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Abstract 

This thesis proposes a robust on-line tracking method by 1) enlarging the conver­
gence range and 2) improving the observation memory of a phase-based appearance-
adaptive "Wandering Stable Lost" (WSL) tracker, which was developed by Jepson, 
Fleet and El-Maraghi. The resultant tracker is demonstrated to be adaptive to tem­
porary and permanent appearance changes in the object being tracked while at the 
same time it can deal with large scale and orientation changes of the object. Unlike 
the original phase-based WSL tracker, the new tracker can handle both partial and 
total occlusions when the object being tracked is temporarily unobservable. A set 
of "Scale Invariant Feature Transform" (SIFT) feature keypoints, which were devel­
oped by Lowe, are extracted from the object region to aid the original phase-based 
WSL tracker with longer past observations. The feature keypoints extracted from 
object region are matched against newly found keypoints in video sequences and 
then are passed into a Hough transform to filter out outlier mismatched pairs. The 
importance measures of those feature keypoints are learned using an on-line E M 
algorithm, which helps the tracker identify unreliable feature keypoints and con­
centrate computational resources on reliable ones. A deterministic gradient-based 
iterative tracking method is developed to use both the matched keypoints and the 
phase features to locate the object being tracked. 
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Chapter 1 

Introduction 

Visual tracking is an important early step in many computer vision applications and 

has been proven to be challenging over the years. The difficulty in visual tracking 

comes from the unpredictable process the object being tracked is likely to go through. 

The uncertainties in the tracking process might include: 

1. Other objects that temporarily occlude the object being tracked 

2. Appearance changes in the object being tracked because of illumination and 

reflection changes or because of camera geometry changes 

3. Temporary or permanent appearance changes in the object being tracked be­

cause the object itself changes in shape or 3-D pose 

As an example, Figure 1.1 shows selected frames from three typical tracking 

sequences. The objects to be tracked are the human head in the first row and the 

human head and upper body in the second and the third rows. In the first row, the 

object undergoes orientation changes and is occluded by a hand. In the second row, 

the object has scale changes. In the third row, the object is occluded by a pole and 

has appearance changes due to camera viewpoint changes. 

In order to deal with the changes in the object itself, a tracker should be 

able to adapt to the appearance changes. For example the human face can have 
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temporary changes with different expressions at different times, or it can have per­

manent changes if the eyeglasses the person is wearing are removed. Furthermore 

because of camera or human movement, the face can have large scale and orientation 

changes over time. All these situations require that a good tracker be able to learn 

the appearance over time and cope with changes in the object itself. 

But adaptation to change can cause problems in situations where the ap­

pearance change arises from a temporarily changing environment, and not from 

change in the object itself or in the camera geometry. Environmental appearance 

changes include light condition changes and temporary occlusions of the object. If 

the tracker adapts to appearance change too fast, the tracker can get stuck on an 

occluding object thus losing the object being tracked. On the other hand, if the 

adaptation is too slow, the tracker can have difficulty locking on the object if it has 

indeed changed. 

If the assumption is that the object being tracked will not change in the 

tracking proccess, a tracker can use a fixed template or model to represent the 

object being tracked. Once the template or model has been determined, it is not 

changed over time. To locate the object in the next frame, the tracking process can 

use a deterministic approach [5] [2] or a probabilistic approach [13] [20]. This kind 

of tracker has difficulty handling situations where the object itself changes because 

the model or the template the tracker uses does not change according to the new 

appearance of the object. 

On the other hand, a tracker can use an adaptive template or model to 

represent the object being tracked. The template or model changes with the object 

being tracked. In order to change the template or model, the tracker has to locate 

the object accurately in order to determine the newly changed appearance of the 

object. So an adaptive tracker often uses a deterministic tracking process to locate 

the object being tracked. After the object has been located, a learning method is 

used to update the template or model to reflect the changes in the appearance of 

3 



the object. 

The problem with an adaptive tracker is that some changes in the appearance 

of the object don't come from the changes in the object itself. Those appearance 

changes usually come from the temporary illumination changes in the environment, 

automatic changes in camera exposure setting, scale and orientation changes due to 

camera movement and finally occluding objects that temporarily make the object 

being tracked invisible. Of course those changes in the appearance are not the real 

changes that an adaptive tracker wants to adapt to. But those "unreal" changes 

often get an adaptive trakcer into trouble, making the tracker learn the "false" 

appearance changes and drift away from the real object being tracked. Here the 

term "false" is used to indicate that the actual object being tracked doesn't itself 

change; instead the appearance change comes from the environment. 

Some "false" appearance changes can be ignored by carefully selecting the 

proper image features to track. For example, if a kind of image feature (e.g. gradient 

curves) is invariant to illumination changes in the image, it can be a good candidate 

image feature to be used in a tracker which will be robust against illumination 

changes. In fact, some image features are so good that they can not be misled by 

many "false" appearance changes except one ultimate situation: occluding objects 

that make the object being tracked partially or totally invisible. From a low-level 

pure tracker's point of view, the object being tracked just disappears and thus the 

tracking behavior of the tracker is undefined. In practice this kind of low-level 

tracker is not very useful because in most situations we want the tracker to lock 

onto the object again when it re-appears. 

For this reason, some higher logic needs to be used to control how fast the 

tracker should learn from the appearance, how the tracker should behave when the 

object being tracked disappears which makes the tracking process undefined and how 

the tracker can refocus itself onto the object being tracked when it reappears after 

a total/partial occlusion. To this end the higher logic ought to include a learning 

4 



strategy and a tracking strategy. 

This thesis is based on the phase-based adaptive WSL tracker [15] developed 

by Jepson, Fleet and El-Maraghi. The WSL tracker uses phase features from a set 

of bandpass filters, which are quite robust under scale, orientation and illumina­

tion/exposure changes. The tracker uses an on-line E M algorithm, which highlights 

recent observations, to learn the appearance of the object. The success of this learn­

ing approach depends on a critical scalar, the learning factor. This scalar decides 

how fast the tracker learns from the changes in appearance. If the tracker learns too 

slowly, it degrades to a tracker using a fixed template or model, which has difficulty 

if the object being tracked has permanent changes in itself. If the tracker learns 

too quickly, it becomes a 2 frame motion based tracker, which will drift onto an 

occluding region. 

The WSL tracker also uses a tracking strategy that considers both the stable 

aspect and the changing aspect of the appearance it tracks. In this way the tracker 

can lock onto a stable position where the object position is undefined based purely on 

appearance due to occluding objects or immature object appearance at the start of 

the tracking. A velocity constraint is also used in the tracking strategy, which helps 

to stabilize the tracker in difficult situations. The velocity constraint emphasizes 

constant motion and slow motion of the tracking object. 

Based on its learning and tracking strategy, the WSL tracker can handle a 

wide range of object appearance changes and partial occlusions. However, it's likely 

to get stuck on an occluding object in case of a total occlusion. This is partly because 

the on-line E M algorithm tends to forget the old observations on a model restart, 

which is likely to happen in case of a total occlusion. The limited convergence range 

of the tracker, which is half of the wavelength the G2H2 steerable pyramid filter set 

[11] [24] is tuned to, also causes the tracker to fail in the case of total occlusion. 

In a total occlusion, the tracker often needs to move a substantial distance to re-

lock itself on the object being tracked, and this distance is often greater than its 
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convergence range. 

This thesis proposes a way to keep most of the past observations in memory 

while learning new observations at the same time. In this way the system can adapt 

to new changes while still having a good knowledge of past observations when an 

serious occlusion in tracking is encountered. The question here is how to use the 

past observations and the new observations together in the tracking process. When 

the object indeed changes, there should be a way to reliably reject or degrade the 

influences of past observations. Lowe's SIFT features [18] serve well for this purpose 

because when the object changes, the past SIFT features tend to match outlier new 

SIFT features, thus making them easily rejected. The convergence range of the 

tracker can also be increased by using SIFT features. The matching error of all 

inlier matched SIFT feature pairs is used as a constraint to be minimized. This 

constraint tends to pull the tracker, no matter how far it is, into a small region 

where the matching error of SIFT feature matched pairs is sufficiently small. At 

this point, the constraints coming from the phase features fine tune the tracker to 

a more accurate position. 

In this thesis, SIFT features are used as the second feature of the appearance 

of the object being tracked in addition to the phase pyramids [10] [9] [11] [24] 

used in [15]. The reliable SIFT feature matching/unmatching identification and 

inlier/outlier classification of matched SIFT features can provide an effective way 

to help overcome the difficulties of the original WSL tracker. 

Two questions remain to be answered with tracking using both SIFT features 

and the phase features in the original WSL tracker are: 

1. How to classify an inlier SIFT matched pair as on the object being tracked or 

as on the object temporarily occluding the object being tracked 

2. How to use the inlier SIFT matched pairs to locate the object being tracked, 

fitting into the same tracking framework with the WSL tracker 
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To address question 1, this thesis assigns a weight to each potential matched 

keypoint pair and uses an on-line E M algorithm to learn those weights according to 

past observations. This approach also helps to reject the unreliable SIFT keypoint 

matches due to the small database of keypoints in each video frame. To address 

question 2, the tracker defines an energy function for the matching error of all 

matched SIFT keypoint pairs. Then this function is minimized using a gradient 

following iterative method which fits easily into the tracking framework of Jepson, 

Fleet, El-Maraghi's WSL tracker [15]. 

The tracking result is shown to be superior to the original WSL tracker. The 

new tracker can track in some difficult situations where the original WSL tracker 

fails. Those situations include large scale and orientation changes in the object 

appearance and total occlusions to the object being tracked. 

The subsequent chapters are organized as follows: Chapter 2 reviews related 

work in the visual tracking community. Chapter 3 provides details on how to use 

SIFT keypoints in an adaptive appearance model and how to track the object using 

matched SIFT keypoint pairs. Chapter 4 combines the SIFT keypoint features with 

the phase features in the WSL tracker and proposes a way of tracking objects using 

constraints coming from both features. Tracking results and performance analysis 

are presented in Chapter 5. Finally, Chapter 6 discusses conclusions and future 

work. 
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Chapter 2 

Related Work 

There is a huge collection of literature on visual tracking and many trackers have 

been developed. Before any tracker can track an object, a model representing the 

object being tracked must be stored in the tracker. The tracker uses this model to 

locate the object in each video frame. This model can be a template that represents 

the appearance of the object or a physical model that represents the object itself. 

In practice an accurate physical model is hard to acquire because we don't usually 

have the complete knowledge of what a model of a particular object is. 

The model representing the object being tracked can change according to 

the observations of the object over time, or it can be fixed once the initial region in 

the first frame has been selected. A tracker using a changing model is an adaptive 

tracker. It can track objects which have appearance changes over time. A tracker 

using fixed model might lose the object if the appearance of the object changes. 

2.1 Appearance Based Tracking 

In appearance based tracking, the object being tracked is represented as a collection 

of features of its appearance. This collection of features might be anything that 

characterizes the appearance of the object. Commonly used features are templates 

and region statistics. 
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2.1.1 Template 

Generally speaking, a template is a small patch of features. A tracking algorithm 

uses this patch to search through the image to find out which region is most likely to 

be an instance of the template. The features in this template can be image curves 

[16] [13], patch features [15] [19] or domain reduced models from an appearance 

training set [6] [7] [2] [25]. A tracker using templates usually has superior localization 

performance to a tracker using region statistics. 

