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Abstract

As network connectivity has continued. its explosive growth and storage devices
have become smamller, faster, and less expensive, the numl)er of on-line dlgital images has
illerealsed rapidly. Cofrespondingl'y, efﬁcient end effective content-based retr_ievaIKSystems
for handling image queries have beebme necessary. In addition, users a,r‘evoften interested
in local contents within sublmages In this thes1s, we develop Paddmg and Reduction -
Algorlthms to support subimage queries of arb1trary s1ze based on local color information.
The 1dea is te estimate the best-case lower bounFl to the d1ss1m1lar1ty measure between
the query and the image. By lnaking use of multiscale representation, this lower bmlnd
becomes tighter as the scale beco_mes‘ﬁner. Because image contents are usually pre-
extractéd and stored, a key issue is how to determine,the number of levels used in the .
representati‘on. We address this issue. ahalytlcally by estimating the required CPU and I/ o)
costs, and experimentally by comparing the pe'rforrlla,nce and the accuracy of the outcomes
of valrious filtering scllemes. Our ﬁndlngs su.ggest that a 3-level hierarehy is preferred.

" We also study three strateg1es for searching mult1ple scales Our studies indicate
that the hybrid strategy with horlzontal ﬁltermg on the coarse level and vertical ﬁltermg
on remaining levels is the best clioice when using Padding and Reduction Algorithms.
Using the hybrid search strategy in the multiscale represéntation with the oleterrnined
number of levels, _the best 10 desired irrlages can be retrieved efﬁcientl)-f and effectively

from a collection of a thousand images in about 3.5 seconds. -
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Chapter 1
Iht_rOductiorﬁl-

1.1 Image Databas_'es‘ e

- Over the past few decades, database management.systems (DBMSs) have been recognized
as'. tool:s‘ with’ pr'actical value for.handling large amounts of data. A .prlmary purpose of
“a DBMS is to provide an envir'onment for efﬁcient and effective retrieval and storage of
vdata Until recently, many DBMSs were des1gned to handle only alphanumerlc data

“In recent years advances in technologles for scanning, networklng, and CD ROMs
llave lowered the ‘pr1ces for disk storage. These. advances, coupled with acceptance of
' commion ‘i image compressron and file formats, enable users to acqulre, store, manipulate
and transmit large numbers of 1mages As a'result, the number of drgrtal 1mage archives -
| . has increased tremendously The use of 1mages and graphlcs in World-Wide Web pubh-
A catlons has also increased at an 1ncred1ble rate. In add1t10n images are generated at an
increasing rate by growmg number of sources such as civilian and military satelhtes as
_well as. commerc1al satellltes, 1nstruments used in petroleum and mmmg mdustrres med- -
1cal 1nformat10n systems, Geographlc Informatron Systems (GIS), and art gallerles and

museum management systems For example an estlmated 281 g1gabytes (GB) of i 1mage o

data will be produced dally by the instruments on two Earth Observrng Systems plat-




forms [Castelli et al 1997] 'With all these changes, we néed the DBMSs to support. not

only traditional alphanumerlc data, but also visual-based data in the form of still i 1mages "

Image databases also play 1mportant roles in the four “Grand Challenge” appli-

cation domains — - (1) ’Geographic/Environmental Information’ Systems, (2) Engineer-

ing/Scientific Visualization Systems, (3) Medical Information Systems,. and (4) Educa-
- tion Systems — which were identified in the 1992 US National Science Foundation work-

| shop-on visual information management systems [Jain 1993]. The demands for image

database management systems (IDBMSs) also increase in other'application areas like .

stock photography for remote prlntmg, retail cataloging, art work retrievals, advertlsement

creatlon and i 1mag1ng clip arts [Sawhney and Hafner 1993, Barber et al 1994, Gudlvada

and Raghavan 1995, Petkovm et al 1996, Castelli et al 1997].

1.2 Clonntenﬁ-Bas‘ed Retrieval -

Traditiona,l_data,ba;se retrieval féchnology uses én ‘;exact match” approach. To do so,
: traditional structured -alphanumeric information is v»indﬁexed by d'ekscriptive keyv&ifords'.or
‘n‘u>mericv descriptors. Due to the é.uccesé in handling alphanumeric data, many IDBMSs
" also use thev "‘exa.,ct-match”“'a'pproavch in handling image»data.A In particular, images are

indexed based on some identifying text such as titles, captions,} creator’s names, productibn

"years, or catalog numbers. However, these identifiers are usually “external” to image

contents (like color, texture, and shapes). Searching these external features of the images

~in the colléct_ion may not necessarily yield fr_liitful results. -In many situations, users may

remember the contents, but not the associated identifying text, of the images they have
seen before. Thus, retrieval methods based on “external” identifiers may not be helpful.
For example, if the images in a collection are indexed by names of painters, a user may

not be able to retrieve-the image of Mona Lisa unless he remembers the painter’s narne,v

Lepnardo da Vihci.




" Complementary to retrieval m‘ethods based on “external” identiﬁers content-based -
retrleval (CBR).. methods have been developed With CBR 1mages are searched and
indexed based on contents of the 1mages These contents can be cla331ﬁed into two

‘ .main types:

1. “syntactic” _contents — such as color, texture, and shape — which are context-inde-

‘pendent, and.
2. “semantic” contents — such as objects — which are context dependent.

To 'exploit existing advantages of the “exact match” approach, some CBR systems'rel‘y
on manually associating textual des_criptions with the image contents. “However, these
- textual content descriptors are subjective, domain dependent, and expensive to produce.
Sometlmes the 1mage contents of the underlylng data like texture and shape are difficult
or nearly: 1mpos51ble to describe with téxt annotations. It i is well known that ‘an '1mage'
is worth a thousand words”; descriptors/ keywords are often 1ncomplete and not precise
enough for satisfactor)r image retrievals - For example an indexer ‘may-. assign keyword
: “sunrise tyo an 1mage which the user may perceive to be a sunset As another example
for a picture taken at dawn an 1ndexer may associate the text annotation “moon’ * with
an object which the user may perceive ‘to 'be the sun. |

Given the rapid'growth in the availability and demand for-image data, the high
labor cost involved with manually assocratxng text. annotatlons w1th 1mages, and the dif-
ficulty of ant1c1pat1ng every user’s needs when assigning keywords and descrlptors it is
'mo-reneﬂic1ent to represent the image contents', particularly ’ syntactlc Vcontents, by 'au-
' tomatically extracted fe'aturesﬂ; Since the “syntactic” conténts are context indep'endent,b
-they can be extracted without prior knowledg’e of the images. In many CBR systems,
these contents are extracted automatlcally usmg image processing methods. The results

~are feature vectors representmg the contents Examples of these vectors 1nclude



- @ color

Color can be represented by three-dimensional average color histograms [Niblack et al
1993, 'Sawhney_ and Hafner 1993, Faloutsos et al 1994, Ashley et al 1995, Flicknér
et al 1995], l.ow—'dimenSionz.Ll dominant color histogréms (sets of the most frequently
'occurriﬁg colors) [Ashley-et al 1995], or threédimensional mofnent—based color dis-
: 'tributions composed of the first 3 moments (average, va;riancek, and skewness of each
color) [Stricker and Orengo 1995, Dim@i and Stricker 1996]. Singe; the discriminat-
" ing power with these low dirﬁensional féature ve(;tors may not be adeqil_ate»in some
| applicaﬁbﬁs, coloris also fepresented by .ﬁ—.dimensional (where n > 3,lsaJy 64) color
histograms in other applicatiohs [Ioka 1989, Niblack et al 1993, Sawhlney and Hafner
.1993, Falloutsc‘)s.e't al 1994, Sawhney and Hafner 1994, Ashley et al 1995, Flickner

et al 1995, Tam 1996).

® text{lre

.Retrieva,l is 0ften based on modified versions of coarseness, cont}ast, and direction-
ality [Niblack et al 1993, Ashley et al 1995]. Coarseness measures the scale. ‘o'f the
fexture — the average size ‘of the fegions of similar intensity in an image; contrast
describes the vi\)idngss of the pattern — the amounf; of variation between the light
‘zvmd da,rk areas-in aﬁ image; and, direétionality describes whether the image has a

favored direction or'is isotropic.
e shape
Shape can be represented in several different ways. A common representation is

20-element shape vectors composed of a combination of heuristic shape features

(for example, area, circularity, eccentricity, and major axis orientation) and sets of

élgebraic moment invariants [Niblack et al 1993, Ashley et al 1995].




Regarding the “semantic” contents, they are context dependent and need to be extracted
with prior knowledge of the images and of real world properties. Automatic extraction
of the contents is not easy, and usually requires some computationally expensive scene

A analysis methods.

-1.2.1 - Color and Spatial Similarity Matching
Demands for Color and Spatial Similarity

' In the v1510n and image processing community, color has been widely used for image
segmentatlon and: cla331ﬁcat10n tasks. Studies have been done suggesting that color plays
an important role in human understandiﬁg of an image [Hur'vich..1981]. This explains
: 'Why color is one of fhe most popular among all image coﬁtents, and is supported by
many IDBMSs like QBIC [Flickner et al 1995], Virage [Bacb et al 1996, Gupta 1997]',>and
Miyabi [Hirata et al 1993]. | | |
| A simple way to represént color is to use asinglé global three-dimensional average -
color hiatogram or a sihgle global n-dimensional color histdgra_rn. Sirnilarityv ‘m‘atchi‘ng
is then performed by comparing the global feature vector of the query with the global
~ feature vector of each image in the database Match‘ing appears to be mcomI‘)utatAiorially
efficient. Color h1stograms contain information about the statistical dxstrlbutlon of various
~ colors w1th1n the image; however, they lack 1nformat10n ‘about the spatial locations of
different colors. - As a result, CBR without spatial information of color rnay not be effective
due to the ¢ random effect”. For example the color hlstogram for an 1mage with upper
portion black and lower portlon white is the same as the color hlstogram for black /white

checkerboard (Figure 1.1). Hence, CBR with both color and spatial information provides

better selectivity.




50% black E . 50% black
50% white 50% white _
~(a) Black/White Block . (b) Black/White Checkerboard

Figure 1.1: Exarhple of “Random Eﬁ"ect”

. Processing of Color and Spatial Similarit;y

Regarding the proeessing of spatial si.r‘nila,ri'ty' matching, a methbd for handling spatial
matching of; objectsbexists' [Sistla et al 1994, Sistla ei al 1995]. In their system, the au-
thors use meta—data to describe the spatial rel'at'ionships of objects The rnet?i—data are‘
generated a priori and stored Durmg the query processmg step, new rules about the spa-
tial relationships of obJects can be deduced from the meta—data Wlth deductive reasomng
“about spatlalfrelatlons',hxps of objects, desired i images can then be retrxeved. This method
handies"ep'atial matching of objects quite well, _but it may not be practicel in handling-
spatial vmatching of color because mete—data on color cannot b.e 'generated in the same way -
a-bs‘the r'nelta—data on objects. For example_, given a checkerboa,r'd,‘ it is not eaey to describe
the epatial relationships ,'of fhe colors (“black‘” and “White”--. |
A natural method to handle similarity mat’chin>g with color and spatial information '

is direct spatlal comparlsons of the plxel colors of the query and the 1mages However 1t
“can be more computatlonally expenswe than compamson “of global feature vectors because
the number of pixels in an 1mage is usga,lly much greater than the number of dimensions in

the feature vector. Moreover, it is usually assumed that the query and ifnages are properly



';jahgned in the direct spatial comparison this assumptlon may not hold 1n many cases as
- the user may remember only an approxrmate locatlon of color when spec1fymg the query
With these problems direct spatial companson ‘may- not be helpful

| An alternative method to capture 1nformation .about the spatial distribution of
' Acolor is to divide ‘an image into several blocks and create a color h1stogram for each of
the blocks For example, the system presented by Gong et-al divides the image into 9 (
'3 x 3) blocks [Gong et al 1994] In QBIC, the i 1mage is d1v1ded into a grid of e1ther (a) 6
vertlcal X 8 horizontal blocks or (b) 9 vertical x 12 horizontal blocks for partition ~based
.'sea,rch [Ashley et al 1995]. In these systems, eech image block is of a certain size and‘of a
certain scale. So, sirnilarity matching is applied on .these uni—scale.image blocks to handle
. color and spatlal s1m11ar1ty To 1mprove ‘the efﬁ(:iency -and the effectiveness of CBR, it

_ seems appropriate to explore and analyze the possxble use of multiscale matchlng

1.2.2 .'Multiscale Matching
Demalids for Multiscale Matching ‘.

For-similarity matching with fixed grid segmentation color .histograms for all blocks in
the grld need to be exammed durmg the query processmg step The efﬁ(:iency and the -

effectiveness of CBR systerns depend on the quality of the segmentatmn and the relevance

A of the segmentetion to the user’s nee‘ds. In some situations, the scale at which the 1ma,ges'
-are blocked »r'nay be considered too fine. Applying similarity 'compa,risons to all these fine

' blocks of the query and the i 1mages ‘may not be worth the effort. For example comparmg

every block of a red only query with the correspondmg block of the non- red images seems

‘ 1nefﬁ01ent. In other situations, the scale at which the images are d1v1ded may be con51dered

not fine enough for discriminating the desired images from the collection". Hence, picking

the best scale at which the images are blocked is not easy.

To deal with the problem, multiscale matching can be applied. Poor matches c_an be




1dent1ﬁed and then ehmmated by comparisons on feature vectors at the coarse granularity
level. For example non-red i 1mages can be filtered out by comparing global feature vectors
of the red-only query and the database images. On the other hand, if the current scale’
does not provide satisfactory discriminating pOWer, matching can be performed at a finer

granularity level when using multiscale matching.

Processing of. Milltiscale Matching '
To aim for efficient and effective CBR, a search algorithm that makes use of multireSolntion
wavelet decompositions of query and images has been proposed [Jacobs et al 1995]. Coeffhi-
cients of the decompositions are distilledp through processes of truncation and quantization.
During the query processing step, the algorithm simply compares the number of distilled
coefﬁcients that are common in both the query and the images. With the algorithm:
desued 1mages can be retrieved efﬁc1ently and effectively by submitting a whole-lmage
query. To do so, users are required to know the color distrlbutlon of the entire image. In "
many cases, users may not know or care about the color distribution on some portion of
the image, and they may want to retrieve the desired imag’es.iby posing a subimage query.
Unfortunately, sub1mage queries cannot be handled by the algor1thm

Recently, a formal framework was presented for des1gn1ng search algorlthms which
can identify target images by spatial dlstribution of color [Chen et al 1997]. The frame- -
work is based on a multiscale representation of both the i image data and the associated .
parameter space that must be searched. To process the whole—image query, a branch-and-
‘ bound algorithm is used. The algorithm eliminates poor matches at coarse scales with -
mlmmum computation This insures that each image is only searched to a scale necessary
to determine if it is a potential match candidate.

