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A b s t r a c t 

As network connectivity has continued, its explosive growth and storage devices 

have become smaller, faster, arid less expensive, the number of on-line digital images has 

increased rapidly] Correspondingly, efficient and effective content-based retrieval systems 

for handling image queries have become necessary. In addition, users are often interested 

in local contents within subimages. In this thesis, we develop Padding and Reduction 

Algorithms to support subimage queries.of arbitrary size based on local color information. 

The idea is to estimate the best-case lower bound to the dissimilarity measure between 

the query and the image. By making use of multiscale representation, this lower bound 

becomes tighter as the scale becomes finer. Because image contents are usually pre-

extracted and stored, a key issue is how to determine the number of levels used in the 

representation. We address this issue analytically by estimating the required C P U and I/O 

costs, and experimentally by comparing the performance and the accuracy of the outcomes 

of various filtering schemes. Our findings suggest that a 3-level hierarchy is preferred. 

We also study three strategies for searching multiple scales. Our studies indicate 

that the hybrid strategy with horizontal filtering on the coarse level and vertical filtering 

on remaining levels is the best choice when using Padding and Reduction Algorithms. 

Using the hybrid search strategy in the multiscale representation with the determined 

number of levels, the best 10 desired images can be retrieved efficiently and effectively 

from a collection of a thousand images in about 3.5 seconds. 
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Chapter 1 

Introduction 

1.1 Image Databases 

Over the past few decades, database management systems (DBMSs) have been recognized 

as tools with practical value for handling large amounts of data. A primary purpose of 

a D B M S is to provide an environment for efficient and effective retrieval and storage of 

data. Until recently, many DBMSs were designed to handle only alphanumeric data. 

. In recent years, advances in technologies for scanning, networking, and C D - R O M s 

have lowered the prices for disk storage. These advances, coupled with acceptance of 

.common image compression, and file formats, enable users to acquire, store, manipulate 

and transmit large numbers of images. As a result, the number of digital image archives 

. has increased tremendously. The use of images and graphics.in World-Wide Web publi­

cations has also increased at an incredible rate. In addition, images are generated at an 

increasing, rate by growing number of sources such as civilian and military satellites as 

well as commercial satellites, instruments used in petroleum and mining industries, med­

ical information systems, Geographic Information Systems (GIS), and art galleries and 

museum management systems. For example, an estimated 281 gigabytes (GB) of image 

data will be produced daily by the instruments on two Earth Observing Systems plat-
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forms [Castelli et al 1997]. With all these changes, we need the D B M S s to support not 

only traditional alphanumeric data, but also visual-based data in the form of still images. 

Image databases also play important roles in the four "Grand Challenge" appli­

cation domains — (1) Geographic/Environmental Information Systems, (2) Engineer­

ing/Scientific Visualization Systems, (3) Medical Information Systems, and (4) Educa­

tion Systems — which were identified in the 1992 US National Science Foundation work­

shop on visual information management systems [Jain 1993]. The demands for image 

database management systems (IDBMSs) also increase in other application areas like 

stock-photography for remote printing, retail cataloging, art work retrievals, advertisement 

creation, and imaging clip arts [Sawhney and Hafner 1993, Barber et al 1994, Gudivada 

and Raghavan 1995, Petkovic et al 1996, Castelli et al 1997]. 

1.2 Content-Based Retrieval 

Traditional database retrieval technology uses an "exact match" approach. To do so, 

traditional structured alphanumeric information is indexed by descriptive keywords or 

numeric descriptors. Due to the success in handling alphanumeric data, many IDBMSs 

also use the "exact match" approach in handling image data. In particular, images are 

indexed based on some identifying text such as titles, captions, creator's names, production 

years, or catalog numbers. However, these identifiers are usually "external" to image 

contents (like color, texture, and shapes). Searching these external features of the images 

in the collection may not necessarily yield fruitful results. In many situations, users may 

remember the contents, but not the associated identifying text, of the images they have 

seen before. Thus, retrieval methods based on "external" identifiers may not be helpful. 

For example, if the images in a collection are indexed by names of painters, a user may 

not be able to retrieve the image of Mona Lisa unless he remembers the painter's name, 

Leonardo da Vinci . 
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Complementary to retrieval methods based on "external" identifiers, content-based 

retrieval (CBR) methods have, been developed. With C B R , images are searched and 

indexed based on contents of the images. These contents can be classified into.two 

main types: 

1. "syntactic" contents — such as color, texture, and shape — which are context inde­

pendent, and 

2. "semantic" contents — such as objects — which are context dependent: 

To exploit existing advantages of the "exact match" approach, some C B R systems rely 

on manually associating textual descriptions with the image contents. However, these 

textual content descriptors are subjective, domain dependent, and expensive to produce. 

Sometimes, the image contents of the underlying data, like texture and shape, are difficult 

or nearly- impossible to describe with text annotations. It is well known that "an image 

is worth a thousand words"; descriptors/keywords are often incomplete and not precise 

enough for satisfactory image retrievals. For example, an indexer, may assign keyword 

"sunrise" to an image which the user may perceive to be a sunset. As another example, 

for a picture taken at dawn, an indexer may associate the text annotation "moon" with 

an object which the user may perceive to be the sun. 

Given the rapid growth in the availability and demand for image data, the high 

labor cost involved with manually, associating text annotations with images, and the dif­

ficulty of anticipating every user's needs when assigning keywords and descriptors, it is 

more efficient to represent the image contents, particularly "syntactic" contents, by au­

tomatically extracted features. Since the "syntactic" contents are context independent, 

they can be extracted without prior knowledge of the images. In many C B R systems, 

these contents are extracted automatically using image processing methods. The results 

are feature vectors representing the contents. Examples of these vectors include: 

3 



• color 

Color can be represented by three-dimensional average color histograms [Niblack et al 

1993, Sawhney and Hafner 1993, Faloutsos et al 1994, Ashley et al 1995, Flickner 

et al 1995], low-dimensional dominant color histograms (sets of the most frequently 

occurring colors) [Ashley et al 1995], or three-dimensional moment-based color dis­

tributions composed of the first 3 moments (average^ variance, and skewness of each 

color) [Strieker and Orengo 1995, Dimai and Strieker 1996]. Since the discriminat­

ing power with these low dimensional feature vectors may not be adequate in some 

applications, color is also represented by rc-dimensional (where n 3, say 64) color 

histograms in other applications [Ioka 1989, Niblack et al 1993, Sawhney and Hafner 

1993, Faloutsos et al 1994, Sawhney and Hafner 1994, Ashley et al 1995, Flickner 

et al 1995, Tarn 1996]. 

• texture 

Retrieval is often based on modified versions of coarseness, contrast, and direction­

ality [Niblack et al 1993, Ashley et al 1995]. Coarseness measures the scale of the 

texture — the average size of the regions of similar intensity in an image; contrast 

describes the vividness of the pattern — the amount of variation between the light 

and dark areas in an image; and, directionality describes whether the image has a 

favored direction or is isotropic. 

• shape 

Shape can be represented in several different ways. A common representation is 

20-element shape vectors composed of a combination of heuristic shape features 

(for example, area, circularity, eccentricity, and major axis orientation) and sets of 

algebraic moment invariants [Niblack et al 1993, Ashley et al 1995]. 
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Regarding the "semantic" contents, they are context dependent and need to be extracted 

with prior knowledge of the images and of real world properties. Automatic extraction 

of the contents is not easy, and usually requires some computationally expensive scene 

analysis methods. 

1.2.1 Color and Spatial Similarity Matching 

Demands for Color and Spatial Similarity 

In the vision and image processing community, color has been widely used for image 

segmentation and classification tasks. Studies have been done suggesting that color plays 

ah important role in human understanding of an image [Hurvich 1981]. This explains 

why color is one of the most popular among all image contents, and is supported by 

many IDBMSs like QBIC [Flickner et al 1995], Virage [Bach et al 1996, Gupta 1997], and 

Miyabi [Hirata et al 1993]. 

A simple way to represent color is to use a single global three-dimensional average 

color histogram or a single global n-dimensional color histogram. Similarity matching 

is then performed by comparing the global feature vector of the query with the global 

feature vector of each image in the database. Matching appears to be computationally 

efficient. Color histograms contain information about the statistical distribution of various 

colors within the image; however, they lack information about the spatial locations of 

different colors. As a result, C B R without spatial information of color may not be effective 

due to the "random effect". For example, the color histogram for an image with upper 

portion black and lower portion white is the same as the color histogram for black/white 

checkerboard (Figure 1.1). Hence, C B R with both color and spatial information provides 

better selectivity. 
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50% black • 50% black 
50% white 50% white 

(a) Black/White Block , .(b) Black/White Checkerboard 

Figure 1.1: Example of "Random Effect" 

Processing of Color and Spatial Similarity 

Regarding the processing of spatial similarity matching, a method for handling spatial 

matching of objects exists [Sistla et al 1994, Sistla et al 1995]. In their system, the au­

thors use meta-data to describe the spatial relationships of objects. The meta-data are 

generated a priori and stored. During the query processing step, new rules about the spa­

tial relationships of objects can be deduced from the meta-data. Wi th deductive reasoning 

about spatial relationships of objects, desired images can then be retrieved. This method 

handles spatial matching of objects quite well, but it may not be practical in handling 

spatial matching of color because meta-data on color cannot be generated in the same way 

as the meta-data on objects. For example, given a checkerboard, it is not easy to describe 

the spatial relationships of the colors "black" and "white". 

A natural method to handle similarity matching with color and spatial information 

is direct spatial comparisons of the pixel colors of the query and the images. However, it 

can be more computationally expensive than comparison of global feature vectors because 

the number of pixels in an image is usually much greater than the number of dimensions in 

the feature vector. Moreover, it is usually assumed that the query and images are properly 



aligned in the direct spatial comparison; this assumption may not hold in many cases as 

the user may remember only an approximate location of color when specifying the query. 

With these problems, direct spatial comparison may not be helpful. 

A n alternative method to capture information .about the spatial distribution of 

color is to divide an image into several blocks and create a color histogram for each of 

the blocks. For example, the system presented by Gong et al divides the image into 9 (= 

3 X 3) blocks [Gong et al 1994]. In QBIC, the image is divided into a grid of either (a) 6 

vertical X 8 horizontal blocks or (b) 9 vertical X 12 horizontal blocks for partition-based 

search [Ashley et al 1995]. In these systems, each image block is of a certain size and of a 

certain scale. So, similarity, matching is applied on these uni-scale image blocks to handle 

color and spatial similarity. To improve the efficiency and the effectiveness of C B R , it 

seems appropriate to explore and analyze the possible use of multiscale matching. 

1.2.2 Multiscale Matching 

Demands for Multiscale Matching 

For similarity matching with fixed grid segmentation, color histograms for all blocks in 

the grid need to be examined during the query processing step. The efficiency and the 

effectiveness of C B R systems depend on the quality of the segmentation and the relevance 

of the segmentation to the user's needs. In some situations, the scale at which the images 

are blocked may be considered too fine. Applying similarity comparisons to all these fine 

blocks of the query and the images may not be worth the effort. For example, comparing 

every block of a red-only query with the corresponding block of the non-red images seems 

inefficient. In other situations, the scale at which the images are divided may be considered 

not fine enough for discriminating the desired images from the collection. Hence, picking 

the best scale at which the images are blocked is not easy. 

To deal with the problem, multiscale matching can be applied. Poor matches can be 



identified and then eliminated by comparisons on feature vectors at the coarse granularity 

level. For example, non-red images can be filtered out by comparing global feature vectors 

of the red-only query and the database images. On the other hand, if the current scale 

does not provide satisfactory discriminating power, matching can be performed at a finer 

granularity level when using multiscale matching. 

Processing of Multiscale Matching 

To aim for efficient and effective C B R , a search algorithm that makes use of multiresolution 

wavelet decompositions of query and images has been proposed [Jacobs et al 1995]. Coeffi­

cients of the decompositions are distilled through processes of truncation and quantization. 

During the query processing step, the algorithm simply compares the number of distilled 

coefficients that are common in both the query and the images. With the algorithm, 

desired images can be. retrieved efficiently and effectively by submitting a whole-image 

query. To do so, users are required to know the color distribution of the entire image. In 

many cases, users may not know or care about the color distribution on some portion of 

the image, and they may want to retrieve the desired images by posing a subimage query. 

Unfortunately, subimage queries cannot be handled by the algorithm. 

Recently, a formal framework was presented for designing search algorithms which 

can identify target images by spatial distribution of color [Chen et al 1997]. The frame­

work is based on a multiscale representation of both the image data and the associated 

parameter space that must be searched. To process the whole-image query, a branch-and-

bound algorithm is used. The algorithm eliminates poor matches at coarse scales with 

minimum computation. This insures that each image is only searched to a scale necessary 

to determine if it is a potential match candidate. 

Using the branch-and-bound algorithm, all the images in the database are checked 

at a coarse scale in the first iteration. Then, the algorithm proceeds to finer scales in 
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non-descending order of distance value 1 . In general, the branch-and-bound algorithm 

works in such a way that it always keeps track of distance values of all images contending 

for further consideration. Images with smallest values are "extended" one level (to the 

next/finer scale). Then, these most recently "extended" images are considered, along with 

the remaining old ones; again, images with smallest values are "extended". The process 

repeats until, the target images are found. Notice that at each iteration, the next set 

of images to be "extended" contains images with smallest values, and the set, does not 

necessarily include images in the current set or images at the current level. Hence, jumping 

back and forth among images and levels may occur frequently. For large image databases, 

such jumping makes it hard to optimize file organization and buffer management, and may 

impose a high I /O cost. To avoid jumping, developments of some other search strategies 

seem appropriate. 

Like similarity matching in the uni-scale representation, color histograms at each 

scale are usually extracted and stored prior to execution time. The efficiency and the 

effectiveness of the C B R systems are expected to be affected by the number of levels 

used; as such, we need to choose the number of levels carefully through analyses and 

experiments. However, detailed analytical.and experimental results for the determination 

of a suitable number of levels are seldom provided in depth. 

Furthermore, it is observed that these multiscale systems cannot handle subimage 

queries. As subimage queries are useful in many applications, investigations on how to 

make use of multiscale representation in developing algorithms for dealing with subimage 

queries are worth pursuing. 

'A distance value measures the dissimilarity/distance between the query and the image. 
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1.2.3 S u b i m a g e Q u e r y M a t c h i n g 

Demands for Subimage Queries 

Many current IDBMSs support only whole-image matching, but not subimage matching. 

However, it is well known that human memory is weak in retaining a fine granularity of 

spatial information of color. In many cases, the user does not remember every detail of 

the image he has seen before, and he remembers only a portion of the image. And in other 

cases, the user is interested in local image contents. For example, a user may want to find 

images of national flags with the Union Jack in the upper left corner. As another example, 

a user may be interested in finding all images of sunrises where the sun is rising in the 

upper right portion of the image. Then, whole-image matching may not be helpful because 

the user does not know or care about the color distribution on the remaining portion of 

the image. For instance, each of the national flags in Figure 1.2 contains the Union Jack 

in the upper left corner, but the remaining portion is quite different. With whole-image 

matching, the user needs to come up with the color distribution on the remaining portion 

of the image. Hence, subimage query matching is needed. 

upper-left: Union Jack upper-left: Union Jack upper-left: Union Jack 
remaining: mainly blue remaining: mainly red remaining: mainly light blue 

(a) Flag of Australia (b) Flag of Bermuda (c) Flag of Fi j i 

Figure 1.2: National Flags 
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Processing of Subimage Queries 

As mentioned in Subsection 1.2.1, in order to capture information about the spatial distri­

bution of color, some IDBMSs divide an image into several blocks and create a histogram 

for each of the blocks. It is observed that a subimage query may occupy some but not 

all the blocks. So, to handle subimage matching, one can compare only the histograms 

of the "occupied" blocks of the query and the corresponding blocks of the images. For 

the systems in which the user can assign weights to different blocks,, one can assign a 

weight of 0 to the "vacant" blocks (blocks that are not occupied by the subimage query). 

However, a problem with these techniques is that it is not unusual to have a query whose 

size is not an integral multiple of the chosen block size (for example, a subimage query 

— whose size is of the image — can be submitted to a collection of images with 2 x 2 

segmentation, in which, each segment covers \ of the entire image). 

To deal with subimage queries of arbitrary size, template matching, algorithms 

can be applied. The idea is that the user query consisting of s x s pixels is served as a 

"template" and is compared with every image subregion of the same size. Notice that if an 

image contains 5 x 5 pixels (where S > s), there are (5 — s + l ) 2 image subregions having 

the same size as the "template". The smaller the query size, the greater the number of 

image subregions to be compared. This may lead to a huge amount of computation, and 

thus algorithms based on template matching are usually inefficient. In general, each image 

contains 5 2 subregions of size l x l pixel, (5 — l ) 2 subregions of size 2 x 2 pixels, and so 

on. These add up to a total of s('g" t"1M2 S+1) subregions with size ranging from l x l pixel 

to 5 X 5 pixels. Thus, pre-extraction becomes impractical. For these template matching 

algorithms, image contents are usually not precomputed or stored, and execution times are 

expected to be very high. Therefore, other algorithms for performing subimage matching 

efficiently and effectively are needed. 
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1.3 Problem Definition and Contributions 

In the previous section, the demands for similarity matching on color and spatial informa­

tion have been mentioned. To process the query, some IDBMSs use fixed grid segmentation 

approaches. Some multiscale matching approaches have been proposed to further improve 

the efficiency and the effectiveness of C B R . However, detailed analytical and experimental 

results on the determination of the suitable number of levels for the approaches are seldom 

reported, and comparisons of different search strategies using multiscale representation are 

also rare. Moreover, subimage queries, which are in demand, cannot be handled by many 

IDBMSs. Techniques for handling these subimage queries of arbitrary size are needed. 

Therefore, in this thesis, the following questions are investigated: 

1. How can we deal with subimage queries of arbitrary size ? 

Two efficient and effective algorithms for handling subimage queries are de­

veloped, namely Padding and Reduction Algorithms. The idea is that Padding and 

Reduction Algorithms estimate the best possible color histograms for a subimage 

query Q and an image block I of size larger than Q by either: 

(a) enlarging the query Q into a new query Q E n l a r s e d that is of the same size as the 

image block I , or 

(b) reducing the image block I to a new block I E d u c e d that is of the same size as 

the query Q. 

More precisely. Padding and Reduction Algorithms give lower bounds to the Eu­

clidean distance between the histograms of subimage query Q and image block I : 

Padding: min (q H ^ r a m _ 1 Histogram) 7 (Q H i s ^ r a m ~ 1 Histogram) 

Reduction: min (Q Histogram - I g f s t g r a m ) 7 , (Q Histogram " I Histogram) 
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For given Q and I, both algorithms provide the same best-case lower bound distance 

estimation. However, their efficiency may differ significantly, depending on the size 

differential between Q and I . If the size differential is large, the Reduction Algorithm 

is more efficient; otherwise, the Padding Algorithm is the winner. 

Depending on the location of I , similarity matching can incorporate color 

similarity as well as spatial similarity. For instance, the distance between Q and I is 

defined as a weighted sum of the form: 

{3 X histogram distance + (1 — (3) X positional distance 

where the histogram distance is computed by either the Padding Algorithm or the 

Reduction Algorithm. The weighting factor j3 is chosen by the user to specify a 

preference on the relative importance of color distribution and its spatial information: 

2. How many levels do we need for multiscale representation ? 

With multiscale representation, an image is divided into several blocks, and 

an associated color histogram is created and stored for each of the blocks, Each 

block can be further divided into subblocks. In this thesis, images are divided into 

four levels of (sub)blocks: 

(a) A t Level H , the entire image is represented by a single color histogram. 

(b) A t Level I, the image is divided into four (non-overlapping) blocks 2 , and each 

block is represented by a color histogram covering | of the entire image. 

(c) At Level J , each block at Level I is further divided into four subblocks, and each 

subblock is represented by a color histogram covering ^ of the entire image. 

(d) At Level K , each, subblock at Level J is again divided into four, each of which 

. is represented by a color histogram covering ^ of the entire image. 

2Alternatively, an image in the database can be divided into five or nine overlapping blocks. 
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Given user queries of arbitrary size, we investigate the number of levels that are 

required for efficient and effective retrieval of the desired images. With four levels 

of (sub)blocks for each image, many multi-level filtering schemes can be developed 

to find the desired matches. For example, the choices include a four-level H I J K 

scheme, a one-level J scheme, a two-level HJ scheme that skips Level I, and some 

other schemes. Analytically, we set up cost models to evaluate all 15 possible filtering 

schemes, and estimate their C P U , I /O, and combined C P U & I / O costs. The results 

tend to favor: 

• the filtering schemes which start with Level H (or Level I), and 

• the filtering schemes which do not skip the intermediate level. 

Experimentally, given subimage queries of particular size, both the efficiency (for 

example, the time required to find the desired images) and the effectiveness (for 

example, the number of desired images being retrieved) are measured. The results 

show that the three-level HIJ filtering scheme works well for most queries when 

operating together with the Padding and Reduction Algorithms mentioned earlier. 

Therefore, only three levels (up to 4 x 4 segmentation) are needed for the multiscale 

representation. 

What is the best strategy for searching multiple scales ? 

The branch-and-bound algorithm proposed by Chen et al [Chen et al 1997] is 

accurate in its search, but it can be inefficient for large databases, In particular, the 

number of images the algorithm must keep track of can be large, and jumping back 

and forth among images and levels may be required frequently. For large databases, 

such jumping makes it hard to optimize file organization and buffer management, 

and may generate a large number of I/Os. 
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In this thesis, we consider three strategies that try to avoid the kind of jump­

ing mentioned above: 

(a) Search P V (Pure Vertical) — a strategy in which a vertical filter searches each 

image "vertically" across scales. 

The idea is that images are checked one after another. A t any point 

in time, a set of u images currently having smallest distance values are kept 

(where u is the number of images requested by the user). For each image, 

.. the algorithm keeps proceeding to finer scales until (i) the distance value at a 

particular scale is already so large that the image cannot be qualified as a good 

match, or (ii) the finest scale is reached and the image is either discarded or 

selected as a member of the answer set, depending on the distance value. 

(b) Search P H (Pure Horizontal) — a strategy in which horizontal filters search 

"horizontally" across the database level by level. 

The idea is that all the images in the database are checked by the .filter at 

the coarse scale in the first iteration. Poor matches at this scale are eliminated. 

In subsequent iterations, images that are left from the previous level/scale 

are checked by filters at finer scales, and poor matches are again removed. 

The process repeats until the finest scale is reached and the top u images 

are returned. 

Search P H is more efficient than Search P V , because the latter tends 

to require many comparisons at the finest scale, particularly at the beginning 

of the search. However, in Search P H , it is hard to determine the number of 

images to be carried over from the current level to the next level. For some 

queries, if such a number is small,-' an image I that gives a good match at a 

finer scale may have been eliminated before reaching the finer scale. This may 

happen when there are sufficiently many images which are not as good as I at 
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the finer scale but are better than I at the coarser scale. Consequently, while 

delivering efficiency, Search P H may suffer from a loss of effectiveness. . 

(c) Search H V (Horizontal-and-Vertical) — a hybrid of the above two search strate­

gies in which we use a horizontal filter on the first level and vertical filters on 

the remaining levels. 

The idea is that all the images in the database are checked by a horizon­

tal fijter at the coarse scale in the first iteration. Poor matches at the coarse 

scale are eliminated. For each of the images that are left, the algorithm keeps 

proceeding to finer scales until (i) the distance value at a particular scale is al­

ready so large that the image cannot qualify as a good match, or (ii) the finest 

scale, is reached and the image is either discarded or selected as a member of 

the answer set, depending on the distance value. 

In this strategy, the detailed search with the use of vertical filters is 

applied not to the set of all the images, but only to its most promising subset.. 

The experimental results confirm that Search H V is the best strategy for re­

trieval of desired images when compared with the other two strategies because 

Search H V keeps a good balance of performance/speed and accuracy. 

• • • / 

1.4 Outline of Thesis 

In the next chapter, related works are described. We give an overview of some of the 

research projects in C B R , and mention the research projects for handling color and spatial 

similarity, multiscale matching, and subimage queries. Chapter 3 focuses on Padding 

and Reduction Algorithms. Concepts, implementations, and experimental results are 

discussed. Chapter 4 describes the multiscale representation and a strategy for searching 

such a representation (Search P V ) . Analytical and experimental results for each filtering 
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scheme are studied so that the second question mentioned in Section 1.3 can be answered. 

In Chapter 5, two more search strategies, namely Search P H and Search H V , are proposed. 