Olson proposed a method for robustly estimating the position of the object in 

terms of maximum-likelihood [19]. The peak of the likelihood function and a normal 

distribution are fused together to provide robust subpixel template localization in 

the image. This approach is different to the sum of squared differences (SSD) which 

is also used to find the most likely match in the image to the current template. 

Image Curves 

Kass, Witkin and Terzopoulos developed Active Contour Models [16] to represent 

2D contours. Tracking is achieved by continually fitting model contours to image 

contours by minimizing an objective function that defines energy values in term of 

forces that contours apply to each other. Contours are robust image properties that 

are invariant under many light conditions. 

In contrast Isard and Black uses a different tracking method based on curve 

features [13]. A set of splines is extracted from the target object and then the set is 

passed to a condensation algorithm which uses particles to represent the distribution 

of the current position of the object being tracked. This tracking approach will be 

discussed later in this chapter. 

Using contours or curves has one limitation. Because the contours have to 

be fixed in order to make the tracking step efficient and accurate, it's hard and often 

inefficient to handle object appearance changes. Furthermore, large motion between 

frames is difficult because of the limited convergence range of the tracking method 
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used. 

Wavelet Transform and Steerable Pyramid 

One difficulty with using templates to track objects is that it is not easy to make 

the template adaptive. When the object changes its appearance, the template used 

to track the object should change accordingly to reflect the changes and to track 

properly in subsequent frames. This usually requires the features used in the tem­

plate be invariant to some "false" changes in the appearance of the object such as 

illumination changes or scale/orientation changes. 

If the feature set the template uses is invariant to those "false" changes, 

the template needs not to be changed if the object undergoes such "false" changes, 

which in turn makes the tracking more stable. A good candidate feature for this 

purpose is a multi-scale and multi-orientation bandpass decomposition from the 

original image. The bandpass property of the feature makes it quite invariant under 

illumination changes while the multi-scale/orientation property makes the feature 

able to handle scale/orientation changes. Wavelet transforms [23] can decompose a 

signal into multi-scale/orientation subbands. This transform can be followed by a 

bandpass filter stage to achieve invariance to illumination changes. 

One serious drawback of a standard wavelet transform is that it is not trans­

lation invariant. This means that a simple translation in the original signal doesn't 

result in a simple translation in each subband of its wavelet transform. It usually 

results in widespread energy redistribution over all the subbands. For computer 

vision applications this is not a property a tracker wants to see. This drawback 

comes from the exact critical sampling of all subbands in the wavelet transform. 

To make the wavelet transform translation invariant, oversampling can be 

used in the multiscale signal decomposition. Freeman and Adelson developed the 

steerable pyramid transform [11] to overcome this drawback of the wavelet trans­

form. A set of steerable bandpass filters is applied to the original image to transform 
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it into subbands of different scales and orientations of a steerable pyramid. Unlike 

the wavelet .transform, the steerable pyramid transform is translation invariant. 

This nice property of translation invariance comes with the price that the steerable 

pyramid transform is not a critical sampling transform. And this causes the total 

number of transform coefficients to be much greater than the total number of origi­

nal image values. But this is not a serious problem in computer vision applications 

because storage requirement is not the paramount concern. Furthermore, a linear 

combination of a set of steerable filters at different orientations in the steerable pyra­

mid transform can synthesize a filter at any arbitrary orientation. This synthesis 

property makes the multi-scale transform complete in orientations using only a few 

filters at different orientations. 

The steerable pyramid transform is further improved by Simoncelli, Free­

man, Adelson and Heeger [24] to make the transform coefficients able to reconstruct 

the original signal. The reconstruction property is very nice in image processing 

applications but it is less relevant in image analysis applications including tracking. 

In this thesis, the bandpass G2H2 filter set in [11] is used to construct a steerable 

pyramid. 

Phase Features 

One challenge for all trackers is that the appearance of the object can change over 

time. For this reason, templates need to be changed to reflect the changes in object. 

To do this, the template needs to learn from the past observations of the appearance 

of the object and to adjust itself to conform to the changes in observations. An 

adaptive appearance model is developed by Jepson, Fleet and El-Maraghi [15] and 

is shown to be robust with respect to natural appearance changes during typical 

tracking of human faces, and to scale and orientation changes in appearance due 

to the change in viewpoint. One difficulty with such an adaptive template is that 

there is a learning factor that determines how quickly the template learns from 
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the appearance observations. If the template learns too quickly, it can drift onto 

temporary outliers or occluding objects. If the template learns too slowly, it can get 

lost if the appearance of the object changes in a relatively short time. In this thesis, 

a method is proposed to overcome the learning difficulty, in particular the tracker in 

[15] is improved to have a larger convergence range, making the tracker converge to 

the correct location under severe occlusions. Furthermore, the template the tracker 

uses is improved to incorporate more past observations. 

The adaptive tracker [15] uses phase responses from a steerable pyramid 

transform as template features. Fleet and Jepson show that the phase features 

from a bandpass filter have many advantages in computer vision applications [10] 

[9] [14]. Most phase features from a bandpass filter are invariant to signal scale 

changes. There is no specific requirement on the shape or characteristics of the 

bandpass filter. Furthermore those phase features which are not invariant to scale 

changes are easy to detect and thus easy to reject as outlier features not to be 

used in the tracking computation. This property makes phase features ideal for 

tracking an object which has scale changes. Also, because these phase features are 

from a bandpass filter, which is a kind of differential filter, they are quite robust to 

light condition changes. The last advantage of phase features over other features is 

that phase features are almost periodically linear over all the feature space. This 

property of phase feature makes them ideal to use with a gradient based optimization 

method. Because differentiation is well defined on linear phase responses, gradient 

based methods usually result in good performance on phase features. 

Selection of Features 

Sometimes there are many types of features in the template available for tracking. 

For example, the above tracker [15] can also use other features such as color and 

raw intensities in addition to phase features in tracking. The tracker can even use 

curves or 2-D contours, as long as the energy function to be minimized is well defined 
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and an optimization strategy is available to use. Possible features usually have the 

property that in some situations one feature is superior in tracking to other features 

and in other situations the best feature to use is yet another feature. For this reason 

a tracker wants to choose the best available feature from a set of available features 

to be used in the tracking computation. Collins and Liu developed a method for 

selecting the best features in tracking [4]. After a training stage, the method can 

select the most distinctive feature that can best reliably isolate the object being 

tracked from the background or other outlier objects. 

Dimension Reduced Features 

All the trackers mentioned above use templates that directly come from the appear­

ance of the object. The features in the templates correspond to the pixel values 

in the image and are usually of high dimensions. Some subspace methods [6] [7] 

[2] [25] have been developed to reduce the dimensionality of the template. Those 

dimension reduced features can also be thought of as models of the object. Because 

they are not the models for the real object but the models for the appearance of the 

object, these methods are still considered here to be template based tracking meth­

ods. Before those methods can be used effectively in tracking, a training procedure 

is needed to train the models based on the observations of the object appearance. 

Cootes, Taylor, Cooper and Graham developed Active Shape Models (ASM) 

to represent 2-D shapes [7]. An A S M is learned from a training set of many shape 

instances which have been annotated with distinctive landmarks. A mean shape and 

a variance matrix of an A S M are determined using Principal Component Analysis 

(PCA). The A S M can be used efficiently to represent a class of shapes. Any partic­

ular shape from this class of shapes can be obtained by a linear combination of the 

mean shape and some shape parameters, subject to the shape variance matrix. The 

A S M can also represent shapes similar to the class of the shapes trained. This can be 

done by varying the shape parameters within a predetermined range of, usually, the 
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standard deviation times a small number. An A S M is an effective way to represent 

the appearance of the object and is quite flexible to variations in the appearance of 

this class of objects, which occur natrually in real tracking enviroments. 

The A S M was later upgraded to Active Appearance Models (AAM) by 

Cootes, Edwards and Taylor [6]. A grayscale model is incorporated into an A S M to 

form an A A M . The grayscale model is trained from a set of training observations 

together with the A S M already learned, followed by a P C A to obtain the mean and 

other parameters of the grayscale model. Unlike the A S M which has only constraints 

from the shapes in the appearance, the A A M also has grayscale constraints. This 

thesis borrows this idea to enhance the phase-based appearance model in [15] with 

the addition of SIFT features. 

Recently Support Vector Machines (SVM) have been used as the model to 

represent the appearance of an object [2] [25]. In S V M based tracking, a set of 

perturbed training images of the object is used to train the S V M to recognize the 

appearance of the object being tracked. Once the training stage is completed the 

S V M is ready for tracking. In tracking the S V M is moving around the image to 

find the location that yields the largest score from the SVM. One limitation of S V M 

based tracking is that it can't handle disappearance/reappearance of the objects 

and partial/total occlusion to the object. This limitation can, however, be handled 

by some higher tracking logic. 

S V M based tracking was originally proposed by Avidan [2] and was later 

improved by Williams, Black and Cipolla [25] to include temporal fusion of data. 

However, both these S V M trackers can't train the S V M while the tracking is going 

on. The training stage has to be done before the tracker can track in the first image. 

Thus the S V M model is not an adaptive appearance model. To track objects which 

might change over time, another appearance model has to be sought. To enable 

a S V M to re-train itself in parallel with tracking itself remains an area of future 

research. 
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2.1.2 Region Statistics 

Region statistics are a global description of appearance. For example, a color his­

togram [20] [5] is a good statistical representation of appearance. Region statistics 

can also be thought of as a template model as discussed in the previous section. 

But unlike the models previous discussed, the template the region statistics defines 

is a global description and as a result it doesn't localize the target accurately. This 

means that trackers based on this kind of template often fail where background and 

other outlier objects share similar statistics to the template. Also, global statistics 

are hard to adapt to changes in the object. Learning changes in object appearance 

is likely to make the tracker drift away to background because the statistics model is 

poorly localized. However, trackers based on region statistics can handle deformable 

object quite well. Because a change in a deformable object usually doesn't have a 

big effect on its global description of region statistics. 

Perez, Hue, Vermaak and Gangnet use the color histogram to model the 

appearance of the object [20]. Tracking is achieved by comparing all regions in the 

image to the color histogram representing the object appearance and selecting those 

regions that seem likely to be the object. Unlike deterministic tracking methods, 

the result of this tracker is a probability distribution of where the object is most 

likely to be. A probabilistic tracking method is best used with region statistics 

appearance models because the localization of these models is best expressed in 

terms of a distribution. 

The poor localization property of region statistics can be improved by fil­

tering the appearance using an isotrophic kernel K, with a convex and monotonic 

decreasing kernel profile, as described in the work of Comaniciu, Ramesh and Meer 

[5]. Here the profile of an isotrophic kernel function K is defined as a function 

k: [0,oo) —> R such that K(x) = fc(||a;||2). As an example, a 2-D Gaussian with 

mean 0 can be taken as the isotrophic kernel K in [5]. This so called kernel based 

tracking method uses this isotrophic mask kernel K to stabilize the color histogram 
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by emphasizing the influence of the pixels near the center of the object while de-

emphasizing the pixels around the edges of the tracking region. This isotrophic mask 

kernel can also be thought of as a localization enhancement tool which weights the 

color histogram to the center of the tracking region. Now localization is possible 

because often the borders of the object being tracked are unstable and subject to 

environment influences, thus needing to be de-weighted. Finally a deterministic 

tracking approach is used with the region statistics appearance model to locate the 

object in each frame. 

