursuit-evasion Voronoi diagram in L\ for the 
pursuer a and the evader b when the pursuer and the evader have the same speed. 
The solid line and the grey region represent the region where the distance from a is 
the same as the distance from b, and therefore belongs to the pursuer a. Again, the 
boundaries are the same as in the standard Voronoi diagram for two sites in L\. Rb 
is the region reachable by the evader, and consists of points that are al l reachable 
via a straight line path from the evader start point b. 

and a lies on the positive x-axis at ( x o , 0 ) , wi th the pursuer starting at a and the 
evader starting at b. The multiplicative weights for sites a and b wi l l be ^ and ^ 
respectively, wi th va > v&. We get a circle such that the two points {fa

a^b, 0) and 
(vX-vl»u) a r e opposite ends of the diameter of the circle. We note that the region 
for the evader in the pursuit-evasion Voronoi diagram is always contained in the 
corresponding region in a multiplicatively weighted Voronoi diagram, as capture by 
the pursuer is ignored the multiplicatively weighted Voronoi diagram. However, al l 
the paths taken by the evader b in this example are straight line paths to the circle 
boundary, wi th the earliest interception point at the circle boundary. As no paths 
extend beyond the circle boundary, the evader region in the pursuit-evasion Voronoi 
diagram is the corresponding multiplicatively weighted Voronoi region. 

If the evader is faster than the pursuer, the boundary between the pursuer 
and the evader in the pursuit-evasion Voronoi diagram is the boundary in a multi
plicatively weighted crystal growth Voronoi diagram. In multiplicatively weighted 
crystal growth diagrams, the evader treats al l points in the pursuer's region as obsta
cles, which is equivalent to the constraint for the pursuit-evasion Voronoi diagram. 
A s well, in multiplicatively weighted crystal growth diagrams, the pursuer treats 
the points in the evader's region as obstacles, but this does not affect the diagram 
as the pursuer cannot reach any point in the evader region via a straight line path 
before the evader can reach it. In L2, the boundary is partly an Apollonius circle, 
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Figure 2.5: Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the evader 
b, where the pursuer is faster than the evader (Same as the multiplicative Voronoi 
diagram in L2) . Rb is the region reachable by the evader, and consists of points that 
are al l reachable v ia a straight line path from the evader start point b. 

same as in the multiplicatively weighted Voronoi diagram, and partly a logarithmic 
spiral[21, 20] (See the example in Figure 2.6). 

The points in the evader region that can be reached by straight line paths, 
unstopped by the pursuer, lie in the region Ra. They form a boundary that incor
porates part of the circular boundary from the multiplicatively weighted Voronoi 
diagram (see the portion of the boundary of the region Ra between the points ti 
to ti and closer to a in Figure 2.6). Note that the rest of the circular boundary 
(the dashed boundary in Figure 2.6), obtained by paths from the evader that pass 
through the pursuer controlled region, is not valid, as these evader paths can be 
intercepted by the pursuer. However, a valid evader path would be for the evader 
to run to a point tangent to the circular boundary (such as t\ or £2 i n the example), 
and then to follow a path that is just outside the reach of the pursuer. The points 
along this path have the property that the distance along the path is proportional 
to the distance to the pursuer starting point, which describes a logarithmic spiral 
(See the solid portions of the boundary for the regions R\ and R2). 

In general, shortest evasive paths can also leave the spiral boundary and con
tinue in a straight line fashion towards their destination, possibly interacting wi th 
other pursuer points and forming more complex curves. Considering the L2 norm as 
the distance function, if there exist pursuers or evaders (in other words, i and j in 
P U E) wi th differing speeds (vi 7̂  f j ) , or in the presence of obstacles ( 0 ^ 0 ) , there 
can be boundaries between regions that are formed by second degree curves [17]. We 
obtain hyperbolic curves at the boundaries between points wi th differing additive 
weights, which can also occur wi th the addition of obstacles. As seen i n the previous 
examples, we can also get circular arcs when multiplicative weights differ, and sec
tions of logarithmic spirals are possible when the speed of an evader exceeds that of 
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Figure 2.6: Pursuit-evasion Voronoi diagram in L2 for the pursuer a and the evader 
b, where the evader is faster than the pursuer (Same as the crystal growth Voronoi 
diagram in L2). The region Ra consist of points whose shortest evasive path is a 
straight line path from a. The region R\ consists of points whose shortest evasive 
path is a straight line to the point t\, following the solid line boundary and then 
a straight line to the destination (Similarly for R2). The dotted circle inside is the 
circular boundary from the multiplicative Voronoi diagram, for comparison wi th the 
boundary which is composed of two logarithmic spirals starting at t\ and £2, and 
intersecting at the boundary between R\ and R2. 
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a pursuer. As we are unaware of general closed form solutions for the boundaries in 
the L2 multiplicatively weighted crystal growth Voronoi diagram [21, 20], it is likely 
that the boundaries in the pursuit-evasion Voronoi diagram can be equally complex 
and would require numerical methods to compute. 

We can note that when we are working in the L\ metric, the solution for 
the curves which form the multiplicatively weighted Voronoi diagram for two points 
are straight lines. When we have a pursuer that is faster than the evader, the 
boundary of the pursuit-evasion Voronoi diagram is the same as the boundary for 
the corresponding multiplicatively weighted Voronoi diagram. When solving for 
the boundary of the multiplicatively weighted Voronoi diagrams in general for two 
points a and b, we are solving the equation 

d(x,a)/va - d(x,b)/vb 

Without loss of generality, we can consider the speed of b to be 1, a to lie at 
the origin, and b to lie in the first quadrant. Therefore, in L\, we are considering 

(\x\ + \y\)/va = (\xb-x\ + \yb-y\) 

However, we can note that this can be broken up into nine cases. We have 
three possible kinds of values for x: x < 0, 0 < x < xb and x > xb.: Similarly, 
there are three kinds of values for y: y < 0, 0 < y < yb and y > yb. Therefore, 
the above equation reduces to nine possible lines in each of the nine regions. Of 
course, not every region wi l l have a valid solution — we obtain a polygon that 
surrounds the slower site. This gives us, like the diagram in L2, the pursuit-evasion 
Voronoi diagram in L\ when the evader is slower than the pursuer, if we note that 
all paths taken by the evader follow straight lines to the boundary without entering 
the pursuer's region. 

For the crystal growth Voronoi diagram in L\, the boundary is again com
posed of straight line segments and wi l l only bend when it reaches the boundary 
of the nine regions we mentioned before. We refer to Schaudt[20], which details a 
general algorithm for computing the boundary of crystal growth Voronoi diagrams 
for L\ (and other distance functions). Just as in the L2 case, we need to care
fully consider which points can be reached v ia straight line paths. Therefore, when 
va > 1, we w i l l have part of the diagram that is identical to the multiplicative 
Voronoi diagram. However, the logarithmic spiral in L2 simplifies to a series of lines 
in Li. We can note the solution to the compoundly weighted Voronoi diagram in 
L\ is very similar to that of the multiplicatively weighted Voronoi diagram, wi th 
boundaries composed of straight line segments. When we consider the paths which 
need to bend around the pursuer region in the crystal growth Voronoi diagram, 
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we can compute the portion that bends around the pursuer region (the part which 
corresponds to the logarithmic spiral in L2) using the solution to the compoundly 
weighted Voronoi diagram — we can consider a site at the point where the path 
turns, and has the same speed as the original site but a starting time equal to the 
time it takes the original site to reach the turn. In this manner, we can follow the 
boundary around the pursuer region. Otherwise, by similar arguments as the L2 
case, the crystal growth Voronoi diagram in L\ also describes the L\ pursuit-evasion 
Voronoi diagram when the evader is faster than the pursuer (See Figure 2.7 for an 
example). 

2.5 Pursuit-Evasion Voronoi Diagram 

We shall begin wi th defining several terms useful in describing the pursuit-evasion 
Voronoi diagram and proving properties of the structures discovered by our algo
r i thm. 

Definition 2.5.1. The crystal around an obstacle vertex or pursuer start point p 
with respect to the evader e (and the set P of pursuers and the set O of obstacles) 
is the set of points 

C = {q\ min Cd(a,p)/va + ta + dpq/va) < (d*(e,q)/vb + h)} 
a€P 

The crystal is the region around p that no evasive path can pass through 
without being intercepted by a pursuer path that passes through p. Note that this 
also implies that, for al l points q in a crystal, all paths from the evader starting 
position wi l l be intercepted en route to q. 

Note. The union of the crystals around every obstacle vertex and the pursuer start 
point is the pursuer's region. 

Definition 2.5.2. The vertices on the boundary of a crystal C are crystal vertices. 

Definition 2.5.3. A shortest path tree for an evader e is a tree whose root is e and 
whose other nodes are obstacle vertices or crystal vertices (with respect to E = {e}) 
such that, if any point p ^ e is reachable by e then there exists a shortest evasive 
path (e,..., p', p), where (e,..., p') is a path in the shortest path tree. 

Definition 2.5.4. The nodes in the shortest path tree for an evader e are called 
e's tree nodes and consist of the evader starting point, obstacle vertices and crystal 
vertices. 
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Figure 2.7: Pursuit-evasion Voronoi diagram in L\ for the pursuer a and the evader 
b, where the speed of the evader is greater than the speed of the pursuer. Rb is the 
region of points reachable v ia a straight line path from b. R± is the region of points 
reachable v ia a path from b to £1 and then via a straight line to the destination, and 
similarly for R2 and R3 (which is reached via t\). Note that there is a degenerate 
situation in the region R23, between the points £2 and £3. This is a region of equality, 
where paths v ia £2 are equal in distance to paths v ia t\, similar to the situation in 
Figure 2.4. 
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Lemma 1. If a shortest obstacle avoiding path in L\ from p to q exists, there 

must exist a shortest obstacle avoiding path from p to q consisting of straight line 

segments with endpoints at obstacle vertices, p and q. 

This result was shown by Clarkson et al.[6]. 

Lemma 2. If a shortest evasive path from p to q exists for evader e, there exists 
a shortest evasive path consisting of straight line segments with endpoints at the 
evader's starting point, crystal vertices and obstacle vertices. 

Proof. We can consider the boundary of the crystals as obstacles — no evasive path 
can pass through the crystal boundary, effectively blocking motion just like an ob
stacle. Also, there exists an evasive path to every point not in a crystal. Therefore, 
we can consider the problem of finding a shortest obstacle avoiding path, consider
ing both the crystal boundaries and the original obstacles as obstacles. Therefore, 
Lemma 2 is a special case of Lemma 1. • 

As tree nodes are the vertices of the pursuer boundary region and the vertices 
of the obstacles, a shortest path can be found that passes only v ia tree nodes and 
p and q. Therefore, a shortest path tree must exist for any evader, set of pursuers 
and set of obstacles. 

Definition 2.5.5. We define a path ir = (xo , . . . ,Xk) as the path consisting of the 
sequence of straight line segments xoxT, X 1 X 2 , . . . , Xk - iXk -

Definition 2.5.6. Given a path 7r = (xo, • • • ,Xk), we define the 'o' operator as 

? r o y = (x 0,...,xk,y) 

We shall exploit the property shown in Lemma 2 in our algorithm for com
puting the pursuit-evasion Voronoi diagram in a plane wi th the presence of obstacles, 
which wi l l run in polynomial time when using the L\ distance metric. 

2.6 Computing the Pursuit-Evasion Voronoi Diagram 

2.6.1 Overview of the Algorithm 

A t first glance, it might seem feasible to consider the diagram for each pursuer and 
evader independently, and then stitch these diagrams together. However, when con
sidering shortest evasive paths, it is necessary to consider al l pursuers, as a path 
is evasive only if it is not intercepted by any pursuer at any point along the path. 
For example, a point reachable by the evader when we consider two pursuers inde
pendently may not be reachable when both pursuers are considered simultaneously 
(See Figure 2.8). 
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evasion Voronoi diagram for 
the evader e with respect to 
pursuer p%. The region in 
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(c) When we consider both p\ and 
P2, there no longer exists an eva
sive path to q. 