We compare both analytical and experimental results of the three search strategies. As 

a result, an answer to the third question mentioned in Section 1.3 is provided. Finally, 

conclusions and suggestions for future work are presented in Chapter 6. 
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Chapter 2 

Related W o r k s 

Efficient and effective content-based retrieval systems usually require that several impor­

tant objectives are satisfied, namely: 

• efficient indexing methods, 

• expressive query language, and 

• efficient and effective query processing and optimization. 

To achieve the goals, several research' projects have been carried out. 
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2.1 Indexing 

To handle a user query, image contents of the query are compared to the correspond­

ing image contents of the images in the database to determine which images are good 

matches. For efficiency, image contents are usually captured by feature vectors which 

are precomputed and stored. For a small database, sequential scanning of these feature 

vectors is fast. However, as the database grows, the linear scale-up of the sequential 

scanning becomes prohibitively slow. One way to speed up the process is to treat each 

feature vector as a point in n-dimensional space, and employ multi-dimensional indexing 

structures. Many multi-dimensional indexing structures have been designed. Examples 

are KD-trees [Samet 1990], R-trees [Guttman 1984], R+-trees [Sellis et al 1987], R*-trees 

[Beckmann et al 1990], SS-trees [White and Jain 1996], SS +-trees [Kurniawati et al 1997], 

TV-trees [Lin et al 1994], VP-trees [Chiueh 1994], and X-trees [Berchtold et al 1996]. 

The above indexing structures help in improving the efficiency for low dimensional 

feature vectors. However, for high dimensions, many of these multi-dimensional index­

ing structures explode exponentially with the dimensionality, and eventually reducing to 

sequential scanning. Given that image feature vectors are usually of high dimension­

ality (for example, it is not unusual to have 64-dimensional vectors for color features), 

ways to deal with this problem are needed. One way to deal with this "dimensional­

ity curse" problem is by using filters. A 2-level filtering approach has been proposed 

[Sawhney and Hafner 1993, Faloutsos et al 1994, Sawhney and Hafner 1994]. The idea is 

to abstract a low dimensional vector from each original high dimensional feature vector by 

an information preserving transformation. Based on distance values of the abstracted vec­

tors, images which are far from the query are eliminated. As a result, only a small number 

of candidates are left. The original high dimensional vectors of these candidates are then 

passed to the detailed matching operation to obtain the best matches. Unfortunately, the 

dimensions of abstracted vectors cannot be too high; otherwise, vectors cannot take full 
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advantage of multi-dimensional indexing structures. On the other hand, the dimensions 

of abstracted vectors cannot be too low; otherwise, the detailed matching at the finest 

level needs to be operated on a large number of high dimensional vectors. To improve the 

efficiency, a 3-level filtering approach has been proposed [Tam 1996, Ng and Tam 199.7]. 

The idea is to. add an additional intermediate level so that both the coarsest and the finest 

filterings can be more efficient. 

As the efficiency of spatial indexing structures usually deteriorates with the in­

crease in dimensionality, methods to compress or reduce the dimensionality of the image 

vector space without losing much information are necessary. One method is Karhunen-

Loeve (KL) Transformation, or Principal Component Analysis [Sedighian 1995, Ng and 

Sedighian 1996]. The idea is to transform the data space by removing dependent di­

mensions and converging most of the information into the first few dimensions. Another 

method is to apply singular value decomposition and clustering techniques recursively to 

feature vectors until the dimensions cannot be further reduced [Thomasian et al 1997]. 

2.2 Query Language 

With the ever-growing use of the Internet, there are more and more image database servers. 

To maximize the efficiency and the throughput of an image database server, it is benefi­

cial to have an expressive query language so that the user can be as precise as possible 

in specifying his query. Such precision in query specification may lead to reductions in 

the number of query reformulations over the network. In the past few years, many query 

language systems have been developed. Examples are QBIC [Sawhney and Hafner 1993, 

Faloutsos et al 1994, Sawhney and Hafner 1994, Flickner et al 1995, Finn 1996], Virage 

[Bach etal 1996, Gupta 1997], Miyabi [Hirata et al 1993], Photobook [Pentland et al 1994], 

and F M R [Sakamoto et al 1994]. With these systems, querying from image databases 

for applications with a dense image space (for example, medical image management 
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or remote-sensing where the images are very similar) as well as a sparse image space 

(for. example, art gallery management where the neighboring images are different from 

each other) is possible. Recently, another query language, EXQUISI , has been proposed 

[Faulus 1996, Faulus and Ng 1996, Faujus and Ng 1997]. To incorporate imprecision and 

ambiguities in user queries, the user is allowed to specify a range of values for image 

content, and all values within the range are then treated as identical during the query 

processing step. Moreover, an additional reformulation function is provided so that the 

user can specify the parts of the returned image he wants to include or exclude. 

2.3 Query Processing based on Color and Spatial Similarity 

. In the vision and image processing community, color has been widely used for image seg­

mentation and classification tasks. Studies have been done suggesting that color plays 

an important ..role in human understanding of an image [Hurvich 1981]. This explains 

why, among all image contents, color is one of the most popular, and is supported 

by IDBMSs like QBIC [Flickner et.al 1995], Virage [Bach et al 1996, Gupta 1997], and 

Miyabi [Hirata et al 1993]. 

A popular way to represent color is to use color histograms. A color histogram holds 

information on color distribution, but it lacks spatial information on color. The problem 

may be overcome by dividing an image into several blocks and creating a histogram for 

each of the blocks. Locality information is captured as each of the histograms holds color 

distribution for a particular block in the image. The more blocks in the image, the more 

accurate is the locality information; however, more memory would be consumed in holding 

the histograms, and more computation time would be required for comparing histograms. 

It is a tradeoff between efficiency (time and space efficiency) and effectiveness. 

In Q B I C , the user is allowed to submit, queries on~ large image databases based 

on example images (query by example) as well as user-constructed sketches.and draw-
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ings (query by painting) [Sawhney and Hafner 1993, Faloutsos et al 1994, Sawhney and 

Hafner 1994, Ashley et al 1995, Flickner et al 1995, Finn 1996]. For query by example, 

similarity matching between the histogram of a query and the histogram of an image is 

based on the weighted Euclidean distance of the normalized histograms: 

(Query Histogram - Image Histogram) 7 A (Query Histogram - Image Histogram) 

where A is a similarity matrix with entries a tj describing similarity between color i and 

color j. The similarity matrix accounts for both the perceptual distance between the 

pairs of colors and the difference in the amounts of each color. Two types of histograms 

are used: 

1. average Munsell color histograms for handling average color queries. This kind of 

histogram is useful for images that have a dominant color or a small range of hues. 

The 3-dimensional average color histogram for each image is formed by adding up 

the red, green and blue components of each pixel. 

2. n-dimensional color histograms for handling histogram color queries. This kind of 

histogram is useful for searching images with a desired color distribution. To create 

a histogram, color space is usually divided into 64 ranges, and the percentages of 

pixels in each color range are counted. As a result, a 64-dimensional color histogram 

is formed. 

Regarding query by painting, QBIC retrieves images with similar colors in similar spa­

tial arrangement. For a partition-based method [Ashley et al 1995], each image in the 

database is divided into a grid of either (a) 6 vertical X 8 horizontal blocks or (b) 9 ver­

tical X 12 horizontal blocks. For each block, (a) an average Munsejl color histogram and 

(b) a partial color histogram consisting of the most frequently occurring colors and their 

frequencies are computed and stored. A t runtime, image contents of the query are ex-
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tracted in a similar manner. Similarity matching is based on the average of the distance 

values of all the blocks. 

Some other methods for representing color and spatial information and for com­

puting similarity measures have been suggested. For example, in the system presented by 

Gong et al [Gong et al 1994], the image is divided into 3 x 3 subareas. In addition to a 

histogram for the entire image, a histogram is created for each of the 9 subareas. With 

the observation that colors within an image do not spread widely in the color space, the 

authors use the top 20 bins (in terms of pixel counts) of the color histogram. Two parame­

ters, the Weighted Perimeter and the Weighted Angle, are extracted from the top 20 bins; 

they form hyper-polygons. Similarity matching is computed by comparing the values of 

the two parameters. 

In another system [Strieker and Orengo 1995, Dimai and Strieker 1996, Strieker 

and Dimai 1996] - this one based on the observation that important objects are usu­

ally placed in the center of images in many applications — the image is divided into five 

fuzzy regions (Figure 2.1): center, top-left, top-right, bottom-left, and bottom-right re­

gions. The authors use moment-based color distributions — (1) average, (2) variance, and 

(3) skewness of each (L*a*b*) color channel — which they claim to be more robust and 

more efficient than working with color histograms. 

Figure 2.1: Fuzzy Regions 



In Miyabi [Hirata et al 1993], images are divided into 8 regions using values on 

color and other image contents (such as texture). With an image regioning and merging 

technique, color information is encoded into a picture index and can be used in matching. 

For the VisualSEEk system [Smith and Chang 1996], Smith and Chang notice the. 

difficulty of picking the best scale at which the images should be blocked in fixed block 

segmentation. They use the color histogram back-projection method of Swain and Ballard 

[Swain and Ballard 1990] to segment the images instead. The encoding of color informa­

tion is done by using a binary color set in which only the colors that are sufficiently 

present in the region are selected. With this color set back-projection method, images can 

be retrieved effectively. 

One common point in these systems is that they have not explored the use of 

multiscale matching for further improvements on the efficiency and the effectiveness of 

C B R based on color and spatial similarity. 

2.4 Query Processing with Multiscale Matching 

The difficulty of picking the best scale at which the images should be divided in an 

I D B M S can be addressed by the use of multiscale representation. With the representation, 

comparing feature vectors at a coarse granularity level enables the identifications of poor 

matches from the collection of images.. On the. other hand, if satisfactory discriminating 

power cannot be provided by'the current scale, matching can be done at a finer granularity 

level which may lead to the retrieval of the desired images. 

In QBIC, query by painting is not only handled by a partition-based method,, but 

also by a region-based method [Ashley et al 1995]. Instead of relying on a fixed grid placed 

on the image, an approximate segmentation is used on the images and the query. The 

iterative metric space clustering algorithm 1 is used, which starts with each color in the 

'The algorithm is based on the concept of mutual nearest neighborhood. 
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image defining a cluster. A t each iteration, a pair of clusters is collapsed into a single 

cluster if their mutual ranks fall below the preset threshold. Color distance and spatial 

distance are combined during the clustering stage. For each color, a bounding rectangle 

is formed for each group of connected pixels having that color. Then, the bounding 

rectangles for a given color are successively clustered until one rectangle remains. As a 

result, multi-level color trees are formed. To process a user query, the image contents of 

the query are matched against the image contents of images in the database. In order to 

do so, distance values are computed for every color region of the query based on (1) the 

distance between the colors and (2) the distance between the trees. The distance between 

the trees is computed by comparing the query root with the image root as the first step. 

Each child of the query node is then.iteratively compared against the closest child of the 

matching image node. 

Another image querying technique has been proposed [Jacobs et al 1995]. In this 

system, the user query and the database images are decomposed using standard two-

dimensional Haar wavelet decomposition— which involves a one-dimensional decompo­

sition on each row of the image, followed by a one-dimensional decomposition on each 

column of the result. With the observation that the resulting wavelet coefficients of decom­

position can be truncated without losing much discriminating power, only the significant 

coefficients for each color channel (such as Y , I, and Q). are kept. In order to speed the 

search and reduce the storage, each truncated coefficient is then quantized to two levels 

representing the presence or the absence of the features.. As a result, for the query and 

the images, the overall average color as well as the indices and signs of the significant co­

efficients in each color channel are stored. Having the expectation that a vast majority of 

database images may not match the query well at all, the similarity score is computed by 

counting the number of matching coefficients in query and image. Like the region-based 

method in Q B I C , this image querying technique cannot handle subimage queries. 
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Recently, Chen et al presented a formal framework for designing search algorithms 

which can identify the desired images by spatial distribution of color [Chen et al 1997]. 

The framework is based on a multiscale representation of both the image data and the asso­

ciated parameter space that must be searched. To process the query, a branch-and-bound 

algorithm and a multiscale distance function are used. With the multiscale representation, 

both the query and the images are decomposed into a pyramid of feature vectors. Each 

level of the multiscale tree represents a scale, and each node at a particular scale contains 

a feature vector for the corresponding region of the images. A t the coarsest scale, the 

entire image is represented as a singlenode. For nodes farther away from the root, a more 

spatially localized region of the image is represented. The distance value at a particular 

scale is computed by adding the distances between the corresponding feature vectors of 

the nodes of the query and the image trees at that scale. 

Definition 2.1 To conduct the branch-and-bound search for retrieving the top u images 

from the collection: 

1. Check all the images in the database at the coarse scale in the first iteration, and 

compute the distance value for each image: 

2. Sort all images in non-descending order of distance value. 

3. Repeat until all top u images have reached the finest scale: 

(a) For each of the u images with smallest distance values, 

i . if the image has not reached the finest scale, extend one level/scale; 

i i . update the distance value of the extended image with the sum of the dis­

tances between the corresponding feature vectors of the query and the 

image at the extended scale. 

(b) Sort all images in non-descending order of distance value. • 
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Notice that at each iteration of the branch-and-bound search, the feature vectors used in 

the computation of distance values may be at adifferent level/scale and may be for images 

different from those in the previous iteration. Unless the feature vectors of all levels and 

for all images can be stored in memory, jumping back and forth in the data file so as to get 

the necessary feature vectors for computation seems unavoidable. The frequent jumping 

among different images and scales make it hard to optimize file organization and buffer 

management, and may generate a large number of I/Os. 

Example 2.1 In many database applications, it is hot unusual to retrieve the desired 

images from a collection of thousands of images. For simplicity, in this example, we try to 

find the top two images from a collection of five images using the branch-ahd-bound search. 

Let Scale 3 be the coarsest scale, and let Scale 0 be the finest scale. For the scales 

in between, the index decreases as the scale becomes finer.- In the first iteration of the 

branch-and-bound search, all five images are checked at the coarse scale (Scale 3), and a 

distance value is computed for each image. These images are then sorted in non-descending 

order of distance value, and the images with the two smallest values are the potential top 

two images. 

Image 1 Image 2 Image 3 Image 4 Image 5 

Iteration 

1 

Scale 3 Scale 3 Scale 3 Scale 3 Scale 3 

val: 25 val: 5. val: 65 val: 80 val: 10 

=$> potential top two images are Images 2 and 5 
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In subsequent iterations, the potential top two images are extended one level/scale 

and their distance values are updated; the images are then sorted and a new set of potential 

top two images is obtained. 

Image 1 Image 2 Image 3 Image 4 Image 5 

Iteration 

2 

Scale 2 Scale 2 

val: 30 val: 15 

=>• potential top two images are Images 5 and 1 

Iteration 

3 

Scale 2 Scale 1 

val: 35 val: 20 

=>• potential top two images are Images 5 and 2 

Iteration 

4 

Scale 1 Scale 0 

val: 32 val: 21 

=>- potential top two images are Images 5 and 2 

Iteration 

5 

Scale 0 

val: 33 

top two images are Images 5 and 2 

To aim for efficient retrieval, feature vectors at each level of the multiscale systems are 

extracted and stored prior to runtime. Since the system performance is expected to be 

affected by the number of levels, we need to choose the number of levels carefully through 

analyses and experiments. However, detailed analytical and experimental results for the 

determination of a suitable number of levels are seldom provided in depth. 
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2.5 Subimage Query Processing 

Many of the current IDBMSs support only whole-image matching, but not subimage 

matching. However, in many situations, users are often interested in local image contents. 

Due to the poor human memory capability for retaining a fine granularity of spatial 

information of color, users, in other situations, cannot recall all details of images they 

have seen before. With whole-image matching, users need to come up with the'color 

distribution on the remaining portion of the images which they may not know or care 

about. Hence, subimage matching is needed. 

To deal with subimage queries of arbitrary size, many template-based algorithms 

have been proposed. These include the use of traditional template matching techniques 

based on Euclidean distance for searching for the occurrence of a textured pattern inside 

each image in the database [Stone and L i 1995], and the use of classified template match­

ing techniques in which templates are classified according to texture and edge features 

[Tao and Dickinson 1996]. One problem with template-based algorithms is that they re­

quire a huge amount of computation due to the large number of positions to be compared. 

Another problem is that image contents are usually not precomputed or stored; as a re­

sult, query processing becomes very slow. Hence, other algorithms for handling subimage 

queries efficiently and effectively are needed. 

The RITAS system [Tao et al 1997] is a segmentation-based approach for retrieving 

textured images containing a pattern similar to the template. Here, each image in the 

database is divided using a quadtree segmentation technique. A quadtree is built by 

repeated low-pass filtering and down-sampling. A t the coarsest level, feature clustering is 

performed. Then a boundary refinement procedure is designed to improve the boundary 

each time when moving down from a higher level. After the segmentation process, for each 

of the segments, mean and standard deviation of texture energy measures are computed 

and stored in n-dimensional feature vectors. A n n-dimensional spatial relationship vector 
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is also created for each segment. During the query processing step, the query is segmented 

in a similar manner. The distance between the query and the image is computed by adding 

two measures, namely Relational Distance (measuring the difference in spatial locations) 

and Sum of Minimum Distance. For each query segment, a weighted Euclidean distance 

between the query segment and its most closely matched image segment is computed. The 

Sum of Minimum Distance can then be calculated by summing all weighted Euclidean 

distances. Notice that the system is built specifically for handling textured images. The 

efficiency and the effectiveness of this approach in handling color and spatial similarity 

are unknown. 

White and Jain presented a framework for developing engines that support subim­

age matching [White and Jain 1997]. The image representation used in their ImageGREP 

Engine is a set of binary images stored as bitmaps. The set of binary images is computed 

by running a bank of 166 color classifiers on the input image. Each color classifier maps 

an input image into a single binary image by determining whether an input image region 

corresponding to one bit in the output bitmap contains more than the threshold number 

of pixels quantized to that color. With this representation, each region is denoted by one 

of the Present or Absent states, and images can be searched using bitwise operations dur­

ing the runtime. To take account of subimage translation, all allowable translations are 

enumerated and stored. In general, the query processing time increases with the number 

of allowable translations. 

As noticed, not-many IDBMSs can handle arbitrary-size subimage queries based 

on color and spatial similarity. For the systems that can deal with subimage queries of 

arbitrary size, multiscale matching is rarely used. 
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2.6 Summary 

Several research projects have been carried out to aim for efficient and effective content-

based retrieval systems. To achieve the goals, one of the important objectives is to pro­

vide efficient indexing methods; Many multi-dimensional indexing structures have been 

designed to help improving efficiency for feature vectors that capture image contents. How­

ever, for high dimensional vectors, the "dimensionality curse" problem arises. To tackle 

the problem, multi-level filtering approaches (which perform preliminary matching on the 

low dimensional abstracted vectors and detailed matching on the original high dimen­

sional vectors of potential candidates) have been proposed, and information preserving 

transformations (which compress or reduce the dimensionality of the vector space) can 

be applied. 

The second objective is to develop expressive query languages. With them, efficient 

querying from image databases for applications with dense and sparse image spaces can 

be accommodated. 

The support of efficient and effective query processing and optimization, marks 

the third important objective. Wi th the popularity of similarity matching on color and 

spatial information, many IDBMSs store the information in. local color histograms. To 

process user queries, some IDBMSs use fixed grid segmentation approaches. For further 

improvement on the efficiency and the effectiveness of C B R , multiscale systems have been 

proposed. However, detailed analytical and experimental results on the determination of 

the suitable number of levels for these systems are seldom reported, and comparisons of dif­

ferent strategies for searching multiple scales are also rare. Moreover, in many situations, 

users are interested in, or can remember, only local image contents; therefore, subimage 

query processing is needed. Unfortunately, not many IDBMSs can handle arbitrary-size 

subimage queries based on color and spatial similarity. For the systems that can deal with 

subimage queries of arbitrary size, multiscale matching is rarely used. 
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Chapter 3 

P a d d i n g and R e d u c t i o n 

A l g o r i t h m s 

Many IDBMSs support whole-image queries, which specify the contents of the whole im­

ages to be retrieved. However, users may only remember or care about certain parts of 

the images. To answer queries of this kind, some systems segment an image into several 

blocks, each of which has an associated color histogram. One problem with this arrange­

ment is that subimage queries may be of arbitrary size, and not necessarily an integral 

multiple of the chosen block size. To handle the complication of arbitrary size,' some sys­

tems use template-based matching algorithms. A key problem with those algorithms is 

that a huge amount of computation is needed, because of the large number of positions 

to be compared. As such, we propose two algorithms, called Padding and Reduction, for 

dealing with subimage queries of arbitrary size. 
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3.1 Lower B o u n d to Histogram Distance 

In many IDBMSs, color is extracted automatically and, stored in n-dimensionai color 

histograms. Once the color histograms are created for the images in the database, there 

are a variety of ways to compute the similarity between the feature vectors of the whole-

image query and the image. One popular way is based on the Euclidean distance between 

the color histograms: 

(Query Histogram ~ Image Histogram) 7 (Query Histogram " Image Histogram) 

This measure can also be used in computing similarity between the feature vectors of 

the subimage query and the image subregion even if the query is not of the same size as 

the image subregion. However, comparing these two vectors may seem unfair as one of 

the vectors may contain more pixels than another. Due to the quadratic nature of the 

above Euclidean measure, the excessive pixels in one vector may dramatically influence the 

difference in the amount of a given color, and hence the resulting distance. For example, 

given that a query and three image subregions are represented by 3-dimensional vectors 

Q={ 2, 4, 52 ) T , /,=( 16, 18, 66 ) T , 72=( 44, 4, 52 ) T , and 73=( 27, 29, 44 ) T respectively, 

and that the color distribution of the query is the same as a portion of each of the first 

two (but not the third) image subregions, then the third subregion is a "poorer" match 

than the first two. However, using the above measure, the distance between Q and I3 

isT314, which lies in between 588 (the distance between Q and I\) and 1764 (the distance 

between Q and I2). Thus, with this measure of histogram distance, it is not easy to 

provide a satisfactory discriminating power. 

Alternatively, we can use normalized histograms, in which the percentage (instead 

of the pixel counts as in the standard histograms) of each color is stored; however, if 

the user is confident in the query, size when specifying his query, the use of normalized 

histograms may not be helpful. For example, given the Query and the two Images shown in 
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Figure 3.1, Image 1 is the better match. Unfortunately, using normalized histograms with 

the above Euclidean measure has an effect of scaling up the Query ^ As a result, Image 1 

can no longer match the Query perfectly; instead, Image 2 becomes a better match when 

operated with normalized histograms. In other words, to maintain the accuracy, the size 

of a user query is restricted to the size of the image or image subregion. However, our 

goal is to deal with subimage queries of arbitrary size. 

(a) Image 1 (b) Image 2 (c) Query (d) "Scaled" Query 

Figure 3.1: The Use of Normalized Histograms 

To avoid the problem caused by the size differential between the query and the 

image, the histogram distance ( D H ) is computed between the color histogram Q of the 

subimage query and the color histogram I of the equal-sized image subregion as D H = 

(Q - I)T(Q - I). 

Given a subimage query consisting o f s x s pixels, each image of size S x S pixels 

(where S > s) contains S ^ 5 + 1 H 2 5 " 1 " 1 ) potential subregions with size ranging from l x l 

pixel to 5 X 5 pixels. Pre-extraction of color features for all these subregions becomes 

impractical. Despite that, feature vectors can still be precomputed and stored for some, 

but not all, subregions of the images in the database. As a result, given a subimage query 

of arbitrary size, the image subregion represented by the precomputed feature vector may 

not necessarily be of the same size as the query. Without loss of generality, we assume that: 

• the subimage query is square and consists of v pixels, and 

'The scale-up occurs unless the Query is of the same size as the Images. 
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• the image subregion consists of w pixels (where v < w). 

Then, instead of computing the exact histogram distance (DH), we estimate its best-case 

lower bound (Du). The idea behind the estimation is that we "modify" either the query 

or the image subregion so that both the query and the image subregion contain the same 

number of pixels after the "modification" process. The estimated lower bound DH can 

then be established by computing the best-case similarity between the feature vectors of 

the "modified" query and the image subregion, or between the feature vectors of the query 

and the "modified" image subregion. 

Two approaches for estimating the histogram distance between the subimage query 

and the image subregion are proposed: 

1. Padding Approach 

We enlarge the subimage query by padding w — v "desired" pixels to it so that the re­

sulting padded query is of the same size as the image subregion. In order to minimize 

the distance measure, the "desired" pixels are chosen from the image subregion. 