Using the branch-and-bound algorithm, all the images in the database are checked

~at a coarse scale in the first iteration. Then, the algorithm proceeds to finer scales in -



non—descending order of distance value 1. In general the branch- a,nd bound algorithm
works in such a way that it always keeps track of distance values of all 1mages contendlng
for further consrderatron Images with smallest values are extended” one level . (to the .
next/finer scale) Then these most recently extended” images are consrdered along w1th‘
the remaining old ones; agam', images with smallest values are ._extended”. The process
repeats until. the target images are- found' Noticev that at each iteration the next set
’ _.of 1mages to be extended” contains images with sma,llest values and the set, does not
necessarily 1nclude 1mages in the current set or images at the current level. Hence, jumping |
back and forth among 1mages and levels may occur frequently For large 1mage databases,
. "such jumping makes it hard to optlmlze file organization and buffer;management, and may
impose a high 1/O cost. To avoid jumpiné, developments of some other search strategies
seem appropriate | | |

Like s1m11ar1ty matchlng in the uni-scale representation color hrstogra,ms at each
~ scale are usually extr_a,ctecl and stored prior to»execution time The eﬂicrency and the
effectiveness of the CBR -systems.atre exoected to be affected by ‘the inumb\er of levels
vkused_; as such, vve need to choose the number of levels "carefully through a.nalyses,a,nd
expe'riments. Hovvever detailed analytical.and experi’menta,l results for the determination
of a sultable number of levels are seldom prov1ded in depth

Furthermore, it is observed that these multiscale systems cannot handle subimage R
queries. As subimage queries are useful in-many ‘applications, 1nvest1gat10ns on how to
" make use of multiscale representaltion in-developing algorithms for dealing with subimage

queries are worth pursuing.

1A,distance value measures the dissirnil_arity/distance between the query and the image.




1.2.3 Subimage Query Matching
Demands for Subimage Queries

Many current IDBMSs support only whole-image matching, but not subimage matching.
However, it is well known that human memory is weak in retainiﬁg a fine granularity of
spatial information of color. In many cases, the user does not remember every detail of
the image he has seen before, and he remembers only a portion of the image. And in other
cases, the user is interested in local image contents. For example, a user may want to find
images of national flags with the Union Jack in the upper left corner. As another example,
a user may be interested in finding all images of sunrises where the sun is rising in the
upper right portion of the image. Then, whole-image matching may not be helpful because
the user does not know or care about the color distribution on the remaining portion of
the image. For instance, each of the national flags in Figure 1.2 contains the Union Jack
in the upper left_ corner, but the remaining portion is quite different. With whole-image
matching, the user needs to come up with the color distribution on the remaining portion

of the image. Hence, subimage query matching is needed.

upper-left: Union Jack upper-left: Union Jack upper-left: Union Jack
remaining: mainly blue remaining: mainly red remaining: mainly light blue

(a) Flag of Australia (b) Flag of Bermuda (c) Flag of Fiji

Figure 1.2: National Flags
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Processing of Subimage Queries

As mentioned in Subséction 1.2.1, in.order to capture i'nformatibn about the spatial dis'trif“
- bution of ‘color-, éorne IDBMSs'-diVide an image into seVerél blocks and create a histografh
: for each of the blocks. It is observed thatA a subimage query may occupy some but not
all the blocks. So, to handle subimége matching, one can cofnpare only the histograms
of the “occupied” blocks of the query and tﬁe'corresponding blécks of the images. ' For
tile systems in \;vhich the user _can. assign Weights'tb dif%erent blocks,. one can assig‘n a
weight of 0 to the “vacanf” blocks (blacks' that are not océup’ied by the subimage query).
Howevef, a problem with these techﬁiques is. that it is not unusual to have a query whose
- size is not an intggrzil 'rnultiple .of the chosen block size (for example, a subimage query
. — whose size is % of the image — can. be éubmitfed to a collection‘of images with 2 x 2
segmentatipn, 1n which, each segﬁlent coveré % of the entire ‘imrage). |
To deal with subimage queries‘of arbitrary size, templa,te’ma,tching_ aigoritﬂms'
can be applied'_. The idea is that the user query consisting' of s x s' pixels is "served as a
“template”band is compared with every image subregion of the same size. Notice that if an-
image contains S X .S pixels (\;v.here S > s), there are (S — s+ 1)2 imége subregions hav.‘ing
the same size as the “template”. The smaller the quéfy size, the greater the number of
_image subregions t(; be compared. This may lead to a huge amount of compl;tation, and
thus algorithms baséd on template matching are usually inefficient. In general, each image
contains S2 subregions of size 1 x 1 pixel, (S — 1)2 subregions of size 2 x 2 pixels, and so .
on. These add up to a total of ﬂﬂé”—ﬂl subregions with size rangiﬁg‘ from 1 x 1 pixel
to S‘ xS pixels. Thﬁs, pre-extraction becomes impractib'c.al. For _thesé template matching
algorithms, image contents are usually not precomputed or st01"ed, ’a_md execution times are

expected to be very high. Therefore, other algorithms for pefforming subimage matching

efficiently and effectively are needed.




1.3 Problem Definition and Co’n.t‘ributions |

In theiprevious seetion, the demands for similarity matching on color and spatial informa—'
: tion have been mentioned. To process the query, some iDBMSs use fixed grid segmentation
" approaches. Some multiscale matchmg approaches have been proposed to further 1mprove
the eﬁic1ency and the effectiveness of CBR However detailed analytlcal and experimental

results on the,determlnation of the su1table number of levels for the approaches are seldom

reported, and comparisons of different search strategies ulsing multiscale representation are
also rare. Moreover, subimage queries, which aré in demand, cannot be handled by many
IDBMSs. Techniques for handling these subimage queries of arbitrary size are needed.

Therefore, in this thesis, the following questions are investigated:

1. How can we deal with subimage queries of arbitrary size 7

'Tvifo efficient and effective algorithms for handling subimage'queries are de-.
veloped, namely Padding and Reduction Algorithms. The idea is that Padding and
" Reduction Algorithms estimate the best possible color histograms for a subimage

query Q and an image block T of size larger than Q by either:

(a) enlarging the query Q into a new query Q Enlarged t}a¢ is of the same size as the

image block I, or

(b) reducing the image 'blo.ck I to a new block I Reduced that is of the same size as

the query Q.

~More precisely, Padding and Reduction Algorithms give lower bounds to the Eu-

clidean distance between the histograms of subimage query Q and image block I:

oo N Enlargedl . . T Erilarged g . \
Paddlng- min (Q Histogram I Histogram) (Q Histogram I Histogram)

I Reduced

e Reduced
Histogram) (Q Histogram — I )

Reduction: min (Q Histogram — Histogram
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1 For 'Zglive‘ni Qand I, both algorithms provide the same best-case lom}er bound distance

‘estimation. HdWever, their efficiency may differ signiﬁbantly, dependiﬁg on the sizé

differential‘betv&%een Q and I. If the size differential is large,' the Réductioh Algorithm
- -is more efficient; otherwise, the Padding Algorithrﬁ is t'he:winner. . ' -

Debending on the location of I, similarity métghing caﬁ incorporate color

E sirﬂilarity as well as spatial similaLrity;Fbr iﬁstancé, the distancé between Q and I is

~defined as a weighted sum of the form:
B x hiétogram distance + (1 — B) x positional distance-
where ‘thé histogram distance is computed ‘by cither. the Padding Algorithm or the
' ReduétidnAA]gorithm.‘< The weighting factor 3 is chosen by the user to specify a
" preference on thé relative impo"rta'nce of colof distribution’ aLIid its spdtia] information.
2. How-r'nany.levelsdo We need for multiscale répresehtatibn_"?

With multiscale r'epresentatibn, an image is d‘ivide'd"into’ several bloéks,~ and
an associated color histogram is created and stored _for_fe‘dch'c')f the blocks, Each
block can be further divided into subblocks. In this thesis, images are di_vided into
four levels of (sub)'blo.cks:

(a) At Level H, the entire image 1s represented by a singl'e color histogram.
(b) At Level I, the image is divided into four (non-overlapping) blocks 2, and each.
" block is represented by‘a color histogrlam'covering' % of the entife_ image.
(c) At Level J, each block at Level I is further divided i_nt,(_)'fou-r subbloc.:ks,tand each
'subblock is ‘rep‘r‘esénte'd'by a color histogram cbvering = of the entire i_mage.
(d) At Level K, each subblock at Level J is again divided into four, each of which"

.is represented by a color histogram covering élz of the entire image.

. ?Alternatively, an image in the database can be divided into five or nine overlapping blocks.

.
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o Given user qu'eri.es of arbitrary size, we.i.nvestigate tﬁe number of levels that are
E -réqlslired for éfficien_t and effective retiieval of the desired images. With four levels
“of (sub)blocks for each image, many multi-level filtering schemes can be developed

- to find the desirgd matches. . For example, the ‘choic‘es invclud'e‘a, four-level HIJK
schem_e, a one-level J sc.heme‘, a two-level HJ scheme that skipé Level>I, andv.someA
other schemes. Anaiytically, wé set..up coéf models to e;laluate all 15 possible filtering
séhemes, and estim;ite their CPU, I/0, and combined CPU&I/O ‘c'(.)sts.A'The results

tend to favor:

e the filtering schemes which start with Level H (or Level I), and

e the filtering schemes which do not skip the intermediate level.

Experirﬁentally, given subimage queries bf partiéular size, Both the efﬁéieﬁcy (for
example, the time feqﬁired to ﬁ_nd the desired images) and the effectiveness (fqr
example, the number of desired images being retrieved) are rﬁeasured; The results
show that the three-level HIJ ﬁlfering scheme works well for most queries when
6peratiﬂg pogether with thé'Padding and Reduction Algorithms mentioned earlier.
‘Therefore, only three léve;ls (upto4 x4 se’gmentation) are needed for the multiscalg

representation.

. What is the best strategy for searching m'ultiplevscales 7

- The branch—and—bound zﬂgor;lfhm proposed b)‘f Chen et al [Chen e_t' al 1997] is
accurate in its searph, but it can be inefﬁcieht for large databases. In particular, the
number of images the algorithm must keef; .track of can be large, and jumping back
and forth among images and levels may be required fréquently.- For large databases,
such jumping makes if hard t-o"optimi.ze‘ 'ﬁle organization and buffer management,

and may generate a large number of 1/Os. "
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In this thesis, we censider'three strategies that try t(l)l avoid the kind ofjump—

ing mentioned above: :

( ) Search PV (Pure Vertlcal) —a strategy in whlch a vertlcal ﬁlter searches each_ ,

1mage vertlcally across scales _

The 1dea is that 1mages are checked one after another At any point

in tlme a set of u 1rnages currently havmg smallest dlstance values are kept

(where u is the number of i 1mages requested by the user) For each image,

the algorlthm keeps proceeding to ﬁner scales untll (i) the d1stance value at a

“particular scale is already soJarge that the image cannot be qualified as a good

match, or (ii) the finest scale is reached and the image is either discarded or

selected as a member of the answer set, depending on the distance value.

Search PH ﬁ(Pure' Horizontal) —a strate(gy“in which horizontal filters search

' “horlzontally across the database level by level.

- The 1dea is that all the i 1mages in the database are checked by the filter at

" "the coarse scale in the ﬁrst iteration. Poor matches at this scale are ehmlnated

In subsequent 1terat10ns, 1mages that are left from the previous level/scale
are checked by filters at finer scales, and poor matches are 'again removed.

The process 'repeats until the finest scale is reached and the top » images

.are returned.

. Search PH is more efﬁc1ent than Search PV, because the latter tends

to requ1re many comparlsons at the ﬁnest scale partlcularly at the beglnmng

of the search. However, in Search PH, it is hard to determme the number of

images to be carried over frox'n the current level to the next level. For some

queries, if such a number is small; an image I that gives a good match at a

' ﬁner scale may have been ehmlnated before reachlng the ﬁner scale This may

happen When there are sufﬁcrently many images which are e not- as good.as I at
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‘the finer scale but are better than I at the coarser scale. Consequently, while

delivering efficiency, Search PH may suffer from a loss of effectiveness. .

(c) Search HV (Horizontal—an(i;Vertical) — a hybrid of the above two search strate-
| gies in which we use a ‘horizontal filter on the first level and vertical ﬁlter_s on
the femaining levels. |
| The idea is t‘l;at all the images in thé database are checked by é horizon-
tal ﬁ-lter at the coarse scale in the first itérationf. Poor matches at the coarse
_ scale dré eliminated. For éach of the images that are left, the algorithm keeps'
_ | proceeding to finer scales until (i) the distance va;lue at a particular scale is al-
: ready so'large' that the image cannot qualify as a,'gOO(vi‘. matqh, or (ii) the finest
'?scale.:is reached a,h_d.the ‘ima,ge is either diécérded or selected as a 'mer-nber of
. the answer set, depending on ‘the dista,nc.eA value.
. In _this étrategy, the détailed' search with thé use of vertical filters is"
applied not to the set of all thel images, but only to its most promising subset. .-
The éxperimental résults confirm that Search HV is‘thé l')e_st‘ strategy. for re-
' trievval of desired imageé when compared with the other two strategies because
Search HV keeps a good balance of "perfo'rmance/spe'ed and accura,cy.' :
1.4 Outline of Thesis
In the next chapter, related works are described. We give an overview of some of the
research.projects in CBR, and mention the resvearch projects for handling color and spatial
similarity, mqltiscale mdtching, and subimage q.ueries. Chapter 3Alfoc‘uses on Padding
and Rédﬁcﬁion Algorith“ms.‘ Concepts, implémentations, and experimen\talv results are

discussed. Chapter 4 describes the multiscale representation and a strategy for searching

* such a representation (Search PV). Analytical and experimental results for each filtering




scheﬁe are etudied 80 that the second .qﬁuestvion mentioned in S‘ection 1.3 ce,n be answered.
In Chapter 5, two more search strategies, namely Search PH and Search HV, are proi)osed'.
- We combpare both analytical and experiméhtal results of the thfee search strategies. As
a result an answer to the third- question mentloned in Section 1.3 is prov1ded Finally,

conclusmns and suggestlons for future work are presented in Chapter 6
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~ Related ‘Works

‘

- Efficient and effective cont'ent—based retrfe_val systems ﬁsually require that several impo'r—_

" tant objectives are Satisﬁed, namely:
o efficient indexihg méthods,
° expressivé query language, and
. efﬁéient and effective .quelry pro‘cessing and -optimization.