Figure 2.8: A n example demonstrating how an evader e may be able to reach a point 
q when considering the pursuers p\ and p2 independently, but is unable to reach q 
if both pursuers are considered together. 
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The approach we take during the algorithm is to repeatedly take an unpro
cessed tree node from a set of discovered points, and process the node by finding any 
new tree nodes reachable from the node to be processed. W h e n all the tree nodes 
are found, the algorithm terminates. We can view the algorithm as being similar to 
a Dijkstra-style search for shortest paths from a single source in a visibil i ty graph. 
In this case, in addition to considering obstacle vertices, we also need to consider 
crystal vertices, which are not known in advance. However, given a tree node, we 
wi l l describe an operation that wi l l find all its children in the shortest path tree 
(among other vertices) using geometric union, difference and intersection, and by 
computing the compoundly weighted Voronoi diagram for two points. A s Dijkstra's 
algorithm only needs information about the successors of the processed nodes, we 
can implement Dijkstra's shortest path search without knowing the entire graph 
in advance, as long as we guarantee that by the time a node is processed, we can 
guarantee that it is a tree node, and has a correct shortest path distance estimate 
(See Algor i thm 1 for an outline). 

A l g o r i t h m 1 Outline of pursuit-evasion Voronoi diagram computation 
w h i l e there exist unprocessed potential tree nodes do 

find an unprocessed tree node p to process, 
compute the region reachable from the tree node p. 
update the interim pursuit-evasion Voronoi diagram, 
check for new potential tree nodes. 
remove any points that can be determined to not be potential tree nodes, 

e n d w h i l e 

A s tree nodes are processed, we discover regions reachable v ia shortest evasive 
paths through the tree node processed. Using these regions, we continually update 
a parti t ion of the plane, where each region is associated wi th a processed path node. 
Each region for a tree node corresponds to the set of points where the shortest path 
to a point in the region is the path to the tree node (from the root) and the straight 
line path from the path to the point, out of all paths in the tree to a tree node 
concatenated wi th a straight line from that tree node to the point. 

A s the shortest obstacle-avoiding path for a pursuer to a point in the plane is 
independent of the evaders, we can compute the shortest path distances from each 
pursuer to each obstacle without considering the evaders. 

Let O* be the set of the obstacle vertices of al l the obstacles in O. We note 
that d(a, o), for pursuer a G P and o £ O*, is the shortest path from a to o in the 
visibil i ty graph of O* U a, where an edge in the graph between vertices x and y has 
weight dxy. 
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Definition 2.6.1. The set S is defined to be 

S = J U U {(o,Va,d(a,o)/va + ta}\uP 

where P = \Jp€P (p,vp,tp). 

For each pursuer p G P and obstacle vertex o G O*, we create a triple 
(o, i ; x , £ x ) in 5, where vx is the speed of p and £ x is the shortest arrival time of p at 
o. Therefore, for any point x , we can consider al l of the obstacle vertices o G O* 
and pursuers p G P and compute the shortest path distance for each p wi th a path 
via each o to x. B y Lemma 1, if there exists a finite length shortest path to x it 
must be one of the paths considered. Therefore, the shortest arrival time from a 
pursuer to x can be expressed as 

min(d(q, ~x)/vq + tq) = min (dsx / i> s + t3) 
1€P (s,vs,ts)£S 

In general, we refer to a triple x = (x,vx,tx) as having the equivalent of a 
starting position x, a speed vx and a starting time tx. 

We now consider the task of computing the regions associated wi th the 
evaders. To do this, we run Evader-Region (see Algor i thm 2 for a detailed pseudo
code version of the algorithm). The result of Evader-Region is V, which is a complete 
shortest evasive path partit ion for the evaders E. 

Definition 2.6.2. Dequeue-Min(Q) returns a point x e Q that has the minimum 
value for de[x]. In other words, Vp G Q,de[p] > de[x]. 

Definition 2.6.3. Visible(x, O) is the set of al l points p such that the straight line 

path x p does not pass through an obstacle. 

Vis ib le (x ,0 ) = ( J {p|cfep < oo} 
p € R 2 

Definition 2.6.4. Voronoi-Region(p, q) is the Voronoi region for the triple p in the 

compoundly weighted Voronoi diagram (without obstacles) for p and q. 

Voronoi-Region(p, q) = {x|d(x, p)/vp + tp< d(x, q)/vq + tq} 

Definition 2.6.5. 

Control-Region(p, n,R, £) — R - [J (Voronoi-Region(x,p) n Rx) (2.1) 
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Algori thm 2 Evader-Region 

1: de[e] := 0, Pe := 0, 7re[e] := (e), £ = $ 
2: Enqueue(Q ,e) 
3: while Q not empty do 

4: p := Dequeue-Min(<2){Note: d*(e,p) = de[p]} 

5: p : = ( p , V e , ^ l + t e ) 

6: C := (J (Voronoi-Region(x ,p) n Visible(x, O)) {Lemma 4} 

7: i? := Visible(p, C U O) {Lemma 5} 

8: i? := Control-Region(p, 7re[p], R, £) {Definition 2.6.5,Lemma 6} 
9: £ := Merge-Region(p,7r e[p],i?,5) {Definition 2.6.6,Lemma 7} 

10: B := R n (C U O) {Boundary of R shared wi th C and O} 
11: for all vertices f on the boundary B do 
12: if de[f] > d*(e,p) + d^ then 
13: de[f] :=d*(e,p) + d^f 

14: 7re[f] :=7r e [p ]o f 
15: if f g Q then 
16: Enqueue(Q, f) . 
17: end if 
18: end if 
19: end for 
20: Pe := Pe U {p} 
21: for all q G Q and q £ O* do 
22: if q is strictly inside the region \J Rx then 
23: Dequeue(Q, q) 
24: end if 
25: end for 
26: end while 
27: return V 
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Figure 2.9: A n alternative way of looking at the algorithm is to view the processing 
of each tree node as "increasing" the region of certainty. After processing the evader 
starting point e, we dequeue p from the queue, and therefore al l points with shortest 
path arrival time earlier than p have the correct regions assigned, as shown by the 
grey region. 

Definition 2.6.6. Let Merge-Region(p, w, R, £) be 

The Evader-Region algorithm iterates over the tree nodes for the evader e. 
After visiting a tree node, it computes a partial partition £ for e wi th respect to the 
tree nodes visited so far by updating a previously computed partial partition. 

Definition 2.6.7. We call £ a partial (shortest evasive path) partition for a single 
evader e if there exists a non-crossing shortest evasive path tree T rooted at e such 
that for al l tuples (p, IT, R) £ £ where p = (p, vp, tp): 

1. p is a tree node 

2. 7r is a shortest evasive path from e to p in T. 

3. for al l q 6 R, IT o q is a shortest evasive path to q among all paths IT' o q wi th 

Note 0 is a valid partial partition, and is also the ini t ia l partial partit ion 

when the algorithm starts. 

We wi l l show that after the algorithm visits all the tree nodes, we have a 

complete partition for the evader e. 

(p',TTJ ',R')e£. 
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Figure 2.10: After processing p, the algorithm wi l l proceed to process t2- Therefore 
all points wi th shortest path arrival time earlier than t2 have the correct regions 
assigned, as shown by the increased grey region. 

Definition 2.6.8. £ is a complete partit ion for an evader e if £ is a partial partit ion 
for e, wi th the additional constraint that if p € T then (p, n, R) G £ . 

The complete partit ion contains al l the regions and paths for the pursuit-
evasion Voronoi diagram, and is the final output of the algorithm. 

2.6.2 Execution and Correctness of the Algorithm 

To compute the complete partit ion for an evader e, the algorithm explores the 
shortest path tree for e, maintaining a queue of possible tree nodes Q and a partial 
partit ion £ . Initially, the queue contains e, which is guaranteed to be the root of 
the tree, and the partial partit ion is the empty set. 

For every iteration of the algorithm, we shall show it dequeues a tree node 
p to process from the queue Q by selecting the potential tree node in the queue 
wi th the earliest arrival time. Given that p has been correctly identified as a tree 
node, we wish to determine new regions and new potential tree nodes reachable 
by the evader v ia this tree node. We accomplish this by computing the region R 
that is reachable by straight line evasive paths from p (via a shortest evasive path 
to p) and determining the subregion of these points where the arrival time from 
p is earlier than the arrival time from any other tree node already processed. We 
then investigate the portion of the boundary of the evader reachable region that 
was discovered by computing R, updating the arrival time of the vertices on this 
part of the boundary and adding to Q any new vertices as potential tree nodes. We 
also check for potential tree nodes in Q which lie within completely wi th in R, and 
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remove them as they cannot be tree nodes as they are now known to not lie on the 
boundary. Finally, the partial partition £ is updated by adding the tuple for p, and 
changing the tuples in £ so that the new £ is also a partial parti t ion. 

Dequeuing a tree node p 

To do this, while the queue contains points, we first dequeue the point p w i th the 
lowest potential arrival time from Q. 

Lemma 3. The point p is a tree node, and ne[p] is a shortest evasive path to p. 

Proof. We shall note that de[p] is nondecreasing for each point p dequeued from 
Q. This is because at each time we dequeue a point from Q, we dequeue the point 
wi th the minimum value. As all distances in a distance metric are non-negative, 
any point reachable by a shortest evasive path via p that we enqueue must have a 
greater value (See lines 13 and 16) 

Suppose p is not a tree node. Then there must exist a tree node such that p 
lies wi th in the region of another tree node. However, if it lies wi th in the region of 
another tree node, the shortest path to p w i l l be v ia this other tree node, and thus 
7r cannot be the shortest evasive path from e to p. 

Suppose 7r is not a shortest evasive path from e to p in T. Let the shortest 
evasive path from e to p be TT'. Let x be the last tree node in TT' such that for 
some 7rx and RX, (X,TTX,RX) 6 £. Let y be the point that follows x in the path TT1. 
For y to be on the path IT' to p, de[y] < de[p]. However, this would mean y has 
already been processed and thus there must exist a tuple (y, Try, RY) £ £. A s this is 
a contradiction, 7r must be the shortest evasive path from e to p. • 

Computing the Region R 

We then compute C, al l the points of potential pursuer capture that surrounds p. 
More precisely, we identify all the points along straight line paths that extend from 
p where a pursuer can intercept the path. In this case, we notice that interception 
occurs where equality between pursuer shortest obstacle-avoiding paths and evader 
shortest evasive paths. We then exploit the compoundly weighted Voronoi diagram 
for two sites and visibil i ty to compute C. 

Lemma 4. The region C on line 6 is the set of all points such that a straight line 
path from p to the point (ignoring obstacles), given a speed ofvp and a starting time 
of tp, can be intercepted by at least one of the pursuers in P in the presence of the 
obstacles O. 
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Proof. Voronoi-Region(:r, p) computes al l the points in the plane that are closer 
or equal distance to x than p, in the absence of obstacles. B y intersecting wi th 
Visible(x, O), we restrict the region to only include points that are reachable by 
a straight line path from x. This has the effect of only considering straight line 
paths from x that do not pass through obstacles. Therefore, the region calculated 
comprises the points in the plane where a straight line path from p (which may or 
may not pass through obstacles) is intercepted by a pursuer v ia a straight line path 
from x (which may not pass through an obstacle). 