2.2 Model Based Tracking 

Although model based tracking has little relation with the work in this thesis, a 

brief review is presented in this section. 

Model based tracking uses a physical model of the object instead of only the 

appearance of the object. Unlike the appearance based trackers, it has knowledge of 

what the object being tracked is and this knowledge is represented as a model. The 

tracking process involves fitting this model into the image sequence to find where 

the object is. Usually the model is a 3-D model, such as in Lowe's work [17]. 

In principle, this is the ultimate tracker all people are looking for. Having 

information of the object being tracked gives the tracker the ability to handle any 

situation the object may go through. But the difficulty with a model based tracker 

is that the model for the object being tracked is usually very hard to acquire. In 

[17] only a simple 3-D polyhedron model is used to track an object. In practical 

tracking situations, however, the object being tracked is usually far more complex 

than a simple polyhedron. How to model real objects and how to reliably track 

complex 3-D models in image frames are still open questions in computer vision. 
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2.3 Deterministic Tracking and Probabilistic Tracking 

In a tracking process, based on the way the algorithm expresses where the object 

being tracked is located, there are two approaches to locate the object in video 

frames: probabilistic tracking and deterministic tracking. 

2.3.1 Deterministic Tracking 

Deterministic tracking can be reduced to an optimization problem. The tracking 

process is equivalent to finding the global extremum of an objective function, such 

as in [5] [2] [6] [15] [25]. The position where the objective function has the extremum 

is considered to be the location the tracker determines. 

There are numerous methods to find the global extremum of a given objective 

function. Gradient based methods and stochastic methods are most commonly used 

in optimization for this purpose [22] [21]. Those two classes of methods are heavily 

used in practice and all are iterative optimization methods. But in general, gradient 

based methods have faster convergence than stochastic methods and are preferred 

in computer vision, where the potential for real time performance is important. 

A gradient based optimization method requires the function domain to be 

differentiable. If differentiation is well defined over all the function domain, this op­

timization method tends to reach the desired position quickly and accurately. But if 

differentiation is not well-defined over the function domain, a gradient based method 

may converge to the incorrect position or get lost in non-differentiable regions and 

possibly not converge at all. 

Because of the linearity of phase features over the image domain (function 

domain), the objective function to be minimized in [15] is differentiable except at 

detectable phase periodic boundaries. A gradient based method can be used to 

utilize differentiability to find the extremum of the objective function in a reasonable 

time. In [2] [25], the objective function of the S V M score to be minimized is also 

differentiable, making gradient based method ideal for this kind of situation. 
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Deterministic tracking can be used to locate the object being tracked in 

a decisive manner: its solution is the only place where the object being tracked 

is. Although this unique solution ignores the uncertainty of data observations in 

visual tracking, it facilitates another important aspect in visual tracking: adaptive 

appearance learning. In [15] an adaptive tracker is successfully developed based on 

deterministic tracking approach. 

2.3.2 Probabilistic Tracking 

Unlike a deterministic tracking process, a probabilistic tracking process makes ex­

plicit the uncertainty in visual tracking. Probabilistic tracking represents the track­

ing result as a distribution over the possible states. In tracking, this distribution 

is propagated to subsequent frames based on new observations and state transition 

constraints. The propagation of distributions for visual tracking is first explored by 

Isard and Black [13]. Because an image can usually be seen as a non-linear func­

tion of the spatial coordinates, ordinary linear distribution functions like mixtures 

of Gaussians and other well defined distribution functions don't suffice to represent 

the state distribution over possible object positions. For this reason, particle filters 

[1] are used to represent the state distribution. In other words, the state distribution 

is represented as many sample particles whose distribution conforms to the under­

lying distribution, which is also done in [13]. Probabilistic tracking is shown to be 

quite robust under many imaging situations. This is partly because its probabilistic 

nature is well suited to visual tracking where uncertainty is common. 

After a state distribution has been determined by a probabilistic tracking 

process, the mean of the distribution is usually taken to be the position where the 

object is that is passed to other parts of the computer vision application. However, 

in probabilistic tracking, the actual estimated position is a distribution and not a 

single value. Using the mean value to represent the position creates a localization 

problem. This mean value isn't necessarily very close to the object being tracked 
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although the overall distribution is a correct estimation of where the object is. This 

localization problem prevents a probabilistic tracker from being an adaptive tracker. 

For a tracker to be adaptive, it needs to localize the object being tracked in a precise 

manner. 

This thesis is focused on appearance based tracking, in particular on template 

based adaptive appearance deterministic tracking. 
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Chapter 3 

Distinctive Features in an 

Appearance Model 

Distintive image features are very useful in image registration. This thesis uses 

Lowe's SIFT features [18] as one class of features to use in an appearance model for 

tracking. This chapter describes how to track an object using SIFT keypoints. 

SIFT stands for Scale Invariant Feature Transform, it transforms the image 

data into scale/orientation-invariant distinctive local features. SIFT features have 

limited spatial support and are well localized. SIFT features are invariant to image 

scale and orientation changes, and are shown in [18] to provide robust matching 

under many image deformations including substantial affine image distortion, mod­

erate change in camera geometry, image noise and change in light conditions. SIFT 

features are also shown to be highly distinctive in the sense that, when a SIFT fea­

ture is matched against all SIFT features in a large database, the correct match can 

be found with high probability. These properties of SIFT features make them ideal 

for registering the appearance of an object. The problem in visual tracking is that 

the matching database is limited to SIFT features in the appearance of the object. 

Typically, this is not a large database. As a result often there are outlier feature 

matches that can't be easily rejected. This problem is addressed by using a Hough 
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transform [12] as the first filter followed by an on-line E M algorithm to estimate the 

reliability of each SIFT feature in the appearance model. 

In the following discussions, a SIFT feature is also called a SIFT feature 

keypoint or simply a SIFT keypoint. 

In tracking, a SIFT keypoint in the tracking region of the previous frame is 

matched against all keypoints in the next frame. There are six possibilities: 

1. Matched keypoint is an inlier and is on the object. This match is correct and 

should be used in the tracking computation. 

2. Matched keypoint is an inlier but is on an occluding region. This match is 

correct but should not be used in the tracking computation. If it is used it 

can cause the tracker to drift to the occluding object. 

3. Matched keypoint is an outlier. This match is not correct and should be 

discarded. 

4. An inlier keypoint is unmatched due to cast-occlusion. A keypoint should be 

matched but isn't. This can happen when the object being tracking moves 

behind another object. If there is no occluding object, the matched keypoint 

should be found. Here the term "cast-occlusion" means other objects occlude 

the object being tracked, making it temporarily invisible. 

5. An inlier keypoint is unmatched due to self-occlusion. This can happen if the 

object changes its appearance, making some inlier keypoints no longer visible 

on the object in the following video frames. 

6. Other keypoint that is unmatched. This is an unreliable feature keypoint, it 

may be matched for some frames but unmatched for other frames. When it is 

matched, it may be in either 1, 2 or 3 category. 

A tracker using SIFT features (keypoints) should be able to classify each 

feature it uses into those six categories. Features in category 1 should be used in 
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tracking computation. Features in category 2 should be rejected or used to make 

occluding objects explicit in tracking. Features in category 3 and 6 are either outlier 

or unreliable features and should be rejected. Features in category 4 and 5 should 

remain in the appearance model for a reasonable time in case the feature reappears. 

In practice, we can't say exactly which category a feature belongs to. A 

feature in category 1 in most frames may have some mismatches in a few frames, 

making it labeled as an outlier. In this case, if this feature is used in those mismatch 

frames, the tracker can drift significantly from the correct position because the 

feature is considered to be stable but is not so in these frames. We must filter out 

mismatches before using features in tracking. In occlusion situations, mismatches 

can be serious. The number of available SIFT features in either an appearance 

model or a video frame is usually limited. Many previously stable features can 

become outlier matches in the case of occlusion. 

In [18] Lowe described a threshold method used to filter out mismatched 

keypoint pairs. A matched keypoint pair is considered to be an inlier if the dis­

tance between the first keypoint and the second in the new frame is smallest and 

is substantially smaller than the distance between the first keypoint and the second 

nearest keypoint in the new frame. The measure of "substantially smaller" can be 

defined in term of a ratio of the first distance (smallest) to the second distance 

(second smallest). If this ratio is below a threshold, the matched keypoint pair is 

considered to be an inlier. 

In order to further identify possible mismatches, a Hough transform [12] is 

used to filter out clusters that have fewer than six SIFT features. This effectively 

filters out most mismatched keypoints, because they tend to match to random dis­

tributed keypoints as demonstrated by Figure 3.2, thus falling into small clusters 

and gettting rejected by the Hough transform. 

The Hough transform finds clusters of matched keypoints that agree (approx­

imately) on the warping parameters from the previous frame to the current frame. 
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For a single matched keypoint pair, there are many warping parameter sets that can 

explain the motion from the previous frame to the current frame for this particu­

lar pair. Each of those warping parameter sets "votes" for one cell in the Hough 

transform. After all the warping parameter sets from all matched keypoint pairs 

have voted, each cell in the Hough transform is checked to see if it has more than a 

certain amount of votes. If this cell has sufficient votes, the warping parameter set 

this cell corresponds to can explain the motion. Figure 3.1 demonstrates the Hough 

transform cells for matches of keypoints from a typical frame to the next frame. 

For simplicity, only the horizontal and vertical speed (ux,uy) from the full warping 

parameter set are used in the Hough transform. The full warping parameter set 

that determines the motion from one frame to the next will be explained shortly. 

In Figure 3.1, a set of spatial speed parameters (ux,uy) are plotted. Each 

parameter corresponds to a certain match pair in two consecutive video frames. The 

unit in both axes is a pixel. This thesis uses a Hough transform on the (ux, uy) with 

the cell size 4 pixels by 4 pixels. In the thesis work, we found a cell size of 4 pixels by 4 

pixels for the Hough transform is appropriate for finding inlier clusters and rejecting 

outlier clusters. The upper part of Figure 3.1 shows all the spatial speed parameters 

(ux,uy). We can see in this subfigure that most spatial speed parameters are around 

the origin. Those parameters around the origin are enlarged in the lower part of 

the Figure 3.1, which also shows how the entire spatial speed space is divided into 4 

pixel by 4 pixel cells. We can see the inlier matched keypoints fall in the cells around 

the origin. This is because the spatial motion between consecutive video frames is 

usually small. Also, all the outlier keypoint matches can be rejected because they 

vote for randomly distributed cells far away from the origin. 

A 2-D Hough transform, based on horizontal and vertical spatial speed pa­

rameters (ux,uy), proved to be sufficient to reject outlier keypoint matches. The 

orientation change 6 and the scale change p in each warping parameter set are also 

valuable, but we found variations in those two parameters due to outlier matches 
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already result in large variations in spatial speed (ux,uy). These variations tend to 

be uniformly distributed across all the Hough transform cells, thus making them 

easy to identify as outlier matches. In our implementation of the Hough transform, 

only the spatial speed (ux,uy) is used. In practice all inlier spatial speed parame­

ters might spread across the boundaries of the Hough transform cells, as shown in 

Figure 3.1. This "boundary effect" of the Hough cells can be overcome by making 

each spatial speed parameter vote for the nearest four Hough cells. This allows the 

Hough transform to find out most inlier matches while at the same time efficiently 

reject most outlier matches. 