~To achieve the goals, several research’ projects have been carried out.
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2.1 Indexingi

To handle a user query, image contents of the qnery are compared to the corre'spend—
ing image contents ef the irhages in 'the ‘database to deterrnine which images are good'
inatches’. For efﬁciency,' image contents are usually captured by feature vectorswhich
are precomputed and stored. For a'srnall database, sequential scanning of these feature
vectors is fast. However, as the database grows the hnear scale—up of the sequential
scannmg becoines prohibitively slow. One way to speed up the process is to treat each
feature vector as a point in n-dimensional space,v and employ multi-dimensional indexing :
structures. Many multi—dimensional indexing structures have been design‘ed.vaxam'ples
are KD-trees [S:arnet 1990], R-trees [Guttman 1984], _R+;trees [Sellis e‘t al 19‘87],‘ R*-trees
[Beckmann et al 1990], SS-trees [Whit'e and Jain 19;()6], SS"'—trees [Kurniawati et al 1997],
TV-trees [Lin et al 1994], VP-trees [Chiueh 1994], and X-trées [Berchtold et al 1996]. )
bThe above indexing struvctures help in improving the efﬁcienCY' for low dimensional
_feature vectors. However, for high’}dimensions, many of thesev multi-dimensional index-
ing structiires explode. exponentially with ‘the dirnensionality, and eventually reducing to
sequential scanning. Given that image feature vectors are usually of high dimension-
ahty (for example, it is not unusual to have 64- dimensional vectors for color features)
ways to deal with this problem are needed. One way to deal with this “d1mens1onal-
' ity curse” problem is‘b‘y using filters. .A 2—level' filtering a.ppreach has been p‘ropoised
;[Sawhney and Hafner-1993, Faloutsos et al 1994, Sawhney and Hafner 1994]. The idea is |
to abstract alow dimensmnal vector from each orlgmal hlgh dlmensmnal feature vector by
an 1nformat10n preserving transformation Based on distance values of the abstracted vec-
tors, lmages Wthh are far from the query are eliminated. As a result only a small number
of candidates are left. The orlginal hlgh dimensmnal vectors of these candidates are then
passed to the detalled matchlng operation to obtain the best matches Unfortunately, the

dimensions of abstracted vectors cannot be too high; otherwise, vectors cannot take full
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advantage of rriulti—dime'nsio'nal indexing structures. On the other hand, the dirﬂgngioﬁs
-of abstracted ‘veCtor's cannot be too low; otherwise, the detailed métching at the finest
level needé to be operated on a large number of high dimensional vectors. To improve the
efficiency, a 3-level filtering approach has been proposed. [Tam 1996, Ng and Tam 1997].
The ideé; is‘ to.add an additioﬂal intermédiate level so that both tﬁe éoarsest and the ﬁ_nest'
ﬁlterings can be more efficient. - | |

As the e-fﬁci.ency‘ of spatial i;ldexing structures uéually detériorates with fhe in-
' crease in’dimensionality, methods to cor.np.réss or reduce the dimensionality of the imége
‘vector‘ space without losing much informatioﬁ are n‘ecessary. One method is Karhunen-
Loeve (KL) Tra’nsfofmation, or Principal Compbﬁent Analysis [Sedighian 1995, Ng and
>Sedighian 1996]. The idea is to transforrﬁ the data space by removing dependent di-
méﬁsions and converging most of the in_formatioﬁ into the first few dimensions. Another
‘method is to apply singular value décomposition and clustering’ techniqués recursively to .

feature vectors until the dimensions cannot be further reduced [Thomasian et al 1997].

2.2 Query Language

Wif-h the ever-growing use of the Internet, there are more and rﬁbre irﬂage ddtabaée servers.
To maximize the efﬁéiency and the throughput of an image databaSe server, it:is bengﬁ—.
cial fo ha\;e an exlpres;ive query language so that the user can be as precise as possible
in specifying his query.A Such -precision in query specification V‘may. lead to reductions in
t_he 'numbgr of query reformulations over the network. In the p;Lsf few years, many query
" language sys‘peihs have be;an developed. Examples are QBIC [Sawhney and Hafner 1993,
, .Fa,loutsos_ et al 1994, Sawhney and Hafner 1994, Flickner ei al 1995‘, Finn 1996, Virage
[Bach et .al 1996,‘Gupta 1997], Miyabi [Hirata et al 1993], Photobook [Pentland et al 1994],
‘and FMR [S:;ké,mpto'.et al 1994]§ With these systems, querying.from image .‘dat’abases L

for applications with a dense image space (for example, medical image management
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- or remote-sensing where the images are very similar) as well as a sparse image space

-each other) is p0331ble Recently, another query language, EXQUISI has been proposed

_ [Faulus 1996 Faulus and Ng 1996, Faulus and Ng 1997]. To mcorporate imprecision and
amblgurtles in user querles, the user is allowed to spec1fy ‘a range of \ralues for image
content, arrd all;values rvithin the ‘range. are then treated as idenfical during the query - .
processing'step. Moreover,lan additional reformulaticn function is.‘pro_vided_ so that the

' ﬁser can spec'ify> the parts of ‘phe returned image he wants to include or exclude. '

2.3 Query Processing based on Color and Spatial Similarit‘y.

“In the v_i'sion and-image processing‘commﬁn.ity, color lras been widely used' fcr image seg—
mentation and classiﬁcatiori tasks.: Stuclies have been done suggesting that,COlor plays
an important role in human'understanding of an image [Hurvic‘h 1981]. This explaiﬁs o

. why, among all image contents color is one of the most popular ‘and is supported
by IDBMSs hke QBIC [ickner et al. 1995] Vlrage [Bach et al 1996, Gupta 1997] and

* Miyabi [Hirata et al 1993]. |

A popular way to represent color is to use color hlstograms A color hlstogram holds

'mformatlon on color dlstrlbutlon but it lacks spatlal information on color The problem
may be 'overcome 'by d1v1d1ng an image mto several blocks and creatmg a histogram for
eachvo‘f the blocks.’ Locality information is captured as each‘of the hiStograms holds color
dlstrrbutlon for a. partlcular block in thei 1mage The more blocks.in the image, the more
accurate is the locahty information; however, more memory would be consumed in holdmg
the hxstograms, and more computatlon tlme ‘would be requ1red for comparing histograms.
It is a t'r_adeoff between efficiency (time and space efficiency) and effectiveness. |

In QBIC, the user ie allowed to submit, queries on large image databases based..

on example images (query by'exar_nple) as Well as user-constructed sketches and draw-
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~inge (query by painting) [Sawhney and Hafner 1993, Faloutsos et al 1994, Sawhney and
Hafner 1994, Ashley et al 1995, Flickner et al 1995, Finn 1996]. For query by example,
similarity matching between the histogram'of a query and the histogram of an irriage is

based en the weighted Euclidean distance of the normalized histograms:

(Query Histogram — Image Histogram) A (Query Histogram — Image Histogram)

where A is a similarity matrix with entries a;; describing similarity between color ¢ and
color j. The similé,ri_ty ‘matrix accounts for both -the perceptual distance between the
pairs of colors and the differenice in the amounts of each color. Two types of histograms

are used:

1. average Munsell color histograms for handling average color queries. Ti’liS kind of -
_histogram is useful for images that have a dominant color or a small renge of hues.
The 3-dimensional average color histogram for each image is formed by adding up

the red, green and blue components of each pixel.

2. n-dimensional color histograms for liandling histogram color queries. This kind of
h1stogram is useful for searching images w1th a desired color dlstrlbutlon To create
a histogram, color space is usually divided into 64 ranges and the percentages of
pixels in each color range are counted. As a result, a 64—d1mensnonal celor histogram

is formed.

'_Regarding queiy by painti‘ng, QBI.C"retrieves iinages with similar colors in simil:ir spa-
tial atrrangement.. For a partition-based irlethod [Ashley et al 1995]., each image in the
database is divided into a grid of either (a) 6 vertical x 8 horizontal blocks or (b) 9 ver-
tical x .12 horizontal blocks. For each block, (a) an average Munsell color histogram and
(b) a partial color histogram con51st1ng of the most frequently occurrlng colors and their

frequencies are computed and stored. At runtlme image contents of the query are ex-
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tracted in a similar manner. Similarity matching is based on the average of the distance
values of all the blocks.

Some other methods for representing color and spatial information and for com-
puting similarity measures have been suggested. For example, in the system presented by
Gong et al [Gong et al 1994], the image is divided into 3 x 3 subareas. In addition to a
histogram for the entire image, a histogram is created for each of the 9 subareas. With
the observation that colors within an image do not spread widely in the color space, the
authors use the top 20 bins (in terms of pixel counts) of the color histogram. Two parame-
ters, the Weighted Perimeter and the Weighted Angle, are extracted from the top 20 bins;
they form hyper-polygons. Similarity matching is computed by comparing the values of
the two parameters.

In another system [Stricker and Orengo 1995, Dimai and Stricker 1996, Stricker
and Dimai 1996] — this one based on the observation that important objects are usu-
ally placed in the center of images in many applications — the image is divided into five
fuzzy regions (Figure 2.1): center, top-left, top-right, bottom;left, and bottom-right re-
gions. The authors use moment-based color distributions — (1) average, (2) variance, and
(3) skewness of each (L*a*b*) color channel — which they claim to be more robust and

more efficient than working with color histograms.

Figure 2.1: Fuzzy Regions
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In Miyabi‘.[Hira'ta et al 1993]; imdges‘are divided info 8 regions usingvvz}lues on
color and other i\mage centente (such ast'exture). With an imege regioning ‘and fnefging '
technique, color information isbencoded into a picture index_ and can be used in ‘mat:ching._

For the VisualSEEk"sy‘stem [Smith and Chang 1996], Smith And-Chang notice the.:v
difﬁculty of pickiﬁg the 'b’est scale at 'v{rhich the i,ma;ge,s should be blo_cked' in fixed block
segrﬁentatien."They use the color Histograin back-pro‘iection method of Swain and Ball@rd
[Swain and Ballard 1990] to segment the images in'stead.‘.The encoding of{ color informa-
tion is done by using a binary coiqr sef in §vhich only the'c.dlors'that are Sufﬁcieqtly
_ presentl in the reéion afe selected. With £his celor set l;ack-projectioﬂ' method, images can. g
be retrieved effec"tively. | | |

One common point in these"sy's'fems is t'h.at they have not, explored the use of
multiscale m@tchihg for further improvements on the efﬁCiency and the effec_tivenes‘svof

CBR based on color and spatial similarity.

2.4 Query ProCessing with Multiscale Matching

~ The difﬁeulty of pieking fhe best scale at which the images shoﬁld' be.‘.‘divid_ed in-an
IDBMS ca.n(be addressed by the use of muifiscale representation. With the repres_eﬁtatioﬁ,
comparing feature vecters at 4a coafse granularity level enablesv_the identiﬁcations of poor
matches from the collectien of imzm‘geé;. On the other hand, if satisfactory discrifniﬁating
poﬁvér cennot be provided by the current ecale, matehing can be done at a finer granularity'
level which may Iea,d to the retrieval of fhe desired images. |

In QBIC,l query by paint.ing is not only handled by a partition-based method,A but
also by a region-based method [Ashley et al 19_9_5]. Insfead. of relying én a fixed grid placed
on t_he imaée, an appfdximate segmentation is used on the images and the query. The

lteratlve metrlc space clustering algorlthm is used wh1ch starts with each color in the

'The a.lgonthm is based on the concept of mutual nearest nelghborhood
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image deﬁningqa cluster.' At each iteration, a pair of elusters is collapsed into a single
cluster if ‘their mutual ranks fall' below the preset threshold. Color distance and spatial‘
distance are combmed durmg the clustermg stage For each color, a boundlng rectangle
is formed for each group of connected plxels having that color.  Then, the boundlng

rectangles for a glven color are successrvely clustered untll one rectangle remains. Asa

result multl—level co]or trees are formed. To process a user query, the i image contents of

the query are matched agalnst the image contents of images in the database. In order to
do "so, distance .v‘alues are computed for every 'color region of the- query based on (1) the
distance between the colors and (2) the distance betWeen the trees. The distance between
the trees is computed by comparing the query root with the image root as the first step.
Each child of the query node is then .iteratively compared against the closest child of the
rnatching image node. |

| .. Another image querying 'technique has beenl proposed«[Jacobs et al 1995]. In this :
syste’m, the user ‘query and the database images are deeomposed usin_g standard two—

dirnensionat Haarl vvavelet ’decombosition-; which involves a one-dimensional decomoo—

jsition,on each row. of the image, followed ‘by a one-dimensional decomposition on each

column of the_ result. With the observation that the resulting wavelet coefﬁ_cients of decom- -
r)osition can be truncated vvithout 'losiné much ‘discrimivnating power, only the stgniﬁcant

coefﬁeients for each color channel (such as Y, 1, and_Q),“are_ kept. In_ order to speed the

search and reduce the storage, each truncated coefficient is then'quantizedto two levels

_representing the f)resence or‘ the absence of the ‘features As a re’sult- for the’query and-
the i images, the overall average color as well as the indices and 51gns of the 51gn1ﬁcant co-
' Vefﬁc1ents in each color channel are stored Hav1ng the expectation that a vast majority of
database 1mages_ may not. match the' query well at all, the similarity score is computed. by
counting the number of matching coefficients in query and image. "Like the region-based

method in QBIC, this image querying technique cannot handle subimage queries.
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Recently, Chen et al presented a formal framework for designing search algorithms

which can identify the desired ifna,ges by sbatial distribution of color [Chen et al 1997].

The framework is based on a rhultisca,le ref;resentation of both the image data and the asso-
‘ciated'parameter space fh@t must be searghed. .To process the query, a brahch—and.—bound'
_ algorithm and a multiscale distance fAurnct‘}iori are used. With .t'h.e multiséale' represent#tion,
both the '(iuery. and the imagés are décomposéd iﬁto a pyramid of feature vectors. Each‘
“level of the multiscale tree represents a scale, and each node at ; particular scale contains
a feature vector for the éorresponding region of the images. At the coarsest scale, the
entire image is represented as a single';node. For nodes farther away from the root, a more
“spatially localized region of the image is represented. The distance value at a particular

scale is computed by édding the distances between the corresbonding feature vectors of

the nodes of the query and the image trees at that scale.

*  Definition 2.1 To conduct the branch-and-bound search for retrieving the top u images

from the collection:

1. Check all the images in the database at the coarse scale in'the first iteration, and

compute the distance value for each image.
2. Sort all images in non-descending order of distance value.

3. Repeat until all top u images have reached the finest scale:

i. if the image has not‘reached,the finest scale, extend one level /scale; -
i updaté the distance value of the extended image with the sum of the dis- .

|

(a) For each of the u images with smallest distance values, : : » ‘
|

tances between the corresponding feature vectors of the query and the

image at the extended'scdle.

" (b). Sort all images in nbn-descendiﬁg order of distance value. om
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'N'otice that at each iteration of t_he branch-and-bound search, the feature vectors used in-
" the computatio‘n of distance values may be at a-different level /scale and may be for images . -

~ different from those in the prev1ous 1terat10n Unless the feature vectors of all levels and

for all images can be stored in memory, Jumpmg back and forth in the data ﬁle SO as to get -

the necessary feature vectors for computat1on seems unavmdable The frequent Jumpmg
among drfferent 1mages and scales make it hard to optlmlze ﬁle orgamzamon and buffer

' management, and may generate a large number of I/Qs.r

Example 2.1 In many de,tabase apphcatlons it is not unusual to retrieve the desrred\ '
1mages from a collectlon of thousands of 1mages For s1mpl1c1ty, in this example we try to
-find the top two images from a collection of five images using the branch-and-bound search.
Let Scale 3 be the coarsest scale, and let Scatle 0 be the ﬁnest scale. For the scales
in 'between ’the 'index decrea'ses as the scale becomes ﬁner In the ﬁrst iteration of the
branch-and- bound search all five i lmages are checked at the coarse scale (Scale 3), and a
distance value is computed for each image. These images are then sorted in non- descendlng"
order of distance value, and the i images with the two smallest values are the potentlal top

two images.

‘Image 1 Irnage 2. Image 3 "Image 4 Image5

Iteratlon | Scale 3  Scale 3 Scale 3“ Scale 3~ Scale 3.

1 : val: .25Y val: 5. ual: 65 .val: 80 wval: 10

= potential top two images are Images 2 and 5
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In subsequent iterations, the potent1al top two i 1mages are extended one level/scale
and their distance values are updated the images are then sorted and a new set of potentlal ‘

top two 1mages is obtained.