Therefore, if we union the regions for all x, £ S, we know by the construction 
of S that we w i l l have considered the shortest obstacle-avoiding path by any pursuer 
to all points in the plane, as such a path involves a straight line from some x e S, 
and we wi l l have identified all the points in the plane whose straight line path from 
p, ignoring obstacles, can be intercepted by some pursuer (See Figure 2.11). • 

Now that we have all possible pursuer interception points, we can determine 
the region that can be reached by an evasive path via p. A straight line path from p 
is valid unti l it is intercepted by an obstacle or a pursuer, at which point al l points 
further along the line are not reachable. This corresponds neatly with" the concept 
of visibility. This step therefore computes visibil i ty considering, as obstacles, the 
region C computed previously (containing all points where capture could occur) as 
well as the actual obstacles O. 

Lemma 5. The region R on line 7 is the set of points that a straight line path 
from p can reach without being intercepted by a pursuer in P or being blocked by an 
obstacle in O. 

Proof. The region Visible (p, O) is the set of al l points reachable in a straight line 
from p that do not involve paths that cross an obstacle. The region Visible(p, C) is 
the set of all points reachable in a straight line from p that cannot be intercepted by a 
pursuer. We note that both obstacles and interception points share the property that 
an evasive path may not pass through them. Therefore, the region Visible(p, O) n 
Visible(p, C) = Visible(p, O U C ) is the set of al l points reachable in a straight line 
from p that do not involve paths that cross an obstacle or an interception by a 
pursuer (See Figure 2.12). • 

To compute the region for a tuple in a partial partition, we need to ensure 
that not only are all the points in the region reachable v ia some evasive path through 
the tree node p, but that the path is also a shortest evasive path. Therefore, we 
now introduce the function Control-Region. The purpose of this function is to prune 
all the points in the region R which have a later arrival time from p than from a 
discovered tree node in the partial partition £ . 
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Figure 2.11: After processing the evader starting point e, we process the point in 
Q wi th the earliest arrival time, p, The outer dotted boundary is the boundary 
of Voronoi-Region(q, p), and is computed ignoring al l the obstacles. The shaded 
region is Voronoi-Region(q, p) fl Visible(q, O), the region C where the pursuer could 
intercept the evader, and considers the region inside the outer boundary that is 
visible from the pursuer starting point q. Heavy black lines indicate obstacles. The 
evader's starting position is e and there is a single pursuer starting at q. Note that 
C does not allow the pursuer to pass through obstacles, but the evader may pass 
through obstacles. Obstacle constraints for the evader wi l l be dealt wi th in the next 
step. 

Lemma 6. Assuming £ is a partial partition, Control-Region (Definition 2.6.5) 
computes the region of points where a path from p has the shortest arrival time with 
respect to the points in the set of regions £. 

Proof. B y Lemma 5, the region R consists of al l points reachable along a straight 
line path from p. In £ , each triple (x,nx,Rx) describes a region where a point q is 
in Rx if and only if the arrival time from x to q is the minimum arrival time over 
all triples in £ . Therefore, to add the region R to £ , we need to remove al l the 
points in R such that the arrival time from p is greater than from a discovered tree 
node in £ . This can be calculated by taking, for every triple (x,nx,Rx) in £ , the 
intersection of Rx and R and the Voronoi region for x in the diagram for £ and p 
(See Figure 2.13). • 

Once the region for the tree node p has been computed, we need to also 
update the regions for al l the tuples in the partial parti t ion £ , removing points 
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Figure 2.12: Considering the region C and the obstacles as occluding visibility, the 
greyed region indicates all the points "visible" from p. In other words, al l points in 
the region can be reached via a straight line evasive path from p. 

Figure 2.13: From p's reachable region, we remove the set of points that have 
shortest evasive paths described in £ . In this diagram, those points are the ones 
reachable v ia a straight line path from e. 
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Figure 2.14: Once the light grey region for tree node p is merged into the diagram 
with the dark grey region for the evader starting position e, we remove from the 
queue all potential tree nodes which no longer satisfy the criteria for a tree node. The 
larger dotted polygon is the region C computed for p. The smaller dotted polygon is 
the region C computed for e during the last iteration of the loop, and is responsible 
for the bend in the boundary of the grey reachable region between ti and £3 . Note 
that £4 is in a degenerate position — although it is an obstacle vertex, the evader 
cannot take any paths via t.4 as arrival time of the shortest evasive path for the 
evader at £4 is exactly the same as the arrival time of the shortest obstacle-avoiding 
path for the pursuer. 
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which no longer satisfy the shortest evasive path property of the partial partition. 

L e m m a 7. The procedure Merge-Region (Definition 2.6.6) adds the region R reach
able from p via the path IT to the partial partition £. 

Proof. A s the region R contains only points wi th the shortest arrival time from p 
(with respect to the points in £ ) , any region in £ that overlaps wi th R must be 
diminished by that overlap before R can be added as a new tuple, to preserve £ as 
a partial partition. 

The procedure Merge-Region removes the region R from each existing region 
i n £ v i a set subtraction and then adds the tuple (p, ir,R) to £ . • 

We can see the partial partition computed after two iterations of the main 
algorithm loop in Figure 2.14. The vertices on the boundary of R\ create new tree 
nodes t\ and t$. The unprocessed tree nodes £2 ,£3^4 and r.5 al l lie on the boundary 
for the union of the grey reachable regions and are therefore s t i l l valid (See line 23). 

U p d a t i n g t h e Q u e u e Q 

A t this point, we have the region for point p and we can compute the section of the 
boundary that was updated by the addition of this region. In the Dijkstra algorithm 
style, we need to update the distance estimates of all the reachable points. For our 
algorithm, this means considering vertices on the boundary as potential tree nodes 
which need to be updated. Therefore, any new vertices found on the section of the 
boundary updated need to be added to the queue and old vertices wi th a shorter 
distance estimate also need to be updated. As well, since there are points in the 
queue which may not be tree nodes, we remove any points which, given the new 
region computed, are no longer on the boundary and therefore are not tree nodes. 

L e m m a 8 . At line 4, the queue Q, including the point to be dequeued, contains all 
tree nodes that are on the boundary of the reachable region of £. 

Proof. We shall show this lemma via induction. 

B a s i s S t e p A t line 1, Q is initialised wi th the evader starting point e and £ is 
empty. Therefore, the first point processed by the loop is e. A s £ is empty, 
after the first iteration of the loop, Q contains al l the points on the reachable 
of the tree node e. 

I n d u c t i v e S t e p Assume that for some iteration of the algorithm loop, at line 4, 
the lemma holds. Then during the subsequent iteration of the loop, we add a 
tuple (p,TT,R) to £ . Only two situations can arise — new tree nodes on the 
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boundary are discovered and previously discovered tree nodes are no longer on 
the boundary. A s seen in Lemma 7, the only change in the reachable region 
is in the region R. The crystal vertices and obstacle vertices on the boundary 
of R are added v ia line 16, and thus al l new tree nodes are added to Q if 
not already present. Similarly, tree nodes which lie completely wi th in the new 
region R are no longer on the boundary and are removed on line 23. Therefore, 
Q is updated correctly. 

Therefore, every tree node on the boundary of the current reachable region 
of £ is found on the queue Q. • 

Algorithm Invariant 

Lemma 9. £ is always a partial partition with respect to evader e. 

Proof. Initially, £ for an evader e is set in line 1 to be empty, which is a valid partial 
partition. 

Let us consider any tuple (p, IT, R) added to £ . B y Lemma 3, p is a tree node 
and 7r is the shortest path to p. Therefore, by the operation proved by Lemma 6, 
we know that for al l q G R, it o q is a shortest evasive path to q among all paths 
7r' o q wi th (p', 7r', R') G £. Therefore, £ is always a partial parti t ion. • 

Termination and Final Output 

Lemma 10. At line 2, £ contains all the tree nodes of a shortest path tree for e. In 
other words, there exists a shortest path tree T such that for all p 'G T, there exists 
a region R where (p,ir,R) G £ and IT is the path to p in the tree T. 

Proof. Let us consider the possibility that a reachable tree node t is not dequeued 
via the algorithm. Given a shortest path via tree nodes to reach the tree node t 
from an evader e, let us consider the first tree node s in the path not dequeued 
from Q. A s the first point in the path is e, which is guaranteed to be dequeued, s 
must have a predecessor r , which by definition of s was processed. Let us therefore 
consider the iteration of the loop when r was processed. We can note that when r 
is processed, al l tree nodes reachable from r are added to Q on line 16. A s s is a 
tree node reachable from r, it must have been added to the Q and would therefore 
be processed. • 

Lemma 11. The final value for the region £ calculated for an evader e is the 
complete partition for the evader e. 
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Proof. A s al l tree nodes reachable from e are processed during the execution of 
the algorithm as seen in Lemma 10, and the region associated wi th each tree node 
is computed as seen in-Lemma 6 and added to the partial parti t ion £ as seen in 
Lemma 7, £ is the complete partit ion for evader e. • 

Figure 2.1 shows the complete partit ion for a single evader e. Ri is the region 
for tree node t;, and Re is the region for the root of the tree e. 

2.7 The Pursuit-Evasion Voronoi Diagram for Multiple 
Evaders 

We now consider the set of evaders E. Given V, the set containing the complete 
parti t ion for every evader, we can merge the complete partitions into a total part i t ion 
for the evaders. 

Definition 2.7.1. We call V a total shortest evasive path partition for a set of 

evaders E if: 

1. For each tuple (p,n,R) £ V, a shortest evasive path to any q G JR from the 
evaders in E is ir o q starting at an evader e G E and: 

(a) e is the first point in 7r 

(b) p = (p,ve,tp) where p is the last point in ir and tp is the arrival time of 

the evader e at p 

2. The set of the regions R in the tuples (p,-K,R) G V form a part i t ion of the set 

of al l points reachable by the evaders E. 

Starting wi th an empty set of regions, we incrementally add each region from 

each parti t ion for each evader. After al l the regions are processed, we have the total 

parti t ion for the evaders E. 

Algorithm 3 Total-Part i t ion 
1: for all £ G V do 
2: for all (p,irp,R) G £ do 
3: R := Control-Region(p, irp, R, V) 
4 : V \= Merge-Region(p, 7rp, R, V) 
5: end for 
6: end for 
7: return V 
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Lemma 12. V is a total partition for all evaders E and describes all points reachable 
by the evaders. 

Proof. V is constructed by applying Control-Region and Merge-Region to merge 
each region in each complete partition £ together. Therefore, V contains the regions 
associated wi th every tree node of every evader processed by the algorithm wi th 
respect to the pursuers. • 

2.8 Complexity Analysis 

We show that the algorithm runs in polynomial time. First , we demonstrate that 
there are a polynomial number of tree nodes, and that the complexity of the complete 
parti t ion is also polynomial. Given the size of the output is polynomial, we show 
that the algorithm runs in polynomial time. 

2.8.1 Size of the Pursuit-Evasion Voronoi Diagram 

We note that Schaudt[20] shows that the multiplicatively weighted crystal Voronoi 
diagram has polygonal boundaries in L\, but was unable to show a bound on the 
size of the diagram. Given that n is the number of obstacle vertices in O and m is 
the number of pursuers in P, we show the number of tree nodes processed (which 
includes al l the points that form the boundary of regions) is of size 0((n + m)2(mn + 
m)). We show the complete partition for a single evader is 0(nT2 + T 2 ) , where T 
is the number of tree nodes. When we consider a set of evaders E, s is the size of 
that set. The total partit ion for s evaders is 0(nT2s2 + T2s2). 

Lemma 13. There are at most 0((n+m)(mn+n)) crystal vertices at which shortest 
evasive paths can bend, and therefore 0((n + m)(mn + n)) internal tree nodes. 

Proof. We note that internal tree nodes are either the evader start point, obstacle 
vertices, or crystal vertices. As there is exactly one evader start point and at most 
n obstacle vertices that can be internal tree nodes, we shall focus our analysis on 
the number of crystal vertices that can be internal tree nodes. 

