Abstract

Intelligent systems are increasingly able to offer real-time information relevant to a user's manual control of an interactive system; however, effective presentation of this information creates many challenges. We consider how to use force feedback to convey information to a user about dynamic system control space constraints that have been computed by an intelligent system. Effective display of control constraints will require careful consideration of the usability of the forces, in addition to good technical design, to assure user acceptance of the feedback. Possible dynamic systems that can benefit from this kind of interaction feedback are tasks such as driving and the control of physically-based animations.

In this thesis, we studied the haptic display of control constraints in a simple driving simulation. We developed a 'look-ahead' guidance method to display usable haptic guidance suggestions to a driver based upon the predicted location of the vehicle relative to the road, and implemented this using a custom vehicle simulator based on Reynolds's OpenSteer framework. The performance and usability of our Look-Ahead Guidance method are compared to a baseline of No-Guidance, and to Potential Field Guidance, the current state-of-the-art haptic path guidance method. Our experimental results show that Look-Ahead Guidance was more usable and showed performance benefits in our task compared to both No-Guidance and to Potential Field Guidance. We identified several factors that we suspect affect the usability of haptic path guidance and suggest future work based on these observations.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>x</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives and Approach</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Document Map</td>
<td>5</td>
</tr>
<tr>
<td>2 Related Work</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Non-Haptic Control Guidance</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Haptic Training</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Haptic Non-Training Surgical Applications</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Shared Control of Vehicles</td>
<td>10</td>
</tr>
<tr>
<td>2.5 Haptic Path Guidance</td>
<td>13</td>
</tr>
<tr>
<td>3 Implementation</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Simulation and Rendering Engine</td>
<td>15</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>3.1.1</td>
<td>OpenSteer</td>
</tr>
<tr>
<td>3.1.2</td>
<td>OpenSteer Modifications</td>
</tr>
<tr>
<td>3.2</td>
<td>Guidance Algorithms</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Forces Common to All Guidance Methods</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Desired Steering Angle Algorithm and Force Output</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Look-Ahead Guidance</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Potential Field Guidance</td>
</tr>
<tr>
<td>3.3</td>
<td>Haptic Interface Device</td>
</tr>
<tr>
<td>3.4</td>
<td>Servo Control</td>
</tr>
<tr>
<td>3.4.1</td>
<td>PD Controller</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary</td>
</tr>
<tr>
<td>4</td>
<td>Evaluation Methods</td>
</tr>
<tr>
<td>4.1</td>
<td>Hypotheses</td>
</tr>
<tr>
<td>4.2</td>
<td>Design</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Choice of Independent Variables</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Minimizing the Impact of Learning</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Blocking and Randomization</td>
</tr>
<tr>
<td>4.3</td>
<td>Performance Metrics</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Quantitative Path Following Performance Metric</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Subjective Evaluation Methods</td>
</tr>
<tr>
<td>4.4</td>
<td>Data Collected</td>
</tr>
<tr>
<td>4.5</td>
<td>Procedure</td>
</tr>
<tr>
<td>4.6</td>
<td>Pilot Studies</td>
</tr>
<tr>
<td>5</td>
<td>Experiment Results and Analysis</td>
</tr>
<tr>
<td>5.1</td>
<td>Experiment Participant Demographics</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Outlier Participant</td>
</tr>
<tr>
<td>5.2</td>
<td>Quantitative Results and Analysis</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Data Handling</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Statistical Analysis</td>
</tr>
</tbody>
</table>
5.2.3 Independent Variable Interactions .. 60
5.2.4 Influence of Video Game Experience 62
5.3 Subjective Results ... 67

6 Discussion .. 72
6.1 Results and our Hypotheses .. 72
 6.1.1 Quantitative Performance of Look-Ahead Guidance 72
 6.1.2 Guidance Methods and Path Complexity 74
 6.1.3 Guidance Methods and Visibility 75
 6.1.4 Subjective Performance of the Guidance Methods 76
6.2 General Observations ... 77
 6.2.1 Issues with Physical Interaction and Real World Similarity 77
 6.2.2 Explicitness of Experiment Instructions 78
 6.2.3 Observations on When Haptic Guidance is Useful 79
 6.2.4 Effect of Gaming on Performance 79

7 Conclusions, Contributions & Future Work 81
7.1 Conclusions .. 81
7.2 Contributions .. 82
7.3 Future Work ... 83
 7.3.1 Improvements to Current System 83
 7.3.2 The ‘Big Picture’ .. 85

Bibliography .. 87

Appendix A Experiment Constants ... 90
Appendix B Experiment Instructions ... 91
Appendix C Interview Questions .. 92
Appendix D R Details .. 94
 D.1 ANOVA ... 94
D.2 Boxplot Details .. 94

Appendix E Experiment Consent Forms 96

Appendix F Raw Data ... 101
List of Figures

3.1 System Block Diagram .. 16
3.2 Schematic of Vehicle Dynamics: shaded area represents the vehicle itself. 21
3.3 Basic Path Extent Rendering Idea 22
3.4 Path Extent Rendering From Above 22
3.5 Transfer function from heading angle delta to desired steering angle 26
3.6 Components of Look-Ahead Guidance 27
3.7 Force enveloping areas in the Look-Ahead Guidance method 28
3.8 An example of the subtleties involved with advanced location predictors 30
3.9 Components of the Potential Field force feedback method 31
3.10 Values of ϕ for a given d and β 32
3.11 Haptic Interface .. 34
4.1 Examples of Paths used in the Experiment 39
4.2 Visibility Levels .. 40
4.3 Dialog box presented after each block 45
5.1 Game Playing Time Distribution 51
5.2 Example of shortcut path trajectory for outlier participant 52
5.3 Trial with worst score .. 53
5.4 Trial with an average score 54
5.5 Trial with the best score ... 55
5.6 Boxplot of scores across all six blocks 57
5.7 Guidance method performance for each path 60
5.8 Effect of visibility ... 61
5.9 Mean score across all conditions for each block given gaming experience 62
5.10 Boxplots of Participants’ Scores Given Game Playing Status 63
5.11 Boxplots of Scores Given Game Playing Status 64
5.12 Boxplots of Score vs. Game Playing Time 65
5.13 Guidance Method and Game Playing Time Interaction 66
5.14 In Control Question Histogram ... 68
5.15 Helpfulness Question Histogram ... 70
5.16 Like Question Histogram .. 71
5.17 Overall Preference Histogram ... 71
List of Tables

1. Symbols and Associated Descriptions ... xi

4.1 Factors and Levels Presented to Experiment Participants 39
4.2 Possible Block Ordering .. 43

5.1 Participant Demographics (18 participants) 50
5.2 Within-Subject ANOVA table for MSE score 58
5.3 Mean scores for the levels of each factor across all other levels 59
5.4 P-values from post-hoc test on guidance method levels 59
5.5 P-values from post-hoc test on Path Complexity levels 59
5.6 Answers to post block questions .. 67
5.7 Counts for answers to the ‘In Control’ question 68
5.8 Counts for answers to the ‘Helpful’ question 70
5.9 Counts for answers to the ‘Like’ question 70

A.1 Value of Constants During the Experiment 90
Acknowledgements

Thanks to Bruce Dow, Michiel van de Panne, Giusi Di Pietro, Erin Austen and the SPIN Lab for their help, Craig Reynolds for OpenSteer and path following inspiration, and Precarn/IRIS for its support. Thanks as well to the members of Imager small for entertaining me over the past three years. Thank you to Ciarán Liachlan Leavitt for her help with technical writing.

A special thanks to Karon MacLean for always being there to provide inspiration, feedback, and motivation. You have been a terrific supervisor.

Last, but definitely not least, I would like to express my sincere gratitude for the support I have received from my family and from Sarah. You have been extremely understanding over the past three years, and I would not have been able to do this without you.

BENJAMIN A.C. FORSYTH

The University of British Columbia
September 2004
Nomenclature

Vectors are printed in lower-case, bold-faced italics, e.g. \(\mathbf{v} \). Points are printed in upper-case, bold-faced italics, e.g. \(O \). Scalars are printed as plain-faced italics, e.g. \(R \) and \(\theta \).

Table 1: Symbols and Associated Descriptions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Model Symbols</td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>Center of vehicle coordinate space</td>
</tr>
<tr>
<td>(Q)</td>
<td>Front of vehicle</td>
</tr>
<tr>
<td>(v)</td>
<td>Vehicle velocity</td>
</tr>
<tr>
<td>(\ell)</td>
<td>Vehicle wheelbase</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Current steering angle</td>
</tr>
<tr>
<td>(\theta_{\text{max}})</td>
<td>Magnitude of maximum steering angle</td>
</tr>
<tr>
<td>(r)</td>
<td>Current turning radius of the vehicle</td>
</tr>
<tr>
<td>(C)</td>
<td>Center of vehicle rotation</td>
</tr>
<tr>
<td>(r_{\text{path}})</td>
<td>Path radius</td>
</tr>
<tr>
<td>Control Knob Symbols</td>
<td></td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Control knob angle relative to initial position</td>
</tr>
<tr>
<td>(\Delta_{\text{desired}})</td>
<td>Desired control knob angle</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>Difference between desired and current control knob angle</td>
</tr>
<tr>
<td>(k_p)</td>
<td>PD controller proportionality component constant</td>
</tr>
<tr>
<td>(k_d)</td>
<td>PD controller derivative component constant</td>
</tr>
<tr>
<td>General Force Symbols</td>
<td></td>
</tr>
<tr>
<td>(C_{kp})</td>
<td>Centering force proportionality constant</td>
</tr>
<tr>
<td>(C_{kd})</td>
<td>Centering force damping constant</td>
</tr>
<tr>
<td>(C_{k\text{max}})</td>
<td>Maximum centering force contribution to final force</td>
</tr>
<tr>
<td>(k_v)</td>
<td>Viscous damping constant</td>
</tr>
<tr>
<td>Guidance Methods Symbols</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td>Predicted vehicle location</td>
</tr>
<tr>
<td>(R)</td>
<td>Scaling factor from control knob angle to steering angle</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Angle between current heading and system desired heading</td>
</tr>
<tr>
<td>(\phi_{\text{max}})</td>
<td>Maximum magnitude for desired heading offset</td>
</tr>
<tr>
<td>(T)</td>
<td>Target vehicle location for Look-Ahead Guidance</td>
</tr>
<tr>
<td>(t)</td>
<td>Look-Ahead time in seconds</td>
</tr>
</tbody>
</table>

continued on next page
Table 1: continued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{path}</td>
<td>Current vehicle position projected onto path</td>
</tr>
<tr>
<td>θ_{desired}</td>
<td>Desired steering angle</td>
</tr>
<tr>
<td>d_{envelope}</td>
<td>Distance from edge of path over which enveloping occurs in the Look-Ahead Guidance method</td>
</tr>
<tr>
<td>ϕ_{LA}</td>
<td>Desired heading offset for the Look-Ahead Guidance method</td>
</tr>
<tr>
<td>ϕ_{PF}</td>
<td>Desired heading offset for the Potential Field Guidance method</td>
</tr>
<tr>
<td>F_{PD}</td>
<td>Force output from the PD Controller</td>
</tr>
<tr>
<td>F_{PF}</td>
<td>Potential Field Guidance force</td>
</tr>
<tr>
<td>F_{LA}</td>
<td>Look-Ahead Guidance force</td>
</tr>
<tr>
<td>ρ</td>
<td>Distance from the center of the path at which point the force from the Potential Field Guidance method saturates</td>
</tr>
<tr>
<td>β</td>
<td>Angle between the current vehicle heading and the line (O, O_{path})</td>
</tr>
<tr>
<td>d</td>
<td>Distance of the vehicle from the path</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

With the spread of intelligent systems in applications as diverse as automobile driving support, surgical simulation for training, animation design aids and tools for teaching physical-gestures, haptic force feedback presents an opportunity to enhance highly interactive user interfaces. Haptic interfaces can provide intuitive cues derived from an intelligent system's knowledge of the environment, from a user's intentions and preferences, and/or from an assessment of the user's current capabilities or needs. Many possible approaches to devising such cues exist, differing in the degree of control retained by the user. At one extreme, the system can behave autonomously but allow the user limited intervention when desired; at the other, the user is completely responsible for interface control, but the intelligent system can offer supplementary force suggestions. We have chosen to work in the space of the latter because we are interested in systems with tightly coupled user interaction, not semi-autonomous systems.

1.1 Motivation

We were motivated to investigate the problem of effective haptic path guidance while considering how to use force feedback to assist a user interacting with an intelligent system that computes constraints on the control space of a dynamic system (such a system is discussed in Section 2.1). For example, consider a driving simulation as the dynamic system in question. Then the control space of the system is the acceleration of the vehicle, manipulated by
the gas and brake pedals, and the steering angle, manipulated by the angular position of the steering wheel. For simplicity, assign the car a constant velocity and no acceleration so that the only way to control the system is via the steering wheel. Now consider an intelligent system that computes the constraints on the steering angle that will keep the vehicle on the road given the car's current location, heading and speed. How can these constraints be conveyed to the driver in an effective and usable way?

We felt that force feedback was an obvious interaction modality to effectively convey such constraints to the driver. However, our initial attempts to use it did not go well. In our prototype we used a PHANTOM, a three degree of freedom haptic interface (Massie and Salisbury, 1994), as the haptic interface to control the steering angle of the simulated vehicle based on the X-axis position of the end effector, and applied forces to push the end effector away from constraints. Our difficulty stemmed from the forces being applied too late and too strongly, thereby abruptly forcing the user away from a constraint and forcing the interface to the other extreme constraint, resulting in an annoying and ineffective end effector oscillation. It was easier to control the vehicle with no forces displayed at all than with our initial attempts at haptically displaying the constraints.

We needed a more subtle approach to make the forces we displayed more useful and intuitive. We anticipated that by predicting the state of the system and detecting impending constraint violations (leaving the road) we could apply a force with gently increasing magnitude to slowly steer the user away from a constraint and thereby avoid the strong, oscillation-inducing forces we observed in our preliminary work. Ideally, these forces would be transparent to the user, who would be unaware that forces were being applied to guide him away from a constraint.

Another possible haptic interaction technique is to display a rigid haptic “wall” to enforce a constraint rather than to steer the user away from a constraint. A rigidly displayed constraint would be desirable where it is critical that the user not violate the control constraint and where the user is confident that the intelligent system is perfect at calculating control constraints. If not, the user may become confused and/or annoyed when the system computes a non-existent constraint, and/or misses a constraint altogether. We do not assume that the intelligent system is perfect at computing the control constraints and consider
problems where the user may want to override the intelligent system's computed control constraints. In our approach, the user retains ultimate control, not the intelligent system.

It is important to note that driving is just one application that could benefit from interaction with control constraints augmented by haptic feedback. Any situation where a user is navigating a control subspace computed by an intelligent system and can overshoot the boundaries of this subspace could benefit from predictive force feedback guidance through the control interface. Such applications include, for example: driving, path tracing (a common activity for graphic artists), and interactive animation control. For the sake of simplicity we studied force feedback guidance in a simple driving simulation.