Original Query Image Subregion Padded Query Image Subregion 

Represented r> r O' — P + O I 
v ' w 'w-v w 

by 

Figure 3.2: Padding Approach 

Definition 3.1 Let I, P, Q and Q' represent the histograms of the image subre­

gion, the padded area, the original subimage query, and the resulting padded query 

respectively, and let the subscripts w, v and w — v indicate the number of pixels 

represented in the histograms. The goal of the Padding Approach is to find an ap­

propriate assignment to the optimization variable P so that DH is minimized and 
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the vector inequality Pw-V < Iw is met. More precisely, we want to get the optimal 

> P (denoted by P*) satisfying the condition: 

Qw Qw 

min {Pw-V + Qv -Iw) (Pw-v + Qv-Iw) (3.1) 
— V 

such that P„,_„. < Iw 

As a result, the estimated best-case lower bound DJJ = (Pw_v +QV — Tw)T(Pw-v + 

Qv Iw)' ^ 

2. Reduction Approach 

We reduce the precorriputed image subregion by choosing v "desired" pixels from it 

so that the resulting reduced, image subregion is of the same size as the subimage 

query. In other words, the w — v "not so desired" pixels are removed. 

o r i g ' n a i Reduced 
Query Image Subregion Query Image Subregion 

Represented O 1 Ct V 
by 

Figure 3.3: Reduction Approach 

Definition 3.2 Let I, I' and Q represent the histograms of the original precomputed 

image subregion, the resulting reduced image subregion, and the subimage query 

respectively, and let the subscripts w and v indicate the number of pixels represented 

in the histograms. The goal of the Reduction Approach is to find an appropriate 

assignment to the optimization variable I' so that DJJ is minimized and the vector 

inequality I'V < IW is met. More precisely, we want to get the optimal / ' (denoted 
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by I'*) satisfying the condition: 

min (Q„ - I'V)T{QV - I'v) 

such that J ' < Inn 

(3.2) 

As a result, the estimated best-case lower bound DJJ = (QV — I'*)T(QV — I'*) 

3.2 Development of Padding and Reduction Algorithms 

Given that the subimage query and the image subregion are represented by n-dimensional' 

color histograms (?i-dimensiorial vectors Q and / ) , mathematically, the two proposed ap­

proaches can be restated as: 

Padding Approach 

objective function 

. inequality constraint 

summation constraint 

domain constraint 

• Reduction Approach 

objective function 

inequality constraint 

summation constraint 

domain constraint 

Given ^ Qj = v and ^ Ij — w > v, 
j=i i=i . 

find an optimal vector P* to 

minimize (P + Q- I)T(P + Q- I) 

subject to 0 < Pj < Ij for 1 < j < n 

w — v and J^ P j . 
i=i 

and I, P, Q integer vectors 

Given ^ Qj — v and ^ h = w > v, 
j=i j=i 

find an optimal vector / '* to 

minimize (Q - I')T{Q ~ J') 

subject to 0 < I'- < Ij for 1 < j < n 
n 

and ^2 Ij = v 

and 7, T7, Q integer vectors 

(3.3) 

(3.4) 
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3.2.1 Generate-and-Test 

A naive method to solve for the optimal vector P* or / '* is to exhaustively find all the 

possible vectors in which the constraints (inequality, summation, and domain constraints) 

are satisfied, and then select the vector that gives the minimal value to the objective, 

function. More precisely, for the Padding Approach, all feasible vectors for P are system­

atically generated by enumerating the value for each entry Pj in the n-dimensional vector. 

The generated vectors are then tested for minimality, and the one that gives the minimal 

Euclidean distance is returned: 

P A D D I N G - G E N E R A T E & T E S T 

1 Du <- +00 

2 for P\ <— 0 to min( / i , w — v) do 

3 for P2 <— 0 to m i n ( /2 , w — v — P\) do 

4 for F 3 <— 0 to min(/3, w - v — P\ - P2) do 

5 : • 

6 for P n _ ! <r- 0 to min(/„_ 1 , w - v - YTjZl Pj) d ° 

7 . Pn «; - v - YT3Zl Pj 

8 if Pn < In 

9 then distance 4 - (P + Q - I)T(P + Q - I) 

10 if distance < DJJ 

11 then DH distance 

12 P*^ ( P 1 , P 2 , F 3 , - - - , P n _ 1 , P n ) T 

Similarly, for the Reduction Approach, all feasible vectors for / '* are systematically 

generated by enumerating the value for each entry Pj in the n-dimensional vector. The 

generated vectors are then tested for minimality, and the one that gives the minimal 
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Euclidean distance is reported: 

R E D U C T I O N - G E N E R A T E & T E S T 

: 1 DH <- +00 

2 for J{ <- 0 to min(/j,<;) do . • . 

3 for <r- 0 to m i n ( / 2 , u - /{) do 

4 for I'3. «- 0 to m i n ( J 3 , _ - J { do 

5 • • ' • :• 

6 for j - 0 to min(/„_! , y - E " = i 2 / j ) do 

8 if /„< /» . , ; 

9 . then distance (Q - /')'(<2 - /') 

10 if distance < DH 

11 then <r- distance 

12 I>*<-{I'1,I'2J^-..J'n_1,I>n)T 

Like many generate-and-test applications, this naive method of solving for P* and 

V* is unpalatable in the sense that the execution time is. expected to be very long. 

3.2.2 Quadratic Programming with Integer Programming 

With the observation that the tasks of finding the vector P* in Problem (3.3) and the 

vector / '* in Problem (3.4) are instances of quadratic programming (QP) problems, ex­

isting mathematical software packages can be used. Examples of these software packages 

include M A T L A B (MATrix LABoratory) [Sigmon 1992] and L I N D O (Linear INteractive 

Discrete'Optimizer) [Schrage 1986]. In order to use the software packages, the minimiza­

tion problems are. usually required to be converted into the forms: 
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• Padding Approach 

min -PT(2I)P + [2(Q - I)]TP (3.5) 

s.t. 

where I is the n X n identity matrix 

Reduction Approach 

P < 

min i ( / ' ) r (2 I ) ( / ' ) + [-2Q] T (/ ' ) 

' - l - l - - 1 

s.t. I' < 

(3.6) 

where I is the n x n identity matrix 

One problem with the software packages is that the computation of optimal vectors is 

usually done in the domain of real numbers, not the domain of integers. The domain 
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problem coupled with the roundoff error may lead to the unreliability of some output 

vectors. For example, given I = ( 1430, 3257, 6133 )T and Q = ( 1429, 0, 2 )T, the 

software package outputs ( 1430, 3257, 4702 ) T as the answering vector (with value for 

objective function = 4084082) for the Padding Approach, but the expected optimal vector 

P* is ( 1, 3257, 6131 ) T with the corresponding optimal value of 0. As another example, 

given I — ( 2, 7, 5 )T and Q — ( 5, 1, 1 )T, an expected optimal integer vector V* is 

( 2, 3, 2 )T, but the software package returns the real vector ( 2, 2.5, 2.5 )T to represent 

the reduced image subregion. Hence, we want the method to handle not only QP, but 

also integer programming (IP). With IP, the domain constraints — I,P,Q integer vectors 

and I,I',Q integer vectors — can be specified. Unfortunately, the IP function is rarely 

supported in conjunction with Q P ; in many software packages, the IP function is not 

supported at all. 

3.2.3 Algorithms P A D and R E D 

Since the above methods may sometimes be unsound or time consuming, efficient and 

effective methods for estimating the best-case lower bound to the histogram distance are 

needed. It is well known that for a vector x, xTx can be written as J2ixj)2- So, given 

]Cj=i Qj = v a n d Z) j=i Ij = w ^ vi Problems (3.3) and (3.4) can be rewritten as: 

• n 

DH = mm Y,(pi-aj)- (3-7) 
j=i ; 

subject to 0 < Pj < Ij for 1 < j < n 
n 

and Pj = w — v 
j=i 

and I, P,a integer vectors 

where a = I — Q; and 
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Ihl = min __(/<-Q.) 2 , (3.8) 

subject to 0 < I'j < Jj for 1 < _ < n 

n 
and 7j = v 

and 7, / ' , Q integer vectors 

respectively. 

Wi th these representations, each of the two objective functions is in the form of 

the sum of squares of the difference terms: 

•; E ( * _ - « . ) 2 or Ulj-Qj)2 , : 

In order to minimize the sum, we need to minimize the difference terms. In which order 

should the terms be minimized ? Due to the quadratic nature of the squares of the 

difference terms, we note, on a close examination of the representations, that deducting 1 

off a large difference term is more effective in minimizing the sum than deducting 1 off a 

small difference term: 

If integers a > b > 1, then (a - l ) 2 + b2 < a 2 + (6 - l ) 2 

It is also clear that for two difference terms having the same value c, subtracting an 

integer d from each of the these difference terms is more effective in minimizing the sum 

than subtracting 2„.from only one of these two equal-valued terms: 

If integers c > 2d and d> 1; then (c - d)2 + (c - d)2 < (c - 2d)2 + c2 

Hence, for the Padding Approach, we start with Pj = 0 for all j, and each difference term 

(Pj — aj) becomes —CXJ. These terms are then rearranged in non-ascending order of atj 

(in other words, non-descending order of —cxj) and result in: 

{(^(i) - 0 ( i ) ) > ( P ( 2 ) - « ( 2 ) ) . - " » ( ^ > ( n ) -<*(n))} wiiere a ( 1 ) > a ( 2) > • • • > <*(„) 
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After the rearrangement, we try to lower the difference in the first term (P(i) — oj(i)) by 

adding the value — a^) to P^ 2 so that the first term has the same value as the 

second difference term (P(2) — a(2))- We then try to reduce the values of these first two 

difference terms by increasing the values of P ( i ) and F(2) in round-robin fashion. 3 so as to 

make them have the same difference as the third term (P(3) — 0(3)). We keep devaluing the 

first k difference terms so that they have the same value as the (k + l ) - th difference term 

through increases of the values of P(\<j<k) 4 - This process is repeated until the summation 

constraint Y^j=\Pj = w — v is satisfied. A t any cycle, the value of PQJ is constrained by 

the inequality P^ < 1^ and will not be increased beyond its allowable maximum I^y 

A l g o r i t h m 3.1 ( A l g o r i t h m P A D ) 

1 Mj, atj <- Ij - Qj 

2 V i , V O 

3 { (P(j) —.a(j)) } sort the (Pj — CHJ) terms in non-ascending order of aj 

4 k <- 1 .' 

5 w h i l e k < n a n d Ylj=i P(j) < w — v d o 

6 l o o p for at most a^f.) — <*(fc+i) cycles 

7 fo r e a c h P(i<t<k) 

d o 

8 i f P(t) < 7 ( < ) t h e n P[t) <- P(t) + 1 

9 i f Ylj=i P(j) — w ~ v t h e n r e t u r n P 

10 ' k <r- k + 1. 

11 i f E i = . P(j) <w-v 

12 t h e n l o o p 

13 f o r e a c h P(\<t<n) d o 

2If P(i) reaches its allowable maximum 7^), the value of P^j will not be increased in subsequent cycles. 
In such a case, the difference in the first term may not be the same as the difference in the second term. 

3 Again, if £ {^"(1)1 ^"(2)} reaches its allowable maximum 1^, the value of Pyj will not be increased 
in subsequent cycles. 

Similarly, if P(j) € {P(i), • • •, P(k)} reaches its allowable maximum /(j), the value of P(j) will not be 
increased in subsequent cycles.. ' 
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14 

15 

i f P ( f ) < / ( 0 t h e n P ( t ) < - P w + l 

if J2]=i P(j) = w — v then return P 

Example 3.1 Given integer vectors I = 3 

V 1 0 ; 

and Q 

/2\ 

v 1 / 

; then, a = I — Q 

(.10, —4, 9 ) T . We want to find an appropriate assignment to integer vector ( P i , P 2 , 

P 3 )T so that the objective function (Pi - 10)2 + (P2 + 4) 2 + ( P 3 - 9) 2 is minimized and 

P i 

P 2 the constraints 0 

V 0 / 

/ „ \ 7 1 2 \ 
< < 3 

V 1 0 / 

and E ? = i Pj = 25 - 10 = 15 are satisfied. 

We start with P j = 0 for all j and rearrange all the difference terms. After the 

rearrangement, we try to lower the difference in the first term (P(i) — 10 = —10) by 

adding 1 to P(i) so that the first.two terms have same difference (= - 9 ) . Then, we try to 

reduce the values of these two difference terms by increasing the values of P(i) and P(2) 

in round-robin fashion so as to bring them closer to the value of the third difference term 

(= 4); we stop when the constraint ]£ j= i Pj = 15 is satisfied. 

*U ) -«( i ) P ( 2 ) - « ( 2 ) P ( 3 ) - o ; ( 3 ) - E P j 

= Pi - 0 1 = P 3 - a3 = P 2 - a2 

Cycle 0 0 - 1 0 = -10 0 - 9 = - 9 0 - ( - 4 ) = 4 0 

J f c = 1: Cycle 1 1 - 1 0 = - 9 1 

k = 2: Cycle 2 2 - 10 = -8 1 - 9 = -8 3 

Cycle 3 3- 10 = - 7 2 - 9 = - 7 5 

Cycle 8 8 - 10 = - 2 7 - 9 = - 2 15 
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/ o \ 

Algorithm P A D returns P* with - cxj)2 = 24 0 

\ 7 / 

Similarly, for the Reduction Approach, we start with Pj = 0 for all j, and each 

difference term (I'j—Qj) becomes —Qj. These terms are then rearranged in non-ascending 

order of Qj (in other words, non-descending order of —Qj) and result in: 

{(/(i) - Q(i)). (J(2) - 0(2 ) ) i •' •' (7(n) - Q(n))} where Q ( 1 ) > Q ( 2 ) > • • • > Q ( n ) 

After the rearrangement, we try to lower the difference in the first term (P^ — <3(i)) by 

adding the value Q(i) — Q(2) to P^ 5 so that the first term has the same value as the 

second difference term (P^ — Q\2))- We then try to reduce the values of these first two 

difference terms by increasing the values of P^ and P^ in round-robin fashion 6 so as to 

make them have the same difference as the third term (J|3j — <5(3))- We keep devaluing the 

first k difference terms so that they have the same value as the (k + l )-th difference term 

through increases of the values of 7| 1 < J < f c j 7 . This process is repeated until the summation 

constraint $~Jj=1 Ij = v 1S satisfied. A t any cycle, the value of P^ is constrained by the 

inequality < 1^ and will not be increased beyond its allowable'maximum I^y 

Algorithm 3.2 (Algorithm R E D ) 

i Vi, /j <- o • " 

^ { ^U)~ } s o r * (Ij ~ Qj) terms in non-ascending order of Q j 

3 k <r- 1 

4 while k < n and Ylj=i I[j) < v do 

5If /(j) reaches its allowable maximum 7^), the value of 7^ will not be increased in subsequent cycles. 
In such a case, the difference in the first term may not be the same as the difference in the second term. 

6Again, if 7^ 6 {^(1)1^(2)} reaches its allowable maximum Iy), the value of 7^ will, not be increased 
in subsequent cycles. , 

7Similarly, if 1'^ £ { (̂'1)1 • " 1 (̂*)} reaches its allowable maximum the value of 7^ will not be 
increased in subsequent cycles. 
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loop for at most Q ( f c ) - Q(k+i) c y c l e s 

for each !' { 1< t< k ) do 

if I[t) < I[t) then I[t) f - I[t) + 1 

8 if Ej=i '(j) = u t h e n return V 

9 fc <- fc + 1 

10 i f E ^ 1 / ( J ) < " 

11 then loop 

12 

i f / ( ' t ) </( t ) then/ ( ' t ) ^/ ( ' f ) + l 

if 1'^ = v then return V 

for each /(!<t<n) do 

13 

14 

Example 3.2 Given integer vectors I and Q we want to find 

V 1 J 
an appropriate assignment to integer vector ( /{, 1%, I'3 )T so that the objective function 

( 7 j - 2 ) 2 + ( 7 2 - 7 ) 2 + ( / 3 - l ) 2 is minimized and the constraints 0 

V 0 / 

< I'2 < 3 

\ 1 0 / 
and E?=i Ij = 10 are satisfied. 

We start with 7j = 0 for all j and rearrange all the difference terms. After the 

rearrangement, we try to lower the difference in the first term ( 7 ^ — 7 = —7) by adding 

at most 5 to I'^y Since the value of 1'^ is constrained by the inequality < 3, it 

will not be increased beyond 3. Then, we try to reduce the difference in the second term 

{I'(2) — 2 = —2) by adding 1 to 1'^ so that the second term has the same value as the third 

difference term (— —1). We keep devaluing the second and the third difference terms in 

round-robin fashion until the summation constraint Ej=i Ij — 10 is satisfied. 
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7('i) - Q(i) 7(2) ~'Q(2) 7( 3 ) - Q(3) 

= I2-Q2 = i[-Qi = Is-Qs 

Cycle 0 0 - 7 = - 7 0 - 2 = -2 0 - 1 = -1 0 

k = l: Cycle 1 1 - 7 = -6 1 

Cycle 2 2 - . 7 = - 5 2 
Cycle 3 3 - 7 = -4 3 

k = 2 : . Cycle 4 1-2 =-1 4 

k = 3 : Cycle 5 2 - 2 = 0 1-1 = 0 6 
Cycle 6 3-2 = 1 2-1 = 1 8 
Cycle 7 4-2 = 2 3-1 = 2 10 

/ 4 \ 
Algorithm R E D returns /•'* = with J2(I? ~ Qj? = 24 3 

3.3 Analytical Comparison 

Having developed two algorithms, namely Algorithm P A D and Algorithm R E D , which 

one produces a better lower bound ? 

T h e o r e m 3.1 In the domain of integers, given E j = i Qj = v a n d E j = i Ij = w > v. 

• Define VH
AD = (P + Q - I)T{P + Q - /) 

such that for 1 < j < n , 0 < Pj < Ij 

and E " = i Pj = w-v 

• Define VH
ED = (Q - I'fiQ - I') 

such that for 1 < j < n, 0 < I'- < Ij 

^dEUI'j = v - ' 
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Then, there is a 1-to-l correspondence between VH
AD and VH

ED. 

Proof 

[=>]• Let P = I - P. Then, the objective function (P + Q - I)T(P + Q - I) becomes 

(Q-P)T(Q-P). 

The inequality constraint V/,. 0 < Pj < Ij can be rewritten as V7, 0 — Pj — Pj < 

Ij-Pj=I><I3, 

The summation constraint JTJPj = w — v coupled with the equality J2 Pj = 12{Ij ~ 

Pj) = J2Ij - £ / < = w - £ / j implies that £ / j = v. 

[<=] Let P = I - I'. Then, the objective function (Q - I')T{Q - I') = (Q - I' + I -

I)T{Q - I' + I - I) becomes (P + Q - I)T(P + Q - I). 

The inequality constraint V7, 0 < Ij < Ij can be rewritten as V j , 0 = Ij — Ij < 

I3-I'j = P3<h. 

The summation constraint J2 Pj = V coupled with the equality Pj = J2(^j ~ Pj) = 

Ij — J2 Pj = w ~ YI Pj implies that ]F) Pj = w — v. 

Therefore, given a vector P , there exists a corresponding vector I' such that VH
AD = 

T>H
ED. Similarly, given a vector / ' , there exists a corresponding vector P such that 

VH
AD •= VH

ED. Hence, a bijection between VH
AD and VH

ED exists. • 

Corol lary 3.2 Algorithm P A D and Algorithm R E D produce the same lower bound to 

the histogram distance. 

Proof Algorithm P A D is an exact algorithm for computing the special case of VH
AD — 

namely the minimal VH
AD (denoted by mihVH

AD) — which estimates the best-case lower 

bound to the histogram distance DJJ. Similarly, Algorithm R E D is an exact algorithm for 

computing the special case oiVH
ED — namely the.minimal VH

ED (denoted by min VH
ED) 

— which estimates the best-case lower bound to the histogram distance DJJ. Since there 

is a 1-to-l correspondence between VH
AD and VH

ED, there exists a 1-to-l correspondence 
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between their special cases (the minima): 

UJJ — min L>fj min UJJ 

In other words, the values returned by Algorithms P A D and R E D are the same estimated 

best-case lower bound to the histogram distance. • 

Since Algorithms P A D and R E D are methods to implement the two proposed 

approaches, the Padding Approach and the Reduction Approach ideally produce the same 

bestrcase lower bound as well. -

3.4 Experimental Comparison 

In terms of accuracy, both Algorithm P A D and Algorithm R E D produce the same best-

case lower bound. The question is: Which one produces the.lower bound faster ? To 

answer this question, we performed experiments using color histograms of 8, 64, and 

512 dimensions. We used 500 images or image subregions of each of the assorted sizes 

(128 X, 128, 64 X 64, 32 X 32, and 16.X 16 pixels) and 10 subimage queries for each of those 

sizes. The test queries consisted of 5 x 5, 15 x 15, 30 X 30, 60 x 60, and 120 x 120 pixels. 

The experiments were run on a Sun UltraSPARC-1 workstation. The results (the average 

computation time per query for each combination of the above mentioned sizes of image 

subregions and queries) are summarized in the tables and figures on the following pages. 

In the figures, the time curve for Algorithm P A D is represented by a blue solid line, and 

the time curve for Algorithm R E D is represented by a red dashed line. 
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• 8-dimensional color histograms 

Image Subregion Query Computation Time 
Size Size Algorithm P A D Algorithm R E D 

5 X 5 6.52 ± 0.27 ms 0.04 ± 0 . 0 0 ms 
1 1 x 1 1 6.50 ± 0 . 2 8 ms 0.07 ± 0 . 0 0 ms 
15 x 15 6.37 ± 0 . 2 9 ms 0.13 ± 0.01ms 
23 x 23 6.26 ± 0.30 ms 0.27 ± 0 . 0 1 ms 

128 X 128 30 x 30 6 . 0 8 ± 0.28 ms 0.43 ± 0 . 0 1 ms 
45 x 45. 5.68 ± 0 . 2 6 ms 0.87 ± 0 . 0 5 ms 
60 x 60 5.07 ± 0.69 ms 1.61 ± 0 . 2 1 ms 
9 1 x 9 1 3.37 ± 0 . 1 9 ms 3.40 ± 0 . 8 7 ms 

120 x 120 0.82 ± 0.05 ms 6.04 ± 2 . 5 2 ms 
5 x 5 . 1.62 ± 0.12 ms 0.04 ± 0.00. ms 

- 1 1 x 1 1 1.59 ± 0.07 ms 0.07 ± 0 . 0 1 ms 
15 x 15 1.55 ± 0.07 ms 0.13 ± 0 . 0 2 ms 

64 x 64 23 x 23 1.43 ± 0 . 0 7 ms 0.26 ± 0 . 0 5 ms 
30 x 30 1.28 ± 0 . 0 6 ms 0.43 ± 0 . 1 2 ms 
45 x 45 0.89 ± 0.08 ms 0.87 ± 0 . 4 9 ms 
60 x 60 0.23 ± 0 . 0 1 ms 1.62 ± 1.08 ms 

5 x 5 0.42 ± 0 . 0 3 ms 0.04 ± 0 . 0 1 ms 
11 x 11 0.40 ± 0 . 0 2 ms 0.07 ± 0 . 0 2 ms 

32 x 32 15 x 15 0.35 ± 0.02 ms 0.13 ± 0 . 0 6 ms 
23 x 23 0.24 ± 0.07 ms 0.26 ± 0 . 1 8 ms 
30 x 30 0.08 ± 0.00 ms 0.43 ± 0 . 3 1 ms 

' 5 x 5 0.12 ± 0 . 0 1 ms 0.04 ± 0.01 ms 
16 X 16 11 x 11 0.08 ± 0 . 0 0 ms 0.08 ± 0.04 ms 

15 x 15 0.04 ± 0 . 0 1 ms 0.13 ± 0 . 1 0 ms 

Table 3.1: Computation Time for Algorithms P A D and R E D (8-dimensional Histograms) 
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Subregion consisting of 128x128 Pixels (n = 8) Image Subregion consisting of 64x64 Pixels (n = 8) 
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^igure 3.4: Computation Time for Algorithms P A D and R E D (8-dimensional Histograms) 
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• 64-dimensional color histograms 

Image Subregion Query Computation Time 
Size Size Algorithm P A D Algorithm R E D 

5 x 5 6.71 ±0.22 ms 0.32 ±0.05 ms 
11 x 11 6.69 ±0.21 ms 0.36 ± 0.02 ms 
15 x 15 6.65 ± 0.22 ms 0.42 ±0.03 ms 
23 x 23 6.54 ± 0.69 ms 0.61 ± 0.10. ms 

128 x 128 30 x 30 6.42 ±0.21 ms 0.84 ± 0.22 ms 
45 x 45 5.98 ± 0.21 ms 1.28 ±0.64 ms 
60 x 60 . 5.41 ±0.21 ras 2.03 ± 1.38 ms 
91 x 91 3.77 ±0.16 ms 3.80 ± 2.40 ms 
120 x 120 1.23 ±0.11 ms 6.28 ±4.58 ms 
5x5 1.96 ±0.08 ms 0.32 ±0.01 ms 
11 X 11 1.93 ± 0.07 ms 0.36 ±0.04 ms 
15 x 15 1.89 ±0.07 ms 0̂ 42 ±0.11 ms 