A crystal vertex c is a vertex of the pursuer region. It must have a parent 
c', and a shortest evasive path to c is v ia a path to c' and then to c. c can only 
occur when the shortest evasive path via c' arrives at the same time as the shortest 
obstacle-avoiding path from the pursuers. Let p be the pursuer which follows this 
shortest obstacle-avoiding path, and o be the last obstacle vertex (otherwise, the 
starting point p) of this obstacle-avoiding path. Therefore, the boundary at c is 
defined by the shortest evasive path via c' by the evader e and the obstacle avoiding 
path v ia o by the pursuer p. 
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If c is an internal tree node, there must be a shortest evasive path that bends 
at c to reach another tree node, when we restrict our attention to shortest evasive 
paths that consist of straight line segments which pass through tree nodes and the 
destination point. 

If a shortest evasive path is forced to bend at c, the boundary of the pursuer 
region at c must also bend. In L i , changes in direction on the boundary can only 
occur when the boundary crosses one of the axes centred on c ' or one of the axes 
centred on o, as the boundary at c is created by the interaction between the evader 
via c ' and the pursuer p v ia o. 

If c occurs on an axis of c ' , the boundary must cross that axis of c'. However, 
as the path from c' to c also follows that axis, the boundary w i l l cross the path and 
so a shortest evasive path from c' to c cannot bend around the boundary at c. 
Therefore, the c must lie on an axis of o. 

We shall now consider o, an obstacle vertex or an evader starting point. Let 
us consider that the origin is at o. We shall count how many times shortest paths 
from p v ia o create crystal vertices on each of the four axes. We shall examine the 
positive x-axis, but the three other axes are symmetrical. 

We note that if the pursuer p is faster than the evader, then their meeting 
point is not an internal tree node. Again, a crystal vertex c is where the shortest eva
sive path for the evader has the same arrival time as the shortest obstacle-avoiding 
path for the pursuer. If the pursuer is faster, any path taken by the evader v ia c 
can be captured by the pursuer arriving earliest at c following the same path from 
c to the destination as the evader. As the pursuer has a higher speed, the pursuer 
wi l l arrive earlier. Therefore, in this analysis, we shall only consider pursuers which 
have speed less than the evader. 

We shall divide the positive x-axis into non-overlapping continuous ranges. 
We associate a range of points wi th a pursuer-point pair (p',o'), w i th p' being a 
pursuer and o' being an obstacle vertex or the starting point for p', when al l points 
in this range are reached by a shortest obstacle avoiding path from the pursuer p' 
and the last point where the path bends (or the starting point otherwise) is o'. We 
shall count the number of crystal vertices which occur in the ranges for al l the pairs 
(p*, o) , where p* is any pursuer and o is the obstacle vertex or pursuer starting point 
we are considering — al l the pursuer-point pairs involving o. 

W i t h i n a continuous range R for (p, o) on the positive x-axis of o, at most 
one internal tree node can exist. If an internal tree node exists at some x = i on 
the positive x-axis, then the arrival time for the pursuer p v ia o is the same as the 
arrival time for the evader v ia c'. A l l the points x > i in this range cannot be 
reached by the pursuer before the evader, as the evader is faster than the pursuer. 
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Therefore, we have at most one crystal vertex in each range for (p, o). 
Let us now consider the arrival times of shortest obstacle avoiding paths for 

pursuers v ia o along the positive x-axis. When o is a pursuer starting point, only 
that pursuer wi l l take paths via this point. However, for the obstacle vertices, any 
of the pursuers could take paths via that obstacle vertex. For any pursuer p, a 
point at position x on the positive x-axis v ia o has arrival time t(x) given by the 
linear equation t{x) =t0 + x/vp, where tQ is the earliest arrival time of p at o (See 
Figure 2.15 for an example). If we consider the minimum arrival time along the axis 
tmin{x), we wi l l the obtain a continuous piecewise linear function that is composed 
of parts of these linear equations. As we are taking the minimum, the slope must 
be positive and non-increasing, and each pursuer p is responsible for at most one 
piece of the function, which is where a range (p, o) can occur (See Figure 2.16 for 
an example). 

However, we need to also consider ranges that involve points other than o. 
Note that these ranges can interrupt what would have been a continuous range for 
(p, o) into several ranges for (p, o), each separated by ranges involving points other 
than o (and this is the only other method of obtaining more ranges associated wi th 

Let (pi, Oj) be a pursuer-point pair where o; ^ o. Let us count the number of 
times ranges assigned to this pursuer-point pair can interrupt the axis. The arrival 
time of pi from o; to the x-axis is given by the two linear equations: 

where U is the earliest arrival time of pi at 0 ; and Vi is the speed of pursuer pi. 
Note that only one of these equations has a positive slope (See Figure 2.17 for an 
example). 

Let us consider when a region R' for (pi, o;) can lie to the left of a region R for 
(p*, o) (for some pursuer p* and the point o) . The arrival time for pursuer pi v ia o; 
is the same as the arrival time for pursuer p* v ia o at the boundary between a region 
for (pi,o;) and (p*,o), is less than to the left and greater to the right. Therefore, 
this can only occur when t'(q) intersects £ m j n ( x ) , wi th a steeper positive slope at the 
intersection point. However, as tmin(x) is a piecewise linear function wi th positive 
and non-increasing slope, this can only occur at most once (See Figure 2.18 for an 
example). 

We have at most n + m obstacle vertices or pursuer starting points. Each of 
these have 4 axes. Each axis can have up to 0(rnn+m) interruptions, one for each of 
the other pursuer-point pairs, and therefore at most 0(m)+0(mn-rTn) = 0{mn+m) 

o). 

U + (\Vi\ + xi ~ x)/vi x <xi 

U + (\Vi\ + x - Xi)/Vi X>Xi 
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Figure 2.15: A n example of the function t(x) that describes the arrival time of a 
pursuer p along the axis of an obstacle vertex or pursuer starting point o, when the 
pursuer takes a path v ia o. ta is the arrival time of the shortest obstacle-avoiding 
path from p to o. The slope is the —. Note that both the slope and the arrival time 
must be positive. 

regions — 0(rnn + rn) for the interruptions and 0{m) regions for each pursuer v ia 
o. Therefore we have at most (n + m) x 0(mn + m) = 0((n + m)(mn + n)) internal 
tree nodes. 

• 

Lemma 14. A shortest evasive path tree contains 0((n + rn)2(mn + n)) nodes where 
m is the number of pursuers and n is the number of obstacle vertices. 

Proof. The tree nodes processed by the algorithm consist of the evader's starting 
point, some of the obstacle vertices, and the meeting points of the evader and the 
pursuers. Note that these meeting points are crystal vertices. 

We know (by Lemma 13) that there are 0((n + m)(mn + n)) internal tree 
nodes. It remains to count the leaf tree nodes. Leaf nodes may be obstacle vertices or 
meeting points of the evader and a pursuer. The obstacle vertices and the meeting 
points that could be internal tree nodes are counted in the 0((n + m)(mn + n)) 
bound. It remains to count meeting points that can only be leaf tree nodes. These 
points are meeting points that occur on the axes centred at an internal tree node or 
the meeting point of the evader and a faster pursuer. 

A meeting point on an axis centred at an internal tree node arises from a 
pursuer intercepting a shortest evasive path that follows the axis from the internal 
tree node. This is a point of capture that blocks the evader from following the axis 
any further. Thus there are no other meeting points along this axis centred at this 
internal tree node. Since each internal tree node has four axes, the number of these 
meeting points is at most four times the number of internal tree nodes, which is 
0((n + m)(mn + n)). 
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arrival time tmin(x) 

t2 

distance along axis 

Figure 2.16: The thick black line is an example of the function tmin(x) that describes 
the minimum arrival time of any pursuer the axis of an obstacle vertex or pursuer 
starting point o , when the pursuers take paths v ia o . to, t\, £2 and £3 are the t(x) 
arrival time functions for four different pursuers. Note that tmin(x) is a continuous 
piecewise linear function wi th non-increasing slope, where each pursuer contributes 
at most one linear piece. Each piece, from left to right, has a smaller slope but a 
greater arrival time. Note that the pursuer line t\ does not contribute to tmin(x), 
as that pursuer arrived too late and was too slow. 

Figure 2.17: A n example of the function t'(x) that describes the arrival time of a 
pursuer pi along the axis of an obstacle vertex or pursuer starting point o , when 
the pursuer takes a path via a point O] = (xi,yi) 7^0. ti is the arrival time of the 
shortest obstacle-avoiding path from pi to the x-axis of o , which occurs at x = 2;. 
The slope is ± ^ - . Note that the arrival time must be positive. 
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arrival time 

distance along axis 

Figure 2.18: A n example of when the function t'(x) for a pursuer-point pair (pi,o;) 
intersects the function tmin(x) for the point o, where o ^ o;. x shows an intersection 
where we can have a region for (p;,oi) to the left of a region for (p*,o), due to the 
slope for t'(x) being greater than the slope for tmin(x). To the left of the intersection 
point x, t'(x) has an earlier arrival time than tmin(x), indicating a region that does 
not belong to a pursuer passing through o. To the right of x, tmin(x) has the 
earlier arrival times. Note that t'(x) cannot intersect tmin(x) after x, as tmin(x) has 
non-increasing slope. 
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A meeting point between the evader and a faster pursuer results in a leaf tree 
node as once a faster pursuer meets the evader, the evader cannot follow any path 
from that point that is evasive. We perform the following conservative analysis to 
upper-bound the number of such interactions. 

For each point o which is either an obstacle vertex or the starting point for 
a pursuer, we consider how many times a pursuer taking a path v ia o can meet 
an evader along an axis centred at o . The evader must come in a straight line 
from an internal tree node, v , to such a meeting point. A t most two straight-line 
paths from v can create meeting points on p's shortest obstacle avoiding path from 
o along this axis. This is because we have the minimum arrival time along the 
axis by any pursuer v ia o described by a continuous, piecewise linear function wi th 
positive, non-increasing slope tmin(x), and the arrival time of shortest evasive paths 
from v described by at most two linear equations. Note that we have at most 
two intersections described by these equations, and possibly fewer if the evader 
can be captured before reaching the point of intersection from v (See Figure 2.19 
for examples). Therefore, there are at most 4 x 2 x (n + m)(mn + n)(n + m) = 
0((n + m ) 2 ( m n + n)) such meeting points. 

A s a result, there are 0((n + m)2(mn + n)) tree nodes. • 

We shall refer to T as the number of tree nodes in the complete parti t ion. 

T h e o r e m 1. The complexity of the complete partition for a single evader is 0((n + 
1)T 2 ) = 0((n+ l)(n + m)4(mn + n)2). The complexity of the total partition for the 
evaders E is 0((n+ l)T2s2) = 0((n+ l ) ( n + m)A(mn + n)2s2). 

Proof. A l l the regions computed are regions composed of the crystal vertices on the 
boundary of the pursuer region, or else they are vertices where a boundary ends 
against obstacles or vertices on the boundary between evader regions. There are 
at most T crystal vertices on the boundary of the pursuer region, and therefore at 
most T2 edges on this boundary. 

Let us now consider the edges created due to obstacles and visibility, and 
edges separating regions in the complete partition. Each of the tree nodes has 
a region, and each tree node region can interact wi th at most every other tree 
node region. However, Voronoi diagrams between two points clipped by visibil i ty 
of obstacles are used to generate all the boundaries, and so each boundary is at 
most 0(n) + O ( l ) in size. Therefore, the complexity of these boundaries is at most 
0(T2 x (0(n) + O( l ) ) ) = 0 ( ( n + 1 )T 2 ) . 