1.2 Objectives and Approach

As touched upon in the previous section, there are many poorly understood human-in-the-loop considerations for haptic guidance methods. A successful approach will be one that is intuitive to use, aesthetically acceptable, and does not surprise or annoy the user; it should make the task at hand easier without being intrusive. The wrong implementation could result in the user reflexively fighting unexpected forces, relying too heavily on a system that is not meant to be completely autonomous, or being annoyed rather than aided by the feedback. Good haptic guidance will not require significant attentional resources from the user, and will have a minimal learning curve, and it will either have a significant quantitative performance benefit when compared to no haptic feedback, and/or significantly reduce fatigue and increase user comfort and confidence. We felt that, if properly designed and implemented, a haptic guidance algorithm based on prediction would address all of these issues.

We chose to study an application that should yield insights into how haptic guidance could benefit a larger class of interface problems: a driving simulation where we provide haptic cues to guide a user along a simulated road. To keep the complexity level reasonable, the user had control over the vehicle's steering angle, but not its velocity. This driving application has a number of useful characteristics:

- It is relatively simple; therefore it can be studied in a reasonable amount of time, an
important quality for a Masters thesis project.

- It requires a simple one Degree of Freedom (DoF) haptic interface, a wheel or knob, which is economical and easy to program compared to higher dimensional haptic interfaces.

- Steering a car is an under-actuated system, a property shared by some of the other applications we are interested in such as interactive control of physically based animations. An under-actuated system has more degrees of freedom than there are degrees of freedom for control. Our driving task is under-actuated because the system has three degrees of freedom: position (X and Y values) and orientation (angle of the vehicle); and one control degree of freedom, the steering wheel angle.

- Most people are familiar with driving; therefore users of our system will require a minimal amount of time to learn how to use the system. This is important because we wanted participants in our experiment to spend the majority of their time generating useful data, not learning how to use the system.

In our experiment, we present to the user a visual representation of a vehicle on a road by using a modified version of OpenSteer, a vehicle simulation environment developed by Reynolds (2003) to study intelligent steering behaviours of autonomous vehicles. We implemented a predictive algorithm, Look-Ahead Guidance, by extending an approach Reynolds (1999) developed for steering autonomous vehicles along a path. We compare this to two others, a baseline with No-Guidance force feedback, and a non-predictive, reactive algorithm similar to what we used in our early prototypes mentioned in the previous section. We refer to the latter as Potential Field Guidance because the forces displayed are as if the vehicle is in a force field pushing it away from the edge of the road back toward the middle of the road. We considered potential field guidance to be the standard path guidance algorithm when we started this work because many previous haptic systems used similar methods, as is evident in Chapter 2 on related work.

We describe the design and execution of a formal experiment to quantitatively and subjectively evaluate the performance of these three haptic guidance methods. We then
present our findings with respect to this experiment and discuss how we would proceed with future work on haptic path guidance.

1.3 Document Map

The remainder of this document puts forward how we addressed the problem of haptic path guidance and is divided into the following Chapters:

2 - Related Work: This Chapter presents relevant previous work.

3 - Implementation: We present the design and implementation of the haptic path guidance methods that we decided to evaluate, as well as how we modified OpenSteer to meet the needs of our study.

4 - Evaluation Methods: We present an experimental design to evaluate our guidance methods in this Chapter.

5 - Experimental Results and Analysis: The process, results and analysis of our experiment are presented in this Chapter.

6 - Discussion: This chapter discusses the work done in the previous three chapters. It provides details on problems that were encountered, what we could have done better, and interesting observations made after the experiment, that were not initially apparent in the statistical analysis.

7 - Conclusions, Contributions and Future Work: We distill what we learned, present our contribution to the knowledge in the area of haptic guidance, and what can be done in the future to learn more about this problem.
Chapter 2

Related Work

The use of force feedback to guide users in performing a variety of tasks dates back a number of years. In one of the earliest examples, Rosenberg (1993) used 'virtual fixtures' to support a teleoperated peg-in-hole task by providing simple guides and constraining entry to forbidden regions. The haptic guidance work done since can be loosely categorized into four areas:

- Training
- Non-Training Surgical Applications
- Shared Control of Vehicles
- Path Guidance

2.1 Non-Haptic Control Guidance

Work by Reynolds (1999) on the control of autonomous vehicles provided inspiration for our Look-Ahead Guidance method. He presents a number of steering behaviors for autonomous vehicles that create realistic, complex behaviors such as flocking, obstacle avoidance and path following. An integral component of his path following algorithm is a predictor of a vehicle's position a fixed time interval into the future, which he accomplishes by using a simple linear algorithm based on the velocity and heading of the vehicle. If the predicted location of the vehicle is off of the path, then the system commands the vehicle to steer
toward the point on the path closest to the predicted location. We call this kind of predictive path following a look-ahead algorithm.

Reynolds (2003) also developed and made publicly available a software toolkit, OpenSteer, a test bed for steering behaviors. We used OpenSteer as the basis of our simulation and rendering engine which saved us the time and effort of developing a similar system on our own. However, OpenSteer did not satisfy all of our requirements which meant that we had both to modify parts critical to our study and to accept the drawbacks to some other, less critical, features such as path representation. In Chapter 3, we discuss in detail our usage and modifications to OpenSteer.

Look-ahead methods are used by Feng, Tan, Tomizuka, and Zhang (1999) to provide non-haptic path guidance for driving tasks, especially under low visibility conditions. This work focuses on the design of a complex vehicle location predictor, and approximations to this predictor to reduce its computational requirements to the point where the algorithm can run in real-time. They use a graphical display to present the driver with the predicted location of the vehicle derived from the approximated location predictor. Feng et al. use a more complicated vehicle model and predictor than we need. They test their system experimentally, but this is done primarily to verify that their approximated location predictor algorithm performs well compared to the full algorithm, not to compare the performance of their system to the performance of driving unaided by their predicted location display. They also provide some basic experimental results indicating that a larger look-ahead distance improves path following performance but they do not provide any details on their experimental procedure and only fleetingly mention the driver's feelings about using the system.

Kalisiak and van de Panne (2004) have created an an intelligent system to compute a set of safe control inputs for a dynamic system which they call viability envelopes. A viability envelope is the set of control inputs that will keep a dynamic system in a safe state given the current system state — for instance, the set of steering angles that will keep a driver in his lane given his current heading and speed. Viability envelopes could also be useful for helping to control physically-based animations which typically have a small subset of the entire control space that leads to a ‘good’ animation, such as keeping a character upright.
while walking. Viability envelopes could be used to make interactive control of such systems much easier by constraining the control inputs to keep the system in a ‘good’ state. A user of a viability envelope system could potentially realize a large benefit from the haptic display of the viability envelope since graphical cues may be non-intuitive and/or distract the user from the task at hand.

2.2 Haptic Training

Haptic feedback has been used to help teach complex motor tasks such as writing Asian text. The surgical community has several haptic training tools that are primarily used to simulate the feel of surgery and occasionally to repeat the motions of an expert surgeon.

Teo, Burdet, and Lim (2002) used a 6-DoF haptic device to teach Chinese handwriting. They model both pen-based writing (2D motions) and calligraphic writing (3D motions). They employed experts in Chinese writing to record the motions required for a set of characters, which can then be played back to students (spatial and temporal constraint) or used as a guide (spatial constraint only). Both styles of constraints are implemented with a slight variation on a simple spring and damper constraint where the haptic interface’s control point and the closest point on the constraint path to the control point are attached with a virtual spring and damper. They develop a complicated scoring scheme for a student’s characters that involves the shape, motion, force and smoothness of their strokes. They do some basic experiments to measure the quantitative performance of their system via their score metric and do not formally evaluate the users’ feelings about their interactions with the system. They report that spatial path constraints without a temporal constraint were “agreeable to users” and resulted in a performance increase, especially for beginners.

Solis, Avizzano, and Bergamasco (2002) use a custom haptic device to teach the writing of Japanese characters. The main thrust of their work is in using Hidden Markov Models to recognize the character that the user is trying to write, and providing haptic path guidance for that particular character. This contrasts with the work done by Teo et al. which does no such recognition. The path guidance method employed by Solis et al. is once again a simple spring and damper method that attempts to keep the control point on the outline
of the current character. They evaluate their system by considering the accuracy of their task recognition algorithm, and they do not look at user interaction issues with the haptic device or if haptic guidance improves a user’s ability to write Japanese characters. They evaluate the task recognition of their system on ten different kanji characters, and report recognition rates varying between 76% and 100%.

Feygin, Keehner, and Tendick (2002) present, and carefully evaluate, a haptic training method for a perceptual motor skill: tracking the spatial and temporal motion of a point following a 3D path over time. The trajectory of the point is specified through three 10-second sinusoidal curves; one for each of the X, Y and Z axes. A PHANTOM is used to interact with their system. Their experimental task consists of first presenting the trajectory of the point and then having the user recall the presented trajectory. They have three different presentation methods: purely visual (watching the PHANTOM follow the trajectory), purely haptic (subject cannot see his hand), and simultaneous visual and haptic presentation; and two recall methods: purely haptic and a combination of haptic and visual. No active force feedback is presented during recall. The trajectory is presented to the user by using a simple spring and damper model to guide the user along the trajectory. They perform a well-designed and detailed experiment with an equally detailed analysis of the performance of the different presentation and recall methods. They present some interesting metrics for positional, shape and temporal recall accuracy. Our experimental task is different enough from their task that we cannot use their performance metrics directly, but we foresee these performance metrics being useful for future haptic path guidance work. They conclude that “haptic guidance can benefit performance, especially when training temporal aspects of a task.”

2.3 Haptic Non-Training Surgical Applications

An example of a haptic system used for guiding but not for training a surgical task is found in the work done by Okamura’s group on virtual fixtures for micro-surgical applications (Bettini, Lang, Okamura, and Hager, 2001, 2002; Marayong, Bettini, and Okamura, 2002; Marayong, Li, and Allison Okamura, 2003; Marayong and Okamura, 2003). These fixtures
provide variable admittance to a user's input forces which are factored into components parallel and perpendicular to a given constraint. The system guides a user along a constraint by making movement in the direction parallel to the guidance constraint easier than movement in the perpendicular direction. With this setup, the system can vary the provided guidance from none to a rigid constraint. Furthermore, the user can be pulled toward the constraint by making perpendicular motion toward the constraint easier than away from it. This system is implemented using admittance control, meaning that the device's position changes in response to forces exerted on it by a user, as opposed to impedance control devices, such as ours, which apply forces based on the position of the device's end effector.

Okamura's group has done a number of studies on the performance impact of varying the amount of guidance provided by the system across a number of different tasks. These tasks include standard path following, path following while avoiding an obstacle on the path, and path following with a secondary off-path targeting task. They have also looked at using machine learning to attempt to identify the different tasks a user is trying to do, and changing the guidance characteristics appropriately. While we do not look at task recognition in this thesis, we anticipate that our system would benefit from such functionality. As is the case with much of the previous work, this system uses a haptic interface with at least the same degree of freedom as the system being controlled. Another difference between this work and ours is that the nature of microsurgical tasks dictates that the interaction with the haptic device involves very slow motions. This is not a characteristic of systems where predictive haptic path guidance will be most useful, such as interactive control of physically-based animation.

2.4 Shared Control of Vehicles

A significant amount of work has been done on active steering in vehicles to help the driver with tasks such as lane keeping and passing. The majority of the lane keeping work appears to be motivated by a final goal of autonomous driving, and shared control of the vehicle is a stepping stone toward that goal.
Steele and Gillespie (2001) used haptic guidance in the shared control of a vehicle, and experimentally examined its effect on visual and cognitive demand. Their path guidance implementation uses the current lateral displacement of a vehicle from a path to calculate a desired steering angle “appropriate for good path following”. This is done by applying a force to the steering wheel proportional to the difference between the desired steering angle and the current steering angle. This is very similar to our Potential Field Guidance method described in Section 3.2.4.

They performed two experiments, one designed to test the effect of haptic guidance on the demand for visual cues, and another to test for the effect of haptic guidance on a driver’s cognitive processing capacity. In their experiments, a small John Deer tractor was outfitted with a haptic steering wheel and LCD monitor. Both tasks involved having a user follow a straight path, with obstacles placed in the middle of the path at various points along the path length. The participant was given the primary goal of avoiding the obstacles, and the secondary goal of following the middle of the path as closely as possible.

To measure visual demand in the first task, users saw nothing on the screen until they pushed a button on the wheel. After pressing this button, they would then, for half a second, see the simulated environment on the monitor. The number of times the button was pushed was used to measure the visual demand required to perform the task. This task was done once with haptic feedback and once without. The authors found that haptic feedback provided both a significant decrease in visual demand and in lateral deviation from the path when compared to the no haptic guidance condition.

In the second task, participants were asked to count backwards from 1000 by increments of 3 while they followed the path and avoided obstacles. They were instructed that the mental arithmetic was of lower priority than following the path and avoiding obstacles. The authors hypothesized that if haptic guidance affected the cognitive processing ability of the driver, then there would be a difference in the number of subtractions the driver could perform with haptic guidance compared to no haptic guidance. They did not find a significant difference between the number of subtractions performed with or without haptic guidance.

The components of this study relevant to our work are the use of a similar desired-
steering-angle approach to generate control forces, and their finding that haptic guidance provides a significant reduction in path following error compared to no haptic guidance. However, they only studied one kind of haptic guidance on a straight path and did not consider the drivers' feelings about the haptic guidance compared to no haptic guidance, something that we believe is necessary for user acceptance of shared control systems.

Rossetter et al. (Rossetter, 2003; Rossetter and Gerdes, 2002a,b; Rossetter et al., 2003) employ force feedback potential fields in combination with a look-ahead algorithm to enforce vehicle guidance functions such as lane keeping and general hazard avoidance. They focus almost completely on safety concerns for implementing lane assistance in a real vehicle. They carefully develop a detailed vehicle model and use this model to design a mathematically stable lane keeping controller based on a potential field. To help make their controller stable they needed to add a look-ahead to their potential field method. This was encouraging information during the development of our system, because it echoed our experiences with potential field path guidance.

The output of their lane-keeping controller is applied to the steering control of a vehicle which is shared with the driver via the steering wheel, so that the driver feels the output of the lane-keeping controller. They made a great effort to ensure that their controller will keep a car in its lane even in the absence of driver input. This is something that we are not interested in implementing as we envision a tightly coupled interaction between the system and the user for our applications, not automation. Only fleetingly in their work do they discuss the interaction between their system and the driver, mentioning that the forces feel intuitive without more formally evaluating this observation. In the future work section of his Ph.D. thesis, Rossetter (2003) acknowledges that user interaction with the system is an important issue that requires attention in order to create a good path guidance method. Throughout the design, implementation and evaluation of our system we took into account the user interaction issues with our system.
2.5 Haptic Path Guidance

The majority of existing haptic path guidance work has either been for training or for the guidance of vehicles. There are some examples of haptic path guidance systems that do not fall into these categories and we present them in detail here.

Cobots are an example of passive haptic path guidance: the user's input energy is steered, dissipated or stored to guide the user along a desired trajectory (Colgate et al., 1996; Swanson and Book, 2003). This is different from every other system that we have presented so far. Passive haptic guidance is a good candidate when safety is a primary concern since the haptic interface does not add energy to the system, making it possible to guarantee stability. This work is not as closely related to our work as some of the other previous work we have presented but it is an interesting approach to a related problem.