64 x 64 23 x 23 1.82 ± 0.07 ms 0.61 ± 0.32.ms 
30 x 30 1.67 ± 0.10 ms 0.84 ± 0.66 ms 
45 X 45 1.29 ± 0.06 ms 1.28 ±0.75 ms 
60 X 60 0.63 ±0.04 ms 2.05 ± 1.59 ms 
5x5 0.75 ±0.04 ms 0.32 ±0.03 ms 
11 X 11 0.71 ± 0.05 ms 0.36 ±0.13 ms 

32 x 32 15 x 15 0.66 ± 0.04 ms 0.42 ± 0.34 ms 
23 x 23 0.60 ±0.57 ms 0.61 ± 0.25 ms 
30 x 30 0.43 ± 0.04 ms 0.85 ± 0.47 ms 
5x5 0.42 ±0.05 ms 0.32 ±0.06 ms 

16 x 16 11 X 11 0.38 ± 0.05 ms 0.37 ±0.24 ms 
15 x 15 0.33 ±0.04 ms 0.42 ± 0.29 ms 

Table 3.2: Computation Time for Algorithms P A D and R E D (64-dimensional Histograms) 
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Figure 3.5: Computation Time for Algorithms P A D and R E D (64-dimehsional His­
tograms) 
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• 512-dimensional color histograms 

Image Subregion Query Computation Time 
Size Size Algorithm P A D Algorithm R E D 

5x5 26.05 ±2.06 ms 12.06 ±0.16 ms 
11 X 11 25.91 ±2.00 ms 12.13 ±0.64 ms 
15 x 15 25.78 ± 2.09 ms 12.22±0.38 ms 
23 X 23 25.58 ±1.74 ms 13.25 ±0.85 ms 

128 X 128 30 x 30 25.43 ± 1.71 ms 15.42 ± 1.44 ms 
45 x 45 24.98 ± 1.46 ms 16.99 ±4.56 ms 
60 X 60 24.06 ± 1.37 ms 18.98 ±6.56 ms 
91 x 91 21.82 ± 1.36 ms 21.82 ±8.49 ms 
120 x 120 16.99 ±1.08 ms 24.98 ± 10.34 ms 
5x5 19.32 ±2.00 ms 12.06 ±0.60 ms 
11 x 11 19.24 ±1.84 ms 12.13 ±0.37 ms 
15 x 15 19.19 ± 1.85 ms 12.23±0.66 ms 

64 X 64 23 X 23 19.09 ± 1.55 ms 13.28 ± 1.71.ms 
30 X 30 18.79 ± 1.59 ms 15.40 ±3.57 ms 
45 x 45 17.02 ± 1.34 ms 17.02 ±7.24 ms 
60 x 60 13.27 ± 1.24 ms 19.09 ± 10.82 ms 

5.x 5 14.50 ± 1.57 ms 12.08 ±0.34 ms 
11 x 11 14.45 ± 1.46 ms 12.14 ± 1.08 ms 

32 x 32 15 x 15 14.23 ± 1.46 ms 12.24 ± 2.97 ms 
23x23 13.28 ± 1.41 ms 13.30 ± 4.43 ms 
30 x 30 12.14 ±1.26 ms 15.45 ± 5.51 ms 
5x5 12.27 ± 1.04 ms 12.09 ±0.38 ms 

16 x 16 11 x 11 12.16 ± 1.05 ms 12.16 ± 1.70 ms 
15 x 15 12.09 ±1.03 ms 12.27 ±4.00 ms 

Table 3.3: Computation Time for Algorithms P A D arid R E D (512-dimensional H 
tograms) " 
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Figure 3.6: Computation Time for Algorithms P A D and R E D (512-dimensional His 
tograms). • 
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Observation 3.1 Computation time is affected by the dimension of the color histogram: 

As the dimension of the histogram grows, the time required by Algorithms P A D and R E D 

increases. 

Explanation In both algorithms, we start with 0 for each of the n entries in the n-

dimensional histogram (the vector P* or /'*) and keep increasing the value of each entry. 

Hence, the increase in the dimension of the histogram leads to an increase in the number 

of entries. Due to the nested loops in the Algorithms for manipulating the n entries in 

the vectors, the time required increases (though not linearly). . • 

Observation 3.2 Computation time is also affected by the number of pixels in the query 

and the image subregion: Given a fixed-size image subregion, and varying the. size of 

the subimage query, it is observed that as the query size increases, the time required by 

Algorithm P A D appears to decrease linearly. 

Explanation Given an image subregion consisting of w pixels, Algorithm P A D pads w — v 

"desired" pixels to the subimage query consisting of v pixels. So, as the query increases 

in size, the number of pixels in the query (= v pixels) also increases; thus, decreasing the 

number of the pixels needed to be padded (= w — v pixels). • 

Observation 3.3 Given a fixed-size image subregion, and varying the size of the subim­

age query, it is noticed that as the query size increases, the time taken by Algorithm R E D 

appears to increase linearly. 

Explanation Given an image subregion consisting of w pixels, Algorithm R E D reduces 

the subregion by choosing v "desired" pixels. So, as the query increases in size, the number 

of pixels in the query (= v pixels) also increases; thus, increasing the number of pixels 

needed to be chosen (= v pixels). • 

Observation 3.4 Given a fixed-size image subregion, and varying the size of the subim­

age query, it can be viewed from the figures that as the query size increases, the time 
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curve for Algorithm P A D declines and the time curve for Algorithm R E D is rises. The 

two curves meet at the point representing medium-sized queries. For a small-sized query, 

the time taken by Algorithm R E D is less than that taken by Algorithm P A D ; for a large : 

sized query, the time required by Algorithm R E D is more than that required by Algorithm 

P A D . Lastly, for a medium-sized query, the times needed by the two Algorithms are almost 

the same as indicated by the intersection of the curves in the figures. 

Explanation . 

• Given an image subregion consisting of w pixels and a small-sized query consisting 

of v pixels (where 2v < w), Algorithm R E D reduces the image subregion by picking 

v "desired" pixels, whereas Algorithm P A D pads w — v > v "desired" pixels to the 

query. Thus, Algorithm R E D requires less time. 

• Given an image subregion consisting of w pixels and a large-sized query consisting 

of. v pixels (where v < w < 2v), Algorithm P A D pads w — v "desired" pixels to the 

query, whereas Algorithm R E D reduces the image subregion by choosing v > w — v 

"desired" pixels.. Hence, Algorithm P A D needs less time. 

• Given an image subregion consisting of w pixels and a medium-sized query consisting 

of v pixels (where v « |w =£• 2v « w), Algorithm R E D reduces the image subregion 

. by selecting v "desired" pixels and Algorithm P A D pads v "desired" pixels 

to the query. So, both Algorithms take almost the same amount of computation 

time. • 

Therefore, if the subimage query is of the same size as the precomputed image subregion, 

then the exact histogram distance of the form (Q — I)T(Q—T) can be applied. Otherwise, 

use Algorithm P A D when the size differential between the query and the image subregion 

is large, and use Algorithm R E D when the differential is small. 
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3.5 Another Metr ic for Histogram Distance 

Other than the metric based on the Euclidean distance between the color histograms of the 

subimage query and the image subregion, another popular way to compute the similarity 

is based on the weighted Euclidean distance: 

• (Q - If A (Q - I) 

where A is a similarity matrix accounting for both the perceptual distance between the 

pairs of colors and the difference in the amounts of each color. Let d{j be the Euclidean 

distance between colors i and j in the chosen color space (such as Luv and Munsell), then 

there are several choices for the entries'a^- in the matrix A [Sawhney and Hafner 1993]. 

For example, a{j can be defined as (a) 1 - m , (b) e~m"dn, and (c) e < TVm*"<W f 

where a is a positive constant. 

With this metric, new Padding and Reduction Approaches can be stated as:-

• New Padding Approach 

objective function 

inequality constraint 

summation constraint 

domain constraint 

Given Qj ~ v and Ij = w > v, 
j=i j=i 

find an optimal vector P* to ' 

minimize (P + Q- I)TA(P + Q-I) 

subject to 0 < Pj < Ij for 1 < j < n 
n 

and ^ Pj = w — v 

and I,P,Q integer vectors 

(3-9) 
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New Reduction Approach 

G i v e n Q j = u and Ij = w > v, 
i=i j=i 

find an optimal vector /'* to 

objective function minimize [Q - I')TA(Q - I') (3.10) 

inequality constraint subject to 0 < Ij < Ij for 1 < j < n 
n 

summation constraint and ^ I'j = v 
i=i . 

domain constraint and I, I',Q integer vectors 

Wi th an information preserving transformation such as Singular Value Decomposition, 

the similarity matrix A can be factorized into BTKB or (VAB)T(y/AB) where A is a 

diagonal matrix. So, given E j = i Qj = v a n < l E j = i Ij = w > v, the objective function of 

Problem (3.9) can be rewritten as: 

min Xjj [(BP)j - (Ba)j)]2 (3.11) 

or 

nun^i^-^)]2 (3.12) 

where a — I—Q and Ajj is the 7-th diagonal entry of the matrix A . Similarly, the objective 

function of Problem (3.10) can be rewritten as: 

min ^ A ^ p / ^ - T O ] 2 (3-13) 
j=i 

or 

mm J2[(^BI')J - (VABQ)j)}2 (3.14) 

With these representations, each of the two objective functions is in the form of 

the sum of squares of the difference terms. However, these difference terms are no longer 

monotonic, they are dependent on the values of entries in matrices B and A . So, increasing 

59 



the value of an entry in P or in V may not reduce the value of the difference terms; some­

times, it may even boost the difference in these terms. Therefore, for this metric based on 

the weighted Euclidean distance, it is not easy to develop efficient tailor-made algorithms 

(such as Algorithms P A D and R E D for the metric based on the Euclidean distance). 

3.6 Summary 

The histogram distance (DH) between the histogram Q of the subimage query and the 

histogram I of the equal-sized image subregion can be computed by DH — (Q — I)T(Q — I)-

However, given a subimage query of arbitrary size, the image subregion represented by the 

precomputed feature vector may not necessarily contain the same number of pixels as the 

query. For instance, it is not unusual that the precomputed vector of the image subregion 

contains more pixels than that of the query. As such, two algorithms — Algorithm P A D 

and Algorithm R E D — have been developed for estimating the best-case lower bound (DH) 

to the histogram distance. It has been shown that both algorithms give the same best-case 

lower bound. More precisely, in the domain of integers, given Q (where Y2Qj = v) and I 

(where Ij = w > u), the DH can be computed using Algorithm. P A D : 

n 
DH = min £ ( P , - / , + Q , ) 2 

j=i • • • • • • 
n 

s.t. V j , 0 < Pj < Ij and JZ'-Pj = w — v 

i= i 

where P is the histogram of the padded area; the same DH can also be computed using 

Algorithm R E D : 
DH = min j^^-Qj)2 , 

j=i 
n 

s.t. V j , 0 < I- < Ij and /j = v 
j=i 
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:where / M s the histogram of the reduced image subregion. In terms of performance, it 

is more efficient to use Algorithm P A D when the size differential between the subimage 

query and the image subregion is large, and to use Algorithm R E D when the differential 

is small. , 
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Chapter 4 

Multiscale Representation 

In some IDBMSs, images are divided into blocks of a chosen size. For some queries, the 

scale at which the images are blocked may be too fine, and applying similarity comparisons 

to all those fine blocks may be a waste of effort. However, for some other queries, the 

scale may be too coarse, and the desired images may not be discriminated sufficiently. 

Given that subimage queries can be of arbitrary size, picking one best scale for all queries 

is hard, if not impossible. To cope with the challenge, we propose a representation that 

has multiple scales for matching. We also determine analytically and experimentally the 

appropriate number of levels for such a representation. 



4.1 A 4-level Multiscale Representation 

To process a user query, some IDBMSs divide each database image into blocks of a chosen 

size. For subimage queries of arbitrary size, picking a best scale at which the images are 

blocked is not easy. One way to cope with this challenge is to have multiple scales for 

matching. The idea is that depending on the scale or the need of a given query, a more 

appropriate scale can be used. With the multiscale representation, given.any subimage 

query of arbitrary size, there exists an image subregion whose size is not smaller-than the 

query. So, Padding and Reduction Algorithms can be applied in similarity matching. In. 

this thesis, a 4-level multiscale representation (Figure 4.1) is proposed as follows: 

• A t Level H , the entire image is represented by a single global color histogram. 

• A t Level I, the image is divided into four non-overlapping blocks, and each block is 

represented by a color histogram covering | of the entire image. 

• A t Level J , each block at Level I is further divided into four blocks, each of which is 

represented by a color histogram covering of the entire image. 

• A t Level K , each block at Level J is again divided into four, each of which is repre­

sented by a color histogram covering ^ o f the entire image. 
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(a) Level H 
•••••••• 

(d) Level K 

Figure 4.1: The 4-level Multiscale Representation 

Given four levels of blocks for each image, many multi-level filtering schemes for 

finding u desired images (where u is the number of images requested by the user) can be 

developed. These include: 

• a complete four-level HIJK scheme; 

• three-level HI.], HIK, H J K , and U K schemes; 

• two-level HI, H J , H K , IJ, IK, and J K schemes; and 

• one-level H , I, J , and K schemes. 

Depending on the size of the subimage query and the number of levels intended to be 

examined, appropriate filtering schemes can be chosen. For example, given a subimage 

query whose size is smaller than of the entire image, the Scheme HJ can be applied 

in conjunction with Padding and Reduction Algorithms. With this two-level scheme, 

color histograms at Level I are skipped, and only the histograms at Levels H and J 

are considered. 
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The filtering scheme determines the levels (of color histograms representing the 

image subregions) which are intended to be considered, but it does not determine the 

order in which the histograms are to be examined. For example, it is unclear whether the 

histograms are to be checked on an image-by-image basis (with the use of vertical filter), 

on a level-by-level basis (with the use of horizontal filter), or in some other order. The 

search order is determined by the strategy for searching the multiscale representation. 

This will be examined in Chapter 5. . • • 

4.2 Formulation of Distance Function 

A primary purpose of an I D B M S is to provide an environment for an efficient and effective 

retrieval of desired images. Given a large IDBMS, a key to the efficiency and the effec­

tiveness of the search strategy for such retrievals relies on the formulation of the distance 

function. For instance, if the distance value at a coarser scale can be served as a lower 

bound to the distance value at a finer scale, then an efficient strategy with the use of 

vertical filters for searching the multiscale representation is possible. 

4.2.1 Histogram Distance 

The histogram distance (DH) between the histogram Q of the subimage query and the 

histogram / of the equal-sized image subregion can be computed by DH = (Q — I)T(Q — I). 

However, given that the arbitrary-size subimage query may not necessarily be of the same 

size as the image subregion, the best-case lower bound (DH) to the histogram distance 

can be estimated using Algorithm P A D or Algorithm R E D . More details can be found in 

Subsection 3.2.3. 

Observation 4.1 Given that an image subregion I s u p encloses another image subre­

gion I s u b , and that the subimage query Q is smaller in size than I s u b (Figure 4.2), the 
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estimated best-case histogram distance (DH) between the histograms of Q and I s u b is not 

smaller than the DH between the histograms of Q and I s u p : 

D~H(Q,IS»P) < 5S(Q,i s u b) 

Subimage Image Subregion I s u p 

sub 

^ sub 

Figure 4.2: Subimage Query CJ and Image Subregion I s u p 

Explanation In addition to the pixels of I s u b , the image subregion I s u p also contains 

the pixels found in I s u b . So, for Algorithms P A D and R E D , the selection of pixels in 

the minimization of DH(Q, I s u p ) is at least the selection of pixels in the minimization of 

DH(Q, I s u b ) . The. more the pixels selected, the smaller the DH- • • 

In other words, the DH between Q and I s u p serves as a lower bound to the DH 

between Q and I s u b . 

4.2.2 Positional Distance 

The estimated best-case lower bound to the histogram distance measures the difference 

between the statistical distributions of various colors of the subimage query and the image 

subregion. However, a metric to measure the difference between the spatial locations of 

the subimage query and the image subregion is lacking. For instance, given a user query 

containing the central tower of the B C Legislative Buildings (Figure 4.3), the best-case 

lower bound to the histogram distance between the histograms of the Query and Image 1 

is the same as that between the histograms of the Query and Image 2. However, in terms 
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of color and spatial location, Image 2 is clearly a better match. Therefore, an additional 

metric for measuring the positional difference between the subimage query and the image 

subregion is needed for better selectivity. 

(a) Query (b) Image 1 (c) Image 2 

Figure 4.3: The B C Legislative Buildings 

There are a variety of ways to compute the positional distance between the query 

and the image subregion. Among them, some are more precise and complex than the 

others. It is well known that human memory is weak in retaining a fine granularity 

of spatial information of color; more often, the user may remember only an approximate 

location of the subimage when specifying his query. Moreover, when using Algorithm P A D 

or R E D for handling subimage queries of arbitrary size, the best-case histogram distance 

is estimated, but the exact location of the padded query or the reduced image subregion 

is unknown. So, instead of computing the exact positional distance (Dp), we estimate its 

lower bound (Dp). The idea is based on the square of the shortest Euclidean distance 

between the original subimage query and the original non-overlapping image subregion. 

If the original query and the original image subregion overlap, the Dp is defined to be 0. 
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Definition 4.1 Let q and i denote points in the subimage query and the image subregion 

respectively. Then, the estimated positional distance (Dp) is computed by: 

DP 
0 when query and image subregion overlap 

min||g — i\\2 otherwise 

Let (q™ax, g™aa7) and (g£" n ,g™ n ) denote the maximum and the minimum (x,y)-

coordinates of the subimage query, and let (i™ax, ir
y
nax) and '(i™ m , ?™m) denote the maxi­

mum and the minimum (x, y)-coordinates of the image subregion. With these coordinates, 

the ar-directional distance (dx) as well as the y-directional distance (dy) can be calculated, 

and the positional distance can then be estimated. 

Algorithm 4.1 (Estimated Positional Distance) 

1 dx <- 0 

2 dy <r- 0 

3 if q™n > i™ax 

4 then dx «- q™in - i™ax. 

5 else if i™in > q™ax 

6 then dx <- i™in - q™ax 

8 then dy <- q™in - %^ax 

9 else if i7
y
nin > q™ax 

10 then dy <- i™ 7 1 -

11 return (dx)2 + (dy)2 

Observation 4.2 Given that an image subregion I s u p encloses another image subre­

gion I s u b , and that the subimage query Q is smaller in size than I s u b , the estimated 
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positional distance (Dp) between Q and I s u b is not shorter than the Dp between Q a n d l s u p : 

." /37(Q,I s u p) < /37(Q,Tsub) 

. Explanation The area of the image subregion I s u p is the sum of the areas of image 

subregions I s u b and I s u b . So, the (x, y)-directional distances dx and dy between Q and 

I s u p is not longer than those between Q ad I s u b . • 

In other words, the Dp between Q and I s u p serves as a lower bound to the Dp 

between Q and I s u b . 

.4 .2 .3 D i s t a n c e F u n c t i o n 

To incorporate both the histogram distance Djj and the positional distance Dp, the 

distance between query Q and image subregion I is defined as a weighted sum of the form: 

D = [3DH + (1-/3)DP (4.2) 

where the parameter /3 is the user preference (with value ranging from 0 to 1) so that 

the user is allowed to specify the relative importance of the histogram distance and the 

positional distance. Given that the subimage query can be of arbitrary size, the Djf 

and the Dp can be estimated using the appropriate Algorithms described earlier, and 

the resulting estimated distance value (£)) can be computed as the weighted sum of the 

estimated histogram distance and the estimated positional distance:-

D = J3DH + (l-P)Dp , (4.3) 

Theorem 4.1 Given that an image subregion I s u p encloses another image subregion I s u b , 

the estimated distance value (D) of the Q - I s u b pair (where the subimage query Q is smaller 

in size than l s u b ) is greater than or equal to the TJ of the Q - I s u p pair: 

D(Q, I s u p ) < D(Q, I s u b ) 
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Proof It is observable that DH(Q, ISUP) < DH(Q, I s u b ) and that 7J P(q, ISUP) < DP(Q, I s u b ) . 

So, for 0 < /? < 1, we can deduce: 

/3(q,iS UP) = /? D ^ ( q , IS UP) + ( l -/3) TJ ^ q , IS UP) 

< 73/5^(Q, l s u b ) + ( l - / 3 ) / 3 P ( q , i s u b ) 

= /3(q, i s u b ) 

In other words, the estimated distance value increases as the scale becomes finer. • 

Let I H , I I , I J , a n d I K denote an image subregion at each of Levels H , I, J , and K 

such that I K C I J C I 1 C I H . According to Theorem 4.1, for a subimage query q of size 

smaller than I 1 , the relationship 7J(Q,IH) < D(Q, I 1 ) holds. In terms of size, if such q 

is smaller than I J , then D(Q, I 1) < D(Q,I3). Similarly, D(Q, I J ) < D(Q, IK) provided 

that such q is smaller than I K . With the property that "the estimated distance keeps 

increasing (to its exact value) as the scale becomes finer", an efficient strategy with the 

use of vertical filters for searching multiscale representation is possible. The idea is that 

the distance value at the coarser scale serves as a lower bound to the distance value at the 

finer scale. So, poor matches having "large" distance values at the coarser scale (greater 

than the finest-scale distance values of the top-u x) can be eliminated without further 

computations at finer scales. For example, if the estimated Level-K distance for each 

of the top u images is below 200, a "poor match" with an estimated distance of 250 at 

Level I can be eliminated. The reason is that the estimated Level-K distance for this "poor 

match" is at least 250 (worse than those of the top-u). Without the property mentioned 

above, the search strategy needs to estimate the distance values at Levels J and K for this 

"poor match". 

1 As mentioned earlier in this chapter, u is the number of images requested by the user. 
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4.3 Multiscale Pure Vertical Search 

Having formulated the distance function for the proposed 4-level representation, we can 

explore efficient and effective search strategies for retrieving the top u images from a 

database of M images. One of the search strategies is Search P V (Pure Vertical). In it, a 

vertical filter searches each image "vertically" across scales. The idea is that all M images 

are checked one after another. A t any point in time, the current u smallest distances (at 

the finest scale of the u images, where u <C M) are kept. When an image is tested, if 

its distance value at the current scale is already greater than some, distance value of the 

current u smallest, the tested image can be eliminated. Otherwise, a finer scale is used. 

The process repeats until the image is (1) eliminated or (2) added to become one of the 

current u smallest (when it reaches the finest scale). 

Definition 4.2 (Search P V ) To conduct the Pure Vertical Search for retrieving the 

top u images from a collection of M images: 

1. The first u images are checked at all levels/scales, and a distance value is computed 

for each image at the finest scale. These u images become the current top-w. 

2. For each of the remaining M — u images: 

(a) Let the coarsest scale be the current level/scale. 

(b) Compute the distance value. If the value is less than some value of the top-w, 

extend one level/scale (provided that we have not reached the finest scale) and 

repeat Step 2(b) on the extended scale. • 

Example 4.1 In many database applications, it is not unusual to retrieve the desired 

images from a collection of thousands of images. For simplicity, in this example, we 

try to find the top two images from a collection of seven images using Search P V (with 

Scheme HIJ). In the following trace, the number at the slot representing an image at a 
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particular level is the estimated distance value, and the superscript on its left denotes the 

search order. 

To find the top two images using Search P V 

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 

Level H l s < 25 4th 5 7 t h 65 9th 8 0 Wth io i 3 t / i jo 

Level I 2nd 35 5th 30 sth 200 M* f c 15 

Level J 3rd g 7 eth 32 i2<fc 20 

Top two Img 1 Imgs Imgs Imgs Imgs Imgs Imgs 

images 2 and 1 2 and 1 2 and 1 5 and 2 5 and 2 5 and 2 

Since the histograms are examined image by image, the best way to organize the pre-

computed feature vectors in the data file of the 4-level representation is to arrange them 

on an image-by-image basis. More precisely, the histograms associated with one image 

are followed by the histograms associated with another image. For each image, the 4 

Level-I histograms are preceded by the Level-H histogram, succeeded by the 16 Level-J 

histograms, and the 64 Level-K histograms follow. Therefore, the file organization is of 

the form: 

HPSI'S 7Ks 

for Image M 

I" Ih I 3s / K s 7" 7*8 J J s 7 K s • 
N v ' v ' 

for Image 1 for Image 2 

4.3.1 Analytical Evaluation 
Cost Models 

To measure the efficiency of Search P V , we set up cost models to estimate the C P U and 

the I/O Costs. The C P U cost depends mainly on the time required to apply Padding and 

Reduction Algorithms to the data (color histograms), and the computation time for each 
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histogram (denoted by Tc) can be estimated using the experimental results in Section 3.4. 