Therefore, by Lemma 14, the complexity of the complete parti t ion for a single 
evader is Q(T2 + 0 ( ( n + 1)T 2 ) = 0((n + 1 )T 2 ) = 0 ( ( n + l ) ( n + m ) 4 ( m n + n ) 2 ) . 
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• distance along axis 

Figure 2.19: This shows two examples {t\ and £2) where a function t'(x) for an 
evader taking a path through an internal tree node (as shown by the lines t\ and £2) 

intercepts a function tmin(x) for pursuers going through a point o . In both these 
examples, there are two interception points. For clarity, the interception points are 
marked. 

If we consider the total partit ion for a set of s evaders, this is equivalent to 
considering s x T tree nodes, and wi l l at most consider al l of these tree nodes and 
their regions. The complexity of the total partit ion for the evaders E is therefore 
0((n + l)(T.s)2) = 0({n + l)(n + m)4{mn + n)2s2) • 

Note. Note that a partial partition consists of a subset of the regions of the total 
partition, and so is upper-bounded by the complexity of the complete partition. 

2.8.2 Time Complexity of the Algorithm 

Let the complexity of the complete partit ion for an evader be D. Let the complexity 
of the total parti t ion for a set of evaders be L. 

Let 4>(T, D) be the cost of a geometric union, intersection, difference or 
visibil i ty operation on T regions wi th total complexity of at most O(D) edges, wi th 
the final parti t ion having complexity of at most 0(D) edges. The union of T regions 
can be performed via T pairwise union steps, where each step is wi l l take at most 
0(D log D) time, as each region and the final output is no more complex than 0(D) 
(See the M A P O V E R L A Y algorithm in Berg et al.[7]). The visible region (also known 
as the visibil i ty polygon) can be computed in time O(DlogD), as shown by Suri 
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and 0'Rourke[22]. 

Theorem 2. Computing the complete partition for an evader takes time 0(mn + 
m ) 3 x $ ( T , D). To merge complete partitions takes additional time $ ( sT , L ) x s. 

Proof. To compute the complete partition, the algorithm processes the T tree nodes. 
For each iteration of the main loop, a partial parti t ion is computed which 

is no larger than the complete partit ion D. Each step of the algorithm considers 
at set of at most T polygons of complexity at most 0(D) and performs geometric 
union, intersection, difference and visibility. Note the Voronoi diagram computations 
create two point compoundly weighted Voronoi diagrams which is a constant time 
operation. Therefore, the complete partit ion can be computed in time T x $(D) = 
0 ( m n + m ) 3 x $ ( D ) 

A total partit ion of the evaders processed involves merging the complete 
partit ion of each of the evaders into a diagram which is smaller or equal to the size 
of the total parti t ion for al l the evaders using the same kinds of operations. The 
total complexity of the polygons in this case is L and the number of we need to 
consider T polygons for each of the s evaders. Therefore, time $ ( sT , L) x s is spent 
computing the total partit ion of all the evaders. • 

2.9 Extensions and Future Work 

2.9.1 Reachable Region for A l l Pursuers 

The pursuit-evasion Voronoi diagram gives regions where only one evader is guaran
teed to reach the target location without capture. However, in some applications, we 
have a set of evaders E and we may wish to guarantee that none of the evaders are 
captured en route to the destination. We outline Algor i thm 4 to compute this all-
evader-reachable region. Let V be the set of all complete partitions for the evaders 
E. 

Algorithm 4 All-evader-reachable region modification 
for all £ G V do 

T^-e '•— U Rx 
(x,TTx,Rx)e€ 

V := V n TZe 

end for 

1Ze is the entire region reachable by evader e, and therefore the union of these 
regions gives us V, the region shared by all evaders. 
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2.9.2 Bounding the L2 Pursuit-Evasion Voronoi Diagram 

Using the L\ pursuit-evasion Voronoi diagram, we can compute a region R+ and 
a region R~ such that R~ CRC R+, where R is the evader region in the L2 
pursuit-evasion Voronoi diagram for a set of evaders E, pursuers P and obstacles 
O. If we consider a"(a, b) to be the L i distance between a and b , and d(a, b) to be 
the respective L2 distance, we can note that for any a and b: 

d'{a,b) > d(a,b) 

^ ' ( a , b ) < d ( a , b ) 

We shall also refer to d / ( a , b) and d^(a,b) as the path distance functions 
in L i and L2 respectively, and similarly for d'(a, b) and d(a, b). Note that by 
definition, the inequalities above also imply that the following inequalities are true: 

<V(a,b) > d 0 ( a , b ) (2.2) 

^(a, b) > d(a, b) (2.3) 

^ V ( a , b ) < ^ ( a , b ) (2.4) 

^ d 7 ( a , b ) < d ( a , b ) (2.5) 

We can now compute R+ by underestimating distances wi th respect to 
evaders and overestimating distances wi th respect to pursuers. R+ is evader-reachable 
region in the L i pursuit-evasion Voronoi diagram wi th the original pursuers P and 
modifying the speed of each evader in E by multiplying wi th the factor . 

Theorem 3. The region R+ (using the modified pursuit-evasion Voronoi diagram 

situation in L\) includes all points in R, the evader-reachable regions for the original 

pursuit-evasion Voronoi diagram situation in Li-

Proof. If a point is in R, by Definition 2.1.2, there must be a path <f> from the evader 

to that point such that 

Vq e <l>,d<j>(e,q)/ve + t e < mind(f , q ) / u / + tf 
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We apply the inequality 2.4 to obtain: 

vq <E </>, -z-d<i)(e,q)/ve + te < mind(f, q)/vf + tf 

Vq £ 4>, d^e, q)/ {^v^j + te< min d(f, q)/vf + tf 

We then apply the inequality 2.3 to show the following is also true: 

Vq G cf>, d^e, q)/ ( ^ e ) + U < mm?( f , q ) / W / + tf (2.6) 

A s Equation 2.6 is the definition of the evasive paths to al l the points in the 
region R+, if the path <f> was a valid evasive path in the original Li situation, it is 
also a valid evasive path in the modified L\ situation. Therefore, any point in R 
must also be in R+. • 

Conversely, we can compute R~ by overestimating the distances wi th respect 
to evaders and underestimating distances wi th respect to pursuers. Specifically, R~ 
is the evader-reachable region in the L\ pursuit-evasion Voronoi diagram using the 
evaders E and the set of pursuers obtained by modifying the velocity each pursuer 
in the set of pursuers P by multiplying wi th the factor ^=. 

Theorem 4 . All the points in R~~ (using the modified pursuit-evasion Voronoi dia
gram situation in L\) are points in R, the evader-reachable regions for the original 
pursuit-evasion Voronoi diagram situation in Li-

Proof. If a point is in the region R~, there must exist a path (f> from the evader to 
that point such that 

Vq G 0, d /(e, q ) / u e + te < mm d/(f, q)/ {^^f^j + lf 

We can manipulate this equation and apply the inequality 2.5 to obtain: 

Vq G 4>,d(t>'(e,q)/ve + te < mm—d'(f,q)/vf + tf 

Vq G (f),dlp'(e,q)/ve + te < mmd(f,q)/vf + tf 

We then also apply the inequality 2.2 to obtain: 

Vq G (j),d!j>(e,q)/ve + te < mmd(f,q)/vf + tf (2.7) 

Therefore, as Equation 2.7 describes a valid evasive path in the original Li 
situation, all the shortest evasive paths in the modified L\ pursuit-evasion Voronoi 
diagram situation are also evasive paths in the corresponding Li situation. This 
means that any point in R~ must also be a point in R. • 
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2.9.3 Other Techniques and Optimisations 

We can note that the algorithm described here considers al l tree nodes when com
puting the pursuit-evasion Voronoi diagram. Some of the crystal vertices processed 
do not have- a region associated wi th them - al l shortest evasive paths via these 
crystal vertices are intercepted by the pursuers (For example, £4, £7, £s and £9 in 
Figure 2.1). Running time could be improved by identifying these nodes before they 
are processed and removing them from the queue. 

A s well, we can note that the use of geometric primitive operations of union, 
intersection, visibil i ty and the two point compoundly weighted Voronoi diagram in 
our algorithm allows us to show in a straightforward manner that the regions we 
compute have the desired properties. However, it may be possible to compute the 
regions and boundaries needed more directly. For example, we compute the region 
R w i th the properties needed by Lemma 6 v ia several intermediate steps — it may 
be possible to do this more efficiently by computing this region using some other 
algorithm in a single step. 

For example, a commonly used technique for computing boundaries like 
Voronoi regions are algorithms which follow the boundary of regions to construct 
the diagrams [20]. A s the queue in our algorithm also represents the boundary, it 
may prove possible to adapt such techniques to more efficiently fill the queue wi th 
tree nodes by performing a boundary following operation as opposed to computing 
entire Voronoi diagram regions. Once the tree nodes have been discovered, we could 
perform Voronoi diagram operations to obtain the regions for each tree node. How
ever, it may be necessary to subdivide the plane into the Voronoi regions for the 
pursuer sites, which would involve computing the constrained compoundly weighted 
Voronoi diagram, which may not have an efficient solution. 

Another technique often used in computing Voronoi diagrams is to consider 
relationships wi th other geometric constructions. For example, in computing the 
multiplicatively weighted Voronoi diagram, Aurenhammer and Edelsbrunner[5] con
sider an embedding in three dimensions. Similarly, we have the classic Voronoi D i -
agram/Delaunay triangulation duality. However, the obstacle and capture avoiding 
path constraint as well as the asymmetrical nature of the sites may make it difficult 
to find such a relationship. 

One strength of this work is the fact that the algorithm can consider obsta
cles, additive and multiplicative weight while utilising only relatively simple pr imi
tive operations — we use geometric union, difference and intersection. We also use 
the compoundly weighted Voronoi diagram, but only considering two points. Sim
plifications such as removing the obstacles, considering pursuers of wi th the same 
speed or only considering one pursuer could also make it possible to apply different 
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techniques or compute the diagram more efficiently. For example, when all pursuers 
have the same speed, the number of internal tree nodes by the analysis in Lemma 13 
is reduced to 0(mn + m), making the total tree nodes in Lemma 14 0((mn + m)2). 

2.9.4 Future W o r k 

The pursuit-evasion Voronoi diagram could be extended to cover the concept of 
airlift distance]!}.- In this case, we add to the input an arbitrary graph A on c points 
in the plane which represent airports. The edge weights in the graph represent flight 
durations, and need not fulfil the triangle inequality. In addition to moving normally 
through the plane, paths may also enter and exit the graph v ia the airports. We note 
that the pursuit-evasion Voronoi diagram can be extended to include airlift distance 
by considering reachable points in A as potential tree nodes, and considering two 
points connected by an edge in A to be visible from one another. This would allow 
modelling subways and other high-speed transit systems often found i n a city setting. 

Another interesting extension would be to consider computing the pursuit-
evasion Voronoi diagram in Li directly, and to determine if methods could be 
adapted to compute the pursuit-evasion Voronoi diagram in polynomial time ex
ists in this case. Li is more directly applicable to situations such as geographic 
spread outside of populated regions, where the L\ movement restrictions are not in 
place. Again , we note that a direct application of our algorithm is impractical in 
this case, as our current representation cannot deal wi th the boundaries generated 
in an efficient manner. Schaudt and Drysdale[21] were forced to resort to numerical 
techniques when computing multiplicatively weighted crystal Voronoi diagrams in 
L2, which indicates that similar difficulties may arise for the pursuit-evasion Voronoi 
diagram in Li. 