Another way to overcome the boundary effect is to use a second grid for 

the Hough transform. The second grid can be chosen in a way that the central 

positions of the corresponding Hough transform cells are the intersections of every 

four adjacent cells in the first grid. These two separate but overlapping cells then 

vote together to find any clusters that fall into either one of them. The thesis 

uses the "voting for the four nearest Hough cells" approach in one grid and gets 

satisfactory results. A second overlapping grid, however, can be used to further 

improve the Hough transform performance. 

After the 2-D Hough transform, the orientation and scale parameters of SIFT 

keypoint in each matched keypoint pairs are further inspected to reject any matched 

keypoints that don't agree on scale/orientation. To pass this stage, the two keypoints 

in the matched pair are required to have close orientation/scale parameters. In 

particular, the difference between scale parameters is required to be less than 0.2 

and the difference between orientation parameters is required to be less than ^TT. 

The effect of the Hough transform together with the orientation/scale in­

spection stage can also be shown on a few typical visual tracking frames. In Figure 

3.2, some SIFT keypoint matched pairs from the current frame (the upper half of 

each image) to the next frame (the lower half of each image) are shown on the left 

side. For outlier matches, the matched keypoints in the next frame are usually in 
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uniform distribution. Thus, the matched inlier keypoint pairs can be identified by 

performing a Hough transform for all the matched keypoint pairs, and then select­

ing the matched keypoint pairs that are in a Hough transform cell whose number of 

matched keypoint pairs is above a predetermined threshold. The matched keypoint 

pairs filtered by a Hough transform are shown on the right side of Figure 3.2. 

In order to describe how reliable a SIFT keypoint is, each keypoint is assigned 

a reliability measure, represented as a weight to use in the tracking computation. 

Reliable features have less chance of being in outlier matches and should be given 

more consideration when computing the tracker position. Unreliable features should 

be given less consideration if used. The weight is also able to de-emphasize the 

features that happen to belong to category 2. 

Each SIFT keypoint is modeled as a mixture of two distributions, 

p(d) = mipu(d) + m2Pg(d) (3.1) 

where m\,m2 > 0, and m\ + 7712 = 1. pu(d) is a uniform distribution on d and 

pg(d) is a Gaussian distribution on d with Gaussian parameters mean fj, = 0 and 

standard deviation crj. pg is used to model keypoints in category 1 and pu is used 

to model other matches. Here the assumption is that the keypoints in category 1 

tend to have small matching errors over the frames if the object is being tracked 

correctly and the distribution of these errors for each keypoint can be modeled as a 

Gaussian distribution centered at 0. Keypoints in category 2 are also modeled as the 

same Gaussian. But those keypoints tend to have large matching errors and thus 

have less weights m<i- For keypoints in all other categories, we assume that they 

occur randomly with respect to the matching errors and use a uniform distribution 

to model it. 

The mixture parameter determines how likely this keypoint is in category 
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Figure 3.2: Typical matched keypoint pairs in consecutive video frames 
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1, the keypoints we want to use in tracking computation. 

Pu(d) = C (3.2) 

Pg(d) = 
1 

e 

d is the matching error between matched keypoints which is defined in what follows, 

based on computed warping parameters (ux,uy,0, p) for this frame, the 

spatial displacements. 0 is the orientation change and p is the scale change. Here 

an affine transform between frames is assumed. Suppose the two keypoints that 

have been matched are Ki{x\,y{) and ^2(^2,2/2), where (£1,2/1) and (22,2/2) are 

the corresponding coordinates in the image. Keypoint K\ is in the previous frame 

and keypoint K2 is in the current frame. Then based on the warping parameters 

(ux,uy,6,p), the coordinates of keypoint K\ is warped to a new position (x[,y'1). 

This new position is computed as, 

where (xc, yc) is the center of the tracking region in the previous frame which has 

keypoint K\. The matching error d of matched pair K\,K2 is defined as, 

dKuK2(ux,uy,9,p) = (x'x{ux,Uy,0,p) - x2)2 + (y[(ux,uy,e,p) - y2)2 (3.4) 

Note for a particular keypoint K\, the match error dx1:K2 is a function of 

the warping parameters (ux,uy, 6, p). For an outlier match, this matching error can 

be very large. While for an inlier match, this value is very small, usually less than 3 

pixels. In the next subsection, an on-line E M algorithm is developed to estimate the 

mixture parameters m\ and mi- Because m.2 in (3.1) gives a reliability measure of 

the keypoint match, it is used as the weight in a gradient-following tracking process. 

x[(ux, uy, 6, p) = p((xi - xc)cos6 - (j/i - yc)s'm6) + xc + u: 

y[(ux, uy,8,p) = p({yi - yc)cosd + (zi - xc)smd) + yc + ul •y 

(3.3) 
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3.1 Learning the Weight of the Feature 

Having a model for each SIFT keypoint, now the task is to learn the model param­

eters based on observations, which are matching errors. The observation history of 

matching errors of one keypoint up to the time t is the sequence of {dkYkZ}0- dk is 

the matching error between consecutive frames k and k + 1. The log-likelihood of 

observing the history {dk}kZ}0 is, 

t - i 

£ ( { 4 } l = o | r o i , m 2 ) = __]log p(dk\mi,m2) (3.5) 

An E M algorithm [3] is used to maximize the log-likelihood £({dfc}fc=o) s u ^ " 

ject to the constraint mi+rri2 = 1. In particular , each iteration of the E M algorithm 

contains two steps, 

1. E step: Based on the current mixture parameters m i , T 7 i 2 , the ownership of 

data observation at time k for each mixture is computed as: 

oUdk) = ^ " ' g ( 4 )

v for i e {1,2} (3.6) p(dk\mi,m2) 

the subscripts {i, i) in the ownership mean the ownership of mixture i is 

computed using model parameters of time t. 

2. M step: Using the observation ownerships computed by E step, the new mix­

tures m\,m2 are updated as, 

1 * _ 1 

mi,t = —- oitt(dk) (3.7) 

After performing an E step and an M step, the constraint mi+m2 = 1 is still 

satisfied. The E M algorithm consists of iterating the two steps until convergence of 

mi, m2 is reached. 
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3.1.1 A n On-line Learning Algorithm 

In this section, an on-line E M algorithm similar to that in [15] is developed to make 

the tracker on-line. 

One of the problems of the standard E M algorithm given above is that all the 

prior matching error observations {dfc}jjZ.Q must be stored. This is not a property an 

on-line tracker wishes to see. Thus, an on-line version of E M needs to be developed. 

In a tracking application, recent observations should be given more consideration 

than old observations. Therefore the likelihood function (3.5) is modified to be, 

t-i 
L({d*;H=olmi»m2) = ^2st{k)logp(dk\mi,m2) (3.8) 

fc=o 

—(t—fc) 

where the weighting function St(k) is defined as St(k) — \e , and r > 1 is a 

constant. 

Here St{k) is used to highlight recent observations, it has the property 

]Ct=o St(k) — 1 for a large value of t. Incorporating St(k) to the E M algorithm, the 

E step remains the same, the M step is modified as rrii = 2~TJfc=o St{k)<>itk- Below for 

simplicity reasons, the t — 1 is replaced by t. This only changes the definition of the 

current frame and doesn't have an effect on computations. 

In order not to store all the past observation data, ra^ is approximated. 

In particular, data ownerships based on model parameters at the current time are 

replaced by the ownerships based on model parameters at the time they are first 

observed. In this way, the ownerships of past observations need not be computed 

each time new data arrive. A recursive formula can be exploited here to make the 
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E M algorithm on-line. Now the mixture rriij in the M step can be written as, 

t 
mitt = '^2St(k)oiit(dk) (3.9) 

k=0 
t 

sa ^2 St(k)oiik(dk) 

t-1 
= St(t)oitt(dt) + ^2st(k)oitk(dk) 

k=0 

1 1 t _ 1 

= -Oi,t(dt) + e~r ^2st-i(k)oi>k{dk) 
k=0 

— aoitt(dt) + (1 - a)miit-i 

where a = 1 — e " is the learning factor. Here an approximation 1 — e~i sa i is 

used. This approximation can be obtained by taking the first Taylor expansion of 

e~r with respect to ^ around 0 and notice that \ is a small positive quantity near 

In summary, the on-line E M consists of iterating two steps until conver­

gence is reached. Assume before the on-line E M that the mixture parameters are 

miit_i,7712^-1 and the current matching error is dt. Before entering E M , set the 

current guess of mixture parameters m^t to m^t-i for i = 1,2. The two steps of the 

on-line E M are: 

1. E step: Compute the ownerships 0itt(dt),(>2,t(dt) of the mixtures according to 

(3.6). 

2. M step: Given the computed ownerships oi>t(dt), c>2,t(dt), update the new mix­

tures as 

mitt = aoitt(dt) + (1 - a)mitt-i, for i G {1, 2} (3.10) 

a is defined in (3.9). 
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3.2 Tracking Using Weighted Features 

Once the weight for each keypoint has been determined, the next step is to use all 

inlier matched keypoints to determine where the object is in the next frame. In 

tracking, a function of warping parameters is defined in terms of matching error 

of all the matched keypoints. The mixture parameter 7712 of each keypoint acts as 

an indicator of how reliable this keypoint is. This parameter is used to weight the 

contribution of each keypoint in an objective function to be optimized. A set of 

warping parameters is sought that minimizes the objective function, which will be 

defined below. 

For one matched pair (Ki, K2), the error matching function d , K 1 , K 2 is defined 

in (3.4). The matching error function for the tracking region is summed over all 

the weighted matching pairs. The weight is taken from the m2 from (3.1). Each of 

the matching pairs has the property that the keypoint in the previous frame of each 

matched pair is always in the tracking region. But the keypoint being matched in 

the next frame is not guaranteed to be in the desired tracking region. The matching 

error function to be optimized is defined by summing all the matching error functions 

of matched keypoints in the region using the same warping parameters, 

dall(ux,uy,e,p) = ^ rn2dKltK2(ux,uy,6,p) (3.11) 
Ki£R and ( K l t K 2 ) & M 

where R denotes all the keypoints in the tracking region of the previous frame, M 

denotes all matched pairs, and m2 is the mixture parameter of K\. 

To track the region in the next frame, a set of parameters (ux, uy, 6, p) that 

minimizes (3.11) is sought as the warping parameters for this frame from the pre­

vious frame. 

3.2.1 Gradient Following Minimization 

The tracking problem is now reduced to an optimization problem. Because the ob­

jective function to be optimized is differentiable, an iterative gradient based method 
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is developed to determine the set of warping parameters (ux, uy, 9, p) that minimizes 

(3.11). The reason for choosing an interative gradient method over differentiating 

(3.11) directly with respect to (ux,uy,9,p) is that, 

1. It can find a solution even if less than 4 distinct keypoints are used. 

2. It can incorporate prior motion knowledge into the computation. 

3. It can be used together with other gradient based non-linear optimization 

method to achieve more robust tracking, which will be discussed in the next 

chapter. 

To optimize the error function (3.11), warping parameters (ux, uy, 9, p) from 

previous frame are used as initial guess parameters, then the following two steps are 

performed until convergence is obtained: 

1. Based on the current guess parameters (ux, uy, 9, p), find an update (8ux,5uy, 59, 

that makes the updated warping parameters give a lower error function value 

of (3.11). Details on how to find the update will be discussed shortly in this 

section. 

2. Update the guess parameters from the update, go to step 1 if the update is 

not small enough. 