The I /O cost depends mainly on the time required to sequentially or randomly access the 

pages containing the data (color histograms), and this access time can be affected by the 

size of data as well as the number of buffers. Given a minimum buffer (a buffer size of one 

page) and an intelligent buffer management scheme, the number of page accesses can be 

estimated with the use of statistical formulations. ' 

Assuming that the value (pixel count) in each dimension of a color histogram 

requires 4 bytes, a total of An bytes are needed for one ra-dimensional histogram. Hence, 

the total number of pages occupied by one histogram is pages where P is the page size. 

In the cost models, color histograms at each level for each image are treated as a "record" 2 , 

and the four "records" associated with each image can be grouped to form a "mega-

record". So, for a database containing M images, there exists a total of AM "records" 

or M "mega-records".for the 4-level representation. Depending on the level at which the 

histograms are represented, the size of "record" may vary. Sometimes a "record" may 

occupy a small portion of one page. For example, with a page size of 1 kilobyte (KB) , the 

"record" of one Level-H 8-dimensional color histogram takes less than 4% of a page.. With 

the file organization for Search P V , after the page containing this Level-H histogram is 

loaded, no extra page access is needed for reading its neighboring "record" (of the four 

Level-I histograms of the same image). However, sometimes a "record" may occupy more 

than one page. For- example, with the above page size, the "record" of sixteen Level-J 

512-dirhensional color histograms takes more than 30 pages. The cost of accessing all the 

histograms in this "record" is the sum of the time required to randomly access the first 

page and the time required to sequentially access the remaining pages. 

For a vast majority of subimage queries, in the case that the image subregions I s u b 

and I s u p are the best matches (which give the smallest Ds) at their corresponding, levels, 

2For example, the four Level-I histograms for Image 1 form a "record", and the sixteen Level-J his­
tograms for Image 3 form another "record". 

73 



I s u b is one of the subregions enclosed in I s u p . When aiming for a balance of efficiency 

and effectiveness, checking all the histograms in a "record" may seem unnecessary, and 

only a portion of the "record" (some of the histograms) may need to be examined. For 

instance, with Scheme IJ, the most promising image subregion I 1 can be found after 

checking histograms of the four subregions at Level I. Then, rather than considering all 

sixteen Level-J histograms, we consider the four Level-J histograms which represent the 

subregions covered by I 1 . As a result, both the C P U and the I /O costs can be reduced. 

E x a m p l e 4.2 For each image in Scheme HIJ , we examine the Level-H histogram, and 

then consider (if necessary 3 ) the 4 Level-I histograms and (if necessary 4) the 4 Level-

J histograms which represent the subregions enclosed in the promising block of Level I. 

Hence, using a 64-dimensional color histogram with page size P = 1 K B , the cost model 

for Scheme HIJ can be described as follows: 

• The C P U cost is the product of Tc and the total number of histograms used in the 

computation. In Scheme HIJ , Level-H histograms are examined for all M images, 4 

Level-I histograms are checked for each of the £ 4 images, and 4 Level-J histograms 

are examined for each of the £5 images (where M > £ 4 > £5 > u, and both £ 4 and 

£5 are determined dynamically at runtime). Hence, CPU^YJ = ( M + 4& + A^)Tc-

• The I/O cost is the sum of total seek times and total data transfer times. Using 

. the above file organization for Search P V , an average seek time (denoted by TA) 

is charged for moving the read head to the first "record". Since all M images are 

searched one after another and their "records" are stored contiguously on an image-

by-image basis, only a minimum seek time (denoted by TM) is charged for each jump 

between the data (for example, jumping from the fourth Level-I histogram to the 

3 We consider the 4 Level-I histograms of an image if the D at Level H is less than any D of the 
current top-u. 

4 W e consider the 4 Level-J histograms of an image if the best D at Level I is less than any D of the 
current top-u. 
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third Level-J histogram of the same image, and jumping from the Level-J "record". 

of an image to the Level-H "record",of the next image). Moreover, when a page of 

data (color histograms) is loaded, a data transfer time (denoted by TD) is charged. 

More precisely, for Scheme HIJ , TA is needed to get to the Level-H histogram 

of the first image, and Try is charged for loading the page containing the histogram. 

Since only 4 histograms can fit into a page,.if the 4 Level-I histograms happen to be 

examined, then we load the next page. There is a probability of | that the selected 

4 Level-J histograms are stored contiguously after the loaded Level-I histograms. 

Hence, I/0])v
u = TA + (A/ - 1 + ^ ) 7 A / + ( M + £, + & ) 7 « . 

The cost models for other filtering schemes, color histograms of other dimensions, or other 

page sizes can be formulated in a similar manner. , • 

The cost models for the 15 filtering schemes (with page size P = 1 K B ) are shown below: 

1. Scheme H . . . 

For each image, we examine the Level-H histogram. -

• CPUJ(V = MTC 

• I / O h
v - TA + [M - l)TM + MTD for 8-dimensional (8-D) histograms 

I/0H
V = TA + (M - 1)TM + MTD for 64-dimensional (64-D) histograms 

I/0H
V = TA + {Mr— l)TM + 2MTD for 512-dimensional (512-D) histograms 

2. Scheme I 

For each image, we examine the 4 Level-I histograms. 

• CPUfv = 4MTC 

• / / O f v = TA + ( M - \)TM + MTD for 8-D histograms 

I/Ofv = TA + {M - l)TM + MTb for 64-D histograms 

I/Ofv = TA + {M- l)TM + 8MTD for 512-D histograms 



3. Scheme HI 

For each image, we examine the Level-H histogram, and if necessary 5 , consider the 

4 Level-I histograms. 

• CPUffi = 'M.+ 4£L)TC 

• J/O&Y = TA + {M - \)TM + MTD for 8-D histograms 

J/O&V = TA + {M - 1 ) T M + ( M + 6 ) T D for 64-D histograms 

I/OH

VJ =TA + (M - 1)TM +• (2Af + 8 6 ) T D for 512-D histograms 

where M > £ 1 > w. 

4. Scheme J 

For each image, we examine the 16 Level-J histograms. 

• CPVp' = 16MTC 

• I/0*}V - TA +• ( M - 1)TM + MTD for.8-D histograms 

I/0PV = TA + (M - 1 ) T W + 4 M T D for 64-D histograms 

I/0$V = TA + ( M - 1 ) T M + 3 2 M T D for 512-D histograms 

5. Scheme HJ 

For each image, we examine the Level-H histogram, and if necessary, consider the 

16 Level-J histograms. 

• CPU%Vj = ( M + 16£ 2 )T C 

• I/0H
Vj = TA + ( M -\)TM + MTD for 8-D histograms 

I/0H
Vj = TA + (M - 1 + 6 ) T M 4- ( M + A^2)TD for 64-D histograms . 

11 Off, = TA + (M - 1 + £2)TM + (2Af + 32£ 2)7D for 512-D histograms 

where M > £2 > u. 

5 We consider the 4 Level-I histograms of an image if the D at Level H is less than any D of the current 
top-u. Similar conditions apply to the filtering schemes involving more than one level. 
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6. Scheme IJ 

For each image, we examine the 4 Level-I histograms, and if necessary, consider the 

4 Level-J histograms which represent the subregions enclosed in the promising block 

of Level I. 

. CPUff = {4M + 4£3)Tc' 

• I/OfJ = TA + (M- l)TM + MTD for 8-D histograms 

I/Of/ = TA + (M-1 + ^)TM + (M + £3)Tp for 64-D histograms 

• I/OfY = TA + ( M - 1 + ^)TM + ( 8 M + 8601b for 512-D histograms 

where M > £ 3 > u. 

7. Scheme HIJ 

For each image, we examine the Level-H histogram, then consider (if necessary) the 

4 Level-I histograms and (if necessary) the 4 Level-J histograms which represent the 

subregions enclosed in the promising block of Level I. 

• CPUffJj = (M + 4£ 4 + 4£ 5 )Tc 

• II°HIJ = TA + (M - l)TM + MTD for 8-D histograms 

Il°mJ = TA + (M - 1 + ^)TM•+ ( M + U + & ) 7 b for 64-D histograms 

t/Onu = TA + ( M - 1 + 2 & )T M + (2Af + 8£ 4 + 8&)Ib for 512-D histograms 

where A/ > £ 4 > > u. 

8. Scheme K 

For each image, we examine the 64 Level-K histograms. 

• CPUgv = 6 4 M T C 

• I/Ofy = TA + ( M - 1 ) T M + 2 M l b for 8-D histograms 

I/Ofy = TA + {M- 1)TM + WMTD for 64-D histograms 

I/Of? = TA + (M- 1)TM + 1 2 8 M T D for 512-D histograms 
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9. Scheme H K 

For each image, we examine.the Level-H histogram, and if necessary, consider the 

64 Level-K histograms. 

• CPUHl=(M + 64Ze)TC 

• J/OHK = TA.+ (M -1)TM+(M + 2&>)TD for 8-D histograms 

J/OHK = TA + {M-1 + £ 6 ) T M + ( M + 16C6)2b for 64-D histograms 

'T/°HK = TA + {M - 1 + £G)TM + (2Af +.128£6)T£> for 512-D histograms 

where M > > u. 

10. Scheme IK 

For each image, we examine the 4 Level-I histograms; and if necessary, consider 

the 16 Level-K histograms which represent the subregions enclosed in the promising 

block of Level I. 

• CPU',% = ( 1 M + 1 6 c » 7 b 

. I/QPV = TA + (M - 1 + &-)TM + ( M + $7)TD for 8-D histograms 

I/Of% = TA + ( M - 1 + £ 7 ) T M + ( M + 4 £ 7 ) T D for 64-D histograms 

I/Of%_ = TA + ( M - 1 + £ 7 ) T M + ( 8 M + 32£ 7 )TD for 512-D histograms 

where M > £ 7 > u. 

11. Scheme J K 

For each image, we examine the 16 Level-J histograms, and if necessary, consider 

the 4 Level-K histograms which represent the subregions enclosed in the promising 

block of Level J . 

• CPUf% = ' ( 16Af+4&)Ib 
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• J / 0 $ = TA + (M - 1 + ^)TM +: ( M + ^)TD for 8-D histograms 

1/0*% = TA + ( M - 1 + i f ^ T M + ( 4 M + £ 8 ) 7 b for 64-D histograms, . 

1/0$% = TA + (M — 1 +' 1H8-)rM + (32M + 8£ 8 )TD for 512-D histograms 

where M > £s > 

12. Scheme HIK 

For each image, we examine the Level-H histogram, then consider (if necessary) the 

4,Level-I histograms and (if necessary) the 16 Level-K histograms which represent 

the subregions enclosed in the promising block of Level I. 

• CPU^YK — (M + 4^9 + 16£io)Tc 

• I/0HIK = TA + (M - 1 + ^)TM + ( M + £10)TD for 8-D histograms 

J/OmK = TA + (M-i+ 6 o ) T M + (M + & + 4£10)TD for 64-D histograms 

J/OHIK = TA + (M-1 + 6 O ) T m + ( 2 M + 8£ 9 + 3 2 £ 1 0 ) T D for 512-D histograms 

• where M > £io > £9 >,u. 

13. Scheme H J K 

For each image, we examine the Level-H histogram, then consider (if necessary) the . 

16 Level-J histograms and (if necessary) the 4 Level-K histograms which represent 

the subregions enclosed in the promising block of Level J . 

• CPUPJK = (M+ I 6 6 1 + 4£ 1 2 )Tc 

• I/OH

VJK = TA + ( M - .1 + ^ ) T ¥ + (M•+ ^ ) T D for 8-D histograms 

I/OH

VJK = ^ + (M-l+eii+%)TM+(M+46i+62)r j D for 64-D histograms 

I/OHJK = ^ +'"(M - .1 + £11 + ^)TM + (2M + 32̂ 11 + 8£ 1 2 )Tb 

for 512-D histograms 

where M > £n > £12 > u. 
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14. Scheme U K 

For each image, we examine the 4 Level-I histograms, then consider (if necessary) 

the 4 Level-J histograms which represent the subregions enclosed in the promising 

block of Level I, and consider (if necessary) the 4 Level-K histograms which represent 

the subregions enclosed in the promising block of Level J . 

• CPUfjV
K = (4M + 4Z13 + 4t;14)Tc 

• I/O^fx = TA + {M-1 + ^ ) T M +{M+ ^ ) T D for 8-D histograms 

I/0?yK = TA + (M-i + ^+Z14JTM + (M+t13+Z14)TD for 64-D histograms 

I/6jYK = TA + {M-l + ^ + £14)TM + (8M + 86s + &ti)TD 

for 512-D histograms 

where M > £ 1 3 > £ 1 4 > u. 

15. Scheme H U K 

For each image, we examine the Level-H histogram, then consider (if necessary) 

the 4 Level-I histograms, (if necessary) the 4 Level-J histograms which represent 

the subregions enclosed in the promising block of Level I, and (if necessary) the 4 

Level-K histograms which represent the subregions enclosed in the promising block 

of Level J . 

" • CPU%YJK = (M•+ 4 & S 4 4 £ 1 6 + 4 £ i 7 ) r c 

• 1 / O H

V

U K = TA + (M-1 + ^ ) T M + ( M + for 8-D histograms 

1/OH
VIJK = TA + ( M - 1 + ^ + £ir)TM + (M + 65 + 6e + Sir)TD 

for 64-D histograms 

IIQmiK = TA + (M-l + %f + Z17)TM + ( 2 M + 865 + 8 £ 1 6 + ^17)TD 

for 512-D histograms 

where M >.^15 > > ^17 > u . 
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Notice from the cost models of the filtering schemes which involve more than one level, the 

value of each £j is determined dynamically. For instance, in the best case of Scheme HIJ , 

the first u images are the top-w, and each Level-H distance for the remaining M — u 

images is greater than all Level-J. distances of the top u images. As such, the histograms 

at Levels I and J for the M — u images are not examined; thus, £ 4 = £5 = u. Conversely, 

in the worst case, at any point in time the Level-H and Level-I distances of each image 

are less than some Level-J distance of the current top-u. As such, all the histograms at 

all levels for the M images are examined; thus, £ 4 = £5 = M. 

Analytical Results 

The above cost models provide a good foundation for analyzing the 15 filtering schemes, 

and for discovering general trends. The computation time for Padding and Reduction 

Algorithms (Tc) depends on the sizes of the subimage query and the image subregion. For 

the analysis, we let Tc be 3 ms for the 8-dimensional and the 64-dimensional histograms, 

and 20 ms for the 512-dimensional histograms. We assume that each minimum seek (TM) 

takes 5 ms, each average seek (TA) requires 15 ms, and the transfer of data in each 

page (TD) with page size P = 1 K B needs 0.3 ms. The analytical results for finding 

u = 10 images from a database of M=1000 images are summarized in the figures on the 

next few pages. In the figures, for each filtering scheme, the minimum cost is shown by 

the solid iine, and the additional cost (if any) is indicated by the dotted line 
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CPU Costs for Search PV (n = 8, 64) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Time (in ms) x 

(a) 8-, 64-dimensional Color Histograms 

CPU Costs for Seach PV (n = 512) 

(b) 512-dimensional Color Histograms 

Figure 4.4: C P U Costs for Search P V 
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Costs 

I/O Costs for Search PV (n = 8) 
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(a) 8-dimensional Color Histogram 

I/O Costs (or Search PV (n = 64) 
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(b) 64-dimensional Color Histogram 

Figure 4.5: I /O Costs for Search P V 
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I/O Costs lor Search PV (n = 512) 

HI 

H 

HUK 
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JK 
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HK 
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(c) 512-dimensional Color Histogram 

Figure 4.5: I/O Costs for Search P V (Continued) 
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• Combined C P U and I/O Costs 

CPU * I/O Costs tor Search PV (n = 8) 

1 1.5 
Time (in ms) 

(a) 8-dimensiona.l Color Histogram 

CPU + I/O Costs for Search PV (n = 64) 

1 1.5 
Time (in ms) 

(b) 64-dimensional Color Histogram 

Figure 4.6: Combined C P U and I/O Costs for Search P V 
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CPU + I/O Costs lor Search PV (n = 512) 

g> 10 6 
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(c) 512-dimensional Color Histogram 

Figure 4.6: Combined C P U and I/O Costs for Search P V (Continued) 

Observat ion 4.3 The C P U cost is affected by the dimension of the color histogram: As 

the dimension of the histogram grows, the time required for C P U operations increases. 

Explanation The C P U cost is proportional to the computation time Tc for Algorithms 

P A D and R E D . Recall from Observation 3.1 that Tc increases as the dimension of the 

histogram grows. • 

Observat ion 4.4 For low dimensional (for example, 8-dimensional) color histograms, 

the I/O costs for many filtering schemes appear to be the same. For example, I/OH

V — 

I/O% = I/O%J. 

Explanation Each of the 8-dimensional histograms occupies less than 4% of a page. 

So, the Level-H, Level-I, and Level-J "records" associated with an image can fit into one 

page. As a result, after the Level-H "record" of histogram is loaded, no extra page access 

is needed for histograms contained in the Level-I and Level-J "records". • 
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Observation 4.5 The I /O cost is also affected by the dimension of the color histogram: 

As the dimension of the histogram grows, the time required for I /O operations increases. 

Explanation The I/O cost depends on the number of pages occupied by the n-dimensiqnal 

color histograms. As the dimension of the histograms grows, the number of pages occupied 

by one histogram (= ^ pages where P is the page size) increases, and thus the total 

number of pages occupied increases as well. Hence, the I /O cost increases. . . . 

For the same reason, as the page size P shrinks, the number of pages occupied 

by one histogram (= ^ pages) increases, and thus the time required for I /O operations 

also increases. • 

Observation 4.6 The combined C P U and I/O cost is affected by the dimension of the 

color histogram: As the dimension of the histogram grows, the time required for both 

C P U and I /O operations increases. 

Explanation Note from Observation 4.3 that the C P U cost increases as the dimension 

of the histogram grows, and from Observation 4.5 that the I /O cost also increases as the 

dimension of the histogram grows. Thus, the combined C P U and I /O cost follows the 

same trend. • 

Observation 4.7 Filtering schemes which start with filter J or K often take more C P U 

and I /O time. For example, the combined C P U and I /O times demanded by Schemes J , 

J K , and K are often longer than the times.taken by the worst cases of many filtering 

schemes such as Schemes HIJ and HI JK . 

Explanation For the scheme that starts with filter J , at least 1 6 M histograms are required 

to be examined; for the scheme that starts with filter K , at least 6 4 M histograms are 

required to be examined. These numbers (of histograms to be examined) are large when 

compared with at most 9 M (= M + AM + AM) histograms for Scheme HIJ and at most 

1 3 M (= M + 4 M + 4 M + AM) histograms for Scheme H I J K . • 
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Observation 4.8 Filtering schemes which skip intermediate levels often incur greater 

C P U and I /O cost. 

Explanation For the filtering scheme that does not skip any level, at the next (finer) 

scale, we consider the 4 histograms which represent the subregions enclosed in the most 

promising block of the current scale. If a filtering scheme skips one level, then we bypass the 

4 histograms at the level skipped; however, at the next available scale, we need to consider 

16 histograms, each of which covers a subregion enclosed in the promising block of the 

current scale. Similarly, if a filtering scheme skips two consecutive levels, then we bypass 

the 8 (= 4 + 4) histograms at the levels skipped. Unfortunately, at the next available 

scale, we need to consider 64 histograms, each of which covers a subregion enclosed in the 

promising block of the current scale. • 

Observation 4.9 The combined C P U and I /O cost for the additional intermediate levels 

becomes relatively less expensive as the dimension of the histogram grows. For example, 

as the dimension of the histogram increases, the combined cost for Scheme HJ is usually 

more expensive than that for Scheme HIJ . Similarly, the combined cost for Scheme H K is 

usually more expensive than that for Scheme HIK or H J K , and either of these two costs 

is more expensive than that for Scheme HI JK . 

Explanation Following from the previous observation, if a filtering scheme skips one level, 

we need to consider an extra 12 (= 16 — 4) histograms, and if the filtering scheme skips 

two consecutive levels, we need to consider an extra 56 (= 64 — 8) histograms. As the 

dimension of the color histogram grows, fewer histograms fit into a page. Thus, the total 

number of pages occupied by the histograms increases. It is relatively more expensive to 

bypass the intermediate levels. • 

In general, the above analytical results tend to favor the filtering schemes which 

start with Level H (or Level I), and those that do not skip any intermediate level. More 

precisely, Schemes H , I, HI, IJ, HIJ , U K , and HIJK are favored. 
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4.3.2 Experimental Evaluation 

To find the appropriate filtering schemes for Search P V , several experiments have been 

performed using color histograms of 8, 64, and 512 dimensions. These color histograms 

are created for a database consisting of 1000 real images which are collected from various 

sources and stored in Vista formats [Pope and Lowe 1994]. Examples of these images are 

pictures of tourist attractions in British Columbia, photos of a water project in California, 

and scenic shots taken at different cities throughout the world. 

As observed in Section 3.4, the computation time for Padding and Reduction A l ­

gorithms is affected by the sizes of the subimage query and the image subregion. In the 

experiments, we used 48 subimage queries of different sizes. These queries were classified 

into four main types, and we studied the performance/speed and the accuracy of each 

query type. 

D e f i n i t i o n 4.3 Given that subimage queries can be of arbitrary size, we classified them 

into 4 main types: 

1. "h"-typed queries — whose sizes are larger than image subregions at Level I, 

2. "i"-typed queries — whose sizes are smaller than image subregions at Level I but 

larger than image subregions at Level J , 

3. "j"-typed queries — whose sizes are smaller than image subregions at Level J but 

larger than image subregions at Level K , and 

4. "k"-typed queries -— whose sizes are smaller than image subregions at Level K . • 

The execution time (denoted by TE, and measuring the combined C P U & I / O time per 

query on a database of 1000 images) can be used in assessing the efficiency of Search P V . 

Several measures can be applied in assessing the effectiveness of the strategy. Examples are 

(1) fallout and (2) standard recall and precision [Salton and M c G i l l 1983].'Fallout shows 
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the portion of non-relevant images being retrieved. Standard recall indicates the portion 

of the relevant images being retrieved, and standard precision indicates the portion of the 

retrieved images that are relevant. One problem with this set of measures is that images 

are categorized into relevant and non-relevant; however, the degree of relevancy cannot 

be expressed. Another example of a measure for assessing the effectiveness of the search 

strategy is a variant of normalized recall [Faloutsos et al 1994]. It calculates the ratio 

of the average rank of all retrieved relevant images to the ideal average rank. However, 

. images may sometimes be so similar that they are almost indistinguishable; in such cases, 

it may not be easy to assign exact ranks to the images. Hence, for each subimage query, 

we categorize the database images into five main classes such that the best 2 images fall 

into Class A , the next 3 into Class B, and the next 5'into Class C . Then, 15 images ranked 

from 11-th to 25-th are categorized into Class D , while the remaining M — 25 images are 

categorized into Class E . A l l images in the same class have the same rank. 

D e f i n i t i o n 4.4 Wi th the categorization of images into five classes, the effectiveness of 

the search strategy can be assessed by counting the number of retrieved images which fall 

into each class. A dissimilarity score (DS) for the retrieval of the best 10 images can be 

computed as a sum of the weighted difference: 

DS = 7(2 - rjA) + 5(3 - riB) + (5 - TJC) + 1 5 ^ + 40nE . (4.4) 

where rjj indicates the number of images falling into Class In the ideal situation, the 

/AS' is 0. • 

The experiments were run on a Sun UltraSPARC-1 workstation using a page size 

of 1 K B and user preference (3 of 0.5 6 . The results (the average DS and TE values for 

the retrievals of the best 10 images from a collection of 1000 images) are summarized in 

6 W i t h the user preference /? set to 0.5, both the color distribution and spatial information are of the 
same level of importance. 
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the tables and figures on the next few pages. The TE measures the efficiency and the DS 

assesses the effectiveness. 