A natural extension of this work is to consider metrics whose unit circles 
are arbitrary convex polygon distance functions. The L\ metric is the special case 
where the convex polygon is a diamond. If, considering two points, the Voronoi 
diagram and the pursuit-evasion Voronoi diagram for a particular distance func
tion are polygons wi th finite complexity, it should be possible to adapt the algo
r i thm to compute the pursuit-evasion Voronoi diagram for that distance function. 
Schaudt [20] notes that the complexity of the boundaries for the multiplicatively 
weighted crystal Voronoi diagrams are polygonal for al l convex polygon distance 
functions, which indicates that we may be able to achieve a similar result for the 
pursuit-evasion Voronoi diagram. If this is possible, we could use convex polygon 
distance functions to obtain better bounds on the Li distance function, in a similar 
manner to the method mentioned previously using the L\ pursuit-evasion Voronoi 
diagram. Another potentially related direction for extension would be to consider 
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polygonal pursuers and evaders, and considering the Hausdorff distance functions 
and working i n configuration space. In their work on multiplicatively weighted crys
ta l Voronoi diagrams, Schaudt and Drysdale[21, 20] consider both convex polygon 
distance functions and L2 distance, although in the absence of obstacles. 

We can also ask the decision problem: Given a set of pursuers, an evader 
and obstacles, does there exist an evasive path that can reach a particular point? 
The pursuit-evasion Voronoi diagram can be computed to answer this problem, and 
can terminate early i f the query point falls within a reachable region — i n this case 
we know a shortest path exists. As well, we can also terminate early if, during the 
course of the algorithm, the point to be processed has a shortest evasive path wi th 
an arrival time after that of the arrival time of the pursuer at the query point. In 
this case, no shortest evasive path can reach the query point before the pursuer. 
In the worst case, we may need to process all the tree nodes for the evaders, and 
therefore we w i l l have effectively computed the complete parti t ion for the evader. 
However, it may be possible to prune the shortest path tree to achieve a better time 
complexity, or to search backwards from the query point for an evasive path. 

2.10 Conclusion 

In this chapter, we describe the pursuit-evasion Voronoi diagram, which considers 
a set of pursuers, a set of evaders and obstacles in the plane. The pursuit-evasion 
Voronoi diagram computes all points reachable by the evaders v ia paths which are 
not intercepted by pursuers. We also give an algorithm to compute this diagram, 
which proceeds in a fashion similar to Dijkstra's algorithm, exploring shortest paths 
in the plane and computing partial diagrams that describe points reachable by 
evasive paths i n the plane. We show the algorithm we describe runs i n polynomial 
time when we use the L\ distance metric. 
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Chapter 3 

Visibili ty Constrained 
Pursuit-Evasion 

3.1 Introduction to Visibility Constrained Pursuit 

Suppose a cop, the pursuer, is chasing a robber, the evader, around a large bank. 
If the pursuer ever loses sight of the evader, the pursuer loses. If the pursuer ever 
touches the evader, the pursuer wins. A third possibility, the one we explore in this 
chapter, is a tie situation where the pursuer neither wins nor loses. The pursuer can 
always keep the evader in sight, but can never succeed in intercepting the evader. 
We call this situation a tie. Like the pursuit-evasion Voronoi diagram, we assume 
that the pursuer and the evader each have their own constant maximum speeds. 
We also assume that the pursuer wants to win if possible and the evader wants the 
pursuer to lose if possible. 

In this example, we add a new constraint to the pursuit-evasion dynamic. In 
addition to al l paths being unable pass through obstacles and paths taken by the 
evader being forced to avoid the pursuer, the pursuer is now restricted to paths that 
keep the evader in sight. The positions which the pursuer can occupy are no longer 
independent of the position the evader can occupy. 

3.2 Related Work 

Searching for an arbitrarily fast-moving evader in a polygonal region is another 
common form for the visibility-based pursuit-evasion problem. Park et al.[18] have 
recently provided a solution for this problem when it involves a single pursuer. The 
evader starts off out of sight from the pursuer, and the goal for the pursuer is 
to establish line-of-sight to the evader. The pursuer has finite speed, whereas the 
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evader is arbitrarily fast. Bo th the pursuer and the evader move i n a polygonal 
region whose boundary occludes visibility. The pursuer then needs to find a path 
that guarantees the capture of the evader. This situation can be viewed as "worst-
case" from the point of view of the pursuer — we assume that if there exists a path 
for the evader to avoid capture, the evader w i l l be able to take that path. 

LaValle et al. [13] discuss the problem where a moving observer attempts 
to maintain visibil i ty to a moving target in an environment where motion may be 
restricted to certain regions and visibili ty may be obscured in certain configurations. 
They detail a method that determines minimal distance paths for the observer in 
the case of a known target path, and suggest strategies in the case where the target 
moves unpredictably. 

They motivate this problem as being different from previous target tracking 
problems, as their focus is finding a path for the moving observer to allow visibil i ty 
to be maintained wi th the target, as opposed to the usual computer vision problem 
of target recognition and tracking. In this case, the target corresponds to the evader 
and the observer corresponds to the pursuer. A s well, they consider more flexible 
objectives for the pursuer while obeying the visibili ty constraint. For example, the 
pursuer may wish to capture the target, described as minimising the distance to the 
target, or may wish instead to minimise the distance travelled by the pursuer. 

They compute optimal paths for the observer by discretising space and time, 
which reduces the infinite possible locations of the observer and the target to a 
discrete set of positions, in effect changing this problem to visibility-based pursuit-
evasion in a graph. They also consider various cost functions, such as allowing the 
observer to lose visibil i ty wi th the target while incurring a cost penalty. 

Gonzalez-Baiios et al.[10] consider the same problem of target tracking. They 
extend the problem to partially predictable targets, where the maximum speed of 
the target is known, but the motion strategy for the target is not. They modify 
the target planner to optimise the motion strategy over a finite set of time steps, 
considering a probabilistic distribution for the movement of the target. 

A l o n Efrat et al.[8] consider the visibility-based pursuit-evasion problem in 
a general polygonal environment and for polygonal targets, while considering paths 
of finite length for the evader. They provide a method for constructing a type of 
optimal path that attempts to capture the evader if possible and otherwise minimises 
the distance to the evader. They show the possibility of "leaning curves" in the 
optimal path, which can occur when the edge of an occluding boundary forces the 
shortest path for the pursuer to follow a curved path around an obstacle vertex 
to keep the evader in sight. They show a method for approximating these leaning 
curves, but were unable to show a general closed form solution. This algorithm can 
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be applied to paths of infinite length, such as the evader path we consider in this 
chapter, but the algorithm wi l l not terminate if the pursuer never loses sight of the 
evader and cannot capture. We shall prove in this chapter that this situation can 
occur. 

3.3 Visibility Constrained Pursuit-Evasion 

Let us consider the pursuer and the evader to be two points, A(t) and B(£) , param-
eterised by time t > 0, moving continuously in the obstacle-free part of the plane 
wi th A(0 ) = a and B(0) = b. We can scale the unit for time such that, without 
loss of generality, the speed of the pursuer, —^p-, is at most va, and the speed of the 
evader is at most 1. We say the pursuer sees the evader at time t if the line segment 
between A(t) and B( t ) is uninterrupted by obstacles, and we say the pursuer cannot 
see the evader if this line segment intersects an obstacle of the polygonal scene. 

Given a polygonal scene, the starting positions a and b for the pursuer and 
the evader, the maximum speed va and 1 for the pursuer and the evader, and the 
path B ( i ) for the evader, the question is does there exist a path A(t) the pursuer 
can follow to capture the evader and thereby win. 

Definition 3.3.1. A capture path A(t) is an obstacle avoiding path wi th A ( 0 ) = a 
such that there exists a time r > 0 where A ( r ) = B ( r ) and A(t) sees B(£) for al l 
t < T. A viewing path A(t) is an obstacle avoiding path wi th A ( 0 ) = a such that 
A(t) sees B ( t ) for al l r. > 0. 

We say the pursuer wins if there exists a capture path for the pursuer. We 
say the pursuer loses if for al l paths the pursuer can take, there exists a time when 
the pursuer cannot see the evader. We say the pursuer ties if there exists a path 
such that the pursuer can always see the evader but the pursuer cannot capture the 
evader. 

Note that this simplifies the problem significantly from the pursuit-evasion 
Voronoi diagram. This is similar to answering whether a specific evader path is ever 
intercepted by the pursuer, as opposed to describing all possible evasive paths. 

Definition 3.3.2. A path A(t) is an optimal viewing path if, given the pursuer's 
starting position and speed, A(t) is the shortest path for the pursuer that is also a 
viewing path. 

Definition 3.3.3. A path A(t) is an optimal capture path if, given the pursuer's 
starting position and speed, A ( i ) is the shortest path for the pursuer that is also a 
capture path. 
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In general, we say that both optimal capture paths and optimal viewing 
paths are optimal paths, and share similar properties. 

Orbiting a Regular Unit-Sided Polygon 

Let us now consider the polygonal obstacle P to be a regular convex polygon wi th n 
sides, each side wi th length 1. Let the vertices be labelled < Po,Pi, P2, • • •, Pn-i >• 
The pursuer cannot see the evader at time t if and only if the line segment connecting 
A(t) wi th B ( t ) properly intersects P. A s well, we shall refer to a general vertex 
Pk = Pk mod n, k G N and k > n. 

Let us consider a path taken by the evader, B ( t ) , where the speed ^ is 1 
and the motion of the path takes the evader clockwise following the perimeter of P, 
starting wi th B(0) at vertex po of P. Therefore, for k G Z , B(A;) lies on a vertex of 

P-

Definition 3.3.4. The sight line S(i) for a polygon P w i th the vertices in clockwise 
order < po,Pi,P2, • • • , Pn-i > is the ray pT+iPi, for 0 < i < n — 1. S(n — 1) is 
poPn-i- For i > n, the sight line S(i) is the same as sight line S(i mod n) 

Definition 3.3.5. A point p is at a height h along a sight line S(i) if it lies at a 
distance h from pi m o c t n away from the polygon along the sight line S(i). 

Let A(t) be an optimal path for the pursuer. A (0) starts at a height a along 
the sight line S(0). We shall only consider speeds va > 1, otherwise it is impossible 
for the pursuer to capture the evader. 

Lemma 15. When the evader follows a path along the boundary of a convex polyg
onal obstacle, an optimal path for the pursuer only turns at time A(k), k G N (i.e. 
the pursuer only turns when the evader turns). 

Proof. Suppose there exists a path A(£) where at a time k+e, 0 < e < 1, the pursuer 
changes direction. However, as the path A(t) is an optimal path, for k <.t < k + 1, 
B(£) lies on the edge of the polygon PkPk+i- Therefore, al l the points for the path 
A(t) for k < t < k + 1 must lie on the halfplane formed by PkPk+i away from the 
polygon, otherwise they would lose sight of the evader. Therefore, we can create a 
new path A'(i) such that A'(t) = A(t) for' 0 < t < k and for t > k + 1. For the 
path A'(t) at time k < t < k + 1, we can follow a straight line path from A(k) to 
A(.fe + 1), rather than turning at A(k + e) (See Figure 3.2). This makes the path 
A'(t) shorter than A(t), therefore, A(t) cannot be an optimal path. • 

Note. Lemma 15 implies that shortest paths wi l l be straight line segments from time 
k G N to time k + 1. 
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5(1) 
\ 

\ 

Figure 3.1: The starting configuration when P is a regular hexagon (n=6). 

Figure 3.2: A n optimal path can only turn at the time k where k £ N. If A(t) is 
an optimal path that turns at a time A(k) where k is not in N, we can construct a 
shorter optimal path A'(t). 
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Figure 3.3: This shows an example situation where the optimal path for A has does 
not turn on a sight line £(fc) at time fc. 

Lemma 16. Whenever an optimal path A(t) turns on a sight line at a time fc £ N , 
the turn A(fc) occurs on sight line S(k). 