Image 1 Image?2 Image3 Image 4 ImageS

Iteration - ) Scale'2 A _ | Scale 2
2 4 val: 30 ‘ T val: 15

= potential top two images are Images 5 and 1

Iteration || Scale 2 ‘ Scale 1
3 val: 35 . : © val: 20

= potential top two images are Images 5 and 2

Iteration | Scale 1 - : -Scale 0

4 ' o val: 32 - ‘ ' val: 21

= pofential top two images are Irﬁages 5 and 2
| Tteration ‘ Scale 0

5 ; val: 33.

= top two images are Images 5 and 2

. To aim for efficient retrieval, feature vectors at each level of the multiscale systems are
extracted and stored prior to runtime. Since the system performaﬁce is expected to be
affected by the number of levels, we need to choose the number of levels carefully through

analyses and experiments. However, detailed analytical and experimental results for the

determination of a suitable number of ley_els are seldom provided in depth.




2.5 Subimage Query Processing

Many of the current IDBMSS_ suppo_rf only Whole—image .matchiné, but not subimage
: matching.-HoweVef, in many situations, users are often interestéd in local image contents.
Due to the poor human memory capability for retaining a fine granularity of spatiai
information of color, users, in other situations, bcannot recall all details of images-fhey
-have seen beforé. With whole-image matching, users need .to comé up with the coiér
distribution' on the _remémi‘ning port’ion of the images which they m.ay not know or care
about. Hence, subimage Amatchir‘ig is needed.

To deal with subimage queries of arbitrary size, ;nany,template'—based aigorithms
have been proposed. These include the use of traditional template matching. techniques
based on Euclideanl disfdnce for searching fqr the occurrence of a texfufed pattern inside
each image in the database [Stone and Li 1995, and the use of classified template match-
‘ing teéhniques in which templates are classified according to te>‘(t1_1're and edée features
[Tao and Dickinson 1996}. One problem With.template—baseld algorithms is that they re-
_ quire a huge amou‘nt of cérhputatidh due to the large numbér of éositiqns to be compared.
Anofpher prloblen.l‘is that image contents aJr'e'usually not precomputed or stored; as a re-
sult, query processing beco‘rnes 'very slow. Hen;:e, other algofithfns’ for ﬁandling subimage
queries efficiently and effectively é,re needed. . ‘

The RITAS system [Tao et al 1997] ié a ségmentation—based approach for retrieving
textured images con'tain.ing a i)attern similar to the template. Here, each’image in the
database is divided using a quadtree segmentation technique; A qua,dtree is bﬁ_ilt by
repeated ldW—pass filtering and down-sampling. At the coarsest level, feature clustering is
' perfqrmed." Then a boundary refinement procedure is designed to improve the boundary
each time WhenA'moving down from a higher level. After the segmentation procéss, for each
of the segments, mean and standal:d deviation of texture ener‘gy measures are corﬁputed

and stored in n-dimensional feature vectors. An n-dimensional spatial relationship vector -
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is also created for e'aich segment. Du’ringl'_the query processing stei), the query is segmented -
in a similar manner. The distance between'the query and the image is computed by adding .
' two measures, namely Relational Distance (measurlng the difference in spatlal locations)
and Sum of Minimum Distance. For each query segment a weighted Euchdean dlstance‘
between the query segment and its.most closely matched i image segment is computed The
. .Sum of Minimum Dlstance can then be calculated by summmg all weighted Euclidean
» dlstances Notlce that the system is built specn‘ica,lly for handling textured images. The

- efﬁc1ency and the effectiveness of this approach in handling color and spatial similarity

- -are unknown.

White‘ and Jain presented a frameuvoik for develqping engines that sunport subim- -
age matching [White and Jain .1997]. The image representatiqn used in their Image_GREP
Engine is a set of bi-nary images st(‘)}red- as bitmaps. The set’ef binary images is computed
by running a bank of 166 color classifiers on the inputimage. Each color classifier maps
an input image into a single binary image i)y determining'vwhether an input image region
cor.respondinglt(.) one bit in the output bitmap centains_ m(‘)re,thyan the thresheld number
" of pixels quantized to that color. With this representation-,’ eaeh region is denoted by one -
of the Piesent or Ahsent sta-tes; and images can be searched using bitwise Ao.perations dur- -
ing the'runtime. To take etecount» of subimage translation, all alloivable ttanslatipns are -
enumerated and’ stored. In general, the Query processing Atime increases with the numher
.of‘ allowable translations. |

As noticed_, not. many IDBMSs can handlevarbitrary—size .subima;ge queries besed
~ on color and spatial simila_rity. For t_he lsystems that can deal yvith subimage' queries of

aibitrary_size, multiscale matching is rarely used.
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2.6° Summary

Several ‘research projects have been carried 'outl to aim for efficient and effective content—
based retrieval systems. To achieve the 'goals:, one of the importantob jectives is to pro-
vide eﬂicient indexing methodSi ‘Many multi-dimensional indexing structures have been - ‘
des1gned to help improving efficiency for feature vectors that capture image contents. Hovv—
ever, for high dimensional vectors ‘the “d1mens1onality curse” problem arises. To tackle
the problem multi-level filtering approaches (which perform prel1m1nary matching on the
low dimensmnal abstracted vectors and detailed matchlng on the original high dimen-
sional vectors of potential candidates) have been proposed, and 1nformat1on preservmg:j
- transformations (which compress or reduce the dimensionality of the vector space) can
‘be applied. | |

~ The second objective is to develop expressive query languages. With them, efficient

querying from 1mage databases for appllcations with dense and sparse 1mage spaces can

be accommodated.

"The' support of efﬁcient and effective query processing\' and optimization. marks
the third 1mportant objective. With the popularity of 51milar1ty matchlng on color and
spatial 1nformation many IDBMSs store the 1nformat10n in. local color hlstograms To
process user queries, _some IDBMSs use fixed-grid segmentation approaches. For furthe_r
improvement on the efficiency and' the eifectiveness of .CBR, multiscale syst_em's have been |
propose_d. ‘However, detailed analytical and experimental‘results von the determination of -
the suitable number of levels for these systems are seldom‘ reported and comparisons of dif—
ferent strateg1es for searchmg multiple scales are also rare, Moreover, in many situations,
users are interested i in, or can remember only local image contents therefore, subimage "
query processmg is needed Unfortunately, not many IDBMSs can handle arbitrary-size

subimage queries based on color and spatial similarity. For the systems that can deal with

subimage queries of arbitrary size, multiscale matching is rarely used.
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C'hz.;lpil;er 3
Paddivng_and. Reduction
Algorithms | |

Maﬁy IDBMSS-Sil:ppOI‘bt whole;image queries, Which spééify 'the contents of the w-hole 1m— ‘
ages to be retrie‘\./ed. However, users may only femember or care about certain parts of
the images. ‘To answer queries of this kind, some systefns segment an Ai.mage intp several
Blocks, each of which has an aséociatéd colpr histogram. One problem with this arrange-
ment is that ‘subimage_qu“eries- may be of arbitrary size, aﬁd not necessari'ly an intégrzﬂ
m’ulvtiple of the chosen block size. To handle the complication of é,r.bitra.ry size, sdrﬁe sys-
ter.ns‘use:template-bbas‘ed matchiné algorithrns. A key problém with those élgorit‘hms is .
t.h'at a h“uge ar_nbunt of cofnputétion is .n'eeded, because of the large number of positions
to be compared. As such, we pro'pose'two algorithms, called Padding and Reduction, for

dealing with subimage queries of arbitrary size.
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3.1 Lower Bound to Histogram Distance

In many IDBMSs, color is extracted automatlcally and, stored 1n n—d1mens1onal color

hlstograms Once the color hlstograms are created for the images in the database there
are a variety of ways to compute the s1m11ar1ty between the feature vectors of the whole-
image query ‘and the image.  One popular way is based on the Euclidean distance between

the color histograms:

(Query Histogram — Image Histogram) (Query Histogram *.Image Histogram)

ThlS measure can also be used 1n computlng srmllarlty between the feature vectors of

the sublmage query and the i image subreglon even if the query is not of the same size as -

the image subreglon However, comparlng these two vectors may seem unfair as one of

the vectors may contaln more pixels than another. Due to the quadratic nature of the 4.
. above Euclidean measure, the excessive pixels in one vector may dramatically influence the

- difference in the amount of a given color, and hence the resulting distance. ‘For example,

given that a query and three image subregions are repre_se'nted‘ by 3-dimensional ‘vectors

Q=(2,4,52)T, L=(16, 18,66 )T, I,=( 44, 4, 52)T, and Is=( 27, 29, 44 )T respectively,

and that the color distribution of the query is the same as a portion of each of the first

: two‘(but not the third) image subre‘gions then the third subregiontis a “poorer” match "
Uthan the first two However, us1ng the above measure, the dlstance between Q and I3
is 1314 Wthh lies'in between 588 (the distance between Q and Il) and 1764 (the distance

‘between @ .and L) ‘Thus, with this r_neasure of ‘hlstogram dlstance, it is not easy to

provide a satisfactory discriminating power.

Alternatlvely, we can use normahzed hlstograms in which- the percentage (1nstead

“of the p1xel counts as-in the standard hlstograms) of each color is stored; however, if

the user is confident in the query _size ‘when spec1fy1ng his query, the use of normahzed .'

histograms may not be helpful For exarnple grven the Query and the two Images shown in
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Figure 3.1, Image 1 is the better match. Unfortunately, using normalized histograms with
the above Euclidean measure has an effect of scaling up the Query 1. As a result, Image 1
can no longer match the Query perfectly; instead, Image 2 becomes a better match when
operated with normalized histograms. In other words, to maintain the accuracy, the size
of a user query is restricted to the size of the image or image subregion. However, our

goal is to deal with subimage queries of arbitrary size.

l

(a) Image 1 (b) Image 2 (c) Query (d) “Scaled” Query
Figure 3.1: The Use of Normalized Histograms

To avoid the problem caused by the size differential between the query and the
image, the histogram distance (Dp) is computed between the color histogram Q of the
subimage query and the color histogram I of the equal-sized image subregion as Dy =
@-nT@-1.

~ Given a subimage query consisting of s X s pixels, each‘ image of size S x S pixels
(where S > s) contains ﬂ&%@l potential subregions with size ranging from 1 x 1
pixel to S X S pixels. Pre-extraction of color features for all thesé subregions becomes
impractical. Despite that, feature vectors can still be precom;.)uted and stored fof some,
but not all, subregions of the images in the database. As a result, given a subimage query
of arbitrary size, the image subregion represented by the precomputed feature vector may

not necessarily be of the same size as the query. Without loss of generality, we assume that:

e the subimage query is square and consists of v pixels, and

' The scale-up occurs unless the Query is of the same size as the Images.
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e the image subregion consists of w pixels (where v < w).

Then, instead of computing the exact histogram distance (D), we estimate its besﬁ-éase?

lower bound (l/);{) The idea behind the estimation is that we “modify” either the query

-or the imzige subregion so that both the query and the image subregion contain the same

number of pixels after the “modification” process. The estimated lower bound Du can

then be established b& cornputving‘ the bést—case similarity between the f(;a,ture vectors of
the “modified” query and the-image subregion, or between the feature vectors of the qﬁery
andbthe “modified” image subfegion. |

. ~ Two approaches for estimating the histégram disté,r{ce between the subimage query

“and the image subregion are proposed:
1. Padding Approach
‘'We enlarge the subimage query by padding w—v “desired” pixels to'it so that the re-

sulting padded query is of the same size as the image subregion. In order to minimize

the distance measure, the “desired” pixels are chosen from thé image subregion.

Original Query Image Subregion Padded Query Image Subregion

R ted - 0
epr;syen e Qv ]w . QW— Rv-v + Qv Iw

Figure 3.2: Padding Approach

Definition 3.1 Let [ , P,@Q and Q' represent the histograms of the image subre-

gion, the padded area, the original subimage query, and the resulting padded query

respectively, and let the subscripts w,v and w — v indicate the number of pixels

represented in the. histograms. The gdal of the Padding Approach is to find an ap-

propriate assignment to the optimization variable P so that 5;1 is minimized and
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the _vector inequality P,_, < I, is _mét. More precisely, we want to get the optimal

. P (denoted by P*) satisfying the condition:

Q- Q. -
Irjnl_n (Pw—v +Q‘u —Iw)T(ow-'v +Qv _Iw) ) : ‘ (31)

such that Py, < I,
Asa result,l the estimated best-case lower bound D = (P5_, + Q. —-Iw)T(P:{_U +

“2. Reduction Approach

‘We reduce the precomiputed image subregion by choosing v “desired” pixels from it
so that the resulting reduced. image subregion is of the same size as the subimage
query. In other words, the w —v “not so desired” pixels are removed.’

Original . . : Reduced

Query. Image Subregion . . - Query Image Subregion
—
R | d N : ' »
epresente 0, 1 " ) 0, ‘ r,

by

Figure 3.3: Reduction Approach

_Deﬁnitidn_ 3.2 Let I, I' and @ represent the histograms of the original precomputed
ima,ge. éubfegion, the résultipg reduced image subregion, and the subimage query
respectivély, @na le;c the ‘s'ubscr.ip£s w and v indicate the number pf bix’els reprééented
in the histbgrar‘ns'.: The gboal" of the Reduction Approach is to find an appropriate
assignment to the optimizatiqn v@riéble I' so that Dy is minimized and the vector

inequality I! < I, is met. More preé_isély, we want to get the optimal I’ (denoted
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by I'*) satisfying the condition:

rr}i,n (Qv _.I:;) ( "'I,)
“such .t.hat I<I, .