Another example of a non-vehicle haptic path guidance algorithm is the work done by Donald and Henle (2000) on the haptic control of animation. Here, high-dimensional motion capture data is transformed to a three-dimensional trajectory that is interacted with via a PHANTOM. They present two haptic methods to interact with motion capture data. In the first method the PHANTOM follows a force 'river' around the 3-D trajectory representing an animation in a high-dimensional configuration space (a 57 degree of freedom humanoid character). They use a handcrafted transfer function that maps the 3-D configuration space to the character's 57-D configuration space. The user can manipulate the animation by pushing on the end effector of the PHANTOM, altering its path as it follows the force river representing the motion capture animation. The PHANTOM is connected to the animation trajectory via a virtual spring that pulls the end effector toward the trajectory, while another force tries to push the end effector along the trajectory at the pace set by the motion capture data.

The second interaction method they present is not as direct; the PHANTOM is used to interact with the force river from the outside instead of by following it. The force river is rendered as a 3-D tube and can be manipulated with direct haptic feedback from the PHANTOM. The current temporal position of the animation is indicated by a ball following the tube. The tubes are designed to feel 'stretchy' when manipulated, and the user can change the shape of the tube by pulling on it with the PHANTOM.
This work presents an interesting way to use a haptic device to interact with higher dimensional configuration spaces than the interaction device has, and uses paths to accomplish this. However, their system is more autonomous than what we would like to implement and uses a more complicated haptic interface than we would like to use. They do not perform a user study to analyze the human computer interaction issues with their system, something that is very important to us and we believe that this requires a simpler system and task to analyze properly.
Chapter 3

Implementation

Our system is comprised of several components, depicted in Figure 3.1, which we discuss in detail throughout this Chapter.

3.1 Simulation and Rendering Engine

In this section we describe how our system simulates and renders a simple virtual environment. For the purposes of our experiment, we needed to be able to draw a path and something resembling a vehicle that a user can control to follow the path on the screen. The OpenSteer framework by Reynolds (2003) provides a good base set of functionality towards our goals, allowing more time to be spent developing the guidance algorithms and running experiments than would have been available if we developed everything from scratch. OpenSteer was designed to help develop intelligent behaviours for autonomous vehicles, and we extended it to allow for user controlled vehicles with force feedback.

3.1.1 OpenSteer

This section summarizes relevant components of Reynolds's OpenSteer framework, a basic simulation and rendering engine. For a complete reference to OpenSteer see its on-line documentation (Reynolds, 2003). Our changes to OpenSteer are presented in Section 3.1.2.
Figure 3.1: System Block Diagram
3.1.1.1 Path Model

OpenSteer defines an abstract path representation consisting of a radius (1/2 width) and methods to:

- Get the total length of the path
- Get a point on the path a certain distance from the beginning of the path
- Get the distance along the path of an arbitrary point
- Project a given point onto the path
- Test if a given point is within the radius of the path

Only one concrete implementation of this abstract definition is provided based on a polyline, a series of connected line segments.

3.1.1.2 Vehicle Model

OpenSteer's vehicle model is a very simple one, consisting of a position (which is its center of mass and rotation), a velocity vector, a radius (size of the vehicle) and mass. The direction of the velocity vector is always aligned with the heading of the vehicle (i.e. the velocity vector is always coincident with the center line of the vehicle). The system steers a given vehicle by applying a 2-D force to the vehicle's position which in turn affects the vehicle's velocity via a physical simulation engine that integrates this force over time. This vehicle model is inadequate for our needs, and the vehicle model we replace it with is described in Section 3.1.2.1.

3.1.1.3 Simulation

OpenSteer has three simulation loop steps:

1. Limit simulation update rate (optional).
2. Update the system state.
3. Render.
The update rate of the simulation can be limited either by the processor speed or by
purposely setting a fixed rate, which is useful for applications such as games that typically
need a fixed update rate. The update rate is limited by doing a busy wait until the next
update time.

The state of the system is updated by iteratively updating the state of each vehicle in
the simulation. A typical vehicle update involves the following steps:

- Calculate a 2-D steering force based on the current state of the vehicle and the rest
 of the system.

- Update the vehicle's velocity by integrating the steering force over the simulation
time-step.

- Use the new vehicle velocity to update the position and orientation of the vehicle.

3.1.1.4 Rendering

After the simulation state has been updated, a visual representation of the new state is
drawn from the point of view of a virtual camera. This camera has a number of possible
behaviors. The default OpenSteer camera behaviours are:

- **Static**: Render the simulation from a static position and orientation.

- **Straight Down**: Render the world looking straight down at the selected vehicle from
 above. The Y-axis of the view is aligned with the heading of the selected vehicle.

- **Fixed Distance Offset**: Loosely follow the selected vehicle from a constant distance
 and focus on the vehicle.

- **Fixed Local Offset**: Follow the selected vehicle at a constant position and orientation
 offset relative to the vehicle's coordinate frame.

- **Offset Point of View**: A view from above and behind the selected vehicle aligned
 with the heading of the vehicle and focused on a point a fixed distance ahead of the
 vehicle. This is the camera positioning mode that we used for our experiment as it is
 similar to the view one would have while driving.
Many of the positioning modes depend on a selected vehicle. If the current simulation contains any vehicles, then there is always exactly one selected vehicle, and if there are multiple vehicles in the simulation then the user can select a vehicle by clicking on it.

The default visual representation of a vehicle is a solid red triangle inscribed in a white circle centered at the position of the vehicle. A neighbourhood of the plane around the vehicle is drawn in a checkerboard pattern, which provides visual feedback about the speed of the vehicle as it moves over the checkerboard. OpenSteer draws paths as a red line, one pixel in width, and does not draw the full extent of the path.

Overall, OpenSteer is a useful simulation engine for our purposes, but some parts of OpenSteer needed to be changed to suit our needs. The next section describes these changes.

3.1.2 OpenSteer Modifications

This section describes the major changes we made to the stock version OpenSteer to support our work on haptic path guidance. The majority of our changes are to the vehicle model and the rendering components of OpenSteer. We change the vehicle model and vehicle simulation algorithm to enable a user to have control of a vehicle's steering angle. We change OpenSteer's rendering of the simulated system to meet the requirements of our experiment and to reduce the computational resources required for rendering.

3.1.2.1 Vehicle Model and Dynamics

OpenSteer steers a vehicle by applying autonomously computed 2-D force vectors to the vehicle. We allow users to steer a vehicle in an OpenSteer simulation via a knob. In an effort to minimize changes to OpenSteer, we attempted to incorporate the user's input via the knob with OpenSteer's existing vehicle steering algorithm. This was accomplished by applying a force to the vehicle perpendicular to its centerline and with magnitude proportional to the control knob angle. Through some simple tests we found that this method of enabling user control of a vehicle was not going to work because of problems with how OpenSteer integrates steering forces over time. Rather than implement a better simulation integration method, we decided to implement a different vehicle model that does not depend on the integration of forces over time.
Our vehicle model consists of: a position \((O) \), wheelbase \((\ell)\), velocity \((v)\) and steering angle \((\theta)\). Table 1 on page xi lists and describes the symbols used in the definition of our vehicle model, and Figure 3.2 presents a graphical representation of the model. As in the stock OpenSteer vehicle model, the coordinate frame of our vehicle model is always aligned with the velocity of the vehicle and centered at \(O \). Unlike the stock version of OpenSteer, the vehicle speed, \(|v|\), can either be directly proportional to the position of a foot pedal or be set to a fixed value. A major departure from the OpenSteer vehicle model is that our model allows the user to steer the vehicle via a knob.

The dynamics of the control of our vehicle is based upon that of a tricycle; the angle of the control knob changes the angle of the virtual front tire of the vehicle. Refer to Figure 3.2 on the next page for a schematic view of the vehicle dynamics presented here. The angle of the front wheel, \(\theta \), is proportional to the control knob angle \(\Delta \):

\[
\theta = R \Delta
\]

where \(R \) is a constant, manually tuned for good steering control.

The value of \(\Delta \) and \(\theta \) is initially zero, and counter-clockwise rotation of the control knob increases \(\Delta \) while clockwise rotation decreases \(\Delta \). In prototype implementations we found that without a limit on the magnitude of \(\theta \) users could get lost in very tight turns. This was addressed by constraining \(\theta \) to the range \([-\theta_{\text{max}}, \theta_{\text{max}}]\) where \(\theta_{\text{max}} \) is a reasonably small constant (see Appendix A for the value used in the experiment).

The vehicle steering angle, \(\theta \), defines the circle, with center \(C \) and radius \(r \), that the vehicle will follow if the steering angle is held constant. The center of the circle, \(C \), is the intersection of two lines. The first is line \(a \) in Figure 3.2, which is the line that passes through the rear axle of the virtual vehicle. The other line, \(c \) in Figure 3.2, is perpendicular to the front tire and lies on the tire's center of rotation, \(Q \).

The point \(C \) is the intersection of line \(a \) and line \(c \) and its position can be calculated trigonometrically. By definition, \(C \) is on line \(a \) and the sign of \(\theta \) tells us on which side of the vehicle it will be. If we can find the distance, \(r \), between \(C \) and \(O \) then we will know
the position of C exactly. By trigonometry $\angle OCQ = \theta$ and then,

$$r = \begin{cases} \frac{\ell}{\tan \theta} & : \theta \neq 0 \\ \infty & : \theta = 0. \end{cases}$$

(3.2)

The dynamics of our vehicle model is different from OpenSteer's. We do not integrate a steering force every simulation step, but instead move our vehicle along the circle (C, r) according to its speed. The parameters of the circle are computed at the beginning of each step using Equation 3.2. The simulation update rate is 60 Hz; therefore the distance that the vehicle moves each simulation step is $|v| \frac{1}{60}$. If $0 \leq \theta \leq 0.05^\circ$ then the vehicle moves this distance in a straight line, otherwise the vehicle moves this distance along the circle (C, r) from the position of point O at the beginning of the simulation step. To finish the vehicle update, the direction of the vehicle's velocity is modified to be in the same direction as the tangent to the circle at the vehicle's new position.

This vehicle model and dynamics are sufficient for the requirements of our work: a simple vehicle simulation that can be intuitively controlled via a knob. The model is not physically accurate because apart from the development time, exact physical accuracy is not critical to understanding the general performance and utility of haptic guidance methods.
3.1.2.2 Rendering

We changed how OpenSteer draws paths and the ground plane, and added the ability to vary the level of visibility.

Path Rendering: The default visual representation of a path in OpenSteer is a thin red line along its center and its horizontal extent is not drawn. We need to display the extent of a path so users can tell if they are on it or not. We display the extent by drawing a filled rectangle around each line segment in a path, and filled circles at the ends of each segment. An example path line segment with extent drawn is shown in Figure 3.3. By drawing every line segment this way, every point within the radius of the path is visible to the user (Figure 3.4).

Ground Plane Rendering: The plane on which vehicles in OpenSteer simulations move is drawn as a checkerboard pattern. We changed the ground plane rendering process to
use textures instead of OpenGL geometry because modern graphics accelerator cards can draw textures very quickly and the texture can repeat to infinity. The ground plane in the stock version of OpenSteer was only drawn in a small neighbourhood around the vehicle because of the large computational demands required to draw a larger ground plane with OpenGL geometry. To ensure the best visual quality of the ground plane rendering we employ anisotropic filtering (Everitt, 2000).

Fog: One of the independent variables in our experiment (described in Chapter 4) is the level of visibility. We change the level of visibility in OpenSteer simulations by using OpenGL fog, specifically the GL_EXP2 exponential fog method (Woo and Shreiner, 2003) where the density of the fog increases exponentially with distance from the viewpoint. The color of the fog can be set to any 24 bit RGB value, and we use a dark grey with RGB values (0.3, 0.3, 0.3).

These are the major changes that we made to OpenSteer which we then used to develop our path guidance methods and perform our experiment.

3.2 Guidance Algorithms

This section presents how we compute forces for our haptic guidance methods and which forces are present in the baseline “No-Guidance” method. The two active haptic path guidance methods we implement are Potential Field Guidance and Look-Ahead Guidance. A pure potential field haptic path guidance method calculates guidance forces based solely upon the distance between the vehicle and the path. A look-ahead method, on the other hand, computes guidance forces based upon a predicted future position of the vehicle.

3.2.1 Forces Common to All Guidance Methods

During the iterative development of the guidance methods described in Sections 3.2.3 and 3.2.4, we introduced a centering force and a viscous damping force for the sake of usability. These forces are present in each method, and they increase the usability of our system both through positive transfer, they make the interaction with the control knob more like the interaction with a real steering wheel, and by increasing the stability of the interaction.
3.2.1.1 Centering Force and Steering Angle Limit

With early prototypes, some users had difficulty controlling the vehicle when no forces were applied to the control knob and they found that the active path guidance methods would steer the vehicle more accurately without their input than with it. We suspected that one of the problems was the lack of a limit to the magnitude of the vehicle's steering angle, \(\theta \). An unlimited steering angle range allowed a user to get into very tight turns, from which it was difficult to return. The steering angle limits discussed in Section 3.1.2.1 help address this issue by clipping the magnitude of the vehicle's steering angle, avoiding problematic tight turns the simulated vehicle could achieve. However, the maximum steering angle limits did not limit travel of the physical interface, and this actually increased user confusion.

Rather than display a haptic 'wall' to enforce the steering angle and related knob angle limits, something that is difficult to do with our relatively low-power haptic interface, we implemented a centering spring force that attempts to keep the knob angle (and therefore the vehicle's steering angle) at zero. This works as a reasonable substitute for a haptic wall by providing a different, but just as useful, haptic cue indicating how far the knob is from center. The centering force also addressed another problem users had with early prototypes; it was difficult to drive in a straight line because there was no physical indication of how far the knob was away from the center. The steering wheel of a real car at speed has a gentle centering force because the tires naturally want to point straight ahead since this minimizes friction on the tires.

The centering force is implemented as a simple damped spring with constants: \(C_{kp} \), \(C_{kd} \), \(C_{kmax} \), for proportionality, damping and maximum force output respectively. The centering force's contribution to the final output force is:

\[
F' = F + \text{clip}(-\Delta C_{kp} + \Delta C_{kd}, -C_{kmax}, C_{kmax}).
\]

The output of the centering force is clipped to \([-C_{kmax}, C_{kmax}]\), manually tuned to provide just enough centering force without masking the guidance forces (see Appendix A for the values of \(C_{kp} \), \(C_{kd} \), and \(C_{kmax} \) used in the experiment). Our haptic interface calculates \(\Delta \) in hardware, freeing us from doing this calculation in software which could introduce artifacts into the force output (similar differentiation artifacts are discussed in Section 3.4.1).
3.2.1.2 Viscous Damping

To improve the 'feel' of the force feedback, and to help smooth the output signal of the PD controller described in section 3.4.1, we added a viscous damping component to the force output. This viscous damping is proportional to the angular velocity of the control knob and its contribution to the overall output force is defined as follows:

\[F' = F - k_\nu \dot{\Delta}. \] (3.4)

Informal experimentation indicated that these two force components improved the usability and feel of our interface considerably. They provide a good base feeling for the haptic interface on which to layer the path guidance forces.

3.2.2 Desired Steering Angle Algorithm and Force Output

Before it is possible to describe the haptic path guidance methods in detail, it is useful to understand a little bit about the process these algorithms use to have a force displayed to the control knob. The low-level force control for the haptic interface is a PD controller on the angular position of the control knob (described in Section 3.4). The Look-Ahead Guidance and Potential Field Guidance methods compute a desired vehicle direction, which is first transformed into a desired steering angle; and then to the desired angular position of the knob, which is given to the PD controller. The ultimate goal is to reduce the difference between the current and the desired vehicle heading by steering the vehicle towards the desired heading.