For a set of warping parameters from time t — 1 to t, define a vector Cj = 

[ux, uy, 6, p]T, the error function can be evaluated according to (3.3,3.4 ,3.11). Then 

for an update of 5ct = [5ux,5uy,69,5p]T, the coordinates of warped matched key-

point in the previous frame are computed as 

x[(ct + Set) = z'i(ct) + Ux6ct + 0(ll<N|2) (3-12) 

y[(ct + 5ct) = y[(ct) + Uy6ct + 0(\\6ct\\2) 
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where 

Ux = [1,0, p(-(x - xc)sin0 - (y - yc)cos0)}, (x - xc)cos9 - (y - yc)sin6] 

Uy — [0,1, p(—(y — yc)sin9 + (x — xc)cos9), (y — yc)cos$ + (x — xc)sin0] 

(3.12) is obtained by taking the first Taylor expansion of (3.3) with respect 

to ct- Then (3.4) can be written in terms of small update Set as, 

dKUK2(Sct) = [x2 - x[(ct + 5ct)]2 + [y2 - y[{ct + 6ct)}2 (3.13) 

= [x2 - x[(ct) - Ux6ct]2 + [y2 - y[(ct) - Uy8ct}2 

= [Ux6ct - Cx}2 + [Uy6ct - Cy}2 

where Cx = x2 — x[(ct) and Cy = y2 — y'i(ct) are two constants because Cf has been 

fixed prior to computation of the update 8ct. The second order terms of 8ct have 

been dropped. 

Now (3.13) is a quadratic function of 5ct, its minimal point can be found by 

differentiating it with respect to 5ct and set the result to 0, 

d d K l

d

K

6f C t )
 = WT{Ux5ct - Cx) + 1UTy(UyC~ct - Cy) (3.14) 

Set the differentiation to 0 leads to the linear system, 

(UTUX + U^Uy)5ct = UT

XCX + UfCy (3.15) 

where Ux,Uy,Cx, Cy have been defined in (3.12,3.13). 

(3.15) finds 5ct that minimizes the matching error function for one pair of 

matched keypionts. To find the 5ct that minimizes the total matching error (3.11, 

3.15) is summed over all matched keypoints, 

m2(U^Ux + UyrUy)6ct= (3.16) 
K\€R and {KLTK2)£M 

Y, m2{U^Cx + U^Cy) 
KIGR and (KLTK2)£M 
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where R,M,m,2 are defined in (3.11). m,2 is used to weight reliable keypoints in 

the computation. 

Note Ux, Uy are 4 by 1 vectors and all other known variables are scalars 

regardless of how many keypoints are used. This guarantees there is always an 

update 5ct that can be computed from (3.16). 

When an update 5ct computed from (3.16) is small enough, the gradient 

following procedure stops and the final ct is the warping parameters from the pre­

vious frame at time t — 1 to the current frame at time t. Based on the new warping 

parameters ct, the error function for each matched keypoint pair can be computed 

to get the error value d in (3.1). Then m,2 can be re-evaluated according to the 

on-line E M algorithm. Finally, all the new unmatched keypoints in the tracking 

region of the new frame are added to the keypoint list of the tracking region to be 

used in later computations. 

For each unmatched keypoint that is in the keypoint list of the tracking 

region, its weight is decreased by a certain amount which will be described in the 

summary session for the tracker. Finally, for each keypoint in the keypoint list of 

the tracking region, if its weight is less than a certain threshold, this keypoint will 

be removed from the keypoint list. Those parameters will be described at the end 

of Chapter 4. 

Now the tracking and the keypoint model learning for one frame have com­

pleted. The tracker moves to the next frame and repeats all the steps in this chapter. 
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Chapter 4 

Tracking with SIFT and Phase 

features 

In practice, the gradient following minimization method described in the previous 

chapter can't usually be used standalone in tracking. There are two difficulties: 

1. The number of available keypoints in the tracking region may not be large 

enough to make c% converge to an appropriate point 

2. Partial or total occlusions further reduce the number of available keypoints, 

making the tracker likely to jump around the image 

For this reason, this tracking method is best used with another tracking 

method in a way that allows one to stabilize the other. In the thesis the WSL tracker 

[15] based on the phase responses of steerable pyramids is used in conjunction with 

the tracker developed in the previous chapter. 

4.1 Phase-based WSL Tracker 

This section briefly reviews the phase-based WSL tracker. For complete details the 

original paper [15] should be consulted. 
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Jepson, Fleet and El-Maraghi developed a WSL framework to model each 

observation as three components: a Wandering, Stable and Lost component [15]. 

Then an on-line E M algorithm was used to estimate how much contribution each 

component makes in a history of observations. In particular, the observation of each 

datum is modeled as: 

p(dt\qumt,dt-i) = mwpw(dt\dt-\) + msps(dt\qt) + mipi(dt) (4.1) 

where mt = (mw,ms, mi), m w + ms + mi = 1, and mw, ms,mi > 0. pw,Ps,Pl are the 

wandering, stable and lost probabilities of the datum. 

The wandering and stable components are modeled as Gaussian distributions. 

Qt = ( M s . t )
 a11) is the mean and variance of the stable component. For the wandering 

component, the mean of the Gaussian is taken to be the previous observed datum 

of this model and the variance of the Gaussian is taken to be a constant. The lost 

component is modeled as a uniform distribution over all possible values of dt. mt, qt 

are re-estimated from an on-line E M algorithm applied to the tracking observations 

{dkYk^o- When the stable mixture ms falls below a threshold, the model restarts. 

Using the phase response [10] [9] from a steerable pyramid [11] [24] as obser­

vation data to the WSL model, a tracking method based on gradient optimization 

was developed in [15]. In particular, an energy function of warping parameters Ct 

from time t — 1 to t is denned as, 

E(ct) = Es(ct) + Ew(ct) + E0(ct) (4.2) 

where 

Es{ct) = - ^2 os(d(w(x,ct),t))logps(d(w(x,c),tt)\q) 
x e N t - i 

Ew(ct) = -e Y2  0w{d(w(x,Ct),t))lospw(d{w(x,Ct),t)\dXtt-i) 
x e N t - i 

E0(ct) = - logtGte l t f , V i J G f o l c t - ! , V2)) 
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w(x, c) is the warping function of position x based on warping parameter c. Nt-i 

is the tracking region in the previous frame. os, ow are the ownerships of the stable 

and wandering components of the WSL likelihood (4.1). G is a Gaussian used to 

model the motion constraints of the tracker, ip is the unity motion. V i , V2 are used 

to control the weight of slow motion constraint and constant motion constraint, 

respectively. 

A gradient based optimization method is used to find the cj that minimizes 

(4.2). Based on the guess warping parameter cj, an update 5ct is computed according 

to: 

(As + eAw + Ap)5ct = bs + ebw + bp (4.3) 

where 

Aw= Y ^ ^ t ' ^ ' * ^ ^ = - £ 0 w { d { w { ^ l ) ) 5 d w W A d 

A.= Y ^ ^ ^ W ^ A d A d ^ W , b. = - ]T ° s { d { w ^ t ) ] 5 d 3 W A d 
x e N t ^ !  s x G N t - i  s  

Ap - v t 1 + V2-\ bp = -V^\ct - VO - V2-\ct - c t_0 

each Ai is a 4 by 4 matrix and each bi is a 4 by 1 vector. 

In the above equation, crw,as are the variances of the wandering and stable 

components of the WSL model. W = dw^.f^ is the 2 by 4 Jacobian of the warp 

function at ct. Ad(x,t) = (dx(x,t),dy(x,t)) are the spatial derivatives of the phase 

responses at time t. Sdw,5ds are defined as: 

Sdw(x, t) — d(w(x, ct), t) — d(x, i — 1) 

6ds(x,t) = d(w(x,ct),t) - u-s(x,t- 1) 

lis is the mean of the stable component for this datum. 

The tracking procedure continually finds an update 8ct to ct until the update 

is small enough. After finding the warping parameters ct, the parameters of the WSL 
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model for each datum are updated in a way that maximizes the likelihood function 

(4.1). 

Because of the property of the phase responses [10] [9], this tracking method 

is robust against moderate scale, orientation and small illumination changes, while 

remaining adaptive to appearance changes of the object being tracked. However its 

performance is not good under total occlusions and large scale/orientation changes. 

The difficulties come from: 

1. The limited convergence range of the tracker, which is half of the wavelength 

to which the band pass filter is tuned to. 

2. The adaptiveness of the wandering component over the occluding object, thus 

making the track restart and forget about the past stable observations. Al­

though the speed of adaptiveness can be adjusted to make the tracker succeed 

in a partial occlusion, the tracker can't deal with a total occlusion in which 

only the wandering component has an effect. This makes the tracker stick 

onto the occluding region. 

3. The robustness to scale and orientation changes is moderate, because of the 

way the steerable pyramid and phase features are used 

Used with the SIFT keypoints, those difficulties can be partially overcome 

in most circumstances, making the tracker recover elegantly from those difficult 

situations. 

The WSL tracker uses phase features of a steerable pyramid. The phase 

features are robust against small scale changes. Furthermore the steerable pyramid 

in their implementation is well behaved under orientation changes at a certain level 

of the pyramid, i.e. small changes in orientation result in small changes in phase 

values of the pyramid. These properties enable the WSL tracker to handle moderate 

scale and orientation changes of the object being tracked. 

39 



SIFT features are demonstrated to be invariant under a wide range of ori­

entation and scale changes. This property of SIFT features adds more incentive to 

use SIFT features together with phase features of the steerable pyramid in the WSL 

tracker, thus allowing the tracker to handle large scale and orientation changes of 

the object being tracked. 

Another reason to use the SIFT tracker with the WSL tracker is the limited 

number of keypoints on the object being tracked. On many occasions, the number 

of available inlier features is usually less than 5 in a number of frames. This limited 

number of keypoints poses a serious challenge for the tracker to converge to the 

correct position if SIFT features are used alone in the tracker. Here the relatively 

large number of phase features helps stabilize the tracker even when no SIFT features 

can be found on the object being tracked. 

4.2 Adding SIFT Keypoints to the Phase-based Tracker 

Because the keypoint-based tracker and the WSL phase-based tracker share the 

same tracking framework in that they both seek to optimize an objective function 

using a gradient based method, those two trackers can easily be combined into one 

tracker. In particular, the combined tracker finds a set of warping parameters , ct, 

that minimizes the objective function: 

F(ct) = Xdau(ct) + E(ct) (4.4) 

where dau is defined in (3.11) and E(ct) is defined in (4.2). A is used to control 

the weighting between these two objective functions. In practice, A should be set 

to be a relatively large number to emphasize the contribution of SIFT features. 

This is because after the Hough transform is performed on the SIFT features, the 

remaining SIFT features are much more reliable than the phase features of the 

steerable pyramid. But the number of SIFT features left is very small compared to 

the available phase features. Giving those SIFT features more weight in (4.4) can 
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help the tracker converge to the correct position in case of a total occlusion, where 

the phase features alone have been locked into the occluding object while SIFT 

features still can identify the matches on the object being tracked and occluded. In 

this case assigning SIFT features more weight helps the tracker lock onto the object 

being tracked again. 

One risk of assigning A a large number is that if outlier matches of SIFT 

features can not be detected accurately, the outlier SIFT features may make the 

tracker drift away very quickly. For this reason, robust outlier detection is essential 

to this approach. In the thesis at least six keypoints in the same Hough transform 

cell are required to identify this cell as an inlier pair. 