As a result; the estimated best-case lower bound D = (@, — I’T(Q, — I*). . =

32 ]jevelbpment of Padding and Reduction Algorithms - |

Given that the subimage query and the image subregion are represented by n-dimensional"

color histograms (n-dimensional vectors Q and I), mathematically, the two proposed ap-

proaches can be restated as:

"~ e Padding Approach

" - objective function
.inequality constraint

summation constraint

“domain constraint

e Reduction Approach

objective function
inequality constraint
. summation constraint

domain constraint

- minimize (P+Q—.T)T(P+Q“—.I) |

"leen ZQ]_vand ZI =w > v,

=1 j=t
find an optimal vector P* to

(3.‘3)

5 ‘Subjeét to 0 < F; < Ij for 1 < i<n

“and ZP =w-—v

7=1
and I, P,Q mteger vectors

Given ZQJ _vand ZI _w> v,
7=1 : 1=1 .
find an optimal vector I™* to

minimize (Q — I')T(Q.— I

'subJectt00<I'<I for1<]<n

and ZI' =

and I I ,Q mteger vectors
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'3.2.1 Generate-and-Test

‘A naive rhethpd ‘t(_)‘ solve for the optiin’al vector P* or I re is to exhéustively ﬁn.d~ all the
' boésible vectors in whiéh the constraints (inequality, summation, and domain constraints)
are satisﬁéd, and then seléct thé vector that gives the .rriinimal value to the objective.
function. More pr_ecisely:, for the Padding Approach, all feasible Vectdrs for P are system-
atically. géne’ra,ted by enumerating thé value for each entry P; in the n—dimensioﬁal vector.
The g.eneratedlvectors are the_nl tested for minimality, and the one that gi‘v_es the minimal

Euclidean distance is returned:

PADDING-GENERATE&TEST
1 5;1 +— 40

2 for P, « 0 to min(f;,w — v) do -

3 forP,« Otomin(lz,w—v-P)do
4 " for P3 « 0 to min(Ig,'w'— v— P - P)do
| 6 : for Pn._lA «— 0to min([n'_l,w -V — 27;12 P;) do
T . Riecw-v-yrlp
8 . P <,
| 9 | . "~ then distance « P+Q-DT(P+Q-1)
.10' L if distance < 5;[ . |
11 . 7 . then: 57{ + distance
12 - . o P*« (P, Py, Ps, -+, Po_y, P)T

Similarly, for the Reduction Approach, all feasible vectors for I’ are systematiéally
generated by enumerating.the value for each entry IJ’- in the n-dimensional vector. The

gener@ted vectors are then tested for minimality, and the one that gives the minimal
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Euclidean distance is reported:

REDUCTION- GENERATE&TEST
1 DH ~ 400

2 for Il-' 0 to min(j,v) do

3 for I;,(—Oto mm(Ig,v—Il)d :
-4 . for 13 — 0 to mln(Ig,v —- I, - 1}) do
6 for] 1(—0tom1n(n1, 2311211')
7 1,'1(—@_2;;1;
8 W<, , :
9 ‘ _ then distance « (Q —I')T('Q -
10 o A vifdistance < Dn ' |
1 : then l/); « distance
12 I e (LI I I 1,1')

Like many generate-and-test applicaticns, this naive method of solving for P* and

" I' is unpalatable in the .sen‘se that the execution time is.expected to be very leng;

. ~ 3.2.2 Quadratic Programming with Integer Programming

With the observation that the tasks of’ﬁ-r‘lding the vector P* in Problem (3.3) ahd the
-' vectolr I in Problem (34) are instances of qﬁadratic programr‘ning (QP) pr'oblems, ex-
1st1ng mathematical software packages can be used. Examples of these software packages
include MATLAB (MATI'IX LABoratory) [Slgmon 1992] and LINDO (Lmear INteractlve, |

: Dlscrete Optimizer) [Schrage 1986). In order-to use the software packages the mlnlmlza—

“tion problems are_usilally required to be converted into the forms:




. Padding Approach

min %PT_(2I)P+ [2(Q - D]TP (39
11 -1 w7
B | 0
s.t. ' : P <
I I

‘where Iis the n x n identity matrix

e Reduction Approach .

min (VD) + =27 () (3.6)
(_1 __i — (—v\
11 -1 | |
1 0
s.t. : | I' <
I
S A

* where I is the n x n identity matrix

One problem with the software packages is that the computation of optimal vectors is

usually done in the domain of real numbers, not the domain of integers. The domain
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problem coupled with the roundoff error 'may lead to the unreliability of. some output
vectors. For ve.xa,mple,' g_ivén 1= (.1430, 3257, 6133 )T and Q@ = ( 1429, 0; 2 )T, the

software ,packége oubtputs ( 1430, 3257, 4702 )T as the answering vector (with Qalﬁe for
objectiye function = 4084082) for the Padding Approach, but the expected optimal vector.
P*is (1, 3257, 6131 )T with the corresponding optimal valuero.f 0. ‘As anbther example,

‘given I = (2, 7, 5)T and Q = (5,1,1)T, an expected optimal integer:\}ectof I'*is-.
' (2,3, 2')T, but the.software ﬁackage returns the real vector ( 2, 2.5, 2.5 )7 to represent |
the reduced image subregion. Hence, we want the method to handle not only QP, but .‘
also integer programming (IP) 'With IP, the domain constraints — I, P, @ integer vectors
and I,I’,Q integer vectors — éan be speciﬁed. Unfortunately, the IP function is ra,»re.ly
‘supported in conjunction with QP; in many software éackages, the IP functigh is not

supported at all.

'°3.2.3 Algorithms PAD and RED'

Since the above methods may sometimes be unsound or time consuming, efficient and .

effective methods for estimating the best-case lower bound to the histogram distance are

T

needed. It is well known that for a vector z, T  can be written as Z(%)Z So; given

Y r-1@Q;=wvand 3.7, I; = w > v, Problems (3.3) and (3.4) can be rewritten as:
Dig = mjn ;(1% —ag)t B €
’Su'bject to 0.< P; S I; for 1 S i<mn
and Z Pi=w-v

o
and 7, P; o integer vectors

where a = I — Q; aﬁd
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/\_ . .2 “ ) "
'DH‘WHE¥¥_%) T (8
subject to 0 < I} < I for 1< j < n
énd lel-zb

A

and I, I’,Q integer vectors

respecti\{ely,-' _

- With these representations, each of the two objective functions is in the form of
the sum of squares of the difference terms:

CX(Pi—e)? or Y17 -Qj)°
In order to minimize the Sum,- we need to minimize the difference terms. In which order
should the terms be minimized ? Due to the quadratic nature of the squares of the '
difference terms, we'note, on a close examination of the representations, that deducting 1
off a large difference term is more effective in minimizing the sum than deducting 1 off a
* small differénce term:
If integers @ > b > 1, then (a — 1)2 + b2 < a2+ (b— 1)2

It-is also clear that for two difference terms having the same value ¢, subtracting an
_integer d from each of the these difference terms is more effective in minimizing the sum

than subtracting 2d from oniy'one of these two équal-valued terms:
If integers ¢ > 2d and d > 1; then (¢ —d)? + (c — d)? < (¢ — 2d)? + ¢*

HenceA, for the Padding Approach, we start with P; = 0 for all Jj, and each difference term
(P; — a;) becomes —a;. These terms are then rearranged in non-ascending order of «;

(in other words, non-descending order of —¢;) and result in:

{(Pay = aq), (Pa).— a), -+ (Pay = agm))} where aq) 2 a(z) 2 -+ 2 o)
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After the rearrangement, V\re-try to lower the difference ‘in:the' first term (P — a(lj) ’by '

, addmg the value a(l) - a(z) to P(l) s0 that the first term has the same value as the
second dlfference term (P2y — a(z)) We then try to reduce the values of these ﬁrst two
dlfference terms by i 1ncreasmg the values of Py and Py in round robln fashlonb s0 as to
make them have the same drfference as the thlrd term (P~ o) We keep devalumg the

first k dlfference terms so that they have the same value as the (k +1)-th dlfference term -
through increases of the values of P(lsjﬁk) This process is repeated until the summation
cou_straint E;-;l P; = w “-— v ‘i.s satisfied. At any cycle, the value of P(j) is constr_alned by
the inequality F;y £ Ij;) and wih not be increased beyond its allow:rble maximum Iz -

' Algorithm 3.1 (Algorithm PAD)’

1 V), aj « I; = Q;

2 V), B0
3 { (Pj)— o)) } ¢ sort the (P; — a;) terms in nou-ascending order of a;

4 kel | | |

5 whllek<nand211 )<w—-vdo

6 ' loop for at most o) — o(x41) cycles

7 . for each IDtl-StSk) do -

g8 " i By < Iy then Py ¢ B+ 1

9 o if Z]_ () =W —v then return P

100 ke k+1
A1 Y0, Phy<w-—v
12 ‘then loop

13 ‘ for each P(1<t<n) do

21f P(l) reaches its allowable maximum I(y), the value of P(l) will not be increased in subsequent cycles.
In such a case, the difference’in the first term may not be the same as the difference in the second term.
8 Again, if P( i) € {P(l), P(3)} reaches its a.llowable maximum /| (j)» the value of P(]) will not be increased
in subsequent cycles.
*Similarly,  if Py € {P(l), -+, Py} reaches its allowable maximum Iy, the value of P(J) will not be
increased in subsequent cycles. . o : ' : - R
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15 MY Py =w—v then return P
~ Example 3.1 Given integer vectors I = 3 and"_Q = 77' ;then,a=1-Q =
10 -\ |

(10, -4, 9 ‘)T; Wé want to ﬁnd an appropriate assignment to integer vector ( P, Py,
P3 )T so that the objective function (P, — 10)% + (P + 4)? + (P — 9)2 is minimized and |
(o P\ 12 -
the constraints 0 || B | £ ' 3 | and Z?zl P; =25 - 10 = 15 are satisfied.
0/ Py \10) |

We start with P; = 0 for all j and rearrange all the difference terms. Aftgr the
r.earfan.gemer;t, we try to lower the difference in the ‘ﬁrst term (Pn) ~10 = —10). by
adding 1 to P@‘SO that the first, two terms have same difference (= =9). Then, we try to
réduce the values of f‘hese ﬁWé difference terms 'by‘in‘(:reasinlg thelvalﬁes of 1) and Py

in round-robin fashion so as to bring them closer jto the value of the third difference term

(= 4); we stop when the constraint Z?:l P; =15 is satisfied.

Py-aq Porer Fy-op |XF

=P -0 =P;—-a3 =P —a

Cycle 0| 0—10=-10 0-9=-9 0—(-4)=4]| 0

k=1: Cyclel || 1-10=-9 1
k=2 Cyce2| 2-10=-8 1-9=-8 3
. Cycle3| 3-10=-7 2-9=-7 | 5
Cycle8 || 8—10=-2 7-9=-2 , | 15
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8. o
' Algorithm I;AD returns Pr= ¢ | with Z(PJ* .—-l.b.zj)z =24 _ .'
.Sirnilarly, for the Reductidn Apnroach,'vue_ 'start’w‘ith ‘IJ'- >= 0 fer.al_l 7 and each
difference term (I} —Q;) becomes ‘—Qj. These terms are t}ien :r'earranged in non-ascending -,

order of @; (in other words, non—descending order of fQj) and result in:

{(I(Il) - Q(i))v,b(l('a) - Q(?))'» (I(n) Q(n))} where Q(r) > Q@ >+ Z Q)

After the rearrangement we try to Iower the difference in the first term ( (1) Q( )) by '
addln_g the value Q) — Q(g) to 1(1) S0 that the first term has the same value as the
second difference term (I{i) - Q) VVe then try to reduce the values of these first two y '
) difference terrns by increasing the values of I(' 1) and 1(2) in round rob1n fashion € so as to
make them have the same difference as the third term (1(3) - Q(3)) We keep devalumg the
" first k difference terms so that they have the same value as the (k + 1)—th differen(:‘e'term.'
through increases of the values of I(,ISjSk) 7. This i)rocess is repeated until the summation ‘

constraint .7

rali=v is satisfied. At any cycle the value of I(’ ) is constrained by the

: rineqUality I(' ) < I;y and will not be increased beyond its allowable maximum I(J)

Algorlthm 3 2 (Algorlthm RED)

1 V7, I' «0 : i

2 (I(’j) -Qu) } + ;ort the (1] f.Qj)-terms' in non-ascending order of Q;
3 kel e B

4 - while k < n and Zf_l'l’- < vdo

51F I (1) reaches its allowable maxrmum I(1y, the value of I (1) will not be increased in subsequent cycles.
In such- a case, the difference in the first term may not be the same as the difference in the second term.
€ Again, if I(]) € {1(1)1 1(2)} reaches its allowable maximum I(J), the value of I(]) will. not be increased
in ‘subsequent cycles.
"Similarly, if [(J) € {I(l),-u,I(k)} reaches its allowable maximum I(j), the value ef I(J-) w1ll not be
increased in subsequent cycles. ’ :
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5 loop for at most Q(k) — Q(k41) cycles -

6 .. . for each -I(/lstgk) do
8 o ifyr, I{;) = v then return I
9 kek+1 |

10 i 320, If;y < w.

11 then loop
12 | for each I{létﬁn) do
13 . if I(’t) < I then -I(’t) — I(’t)’ +1
4‘ 14 if Z?=1'I(’j) = v then refurn I’
12 . 2
Example 3;2 Given integer Veétdrs I = 3 | and Q@ = 7 |; we want to find
| | \ 10 ' 1
an appropriate assignment to integer vector ( I, 14, I )T so that the objective function
A - | 0 Y 1
(I{—2)2+(I§—7)2-l;(1§—'1)2 is minimized and the cénstréints » o<1 |<) 3
| o) \1n) 10

and 3_°_; It = 10 are satisfied. v |

We start with I 7 =0 for all j and rearrange all the difference terms. After the
rearrangement, we try to lower fhe c.lvifference in the first 'tefrﬁ' (I(’l) -7 :-—‘7) by adding
- at most 5 to I(’l). Since the value of I('l) is constrained by ‘phe inequality I(’l)' <3, it
will not be incréased beyond 3. Thel:l,‘ we try to reduce the difference in the second term
(I(’Q) —2 = —2) by adding 1 to I('2) S0 thﬁt the second term has the same i/alﬁ_e as the third

difference term (= ——1).' We keep deva,luing-' the seécond and the third difference terms in

round-robin fashion until the summation constraint Z?=1, I} = 10 is satisfied.
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Ty -Quy Iy = Qe Iy - Qe | 2T
=h-Q =I-Q =I5-Qs
© Cyce0 | 0-7=-7 0-2=-2 0-1l=-1| 0
k=1: Cyclel |1-7=-6 .1
Cycle2 | 2=7=-5 N
Cycle3 |3-7=—4 ‘ |13
k‘:é:TCycie4 _ 1-2=-1 4
lk=3: Cycle5s . 92-92=0 1-1=0.| 6
Cycle 6 || . 3-2=1 2-1=1] 8
Cycle 7 || o 4-2=2 "3-1=2 | 10-
3 |
Algorithm RED returns I"* = . 3| with S -Qj)F =24 R S ]
‘ . ) _

3.3 Analytical Compérisoh

Having developed two algorithms, namely Algorithm PAD and Algorithm RED, which

one producés a better lower bound ?

Theorem 3.1 In the domain of integers, given Yi=1Q;=v and 37, Ij =w > .

.DeﬁneDPAD (P+Q nTpP+Q-1)
suchthatfor1<]<n 0<P <I

and Ej=1Pj=w—v

e Define ’DRED (@ - I') Q- I')
suchthatforlSan, 0<II<T;

and 3% Il =v
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Then, there is a 1- to-1 correspondence between DEAP and DEED.

Proof

[=] Let I’ = I'— P. Then, the objective function (P + Q — I)T(P + Q.- I) becomes
Q- ITQ=T). o
The i,neduality constraint Vj, 0 < P; < fj cé.n be 'revuritten es Vi, 0= P; —PJ <
Ij~P=I<1; |
The summation constralnt EP =w—v coupled w1th the equahty Y P =%

. j) —ZIJ —ZI; :w—ZIJ‘ rmphes that ZIJ’ = .

[« ] Let P =1=1T. Then the obJectlve function (@ - mTQ _ I' :(Q -Ir+I-
| ) (Q I'+I I) becomes (P+Q I) (P+Q—I). | |
The in’equality constraint Vj, 0 < I{ < I can be reWritten as Vj, 0 = I;}- I <
L-n=R<I. | )
The summation const,ra,int ZIJ' = v coupled with the equatlity‘z I = > - P ="

L —ZPJ- =w-2F _irnplies that ZPJ =w—uv.