• "h"-typed queries 

Filtering 
Scheme 

Dimension of Color Histograms Filtering 
Scheme 8-dimensional 

at T)B vc m 
64-dimensional 
VA VB VC 'ID 

512-dimensional 
VA f]B VC VD 

H 
0.7 0.6 1.5 7.2 
=> DS = 132.6 

1.9 2.1 1.7 4.3 
=* DS = 73.0 

1.9 2.4 1.7 4.0 
=* DS = 67.0 H 

TE = 2.4 ± 1.1 s TE = 4.5 ± 3.8 s TE = 43.4 ± 22.5 s 

Table 4.1: Experimental Results for Search P V ("h"-typed Queries) 

Results for Search PV ("h"-typed Queries) 

90 100 110 
Dissimilarity Score 

Figure 4.7: Experimental Results for Search P V ("h"-typed Queries) 

Among the three dimensions of color histograms, the 8-dimensional case appears to 

require the shortest execution time, but it has the largest dissimilarity value. By 

contrast, the 512-dimensional case has the smallest dissimilarity value, but it requires 

the longest execution time. So, in keeping a balance of efficiency and effectiveness, 

the best filtering scheme for "h"-typed queries, when operated with Padding and 

Reduction Algorithms, is Scheme H with 64-dimensional color histograms. 
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• " i " - t y p e d queries 

F i l te r ing 
Scheme-

Dimension of Color Histograms F i l te r ing 
Scheme- 8-dimensional 

VA VB W 1)D 

64-dimensional 
VA TIB Tjc TID 

512-dimensional 

VA VB VC VD 

H 
0.3 0.9 1.3 7.5 
=* DS = 138.6 

1.5 2.2 1.8 4.5 
DS = 78.2 

1.9 2.4 1.4 4.3 
=> 7J5 = 71.8 H 

TE = 2.5 ± 0.6 s TE = 5.5 ± 1.5 s TE = 42.1 ± 27.2 s 

I 
0.5 0.8 1.3 7.4 
=> DS = 136.2 

1.8 2.1 1.8 4.3 
D 5 = 73.6 

1.9 2.4 1.5 4.2 
DS = 70.2 I 

TE = 4.1 ± 2.1 s TJE; = 9.2 ± 8.5 s TE = 127.4 ± 87.9 s 

HI 
0.5 0.8 1.3 7.4 
=> O S =136 .2 

1.8 2.1 1.8 4.3 
=> DS = 73.6 

1.9 2.4 1.5 4.2 
=> 7J5 = 70.2 HI 

7^ = 2.7 ± 0.6 s T E = 7.1 ± 0.8 s I k = 60.4 ± 27.8 s 

Table 4.2: Exper imental Results for Search P V (" i " - typed Queries) 

Results for Search PV ("i"-typed Queries) 

X512I 

X 5 1 2 H I 

H 5 1 2 H 

_ i i i i , i , o n i ~ t p n i 
70 80 90 100 110 120 130 140 

Dissimilarity Score 

Figure 4.8: Exper imenta l Results for Search P V (" i " - typed Queries) 
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To aim for a balance of performance and accuracy, the best filtering scheme for " i " -

typed queries, as observed from the above experimental results, is Scheme HI with 

64-dimensional color histograms. 

"j"-typed queries 

Filtering 
Scheme 

Dimension of Color Histograms Filtering 
Scheme 8-dimensional 

VA VB VC VD 

. 64-dimensional 
7)A VB VC VD 

512-dimensional 
VA VB VC VD 

H 
0.0 0.8 1.2 8.0 
=>-DS = 148.8 

0.9 2.1 2.5 4.5 
=> DS = 82.2 

1.5 2.5 1.2 4.8 
=> DS = 81.8 H 

TE = 1.5 ± 0.1 s . TE = 2.6 ± 0.2 s TE = 23.7 ± 9.3 s 

I 
0.0 1.0 1.3 7.7 

. DS = 143.2 
1.5 2.2 1.8 4.5 

^DS = 78.2 
1.7 2.3 1.5 4.5 

•.••'=> DS = 76.6 I 
TE = 3.0 ± 0.6 s TE = 8.5 ± 1.6 s TE = 168.3 ± 25.6 s 

HI 
0.0 1.0 1.3 7.7 
=> DS = 143.2 

1.5 2.2 1.8 4,5 
. => DS = 78.2 

1,7 2.3 1.5 4.5 
=> DS = 76.6 HI 

TE = 1.5 ± 0.1 s TE = 3.4 ± 0.7 s TE = 36.5 ± 16.7 s 

IJ 
0.5 0.8 1.3 7.4 

DS = 136.2 
1.8 2.0 1.9 4.3 

' =>DS = 74.0' 
1.7 2.3 1.7 4.3 

DS — 73.4 IJ 
TE = 3.4 ± 0.5 s TE = 9.2 ± 1.6 s TE = 188.0 ± 37.4 s 

HIJ 
0.5 0.8 1.3 7.4 
=> DS = 136.2 

1.8 2.0 1.9 4.3 
=> DS = 74.0 

1.7 2.3 1.7 4.3 
=> DS = 73.4 HIJ 

TE = 2.8 ± 0.3 s TE = 5.8 ± 1.7 s TE = 68.5 ± -31.7 s 

Table 4.3: Experimental Results for Search P V ("j"-typed Queries) 
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Results lor Search P V ("j"-typed Queries) 
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Figure 4.9: Exper imenta l Results for Search P V (" j " - typed Queries) 

To aim for a balance of efficiency and effectiveness, Scheme HIJ wi th 64-dimensional 

color histograms is the best filtering scheme for " j " - typed queries, when operated 

with Padding and Reduction Algor i thms . 

94 



k"-typed queries 

Filtering Dimension of Color Histograms 
Scheme 8-dimensional 64-dimensional 512-dimensional 

VA VB VC VD VA VB VC VD VA VB VC VD 

0.0 0.0 1.5 8.5 0.5 2.0 2.7 4.8 1.0 2.1 1.9 5.0 
H =• DS = 160.0 =>'DS = 89.8 . =*• DS = 89.6 

TE = 1.2 ± 0.0 s TE = 1.8 ± 0.1 s l b = 18.9 ± 6.6 s 
0.0 0.5 1.5 8.0 0.8 2.3 2.2 4.7 1.6 2.1 1.5 4.8 

I =>• DS = 150.0 => DS = 85.2 =>DS = 82.8 
TE = 1.6 ± 0.2 s l b = 4.2 ± 0.5 s TE = 124.1 ± 11.1 s 
0.0 0.5 1.5 8.0 0.8 2.3 2.2 4.7 1.6 2.1 1.5 4.8 

HI => DS = 150.0 => DS = 85.2 => DS = 82.8 
l b = 1.2 ± 0.0 s l b = 2.0 ± 0.1 s l b = 25.7 ± 11.8 s 
0.4 0.3 1.3 8.0 1.3 2.0 2.1 4.6 1.6 2.2 1.5 4.7 

IJ DS = 148.4 => DS = 81.8 =• DS = 80.8 
TE = 1.6 ± 0.2 s l b = 4.4 ± 0.7 s TE = 133.3 ± 18.9 s 
0.4 0.3 1.3 8.0 1.3 2.0 2.1 4.6 1.6 2.2 1.5 4.7 

HIJ DS = 148.4 => DS = 81.8 ' => DS = 80.8 
TE = 1.2 ± 0.1 s TE = 2.8 ± 0.7 s TE = 52.8 ± 34.3 s 
0.4 0.9 0.7 8.1 1.3 2.1 2.0 4.6 1.6 2.2 1.5 4.7 

U K => DS = 147.5 '=> £>5. = 81.4 ^ DS = 80.8 . 
TE = 1.8 ± 0.4 s T £ . - 5.6 ± 1.3 s l b = 167.7 ± 52.6 s 
0.4 0.9 0.7 8.1 1.3 2.1 2.0 4.6 1.6 2.2 1.5 4.7 

HI JK => 7J5 = 147.5 => DS = 81.4 DS = 80.8 
l b = 1.6 ± 0.5 s l b = 4.4 ± 1.5 s l b = 72.1 ± 48.4 s 

Table 4.4: Experimental Results for Search P V ("k"-typed Queries) 
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Results for Search PV ("k'-typed Queries) 
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Figure 4.10: Experimental Results for Search P V ("k"-typed Queries) 
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To aim for a balance of performance and accuracy, the best filtering scheme for "k"-

typed queries, as observed from the above experimental results, is Scheme HIJ with 

64-dimensional color histograms. 

4.4 Summary 

Given that subimage queries can be of arbitrary size, picking one best scale at which the 

images are blocked is not easy. To cope with this challenge, a multiscale representation is 

proposed. In order to incorporate both color similarity and spatial similarity, the multi-

scale distance function is defined as a weighted- sum of the histogram distance (DH) and 

the positional distance (Dp): . 

D = (3DH + (l-P)Dp . 

where the weighting factor (f3) is a user preference for specifying the relative importance 

of the two distances above. The DH can be estimated using Padding and Reduction 

Algorithms; the Dp can be estimated as the square of the shortest Euclidean distance 

between the query and the image subregion. , 

To aim for efficient and effective retrievals of desired images, the above multiscale 

distance function has also been formulated in such a way that given a query and an im­

age subregion, the distance value,at the coarser scale can serve as the distance value at 

the finer scale. With this formulation of the distance function, an efficient multiscale 

search strategy with the use of vertical filters (such as Search PV) is possible. Using 

Search P V , we analytically and experimentally investigated the suitable.number of levels 

for the representation. In the analyses, we set up cost models to evaluate the 15 possible 

filtering schemes for the 4-level representation, and estimated their C P U , I /O, and com­

bined C P U & J / O costs. The analytical results tend to favor the filtering schemes which 

start with Level H (or Level I), and those that do not skip intermediate levels. In the ex-
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periments, subimage queries of arbitrary size were classified into four main types, and we 

measured the execution time (to evaluate the performance) and the dissimilarity score (to 

evaluate the degree of accuracy) for each filtering scheme that is favored by the analytical 

results. The experimental results show that when operated with Padding and Reduction 

Algorithms, Scheme H with 64-dimensional histograms is best for the "h"-typed queries, 

Scheme HI is best for the "i"-typed queries, and Scheme HIJ is best for both.the "j"-typed 

and the "k"-typed queries: Moreover, among the three dimensions of histograms, while 

delivering better performance, the 8-dimensional cases suffer from a loss of accuracy. Con­

versely,, while delivering better accuracy, the 512-dimensional cases suffer from a loss of 

performance/speed. 

Based on these analytical and experimental results, we conclude that desired images 

can be retrieved efficiently and effectively using only the first three levels of the proposed 

representation. Hence, the recommended multiscale representation (Figure 4.11) can be 

described as follows: 

• A t Level H , the entire image is represented by a single global 64-dimensional color 

histogram. 

• A t Level I, the image is divided into.four non-overlapping blocks, and each block is 

represented by a 64-dimensional color histogram covering | of the entire image. 

• A t Level J , each block at Level I is further divided into four blocks, each of which is 

represented by a 64-dimensional color histogram covering ^ of the entire image. 
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(a) Level H (b) Level I (c) Level J 

Figure 4.11: The Recommended Multiscale Representation 
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Chapter 5 

Search Strategies 

To search a multiscale representation, some search strategies may require frequent jumping 

back and forth in the data file so as to get the necessary feature vectors representing 

the subregions of the images. However, such jumping makes it hard to optimize file 

organization and buffer management, and may generate a large number of I/Os. To avoid 

such jumping, a search strategy — Pure Vertical — was proposed and studied in Chapter 4. 

In addition to the Pure Vertical Search, we consider two other strategies, namely Pure 

Horizontal and Horizontal-and-Vertical. We investigate analytically and experimentally 

these strategies so as to find the best one which avoids frequent jumping and at the same 

time maintains a good balance of efficiency and effectiveness. 
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5.1 Problems of Branch-and-Bound Search 

To use the branch-and-bound strategy for searching multiple scales [Chen et al 1997], all 

the database images are first checked at the coarsest scale, and the search proceeds to 

finer scales in non-descending order of distance value. In general, the branch-and-bound 

search works in such a way that it always, keeps track of the distance values of all images 

contending for further consideration. Images with smallest values are "extended" to a 

finer scale. Then, these most recently "extended" images are considered along with the 

remaining ones. Again, images with smallest values are "extended". The process repeats 

until the target images are found. 

D e f i n i t i o n 5.1 To conduct the branch-and-bound search for retrieving the top u 1 images 

from the collection of M images: 

1. Check all M images in the database at the coarse scale in the first iteration, and 

compute the distance value for each image. 

2. Sort all images in non-descending order of distance value. Images with the current 

u smallest values become the current top-u. 

3. Repeat until all the top u images have reached the finest scale: 

(a) For each of the u images, 

i . if the image has not reached the finest scale, extend one level/scale; 

i i . update the distance value of the extended image with the distance at the . 

extended scale. 

(b) Sort all images in non-descending order of distance value, and obtain top u 

images for the next iteration. • 

'As mentioned in Chapter 4, u is the number of images requested by the user. 
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Due to the effectiveness of the brand-and-bound strategy for handling whole-image queries, 

this strategy can be adapted to handle subimage queries. However, at each iteration of the 

branch-and-bound search, the feature vectors used in the computation of distance values 

may be at a different level/scale and may be for images different from those in the previous 

iteration. As a result, it can be inefficient for large databases. In particular, the number 

of images the strategy must keep track,of can be large. Jumping back and forth in the 

data file to get the necessary feature vectors for computation seems unavoidable. 

Example 5.1 In many database applications, it is not unusual to retrieve the desired 

images from a collection of thousands of images. For simplicity, in this example, we try 

to find the top two images from a collection of seven images using the branch-and-bound 

search (with Scheme HIJ). 

In the first iteration of the branch-and-bound search, all seven images are checked 

at the coarse scale (Level H) , and a distance value is computed for each image. These 

images are then sorted in non-descending order of distance value, and the images with 

the two smallest values are the potential top two images. In each subsequent iteration, 

the potential top two images are extended one level/scale, and their distance values are 

updated; images are then sorted and a new set of the potential top two images is obtained. 

In the following trace, the number at the slot representing an image at a particular 

level is the estimated distance value, and the superscript on its left denotes the search 

order (with the iteration number in brackets). 

r b find the top two images using the branch-and-bound search 

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 

Level H 

Level I 

Level J 

l 5 t ( l ) 2 5 2nd(l) 5 . 3rd(l)g 5 4th(l)8Q 5th(l)1Q 6th(l)7Q 7<fc(l)g8 

11^(3)35 8t/i(2)3Q 9<M2)i5 

12t/i(4)32 10tfc(3)2() 

102 



Observe that jumping back and forth among images and levels may frequently be required, 

which makes it hard to optimize file organization and buffer management, and may impose 

a high I /O cost. Hence, we consider three search strategies — Search P V (Pure Vertical), 

Search P H (Pure Horizontal), and Search H V (Horizontal-and-Vertical) — which avoid 

such jumping. 

5.2 Pure Vertical Search 

We have studied Search P V (Pure Vertical) in the last chapter; here, we summarize the 

main points. Like the branch-and-bound search, Search P V is also accurate in its search. 

However, instead of jumping back and forth to get the necessary data during the search, 

Search P V checks the images one after another. A t any point in time, a set of u images 

currently having smallest distance values are kept. For each image, the algorithm keeps 

proceeding to finer scales until (1) the distance value at a particular scale is already so 

large that the image cannot qualify as a good match, or (2) the finest scale is reached and 

the image is either discarded or selected as a member of the answer set, depending on the 

distance value. -

To investigate the efficiency and the effectiveness of Search P V , analytical and 

experimental evaluations have been carried out. The results show that when operated with 

Padding and Reduction Algorithms, Scheme H with 64-dimensional histograms is best for 

the "h"-typed queries, Scheme HI is best for the "i"-typed queries, and Scheme HIJ is 

best for both the "j"-typed and the "k"-typed queries. 

5.3 Pure Horizontal Search 

Note that Search P V tends to require many comparisons at the finest scale, particularly 

at the beginning of the search. Thus, we consider another search strategy — Search P H 
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(Pure Horizontal) — that may require fewer comparisons at the finest scale. In Search P H , 

horizontal filters search "horizontally" across the database level by level, and the number 

of comparisons are predetermined. The idea is that all M images in the database are 

checked by a horizontal filter at the coarse scale in the first iteration. The best fi matches 

(where u < .fi <C M, and / i is a predetermined parameter that controls the number of 

comparisons) are carried over from the current level to the next level (finer scale), while 

poor matches at the coarse scale are eliminated. In subsequent iterations, images left from 

the previous level are checked by horizontal filters at finer scales, and poor matches are 

again removed. The process repeats until the finest scale is reached and the top u images 

are returned. 

D e f i n i t i o n 5.2 (Search P H ) To conduct the Pure Horizontal Search for retrieving the 

top u images from a collection of M images: 

1. Check all M images at the coarsest scale/level, and compute the distance value for 

each image. 

2. Sort the images in non-descending order of distance value. A subset of. these images 

(the fi images with current smallest values) are carried over to the next level. 

3. For each of the remaining levels: 

(a) Check the images which are carried over from the previous level, and compute 

the distance value for each image. 

(b) Sort the images in non-descending order of distance value; a subset of these 

images are again carried over to the next level. 

(c) Repeat Steps 3 (a) and (b) for the next level. • 
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E x a m p l e 5.2 Let us find the top two images from a collection of seven images using 

Search P H (with Scheme HIJ) 2 . In the following trace, the number at the slot representing 

an image at a particular level is the estimated distance value, and the superscript on its 

left denotes the search order. 

To find the top two images using Search P H 

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 

Level H 1s t 25 2 n d tj ' 3rd gg 4th gg 5th ĵ Q 6 t / i yg 7th gg 

. - . = > • top five images are Imgs 1, 2, 3, 5, and 7 

Level I sth 3 5 9^-30. ioth 200 n t h 15 1 2 t h 78 

=>• top three images are Imgs 1, 2, and 5 

Level J 13th g j 14th 32 15th 20 

top two images are Imgs 2 and 5 

Since the histograms are examined level by level, the best way to organize the precomputed 

feature vectors in the data file is to arrange them on a level-by-level basis. More precisely, 

the histograms of one level are followed by the histograms of another level (finer scale). 

Therefore, the file organization is of the form: 

/H /H . . . / H j l 7 I g . . . 7 I g 7 J g 7 J S . . . 7 J S 7K g 7K g ; . . j t 

S V ' V V < N V ^ N ^ ' 

for M images for M images for M images for M images 

5.3.1 Analytical Evaluation 
Cost M o d e l s 

To measure the efficiency of Search P H , we set up cost models to estimate the C P U and 

the I /O costs. The C P U cost depends mainly on the time required to apply Padding and 

2 In many database applications, it is not unusual to retrieve the desired images from a collection of 
thousands of images. For simplicity, in the example, we try to retrieve two desired images from a collection 
of seven images. 
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Reduction Algorithms to the data (color histograms), and the computation time for each 

histogram (denoted by Tc) can be estimated using the experimental results in Section 3.4. 

The I /O cost depends mainly on the time required to sequentially or randomly access 

the pages containing the data (color histograms), and this access time can be affected by 

the size of data as well as the number of buffers. With the file organization described 

above, histograms at the first chosen level can be accessed sequentially. Given a minimum 

buffer size (one page) and an intelligent buffer management scheme, the number of random 

page accesses at the remaining levels can be estimated with the use of Cardenas' Formula 

[Cardenas 1975] or Yao's Formula [Yao 1977]. • 

Definition 5.3 (Cardenas' Formula) Given that R "records" divided into m pages 

and that r "records" satisfying the query are distributed uniformly among the m pages, 

the expression 1 — ^ gives the probability that a particular page does not contain a 

particular "record". If r "records" are selected independently, then the probability that a 

particular page not being hit is given by (1 — ^-) r , and 1 — (1 — ^ ) r gives the probability 

that a particular page is hit. Therefore, the number of page accesses for a given query can 

be estimated using 

C(m, r) = m i - n - I 
m 

(5.1) 

Definition 5.4 (Yao's Formula) Given R "records" grouped into m pages (where 1 < 

fn < R), each contains ^ "records". If r "records" (where r < R — ̂ ) are randomly 

selected from the R "records", the expected number of page accesses (pages with at least 

one "record" selected) is given by 

> ( i - ^ ) - i + i " i - n Y(R,m,r) = m 

If r > R — ^ or m = 1, then all m pages are expected to be accessed 
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In the cost models, color histograms at each level for each image are treated as 

a "record". Depending on the level at which the histograms are represented, the size of 

"record" may vary. Sometimes a "record" may occupy a small portion.of one page. For 

example, with a page size of 1 kilobyte (KB) , the "record" of one Level-H 64-dimensional 

color histogram takes less than 30% of a page. With the file organization for Search P H , 

after the page containing a "record" of the Level-H histograms is loaded, no extra page 

access is needed for reading the Level-H "record" of the next image. However, sometimes 

a "record" may occupy more than one page. For example, with the above page size, 

the "record" of sixteen Level-J 64-dimensional color histograms occupies more than 15 

pages. The cost of accessing all the histograms in this "record" is the sum of the time 

required to randomly access the first page and the time required to sequentially access the 

remaining pages. 

Like Search P V , for the vast majority of subimage queries, in the case that the 

image subregions I s u b and I s u p are the best matches (which give the smallest TJs) at their 

corresponding levels, I s u b is one of the subregions enclosed in I s u p . When aiming for a 

balance of efficiency and effectiveness, checking all the histograms in a "record" may seem 

unnecessary, and only a portion of the "record" (some of the histograms) may need to be 

examined. As a result, both the C P U and the I/O costs can be reduced. 

E x a m p l e 5.3 In Scheme HIJ , we examine all M. histograms at Level H , and carry the 

best [iff images over to Level I where the 4 Level-I histograms for each of these images 

are examined. Then, at Level J , for each of the best \x\ images (where fijf > H.i) carried 

over from Level I, we examine the 4 histograms representing the subregions enclosed in 

the promising block of Level I. Hence, using a 64-dimensional color histogram with page 

size P — 1 K B , the cost model for Scheme HIJ can be described as follows: 

• The C P U cost is the product of Tc and the total number of histograms used in the 

computation. In Scheme HIJ , Level-H histograms are examined for all M images, 
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4 Level-I histograms are checked for each of the HH images, and 4 Level-J histograms 

are examined for each of the fir images (where M >̂ fiH > > u, and both fiH 

and ni are predefined). Hence, CPU^fj = (M + 4ftH + 4fii)Tc. 

• The I /O cost is the sum of total seek times and total data transfer times. Using 

the above file organization for Search P H , an average seek time (denoted by TA) 

is charged for moving the read head to the first "record" at Level H , and for each 

random page access of "records" at the remaining levels. When a page of data (color 

histograms) is loaded, a data transfer time (denoted by'To) is charged. . 

More precisely, for Scheme HIJ , TA is needed to get to the Level-H his­

togram of the first image, and Try is charged for loading the page containing the 

histogram. Since all Level-H histograms are stored contiguously, no seek is charged 

for accessing subsequent Level-H histograms, and only Try is charged for each se­

quential page access of data. A t Levels I and J , the number of random page ac­

cesses can be estimated by Cardenas' Formula, and each random page access re­

quires one TA and one TD. Hence, I/Offij = [1 + C*(M, fiH) + C(4M, /*/)] TA + 

f + C(M, m ) + C(4M, HI)] TD. 

The cost models for other filtering schemes, color histograms of other dimensions, other 

page sizes, or for Yao's Formula can be formulated in a similar manner. • 

The cost models for the 15 filtering schemes (with page size P •= 1 K B , using 

64-dimensional color histograms and Cardenas' Formula) are shown below: 

1. Scheme H 

We examine all M histograms at Level H . 

• CPU'/f11 = M'I'c 

• l/Op

H

H = TA + frD 
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2. Scheme I 

We examine all AM histograms at Level I. 

• CPU1/" = AMTC 

• I/O','" = TA + MTD 

3. Scheme HI 

We examine all M histograms at Level H , and carry the best \m images over to 

Level I where the 4 histograms for each of these images are examined. 

... CPUgf = (M + AfiH)Tc 

' • 110m = [1 + C ( M ' TA+[f + C ( M , HH)\ TD 

where fifj is a predefined parameter that controls the number of images to be carried 

over from Level H.to the next level (Level I) 3 , and its value lies between u and M. 

A. Scheme J 

We examine all 1 6 M histograms at Level J . 

• CPU'j" - WMTC 

• I/Qij" = TA+ AMTD 

5. Scheme H.I . 

We examine all M histograms at Level H , and carry the best \iu images over to 

Level J where the.16 histograms for each of these images are examined. 

• CPUf/j = ( M + 16////)7b . • 

I/Offi = [1 + C ( 4 M , nH)] TA + f + 4 C ( 4 M , M ) I TD M 

3Similarly, fij and in the following cost models control the number of images to be carried over to 
the next available level from Level I and Level J respectively. 
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6. Scheme IJ '. 

We examine all AM histograms at Level I, and carry the best fii images over to 

Level J where for each of these images, the 4 histograms representing the subregions 

enclosed in the promising block of Level I are examined. 