In [18] Lowe demonstrated that, after the ratio threshold rejection stage, 

three inlier keypoint matches found by a Hough transform can reliably detect an 

object. But in the thesis work we require six inlier keypoint matches in the Hough 

transform. Some "should be inlier" keypoint matches are rejected as outlier matches 

because the matched keypoints fail either on the ratio threshold test described in 

Chapter 3 or on the cluster test in the following Hough transform. This is possible 

because images are usually noisy and sometimes the keypoints found are not stable 

for matching. As a result the newly detected keypoint at the same location (ap­

proximately) is added to the appearance model. In this case these two keypoints at 

the same location represent the same SIFT feature. But we can't tell exactly if they 

are indeed one feature or if they represent a change in the object. Furthermore it's 

hard to decide which keypoint to discard because we can't decide which one is more 

reliable. Requiring six inlier matches can effectively get around this difficulty. If 

instead only three inlier matches are required in the Hough transform, these "clone" 

keypoints might cause the tracker to jump around in the image if all of them happen 

to match to a particular outlier keypoint. Based on the experiments on the image 

sequences used in the thesis, we found a value of six for the number of required 

matched keypoint pairs serves well in the Hough transform rejection stage. 
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Setting this large a number of keypoints in one Hough tranform cell may 

come with the price of rejecting some inlier keypoint matchings. In order to reliably 

reject possible mismatches, this price has to be paid. In the worst case even if all 

the inlier matches have been rejected, there are still enough phase features that can 

be used in tracking computation. And using those phase features to track has been 

demostrated to be reliable. 

The same method of finding cj is used as in the previous chapters. For a 

guess warping parameters C ( , an update <5cj is computed according to, 

[ ]T {\m2(UTux + UTUy)} + AS + eAw + Ap}Sct = 

K ^ R and (Ki,K2)cM 

Y {\m2uTcx + Uy
rCy} + bs + ebw + bp (4.5) 

KI&R and (KUK2)eM 

where all variables are all defined in (3.16, 4.3). 

After convergence is reached, the resultant warping parameters ct are used 

to convect all the keypoints and WSL data in the previous frame to the new frame. 

Then the on-line E M algorithm for estimating the weights of keypoints and the on­

line E M algorithm for estimating the WSL component parameters are performed 

independently. All the data are then used in tracking the next frame. An ex­

tra benefit of keypoint based tracking is that the full phase-pyramid need not be 

constructed. Only the level one (finest level) of the pyramid is constructed, the 

keypoint constraints help the tracker converge to the correct position without the 

need to construct all high levels of the pyramid. 

One problem with the iterative minimization gradient following tracking 

method is that the tracker may lock into a local minimal that is not the global 

minimal of (4.4). This manifests itself as the tracker locking onto a region that 

is not exactly the initial designated tracking region. In addition, this deviation in 

the tracking process is combined with the localization problems of the feature used. 

The localization problems of the features include limited localization in space of 

the G2H2 filters used to produce phases and the broad spatial histogram support 
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for the SIFT features. The combined effect is that the tracker tends to lock into a 

stable region that it sees as the most stable structure of the object being tracked. 

Although this region is not necessarily the exact region of the initial designation of 

the tracking object, it contains most of the initial tracking region and this constraint 

is usually good enough for the tracker to always lock on the object being tracked. 

In summary, the tracker developed in the thesis works as follows: 

1. For initialization, the user selects an ellipse on the object being tracked in the 

image. In fact, this region need not be an ellipse but can be any shape. 

2. All SIFT keypoints in the tracking region of the first frame are extracted. For 

each keypoint, the parameters ( m i , 7 7 1 2 ) are assigned initially to (0.95, 0.05). 

3. The G2H2 filter set in [11] is used to construct the first level of a steerable 

pyramid. The a of the G 2 filter is set to be 1.5. The reliable phases are 

found using [10]. Then phase values are passed into the WSL framework, the 

initial mixture probabilities are set to rrii — {0.4,0.15,0.45} for i — {w,s,l}-

The orientations of the pyramid are selected as {0, \-K, | T T } , in counter­

clockwise direction. 

4. The next frame is read into the system. All SIFT keypoints are found. The 

first level of the steerable pyramid is constructed. 

5. For each SIFT keypoint in the keypoint list of the tracking region, find a 

matched keypoint in the next frame according to the threshold rejection method 

proposed in [18]. 

6. The Hough transfrom is applied to all matched keypoints. All keypoints in 

clusters with at least six matched keypoints are used in tracking. 

7. The warping parameters ct-i from previous frame is used as the initial guess 

of current warping parameters ct- Note that each set of warping parameters c 
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is defined as c— (ux, uy, 9, p). ux, uy are the spatial speed. 9 is the orientation 

change and p is the scale change. 

8. Using all matched keypoint pairs and available phase values, find an update 

8ct to the current guess warping parameters that makes the objective function 

(4.4) to a lower value. Sct is found by solving the linear system (4.5). A is 

chosen to be 10. 

9. Steps 7 and 8 are iterated until the update 5ct is small enough. Now Q is the 

warping parameters for frame t — 1 to t. 

10. For each of the matched keypoint pairs, compute the matching error according 

to (3.4), and use this error value to re-estimate the m\,m2 in (3.1). The 

standard deviation a is set to 1.5. If the mixture m 2 for one keypoint falls 

under 0.05, this keypoint is discarded. 

11. For each of the unmatched keypoint, the mixture mi is multiplied by 0.9. m\ 

is also adjusted to make the constraint m\ + m-2 = 1 satisfied. If the mixture 

?Ti2 falls under 0.05, this keypoint is discarded. 

12. Compute the new tracking region according to the computed warping param­

eters c t = (ux,Uy,9,p). 

13. Add all the newly found unmatched SIFT keypoints in the new tracking region 

to the SIFT keypoint list in the appearance model. 

14. Update the WSL model for each pixel using the new warping parameters ct, 

this is described in detail in [15]. 

15. Steps 4 through 14 are repeated each time a new frame is read into the tracker. 
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Chapter 5 

Tracking Results and Analysis 

In this chapter, some tracking results using the SIFT and phase based tracker devel­

oped in this thesis are presented and compared with the WSL tracker developed by 

Jepson, Fleet and El-Maraghi [15]. The actual implementation of the WSL tracker 

was not available from the authors of [15]. The implementation of the WSL tracker 

in this thesis for comparison purpose is based on the partial Matlab code from Fleet, 

which implements the WSL framework and the on-line E M part. The phase-based 

steerable pyramid feature part and the gradient based optimization part are imple­

mented by the author according to El-Maraghi's PhD thesis [8]. The author remains 

unclear if the implementation of the later two parts exactly duplicates that of Jep­

son, Fleet and El-Maraghi as in [15]. In every tracking case, the tracker is configured 

to use the same set of parameters as described in the previous chapter. The SIFT 

and phase based combined tracker in this thesis is demonstrated to have superior 

performance over the phase-based WSL tracker. It performs at least as well as the 

phase-based WSL tracker in ordinary test cases. But in cases of object being tracked 

undergoing large scale and orientation changes, the combined tracker has a much 

more stable performance. Finally, the total occlusion test cases are presented where 

the phase-based WSL tracker fails but the combined tracker successfully handles 

them. 
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In the following sections, all the video sequences are taken with a consumer 

camcorder with a resolution of 320 by 240. Only gray level information is recorded. 

The recorded video sequences are compressed using the Microsoft's V2 implemen­

tation of MPEG-4, before they are de-compressed and passed into the tracker. A 

website [26] has been made available for complete tracking video sequences. 

5.1 Tracking object with large scale changes 

The object being tracked may have scale changes over the tracking process. This 

can happen when the object moves from a place far away towards the camera, or 

when the camera zooming changes. To track object with scale changes requires that 

the feature being tracked is robust against scale changes. The image pixel intensity 

is a good candidate for this purpose, although it suffers from instability under light 

condition or camera exposure changes. Furthermore, the non-differentiability of 

intensity values at object boundaries makes them difficult to be used with a gradient 

based tracking algorithm. Phase values of a bandpass filter applied to an image are 

demonstrated to be robust under moderate image scale changes [10] [14] [9]. As a 

result, the WSL tracker built on phase values can handle moderate scale changes of 

the object being tracked. The combined tracker developed in this thesis not only 

inherits the good property of phase features, in addition the SIFT features help the 

tracker further in handling even larger scale changes. 

Figure 5.1 shows the tracking result using the phase-based WSL tracker on 

a video sequence. Figure 5.2 shows the tracking result using the combined tracker 

proposed in this thesis on the same video sequence. The initial tracking regions of 

the two video sequence are the same. In both figures, the frames 41, 81, 121, 161, 

201, 241, 281 and 312 of the video sequence are shown. 

In both cases, the tracker can track the object successfully. But the regions 

the tracker locks into in subsequent frames are not exactly the same. This happens 

for two reasons: 
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Figure 5.1: Tracking sequence with scale changes (phase-based WSL tracker) 
47 



Figure 5.2: Tracking sequence with scale changes (combined tracker) 
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1. Both phase-based features and SIFT features have a certain range of spatial 

support. This is because their spectrums have to be localized in order to 

extract information at a certain scale, thus making those features not perfectly 

localized in the spatial domain. 

2. The gradient based optimization method isn't guaranteed to find a global 

minimium of the energy function. Usually this method sticks to a suboptimal 

stable point good enough to track an object. 

For these two reasons, the tracker tends to drift away from the initial region 

a little bit. After a stable minimal energy point is found, the tracker locks onto 

this region. Of course the region the tracker locks onto shares most pixels with the 

initial region. Those pixels act as the main constraint for the tracker and dominate 

subsequent behavior of the tracker. For this reason both trackers can track the 

object successfully despite the region deviation problem. 

Another phenomenon which isn't shown in Figure 5.1 and 5.2 is that for both 

trackers the tracking behavior is not the same if the initial tracking region is defined 

in a slightly different way. One pixel difference in the initial tracking region makes 

both trackers lock onto a different region in subsequent frames. But both trackers 

still track the sequence successfully. This instability for both trackers arises, in part, 

because the region to be tracked in the first frame is small, making a small difference 

in the initial tracking region become a big difference when the object gets bigger 

in subsequent frames. Also the localization problem with both phase features and 

SIFT features further contributes to this instability. The localization difficulty can 

be severe when the object is small in the first few frames. 

The matched SIFT keypoints and filtered SIFT keypoints after the Hough 

transform are shown in Figure 5.3 for the combined tracker. Frames 84-85 and 

280-281 in the video sequence are shown. For each subfigure the upper image has a 

lower index. For each row of the figure, all matched keypoints are shown on the left 

side next to the filtered keypoints on the right side. In the early frame 84, because 
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of the limited number of available SIFT keypoints found, all the SIFT keypoints 

are rejected by the Hough transform. The combined tracker acts as a purely phase-

based WSL tracker in this frame. In the late frame 280 where the object being 

tracked becomes large, all the inlier matched keypoints with big weights are in the 

initial region being tracked, thus making the tracking computation well posed. The 

keypoints near the edge of the tracking region are usually not the keypoints in 

the initial tracking region and should not be used as main constraints in tracking 

computation. As we can see, the matched keypoints near the edge of the tracking 

region are largely discarded because their mixture parameters 7 7 1 2 fall under the 

threshold as described in the last section of the previous chapter. 

Phase features are robust when the image undergoes moderate scale changes. 