The guidance algorithms described in the following two sections express the desired vehicle heading as an offset from the current vehicle heading, \(\phi \). Equation 3.5 shows how the desired steering angle, \(\theta_{\text{desired}} \), is a function of the desired heading offset, \(\phi \), and Figure 3.5 illustrates this function. The reader may wish to refer to Table 1 on page xi, the reference to symbol definitions.

\[
\theta_{\text{desired}}(\phi) = \begin{cases}
-\theta_{\text{max}} & : \phi \leq -\phi_{\text{max}} \\
\frac{\phi}{\phi_{\text{max}}} \theta_{\text{max}} & : -\phi_{\text{max}} < \phi < \phi_{\text{max}} \\
\theta_{\text{max}} & : \phi \geq \phi_{\text{max}}.
\end{cases} \] (3.5)
The desired steering angle is linearly proportional to the desired vehicle heading offset when the desired vehicle heading offset is in the range \([-\phi_{\text{max}}, \phi_{\text{max}}]\) and equal to \(\pm\theta_{\text{max}}\) otherwise.

Then by Equation 3.1, the desired knob angle is calculated by scaling the desired steering angle by \(1/R\):

\[
\Delta_{\text{desired}}(\phi) = \frac{\theta_{\text{desired}}(\phi)}{R}
\]

This is used as the set-point for the haptic interface's PD controller which computes a force to display to the interface knob, written as \(F_{\text{PD}}(\phi)\) (See Section 3.4.1 and Figure 3.1).

That still leaves the question of how \(\phi\) is calculated, which is discussed in the following two sections.

3.2.3 Look-Ahead Guidance

Our Look-Ahead Guidance method, illustrated in Figure 3.6, is an extension of the path following behavior developed by Reynolds (1999). He predicts the vehicle's future position, \(P\), if it were to travel in a straight line for \(t\) seconds at the current speed \(|v|\). His system then calculates \(T\), the point on the path closest to the point \(P\). If the distance between \(T\) and \(P\) is greater than the path radius, \(r_{\text{path}}\), then the system steers the vehicle towards \(T\); otherwise the system does not steer the vehicle. In Reynolds's look-ahead path guidance method, the system steers a vehicle by applying a 2-D force vector directly to the vehicle's
Figure 3.6: Components of Look-Ahead Guidance
center of mass, thus changing its velocity and heading.

It is not possible to display a 2-D steering force to a user via a control knob, only a directional 1-D force. We use the angle $\angle \text{POT}$ in Figure 3.6 as the desired heading offset angle (ϕ) to compute the desired steering angle as discussed in the previous Section 3.2.2.

$$\phi_{LA} = \angle \text{POT}.$$

(3.7)

The guidance force component of the final force displayed to the control knob is proportional to the angle $\angle \text{POT}$. If P is within the path then the desired heading offset is zero and the final force output does not contain a guidance component.

When P leaves the path, the distance between P and T will be non-zero (assuming the path radius is greater than zero) and therefore the magnitude of ϕ will jump from zero to non-zero as P leaves the path. To avoid having this discontinuity appear in the force output, we envelope the force from the Look-Ahead Guidance method as P leaves the path:

$$F_{LA}(\phi_{LA}) = F_{PD}(\phi_{LA}) \cdot \begin{cases} 0 & : |P - T| < r_{\text{path}} \\ \left(\frac{|P - T| - r_{\text{path}}}{d_{\text{envelope}}}\right)^2 & : \text{Otherwise} \\ 1 & : |P - T| > r_{\text{path}} + d_{\text{envelope}} \end{cases}$$

(3.8)

where d_{envelope} is the distance past the edge over which force enveloping occurs. A graphical depiction of the force enveloping components can be seen in Figure 3.7.

Figure 3.7: Force enveloping areas in the Look-Ahead Guidance method

28
3.2.3.1 Look-Ahead Position Predictor Improvements

Our current Look-Ahead Guidance method uses a simple linear method to predict the location of the vehicle \(t \) seconds into the future, multiplying the current vehicle velocity by \(t \) and adding this to the vehicle position. This predictor is accurate when the vehicle is moving in a straight line, but incorrect if the vehicle is in a turn.

A more intelligent predictor has the potential to be more accurate across a wider range of vehicle behaviors than for one merely traveling in a straight line. For example, the position predictor could consider the movement of the vehicle in the recent past, or the predictor could look at the current turning radius of the vehicle to more accurately predict the future position of a vehicle while in a turn.

However, departures from a linear predictor can lead to subtle problems. For instance, consider a predictor based on the current turning radius of the vehicle, illustrated in Figure 3.8, where the predicted location of the vehicle is inside the path, but the vehicle would leave the path before arriving at this location. Our current Look-Ahead Guidance method would not display any guidance forces under this condition, which is not correct. A possible solution to this problem is to adjust the Look-Ahead Guidance method to apply guidance forces to keep the entire predicted vehicle trajectory inside the path, but it should be apparent that any predictor changes can, and do, have subtle implications on the guidance method that affect usability.

3.2.4 Potential Field Guidance

It is difficult to implement a haptic potential field guidance method with a one degree of freedom (DoF) haptic interface. We define potential field guidance as a force dependent only upon the distance of the vehicle from the path. With a two DoF haptic interface, one can apply a 2-D force pushing the end-effector of the haptic interface towards the center of the path. With a one DoF haptic interface such as ours, one can only apply a force to change the steering angle of the vehicle, and we found that the simple algorithm of applying a raw force proportional to the distance from the path was unstable and hard to use. We create a more usable, one DoF potential field guidance force that is proportional to the distance between the vehicle and the path, up to a maximum force at a distance \(\rho \) from
the path. We create this force by computing an artificial desired heading offset, ϕ_{pf}, that is proportional to the distance of the vehicle from the path. By taking advantage of the relationship between ϕ_{pf} and the magnitude of the PD controller output force, $F_{PD}(\phi_{pf})$ (see Equations 3.5, 3.6, and 3.13), we are able to produce a stable guidance force proportional to the distance from the path.

Figure 3.9 on the following page illustrates the components of our Potential Field Guidance algorithm. The angle β is the angle between the current vehicle heading, v, and the line between the location of the vehicle, O, to the point on the path closest to the vehicle, O_{path}. This angle is negative if Q is to the left of the line (O, O_{path}) and positive if Q is to the right of this line. The angle β is important because it represents the vehicle heading offset required to head straight back to the path. We do not want the desired heading offset, ϕ_{pf}, to be greater than β because this will result in non-intuitive guidance forces; the PD controller will apply guidance forces to achieve a vehicle heading that is beyond the line straight back to the path. Now we can describe the mathematical derivation of the artificial desired heading offset, ϕ_{pf}, for the Potential Field Guidance method as a function of the
Figure 3.9: Components of the Potential Field force feedback method
distance \(d \) from the path and the angle \(\beta \) as described above:

\[
\phi_{\text{raw}}(d) = \begin{cases}
\frac{d}{\rho} \phi_{\max} & : 0 \leq d < \rho \\
\phi_{\max} & : d \geq \rho
\end{cases} \tag{3.9}
\]

and,

\[
\phi_{\text{pf}}(d, \beta) = \begin{cases}
\frac{\beta}{|\beta|} \phi_{\text{raw}} & : \phi_{\text{raw}}(d) < |\beta| \\
\beta & : \phi_{\text{raw}}(d) \geq |\beta|.
\end{cases} \tag{3.10}
\]

The value of \(\phi_{\text{pf}} \) is computed in two steps. Equation 3.9 computes a 'raw' desired heading offset that considers only the distance of the vehicle from the path. Equation 3.10 modifies this raw value to have the same sign as \(\beta \), and to limit the magnitude of \(\phi_{\text{pf}} \) to that of \(\beta \), if necessary, to avoid steering forces for a desired vehicle heading past the direction straight back to the path. The sign of \(\phi_{\text{pf}} \) needs to have the same sign as \(\beta \) to ensure that the guidance force has the correct direction to steer the vehicle towards the path. Figure 3.10 shows the value of Equation 3.10 over reasonable values for \(d \) and \(\beta \). The force generated by Potential Field Guidance can expressed as follows:

\[
F_{\text{PF}}(d, \beta) = F_{\text{PF}}(\phi_{\text{pf}}(d, \beta)), \tag{3.11}
\]

where once again \(\phi_{\text{pf}} \) is the desired heading offset for Potential Field Guidance.

We found that if \(\rho \), the distance from the path at which the maximum potential field guidance force is generated, was the same as the path radius then guidance forces were too
strong. We tested \(\rho \) at this value because the prototypical potential field method is actually trying to push you away from constraints, such as the edge of the path, and having \(\rho \) be equal to the radius of the path achieves this effect. Through informal experimentation, we found that when \(\rho \) was twice as large as the path radius the potential field guidance forces felt 'good'.

3.3 Haptic Interface Device

We used a number of different haptic interfaces during the development of our haptic path guidance system. Initial prototyping was done using a “Twiddler” (Shaver and MacLean, 2003), an inexpensive one DoF haptic interface developed in our lab. We evaluated a commercial haptic gaming steering wheel to use as our haptic interface but found it was not controllable enough for our needs. We did not have the time or resources to build an ideal custom solution so we conducted the experiment using the highest quality one DoF interface available in our lab.

The haptic interface that we used for the final development phase and the experiments consisted of a 20 W Maxon motor with a 4000 counts per revolution encoder mounted on a custom aluminum rig. The shaft of the motor is directly attached to a plastic, beveled-edge knob, 9 cm in diameter. Figure 3.11 shows the motor, knob, and mounting rig as they were configured for development and experiments. The knob interfaces with the computer via an Immersion data acquisition PCI board and associated amplifier board, the Impulse Drive Board 1.0. This board calculates the velocity of the knob in hardware, a feature we took advantage of in our implementation of the centering force and viscous damping force described in section 3.2. The host PC was a Dell Precision 530 with a 2 GHz Intel Pentium 4 Xeon processor and 512 MB of RAM running the Microsoft Windows 2000 operating system.

While this was a reasonable interface for our purposes, we would have liked a larger knob/wheel and more powerful interface which we describe in Section 7.3.1.1. The Immersion/Maxon haptic interface provides a reasonable base for a haptic interface but it needs to be controlled well to make it a *good* haptic interface.
Figure 3.11: The haptic interface used for experiments. Consisting of a Maxon motor, encoder, mounting rig and plastic knob.

3.4 Servo Control

Force commands need to be sent to the haptic interface at approximately 1000 Hz to achieve a high fidelity force rendering. We have three force components that need to be rendered at this rate: the knob centering force, the viscous damping force and the guidance force. The guidance force is generated by a PD controller on the haptic interface knob angle. The set-point for this PD controller, the desired knob angle, is updated at 60 Hz (once every simulation update).

These two different update rates are accomplished using separate threads of execution. The simulation code, including guidance algorithm calculations and rendering, runs in a normal priority thread at 60 Hz which is maintained by using a busy wait if necessary. The force rendering code runs at 1000 Hz in a separate thread created with the highest priority for user threads in Windows 2000. Due to the priority difference between these two threads, the force rendering thread will pre-empt the simulation thread if necessary, which is why a busy wait can be used to limit the update rate of the simulation thread. However, this means that if the execution of the force rendering code takes too long, not only could the force rendering loop not run at 1000 Hz and cause haptic artifacts, but it could also starve the simulation thread, resulting in choppy simulation rendering and choppy desired knob angle calculations. Care must then be taken to ensure that the force rendering code is
efficient, and that each update takes less than one millisecond to maintain a 1000 Hz update rate.

Figure 3.1 on page 16 is a block diagram of the entire system and is useful to help understand how the different components of the system fit together. The PD controller is an important component of our system as the source of the actual guidance forces, and deserves a detailed discussion.

3.4.1 PD Controller

A PD controller attempts to minimize the difference between a set-point and a process variable; our process variable is the current knob angle, \(\Delta \), and our set-point is the desired knob angle, \(\Delta_{\text{desired}} \). It attempts to reduce the difference \(\Delta_{\text{desired}} - \Delta \) by applying a force to the control knob that is proportional to both the difference and the rate of change of the difference. The equation for our PD controller is as follows:

\[
e(\phi) = \Delta_{\text{desired}}(\phi) - \Delta \\
F_{\text{PD}}(\phi) = k_p \epsilon(\phi) - k_d \dot{\epsilon}(\phi)
\]

where \(k_p \) is the constant of proportionality and \(k_d \) is the differential constant. The value of these constants during the experiments can be found in Appendix A.

Calculating \(\dot{\epsilon} \) smoothly is difficult because \(\epsilon \) comes from an encoder reading, \(\Delta \). It is known that it is difficult to differentiate encoder values using finite difference methods (Belanger, 1992), as we found out when attempted to estimate \(\dot{\epsilon} \) using a finite difference method over several time steps as follows:

\[
\dot{\epsilon}(\phi_n) = \frac{\epsilon(\phi_n) - \epsilon(\phi_{n-r})}{t_n - t_{n-r}}
\]

We tested this method with values of \(r \) in the range \([1,5]\) and found that this method produces unacceptable vibrations in our PD controller output, especially when \(\epsilon \) is small. A simple low pass filter to smooth out the \(\epsilon \) signal before differentiation did little to help reduce vibrations. We could have used the angular velocity of the knob angle, \(\dot{\Delta} \), from the Immersion Impulse Board (see Section 3.3) in our calculation of \(\dot{\epsilon} \), but we had finished
implementing our PD controller before we started using the Impulse Board and did not have time to go back and update the implementation to take advantage of this.

We used a variable windowing algorithm developed by Janabi-Sharifi et al. (2000) to differentiate \dot{e}. This method was developed to calculate the velocity of a position encoder which we applied to our problem of computing the rate of change of e. Their algorithm uses a finite difference method with an adaptive time window to differentiate position encoder readings over a wide range of velocities. They present a number of additions to their basic method to improve its performance, but we found that the most basic method which they call end-fit first-order adaptive windowing (end-fit-FOAW) was sufficient for our needs. We followed their suggestion to use a median filter on the output signal (\dot{e}) to eliminate fine irregularities and outliers in the signal while preserving input signal discontinuities. This method of calculating \dot{e} significantly reduced the vibration in our system from the PD controller.

3.5 Summary

This chapter presented our implementation of two different haptic path guidance algorithms using a simple one DoF haptic interface. We first developed a simulation environment to present to the user a path to follow, which was done with the help of the OpenSteer library developed by Reynolds. Users interact with this environment via a one DoF interface that controls a simulated vehicle. We evaluated three different haptic interfaces and settled with one that was not exactly what we wanted, but was adequate for our needs. No existing commercially available haptic interfaces met our criteria for form factor, power and controllability. We implemented two haptic path guidance algorithms: Potential Field Guidance and Look-Ahead Guidance, to display path guidance forces to a user via our haptic interface. We will now describe how we designed and executed an experiment to evaluate the performance of these guidance algorithms.
Chapter 4

Evaluation Methods

In this Chapter we present our hypotheses about haptic path guidance and an experimental design to test these hypotheses.

4.1 Hypotheses

We hypothesized the following about the performance of our haptic path guidance methods:

- Look-Ahead Guidance will have measurable performance benefits over our No-Guidance baseline.

- Look-Ahead Guidance will have measurable performance benefits over Potential Field Guidance.