. CPUff = (4M + 4fn)Tc 

• I/Off = [1 + C ( 4 M , m)] TA + [M + C(AM, ^)]TD 

7. Scheme HIJ 

We examine all M histograms at Level H , and carry the best fifj images over to 

Level I where the 4 Level-I histograms for each of these images are examined. Then, 

at Level J , for each of the best fi[ images (where > fir) carried over from Level I, 

" we examine the 4 histograms representing the subregions enclosed in the promising 

block of Level I. 

• CPUffij = ( M + 4HH + 4fn)Tc 

• I/Ogfj = [1 + C(M, HH) + C(4M, m)]TA+ [ f + C ( M , nH) + C ( 4 M , ^ ) ] TD 

8. Scheme K 

We examine all 6 4 M histograms at Level K . 

• CPUfc" = UMTc 

• I/Off — TA + lQMTp 

9. Scheme H K 

We examine all M histograms at Level H , and carry the best flu images over to the 

Level K where the 64 histograms for each of these images are examined. 

• CPU™ = (M + 6A[iH)Tc 

• IIOHK = [1 + C(WM,pH)] TA + [ f + 16C(16M, m ) ] TD 
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10. Scheme IK 

We examine all AM histograms at Level I, and carry the best HI images over to. 

Level K where for each of these images, the 16 histograms representing the subregions 

enclosed in the promising block of Level I are examined. 

• CPUfg = ( 4 M + i6/*/)r c 

• / / O f * ? = [1 + C ( 1 6 M , A /̂)] TA + [M + 4 C ( 1 6 M , HI)] TD 

11. Scheme J K 

We examine all 1 6 M histograms at Level J , and carry the best fiJ images over to 

Level K where for each of these images, the 4 histograms representing the subregions 

enclosed in the promising block of Level J are examined. 

• CPUfg = {16M + A(ij)TC 

• I/0^ = [l + C(16M,iij)]TA.+ [4M + C(16M,fiJ)]TD . 

12. Scheme HIK 

We examine all M histograms at Level H , and carry-the best HH images over to 

Level I where the 4 Level-I histograms for each of these images are examined. Then, 

at Level K , for each of the best HI images (where HH > Hi) carried over from Level I, 

we examine the 16 histograms representing the subregions enclosed in the promising 

block of Level I. 

• CPUffiK = (M + AHH + 16 W )7b ' •. 

• r/0^K = [i+C(M,HH) + C(16M,fzi)]TA 

f + C ( M , IIH) •+ 4C(16M, HI)} TD 

13. Scheme H J K 

We examine all M histograms at Level H , and carry the best HH images over to 

Level J where the 16 Level-J histograms for each of these images are examined. 
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Then, at Level K , for each of the best HJ images (where fijj > /i j) carried over from 

Level J , we examine the 4 histograms representing the subregions enclosed in the 

promising block of Level J . 

• CPU$K = (M+16pH + 4iAj)Tc 

• I / 0 ^ K = [1 + C(4M, fiH) + C ( 1 6 M , pj)] TA 

+ + 4 C ( 4 M , HH) + C ( 1 6 M , fij)] TD 

14. Scheme U K 

We examine all 4M histograms at Level I, and carry the best fir images.over to 

Level J where for each of these images, the 4 histograms representing the subregions 

enclosed in the promising block of Level I are examined. Then, at Level K , for each 

of the best \ij images (where fii > fij) carried over from Level J , we examine the 4 

histograms representing the subregions enclosed in the promising block of Level J . 

• CPUfJlc = (4M + 4m + 4nj)TC 

• J/OWK = [l + C(4M,nI)+C(lQM,fij)]TA 

+ [M + C (4M, HI) + C ( 1 6 M , TD 

15. Scheme H I J K 

We examine all M histograms at Level H , and carry the best JJLJJ images over to 

Level I where the 4 Level-I histograms for each of these images are examined. Then, 

at Level J , for each of the best ^/images (where HH > m) carried over from Level I, 

we examine the 4 histograms representing the subregions enclosed in the promising 

block of Level I, and carry the best fij images (where fir > fij) over to Level K 

where the 4 Level-K histograms for each of these images are examined.. 

• CPUffijK = ( M + 4fiH + 4iii + 4fij)TC 
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I/OffjK = [1 + C(M, H H ) + C ( 4 M , HI) + C(16M, HJ)] TA 

, + [f + C(M,HH) + C(4M,Hi)+C(16M,Hj)]TD 

Analytical Results 

The above cost models provide a good foundation for analyzing the 15 filtering schemes, 

and for discovering general trends. The computation time for Padding and Reduction 

Algorithms (Tc) depends on the sizes of the subimage query and the image subregion. 

For the analysis, we let Tc be 3 ms for the 8-dimensional and the 64-dimensional his­

tograms, and 20 ms for the 512-dimensional histograms. We assume that each minimum 

seek (TM) takes 5 ms, each average seek (TA) requires 15 ms, and the transfer of data in 

each page (TD) with page size P — 1 K B needs 0.3 ms, and that HH, Hi anc^ HJ a r e 160, 80, 

and 40 respectively. Analyses on finding u = 10 images from a database of M=1000 im­

ages were then conducted. As observed from the experimental results of Search P V , while 

delivering better performance, the filtering schemes with the 8-dimensional histogram suf­

fer from a loss of effectiveness. By contrast, while delivering better accuracy, the schemes 

with the 512-dimensional histogram suffer from a loss of efficiency. So, we summarize only 

the analytical results for the 64-dimensional color histograms in the figures on the next 

few pages. In the figures, for each filtering scheme, the C P U , I /O, or combined C P U & I / O 

cost is shown by the solid line. 
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C P U Costs lor Seach PH (n = 64) 

(a) C P U Costs for Search P H 

I/O Costs for Search PH (n - 64) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Time (in ms) 

(b) I/O Costs for Search P H 

Figure 5.1: Analytical Results for Search P H (64-dimensional Color Histograms) 
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CPU + I/O Costs for Seach PH (n = 64) 

(c) Combined C P U and I / O Costs for Search P H 

Figure 5.1: A n a l y t i c a l Results for Search P H (Continued) 

Observat ion 5.1 The C P U and the I / O costs for every filtering scheme are deterministic. 

The best-case analyses are the same as the worst-case analyses. 

Explanation Since the number of images to be carried over from the current level to the 

next level is controlled by the predefined parameter fij, we know statically the number of 

images to be considered and to be retained at a particular level. • 

A s for Search P V , the fol lowing trends are observed: 

1. The C P U cost is affected by the dimension of the color histogram: A s the dimension 

of the histogram grows, the time required for C P U operations increases. 

2. The I / O cost is affected by the dimension of the color histogram: A s the dimension 

of the histogram grows, the time required for I / O operations increases. 

3. The combined C P U and I / O cost is affected by the dimension of the color histogram: 

A s the dimension of the histogram grows, the time required for both C P U and I / O 

operations increases. 
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4. Filtering schemes which start with filter J or K take more C P U and I /O time. For 

example, the combined C P U and I /O times demanded by Schemes J , J K , and K 

are longer than the times taken by the worst cases of many filtering schemes such 

as Schemes HIJ and HIJK. 

5. Filtering schemes which skip intermediate levels incur greater C P U and I /O cost. 

6. The combined C P U and I/O cost for the additional intermediate levels becomes 

relatively less expensive as the dimension of the histogram grows. For example, as 

the dimension of the histogram increases, the combined cost for Scheme H J is more 

expensive than that for Scheme HIJ . Similarly, the combined cost for Scheme H K is 

more expensive than that for Scheme HIK or H J K , and either of these two costs is 

more expensive than that for Scheme HIJK. ' 

In general, the above analytical results tend to favor the filtering schemes which start with 

Level H (or Level I), and those that dp not skip any intermediate level. More precisely, 

Schemes H , I, HI, IJ, HIJ , U K , and H I J K are favored. 

5.3.2 Experimental Evaluation 

To find the appropriate filtering schemes for Search P H , several experirhents have been 

performed using the same set of data (color histograms) as for the experimental evaluation 

of Search P V . Again, for each subimage query, we categorize the database images into five 

main classes, and the effectiveness of the search strategy is assessed by counting the number 

of retrieved images which fall into each class. The dissimilarity score (DS) for the retrieval 

of the best 10 images is computed as: 

DS = 7(2 - nA).+ 5(3 - nB) + (5 - r,c) + 15TJd + 40nE 

where rjj indicates the number of images falling into Class j. The efficiency of Search P H 

can be assessed using the execution time (TE) which measures the combined C P U & I / O 
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cost per query on a database of 1000 images. 

Let [in-, and fij be 160, 80, and 40 respectively. The experiments were run on a 

Sun UltraSPARC-1 workstation using a page size of 1 K B and user preference /? of 0.5 4 . 

The results (the average DS and TE values for the retrievals of the best 10 images from a 

collection of 1000 images) are summarized in the tables and figures on the next few pages. 

The T E measures the efficiency and the DS assesses the effectiveness. 

• "h"-typed queries. 

Filtering 
Scheme 

64-dimensional Color Histograms Filtering 
Scheme VA VB VC VD => DS 

H 1.9 2.1 1.7 4.3 73.0 3.4 ± 1.9 s 

Table 5.1: Experimental Results for Search P H ("h"-typed Queries) 

• "i"-typed queries 

Filtering 64-dimensional Color Histograms 
Scheme VA VB VC VD '=> DS TE 

H 1.5 2.2 1.8 4.5 78.2 4.1 ± 1.6 s 
i : 1.7 2.1 1.8 4.4 75.8 5.9 ± 4.3. s 

HI 1.7 2.1 1.8 4.4 75.8 5.3 ± 1.1 s 

Table 5.2: Experimental Results for Search P H ("i"-typed.Queries) 

4 With the user preference (3 set to 0.5, both the color distribution and spatial information are of the 
same level of importance. 
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Results for Search PH ("i"-typed Queries) 
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Figure 5.2: Exper imental Results for Search P H (" i " - typed Queries) 

• " j"~typed queries 

F i l ter ing 
Scheme 

64-dimensional Color Histograms F i l ter ing 
Scheme VA ?}B ']c rjD DS TE 

H 0.9 2.1 2.5 4.5 82.2 1.4 ± 0.2 s 
I 1.5 2.2 1.8 4.5 78.2 7.4 ± 1.6 s 

HI 1.5 2.2 1.8 4.5 78.2 2.2 ± 0.3 s 
IJ 1.6 2.0 2.1 4.3 75.2 7.7 i 1.6 s 

HI J 1.6 2.0 2.1 4.3 75.2 2.5 ± 0.3 s 

Table 5.3: Exper imenta l Results for Search P H (" j " - typed Queries) 
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Results for Search P H ("j"-typed Queries) 
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Figure 5.3: Exper imenta l Results for Search P H (" j " - typed Queries) 

- typed queries 

F i l ter ing 
Scheme 

64-dimensional Color Histograms F i l ter ing 
Scheme VA VB VC VD => DS TE 

H 0.5 2.0 2.7 4.8 89.8 0.7 ± 0.1 s 
I 0.8 2.3 2.2 4.7 85.2 3.1 ± 0.5 s 

HI 0.8 2.3 2.2 4.7 85.2 1.3 ± 0.1 s 
IJ 1.1 2.1 2.2 4.6 82.6 3.3 I 0.5 s 

HIJ 1.1 2.1 2.2 4.6 82.6 1.4 ± 0.2 s 
U K 1.2 2.0 2.2 4.6 82.4 3.4 ± 0.5 s 

H I J K 1.2 2.0 2.2 4.6 82.4 1.6 ± 0.2 s 

Table 5.4: Exper imenta l Results for Search P H ( "k" - typed Queries) 
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Results for Search PH ("k"-typed Queries) 
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Figure 5.4: Experimental Results for Search P H ("k"-typed Queries) 

Like Search P V , when operated with Padding and Reduction Algorithms, Scheme H is best 

for"h"-typed queries, Scheme HI is best for "i"-typed queries, and Scheme HIJ is best for 

both "j"-typed and "k"-typed queries. Unlike Search P V , the D S values for Search P H 

appear to be higher than those for Search P V . However, the TE values for Search P H 

appear to be smaller than those for Search P V . In other words, while delivering efficiency, 

Search P H suffers from a loss of effectiveness. 

5.4 Horizontal-and-Vertical Search 

Note that in Search P H , horizontal filters are used not only at one level, but at all the 

levels. Hence, the number of images to be carried over from one level to another needs to 

be chosen carefully. If this set of numbers {HH, Hh a n d HJ) is not determined carefully 

(say, the numbers are too small), then for some queries, an image I that gives a good 

match at a finer scale could have been eliminated before reaching this finer scale. This 
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may happen when there are sufficiently many images which are not as good as I at the 

finer scale but which are better than I at the coarser scale. Consequently, while delivering 

efficiency, Search. P H may suffer from a loss of effectiveness. So, we consider another 

strategy — Search H V (Horizontal-and-Vertical),— which is a hybrid of Search P V and 

Search P H . With it, a horizontal filter is applied only to the coarsest level 5 , and vertical 

filters are then applied to the remaining levels. The idea is that all M images in. the 

database are checked by a horizontal filter at the coarse scale in the first iteration. The 

best fi matches (where u < /J, <C M) are carried over from the current level to the next 

level (finer scale), while poor matches at the coarse scale are eliminated. Then, all these 

best fi images are checked one after another using vertical filters. A t any point in time, 

the current u smallest distances (at the finest scale of the u images, where u < fi) are 

kept. When an image is tested, if its distance value at the current scale is already greater 

than some distance value of the current u smallest, the tested image can be eliminated. 

Otherwise, a finer scale is used. The process repeats until the image is (1) eliminated or 

(2) added to become one of the current u smallest (when it reaches the finest scale). By 

so doing, the detailed search with the use of vertical filters is applied not to the set of all 

the images, but only to its most: promising subset. 

D e f i n i t i o n 5.5 (Search H V ) To conduct the Horizontal-and-Vertical Search for retriev­

ing the top u images from a collection of M images: 

1. Check all M images at the coarsest scale/level, and compute the distance value for 

each image. 

2. Sort the images in non-descending order of distance value. A subset of these images 

(the fi images with current smallest values) are carried over to the next level. 

5 With one level of horizontal level, we only need to carefully assign a value to one (instead of three) 
predefined parameter /J that controls the images to be carried over. 
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3. The first u images in this subset are checked at all remaining levels, and the distance 

, value is computed for each image at the finest scale. These u images become the 

current top-u. 

4. For each of the remaining fi — u images: 

(a) Let the second coarsest scale be the current level/scale. 

(b) Compute the distance value. If the value is less than some value of the top-w, 

extend one level/scale (provided that we have not reached the finest level)' and 

repeat Step 4 (b) for the extended scale. • 

E x a m p l e 5.4 Let us find the top two images from a collection of seven images using 

Search H V (with Scheme HIJ). In the following trace, the number at the slot representing 

an image at a particular level is the estimated distance value, and the superscript on its 

left denotes the search order. 

To ind the top two images using Search 1 IV 

Img 1 Img 2 Img 3 Img 4 Img 5 Img 6 Img 7 

Level H 1 s t 25 2 n d 5 3 r d g5 4th g Q 5th 70 7^h g g 

=> top five images are Images 1, 2, 3, 5, and 7 

Level I 

Level J 

Top two 

images 

sth 35 

9th 6 ? 

A 

Img 1 

wth 3 0 

nth 32 

Imgs 

2 and 1 

\2th 200 

Imgs 

2 and 1 

13th -̂ 5 

14th 20 

Imgs 

5 and 2 

15th y g 

1| . 

Imgs . 

5 and 2 

In Search H V , the histograms are examined image by image at the coarsest scale, and level 

by level at the remaining scales. So, the way in which the precomputed feature vectors 

122 



in the data file are organized depends on the filtering scheme. More precisely, for the 

schemes which started at Level H , the best file organization is of the form: 

J H J r s 7 Js 7Ks 7 I s 7 J s 7 K s 7 I s / J s / K s 
, V v ' V >, — ' "> v ' S 

for M images for Image 1 for Image 2 for Image M . 

Similarly, for the schemes which started at Level I, the best file organization is of the form: 

i111
 • • • i\ ihjH HxjS •••• HijS 

, for M images for Image 1 for Image 2 for Image M 

and for the schemes which started at Levels J and K , the best file organization is of 
the form: 

7 Js 7 Js ••• 7 Js 7Ks 7Ks • •• 7Ks• 

for M images for M images 

In general, the histograms of the coarsest scale are arranged in such a way that the 

histograms of one image are followed by those of another image. By so doing, an efficient 

sequential read of these histograms at the coarsest scale is possible. For the remaining 

scales, histograms are arranged in such a way that for each image, the histograms at the 

second coarsest scale are followed by the histograms at finer scales. 

5.4.1 Analytical Evaluation 

Cost Models 

To measure the efficiency of Search H V , we set up cost models to estimate the C P U and- the 

I /O costs. The C P U cost depends mainly on the. number of histograms to be examined 

and the computation time Tc', the I /O cost depends mainly on the time required to 

sequentially or randomly access the pages containing the data (color histograms). With 

the file organization described above, histograms at the first chosen level can be accessed 

sequentially. Given a minimum buffer size (one page) and an intelligent buffer management 

scheme, the number of page accesses at the remaining.levels can be estimated with the 

use of statistical formulations. 
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E x a m p l e 5.5 In Scheme HIJ , we examine all M histograms at Level. H . Then, for each 

of the best ////images carried over from Level H , we examine the 4 Level-I histograms, 

and if necessary 6 , we consider the 4 Level-J histograms which represent the subregions 

enclosed in the promising block of Level I. Hence, using a 64-dimensional color histogram 

with page size P = 1 K B , the cost model for Scheme HIJ can be described as follows: 

• The G P U cost is the product of Tc and the total number of histograms used in the 

computation. In Scheme HIJ , Level-H histograms are examined for all M images, 

4 Level-I histograms are checked for each of the fifj images, and 4 Level-J histograms 

are examined for each of the £ 5 images (where M ^> fifj > £ 5 > u, and fin is 

predefined but £ 5 is determined dynamically at runtime). Hence, CPUfJj = (M + 

•Mm + 4£ 5 )Tc . 

• The I/O cost is the sum of total seek times and total data transfer times. Using the 

appropriate file organization for Search H V mentioned above, an average seek time 

(denoted by TA) is charged for moving the read head to the first "record" at Level H , 

and for each random page access of "records" at the second level (Level I). Since all 

Level-I and Level-J "records" for a particular image are stored contiguously, only a 

minimum seek time (denoted by TM) is charged for each jump between the data (for 

example, jumping from the fourth Level-I histogram to the third Level-J histogram 

of the same image). Moreover, when a page of data (color histograms) is loaded, a 

data transfer time (denoted by Tp) is charged. 

More precisely, for Scheme HIJ , TA is needed to get to the Level-H histogram 

of the first image, and Try is charged for loading the page containing the histogram. 

Since all Level-H histograms are stored contiguously, no seek is charged for accessing 

subsequent Level-H histograms, and only Trj is charged for each sequential page 

6 W e consider the 4 Level-J histograms of an image if the D at Level I is less than any D of the 
current top-u. 
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access of data. Then, TA is needed to get to the Level-I histograms of each image 

carried over from Level H , and TD is charged for loading the page containing the 

histograms. Since only 4 histograms can fit into a page, if the 4 Level-J histograms 

happen to be examined, then we load the next page. There is a probability of | that 

the selected 4 Level-J histograms are stored contiguously after the loaded Level-I 

histograms. Hence, I/0%YJ = (1 + HH)TA + ^TM + ( f + HH + &)TD. 

The cost models for other filtering schemes, color histograms of other dimensions, or other 

page sizes can be formulated in a similar manner. • 

The cost models for the 15 filtering schemes (with page size P = 1 K B and using 

64-dimensional color histograms) are shown below: 

1. Scheme H 

We examine all M histograms at Level H . 

• CPUgv = MTC 

• I/O1// = TA + f 7b 

2. Scheme I 

We examine all 4 M histograms at Level I. 

• CPU?V
 = AMTC 

• I/0\LV = TA + MTD 

. 3. Scheme HI 

We examine all M histograms at Level H . For each of the best fiH images carried 

over from Level H , we examine the 4 Level-I histograms. 

• CPUJJY = (\I+ 4(111)10 
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where [in is a predefined parameter that controls the number of.images to be carried 

over from Level H to the next level (Level I) 7 , and its value lies between u and M. 

4. Scheme J 

'• We examine all 1 6 M histograms at Level J . 

• CPUyv = lGMTc 

[/0'jv = TA+4MTD 

5. Scheme II.) , 

. We examine all M histograms at Level H . For each of the best fifj images carried 

over from Level H , we examine the 16 Level-J histograms. 

• CPUJU = ( A / + l6////)7c • ; 

• l/OW'j = (1 + L<H)TA + + 4tin)TD ; -

6. Scheme IJ 

We examine all 4 M histograms at Level I. For each of the best /xi images carried over 

from Level I, we examine the 4 Level-J histograms which represent the subregions 

enclosed in the promising block of Level I. 

• CPU}1/ = (.\M+\,i,)TC 

.. I/O'// = (1 + m)TA + (M + /i/)7b 

7. Scheme HIJ 

We examine all M histograms at Level H . For each of the best jijj images carried 

over from Level H , we examine the 4 Level-I histograms, and if necessary 8 , consider 

7 Similar ly , fij and / i j in the following cost models control the number of images to be carried over to 
the next available level from Level I and Level J respectively. 

8 W e consider the 4 Level-J histograms of an image if the D at Level I is less than any D of the current 
top-w. Similar conditions apply to the filtering schemes involving more than two levels. 
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the 4 Level-J histograms which represent the subregions enclosed in the promising 

block of Level I. 

• CPU™ = (M + 4 m + 4 & ) r c 

• I/0%YJ = (1 + I*H)TA + ^TM + ( f + HH + &)Tp 

where fin > £5 > u. 

8. Scheme K 

We examine all 6 4 M histograms at Level K . 

• CPUJP' = CvlMTc 

• i/o?v
 = TA + I6MTD. 

9. Scheme H K 

We examine all M histograms at Level H . For each of the best fifj images carried 

over from Level H , we examine the 64 Level-K histograms. 

• CPUiJ% = (M + 64fiH)TC 

• I/OH

V

K = (1 + HH)TA.+ ( f + 1^H)TD 

10. Scheme IK 

We examine all 4M histograms at Level I. For each of the best HI images carried 

over from Level I, we examine the 16 Level-K histograms. 

:• CPUJtf = (4M + 16fi,)TC 

• I/0?£= (1 + Hi)TA + ( M + Am)TD 

11. Scheme J K 

We examine all 1 6 M histograms at Level J . For each of the best fij images carried 

over from Level J , we examine the 4 Level-K histograms. 

127 



• CPU'jy = (UiM+ 4lij)Tc 

• I/0H% = (1 + fij)TA + {AM + HJ)TD 

12. Scheme H I K 

We examine all M histograms at Level H . For each of the best \in images carried 

over from Level H , we examine the 4 Level-I histograms, and if necessary, consider 

the 16 Level-K histograms which represent the subregions enclosed in the promising 

block of Level I. 

• CPUfJYK = (M + AfiH + 16fio)Tc 

• • J/Off/A- = (1 + HH)TA + ZIQTM + ( f + m + 4£io)TD 

where p,H > ^io > u. 

13. Scheme H J K 

,' We examine all M histograms at Level H . For each of the best HH images carried 

over from Level H , we examine the 16 Level-J histograms, and if necessary, consider 

the 4 Level-K histograms which represent the subregions enclosed in the promising 

block of Level J . 

. CPUJjJK = ( M + 16m + ^12)TC 

• I/0%VJK = (1 + PH)TA + ^TM + ( f + Am + Zu)TD 

where > £12 > u. 

14. Scheme U K 

We examine all AM histograms at Level I. For each of the best fii images carried over 

from Level I, we examine the 4 Level-J histograms which represent the subregions 

enclosed in the promising block of Level I, and if necessary, consider the 4 Level-K 

histograms which represent the subregions enclosed in the promising block of Level J . 
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• CPUjYK = ( 4 M + 4 /x / + 4 6 4 ) r c • 

• i/Ol/fK = (1 + m)TA + ^ T M + (M + $u)TD 

whore fij > £14 > ti. 

15. Scheme H I J K 

We examine all M histograms at Level H . For each of the best \xu images carried 

over from Level H , we examine the 4 Level-I histograms, then consider (if necessary) 

the 4 Level-J histograms which represent the subregions enclosed in the promising 

block of Level I, and consider (if necessary) the 4 Level-K histograms which represent 

• the subregions enclosed in the promising block of Level J . 

• CPUfiJjK = {M + 4fiH + 4^16 + 4$n)Tc 

• I/OWIJK = (1 + M)TA + ( ^ T + ^ ) T M + ( f + M + 6e + in)TD 

where [iH > 6 e > in > u. 