But when the image has large scale changes, the stability of phase features breaks 

down and phase features become unstable. In this situation, the changes in phase 

features make the tracker drift away from the object being tracked. 

The phase-based WSL tracker happened to handle the scale change in the 

Figure 5.1 example. But it fails in the Figure 5.4 example. The scale change in 

this example is not significantly larger than that in the previous one. But it makes 

the phase instability under large scale change show up. Figure 5.4 shows a video 

sequence where the object being tracked has large scale changes. The frames shown 

are 6, 51, 86, 106, 131, 163, 166 and 171. 

Because of the phase instability under large scale changes, the phase-based 

tracker drifts away from the object in the last 3 frames shown in Figure 5.4. When 

the phase features become unstable, less phase features are used in the energy func­

tion (4.2). The sparse phase features break down the differentiability of (4.2) 

because now even the function itself is not defined over all the space. As a re­

sult, the iterative gradient based optimization method has convergence difficulty in 

finding the minimal value of (4.2), making the tracker drift away from the object. 

In this situation, SIFT features can help the tracker lock onto the correct 
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Figure 5.3: The matched keypoint pairs in the sequence with scale changes 
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Figure 5.4: Tracking sequence with scale changes (phase-based WSL tracker) 
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region, for two reasons: 

1. SIFT features are invariant under a larger range of scale changes. Thus under 

large scale changes, SIFT features are still stable and can be used as a reliable 

constraint in tracking computation. 

2. New SIFT features in the tracking region are selected and used in later tracking 

computations. So even if all the old constraints of phase features or SIFT 

features are lost due to large scale changes, those new SIFT features keep the 

tracker locked onto the object being tracked. 

Figure 5.5 shows the tracking result of combined tracker using phase and 

SIFT features applied to the same video sequence as Figure 5.4. The initial tracking 

region of both the video sequences are the same. The frames shown are 6, 86, 131, 

163, 171, 188, 203 and 222. The frames 51, 106 and 166 are not shown in the 

combined tracker sequence. But additional frames 188, 203 and 222 are shown. This 

time the combined tracker can lock onto the object which has large scale changes. 

Figure 5.6 shows the matched SIFT keypoints in some frames of the tracking 

video sequence in Figure 5.5. The filtered matched SIFT keypoints are next to all 

matched SIFT keypoints on the left side. The frames shown are 75-76 and 198-199. 

Under large scale changes, the SIFT keypoint matched outlier pairs can still mostly 

be reliably detected. The inlier SIFT keypoint match pairs force the tracker to lock 

onto the object being tracked. At this time the phase features in the combined 

tracker are already unstable and the WSL models have been restarted, thus causing 

the tracker to drift. But because of the constraints from the SIFT features, the 

tracker still successfully tracks the object. In the frame 198, because of the large 

number of SIFT keypoints in the appearance model and the "imperfect" invariance 

to scale changes of SIFT keypoints, there are some outlier matches that can't be 

rejected by the Hough transform. But the dominant force from inlier matches of 

SIFT keypoints makes the tracker lock onto the object. Finally, after the warping 
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parameters are computed, the weights of the outlier SIFT keypoints are decreased 

according to the on-line E M algorithm. The weight decrease makes those possible 

outlier SIFT keypoints have less influence in the following tracking computations. 

5.2 Tracking object with large orientation changes and 

partial occlusion 

Unlike SIFT features, phase features are not invariant under orientation changes. 

For this reason, the WSL tracker developed in [15] uses phase features from a steer­

able pyramid applied to the image. But they didn't steer the steerable pyramid 

to a particular direction according to the orientation of the tracking region. The 

convergence property of the tracker when steering the steerable pyramid every time 

in the iterative gradient based tracking process is unknown. 

Instead, the phase-based WSL tracker uses four orientations from the steer­

able pyramid, namely 0, ^7r, | 7 T . It relies on the fact that small orientation 

changes of the object being tracked result in small phase value changes of the steer­

able pyramid at those particular orientations. This is partly the property of steer-

ability of the steerable pyramid. For this reason, the phase-based WSL tracker may 

have difficulty when the object being tracked has large orientation changes. Because 

in such situations, the phase values may change dramatically and thus may reach 

some values that the tracker can't handle using the WSL model. 

The unstability of phase features can be aggravated by occlusions. If the 

phase features are unstable after a series of orientation changes, the WSL model is 

likely to restart. When the object changes orientation again, the newly restarted 

features have less Stable constraints. If at this time there is an occlusion to the 

object, the tracker is prone to lock onto the occluding region because at this time 

the Wander constraints of the WSL model dominate. 

Figure 5.7 shows the behavior of the phase-based WSL tracker on a video 
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Figure 5.6: The matched keypoint pairs in the sequence with scale changes 
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sequence where the object has large orientation changes and partial occlusions. The 

frames shown are the 21, 85, 144, 200, 257, 325, 428 and 468 in the sequence. 

The tracker loses the object starting from the frame 432. Before this frame, 

there is a large orientation change to the face. Because of the limited orientation 

robustness of phase values, the phase values on the face have changed to certain 

limits that are significantly different from the S component in the phase-based WSL 

model. As the S component gets less weight, the tracker tends to lock onto the W 

component, making the tracker drift from the face to a "more stable" appearance, 

the hand. 

However the phase-based tracker does a wonderful job of coping with the 

partial occlusions of the hand to the face before the orientation change breaks the 

phase stability. In some situations the hand has the same speed as the face while 

occluding the face, making it even harder to correctly track the face without learning 

the appearance of the hand and drifting onto it. 

Figure 5.8 is the same sequence with the same inital tracking region as Figure 

5.7, but now using the combined tracker. The frames shown are 85, 200, 325, 428, 

454, .459, 468 and 614. The frames 21, 144 and 257 in Figure 5.7 are not shown 

but additional frames 454, 459 and 614 are shown. In this test case, the tracking 

region is purely the person's face. The A in (4.4) is chosen to be 5 to reflect the 

ratio between the number of available phase features and the number of available 

SIFT keypoints. In all other test cases the tracking area is the upper part of human 

body and face, the A is 10. The combined tracker tracks correctly throughout the 

sequence. 

The combined tracker can handle large orientation changes thanks to the 

orientation invariant properties of SIFT features. Aside from being able to handle 

large orientation changes, the combined tracker behaves in a different way from the 

phase-based tracker. In Frame 454 the tracker locks onto the hand and shrinks 

temporarily, but quickly locks onto the head again when it reappears from behind 
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Figure 5.7: Tracking sequence with orientation changes and partial occlusion (phase-
based tracker) 58 



Figure 5.8: Tracking sequence with orientation changes and partial occlusion (com­
bined tracker) 59 



the hand. This phenomena also shows the large convergence range of the combined 

tracker, which in turn suggests that the combined tracker might have the potential 

of being able to recover from a total occlusion which wi l l be shown in the next 

section. 

Figure 5.9 and Figure 5.10 show keypoint, matched pairs for some frames 

of the sequence Figure 5.7 and 5.8. The frames shown are 450-451, 455-456, 460-

461 and 493-494. Again , the Hough transform can be used to reliably identify the 

inlier and outlier matched pairs in those frames. The hand moves over the face at 

frame 450. A t this time, both the constraints coming from the Stable component of 

the W S L model and the S I F T matched keypoint pairs can't determine the correct 

position of the tracker because of the temporary occlusion. As a result the tracker 

locks onto the hand. At frame 455 part of the face comes out from behind the hand 

again, there are some inlier keypoint matched pairs on the face found by the Hough 

transform, together with a cluster of matched keypoint pairs newly found on the 

hand. The keypoints on the face have large weights because of the accumulation of 

weights estimated by the on-line E M over the previously correctly tracked frames. 

Those keypoints pul l the tracker again onto the person's face at frame 460. In frame 

493, the person's face undergoes the largest orientation change, the S I F T keypoints 

in the appearance model can still be used to identify the tracking region. 

Finally, notice that in the last, frame shown in Figure 5.8, the girl's facial 

expression changes dramatically. The adaptiveness of the tracker makes it lock onto 

the changed appearance, thus making the tracking successful. 

5.3 Tracking object with total occlusions 

The main drawback of the phase-based W S L tracker is its inabili ty to track objects 

over total occlusions. As described in [15] the tracker usually sticks to the occluding 

object. This is because when the object being tracked is totally occluded, the 

constraint from the S component of the tracker just disappears because there is no 
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Figure 5.9: The matched keypoint pairs in the sequence wi th orientation chang 
and partial occlusion QI 



Figure 5.10: The matched keypoint pairs in the sequence with orientation changes 
and partial occlusion (continued) 62 



object to track at that time. As a result the behavior of the tracker is dominated by 

the W constraint, which adapts to the occluding object. After some time sticking to 

the occluding object, a WSL model restart occurs, making the S component change 

to the occluding object. After the restart, the tracker locks onto the occluding object 

and thus loses the original object. 

The failure to track over total occlusion is for two reasons: 

1. The memory of the tracker is limited. Once the S component has been changed 

to the occluding object, there is no memory left that the tracker can utilize to 

lock onto the original object. 

2. The convergence range of the tracker is limited to half of the wavelength to 

which the bandpass filter used to generate phase featrues is tuned. Thus once 

the object being tracked moves away from where the tracker has locked onto 

further than half of the wavelength of the filter used, there is no way for the 

tracker to lock onto the object being tracked again. 

Reason number 2 can be partially overcome by tracking in the higher levels 

of the steerable pyramid first, then moving to lower levels. But there is no method 

to overcome reason number 1. Modeling the S component as a multiple Gaussian 

distribution instead of a single Gaussian distribution can give the phase-based WSL 

tracker a longer memory. But a restarted Gaussian mixture of the S component may 

still learn the occluding object quickly so that the other Gaussian mixtures of the S 

component become less dominant in the overall S component. Again the tracker will 

stick onto the occluding object, not onto the original object being tracked. Another 

difficulty for a multiple Gaussian approach is that we don't know in advance how 

many Gaussian mixtures are to be used in the S component. A large number of 

Gaussian mixtures gives the S component less weight in the tracking computation 

while a small number of Gaussian mixtures gives the S component a short memory. 

Using SIFT features is a good way to provide the long memory required to 

cope with total occlusions. After the object being tracked is occluded, the SIFT 
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features on the object simply can't find their matched peers or can only find an 

outlier matched peer, which for some reason can't be filtered out by the Hough 

transform stage. In either case, the S I F T features persist on the region being tracked 

until the object shows up from behind the occluding object again. When the object 

shows up again, the tracker has a good chance of locking onto it again using the 

S I F T feature constraints that it learned over the previous tracking frames. 

Figure 5.11 shows the phase-based W S L tracker applied to a video sequence 

with total occlusion. The frame numbers are 61, 181, 196, 211, 246, 259, 265 and 

291. The tracker loses the object on frame 265, drifts a little bit, and sticks onto 

the pole in subsequent frames. 

Figure 5.12 shows the combined tracker applied to the same video sequence 

as in Figure 5.11. The frames shown are 61, 196, 246, 259, 265, 269, 270 and 291. 

The frames 181 and 211 in Figure 5.11 are not shown but additional frames 269 

and 270 are shown. The combined tracker gets stuck on the pole from frame 265 

to frame 269. Bu t when the object being tracked shows up again in frame 270, the 

matched inlier keypoint pairs force the tracker to converge again onto the object. 