Proof. Let us consider an optimal path A(t) where a turn A(fc) does not occur on 
sight line S(k) at time fc £ N . Let us consider the first time fc when this occurs. A s 
the evader, for time fc < t < fc + 1, lies on the polygon edge PkPk+i, A(t) must lie 
in the halfplane formed by pkPk+i away from the polygon during this time interval. 
A s A(fc — 1) lies on sight line S(k — 1) and A(fc) does not turn on sight line 5(fc), 
A(fc) must turn at some point past the light line S(k) in this halfplane, and cannot 
lie on the extension of the line pu-iPk (otherwise, the pursuer could have caught 
the evader instead). Therefore, let us choose a time fc + 6 such that 0 < 6 < 1 and 
A(fc + 6) ^ A(fc) and A(fc + 5) lies in the halfplane formed by Pk-iPk away from 
the polygon. This must occur as the pursuer is in this halfplane at time fc, but 
must leave this halfplane to cross sight line S(k + 1) by time fc + 1. A s well, there 
must exist a time t = k — e, 0 < e < 1 where A(t) crosses the sight line 5(fc) (See 
Figure 3.3). 

Now, we can create a shorter path A ' ( i ) , where A'(t) = A(t) for 0 < t < fc — e 
and t > k + 5, and where A'(t) takes a straight line path from A(fc — e) to A(fc + 5) 
for the time fc — e < t < 5 (See Figure 3.4). This new portion of path is valid, as the 
entire path can see the evader on the edge pk-iPk and the edge PkPk+i • As A'(t) 
does not turn along the section of path between times fc — e and k + 5, unlike the 
original path A(t) which turned at time fc, A'(t) must be a shorter optimal path, 
which is a contradiction. • 
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Figure 3.4: We can replace the original path wi th a shorter path that goes from 
A(k — e) directly to A(k + S), which removes the turn p. 

Definition 3.3.6. Let the path A*(t) be the path where A*(0) starts at a height a 
on sight line 5(0). For each i = 1,..., k, A*(i) is the lowest point on sight line S(i) 
that can be reached from A*(i — 1) without losing sight of the evader, and k is the 
lowest integer such that there exists e, 0 < e < 1 where \S(k)'B(k + e)| = i>a x e. In 
an optimal capture path, k ^ oo, and A*{k + e) = B(k + e). 

3.3.1 T h e O r b i t a l P a t h for the Pursuer 

We can now construct a path for the pursuer that allows her to keep the evader i n 
sight without catching the evader as follows (Figure 3.5): A t each time k € Z, the 
pursuer wi l l be at the point at height a on the sight line S(k). To follow this path 
and keep the evader in sight, the pursuer must have a speed 

^critical — V(l + a)2 + a2 - 2a(l -)- a) cos(27r/n). 

A s seen in Figure 3.6, v^uicai is the length of the third edge in a triangle 
that has edges a and 1 + a, wi th the angle ^ between them, solved by applying the 
Law of Cosines. 

This path allows the pursuer to keep the evader in sight, but does not allow 
the pursuer to catch the evader. As we can see by rotational symmetry, the relative 
positions of the pursuer, evader and the obstacle are the same at time k + 1 as they 
were at time k for al l k G N. We call this path the orbital path for the pursuer. 

Note. For regular polygons wi th less than five sides (squares and equilateral trian
gles), vcritical > 1 + a since cos(27r/n) < 0. This means the velocity required to 
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Figure 3.5: Orbital path for the pursuer. The pursuer can always keep the evader 
in sight, but can never catch the evader. 

Figure 3.6: A close-up of the path for the pursuer to show Vcriticai 
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^critical 
A(k) 

T B(k) 

A(k + 1) 
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i 
i 

B{k + 1) 

Figure 3.7: W h e n ^ > § , the distance vcriucal is longer than the distance to capture 
the evader directly. For example, when n — 4 (square), the distance from A(k) to 
A(fc + 1) is longer than the distance from A(k) to B(fc + 1). 

follow the orbital path is greater than the velocity needed to simply move directly 
at the evader and capture. In this case, a pursuer able to follow the orbital path 
can always capture the evader as well. (See Figure 3.7). 

Note that /.S(k)pk+1S(k + 1) = ^ for k £ N . For a given va and position 
A*(k), we can solve for the lowest reachable position A*(fc + 1). Let x be the height 
of A * (k) and let x' is the height of A * (fc +1). We use the Law of Cosines and obtain 
the minimum value for x'\ 

x' = (x + 1) cos (^j - ^ v j -(x + 1)2 s i n 2 (3.1) 

D e f i n i t i o n 3.3.7. We define 5(x) = x-x'. 5(x) is therefore the decrease in distance 
in relative position between the pursuer and the evader at time fc + 1 versus time fc 
where fc € N and fc + 1, when the pursuer follows the path A * (£).. 

5(x) is only defined for x > va — 1. When x < va — 1, the pursuer can capture 
the evader by the time fc + 1 by moving straight towards the pursuer along S(k), 
and wi l l not need to reach the subsequent sight line. 

5(va — 1) = va — 1, as the pursuer can capture the evader at time fc + 1 at 
B(fc + 1), at a height of 0 along S(fc + 1). We shall also only consider 5{x) when 
x < — T % V T — 1. For values of x > . VA„\ — 1, the pursuer, starting the time fc, is 

unable to reach any point on the sight line S(fc + 1) before the time fc + 1. Therefore, 

we only consider 5(x) is only relevant when va — 1 < x < . vt%.\ ~ 
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L e m m a 17. For va — 1 < x < s i n ^ 2* ^ — 1> $(x) ^s concave down. Therefore, there 

exists a minimum value 5min for5(x), which occurs at either the lowest or the highest 

height achieved. 

Proof. Let us consider the second derivative for <5(x): 

d2S (x + l ) 2 s i n 4 ( ^ ) s i n 2 ( f ) 

d x 2

 ( U o 2 _ ( a ; + 1 ) 2 S i n 2 ( f ) ) f ^ a 2 _ ( 2 ; + 1 ) 2 s i n 2 ( ^ ) 

W h e n x > s i n ^ ^ ~l,va

2 < (x + l ) 2 s i n 2 ( ^ ) and 0 ( x ) is either undefined 

or imaginary. Otherwise, 0 ( x ) is real and negative. Therefore, <5(x) is concave 

down as the second derivative | ^ ( x ) < 0 in the range va — 1 < x < s i n ^ | I ^ — 1. • 

T h e o r e m 5. When the evader follows a path along the boundary of a regular convex 
polygonal obstacle and cos (2^L) > a/(l + a), whether va is greater, less than or equal 
to vcriticai determines if the pursuer wins, loses or ties (respectively). 

When the evader follows a path along the boundary of a regular convex polyg
onal obstacle and cos ( ^ ) < a / ( l + a), if va < (1 + a) sin ( ^ ) the pursuer will lose, 
otherwise the pursuer will win. 

Proof. There are two cases to consider. If cos ( ^ ) > a / ( l + a), the pursuer wi l l 
win, lose or tie depending on a and va. Otherwise, if cos ( ^ ) < a / ( l + a) then for 
all va, the pursuer cannot tie - the pursuer wins or the pursuer loses. 

Case, cos ) > a / ( l + a) : 
In this case, when the pursuer starts at a height a along sight line 5(0), the 

closest point reachable on sight line 5(1) from this starting point is higher than or 
equal to a (See Figure 3.8 for an example). 

1. If va = Vcriticai, the pursuer ties, but does not win. 

More specifically, we show that when va = Vcriticai, there does not exist any 
capture paths for the pursuer, but there does exist a path where the pursuer 
w i l l never lose sight of the evader. 

When va = Vcriticai, the height of the pursuer at each sight line is a, as x = 
x ' = a. Therefore, A*(t) is the orbital path for the pursuer, and does not 
capture the evader. Therefore, the evader can tie. 

Suppose there exists a capture path for the pursuer. Let A(t) be the optimal 
capture path. As A*(t) is not a capture path, there must exists time k £ N 
(by Lemma 15) where A(t) diverges from A*(t). B y the definition of A*(t), 
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Figure 3.8: W h e n cos ( ^ ) > a / ( l + a), the shortest reachable point from the pursuer 
starting point is higher than or equal to the point reachable wi th speed VcrMcai- The 
dashed line shows the path to the point on sight line 5(1) closest to the pursuer 
starting point. 
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when A(t) intersects sight line S(k + 1), it must do so at a height higher than 
A*(k +1). Let us consider the time k + i (for i > 1, i € N) when the path A(t) 
turns. B y Lemma 16, this must occur on sight line S(k + i). However, as the 
path A*(t) forms a regular convex polygon and A(t) diverged away from the 
polygon, the height of A(/c + i) must be greater than the height of A*(k + i). 

We can now construct a path A'{t), where A'(t) = A*(t) for 0 < t < k + i. 
After the time k + i, A'(t) w i l l follow a path parallel to A(t), turning on the 
same sight lines at the same time. However, as A'(k + i) is at a height lower 
than A(k + i), the distance travelled by A'(t) is strictly less than A(t) for 
k < t < k + 1, and wi l l always intersect sight lines at a lower point. 

We can note that this is true if we consider any pair of consecutive sight lines 
j and j +1, for time t > k +1. If we know that A'(j) intersects S(j) at a point 
lower than A(£) , and A'(t) follows a course parallel A(£) , then if we consider 
the triangle formed by sight lines S(j) and S(j + 1) wi th the two paths, the 
length of the segment of A(t) in the triangle must be larger than the length 
of A'(t), and intersects S(j + 1) at a higher point. 

As well, since every segment of the path for A'(t) between sight lines is strictly 
shorter than the path for A(£) between sight lines, A'(t) has less distance to 
travel between sight lines than A(t). Therefore A'(i) can choose to cross sight 
lines at exactly the same time as A(t), and.so if A(t) can keep the evader in 
sight, then so can A'(t) (See Figure 3.9). 

After crossing the last sight line before capture, the path A'(t) w i l l aim to 
capture the evader. As A'(t) starts at a lower height along the same sight line 
as A(t), and both follow a straight line path along this sight line to capture the 
evader, A'(t) w i l l capture the evader before A(t) while travelling less distance. 
Therefore, we have shown the path A'(t) is shorter than the path A(t) from 
the time t = k + i unti l capture. 

However, we can note that at time k + i, A'(t) is at height a on sight line 
S(k + i). Therefore, we can construct a path A"(t) that follows the path given 
by A'(t),t > k + i, but starts following this path on sight line 5(0) at time 0. 
This path A"(t) must be shorter than the path A'(t) and captures the evader. 
This implies that A"(t) is shorter than A(t). As this is a contradiction, the 
pursuer cannot win. Therefore, the pursuer can only tie. 

2. Ifva > Vcriticai, the pursuer wins. 

More specifically, we show that if va > vcritical, there exists a path for the 
pursuer such that the pursuer captures the evader. 
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Figure 3.9: The path A'(t) is parallel to the path A(t) between sight lines, but starts 
at a lower height at time fc. Therefore, between any pair of successive sight lines, 
A'(t) w i l l be shorter than A(t). The path A'(t) can then cross sight lines at the same 
time as A(t), and A'(t) wi l l be between a sight line S(j) and S(j + 1) during the 
same time as A(t). Note that if we consider fc as a time when A(t) turns, when the 
pursuer passes sight line S(k + j), she wi l l be able to see the evader along the edges 
PkPk+i,Pk+iPk+2, • • • ,Pk+j-iPk+j- This is true for j up unti l j = i where S(k + i) is 
the sight line where A(t) turns next, and so between any two successive sight lines, 
if A(t) can keep the evader in sight, then A'(t) can keep the evader in sight. 
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We note then when va > Va-mcai, x' < x for the starting time 0 and so 5(x) > 0. 
The pursuer can also reach the sight line 5(1) from 5(0), so a < , — 1. 