Therefore glven a vector P, there ex1sts a correspondlng vector I’ such that DE AD _
DRED . Slmllarly, glven a vector r, there exists a correspondmg vector P such that

DIADP = DEFD. Hence, a bijection between DEAP and DEFD exists. L

Corollary 3.2 Algorithm PAD and Algorithm RED produce the same lower bound to .
the histogram distance. ' A - | |
. Proof ' Algorithm PAD is an exact algorith.mﬂfor computing the special case of DEAD —

DPAD ( DPAD)

namely the minimal denoted by min — which estimates the best case lower
bound to the hlstogram dlstance DH Slmllarly, Algorlthm RED is an exact algorlthm for
computlng the spec1al case of DRED —_ namely the mlnlmal ’DRED (denoted by min DEFD)
— Wthh estimates the best-case lower bound to the hlstogram distance DH Smce there

isa 1_—to—1 correspondence between' DfIAD and DfIED , there ex1sts a 1-to-1 correspondence
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between their special cases (the minima):
Dy = min DEAP = min DEFP

In ot_her words‘,"the values returned by Algorifhms PAD and RED are the same 'esti_mated

- best-case lower bound to the histogram distance. - . . ) [ ]

Since Algorithrns PAD and RED are rrrethods to i"mplement the two proposed
approa,ches the Paddrng Approach and the Reduction Approach 1deally produce the same

" best-case lower bound as well

3.4' Expeljimental COmperrison

4' In terms of accuracy, both Algorlthm PAD and Algorrthm RED produce the same best-
case lower bound The questron is: Which one produces the lower bound faster 7?7 To
answer thrs duestxon we perforrned experiments using color hlstograms of 8, 64, and
5.12 dimensions. We used 500 1mages or- 1mage subregrons of each of the assorted sizes
(128 x. 128, 64 x 64, 32 x 32, and 16.x 16 'plxels) and 10 subimage queries for each of those
sizes. The fest queries consisted of 5x5,15 >< 15, 30 x 30, 60 x 60 and 12>0 X 120 pixels.
'_ The experrrnents were run on a Sun UltraSPARC 1 workstation. The results (the ayerage
: computatron time per query for each combmatron of the abovedmentloned sizes of i 1mage
. subreglons and- queries) are summarlzed in the tables and ﬁgures on the following pages.
In the ﬁgures the time curve for, Algorrthm PAD is represented by a blue solid hne and

the -tlmecurve,for Algorithm RED is represented by a red dashed line.
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e 8-dimensional color histograms -

Query

- Image Subregion - Computation Time

Size Size Algorithm PAD | Algorithm RED

5% 5 6.52+0.27 ms | 0.04+0.00 ms

11x 11 || 6.50+0.28 ms | 0.07+0.00 ms

15%x15 || 6.37+£0.29 ms | 0.134+0.01 ms

23x23 || 6.26+0.30ms | 0.27+0.01 ms

128 x 128 30x30 || 6.08+0.28ms | 0.43+0.01 ms

' " 45x 45 || 5.684+0.26 ms | 0.87+0.05 ms
60 x 60 | 5.07+£0.69ms | 1.6140.21 ms

- 91 x 91 3.37+0.19 ms | 3.40%0.87 ms

120 x 120 || 0.82+0.05 ms | 6.04 +2.52 ms

5x5 |.1.62+£0.12ms | 0.04+0.00 ms

11 x 11 1.594+ 0.07 ms | 0.07 +0.01 ms
o 15x 15 || 1.55+0.07 ms | 0.134+0.02 ms .

64 x 64 . 23%23 || 1:43+0.07ms | 0.26+0.05 ms

30x30 || 1.284+0.06 ms { 0.43+0.12 ms

45x 45 || 0.89+0.08 ms | 0.87+0.49 ms

60x 60 ||"'0.23+0.01 ms | 1.62+1.08 ms
5X5 . 0.42+£0.03 ms 0.04 £0.01 ms

g : 11x11 || 0.40+0.02 ms | 0.07%0.02 ms

32 x 32 15%x 15 { 0.35+0.02ms | 0.13+0.06 ms

o | 23x23 |[ 0.24£0.07ms | 0.26+£0.18 ms

30x30 {.0.08+0.00ms | 0.43+0.31 ms

L " 5x5 0.124+0.01 ms | 0.04£0.01 ms

- 16 x 16 11x 11 || 0.08%0.00 ms | 0.08+0.04 ms
15 x 15 0.04 £ 0.01 ms 0.13+0.10 ms -

Table-3.1: Computation Time for Algorithms PAD aﬁd RED (8—dimensibnal Histograms)
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Image Subregion consisting of 128x128 Pixels {n = 8) . Image Subregion consisting of 64x64 Pixels (n = 8)
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F.‘igure: 3.4: Computation Time for Algbrithms PAD and:'RED (.8-Adi'mensior'1al Hisﬁdgr@mS) .
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e 64-dimensional color histograms

Image Subregion Query " Computation Time
Size . Size Algorithm PAD | Algorithm RED
5% 5 6.71£0.22 ms | 0.32+0.05 ms~
11x 11 || 6.694+0.21 ms | 0.3640.02 ms
15x 15 || 6.65+0.22ms | 0.42+0.03 ms
: 23x23 || 6.54+£0.69 ms | 0.6140.10 ms .
128 x 128 30x30 || 6.42+0.21 ms | 0.84+0.22 ms
B 45%x 45 || 5984021 ms | 1.2840.64 ms
60x 60 || 5.41+0.21 ms | 2.03+1.38 ms
91 x 91 || 3.77+£0.16 ms | 3.80+ 2.40 ms
120 x 120 || 1.23+0.11 ms | 6.28+4.58 ins
5%x5 1.96+0.08 ms | 0.32+0.01 ms
11 x 11 1.9340.07 ms | 0.36 %+ 0.04 ms
: 15x15 || -1.89+0.07ms | 0.42+0.11 ms
64 x 64 - 23x23 || 1.82+£0.07ms | 0.61+0.32.ms
‘ 30 x 30 1.67+0.10 ms | 0.84+0.66 ms
45x 45 | 1.2940.06 ms | 1.28+0.75 ms
60x 60 | 0.63+0.04ms | 2.0541.59 ms
5% 5 0.75+ 0.04 mis | 0.32+0.03 ms -
11x11 | 0.714+0.05 ms | 0.36+0.13 ms
32 x 32 15x15 | 0.66+0.04 ms | 0.42+0.34 ms
- 23%23 || 0.60+0.57ms | 0.61+0.25 ms
30x30 || 0.43+£0.04ms | 0.85+0.47 ms
_ 5x5 0.42+0.05 ms | 0.32+0.06 ms
16 x 16 11x 11 | 0.38+0.05ms | 0.37+0.24 ms -
15x15 | 0.33+£0.04ms | 0.42+0.29ms

Table 3.2: Computation Time for Algorithms PAD and RED (64-dimensional Histograms)

52




Image Subregion consisting of 128x128 Pixels (n = 64)
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e 512-dimensional color histograms

Table 3.3: Computation Time for Algorith
tograms)

’ Imagé .Subfegion
Size

- Query
Size

. Cornpufation Time

{| Algorithm PAD

Algorithm RED

128 x 128

55
11 x 11
15x 15
23 x 23
.30 x 30
45 x 45

60 x 60

91 x 91
120 x 120

26.05 £ 2.06 ms

25.91 £ 2.00 ms.

25.78 & 2.09 ms
25.58 £1.74 ms
25.43 +1.71 ms
24.98 + 1.46 ms
24.06 +1.37 ms
21.82 + 1.36 ms
16.99 £+ 1.08 ms

12.06 £ 0.16 ms
12.13+ 0.64 ms .
12.22 4+ 0.38 ms
13.253% 0.85 ms
15.424 1.44 ms
16.99 £ 4.56 ms
18.98 4+ 6.56 ms
21.82 + 8.49 ms
24.98 + 10.34 ms

64 x 64

5X5H
11'x 11
.15 x 15
23 x 23
30 x 30
45 x 45

60 X 60

19.32 + 2.00 ms
19.24 £+ 1.84 ms
19.19 4+ 1.85 ms
19.09 =+ 1.55 ms

-18.79 £ 1.59 ms

17.02+1.34 ms
13.27 £+ 1.24 ms

12.06 +-0.60 ms
12.13 £ 0.37 ms

+12.23 +.0.66 ms

-13.284+ 1.71 ms
15.40 + 3.57 ms
17.02 4+ 7.24 ms
19.09 £ 10.82 ms

32 % 32

5X5
11 x 11

15x 15
23 x 23 .

30 x 30

'14.50 4 1.57 ms

14.45 + 1.46 ms
14.23 + 1.46 ms
13.28 + 1.41 ms

12.144+1.26 ms

12.08 & 0.34 ms
12.14 + 1.08 ms
12.24 4+ 2.97 ms
13.30 + 4.43 'ms
15.454 5.51 ms

16 x 16

5x5
11 x 11
15% 15

12.27 £+ 1.04 ms -

12.16 £+ 1.05 ms
12.09 £ 1.03 ms

12.09 + 0.38 ms
12.16 = 1.70 ms
12.27 4+ 4.00 ms

A

ms PAD and RED (512-dimensional His-
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) Figure 3.6: Computation Time for Algorithms PAD .ahd_R.ED (512—dimelhsioria,l Hié—
tograms) S IR L
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Observatien 3.1 Computation time is affected by the diménsion of the color histogram:
As the dimension of t_he hi_stog’ramfg'rosz', the time required by Algorithms PAD and RED
increases. |

Explanation - In both algorithms,” we start with 0 for each ‘of the n entries in the n-

'dimensional histogram' (the vector P* or I"™) and keep increasing the value of each entry.

Hence, the 1ncrease in the dimension of the hlstogram leads to an increase in the number

of entrles Due to the nested loops in  the Algorithms for manipulating the n entries in

the Vectors, the time required increases (though not linearly). : - m

Ok;servai:ien .3.2 ‘Computation tirue‘ is also affected by the numiber of pixels in the query
and the imege'subregion: Given a fixed-size image subregion, and varying the size of
the subimage query, it is observed that as the (iuery size increeses, the time required by
Algorlthm PAD appears to decrease hnearly

Ezxplanation leen an image subreglon consisting of w pixels, Algorlthm PAD pads w—v
“de51red” plxels to the subimage query con51st1ng ‘of v pixels. So, as the query 1ncrea;ses' :
in size, the uumber Qf pixels in the query (= v pixels) also increases; thus, decreasing the

number of the pixels needed to be padded. (= w — v pixels). o ‘ [

Observation 3.3 Given a ﬁxed;s’ize image subregion, and varying the size of the subim-

age query, it is noticed that as the query size increases, the time taken by Algorithm RED

~ appears to increase linearly.

Ea:planatzon leen an 1ma,ge subregion consisting of w pixels, Algorlthm RED reduces

the subreglon by choosmg v “desned” plxels So, as the query increases in size, the number

of pixels in the query (= v pixels) also increases; thus, increasing the number of pixels

needed to be chosen (= v pixels). = . - - _ |

Observation 3.4 Given a fixed-size image subregion, and varying the size of the subim- '

age query, it can be_»viewe.d from the figures that as the query size increases, the tirue
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‘curve for Algorlthm PAD declmes and the time curve for- ‘Algorithm- RED is rises. The
two curves meet at the pomt representmg medlum 81zed querles For a small- Slzed query,

~the time taken byvAlgorlthrn RED is less than that taken by Algorithm PAD; for a large-
~ sized query, the time required' by Algorith.m RED is more tha,n that required hy Algorithm -
| PAD. Lastly, for a medium-sized query, the times needed by the two Algorlthms are almost
the same as 1ndlcated by the mtersection of the curves'in the figures.

Explanatzon

e Given an 1mage subregion cons1st1ng of w plxels and a small-SIZed query con31st1ng
of v pixels (where 2v < w), Algorlthm RED reduces the image subregion by plcklng
“des1red” pixels whereas Algorlthm PAD pads w—v >0 “desued” pixels to the

query Thus Algorithm RED requlres less t1me

e Given an image subregion consistingl of w pixels and a large-sized query.consisting
of v pixels (where v < w < 2v), Algorithm PAD pads w — v “desired” pixels to the
query, whereas Algorithm RED reduces the imatge subregion by choosing v > w — v

“desired” pikels.,Hence, Algorithm'PAD needs less time.

. Given,an image subregion consisting of w pixels and a medium”—sized query consisting
of v pixels (where VR —w =2 w) Algorlthm RED reduces the i image subreglon

. by selecting'v “desired” pixels and Algorithm PAD pads w — v = v “desired” pixels_
‘to the query. So, both Algorithms take almost the same amount of corn'putation

time. - - R A : o ‘ |

Therefore, if the subimage query is of the same size as the bprecomputed imege subregion,.
‘ then the exact histogram distance of the form @Q-DT(Q=T) can be applied. Otherwise, '
_use Algorlthm PAD when the size drfferentlal between the query and the image subregion

s large and use Algorlthm RED when the dlﬁ"erentlal is small

57



/3.5 Another Metric for Histogrém Distance

Other than the metric based on the Euclidean distance between the color histograms of the
subimage query and the image subregion, another popular way to compute the sirﬁilarity

is baséd on the weighted Euclidean distance:
- @-nTAQ-1)

where A is a similarity matrix accou'ntibng for both the perceptual distance between the
pairs of colors and the difference in the amounts of each color. Let d;; be the Euclidean
distance between colors 7 and j in the chosen color space (such as Luv and Munsell), then

there are several choices for the entries a;j in the matrix A [Sawhney and Hafner 1993].

od;;

. : . L _ : _a(_ﬂjf)z
For example, a;; can be defined as (a) 1 — iy (b) e ™%, and (c) e \™¥%/

where ¢ is a positive constant.

With this metfic, new Padding and Reduction Approaches can be stated as:

e New Padding Approach

n ’ n

Given ZQ]-': v and le =w > v,
‘ vj=_1 =t

find an optimal vector P* to

objective function  minimize (P + Q - NTAP+Q - I)' (3.9)

inequality constraint subject to 0 <Pp<Iifor1<j<n

summation constraint and Z Pi=w-v
=1
domain constraint and I, P, () integer vectors




e New Reduction Approach -

Given: Y Qj=vand Y Li=w>uv,
j=1 Cog=
find an optimal vector I’ to

_objective function . minimize (Q —'I')TA(Q -1 - (3.10)
inequdlity constraint subject to 0 < I]'- <Iifor1<j<n
n
symmation constraint and Z 1 ]' =v
: ot

domain constraint - and I, ]',Q ihteger vect.ors. :

Wi‘th an informafion preserving transformation such as Singular \l/al‘ue Decomposition,
the similarity matrix A can be factorized into ]‘B.T.AB' or (\/KB)T(\//—&B) Where Ais a
diagonal matrix. So, given > i=1Q; = v and Z;‘zl I; = w > v, the objective function of
Problem (3.9) can be rewritten as:

min 30 [(BP); - (Ba)) e

min g:l'[(\/KBP)]- - (\/KBa)j)r o (3.12)

where & = I-Q and Aj; is the Jj-th diagonal entry of the matrfx A. Similarly, the oi)jective

function of Problem (3_.10)'can' be rewritten as:

min Xn:/\jj [(BI'); - (BQ);)" : | (3.13)

a=1 g o '

.or
. n » ) : -
min 37 [(VABI'); - (VABQ);) C(3.14)
. ) N T ‘ , S
With these representations, each of the two objective functions is in the form of

the sum of squares of the difference terms. However, these difference terms are no longer

monotonic, they are dependent on the values of entries in matrices B and A. So, increasing
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the value of an entry in P or in I’ may not reduce the value of the difference terms; some-
times, it may even boost the difference in these terms. Therefore, for this metric based on
the weighted 'Euclidean distance, it is not easy to develop efficient_tailor-made algorith.ms

- (such as .Alg.orithm_s PAD and RED for the metric based on the Euclidean distance).