This effect of recovering from total occlusion can also be seen in equation 

(4.4). When the object being tracked gets totally occluded by the pole from frame 

265 to 269, there are no matched inlier S IFT keypoints wi th large mixture weights. 

As a result the first energy term on the right side of (4.4) contributes little to the 

overall energy. 

When the object is occluded, the S component of the W S L model can't 

explain what's going on. Now nearly all the constraints of the W S L model come 

from the W component. But by this time, the object lias been tracked for a while 

and as a result the mixture of the W component is already small. The dominant 

factor in the second term on the right side of (4.4) now comes from the velocity 

constraints as in (4.2). 

Overall, at the time of total occlusion, only the constraints coming from 
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Figure 5 .IT Tracking sequence with total occlusion (phase-based WSL tracker) 
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constant velocity and slow velocity in (4.2) have large contribution to the energy 

function (4.4). These constraints, together with the small amount of contribution 

coming from the W component, decide where the tracker should go. 

This is why the tracker stops moving and sticks onto the pole occluding the 

object being tracked. When the object being tracked walks from behind the pole and 

shows up again, the energy value of the first term on the right side of (4.4), which 

comes from the inlier S I F T keypoint matched pairs, is large enough to dominate 

the overall value of the energy function and pull the tracker onto the object being 

tracked again. 

In Figure 5.13, 5.14 and 5.15, the matched keypoint pairs are shown for this 

sequence at frame 263-264, 264-265, 267-268, 268-269, 269-270 and 270-271. The 

filtered matched keypoint pairs after performing the Hough transform are shown on 

the right next to al l matched keypoint pairs found in each image. A t frame 263 

the person is about to walk behind the pole, the number of detected inlier matched 

keypoint pairs decreases quickly as the tracking region is about to disappear. A t 

frame 264, the person is occluded by the pole, there is no inlier matched keypoint 

pairs found and now the tracker acts as a purely phase-based tracker. As the person 

is walking behind the pole from frame 264 to 267, the tracker locks onto the pole 

and learns the apperance of the pole from both phase features and S I F T features. 

Frame 267 shows the matched keypoint pairs of the newly learned appearance. A t 

frame 268 the person walks out from behind the occluding object again and the 

S I F T features learned over the previous frames in the appearance model find their 

matches again. After the Hough transform, there are two clusters of inlier matched 

keypoints: the one wi th newly learned keypoints on the occluding object and the 

one with keypoints in the appearance model learned over time. The newly learned 

keypoints have much lower mixture weights than those of the keypoints on the 

object learned over time. Now the cluster of old keypoints on the object being 

tracked dominates the energy function (4.4), pulling the tracker to the direction of 
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Figure 5.13: The matched keypiont pairs in the sequence with total occlusion 
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Figure 5.14: The matched keypiont pairs in the sequence with total occlusion (con­
tinued) 69 



Figure 5.15: The matched keypiont pairs in the sequence with total occlusion (con­
tinued) 70 



the object being tracked. A t frame 269, old keypoints further pul l the tracker into 

position and finally in frame 270 the tracker is on the correct object again. The 

tracker locks onto the object after frame 271. 

Figure 5.16 and Figure 5.17 show another video sequence tracked using the 

phase-based W S L tracker and the combined tracker, wi th the same ini t ia l tracking 

regions, respectively. The frames shown in Figure 5.16 are 22, 71, 176, 209, 210, 

219, 224 and 266. The frames shown in Figure 5.17 are 22, 176, 209, 210, 219, 223, 

224 and 266. The frame 71 in the phase-based W S L tracker sequence is not shown 

in Figure 5.17. From frame 211 to 223 the object being tracked is occluded. The 

object shows up again at frame 224. The combined tracker can successfully track 

the object in this sequence and the phase-based W S L tracker fails again in sticking 

onto the occluding pole. 

In this tracking sequence, both the: number of available phase-features and 

the number of stable/reliable S I F T features are very limited on the person's upper 

body and head throughout the sequence. This phenomenon happens rarely and is 

possibly caused by the low contrast in the video or by the nature of this particular 

scene. In the tracking sequence with W S L phase-based tracker shown in Figure 

5.16, the tracker drifts a lot from the original tracking region and finally locks onto 

the person's head. O n another hand, the phase features on the pole are more stable 

and the tracker sticks to the pole after the person is occluded. W i t h the help of 

S I F T features, the combined tracker doesn't drift a lot. The only big drift happens 

at frame 210 just before the object is about to be occluded. This is a very rare 

situation. It happens in this tracking sequence where the Hough transform can't 

reject those outlier S I F T matched pairs. 

Figure 5.18, 5.19 and 5.20 show some of the matched S I F T keypoint pairs 

during the sequence in Figure 5.17 and Figure 5.16. The frames shown in the 

sequence are 181-182, 209-210, 210-211, 223-224, 224-225 and 257-258. The filtered 

matched keypoints after the Hough transform are shown to the left in each figure. 
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Figure 5.18: The matched keypoint pairs in the sequence with total occlusion 
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The difficulty with this tracking sequence is that both phase features and 

SIFT features are not very stable throughout the sequence. This can be seen from 

two unreliably matched frames 181 and 257. In those two frames, there is no inlier 

SIFT keypoint matches left after the Hough transform. At frame 209, the unsta-

bility of SIFT feature matching aggravates. One cluster of mismatched keypoint 

pairs has more than six keypoint pairs, thus making the Hough transform believe 

those mismatched keypoint pairs are inlier. Even worse there is no other cluster 

found to be inlier by the Hough transform. This phenomenon happens rarely. This 

mismatched cluster brings the tracker to an incorrect position far below the object 

as shown in frame 210. At frame 223 as the person moves out from behind the pole, 

some matched keypoint pairs are found on the object and are found to be inlier by 

the Hough transform. Those matched keypoint pairs pull the tracker back to the 

object as shown in frame 224. From frame 224, there are no serious mismatches 

of SIFT keypoints that can't be rejected by the Hough transform and the tracker 

remains locked onto the object after that. 

The cause of the serious mismatches of SIFT keypoints at frame 209 that are 

not rejected by the Hough transform is uncertain. 

From frame 210 to frame 222 the object is totally occluded. The constraints 

from both the phase features and SIFT features disappear when the object is totally 

occluded. A WSL model restart occurs when the object is unobservable. The newly 

restarted S component of the WSL model and newly found SIFT keypoints on 

the occluding object are put into the appearance model. Nevertheless when the 

object reappears, constraints from these newly learned phase features and SIFT 

features do not outweigh the constraints remaining from past observations of the 

SIFT keypoints, and the tracker reconverges to the correct position. 
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Chapter 6 

Conclusion and Future Work 

This thesis demonstrates a way to improve an existing adaptive phase-based tracking 

method. A number of SIFT features are extracted from the object being tracked 

and are incorporated into the appearance model used in the tracker. The SIFT 

feature and phase feature combined tracker is shown to have superior performance 

over the tracker using phase features alone. The improved performance comes from: 

1. SIFT features and phase features complement each other: SIFT features are 

available to use in some regions where phase features are unreliable and vice 

versa. This property makes the appearance model much more complete. 

2. The SIFT feature helps the tracker to retain a longer memory of past obser­

vations: Past observations to the object are stored as SIFT features in the 

appearance model for a much longer time than the phase features in the WSL 

phase-based tracker. Reliable inlier/outlier SIFT feature matching detection 

makes it possible to correctly track the object using both past and recent SIFT 

feature observations without confounding them with each other. 

3. The SIFT features are invariant to a wider range of image scale/orientation 

changes than the phase features from the steerable pyramid. As a result 

the SIFT feature and phase feature combined tracker can handle greater 
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scale/orientation changes in the appearance of the object being tracked than 

the tracker using only phase features. 

4. The energy function defined by SIFT feature matching constraints is differ-

entiable and thus a gradient based optimization method is well suited to find 

the minimum of the function. Furthermore this optimization procedure has a 

larger convergence range than the optimization procedure used in the phase-

base WSL tracker. As the result, the SIFT feature and phase feature combined 

tracker has a larger convergence range than the tracker using phase features 

alone, making the combined tracker able to handle total occlusions. 

The SIFT feature and phase feature combined tracker developed in this thesis 

can track through large scale/orientation changes and total occlusions to the object 

being tracked, which can't be tracked correctly by the phase-based WSL tracker. 

However, the tracker has one critical parameter to be chosen carefully to 

meet the tracking conditions. The A in (4.4) is a critical parameter used in the 

combined tracker. A weights the relative influences coming from the phase features 

and the SIFT features. A large value of A gives the SIFT features more weight in the 

tracking computation while a small value of A emphasizes the constraints coming 

from the phase features. In practice, this parameter needs to be carefully chosen to 

reflect the ratio of the number of SIFT features to the number of phase features while 

giving a slightly more weight to SIFT features as described in previous chapters. 

The A is chosen to be 10 in this thesis. This is an empirical value coming from the 

experience of tracking human head and upper body. When tracking another class 

of objects, however, this value may need to be changed to reflect the changes in 

the number of available SIFT features and phase features found on the object being 

tracked. 

For a sensitivity test, other values of A for tracking upper human body and 

head have been tried. A value ranging from 5 to 15 gives similar tracking results 

to those using 10. A value above 20 tends to make the tracker jump around the 
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image often a few frames. In most cases the tracker can still lock onto the object 

after several jumps. But it's likely to drift away from the object if jumping happens 

frequenctly. Giving SIFT keypoints too much weight is likely to make the tracker 

unstable when keypoint mismatch is significant. Adding more phase constraints 

helps to stabilize the tracker in those frames. A value below 2 makes the tracker 

behave like a purely phase-based WSL tracker. 

As a comparison, a value of A ranging from 2 to 5 gives satisfactory results 

for tracking human head only. 

Another limitation of the tracker is that its computational requirement is 

still very high. The tracker is designed to be an on-line tracker in the sense that it 

doesn't need to store all observations from the past, thus the tracker doesn't need 

infinite storage. But in the current unoptimized implementation it takes an average 

of 8 seconds to track the object in each frame on a Pentium III 1GHz C P U . The 

extraction of phase features and the extraction and matching of SIFT features take 

a small amout of the time. Most of the computational time is spent on the iterative 

gradient-based optimization of the function (4.4). Parallel implementation and 

code optimization in this part can be sought to make this tracker run in real-time. 

There are a number of ways to extend the tracker developed in this thesis. 

1. Automatic determination of the value of A in (4.4): This value can be deter­

mined from the ratio of the number of available SIFT features to the number of 

available phase features, plus some adjustments coming from the learning ex­

perience of how this class of objects should be weighted towards SIFT features 

or phase features. 

2. The background/foreground reliable SIFT features can be extracted to further 

aid the tracker dealing with total/partial occlusions: In this way the tracker 

is even less likely to stick onto an occluding object if we know in advance that 

the newly learned features are background/foreground features that are not 

on the object being tracked. To do so (3.1) needs to be modified to model 
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these additional SIFT features. 

3. An isotrophic kernel can be used to further localize the SIFT features and 

phase features in the region of object being tracked, such as what is done in 

[5]: This could solve the slight drifting problem of the tracker. 

4. A more dense feature could be used in the tracker in addition to the phase 

features and SIFT features: The sparsity of both SIFT features and phase 

features may cause problems in tracking an object where both features are 

hard to find. Using a third dense feature can help stabilize the tracker in this 

situation. A requirement is that the feature space should be differentiable. 

The SIC color feature proposed in [8] is a possible candidate for this purpose. 
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