- Look-Ahead Guidance will perform well across a range of path complexities.

- Look-Ahead Guidance will perform well over a range of visibility conditions.

- Users will subjectively prefer the Look-Ahead Guidance to Potential Field Guidance and the baseline of No-Guidance.

We designed an experiment to test our hypotheses and performed two small pilot studies before a full scale experiment. The pilot studies were useful in helping us refine our experimental design and procedure for the full experiment.
4.2 Design

This section presents the procedural and statistical design of the experiment we used to test the hypotheses presented above. We considered many different independent variables to explicitly control, and chose three to study in our final experiment. We ran two pilot studies to refine our experimental design before running a formal experiment. The experiment was designed with the target completion time of approximately one hour. Within this hour we wanted each participant to see each of the unique combinations of the levels of the independent variables at least three times, to achieve an improved estimate of actual performance than that provided by a single repetition. The final design of our experiment was a $3 \times 3 \times 2$ within-subject design, with five repetitions of each of the eighteen unique combinations of the levels of the independent variables.

4.2.1 Choice of Independent Variables

We considered over twelve different independent variables which might affect path following performance. We narrowed these twelve down to those we considered the most interesting: guidance method, path complexity and visibility. Table 4.1 on the following page summarizes the levels of the factors we chose to study and we will now describe these in detail.

Guidance Method: It was necessary to study guidance method, because it is our primary focus, but choosing the number and identity of the comparison cases was difficult. We decided to compare Look-Ahead Guidance to No-Guidance as a baseline, and Potential Field Guidance which we considered to be an instance of the standard path guidance method based on the previous work we presented in Chapter 2. The No-Guidance method does present some force feedback to the user for the sake of usability as discussed in Section 3.2.1 but does not present any guidance forces. We considered comparing the Look-Ahead Guidance method to the potential field guidance method by Rossetter et al. (Rossetter, 2003; Rossetter and Gerdes, 2002a,b; Rossetter et al., 2003), but time did not permit such a comparison, because it would have taken a significant amount of time to implement their vehicle model and simulation dynamics.

Path Complexity: We wanted to evaluate the performance of Look-Ahead Guidance com-
Table 4.1: Factors and Levels Presented to Experiment Participants

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance Method</td>
<td>No-Guidance</td>
</tr>
<tr>
<td>Path Complexity</td>
<td>Low</td>
</tr>
<tr>
<td>Visibility</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Potential Field</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Look-Ahead</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

pared to the other guidance methods over a range of path complexities, on the premise that some methods might be more or less helpful for challenging steering situations. We used an ad-hoc method to quantify path complexity based on the number and radius of corners in the path to choose three paths with low, medium, and high complexity; all of which are illustrated in Figure 4.1 and referred to as curve, bump and zigzag respectively.

![Figure 4.1: Examples of Paths used in the Experiment](image)

Visibility: The Look-Ahead Guidance method is a predictive method, so we speculated that its strength might be in low visibility conditions. To test if this hypothesis was true we varied the level of visibility between high and low, as illustrated in Figure 4.2 on the following page.
We had considered two additional levels for the guidance method factor, no forces and vibration, and a medium visibility level. We did not include these extra levels because the size of the experiment would have been unwieldy. If we had studied all of these levels then we would have had:

- five guidance levels,
- three path complexity levels,
- and three visibility levels,

which results in forty-five unique combinations of levels. Estimating that it would take a participant thirty seconds to see one combination of levels, we realized that it was not going to be possible to have a participant see at least three repetitions of each combination of factors and still have the duration of the experiment be one hour, accounting for approximately five minutes for instruction and ten minutes for a debriefing interview. We could either extend the duration of the experiment or reduce the number of levels to study. We carefully considered the importance of the levels for each factor and eliminated the no force feedback and vibration levels from the guidance methods and the medium level from the visibility factor.

The no force feedback guidance method was removed because it had serious usability problems and we felt that it would not provide us with any more useful information than would the No-Guidance level with its centering and viscous damping forces. The vibration
guidance method was similar to the feeling of 'rumble strips' found on some highways. We eliminated this level from our study because we felt that it was too qualitatively different from the other guidance method levels that actively steer the user along the path. The medium visibility level was dropped because we felt that looking at low and high visibility levels would tell us if the future study of other visibility levels would be necessary.

Some of the other independent variables we considered studying were: velocity, look-ahead distance, steering angle limits, path width, look-ahead predictor algorithm, control gains, damping, the relative force contributions of the different force generating components, viewpoint, and rendering detail.

4.2.2 Minimizing the Impact of Learning

Learning is a common complication of within-subject experimental designs. Because users perform multiple related trials in sequence, they typically perform better at the end of the experiment than at the beginning. We used multiple approaches to address the problem of learning. Firstly, we chose an experimental task, driving, that is familiar to most people and therefore we expected participants to be reasonably proficient at our experimental task at the outset. Secondly, we have a brief familiarization phase before the real experiment where the participant performs all eighteen unique trials to become familiar with the haptic interface and the conditions that they will see. To prevent participants from becoming too familiar with the three different path types, we present reflections of the paths along the X and Y axes of the paths to increase variety while keeping to our three path complexity levels.

We found through the process of performing pilot studies as outlined in Section 4.6 that there appeared to be significant learning happening over the course of the experiment despite our efforts to minimize learning. However, through the same pilot studies we found that our initial estimate of thirty seconds to complete a trial was quite conservative and we had the time to double the number of trials presented to each participant. We used the first half of the full experiment as a learning phase and analyzed the data from the last half of the experiment, the test phase.
4.2.3 Blocking and Randomization

There are eighteen unique combinations of levels of the factors we decided to study ($3 \times 3 \times 2 = 18$) and we present five repetitions of each combination in both the learning and test phases for a total of 180 trials per experiment session. A trial consists of a participant traversing one of the possible paths from beginning to end, with the levels of the guidance method and visibility fixed to one of their possible values.

The simplest presentation order of the trials is completely random. This makes the statistical design and analysis easy, but a participant would not then have the chance to become familiar with a given guidance method, and this could hide any performance difference between the guidance methods. Furthermore, the learning and test phases need to present the same set of trials to a participant; five repetitions of the eighteen unique trials are seen in each phase. We addressed these concerns by grouping the ninety trials in each phase into three blocks of thirty trials, where all of the trials in a block had the same guidance method. Within a block, the levels of the factors other than the guidance method were presented in a random order. An additional benefit of blocking the trials based on the guidance method is that it is possible to ask participants questions about their experiences with the trials in a block and their answers will be for a single guidance method.

Blocking trials is a restriction on randomization that needs to be accounted for in the design of the experiment. To counterbalance for the effect of blocking we need to have each of the six unique orderings of blocks for each phase performed at least once, preferably more, to average out any order effect across multiple participants. This led to our decision to have eighteen participants in our study, each of whom were assigned a block ordering randomly without replacement such that each unique block ordering per phase was performed three times. Additionally, we ensure that each participant sees a unique ordering of all six blocks. These measures counterbalance for the blocking restriction on randomization. Table 4.2 on the next page shows one possible set of block orderings for eighteen participants that meets all of our criteria, and is the ordering used in our experiment.
4.3 Performance Metrics

To test our hypotheses we needed to measure path following performance and usability. However, we wanted a single quantitative performance metric for how well a participant had followed a path to make the analysis of path following performance as simple as possible. We did not believe that it was possible to condense usability into a single metric and instead opted to solicit participants’ feelings about their experiences, and to use this to analyze the usability performance of the path guidance methods.

4.3.1 Quantitative Path Following Performance Metric

There are many possible ways to describe how well a path has been followed, including:

- Time to reach the end of the path
- Mean distance from the middle of the path
- Mean rate of change of the distance from the middle of the path
- Mean of the square of distance from the middle of the path.
- Frequency of leaving the path's channel
- Smoothness of the trajectory
- Length of the traversed path compared to the path length
- Shape of traversed path compared to shape of the path being followed.

We wanted to keep our analysis as simple as possible and therefore wanted a single quantitative path following metric. It is possible to use multiple measurements to represent path following performance, but this requires complicated multi-variate analysis without necessarily clarifying the results.

After some careful consideration we decided that the Mean Square Error (MSE), where the error is the distance of the vehicle from the middle of the path, was the most suitable all-around path following performance metric for our needs. Equation 4.1 shows how the MSE is computed, where \(O_n \) is the location of the vehicle at time \(n \), and \(O_{\text{path}_n} \) is the point on the centerline of the path closest to point \(O_n \) at time \(n \):

\[
MSE = \frac{\sum_{n=0}^{N-1} |O_n - O_{\text{path}_n}|^2}{N}. \tag{4.1}
\]

The MSE performance metric is inversely proportional to overall path following performance; a low MSE score indicates better path following performance than a high MSE score. However, it does not take into account the width of the path being followed.

We had originally envisioned an experimental task of following the path while trying to stay within the extent of the path. In the pilot studies discussed in Section 4.6, we found that with these instructions participants often cut corners, staying within the path but moving away from the center of the path, adversely affecting their MSE score. In an attempt to get participants to use a path following-strategy that would yield consistent, and thus directly comparable, MSE scores, we augmented the experiment instructions on path following to have a primary task of staying within the extent of the path, and a secondary task of following the middle of the path closely as possible.
4.3.2 Subjective Evaluation Methods

While we were interested in learning which guidance method performed the 'best' according to a numerical measurement, we were also interested in the usability of each guidance method, which required us to inquire about users' reactions to each guidance method.

We felt that the usability of each guidance method could be assessed by asking each participant to evaluate three different subjective performance indicators:

1. Perceived degree of vehicle control
2. Perceived helpfulness of the provided guidance
3. Degree of pleasure afforded by the force feedback

Questions to address these three issues were presented to the participant via a dialog box (Figure 4.3), following each block of thirty trials. These questions had to be answered before the participant could move on to the next block of trials.
The session ended with a debriefing interview, the purpose of which was to solicit relevant background information along with the participant’s impressions of his experiences. The interview questions are included as Appendix C. The interview questions inquire about experience with video games, driving and other force feedback devices. We also inquired about which guidance method participants liked the most, and if they felt that any particular guidance method improved their performance. Other experiments conducted by this research group have found anecdotal evidence that suggests a correlation between performance with experimental tasks similar to ours and video gaming experience, hence our interest in video gaming experience. The debriefing interview was audio-recorded for later analysis.

4.4 Data Collected

We collected a variety of data over the course of an experiment session. Data about the state of the simulation, such as the distance of the vehicle from the path, was collected at 60 Hz during every trial and saved to disk in a comma separated value (CSV) file. Participants were automatically asked questions after each block and the answers to these questions were saved to a text file.

4.5 Procedure

To minimize possible distractions to the participants, the experiment was conducted in a special acoustically insulated, windowless experiment room (the Imager lab experimentation facility), and lasted approximately one hour. The experiment room contained a flat-screen LCD monitor on a table next to the haptic interface, and an adjustable office chair faced the desk and monitor. The experiment consisted of four different stages: instruction, familiarization, experiment, and interview.

Upon arrival, a participant was shown to the experiment room and given a waiver to read and sign (see Appendix E). The participant was then seated in front of the computer screen on which instructions for the experiment were displayed. The on-screen instructions inform the participant of experiment objective and what to expect; they also instruct the
participant to get comfortable and to be sure to check with the experimenter if, at any time, questions arise (see Appendix B). Once the participant has read and understood the instructions the experimenter begins the familiarization phase. The experimenter stays in the room to observe the participant performing the familiarization trials and to answer any questions. The full experiment of six blocks, each of thirty trials, starts once the participant completes the familiarization phase, and both the participant and experimenter feel that the participant is ready to continue.

The experimenter leaves the room to let the participant complete the full experiment without further assistance. Initially, the screen contains a message telling the participant to hit the space bar to start the first trial. A trial ends when the participant successfully navigates to the end of the path, at which point the screen clears and the “Click on space bar to continue” screen appears. The next trial does not begin until the space bar is pressed. This process is repeated until the participant has completed the block of thirty trials and then a dialog box (Figure 4.3) appears with questions for the participant regarding his experiences over the previous block as described in Section 4.3.2. The whole process repeats for the second block and so on, until the participant has completed all six blocks (180 trials); at which point the participant has been instructed to retrieve the experimenter for the debriefing interview.

The participant is told prior to the beginning of the debriefing interview that the interview will be recorded for later analysis. The experimenter then conducts the interview and records answers to the simpler questions, such as age, on a prepared form. Once the questioning part of the interview is over the audio recording is stopped and the experimenter explains to the participant the purpose of the experiment and answers any questions the participant may have about the experiment. At the end of this process the participant is given an honorarium of $10.00 for his hour’s effort.

4.6 Pilot Studies

We performed two pilot studies before conducting the final experiment to verify both our experimental process and our software. The first pilot (seven participants) suggested many
improvements and the second pilot (five participants) was more of a fine tuning before the full experiment. Both pilots consisted of a familiarization phase followed by three blocks of thirty trials each and were done less formally than was the final study (e.g. not in the experiment room) with members or friends of our lab as participants.

The first pilot differed from the final experiment principally in the paths used. In the pilot we used the paths: straight, curve and zigzag for low, medium and high complexity levels (as opposed to the curve, bump, zigzag paths used in the final experiment); and these paths were also twice as wide as the paths in the final version. We discovered in the first pilot study that in general, these paths were too easy to follow. To address this issue we made the paths narrower, and removed the straight path as the lowest complexity path type because due to the knob centering force, it could be followed exactly without touching the knob. A new path, bump, replaced the curve path as the medium complexity path and the curve path became the low complexity path.

The first pilot study also identified some conflicts between our guidance methods, quantitative metric and instructions. Our performance metric penalizes any path following behavior that does not try to follow the center of the path, and some pilot participants were cutting corners. We changed the experiment instructions to tell the participants to try stay on the path as well as to follow the center of the path. As a visual cue, the center of the path was rendered as a thin, red line on top of the path extent.

Pilot Study Two was performed in the same manner as Pilot Study One, but with the above noted changes implemented. After running Pilot Study Two and analyzing the data from both pilot studies we noticed that there was a substantial learning effect as participants progressed through the study. We also noticed that the time to perform one trial was much less than the thirty seconds we had budgeted for. With the extra time we had as a result of this, we doubled the number of trials each participant would do as discussed in Section 4.2.2.
Chapter 5

Experiment Results and Analysis

In this chapter we report our experiment results and their analysis. Section 5.1 describes participant profiles, 5.2 our quantitative results and 5.3 our qualitative (subjective) results.

5.1 Experiment Participant Demographics

Our experimental design called for eighteen participants. We recruited participants via Usenet posts, by using our group’s database of previous participants, and by word of mouth. In total, we recruited twenty participants but only analyzed the data from eighteen of these participants as two participants did not complete the experiment. One participant left after the eighteen trial familiarization phase because she was too frustrated with the difficulty of the task to continue. The other participant left after partially completing the full experiment when she started to feel ill from either motion or VR (Virtual Reality) sickness. The remaining eighteen participants completed the full experiment.

The first half of the post-experiment interview (Appendix C) was used to solicit relevant demographic information about the participant. In addition to the standard age, gender and handedness information, we were also interested in the participant’s driving, video game and haptic interface background. Table 5.1 summarizes the results of the demographic questions for the eighteen participants that successfully completed the study.