- 3.6 Summary'

The histogram distance (Dg) between the histogram Q' of the subimage query and the '
histogram I of the equal-sized i image subregion can be computed by Dy = (Q —I)T(Q— I).
" However, given a sublmage query of arbltrary size, the i image subreglon represented by the

precomputed feature vector may not necessarlly contain the same number of pixels as the
query. For 1nstance, it is not u_nusual that the ‘precomputed vector.of the_ 1mage subreglon '
contains more'pixels than that of the query. As such, two aigorithms — Algorithmv PAD
and Algorithm RED — have been deVelooed forestimating the best-ease lower bound (57{)
to the histogram distance. It has been shown. that both algorithms give the same best-case
lower boun‘d. More‘ orecisely, in the domain of integers, given Q (where ZQJ": v) and [

(where 3~ I; = w > v), the Dy can be computed using Algorithm. PAD:
Dy = min .Z(Pj =1 +Q)°

s.t. V],0<P <I and ZP—w—v
. ]1

~ where P is the histogram of the~padded area; the same Dy can also be computed using

~ Algorithm RED:

N
Dy = mI]'n Z(IJ{—QJ')2
j=1 '

st Vi, 0<Ii<Ijand Y Ii=v
i=1
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" where I’ is the histogram of ‘the reduced i’rﬁagé subregion. -In te__r-rhs of performance, it
is more efficient to use Algorithm PAD when the size differential between th{e subimage
query and the image subregion is lafge, and to use Algorithm RED when the differential

is small.
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C‘haptef 4 |
| Multiscale- Rep’resentation_

Iﬁ some IDBMSé, vimages are divided into blocks of a ch(;sen size. For some queries, the
~ scale at which the images afe blocked ‘may be too fine, and aﬁplying similarity comparisons
to all \thobse fine blocks méy' be a waste of effort. | However, for some other qﬁefies, the
scale may be too goarsé, and the desired im@ges may not be discrﬁninated sufficiently.
‘Given that subimage queriés can be of varbitrary size, pic.kiﬁg one best scale for all quefies
is he;,rd, if not impdssible. To cope with .thé chéllenge, Wé propose :;L representation that

has multiple'scafles :for matéhing. We also determine qnalytically am_nd experimentaﬂy the.

bapp‘ropriate number of levels for such a representation.
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4.1 A_4-‘level‘ Multiscale Representation

To_process' etuser q»ue‘ryi, some .IDBMSs'divide each ‘databese:irnage into blocks of ‘a.,‘Chosen'l' '
size. For subimage queries of arbitrary eize, pict(ing a best scale at ‘whic}r thev'ir’nages are
‘blocked is "not eesy. .‘O‘ne Way to cope with thlS chal'len'ge"is to heve multivple soales for
| matching. The idea ie that depending on the scale or the need of a given query, a more
' appropriate scale can be used. With_ the multiscale rep_rese‘rrtation‘, gir/en,any ‘subirna,ge‘
query of arbltrary size, there e>tlsts an 1mage subreglon whose srze is not smaller than the
’query So Paddlng and Reduction Algorlthms can be apphed in 51m11ar1ty matchlng In‘

. this thesis, a 4-level multlscale representatlon (Figure 4.1) is proposed as follows:
e At Level H, the entire image is represented by a single global'color histogram.

o At Level I, the image is divided into four non-overlapping blocks, and each blocvkli;s

represented by a color hlstogram covering g Lof the entlre image.

e At Level J, each block at Level I is further divided into four blocks, each of which is
"represented by a color histograrrl covering %6 of the entire image. |
o At Level K, each block at Level -J is again divided into four, each of which is repre-

sented by a color histogram covering 6%l*of the entire image.
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Figure 4.1: The 4-level Multiscale Representation

Given four levels of blocks for each image, many multi-level filtering schemes for
finding u desired images (where u is the number of images requested by the user) can be

developed. These include:
e a complete four-level HIJK scheme;
e three-level HIJ, HIK, HJK, and IJK schemes;
e two-level HI, HJ, HK, 1J, IK, and JK schemes; and
e one-level H, I, J, and K schemes.

Depending on the size of the subimage query and the number of levels intended to be
examined, appropriate filtering schemes can be chosen. For example, given a subimage
query whose size is smaller than 5 L ¢ of the entire image, the Scheme HJ can be applied
in conjunction with Padding and Reduction Algorithms. With this two-level scheme,
color histograms at Level I are skipped, and only the histograms at Levels H and J

are considered.
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The filtering scheme determines the levels (of coior histograms lrepresenting :the
ima;ge subregions) Which afe intended to be considered, but it does not 'deterrni.ne the
order in which the histograms are td be examined. For exa£nple, it is unclear whether the
‘ hjistograms are to be checked on an image—by—imaéé ba,sié (Wit.h the use of vertical filter),
on a level-by-level basis’ (With the usé.of horizontal filter), or in some other order. The
- séarch order is determined by t.he strategy for searching tHe multiscale representation.

This will be examined in Chapter 5. .

4.2 Formulation .of Distance_Fuhction

A primary purpose of an IDBMS is to provide an enyirbnment for an efficient and effective
rétrieval éf désired images. Given a large IDBMS, a key-to the éfﬁciency and the effec-
tiveness of the s_eé,rch strategy for such retrievals relies on the forrhulation.of the distance
function. For biIist'ance, if 'thé distance va11.1e at a coarser scale can be -éérved as a lower
bound to the distance va,iue at a finer scale, then an efficient strategy with the use of

vertical filters for searching the multiscale representation is possible.

4.2.1 Histogram Distance

The histbgram distance (Dg) between the histogram @ ofv.the.subin‘lagé qﬁery and the
“histogram [ of the equ@l—sized image subregion can be computed by Dy = (Q —I)T(Q =I).
. However, given thafc thé arbitrary-size subimage q"uery rﬁay not necessarily be of the same
size as the image subregion, the best-case lower bound (l/);) to the histogram dista;nce
can be estimated using Algorithm PAD or Algqrithm RED. More details can be fdund in

Subsection 3.2.3.

Observation 4.1 Given that an image subregion I®*"P encloses another image subre-

gio“n I*"*, and that the subimage query Q is smaller in size than I°" (Figure 4.2), the
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estimated best-case histogram distance (Dp) between the histograms of Q and I*"™ is not "

smaller than _the l/)?; between the histograms of Q and I®"P:

Du(Q,1°%) < Dn(Q,1°*)

Subimage Image Subregion I SYP
Query Q

sub

sub

I

Figure 4.2: Subimage Query Q and Image Subregion I®"P

: Ezplahdtion In addition to the pixels of I5%®, the image subregion I*"P also contains
the pixels found in Is%®, So,-for. Algorithms PAD and RED, the selection of pixels in
. the minimization of Dy (Q, I5%) is at least the selection- of pixels in the minimization of

‘

Dy (Q, I5%). The more the pixels selected, the smaller the Dg. ‘ , S

In other words, the 5;1 _between"Q and I®*P serves as a lower bound to the l/);l

" between: Q and I5UP.

4.2.2 Positional Distance

The estirﬁated bes.t-case‘ lower bound to the»histogram distance measures the difference -
 between f;hé statistical distributions of-various colors of the subimage query and t‘he image
“subregion. However, a metric to meas'urev the difference between the spatial locations of
“the Subimage query and the image.subrégion_is _Iacking. For ihsta,nce, given a user query.

containiﬁg the central tower of the BC Legislative Buildings (Figure 4.3), the best-case
‘ -'lower bound to the histogram distance between the histograms of the Query and Image 1 ‘

is the same as that between the histograms of the Query and Image 2. However, in terms
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of color and spatial location, Image 2 is clearly a better match. Therefore, an additional
metric for measuring the positional difference between the subimage query and the image

subregion is needed for better selectivity.

(c) Image 2

(a) Query

Figure 4.3: The BC Legislative Buildings

There are a variety of ways to compute the positional distance between the query
and the image subregion. Among them, some are more precise and complex than the
others. It is well known that human memory is weak in retaining a fine granularity
of spatial information of color; more often, the user may remember only an approximate
location of the subimage when specifying his query. Moreover, when using Algorithm PAD
or RED for handling subimage quefies of arbitrary size, the best-case histogram distance
is estimated, but the exact location of the padded query or the reduced image su.bregion
is unknown. So, instead of computing the exact positional distance (Dp), we estimate its
lower bound (l/);) The idea is based on the square of the shortest Euclidean distance
between the original subimage query and the original non-overlapping image subregion.

If the original query and the original image subregion overlap, the Dp is defined to be 0.



_ D'eﬁnition_ 4.1 Let g and ¢ dencte points in the subimage query and the image subregion

respectively. Then, the estimated posiﬁonai distance (E;) is computed by:

— 0 when query and image sebregion overlap
Dp=1{ ' : . - (4.1)
min ||¢ —4||? otherwise : ' ’

Let (q;"“,q;m”) and (g "””,q;'“") denote the maximum and the minimum (z ,y)-
coordinates of the subimage query; and let ( ;’“‘”, iy *%) and’ ( jman mm) denote the maxi-
mum and the minimum (z, y)-coordinates of the image subregion. With these coordinat'es,

the z-directional distance (dz) as well as the y-directional distance (dy) can be calculated,

and the positienal distance can-then be estimated.

Algdrithm 4.1 (Estimated Positional Distance)
1 dz 0 |

3 lf qmzn . zmx

- 4 then dz « ¢m" — T
5 elseifimin > q;"‘””
6 : then dz « i;"i" qreT .

7 1f qmzn > ,tma:v ‘

| 8 : then dy — qm"‘ - Z““”
9  else if zmm > gt
10 . then dy « i;"i" q

11 return (dz)2+ (dy)z.

Observatlon 4.2 G1ven that an 1mage subreglon IsuP encloses another image subre-

“gion Is“b, and that the sublmage query Qis smaller in-size than Is"P, the estlmated
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* positional distance (5;) between Q and I*"® is not shorter than the Dp between Q and I"P:
Dp(Q,1°*?) < Dp(Q,T°*")
: Explanation' The. area of the image subregion ISP is the suin of the areas of image

subreglons I%*® and Is“b. So the (a: Y)- dlrectlonal distances d:c and dy between Q and.

I®"P is not longer than those between Q ad I, o [ ]

In other words, the 51\: between Q and ISP serves as a lower bound to the E;
between Q and I

' 4.2.3 Distance Function

To incorporate both the histogram .distance Dy and the .positiona,l distance Dj:v, the

: distance_ between query Q and image subregionk Tis defined as a weighted sum of the form:
= Dy + (1-B)Dp A - (4.2)

- where the parameter [ is the user preference (w1th value rangmg from 0 to 1) so that

‘the user is allowed to specify the relative 1mportance of the hlstogram dlstance and the

<p051t10na;l distance. Given that the sublmage query can be of arbitrary size, the DH o

'.and the Dp can be estlmated using the approprlate Algorlthms descrlbed earher, and
the resultmg estlmated distance value (IA)) can be computed as the werghted sum of the

estimated hiStogram distance and the estimated pos1tionel distance:-
= 8Dn + (1-B)Dp . (4.3)

Theorem 4.1 Given that -.an image subregion I*"P encloses another image subregion I°"°,
‘the estimated distance value (ﬁ) of the Q-I%"® pair (where the subimage query Q is smaller

in size than I%') is greater than or equal to the D of the Q-T*"P pair:

ﬁ(q, Iéup) Sﬁ(Q, Isub) .
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" Proof Itis observable that.ﬁf\{(Q, Isup) < EII(Q, 15%®) and that 1/);(0,_15“?) < D\P(Q,'Isub)l :
So, for 0 < <1, we can deduce:‘ |
D(Q,1***) = ADg(Q,T**) + (1-B) Dp(q, I*?)

< BDH@Q,I™™) + (1-p)Dp(@,1°*)
= E(Q7 Isub)
Tn other words, the estimated distance value incfeases as the scale becomes finer. [ |

Let I¥ 11 17, and.I¥ denote an image subregion at each of Levels H, I, J, and K
such that I¥ C 17 C 1! < I". According to Th.eorem 4.1, for a subima,ge quéry Q of size
‘smaller than I¥, the relationship D(Q, I¥) < D(Q,I%) holds. In terms of size, if such Q -
is smaller than I7, then D(Q,I") < D@, 1%). Similarly, D(Q,1’) < D(Q, 1¥) provided

~ that such Q is smaller than IK.' With t‘he.property’tha,t “the estimated dista,nce keeps: 3
| increasin‘g‘ (to its exact value) as the scale becomes finer”, an efficient strategy with the
use of vertical filters fo'r‘ searching multiscale representaﬁdn is possible. The idea is that
the distance value at the coarser scale serves as a lower bound to the distance value at th;e
finer scale. - So, poor rﬁatchés having"‘la;rge”v distance values at the coarser scale (greater
than the finest-scale distance values of the top-u !) can be eliminated ‘without fﬁrthelr ,
' compuf@tion's ét ﬁﬁer scaleé. Fof example, if the estimated Level-K distanéé for each
of the top u images is below 200,' a “pbor match” with an estimated distance of 250 at
" Level I can be eliminated. The feasoﬁ .i_s that the estimated Level—K distance for this “poor
match”. is at least 250 (worse than those of thé top-u). Without the property mentioned

above, the search strategy needs to estimate the distance values at Levels J and K for this

“poor match”.

! As mentioned earlier in this chapter, u is the number of images requested by the user.
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4.3 M'ultiSCélle Pure Vertical Search

Hairing’ formulated the djsténcé_ function for the pfdpdsed, 4—level‘ representation, we can
exploré efficient and effective search Vstre_ttegies for retrievihg the_ top u images fr_ofn a
database of M images. One of the search Stra;tegies‘is Search PV (Pure Vertical). In it, a
vertical filter searches each i‘mage “vertically” across scales. The idea is that all M .image's
are checked one after another. At a,ny‘ poiht in time, the current 'ubsrna,lle-st distances (at
| the finest scale of the u im‘ages, where v € M) afe.kept. Whe_n-a'n image is tested, if
its distance value at the current scale is already greater than some distance value of the
current u smallest, the tested 'image can be eiiminated. Otherw‘ise, a finer scale is used.
The process repeats until the imagé is (1) eliminated- or (2) added to become one.of the

current » smallest (whern it reaches the finest scale).

'Deﬁniti_on 4.2 (Search PV) To conduct the Pure Vertical Search for retrieving the

" top u images from a collection of M ifnages:

1. The first u irﬁages are checked at all levels/ scalés, and a distance valte is computed

for each image at the finest scale. These u images become the current top-u.
2. For each of the remaining M — u images:

(a) Let the coarsest scale be the current level/scale.