We note that by Lemma 17 that the minimum 6min for 6(x) in the range 
v„ — 1 < x < a < —7%rv — 1 occurs either at x = va — 1 or x = a, if the 

~ ~ ~ s i n ( i f ) 
height never exceeds a. We can then note that 5min = 5(a) > 0, or else 
5-rain = 5(va — 1) = va — 1 > 0, and so Smin in the range va — 1 < x < a is 
always positive. Therefore, the pursuer is always decreasing in height relative 
to the evader. Thus the pursuer must catch the evader in at most [""a^"1] +1 
steps. This is because the path wi l l take at most ["Q-"«+1"| steps to reach the 
state x < va — 1 and then a final step to capture the evader. 

3. If va < VcriUcal, the pursuer loses. 
More specifically, when va < vcritical, there does not exist any viewing or 
capture paths for the pursuer. 

Let us look at the function S(x). For x = a, we know that 6(x) must be 
negative as va < vcriticai — the pursuer is too slow to maintain the same 
height and must go to a greater height. However, if we choose a height h 
sufficiently small, va w i l l be the orbital speed for the height h, and so 6(h) 
wi l l be 0. Therefore, the slope of 5(x) must have become negative for some 
x < a. A s 5(x) is concave down by Lemma 17, the slope of S(x) can only get 
more negative as we consider increasing x values, and so the slope of 6(x) is 
negative for x > a. 6(x) w i l l continue to become more negative for x > a. 
Therefore, 5(x) has a maximum value at x — a, for a < x < . v.%^. — 1. Let 

' v ' • — — s i n ( ^ - ) 

us call the minimum height loss on sight line 5(1) the value a = —5(a). 

Let us now consider a pursuer starting at some height x > a on sight line 
5(0). If we consider the lowest reachable point on sight line 5(1), we have just 
shown that this must be a point at height x' > x + a. Let us now consider 
the regular n-sided regular convex polygon P formed by the orbital path at 
height x'. We note that any straight line path from sight line 5(0) at height 
x, which is inside P, to a sight line S(i), where i > 1, must pass through a 
point at height y > x' on sight line 5(1), which lies on or outside the regular 
convex polygon. It cannot pass via a point lower than x', as x' is defined 
as the lowest reachable point in sight line 5(1) (without losing sight of the 
evader). Therefore, when this path turns on the sight line S(i), it must do 
so on a point outside the polygon P, as a straight line path starting inside a 
regular convex polygon and intersecting the edge of the polygon must end up 
outside the polygon (See Figure 3.10). Therefore, the turn at S(i) occurs at a 
height y' where y' > x', as al l the points at height x' are on the polygon P. As 
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Figure 3.10: The dashed line is the orbital path for height a, wi th the thick line 
segments indicating a length of a. If x is at a height less than a on sight line 5(0), 
and the path A(t), starting at x, passes through the point x' on sight line 5(1) at 
a height greater than or equal to a, it must intersect a l l subsequent sight lines at 
a height greater than a, since the orbital path forms a regular polygon at height a 
on every sight line. A straight line path starting inside a convex polygon cannot 
intersect the polygon more than once. 

x' > x + a, this means that y' > x + a and so any path starting at a height 
x > a must turn at some sight line at a new height which is greater than or 
equal to x + a. 

Therefore, this shows no matter where the pursuer decides to turn, the new 

height at the sight line where the pursuer turns is higher by at least cr. After a 

finite number of turns (at most ( s i n " ^ — 1 — /a + 1 turns), the pursuer 

w i l l exceed the height . — 1, after which the pursuer w i l l be unable to 

reach the subsequent sight line without losing sight of the evader. 

Case, cos (~) < a/(l + a): 
In this case, when the pursuer starts at a height a along sight line 5(0), 

the closest point reachable on sight line 5(1) from this starting point is lower than 
a. Therefore, although the pursuer could choose to orbit the polygon wi th speed 
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5(1) 

^critical 

5(0) 

Figure 3.11: When cos(27r/n) < a / ( l + a), the lowest reachable point on 5(1) from 
the pursuer starting point is lower than the point reachable v i a the orbital path. 
Therefore, wi th speed Va-Mcai, the pursuer can reach a point wi th height less than 
a on sight line 5(1). The dashed line shows the path to the point on sight line 5(1) 
closest to the pursuer starting point. 

^critical, it can also reach a point wi th height less than a on sight line 5(1). 

1. If va < (1 + a) sin ( ^ ) the pursuer will lose. 

This is true as the pursuer is unable to keep the evader in sight when the 
evader rounds the first corner of the polygon P. She cannot reach the sight 
line 5(1) before the evader reaches B ( l ) , therefore, at time t + e for some small 
e > 0, the evader cannot be seen by the pursuer. 

2. If va > (1 + a) sin ( ^ ) the pursuer will win. 

B y Lemma 17, the second derivative ^{x) < 0 for va — 1 < x < a. 

We know that cos ( ^ ) < j ^ . Therefore, 

x — (x + 1) cos 
2_7T 

n 
> x - (x + 1): 

1 + a 
x(l + a) — (x + l ) a 

1 + a 
x — a 
1 + a 
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We can apply this to show: 

S(x) = a: - (x + 1) cos (^j + clva

2 - (0 + l ) 2 ( s i n 2 ^ — 
n 

> ^ + f 2 - ( " + 1 K s i " 2 ( " ) ) 

A s va > ( a + l ) s i n ( ^ ) , 

4w>S + f 2- ( o + 1 ) 2( s i n 2(v) 

^.\/("+1)2(sin2(v))-(°+1>2(sin2(?)) ' 
= 0 

We again now note that <5(a) > 0 and 6(ya — 1) = va — 1 > 0, and so 5 m ; „ in 
the range va — 1 < x < a is always positive. Therefore, the pursuer is always 
decreasing in height relative to the evader and thus the pursuer must catch 
the evader in at most ["T^" 4" 1] + 1 steps. This is because it w i l l take at most 
[ V + 1 steps to reach a height x < va — 1, and then a final step to capture 

"mm 
the evader. 

• 

3.4 Orbital Velocity Relation to Starting Position 

We can now derive a relation between the starting position and the relative velocities 
of the pursuer and the evader when the pursuer follows the orbital path. Let rj, be 
the distance from the centre of the polygon to the evader's start position. Let ra be 
the distance from the centre of the polygon to the the pursuer's starting position. 
Let la be the distance travelled by the pursuer during time t. 
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The angle between the evader's position at time k G N and the evader's 
position at time k + 1 is measured from the centre of the polygonal obstacle. 
This is because the orbital path around the n sided polygon is also an n sided 
polygon. We can now express la and lb in terms of the angle. 

la = 2 x (ra x s i n £ ) 
lb = 2 x (rb x s i n ^ ) 
Therefore, given the distance travelled by the pursuer, va x t — la, and the 

distance travelled by the evader, 1 x t — lb we can note the following: 

Lemma 18. The orbital velocity of the pursuer is the ratio of the distances of the 
pursuer and the evader from the centre of the polygon. That is 

A s noted in the previous section, the orbital trajectory defined is not stable— 
any perturbation from the orbital path wi l l cause the pursuer to either win or lose. 

3.5 A Visualisation of the Visibility Constrained Pursuit-
Evasion Problem 

This section describes another method of viewing the visibil i ty constrained pursuit-
evasion problem, which gives an alternate view of what is occurring. 

We define the set V(t) to be a set of points that changes wi th respect to time 
t. A point p is in the set V(k) if and only if p can see B ( i ) at the time k. For 
any time t, V(t) contains one or more connected components — V(t) for a given t is 
never empty since it always contains the point B ( t ) . For a l l times t, we also remove 
the regions occupied by the obstacles from V(t). The set of points in V(t) now 
represents al l the valid pursuer positions in the plane, at any given time. Therefore, 
for the pursuer not to lose, A(t) G V(t) for al l t. As well, we have a maximum speed 
for the path, therefore, | ^ | < va. 

If we consider a starting point a and starting time ta, we can create a "cone" 
which opens upwards in the positive z direction with a slope ^ . However, we need to 
stop the growth of the "cone" whenever it encounters an obstacle. In effect, we have 
changed the problem into attempting to find a path in three dimensions (the V(t) 
volume) that obeys the speed criteria ( | ^ | < va) and only travels in the positive z 
direction. If no such path exists,the evader can eventually lose sight of the pursuer. 
If the path A(t) exists and intersects the path B(£) , then the pursuer can capture 
the evader. If the path A(t) exists but cannot intersect the path B ( t ) , then we have 
a tie situation. 
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3.6 Future Work 
The natural extension for this work would be to consider generalising this solution 
for more complex environments and more complex evader shapes. It should be 
possible to show that for many more types of periodic paths for the evader, a tie 
situation can occur, by applying a similar analysis on the relative distance between 
the pursuer and the evader in the optimal capture path for the pursuer. A s well, it 
would be interesting to see if a similar result can be shown for polygonal evaders, 
however it w i l l be necessary for additional work to be done to handle the curved 
paths which may arise. Ultimately, it may be possible to discover common features 
of infinite length paths that cause tie situations. This may allow us to answer the 
decision questions — For a given evader path and a pursuer starting position and 
speed, can the pursuer capture the evader? If not, w i l l the evader ultimately lose 
sight of the pursuer? 

Another direction for future research would be to generalise the results of 
Efrat et al.[8] to paths of infinite length. It would be interesting to see if it would be 
possible to detect the tie situation, thereby guaranteeing that the algorithm would 
terminate. It may be possible to detect such a situation by detecting that the 
optimal path for the pursuer and the evader repeats the same relative positions for 
the pursuer and the evader at two different times. 

Given a polygonal scene, we can also ask the more general question — given 
two points A(0) and B(0) and two speeds a and (3 and a time bound to, does there 
exist a path B ( i ) wi th speed at most (3 such that for al l paths A ( t ) wi th speed at 
most a A(t) loses sight of B(t) for some t < to? If not, does there exist a path B(t) 
where for al l paths A(t) the pursuer cannot capture the evader? 

Another variation could consider multiple pursuers and evaders. Given the 
paths for multiple evaders and starting positions for the pursuers. The visibil i ty 
constraint could be modified such that at al l times, every evader is in sight by at 
least one pursuer. We can then ask, under the visibil i ty constraint, is it possible 
for the pursuers to capture al l the evaders. If we relax the visibil i ty constraint, we 
could also ask what is the maximum number of evaders that could be kept in sight 
and captured. 

3.7 Conclusion 

In this chapter, we analyse an example of visibili ty constrained pursuit-evasion when 
a point-sized evader moves along a path that follows the boundary of a regular convex 
polygon at a constant rate without ever stopping. In this case, we show that al l three 
possible outcomes are possible - the evader can lose sight of the pursuer, the pursuer 
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can capture the evader, and a tie can occur, where the pursuer cannot capture the 
evader, but the evader cannot lose sight of the pursuer. We determine the conditions 
under which each of these three situations occur for a situation involving a pursuer, 
an evader, and a regular polygonal obstacle by showing properties of the shortest 
paths the pursuer can take. 
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Chapter 4 

Conclusion 

In this thesis, we consider two instances of the pursuit-evasion problem. We show 
that, when using the L\ distance metric, the size of the pursuit-evasion Voronoi 
diagram is polynomial in the number of evaders, pursuers and obstacles, and we 
give a polynomial time algorithm to compute this diagram. We use a variation 
of Dijkstra's algorithm for computing single source shortest paths to explore the 
plane, while computing regions reachable by the evaders. This allows us to consider 
pursuers and evaders, each wi th their own starting point, starting time and speed, 
as well as line segment obstacles in the plane. 

We also show that, when we a have a single pursuer chasing an evader around 
a regular convex polygon and the pursuer is forced to keep the evader in sight, there 
are three possible situations which occur depending on the starting conditions: the 
evader can force the pursuer to lose visibility, the pursuer can capture the evader, 
and a tie situation where the pursuer does not lose sight of the evader, but cannot 
capture the evader. For these three situations, we give the conditions under which 
they occur. 
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