Thirteen participants reported playing video games, with eight of those reporting average playing times of at least one hour per week on average at the time of their participation in
Table 5.1: Participant Demographics (18 participants)

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>19</td>
<td>33</td>
<td>24.3</td>
</tr>
<tr>
<td>Dominant Hand</td>
<td>Right</td>
<td>Left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Has Driving License</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Driving Frequency</td>
<td>Daily</td>
<td>Weekly</td>
<td>Infrequently</td>
</tr>
<tr>
<td>(out of 17)</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Plays Video Games</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Previous Haptic</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Interface Experience</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Previous Advanced Haptic</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Interface Experience</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

The other five video game playing participants reported playing less than one hour per week on average. Figure 5.1 shows the distribution of average weekly gaming time for video game players. The average reported weekly game playing time for participants playing at least 1 hour per week (eight participants) was 4.4 hours. Seventeen participants held a valid license to drive, and the average length of time each had been licensed was 5.8 years. Most of the fifteen participants that reported previous experience with force feedback devices only had experience with simple haptic interfaces, primarily vibrotactile game controllers. Five of the participants with previous force feedback experience reported being participants for other experiments done by our lab.

5.1.1 Outlier Participant

One participant had a problem in the middle of the experiment in which he became lost and could not find the path again. The experimenter had to help the participant find the path to finish the trial and continue the experiment. The participant finished the experiment but later analysis of his data suggested that he was not attempting to actually follow the path for a large number of trials (e.g. Figure 5.2 on page 52 and pages 138, 139 and 50...
Figure 5.1: Distribution of reported average video game playing time for self-reported gamers. A reported time of zero hours indicates that the participant reported playing video games, but for less than one hour per week on average.

After some deliberation, and verifying that he did not attempt to follow the path in multiple trials, we concluded that he was not following the experiment instructions, and therefore was not representative of a typical participant, and we excluded his data from further analysis. Unless otherwise noted, the results presented below are based on the data from the remaining seventeen participants.

5.2 Quantitative Results and Analysis

This section presents the quantitative results and the analysis of the data generated by the seventeen experiment participants. As described in Section 4.2, the experiment design is a $3 \times 3 \times 2$ within-subject study with repetition and one restriction on randomization (blocking on guidance method). We used Matlab (MathWorks, 2001) and the free statistical package R (R Development Core Team, 2003) to manipulate and analyze the data from the experiment.
5.2.1 Data Handling

The data produced by each experiment trial was saved to individual text files. The content of these files consists of a listing of the system variables held constant for the trial followed by the state of the system sampled at every simulation step (60 times a second). We used Matlab to read the information from all of the data files and to convert them to a more convenient format for analysis. Part of this process was to calculate our performance metric, the mean square error (MSE) of the distance of the vehicle from the path (as presented in Section 4.3.1) for each trial.

Each block consists of thirty trials: five repetitions of the six unique combinations of the path complexity and visibility factors given the fixed guidance method for the block. We used Matlab to compute the means of the repetitions, after which each block is represented by six scores (means of five MSE values).

Matlab was used to generate some basic diagnostic views of the raw data as well. For example, plots of participant’s trajectories overlaid on the actual path being followed were useful to verify that the MSE performance metric was fair and performed well compared to other possible performance metrics. Figures 5.3, 5.4, and 5.5 show the path traces for the worst, median and best MSE scores respectively out of all trials. Appendix F contains plots of all the path trajectories for every participant over the last three blocks.
Figure 5.3: Path trajectory for the trial with worst MSE score over the last three blocks. Score = 3.36
Figure 5.4: Path trajectory for a trial with an average MSE score over the last three blocks. Score = 0.070
Figure 5.5: Path trajectory for the trial with the best MSE score over the last three blocks. Score = 0.0008
The data needed for a complete statistical analysis was exported from Matlab to a comma separated value (CSV) file and imported into R for analysis. The following data was exported: participant number, guidance method level, path complexity level, visibility level, MSE (performance metric), and block number. R makes it easy to perform complex ANOVA analyses, such as the one we needed to do.

5.2.2 Statistical Analysis

We designed and executed a $3 \times 3 \times 2$ repeated measures experiment with balanced blocking on the three different levels of the guidance method factor. We analyzed the final three blocks of the experiment; the data from the first three blocks was treated as a learning phase and was not analyzed. The box-plot shown in Figure 5.6 on the next page shows the scores for all six experimental blocks and suggests that the performance improves considerably over the first three blocks and is consistent for the final three blocks. The variability of scores decreases rapidly over the first two blocks. We believe that it safe to say that any learning effects have been significantly reduced by the final three blocks. Satisfied that there was minimal learning happening over the final three experimental blocks, we performed a within-subject ANOVA, using R to test the effect, if any, of our independent variables on our performance metric.

We performed a full within-subject ANOVA, after averaging out the repetitions, to test for an effect of our three independent variables on the MSE performance metric (the dependent variable). This procedure is accomplished in R by the `aov()` function which is discussed in Appendix D. Table 5.2 shows the results of the within-subject ANOVA. It is evident from the ANOVA table that all of the main effects are significant at the $p < 0.05$ level, but there are no significant interaction effects.

The significant results from the ANOVA indicate that there are main effects but does not indicate the relative effects for the different levels of the independent variables if they have more than two levels. We performed a post-hoc, pairwise comparison (with the Holm p-value adjustment) between the levels of the guidance method and the path complexity factors to see where the difference between levels are. The results of the pairwise comparisons between levels of the guidance method factor are presented in Table 5.4 on page 59 and the results
Figure 5.6: Boxplot of scores across all six blocks, in order of execution. Appendix D.2 describes the meaning of the components of boxplots.

for the path complexity factor are presented in Table 5.5 on page 59. Table 5.3 on page 59 presents the means for each level of each factor across all other factors (i.e. the first row shows the mean of the scores for all trials with the baseline No-Guidance level of the guidance method factor).

Table 5.4 shows that the Look-Ahead Guidance method is significantly different from the other two path guidance levels at the $p < 0.05$ level, but the Potential Field Guidance method is not significantly different from the No-Guidance method. By referring to Table 5.3 we see that the average score for the Look-Ahead Guidance method is less than the average scores for the other two levels, indicating that the Look-Ahead Guidance method performs better than the Potential Field Guidance method, and better than the baseline No-Guidance method with respect to the MSE performance metric (the lower the MSE score the better).

Table 5.5 shows that the average score for the low complexity path is significantly different from average score for the medium and high complexity paths at the $p < 0.05$ level. There is no significant difference between the mean MSE score for the bump and zigzag path types. Table 5.3 shows that the average score for the curve path is less than that of
Table 5.2: Within-Subject ANOVA table for MSE score. GM = Guidance Method Factor, Path = Path Complexity Factor, Vis = Visibility Factor. A colon (:) between factors indicates an interaction.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>16</td>
<td>1.711</td>
<td>0.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>2</td>
<td>0.187</td>
<td>0.094</td>
<td>4.860</td>
<td>0.0144 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>32</td>
<td>0.617</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path</td>
<td>2</td>
<td>0.241</td>
<td>0.121</td>
<td>8.984</td>
<td>0.0008 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>32</td>
<td>0.430</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis</td>
<td>1</td>
<td>0.013</td>
<td>0.013</td>
<td>4.887</td>
<td>0.0420 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>16</td>
<td>0.043</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM:Path</td>
<td>4</td>
<td>0.042</td>
<td>0.011</td>
<td>1.646</td>
<td>0.1736</td>
</tr>
<tr>
<td>Residuals</td>
<td>64</td>
<td>0.410</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM:Vis</td>
<td>2</td>
<td>0.027</td>
<td>0.013</td>
<td>1.603</td>
<td>0.2170</td>
</tr>
<tr>
<td>Residuals</td>
<td>32</td>
<td>0.268</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path:Vis</td>
<td>2</td>
<td>0.024</td>
<td>0.012</td>
<td>2.162</td>
<td>0.1317</td>
</tr>
<tr>
<td>Residuals</td>
<td>32</td>
<td>0.180</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM:Path:Vis</td>
<td>4</td>
<td>0.021</td>
<td>0.005</td>
<td>0.594</td>
<td>0.6683</td>
</tr>
<tr>
<td>Residuals</td>
<td>64</td>
<td>0.578</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the two other path levels, indicating that it is easier to closely follow the low complexity path compared to the medium or high complexity path.

The ANOVA table indicates a significant effect on the MSE score due to the visibility factor, which has two levels and does not require a post-hoc comparison to distinguish levels. The mean scores for the levels of the visibility factor found in Table 5.3 show that participants performed slightly better when the visibility was high, compared to when it was low.
Table 5.3: Mean scores for the levels of each factor across all other levels

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance Method</td>
<td>No-Guidance</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>Potential Field</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>Look-Ahead</td>
<td>0.051</td>
</tr>
<tr>
<td>Path Complexity</td>
<td>Low</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.116</td>
</tr>
<tr>
<td>Visibility</td>
<td>Low</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.080</td>
</tr>
<tr>
<td>Overall Mean</td>
<td>0.086</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4: P-values from post-hoc test on guidance method levels

<table>
<thead>
<tr>
<th></th>
<th>No-Guidance</th>
<th>Potential Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Field</td>
<td>0.614</td>
<td>0.004 *</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>**0.004 ***</td>
<td>**0.012 ***</td>
</tr>
</tbody>
</table>

Table 5.5: P-values from post-hoc test on Path Complexity levels

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>0.018 *</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0.000 *</td>
<td>0.190</td>
</tr>
</tbody>
</table>

59
Performance Difference Relative to Overall Path Mean

Figure 5.7: The relative difference between the average path following score for each guidance method and the average path following score across all guidance methods for that path. Negative differences indicate an improvement in performance.

5.2.3 Independent Variable Interactions

Our results show that the Look-Ahead Guidance method improves path following performance compared to No-Guidance and Potential Field Guidance methods, with a mean path deviation score of about half of the other methods (Table 5.3). However, we did not see the hypothesized significant interactions between the guidance method and path complexity factors, and between the guidance method and visibility level factors.

Path Complexity and Guidance Method Interaction

Look-Ahead Guidance did not prove especially useful for more complex paths compared to less complex paths. Figure 5.7 shows the relative performance of each guidance method for a given path type. It shows that the Look-Ahead Guidance method performs better than the average score for each path type, but the improvement is relatively consistent across path types.

Visibility Level and Guidance Method Interaction

We thought that Look-Ahead Guidance might have offered a performance benefit in low visibility conditions compared to other guidance methods because the system can ‘see’
Mean Scores for all Combinations of Independent Variables

![Bar chart showing mean scores for no-guidance, potential field, and look-ahead guidance methods across low and high visibility conditions.]

Figure 5.8: The effect of visibility compared to path type and guidance methods. The Look-Ahead Guidance method shows consistent performance across visibility levels. Lower scores are better.

Further than the user can. Figure 5.8 shows the average scores for all eighteen unique combinations of independent variable levels, illustrating the effect of visibility on each path type for each guidance method. Counter intuitively, the No-Guidance method performs better under low visibility conditions for two path types: bump and zigzag. However, some participants reported preferring the low visibility condition more than the high visibility condition because it focused their attention on the portion of the path immediately in front of the vehicle and not on upcoming path features, allowing them to follow the center of the path more accurately. This provides a possible explanation for the observed performance increases with low visibility compared to high visibility. The Potential Field method had a similar performance gain in low visibility conditions with the curve path, but it performed much worse in low visibility conditions on the other two path types. The Look-Ahead Guidance method performs consistently across visibility conditions.
5.2.4 Influence of Video Game Experience

In terms of ability to perform the task at hand, we noticed that the participants in our experiment appeared to fall into two categories. Some participants had no problem following the path accurately after the first few familiarization tasks, while other participants had difficulty throughout the primary familiarization phase and generally performed worse than the other group of participants. An extreme example of this is the participant who left after the familiarization phase because of frustration with the task. While running the experiment we hypothesized that this difference between participants may have been related to video game experience, based on past experiences in our research group.

Figure 5.9 shows the performance of gamers and non-gamers according to block number, illustrating how performance changes over time. Both groups tend to improve over time, but the improvement is more pronounced in non-gamers than it is in gamers with the exception of the last block. This suggests that non-gamers improve more than gamers do over time, although still not reaching the performance level of gamers. The poor performance of non-gamers in the last block possibly suggests that they become fatigued and/or disinterested in the experiment by the last block.
Figure 5.10: Boxplots of Participants’ Scores Given Game Playing Status. The vertical line indicates the overall mean score. See Appendix D.2 for a description of boxplot features.

Figure 5.10 shows individual participant scores in boxplot form and are shaded according to game playing status. The vertical line in the figure indicates the mean score across all participants and all conditions. The game players tend to have lower (better) scores than non-game players with an average score of 0.13 for non-gamers and 0.067 for gamers, but there is considerable overlap. Figure 5.11 shows boxplots for the scores of game players and non-game players, and shows that game players have lower mean scores and are more consistent as a group than are non-gamers. This supports our feeling that video game experience could act to separate the participants into two performance groups.

The reported average weekly gaming times fell into six bins: less than 1 hour per week, and 1, 3, 5, 9, and 10 hours per week. Figure 5.12 on page 65 shows boxplots for the scores
Figure 5.11: Boxplots of participants' scores given game playing status. Boxplot components are described in Appendix D.2
in each gaming time bin, with a gaming time of 0 for the scores of participants who reported playing less than 1 hour of video games per week on average. A regression line showing the fitted linear relation between gaming time and score is also drawn. This line suggests that path following ability improves with game playing time. Separating the effect of game playing time on the path following score by guidance method is shown in Figure 5.13. This plot suggests that the effect of video game experience on path following performance is lower with Look-Ahead Guidance than with the other guidance methods.
Boxplots (with Regression Lines) of Score versus Gaming Time given Guidance Method

Figure 5.13: Boxplots of reported weekly gaming time with regression lines given guidance method level. No-Guidance regression line parameters: intercept = 0.111, slope = -0.0062. Potential Field Guidance regression line parameters: intercept = 0.091, slope = -0.0044. Look-Ahead Guidance regression line parameters: intercept = 0.054, slope = -0.0032
5.3 Subjective Results

An important objective of our evaluation was to acquire information about the subjective (aesthetic) performance of the path guidance methods. Section 4.3.2 describes how we measured subjective performance, and this section presents the results of those measurements.

After each block a dialog box appeared and asked the participant a set of questions before the next block could be started. The first question asked if the participant had felt force feedback in the previous block. Table 5.6 summarizes the responses to this question. Most people reported feeling force feedback when they had just finished a block with either Potential Field Guidance or Look-Ahead Guidance. In the case when the block prior to the question had presented the baseline No-Guidance level, the majority of participants reported not feeling a force, even though a centering force was being displayed.

Table 5.6: Answers to post block questions

<table>
<thead>
<tr>
<th>Guidance Method</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Guidance</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Potential Field</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

We aimed to provide assistive path guidance, not autonomous control, which motivated the next question. We asked if the participant felt 'in control' while performing the trials in the block to see if the participant felt as if he was driving the simulation and not vice-versa. Table 5.7 on the following page summarizes the results of this question, and Figure 5.14 displays them as a histogram. People felt most in control of the vehicle with the Look-Ahead Guidance method, and the least in control with the No-Guidance method.