Note from the cost models for filtering schemes involving more than two levels, the value 

of each £j is determined dynamically. For instance, in the best case of Scheme HIJ , the 

first u images carried over from Level H are the top-u, and each Level-I distance for the 

remaining \in — u images is greater than all Level-J distances of the top u images. As 

such, the histograms at Level J for the fifj — u images are not examined; thus, £ 5 = u. 

Conversely, in the worst case, at any point in time the Level-I distance of each image is 

less than some Level-J distance of the current top-u. As such, all histograms at all levels 

for the images are examined; thus, £ 5 = fijj: 

Analyt ica l Results 

The above cost models provide a good foundation for analyzing the 15 filtering schemes, 

and for discovering general trends. The computation time for Padding and Reduction 
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Algor i thms (Tc) depends on the sizes of the subimage query and the image subregion. For 

the analysis, we let Tc be 3 ms for the 8-dimensional and the 64-dimensional histograms, 

and 20 ms for the 512-dimensional histograms. We assume that each min imum seek ( T A / ) 

takes 5 ms, each average seek ( T A ) requires 15 ms, and the transfer of data in each 

page (To) with page size P — 1 K B needs 0.3 ms, and that /*//, /.ii and fij are 160, 

80, and 40 respectively. Analyses on finding u = 10 images from a database of A / = 1000 

images were then conducted. A s in Search P H , we summarize only the analytical results 

for the 64-dimensional color histograms in the figures on the next few pages. In the figures, 

for each filtering scheme, the minimum cost is shown by the solid line, and the addit ional 

cost (if any) is indicated by the dotted line. 

CPU Costs lor Search HV (n = 64) 
1 i 1 i 1 1 > 1 i 1 

- HIJK 

UK 

HJK 

- HIK 

JK 

HK 

K 
HIJ 

HJ 

J 

-HI 

m 

"o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Time (in ms) X ^ Q& 

(a) C P U Costs for Search H V 

Figure 5.5: A n a l y t i c a l Results for Search H V (64-dimensional Color Histograms) 
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I/O Costs for Search HV (n = 64) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Time (in ms) 

(b) I/O Costs for Search H V 

CPU + I/O Costs for Seach HV (n > 64) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Time (in ms) x 1 Q s 

(c) Combined C P U and I/O Costs for Search H V 

jure 5.5: Analytical Results for Search H V (Continued) 
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As for Searches P V and P H , the following trends are observed: 

1. The C P U cost is affected by the dimension of the color histogram: As the dimension 

of the histogram grows, the time required for C P U operations increases. 

2. The I/O cost is affected by the dimension of the color histogram: As the dimension 

. of the histogram grows, the time required for I /O operations increases. 

3. The combined C P U and I /O cost is affected by the dimension of the color histogram: 

As the dimension of the histogram grows, the time required for both C P U and I /O 

operations increases. 

4. Filtering schemes which start with filter J or K often take more C P U and I /O time. 

For example, the combined C P U and I /O times demanded by Schemes J , J K , and 

K are often longer than the times taken by the worst cases of many filtering schemes 

such as Schemes HIJ and HI JK . 

5. Filtering schemes which skip intermediate levels often incur greater C P U and I /O 

cost. 

6. The combined C P U and I /O cost for the additional intermediate levels becomes 

relatively less expensive as the dimension of the histogram grows. For example, 

as the dimension of the histogram increases, the combined cost for Scheme H J is 

usually more expensive than that for Scheme HIJ . Similarly, the combined cost for 

Scheme H K is usually more expensive than that for Scheme H I K or H J K , and either 

of these two costs is more expensive than that for Scheme HI JK . 

In general, the above analytical results tend to favor the filtering schemes which start with 

Level H (or Level I), and those that do not skip any intermediate level. More precisely, 

Schemes H , I, HI, IJ, HIJ , U K , and H I J K are favored. 
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5.4.2 Experimental Evaluation 

To find the appropriate filtering schemes for Search H V , several experiments have been 

performed using the same set of data (color histograms) as for the experimental evaluation 

of Search P V . Again, for each subimage query, we categorize the database images into five 

main classes, and the effectiveness of the search strategy is assessed by counting the number 

of retrieved images which fall into each class. The dissimilarity score (DS) for the retrieval 

of the best 10 images, is computed as: 

DS = 7(2 - rjA) + 5(3 - nB) + (5 - rjc) + 15f/D + 40T)E 

where rjj indicates the number of images falling into Class j. The efficiency of Search H V 

can be assessed using the execution time (TE) which measures the combined C P U & I / O 

cost per query on a database of 1000 images. 

Let /xu, [ii and fiJ be 160, 80, and 40 respectively. The experiments were run on 

a Sun UltraSPARC-1 workstation using a page size of 1 K B and user preference j3 of 0.5. 

The results (the average DS and TE values for the retrievals of the best 10 images from a 

collection of 1000 images) are summarized in the tables and figures on the next few pages. 

The TE measures the efficiency and the DS assesses the effectiveness. 

• "h"-typed queries 

Filtering 
Scheme 

. 64-dimensional Color Histograms Filtering 
Scheme VA VB VC VD => DS TE 

H 1.9 2.1 1.7 4.3 73.0 3.6 ± 1 . 9 s 

Table 5.5: Experimental Results for Search H V ("h"-typed Queries) 
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• " i " - t y p e d queries 

F i l ter ing 
Scheme 

64-dimensional Color Histograms Fi l ter ing 
Scheme VA VB VC VD DS TE 

H 1.5 2.2 1.8 4.5 78.2 4.4 ± 1.6 s 
I 1.7 2.1 1.8 4.4 75.8 8.4 ± 4.2 s 

HI 1.7 2.1 1.8 4.4 75.8 6.3 ± 1.3 s 

Table 5.6: Experimental Results for Search H V (" i " - typed Queries) 

Results for Search HV ("i"-typed Queries) 

o 641 ' 

Q64HI 

o 6 4 H 

75.5 76 76.5 77 77.5 78 78.5 
Dissimilarity Score 

Figure 5.6: Exper imental Results for Search H V ( " i " - typed Queries) 
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• " j " - typed queries 

F i l ter ing 
Scheme 

64-dimensional Color Histograms Fi l ter ing 
Scheme VA VB VC VD => DS TE 

H 0.9 2.1 2.5 4.5 82.2 1.7 ± 0.2 s 
I 1.5 2.2 1.8 4.5 78.2 7.7 ± 1.6 s 

HI 1.5 2.2 1.8 4.5 78.2 2.5 ± 0.4 s 
IJ 1.8 2.0 1.9 4.3 74.0 8.0 ± 1.6 s 

HIJ 1.8 2.0 1.9 4.3 74.0 2.8 ± 0.3 s 

Table 5.7: Experimental Results for Search H V (" j" - typed Queries) 

Results for Search HV ("j"-typed Queries) 
T 1 1 1 1 1 1 1 r 

o 64IJ 
o 641 

o 64HIJ 
o 64HI 

o 64H 

p 1 1 1 1 1 1 i i i i 
73 74 75 76 77 78 79 80 81 82 83 

Dissimilarity Score 

Figure 5.7: Exper imental Results for Search H V (" j " - typed Queries) 
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• ' 'k" - typed queries 

Fi l ter ing 
Scheme 

64-dimensional Color Histograms Fi l ter ing 
Scheme VA VB Vc VD => DS TE 

H 0.5 2.0 2.7 4.8 89.8 0.9 ± 0.1 s 
I 0.8 2.3 2.2 4.7 85.2 3.4 ± 0.5 s 

HI 0.8 2.3 2.2 4.7 85.2 1.7 ± 0.2 s 
IJ 1.2 2.1 2.1 4.6 82.0 3.6 ± 0.5 s 

HI J 1.2 2.1 2.1 4.6 82.0 1.5 ± 0.2 s 
U K 1.3 2.1 2.0 4.6 81.4 3.8 ± 0.5 s 

H I J K 1.3 2.1 2.0 4.6 81.4 2.0 ± 0.2 s 

Table 5.8: Exper imental Results for Search H V ( "k" - typed Queries) 

Results for Search HV ("k"-typed Queries) 

o 64IJK 

o 64IJ 

o 641 

o 64HIJK 

o 64HI 
o 64HIJ 

o 64H 

— i , , , , , , , 1 
81 82 83 84 85 86 87 88 89 90 91 

Dissimilarity Score 

Figure 5.8: Exper imental Results for Search H V ( "k" - typed Queries) 

Like Searches P V and P H , when operated with Padding and Reduction Algor i thms , 

Scheme H is best f o r " h " - t y p e d queries, Scheme HI is best for " i " - t y p e d queries, and 

Scheme H I J is best for both " j " - typed and " k " - t y p e d queries. Unlike Search P H , the DS 

values for Search H V appear to be lower than those for Search P H ; unlike Search P V , the 

TE values for Search H V appear to be smaller than those for Search P V . In other words, 
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Search H V keeps a good balance of efficiency and effectiveness. 

5.5 The Best Search Strategy 

Three search strategies — namely, Search P V , Search P H , and Search H V — have been 

suggested to avoid the kind of frequent jumping incurred in the branch-and-bound strategy. 

To find the best strategy among the three, analyses and experiments have been carried out. 

Analyt i ca l ly , we set up cost models to evaluate the filtering schemes and estimate their 

C P U , I / O , and combined C P U & I / O costs. A l l three strategies share a common trend: 

F i l ter ing schemes start ing with Level H (or Level I) and those not skipping intermediate 

levels are considered to be favorable. 

CPU Costs lor Three Search Strategies (n = 64) 

1 
HIJK 
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HIJ 

IJ 

HI P V 

PH . 
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Time (in ms) X ^ Q< 

(a) C P U Costs for Three Search Strategies 

Figure 5.9: A n a l y t i c a l Results for Three Search Strategies (64-dimensional Color His­
tograms) 
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I/O Costs for Three Search Strategies (n = 64) 

HIJK 

U K 

HIJ 

- P V 
- P H 

HV 

0 2000 4000 6000 6000 10000 12000 14000 16000 
Time (in ms) 

(b) I/O Costs for Three Search Strategies 

CPU + I/O Costs for Three Search Strategies (n = 64) 

(c) Combined C P U and I/O Costs for Three Search Strategies 

Figure 5.9: Analytical Results for Three Search Strategies (Continued) 

As observed from Figure 5.9, the C P U , I/O, and combined C P U & I / O costs for 

Search P V are generally higher than those for the other two strategies. The costs for 

Searches P H and H V are usually almost the same. 
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I/O Costs for Four Search Strategies (n = 64) 

Figure 5.10: I/O Costs for Four Search Strategies (64-dimensional Color Histograms) 

As observed from the above figure, the I/O costs for the branch-and-bound strategy 

(denoted by B & B and indicated by purple lines) are potentially high. This explains why 

we need to consider the three search strategies which reduce the I/O costs. 

Experimentally, subimage queries of arbitrary size are classified into four main 

types, and we measure the execution time (showing the performance) and the dissimilarity 

score (showing the degree of accuracy) for each of these favorite schemes. Again, all 

three strategies agree on the results obtained when operated with Padding and Reduction 

Algorithms. Scheme H with 64-dimensional histograms is the best filtering scheme for 

"h"-typed queries, Scheme HI is the best one for "i"-typed queries, and Scheme HIJ is the 

best for both "j"-typed and "k"-typed queries. 
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Query. 
Type 

" , Search Strategies Query. 
Type Search P V 

VA VB VC VD, 
Search P H 

VA VB VC VD 
Search H V 

rjA VB. VC VD 
" h " 

Scheme 
H 

1,9 2.1 1.7 4.3 
=> DS = 73.0 

TE = 4.45 ± 3.80 s 

• 1.9 2.1 1.7 4.3 
DS = 73.0 

TE = 3.39 ± 1.90 s 

1.9 .2.1 1.7 4.3 
= /̂J>S = 73.0 

TE .= 3.56 ± 1.91 s 

Scheme 
HI 

1.8 2.1 1.8 4.3 
^ DS = 73.6 

TE = 7.15 ± 0.76 s 

1.7 2.1 1.8 4.4 
=>DS = 75.8 

TE = 5.33 ± 1.11 s 

1.7 2.1 1.8 4.4 
=• 7J5 = 75.8 
= 6.32 ± 1.33-s 

" j " 
Scheme 

HIJ 

,1.8 2.0 1.9 4.3 
=> DS = 74.0 

TE = 5.80 ± 1.66 s 

1.6 2.0 2.1 4.3 
^ DS = 75.2 

TE = 2.47 ± 0.28 s 

1.8 2.0 1.9 4.3 
=>'DS = 74.0 

T E = 2.76 ± 0.33 s 
"k" 

Scheme 
HIJ 

1.3 2.0 2.1 4,6 
•=> DS = 81.8 ' 

TE = 2.76 ± 0.73 s 

1.1 2.1 2.2 4.6 
=• DS = 82.6 

TE = 1.45 ± 0.16 s 

1.2 2.1 2.1 4.6 
=• DS = 82.0 . 

/'/.; = 1.54 ± 0.21 s 

Table 5.9: Experimental Results for Three Search Strategies. 

Comparing the runtimes and the accuracies of the best configuration for each strat­

egy, we found that Search H V is more efficient than Search P V , because the use of vertical 

filters in the latter is.applied to the whole set of all M images. In Search H V , the detailed 

search with the use of vertical filters is applied not to the set of all the images, but only 

to its most promising subset. , 

Search H V is more effective than Search P H , because the latter uses horizontal 

filters at all levels. If the number of images to be carried over from the, current level to the 

next level is not determined carefully (say, the number is too small), then for some queries, 

an image I that gives a good match at a finer scale could have been eliminated before 

reaching this finer scale. This may happen when there are sufficiently many.images which 

are not as good as I at the finer scale, but better than I at the coarser scale. Consequently, 

while delivering efficiency, Search P H may suffer from a loss of effectiveness. In Search H V , 

a horizontal filter is applied not to all the levels, but to the coarsest level. So, we only 

need to carefully assign a value to one (instead of three) predefined parameter \x that 
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controls the number of images to be carried over. As such, the chance of having the above 

mentioned I being eliminated before reaching the finer scale is reduced. 

Moreover, the experimental results on Searches P V , P H , and H V suggest that 

Search H V is the best strategy for the retrieval of desired images when operated with 

Padding and Reduction Algorithms. The reason is that.in addition to avoiding the kind 

of frequent jumping observed in the branch-and-bound strategy, Search H V also keeps a 

balance of efficiency and effectiveness. 

5.6 Summary 

Although the branch-and-bound algorithm is accurate in its search, it can be inefficient for 

large databases. In particular, the number of images the algorithm must keep track of can 

be large, and jumping back and forth among images and scales may frequently be required. 

To avoid such jumping, we studied three strategies, namely Search P V , Search P H , and 

Search H V . 

In Search P V , the images are checked one after another using vertical filters. A t 

any point in time, a set of ii images currently having smallest distance values are kept. For 

each image, the algorithm keeps proceeding to finer scales until (1) the distance value, at 

a particular scale is already so large that the image cannot be qualified as a good match, 

or (2) the finest scale is reached and the image is either discarded or selected as a member, 

of the answer set, depending on the distance value. 

In Search P H , all the images in the database are checked by the horizontal filter 

at the coarsest scale in the first iteration. Poor matches at this scale are then eliminated. 

In subsequent iterations, images that are left from the previous scale/level are checked by 

filters at finer scales, and poor matches are again removed. The process repeats until the 

finest scale is reached and the top u images are returned. 

Search H V is a hybrid of the above two in which we use a horizontal filter on the 
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first level and vertical filters on, the remaining levels. The results of the analytical and 

experimental investigations show that Search.HV is the best strategy for avoiding the 

frequent jumping and at the same time keeping a good balance of performance/speed and 

accuracy. When operated with Padding and Reduction Algorithms, the best 10 desired 

images can be retrieved efficiently and effectively from a collection of a thousand images 

in about 3.5 seconds. 
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Chapter 6 

Conclusions 

6.1 Conclusions 

As network connectivity has continued its explosive growth and storage devices have be­

come smaller, faster, and less expensive, the number of on-line digital images has increased 

rapidly. We can no longer rely solely on traditional database retrieval technology based 

on manually associating textual descriptions with image contents. The development of 

efficient and effective content-based retrieval systems based on automated extracted con­

tents (such as color) are necessary. In order to achieve this goal, several research projects 

have been carried out. Over the past few years, multi-dimensional indexing structures 

have been designed, multi-level filtering approaches have been proposed, and information 

preserving transformations have been suggested for providing efficient indexing. Expres­

sive query language systems have also been developed to accommodate efficient querying 

from image databases for applications with dense and sparse image spaces. Other research 

projects for supporting efficient and effective query processing and optimization have also 

been carried out. 

Wi th the popularity of similarity matching on color and spatial information, many 

image database management systems store the information in local color histograms. To. 
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process user queries, some systems use fixed grid segmentation approaches. For further 

improvement on the efficiency and the effectiveness of content-based retrieval, multiscale 

matching approaches have been proposed. However, detailed analytical and experimental 

results on the determination of the suitable' number of levels for these approaches are 

seldom reported, and comparisons of different strategies for searching multiple scales are 

also rare. Moreover, in many situations, users are interested in, or can remember, only 

local image contents; therefore, subimage query processing is needed. Unfortunately, not 

many image database management systems can handle arbitrary-size subiriiage queries 

based on color and spatial similarity. For the systems that can deal, with subimage queries 

of arbitrary size, multiscale matching is rarely used. 

In this thesis, our first issue of investigation was to find a method for dealing with 

arbitrary-size subimage queries. To answer queries of this kind, some systems segment an 

image into several blocks, each of which has an associated color histogram. One problem 

with this arrangement is that subimage queries may be of arbitrary size that not neces­

sarily an integral multiple of the chosen block size. Other systems use template-based 

matching algorithms. A key problem with those algorithms is that a lot of computation 

is needed, because of the large number of positions to be compared. Correspondingly, 

we proposed two algorithms, called Padding and Reduction, for dealing with subimage 

queries of arbitrary size. Knowing the image subregion I represented by the precomputed 

feature vector may not necessarily contain the same number of pixels as the query Q, we 

used Padding and Reduction Algorithms to estimate the best possible color histograms 

for Q and I . Here, we either (1) enlarged Q into a new query Q' that is of the same size 

as I or (2) reduced I to a new image subregion I ' that is of the same size as Q. In terms 

of effectiveness, both algorithms give the same best-case lower bound to the histogram 

distance. In terms of efficiency, the Padding Algorithm outperforms the Reduction Algo­

rithm when the size differential between the subimage query and the image subregion is 
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large, and vice versa when the differential is small. 

Given subimage queries of arbitrary size, multiscale representation may improve 

the efficiency and the effectiveness of content-based retrievals. The idea is that depending 

on the scale or the need of a given query, a more appropriate scale can be used. So, a 4-level 

representation was proposed such that the entire image is.divided into four subregions, 

and each subregion is recursively divided into four .subregions, and so on. Since image 

contents are usually pre-extracted and stored, our second issue of investigation was to 

determine the suitable number of levels for such a representation. To do so, we analytically 

•and experimentally studied the performance and the accuracy.of the multi-level filtering 

schemes available for the representation. In the analyses, we used cost models to estimate 

the C P U , I /O, and combined C P U and I/O costs for each scheme. The results favor 

the schemes which start with the coarsest level (or the second coarsest level) of the 4-

level representation and those that do not skip intermediate levels. In the experiments, 

given a subimage query, we measured the execution time (showing the performance) and 

computed the dissimilarity score (showing the accuracy). The results suggest that when 

using Padding and Reduction Algorithms, the desired images can be retrieved efficiently 

and effectively using only the top three levels. Hence, a 3-level hierarchy (up to the 4 x 4 

segmentation) is preferred. 

Several strategies for searching multiple scales can be applied to the retrieval of 

desired images from a collection of database images which are stored in the multiscale 

representation. Branch-and-bound is one of the strategies; it is accurate in its search, 

but it can be inefficient for large databases. In particular, the number of images to be 

kept track of can be quite large, and frequent jumping back and forth among the data 

may be required. So, our third issue of investigation was to find an efficient and effective 

strategy for searching multiple scales. In this thesis, we studied three search strategies, 

namely Pure Vertical, Pure Horizontal, and Horizontal-and-Vertical. In the Pure Vertical 
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Search, images are checked "vertically" by vertical filters one after another, and a set of 

potentially desired images is kept. After a hew image is checked, it is either discarded 

or selected as a member of the answer set. In the Pure Horizontal Search, images are 

checked "horizontally" level by level using horizontal filters. After images are checked at 

a particular level, poor matches at that level are eliminated, and all remaining images are 

carried over to the next level where they are checked by another horizontal filter. The 

hybrid strategy — Horizontal-and-Vertical — uses a horizontal filter on the first level and 

vertical filters on the remaining levels for the most promising subset of the database images. 

To find the best strategy among the three, analytical and experimental evaluations were 

performed. The results indicate that the Horizontal-and-Vertical Search is the best when 

operated with Padding and Reduction Algorithms, riot only because the Search avoids the 

kind of frequent jumping as in the branch-and-bound, but because it keeps a good balance 

of performance/speed and accuracy. With it, the best 10 desired images can be retrieved 

efficiently and effectively from a collection of a thousand images in about 3.5 seconds. 

6.2 Future Work 

Although the results of the thesis are very promising, there are some aspects to consider 

for further improvement. One aspect is to investigate methods to extend our Padding 

and Reduction Algorithms for dealing with arbitrary-size subimage queries of arbitrary 

shapes. For instance, a user may want to find images with a ship in the bottom right 

corner. It is well known that human memory is weak in retaining a fine granularity of 

spatial information of color. The user may not remember (or he may not be interested in) 

any other.portion of the images (not even a region next to the ship). Iri such a case, the 

subimage query he wants to submit may be of irregular shape (as shown in Figure 6.1, for 

example). Our Padding and Reduction Algorithms may be able to estimate the histogram 

distance. However, the algorithm for estimating the positional distance between the query 
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and the image subregion may need to be modified; computational geometry techniques 

may be required for handling queries of complex irregular shapes. 

Figure 6.1: Example of a Subimage Query of Arbitrary Shape 

Again, in some situations, due to the poor human memory capability for retaining 

a fine granularity of spatial information of color, the user may only be able to recall the 

information on the boundary of the region he is interested in, but not the center. In such 

cases, the query is no longer "solid" but "hollow". Examples of these queries are a ring-like 

query and the one in Figure 6.2. If the "hole" is small, Padding and Reduction Algorithms 

are expected to provide a reasonable estimation to the histogram distance. However, if the 

"hole" turns out to be large, care needs to be taken in handling this "hollow" subimage 

query of arbitrary size. Moreover, in some other situations, the user may not care about 

the color information on the "hole", and it can match any color. To deal with these kind 

of queries containing "don't care" parts, approaches similar to those for handling "hollow" 

queries can be applied. 

Figure 6.2: Example of a "Hollow" Subimage Query 

Since some users have poor memories, they may demand support for "hollow" 
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queries and queries containing "don't care" parts. However, other users may remember 

more than one portion of the images they have seen before. Hence, methods for handling 

subimage queries with these multiple "known" portions (for example, Figure 6.3) are 

also needed. A naive approach is to apply Padding and Reduction Algorithms to each 

portion independently. An intersection is then applied to the candidate sets of images 

returned by the Algorithms, and the resulting images are ranked thereafter. One problem 

with this naive approach is that for a subimage query with multiple "known" portions, 

performing Padding and Reduction for each portion may be time-consuming. Hence, more 

efficient approaches are necessary for handling arbitrary-size subimage queries of arbitrary 

shapes, "hollow" queries, queries containing "don't care" parts, and queries with multiple 

"known" portions. 

Figure 6.3: Example of a Subimage Query with Multiple "Known" Portions 

Enhancements to multiscale search strategy should also be explored. In the pro­

cess of determining the appropriate number of levels in the multiscale representation and 

finding the best search strategy, the histograms which are examined during a search are 

of the same dimension. For example, with the best scheme for handling "j"-typed queries, 

all the histograms checked at Levels H , I, and J are of 64 dimensions. For possible en­

hancement, we may explore the use of histograms of mixed dimensions. For example, in 

the Horizontal-and-Vertical Search, we can study the possible improvement (or degrada­

tion) using 512-dimensional color histograms for horizontal filtering on the first level and 

8-dimensional color histograms for vertical filtering on the remaining levels. 
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Moreover, in the experiments for determining the appropriate number of levels in 

the multiscale representation and for finding the best search strategy, color histograms 

of 8, 64, and 512 dimensions are used. These color histograms were created for real 

images collected from various sources and covering wide application domains. However, 

the possibility of bias in particular domains may exist. Correspondingly, we can generate 

realistic random color histograms [Strieker 1994], and use the resulting histograms to 

strengthen our findings. 
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