The last two questions after each block are only answered if the participant reported feeling force feedback. The two questions try to discriminate between perceived helpfulness and how much the participant liked the force feedback. It may seem strange for something to be helpful and disliked, but consider 'Clippy' from Microsoft Office. Clippy is the active Office assistant that pops up with helpful suggestions about tasks the system thinks that you are doing, and even though Clippy's information is useful, many people do not like Clippy.
Table 5.7: Counts for answers to the 'In Control' question

<table>
<thead>
<tr>
<th>Guidance Method</th>
<th>No Control</th>
<th>Complete Control</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Guidance</td>
<td>1 4 1 7 4</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>Potential Field</td>
<td>0 3 4 8 2</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>0 2 2 5 8</td>
<td></td>
<td>4.1</td>
</tr>
</tbody>
</table>

Figure 5.14: Histograms for answers to the 'In Control' question for each path guidance method. 1 = No Control, 5 = Complete Control.
They are either annoyed with being interrupted, annoyed with obvious information being presented to them or confused because the system recognized the task at hand incorrectly. We do not want a haptic Clippy, where the guidance forces are helpful but annoy and/or frustrate the user. Table 5.8 and Figure 5.15 on the next page present the results of the helpfulness question, and Table 5.9 on the following page and Figure 5.16 on page 71 present the results of the like/enjoyment question. Participants enjoyed and found more helpful Look-Ahead Guidance over Potential Field Guidance.

In the post-experiment interview we asked participants which of the final three blocks they liked the most in the force feedback sense. This was intended to allow the participants to consider their feelings over the last three blocks. It is important to note that the participants were unaware of how the guidance methods worked at this point, just that each block presented a different force feedback method. Figure 5.17 on page 71 shows the histogram for the answers to this question. Thirteen of the seventeen participants liked Look-Ahead Guidance the most, compared to three for Potential Field Guidance and one for No-Guidance.
Table 5.8: Counts for answers to the 'Helpful' question

<table>
<thead>
<tr>
<th>Guidance Method</th>
<th>Very Unhelpful</th>
<th>Unhelpful</th>
<th>Neutral</th>
<th>Helpful</th>
<th>Very Helpful</th>
<th>NA</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Guidance</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Potential Field</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>3.4</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>4.3</td>
</tr>
</tbody>
</table>

How Helpful Did You Find The Force Feedback?

![Histograms for answers to the 'Helpfulness' question for each path guidance method. Participants who did not report feeling force feedback were not asked this question, hence fewer responses for the first condition. 1 = Very Unhelpful, 2 = Unhelpful, 3 = Neutral, 4 = Helpful, 5 = Very Helpful.]

Table 5.9: Counts for answers to the 'Like' question

<table>
<thead>
<tr>
<th>Guidance Method</th>
<th>Strongly Dislike</th>
<th>Dislike</th>
<th>Neutral</th>
<th>Like</th>
<th>Strongly Like</th>
<th>NA</th>
<th>Mean Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Guidance</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>3.3</td>
</tr>
<tr>
<td>Potential Field</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>Look-Ahead</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>3.9</td>
</tr>
</tbody>
</table>
How Much Did You Like The Force Feedback?

![Histograms for answers to the 'Like' question for each path guidance method.](image)

Figure 5.16: Histograms for answers to the 'Like' question for each path guidance method. Participants who did not report feeling force feedback were not asked this question, hence fewer responses for the first condition. 1 = Strong Dislike, 2 = Dislike, 3 = Neutral, 4 = Like, 5 = Strongly Like.

Overall Preferred Guidance Method

![Histogram for the answers to the overall preference question asked in the debriefing interview.](image)

Figure 5.17: Histogram for the answers to the overall preference question asked in the debriefing interview.
Chapter 6

Discussion

In this Chapter we discuss issues and insights from the previous three Chapters about the implementation, evaluation and results of our experiment.

6.1 Results and our Hypotheses

In this Section we present a discussion about what we learned about our hypotheses (Section 4.1) given the results we presented in the previous Chapter.

6.1.1 Quantitative Performance of Look-Ahead Guidance

We hypothesized that Look-Ahead Guidance would exhibit performance benefits compared to No-Guidance, our baseline, and to our alternative haptic method, Potential Field Guidance. The results we present in Section 5.2 verify that Look-Ahead Guidance provides a significant performance benefit compared to the other guidance methods across the set of independent variables we varied; with respect to our chosen performance metric, the mean square error of lateral deviation from the center of the path. Our best attempt at Potential Field Guidance for our haptic interface did not offer a significant performance benefit compared to No-Guidance, suggesting that the specific mechanism and implementation of haptic guidance are crucial in providing a performance benefit. The lack of significant interactions in the ANOVA analysis (Table 5.2) suggests that Look-Ahead Guidance offers a performance benefit, compared to the other guidance methods, across a range of path
complexities and visibility levels — it is not limited to offering performance benefits for a small subset of path following tasks.

However, there are some details related to our implementation and evaluation methodologies that should be taken into account before concluding that Look-Ahead Guidance is an improvement over all potential field guidance methods, or across all path complexities and visibility levels. These details include Potential Field Guidance implementation choices and the choice of our quantitative performance metric.

6.1.1.1 Design and Implementation of Guidance Methods

As our primary focus, Look-Ahead Guidance received more development time than did Potential Field Guidance. A potential field guidance method is easy to implement using a two DoF interface for a two DoF task, such as tracing a path with a pen-like interface, but potential field guidance for an under-actuated task, such as our driving task, is not as straightforward. There are multiple possible implementations that could be called a 'potential field' method, and we implemented as close to a direct 1D analog of the 2D path tracing potential field method we could devise (Section 3.2.4) that had a reasonable level of usability. However, we used the same desired steering angle control system for the Potential Field Guidance method as we did for the Look-Ahead Guidance method (Section 3.2.2), which is awkward because the idea of a desired steering angle seems to violate the 'spirit' of potential field methods. However, time constraints prevented us from developing an alternative control system especially for our Potential Field Guidance method. We are satisfied that our implementation is representative of potential field methods in general, but there are many possible ways to implement such methods and the one we have chosen to use may not be the absolute best. Vector fields are a possible alternative implementation style to base potential field guidance upon that may be an improvement compared to our style.

6.1.1.2 Quantitative Performance Metric and Experiment Task Interaction

The choice of how to measure path following performance is a critical component of the evaluation of any path following experiment. We chose to use the mean square error of the
deviation from the center of the path as discussed in Section 4.3.1. There were trade-offs associated with this choice, and slight modifications to the design of our experiment were required to accommodate this choice.

We wanted the participant to stay inside a path while following it from beginning to end, but to be fair to our chosen performance metric we were required to add the secondary task of following the center of the path as closely as possible as well. Following the center of the path is more difficult than merely staying within the extent of the path, and this may have influenced participants’ path following strategies. Participants attempting to follow the center of the path as closely as possible will probably focus on the path just in front of the vehicle, limiting the perception of upcoming path features which could influence high level path following strategies. Participants only trying to stay within the extent of the path have more leeway and can afford to move their focus further away from the vehicle than can the center following participants, and therefore are more likely to use upcoming path features in their path following strategy. It is possible this speculated focus-point artifact may have contributed to the observed consistent performance benefit of the Look-Ahead Guidance method because it may have been always looking further ahead than the participants were, signaling path changes haptically before the participant visually recognized them.

6.1.2 Guidance Methods and Path Complexity

We evaluated path following performance across three different path complexities: low (curve), medium (bump) and high (zigzag). We used an ad-hoc method to create paths for each of these categories, and our statistical results suggest that only two different path complexities existed. Table 5.5 on page 59 shows that there was a significant performance difference between the low complexity path and both the medium and high complexity paths, but there was no significant performance difference between the medium and high complexity paths, suggesting that the complexities of these two paths were at a similar level.

Figure 5.7 on page 60 shows that Look-Ahead Guidance offers a consistent performance benefit compared to the average performance for each path type. Similarly, No-Guidance performs consistently worse than average across all three path complexities. The perfor-
formance of Potential Field Guidance varies considerably across path complexities, but this could be due to its poor performance in the low visibility condition with the medium and high complexity paths as evident in Figure 5.8 on page 61.

6.1.3 Guidance Methods and Visibility

Our results show that there is a statistically significant difference in performance between low and high visibility conditions (Table 5.2), but the interaction between guidance method and visibility is not significant. We had speculated that Look-Ahead Guidance would perform better in low visibility conditions compared to the other guidance methods because it 'sees' through the darkness of the low visibility condition, which the other methods do not do. Figure 5.8 shows that Look-Ahead Guidance does perform better than the other guidance methods in low visibility conditions, but does not itself exhibit a large performance difference between visibility conditions. The same cannot be said for the other guidance methods.

Both No-Guidance and Potential Field Guidance exhibit a counter-intuitive performance benefit in low visibility conditions with the low complexity curve path. However, these methods do tend to perform worse under the low visibility condition for the more complex path types. One possible explanation for this is mentioned in Section 5.2.3. The low visibility condition forced participants to focus on the path closer to the vehicle than they normally would. A narrowed focus helps users to follow the center of the path in simple situations, such as the low complexity curve path with a single corner, but has the potential to adversely impact higher-level path planning required to accurately follow more complex, multi-cornered paths such as bump and zigzag. One possible explanation for why this performance trend is not apparent with Look-Ahead Guidance is that it is always looking further ahead than the participant is, and so low visibility does not have any power to impact performance. Perhaps this would not be the case if participants were not attempting to follow the center of the path in addition to staying within its extent.
6.1.4 Subjective Performance of the Guidance Methods

Our subjective evaluation methods sufficiently addressed the issues in which we were interested: perceived level of control, the preferred guidance method and any discrepancy between perceived helpfulness and aesthetic preference. Look-Ahead Guidance gave participants a better sense of control over the vehicle compared to the other guidance methods, an important characteristic for a usable guidance method. A guidance method could force the user to follow a path exactly, but if the user did not feel that he had control there is a good chance that the guidance method would not be accepted. When participants reported feeling force feedback, Look-Ahead Guidance was reported to be more helpful and liked more than the other guidance methods. This consistency between like and helpfulness is important, as it indicates that Look-Ahead Guidance is not the haptic equivalent of Clippy. The majority of participants reported preferring the block corresponding to Look-Ahead Guidance during the debriefing interview. Participants were considering individual blocks for the subjective measurements taken before the interview, yet even when concurrently considering the final three blocks in the interview thirteen of seventeen participants (76%) preferred Look-Ahead Guidance. While these results are encouraging, we consider that they could have been reinforced with more detailed subjective evaluation methods.

The post experiment interview was used to solicit participants' feelings about the experiment as a whole, to complement the questions asked automatically after each experimental block. One thing that we did not ask, but wish that we had, concerned which of the last three blocks a participant liked the least, in addition to asking which block they liked the most. We should also have attempted to elicit more detailed descriptions of why participants selected the block that they did as their favourite. Most answers were very short and not particularly informative in the structured component of the debriefing interview. The occasional participant would provide more interesting answers but this usually happened in the more free-form Q&A session, after the audio recording was stopped. The experimenter stopped the audio recorder at the end of the interview questions before they explained the purpose of the experiment to save recording media. This explanation of the study occasionally prompted a discussion about the details of the system, and here the participant would discuss his preferences and interpretations with more detail than he did previously.
These discussions were only captured in note form by the experimenter and some potentially interesting discussion details were lost.

6.2 General Observations

In this section we develop general observations about our experimental methodology and results not directly related to our hypotheses.

6.2.1 Issues with Physical Interaction and Real World Similarity

The perceived similarity between the experimental task and driving may have caused some interaction problems and influenced learnability. We purposely made the experimental task similar to driving in an attempt to reduce the learning curve compared to more abstract tasks. This was desirable because our goal was to have a one hour long experiment per participant, and we did not want to spend too much time familiarizing participants with the task. However, the difference between the final implementation of our task and driving in the real world may have been too significant for successful task transfer.

The physical characteristics of our control knob offers a very different interaction style than what one would have with a full-sized steering wheel. Interaction with our control knob is performed with one arm and primarily involves wrist and finger motions, with some small elbow rotations. A steering wheel, on the other hand, is typically controlled with shoulder and elbow rotations from both arms. An advantage of a full sized steering wheel is that small movements of the wheel engage similar motor units as do those of large wheel movements. In contrast, the typical grasp of our device facilitated small knob movements, and large movements involved significantly different motor units, requiring the user to release the knob and reposition his fingers on the knob, similar to the way one lifts and 'scrolls' the mouse on reaching the edge of the mouse pad.

Releasing the control knob of our haptic interface has a number of potential pitfalls. One is that a spring centering force is being applied to the knob at all times, and as the knob is released there is a force trying to center it. This can cause the knob to move in a counter-productive direction before the user resumes grasping the knob. Once the desired
large motion has been completed the user must release the knob again to return to the starting knob position; the problem compounds itself. We were unaware of this potential problem during development because, being familiar with the interface, we could control the vehicle well without releasing the knob; and it was not identified as a problem during the pilot studies.

This knob interaction issue combined with the deliberate absence of user control over vehicle velocity contributed to a significant difference between our experimental task and driving. We suspect that this difference had an impact on the time required to become proficient at interacting with our experimental system. However, our results do suggest that learning had stabilized by our second set of blocks, which we base our analysis on.

6.2.2 Explicitness of Experiment Instructions

Upon reflection, the instructions presented to the participants could be improved. The problems associated with interacting with a small control knob discussed in Section 6.2.1 may have been reduced if the instructions were more specific with regard to control knob interaction. The only instruction concerning interaction with the knob was to hold onto it in a comfortable manner. This resulted in participants trying different grasp techniques and placing the knob at different locations on the desk, both of which may have influenced path following performance and time taken to learn an effective strategy. We purposely did not provide specific instructions on how to grasp the control knob because we wanted participants to use the grasp that was most natural to them. We did not anticipate that this flexibility in instruction would cause so much difficulty.

Participants observed by the experimenter to be releasing the control knob while performing familiarization trials were instructed that it might be easier to follow the path without releasing the control knob. Some participants did not believe that this was possible and asked the experimenter to show them that it was. This is evidence that some participants had more difficulty using the interaction device than was expected. We expect that such problems would not be present if the interaction device was a full sized steering wheel.
6.2.3 Observations on When Haptic Guidance is Useful

We observed an interesting detail about user interaction with guidance methods while watching participants and other users to whom we demonstrated our system. It appeared that when users were able to follow the path closely the guidance force feedback was helpful, but once users made significant deviations from the path and became lost, the force feedback was less useful, and may actually have made the problem worse. One possible explanation for this observation is that once you have left the path you are no longer attempting to do what the system thinks you should be doing and therefore the forces you feel do not correspond with the direction you think you should be going. The guidance forces are always attempting to steer the user along the path, even when he is not on the path, but these forces are not valid if they do not correlate with the user's strategy to correct his path following mistake. An intelligent algorithm that evaluates whether the guidance forces correspond to the user's goals is one possible approach to address to this problem.

6.2.4 Effect of Gaming on Performance

In Section 5.2.4 we present data that suggests video game experience has an effect on the performance of our experimental task. It is difficult to evaluate video game experience, as we discuss below, and it is difficult to say conclusively if this performance trend is actually due to gaming experience or to some other correlated factor in our participant pool.

However, if the apparent division of participants into two groups is due to gaming experience then future evaluation of haptic guidance methods should include participants with a diverse range of gaming backgrounds. It also suggests that future work should be done to investigate why gamers show this performance advantage and if Look-Ahead Guidance truly is less sensitive to the effect of gaming experience as is suggested in Figure 5.13 or if this artifact is the result of gamers' innate skill at path following with our haptic interface.

We asked questions in our post-experiment interview about video gaming experience because anecdotal evidence from similar experiments conducted by our research group suggested that it might influence results. In hindsight, it would have been desirable to ask more specific questions about gaming experience, such as types of games played, and to
seek more accurate estimates of playing time. We speculate that participants who play highly interactive games, such as driving simulators and first person shooters, will potentially be more adept at our experimental task than game playing participants who play less interactive games, such as puzzle based games. In addition, when we ran our experiment it was midterm time at the University, and since most of our participants were University students they probably had been studying more than usual during this period. This may have lead to less game playing time than usual in the time frame before they participated in our experiment. We feel that some participants may have reported a lower than normal average weekly game playing because of this and hence our desire for more accurate, and longer term, gaming time measure(s). These additional measures would help interpretation of the effect of gaming experience on path following performance.
Chapter 7

Conclusions, Contributions & Future Work

In this chapter we present the conclusions that we draw from our work, list our contributions to the knowledge of haptic guidance, and suggest future work to address interesting problems.

7.1 Conclusions

We set out with the goal of studying usable haptic guidance methods that assist users to accomplish a task as compared to performing the same task without haptic guidance. We considered a guidance method to be usable if users expressed aesthetic acceptance after interacting with the haptic guidance method, while also achieving a sense of improved performance with it. We did not think that potential field haptic guidance, the previous state of the art for a driving task, was a usable haptic guidance method by our definition.

To avoid abrupt guidance forces, yet still be able to guide a user, we speculated that the system would need to predict the state of the system and apply the appropriate guidance forces early. A search of the previous work with look-ahead guidance in autonomous guidance systems, and with a look-ahead being used to stabilize a particular example of a potential field force feedback guidance method, validated our initial speculation.

Thus, we designed and implemented a look-ahead haptic guidance method for a one
degree of freedom (DoF) haptic interface. We evaluated the performance and usability of this guidance method in a simple path following task compared to the performance and usability of No-Guidance and of a version of potential field guidance. We found that Look-Ahead Guidance performed significantly better than both No-Guidance baseline and Potential Field Guidance. The majority of participants in our experiment preferred the feel of the Look-Ahead Guidance compared to the feel of No-Guidance and to the feel of the Potential Field Guidance, suggesting that Look-Ahead Guidance is more usable than the other methods.

We found that the physical characteristics of haptic interfaces used to display guidance forces have a large effect on usability. One example is the usability of a small knob compared to that of a steering wheel. Another important usability consideration is the correspondence between a user’s goals and the guidance forces applied by the system. It is important for the guidance forces displayed to agree with the user’s goals. Finally, the design and evaluation of haptic guidance methods requires careful consideration of a potential user’s background with highly interactive dynamic systems, such as video games.

We have shown that Look-Ahead Guidance performs well across a range of path complexities and visibility levels, and we expect that it will provide similar benefits for a wide range of guidance tasks. Specifically, we envision that any task where a user can overshoot a constraint will benefit from haptic Look-Ahead Guidance because it offers helpful and usable tactile feedback that is more tightly coupled to a user’s control modality than acoustic or visual feedback.

7.2 Contributions

We have contributed a number of useful elements to the field of haptic guidance, ranging from simulation software to insights on haptic guidance interaction issues.

Simulation Software

Building upon the foundation provided by the OpenSteer framework (Reynolds, 2003), we developed a straightforward and easily modified simulation environment with a user controllable vehicle model. This simulation environment can be used as is or extended to
further study haptic guidance and related problems.

Usable Haptic Guidance Method

We developed and evaluated a predictive haptic path guidance method that exhibited significant usability and performance benefits compared to No-Guidance and to the popular Potential Field Guidance method. The insights we provide into the pros and cons of the design and implementation of our Look-Ahead Guidance method will help the development of future haptic guidance methods in areas such as the control of animation and path tracing, because fellow researchers may learn from our mistakes and innovations.

Usability Considerations

We have identified a number of factors related to the design and implementation of haptic guidance methods that affect usability and task execution performance.

7.3 Future Work

In this section we present improvements to our current system as well as future work to address more general haptic guidance questions.

7.3.1 Improvements to Current System

Time was a major constraint while developing our system's hardware and software which forced us to make some concessions, primarily with respect to the design of our haptic interface and the design of our guidance methods. In this section we address these concessions and identify improvements that would be important should this line of investigation continue.

7.3.1.1 Hardware Improvements

Limited design and fabrication resources, combined with time constraints, limited the size and power of the physical interface we used for our experiment. We used a relatively small motor (see Section 3.3) to drive our one DoF haptic interface. We would have preferred to use a steering-wheel sized (and shaped) interface because it would have been more familiar to users of driving-type tasks. A steering-wheel-style force feedback interface with the
performance characteristics we desire (in particular, sufficient torque and dynamic response) would have to be custom built. The Stanford Dynamic Design Laboratory (2002) built such a device using an 80 W Maxon motor and a 10:1 cable drive transmission. We would like to build a similar device and use it for future studies on haptic path guidance.

7.3.1.2 Velocity Control

An obvious extension to our work is to permit the user to control the velocity of the vehicle; ideally via a control pedal. This would make the task more similar to driving in the real world and would therefore produce results more applicable to a real driving task, but this solution would also present some analysis difficulties. A potential problem with analysis is that a user could creep along the path, be able to follow it exactly, but never feel, or be subject to, a guidance force. A secondary task, and associated performance measure, to encourage the user to follow the path as accurately and quickly as possible would address this particular problem, but this would in turn require a multi-variate analysis of path following performance that addressed both time to complete task and path following accuracy.

7.3.1.3 Vibratory Feedback

Another method of using haptic information to assist a user in guidance tasks is that of haptic cues, such as vibration, to indicate an approaching constraint or constraint violation. We implemented rudimentary vibratory feedback based on that of highway rumble strips, which vibrate the steering wheel if you get too close to the edge of the road, but we did not evaluate this feedback method for reasons discussed in Section 4.2.1. A vibrotactile signal in combination with an active guidance force might provide extra and, if well designed, intuitive information about the state of the system being controlled than would a vibration or active guidance force on their own.

7.3.1.4 Quantitative Performance Metric

An essential tool for future path following experiments is a more robust measure of path following performance than the mean square error method we employed. We suggested many possible performance metric options to explore in Section 6.1.1.2, but it might not be
possible to robustly represent path following performance with a single measure. If this is the case, which is very likely, then multi-variate path following performance measures and associated analysis will be the only option for proper analysis.

7.3.2 The ‘Big Picture’

Out of necessity, our work addressed a narrowly defined problem while attempting to address considerations of more general haptic guidance problems. This is a list of future work in the general area of haptic guidance that we speculate are interesting problems arising as a result of our contributions:

Visual Feedback

The effect of the visual feedback method could be a critical factor in the effectiveness of haptic guidance. Our task had direct visual feedback of the path being followed. What if this is not the case, and the visual feedback is more abstract such as the motion of an articulated figure in a physically-based dynamic simulation? Is look-ahead haptic guidance effective when the constraints on the dynamic simulation are not as easy to visually recognize as the edges of a road are?

Measuring Performance

We found that effectively measuring path following performance is difficult, but this problem is not limited to path following. More research into quantifying a user’s performance at controlling highly interactive tasks is an important component of any future research on haptic guidance of such tasks.

Guidance Forces that Meet a User’s Goals

We believe that it is important for guidance forces to match a user’s goals. It is a difficult problem for the guidance Intelligent System to be ‘intelligent’ enough to predict the state of the system being controlled by a user — far less trying to predict the user’s intentions. However, doing so is potentially even more critical with more complex tasks than our simple driving task, especially if the user has the ability to make a choice. For example, what kind of guidance forces should be displayed at an intersection of two paths, or to avoid an obstacle?

If guidance forces only meet a user’s goals some of the time, what effect will this have on
the user’s confidence and acceptance of the guidance feedback? Is it better not to display guidance forces if there is a chance they will not meet the user’s goals?

Dependence

Will a user become dependent on haptic guidance to accurately perform a task? This could be a problem if guidance is not always available.

Higher Dimensional Guidance

We studied a simple one DoF haptic guidance problem, but many interesting dynamic tasks have more than one control DoF. How will look-ahead haptic guidance perform at such tasks? Could haptic guidance make it easier to achieve basic movements in a complex, multiple control DoF animation and allow more attentional effort be devoted to artistic movements? Is there a difference between applying multiple DoF guidance forces through a tightly coupled haptic interface such as a PHANTOM compared to an uncoupled haptic interface such as a haptic steering wheel and haptic pedal? How do these more complex haptic interfaces and guidance forces interact with a user’s motor control system?

Users’ Ability to Control Interactive Dynamic Simulations

Why do gamers appear to have an advantage at controlling highly interactive dynamic tasks? Are there other user characteristics that have an influence on performance of these tasks? What can be done to make haptic guidance accessible to all users?
Bibliography

Appendix A

Values of Simulation Variables Held Constant During Experiment

Table A.1: Value of Constants During the Experiment

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(</td>
<td>w</td>
</tr>
</tbody>
</table>
Appendix B

Experiment Instructions

Haptic Path Guide Experiment Instructions

October 20, 2003

I am looking at how force feedback can be used to help guide a user along a path. In this experiment you will perform a series of trials where you control the direction of a vehicle using a knob. Your primary goal is to follow the green path as closely as possible. Your secondary goal is to keep the center of the vehicle as close as possible to the center of the path which is drawn as a red line. Throughout the experiment you will be exposed to different force feedback methods, path shapes and visibility levels. You will have approximately 5 minutes to familiarize yourself with the path following task. After this familiarization phase the experiment will begin when you are ready.

The experiment consists of 6 blocks of 30 trials each. Each trial will take approximately 10 to 20 seconds. After each block of 30 trials you will be asked to answer some questions about your experiences with the trials in that block. At the end of the experiment I will ask you a few questions about your experiences.

Please adjust the height of your chair and the position of the knob to be in a comfortable configuration.

If you have any questions please ask them now.

When you have finished reading this let the experimenter know and we will start the familiarization phase.
Appendix C

Interview Questions

Interview questions to ask participant by experimenter:

How old are you?

What is your dominant hand?
Right Left

Do you play video games?
Yes No

If yes, approximately how many hours of video games do you play per week?
Hours:

Do you drive?
Yes No

If yes, how many years have you been driving?
Years:

How often do you drive?
Daily Weekly Infrequently

Do you have any previous experience with force feedback devices?
Yes No

There are three distinct force feedback methods and all the trials in one block had the same force feedback methods. So you experienced two blocks of each force feedback methods. Of the last three blocks which one had the force feedback you liked the most?
1 2 3
Why?
Did you have any problems with any of the conditions?

Do you feel that any particular force feedback condition improved your performance?

Any other questions/comments?
Appendix D

R Details

D.1 ANOVA

For our experimental design detailed in Section 4.2 the proper way to call the `aov()` function in R looks like:

```r
aov(mse ~ ff*path*visibility +
    Error(session/(ff*path*visibility)), data = experimentData,
    subset = block >= 4 & participant != 12)
```

The `experimentData` object is an R data frame with one row per unique combination of independent variables with the MSE value averaged across the five repetitions of each such combination seen by each participant in the last three blocks of the experiment. Each row of the data frame has the following fields: `mse` (MSE score), `ff` (Guidance (Force Feedback) Method), `path` (Path Complexity Level), `visibility` (Visibility Level), `block` (Block Number), and `participant`. See the R reference manual for details on the `aov` function (R Development Core Team, 2003).

D.2 Boxplot Details

The dot in the box is the median of the data points. The box itself extends between the first and third quartile. The “whiskers” extend from the box to the most extreme data
point that is no more than one and a half times the inter-quartile range (IQR). Any values falling outside of the whiskers (called outliers) are drawn as open circles.
Appendix E

Experiment Consent Forms

The following three pages are a copy of the consent forms given to each experiment participant at the beginning of a session.
You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of
the consent form:

NAME ____________________________
(please print)

SIGNATURE _________________________ DATE ________________

If you have any concerns regarding your treatment as a research subject you may contact the
Research Subject Information Line in the UBC Office of Research Services at 604-822-8598.
Appendix F

Raw Data

The following pages are the path trajectories for every participant over the last three blocks. There are three pages per participant, one for each of the guidance methods. The trials on a given page were thus executed during the same block (30 trials). Trials on each page are organized by path type (zigzag, bump, and curve). The plots contain trials with both visibility levels to conserve space. Thus there are ten trials per path type, evenly distributed (on average) between the reflections of each path type.

Participant 13 was the discarded outlier. Of the 17 participants used in the analysis participant 1 has the worst performance and participant 6 has the best.
Participant: 01, Guidance Method: No-Guidance
Participant: 01, Guidance Method: Potential Field
Participant: 01, Guidance Method: Look-Ahead
Participant: 02, Guidance Method: No-Guidance
Participant: 02, Guidance Method: Potential Field
Participant: 02, Guidance Method: Look-Ahead
Participant: 03, Guidance Method: No-Guidance
Participant: 03, Guidance Method: Look-Ahead
Participant: 04, Guidance Method: No-Guidance
Participant: 04, Guidance Method: Potential Field
Participant: 04, Guidance Method: Look-Ahead
Participant: 05, Guidance Method: No-Guidance
Participant: 05, Guidance Method: Potential Field
Participant: 05, Guidance Method: Look-Ahead
Participant: 06, Guidance Method: No-Guidance
Participant: 06, Guidance Method: Look-Ahead
Participant: 07, Guidance Method: No-Guidance
Participant: 07, Guidance Method: Potential Field
Participant: 07, Guidance Method: Look-Ahead
Participant: 08, Guidance Method: Potential Field
Participant: 08, Guidance Method: Look-Ahead
Participant: 09, Guidance Method: No-Guidance
Participant: 09, Guidance Method: Potential Field
Participant: 10, Guidance Method: No-Guidance
Participant: 10, Guidance Method: Potential Field
Participant: 10, Guidance Method: Look-Ahead
Participant: 11, Guidance Method: No-Guidance
Participant: 11, Guidance Method: Potential Field
Participant: 11, Guidance Method: Look-Ahead
Participant: 12, Guidance Method: No-Guidance
Participant: 12, Guidance Method: Potential Field
Participant: 12, Guidance Method: Look-Ahead
Participant: 13, Guidance Method: No-Guidance
Participant: 13, Guidance Method: Potential Field
Participant: 13, Guidance Method: Look-Ahead
Participant: 14, Guidance Method: No-Guidance
Participant: 14, Guidance Method: Potential Field
Participant: 14, Guidance Method: Look-Ahead
Participant: 15, Guidance Method: No-Guidance
Participant: 15, Guidance Method: Potential Field
Participant: 15, Guidance Method: Look-Ahead
Participant: 16, Guidance Method: No-Guidance
Participant: 16, Guidance Method: Potential Field
Participant: 16, Guidance Method: Look-Ahead
Participant: 17, Guidance Method: No-Guidance
Participant: 17, Guidance Method: Potential Field
Participant: 17, Guidance Method: Look-Ahead

- Diagram of different shapes and patterns related to the guidance method.

- The diagrams are arranged in a grid format, showing the progression or variety of the shapes.
Participant: 18, Guidance Method: No-Guidance
Participant: 18, Guidance Method: Potential Field
Participant: 18, Guidance Method: Look-Ahead