(b) Compﬁte the distance value. If the value is less than éorﬁe value of the top-u,
extend one level/scale (provided that we have not reached the finest scale) and

repeat Step 2(b) on the extended scale, ‘ [

Example 4.1 In many database applications, it is not unusual to retrieve the desired
imé,ges from a collection of thousands of images. For simplicity, in this example, we
try to find the top two images from a collection of seven images using Search PV (with

Scheme HIJ). In the following trace, the number at the slot representing an image at a
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particular level is the estimated distance value, and the superscript.on its left denotes the

- search order.

To find the top two images using Search PV
Imgl| Img2 | Img3 Img4 | Imgb :Img 6 | Img7

Level H ' 1st 25 4th 5 7fh 65 - 9th 80 . 10th-10' ‘13tvh 70 14th 68

Lefvel I | 2nd 35 5th 30 8th 900 B 11th 15
Leve] J 3rd 67 | 6tk 39 v : 12th 9 . .
R 4 4 ¢ I il

Top two Img 1 Imgs' Imgs Imgs | Imgs Imgs Imgs |

images .|{2and1|2and1|2and1|5and2|5and 2| 5and 2

Since' the hiétograms are-‘examined image by ».image,'_ thé best way to ofgdhize the pre-
cémputed feature vectors in the data’ﬁle of the 4-level represenpation is to arrange j;hem-
"on an image—by—image.basis..‘ More precisely, A‘thev histégr_ams associated with one image
are followed by the_hist'ograms' associated with another irr.ia,ge; f‘of each ‘image, tl;e 4
Le‘{fél—l histograms are vprecede'd' by theA LeVél—H hisfbgram,' succeeded by the 16'Le'vel-JA
histogf@ms, 'la;nd the 64 Level-K histograms follow. Therefore, the file oréa.nizatio'n is of

thé form: ”

IM"PsPsi% I"I's PsI% - I"I's Ps I's
s > S > S d ,
for Image 1 for Image2 - - for Image M

- 4.3.1 Analytical Evaluation
Cbst Models
‘To measure the efficiency of Search PV, we set up cost models to estimate the CPU and

the I/O costs. The CPU cost dei)ends mainly on the time required to a;l)ply‘ Padding and

Reduction Algorithms to the data (color histograms), and the computation time for each
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histogram (denoted by Tc) can be estim'atedvusing the 'experimental results in Séction 3.4:
The I/ O cost depends mainly on the time required to sequentially or randomly access the
pages containmg the data (color histograms) and this access time can be affected by the
size of data as well as the number of buffers.. Given a minimum buffer (a buffer size of one:
page) and an intelligent buffer management scheme, thejnumher of page accesses can be’
estimated with the use of statisticalfo'r,mulations.l ' | |

Assuming that the value (pixelv count) in each dimension of a color histogram .
.requires 4 bytes, a total of 4n _bytes are needed for‘one n-dimensional histogram. Hence,
the total number of pages occupied by one histogram is 42 pages where P is the page size.
In the cost models, color histograms at each leyel for each i 1mage aretreated as a “record” 2,
and the four “recordsf’ associated with each image can" be grouped to form a “megaf.‘.
record”.’ So, for a database containing _M - imag‘es, there exists a total of 4M "‘r’ecords’,
or M “mega-records”.for the 4-level representation. Depending o_n the level at which the‘h :
‘histog'rams are represented, the size of “record” may vary. Sometimes a “.record” may -
occupy a small portion of one page. For'example with a page siie of 1 'kilobyte (KB) the

“record” of one Level- H 8-dimensional color h1stogram takes less than 4% of a page. With

the file organization for Search PV, after the page contaimng this Level H histogram is
' loaded no extra page access is needed for reading its- neighboring record” (of the four-
Level I hlstograms of the same 1mage) However sometimes a record” may occupy more
- than one page. For example, with the above page size, the “r_ecord” of sixteen Level-J
512-dimensional color histograrns takes more than 30 pages. The.cost of accessiné all the
‘ histogram_s in :this “record” is the sum of the time required to randomly access t.he first
page and the time required to sequentially access the remaining pages. |

For a vast ma jority of subimage queries, in the case that the image subregions 1%

and IS"P are the best matches (which give the smallest ﬁs) at their corresponding levels,

" 2For example, the four Level-1 histograms- for Image 1 form a “record”, and the sixteen Level-J his-
tograms for Image 3 form another “record”. :
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I°*® is one of the subregions enclosed in I®*P. When aiming for a balance of efficiency

and effectiveness, checking all the histograms in a “record” may seem unnecessary, and

only a portlon of the “record” (sorne of the hlstograms) may need to be exarnmed For
instance, with. Scheme 1J, the most prormsmg 1mage subreglon 17 can be found after

checking histograms of the four subregions at Level I. Then, rather than con51der1ng all

. sixteen Level-J histograms, we consider the four Level-J histograms which represent’ the

“subregions covered by IT. As a result, both the CPU and the I/O costs can be reduced.

. Example 4.2 For each imaLge in Scheme HVIJ, we examine the Level—H histogram, and

then consider (if necessary 3) the 4 Level-I histograms and (if necessary %) the 4 Levél-

J histograms which' represent the subregions enclosed in the promising block' of Level L.

Hence, using a 64 dimensional color hlstogram with page size P = 1' KB, the cost model

for Scheme HIJ can be described as follows

e The CPU cost is the product of T and ‘che total number of histograms used in the
computation. In Scheme HIJ, Level H hlstograms are examined for all M images, 4
Level-1 histograms are checked for each of the 54 images, and 4 Level- J histograms

are examined for each of the & images (where M > §4 > §5 > u, and both & and

65 are determlned dynamlcally at. runtlme) Hence, C’PUHU = (M +4&4 + 4&)Tc

e The 1/O cost is .the sum of total seek times and total data transfer times. Using
. the above file organization for Search PV, an average seek time (denoted by T,)
‘. is charged for moving the read head to'the first “record”. Since all M images are

searched one after another and their ;‘records” ace stored. contiguously on an image-
by-image basis, only a minirnum seek time (denoted by Tas) is charged for each jump

between the data’ (for example, Jumpmg from the fourth Level-1 hlstogram to the

3We consider the 4 Levell histograms of an image if the D at Level H is less than any D of the
current top-u.

*We consider the 4 Level-J histograms of an image if the best D at Level I is less than any D of the
" current top-u. : :
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third Level-J hi_stograxﬁ of the same image, and jumping from the Level-J “record” .
" of an imdge to the Level-H “record” of the hex'_c i‘mage). Mereover, when a page of
data (color 'histogra,ms) is loaded;_a data transfer time (denoted by Tp) is charged. .
More precisely, for Scheme H1J, T4 is needed toA get to the Level-H. histogram
of the first image, and Tp is ehafged for loadifxg the page containing the histograrri
' Since only 4 hlstograms can fit into a page,.if the 4 Level-1 hlstograms happen to be
.-exammed then we load the next’ page There i 1s a probablhty of ¢ 1 that the selected )
4 Level-] hlstograrns are stored contlguously after the loaded Level I histograms.
~ Hence, I/OH,J =Ts+ (M -1 +_%5)TM + (M +& +&)Tp
The'cost models for other filtering schemes, color histograms of ther dimensions, or other
page sizes can be'formulated'in a\sirﬁila,r manner. . . o [
" The cost models for the 15 filtering schemes (with page size P = 1 KB) are shown belc‘)w:V
1v Scheme H
For each ir:n-a;ge, we examine the Level-H histog.:'ra,m."
o C PUg PV — MTe
° I/OII;V =Ta+ (M - l)TM'+"MTD for 8-dimensional (8;D) histograms
T1/05Y =Ta+ (M - 1)Tm + MTp for 64-dimensional (64-D) histograms
I/OEV =Ta+ (M.~ 1)Ta + 2MTp for _512—difnensiorial (512-D) h‘i‘stograms' '
2. Scheme I -
. For each image, we examine the 4 Level-I hiétegrams.
e CPU}V = 4MTc

° I/OPV = TA- + (M —1)Tn + MTp for 8:D histograms
I/OPV Ta + (M - 1)Tp + MTD for 64- D hlstograms
I/Ofv =Ta+ (M- l)TM + 8MTD for 512 D hlstograms
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' 3. Scheme HI
For‘ each image, we examine the Level-H histogram, and if necessary °, consider the
4 L,ev'el-Iv histograms.
. CPUPV = (M + 4&)Tc

. I/OHI =Ta+ (M- l)TM + MTp for 8-D histograms
I/OHI =Ta+(M-1)Tp + (M +&1)Tp for 64-D hlstograms

I/OHI =Ty +{(M - 1)Tar + (2M + 861)Tp for 512-D hlstograms
where:M 2 & > u.
4. Scheme J
._‘For edch image, we examine the 16 Level-J histograms.
. CéU}’V = isMTC
° ] /OPV Ty + (M - )Tnm + M Tp for".8-D histbgr:;ms |

I/OPV Ta+ (M 1)TM +4MTp for 64-D histograms

I/O.};V =Ts+ (M.—' 1)Ta + 32MTp for 512-D hist_pgrams

5. Scheme HJ

For each image, we examine the Level-H hisfogram, and if necessary, consider the

16 Level-J histograms.

S I/OHJ =Ta+ (M - 1)TM+ MTD for 8- D hlstograms
I/O,};‘j =Ta+ (M - 1 + 52)TM + (M + 4&;)Tp for 64-D hlstograms )

I/OFY =Ta+ (M -1+ fZ)TM + (2M + 32€;)Tp for 512-D histograms

where M > &, 2 u.

$We consider the 4 Level-I histograms of an image if the D at Level H is less than any D of the current
top-u. Similar conditions apply to the ﬁltermg schemes mvolvmg more than one level.
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6. Scheme 1J
For each image, we examine the 4'Level—Iv histograms, and if necessary, consider the
4 Level-J histograms which represent the subregions enclosed in the promising block

of Level 1.

e CPULY = (4M + 4&)Te
o I/OFY = TA + (M - )T+ MTD for 8-D histograrﬁs
o 1/0, Y =T+ (M — 14 3Ty + (M + 53)Tp‘f¢r 64-D histograms
I/O” =Ta+(M-1+ %)TM + (8M +>8§'3‘)TD for 512-D histograms

~where M 2 &3 > u.

7. Scheme HIJ
For each image, we examine the Level-H histogram, then consider (if necessary) the
4 Level-1 histograms and (if necessary) the 4 Level-J histograms which répresent the -

subregions enclosed in the promising block of Level 1.

. CPUHIJ = (M‘l- 464+ 4&5)Tc
o I/OEY, =Ts+ (M = 1)Tas + MTp for 8-D histograms
I/OZ‘I/J‘:- Ta+(M-1+ %)TM‘-I- (M + 54 + fs;')TD for 64-D Histograms
1/0FY; = T,;l + (M - '1 + %Q)TM + (2M + 8€4 + 8¢s)Tp forr_512.—D histogram;

where M > &4 2 &5 > u..

8. Scheme K

For each image, we examine the 64 Level-K histograms. -
e CPUEY = 64MT¢
o I/OFY =Ty + (M - 1)Tp + QMTD for 8-D histograms
| I/OEY =T, + (M —1)Ty + 16MTp for 64-D histograms

TI/0LY = TA + (M - 1)TM + 128 MTp, for 512-D hist(;grams '
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9. Sc_her.ne.HK
-For eaeh imaée,- we examine the Level-H histogram, aed‘ if necessary, consider the 4
64 Level-K histegrams.‘. - |
o CPUfL = (M + 64é6)Tc
o I/OEY. =Ty + (M — - 1)Tm + (M + 2§G)TD for 8-D hlstograms ‘
I/ORY% = Ta+ (M — 14 66)Tar + (M.+ 166)Tp for 64-D hlstograms
'I/Ofly‘— =T4+ (M —14&)Tm + (2M + 128{6)TD for 512-D hlstograms

where M > &g > u.

10. Scheme IK
For each 1mage we examine the 4 Level-I hlstograms and if necessary, con51der_'

the 16 Level K hlstograms Wthh represent the subreglons enclosed in the promlsmg

blockl of Leve] 1.

‘e CPULY = (4M +16¢7)Tc
. I/o,K =Ta+ (M—1+%)Ty + (M +&)Tp for 8-D histograms -
I/OU\ =Ty + (M - 14&)Tn + (M +4&)Tp for 64-D hispoé'r_arns .
'I/Oﬁ‘{/ = TA + (M = 1+&)Tm + (8M + 32&;)Tp for 512-D histograms

where M > &7 > wu.

11. Scheme JK
For each image, we examine the 16 Level-J histograms, and if necessary, consider
the 4 Level-K histograms which repfesent the subregions enclosed in the promising

bidck of Level J ..

o CPULY = (16M + 4€5)Tc
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o I/OPV =T4+ (M -1+ 1168)TM + (M + gi—“)TD for 8-D histograms
I/oJK =Ta+ (M - 1+ 158\ Tas + (4M + &)Tp for 64-D histograms.
T/OF¥ =Ta+ (M - 1+ 1588YTy, 4 (32M + 8)T for 512-D histograms

o whereM}ngu.

12.

13.

-Scheme HIK

For each image, we examine the Level-H histogram, then consider (if necessary) the
4 Level-I histograms and (if necéssary) the 16 Level-K histograms which represent

the subrégioné enclosed in the promising block of Level 1.
o CPUf{x = (M + 48 + 16610)Tc
o I/OFY  =Ty+ (M -1 + 3510)T + (M + §10)TD for 8-D hlstograms |

I/OZ‘I/K =Ta+(M-1+ flo)TM + (M + 59 + 4&10)Tp for 64- D hlstograms
I/OEY e = Ta+ (M — 1+&10)Tar + (2M +;8§9 +32€10)Tp for 512-D hlstograms

- where M > &0 > & > U

Scheme HJK

For each image, we examine the Level-H histogram, then cOnsidér (if necessary) the.

16 Level-J histograms and (if neceséary) the 4 Level-K histograms which represent

the subregions enclosed in the promising block of Level J -

. CPUHJK = (M + 16¢1; + 4€12) T |

. I/OHJK = TA + (M -1+ 13512)T + (M+ @)TD for 8-D histograms
I/OHJK TA+(M 1+§11+ 3 )Tn+ (M +4€11+&12)Tp for 64—D hlstogra,ms.
I/ORY K =Ta+ (M = 1+ €u1 + 52)Tas + (2M + 32611 +8€02)Tp

for 512-D histograms

where M > &1 > &13 > u.
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'14. Scheme IJK

- 15.

“For each image, we examine the 4 Level-I histograms, then consider (if necessafy)

the 4 Level-J histograms which represent the su4bregi(.)ns enclosed in the promising

. block of Level I, and con51der (if necessary) the 4 Level-K hlstograms Wthh ‘represent

the subreglons enclosed in the promlslng block of Level J.

o CPUfji = (4M + 4613+ 4§i4)TC
. I/OIJI\ =Ta+(M-1+ 3{%)TM + (M + %)TD for 8-D h_istograms
I/O-IJK =Ts+(M-1+ %+f14)TM+(M'+€13 +£14)Tp for 64-D histograms
I/OIJA =Ta+ (M -1+ 28 4+ &)Ty + (8M + 813+ 8¢14)Thp V

for 512-D histograms
where M > &13 2614 2> u.

Scheme HIJK

For each’image, we examine the Leyel—H histogram, then consider (if necessary)
the 4 Level-I histograms, (if necessary) the 4 Levél—J‘ histograms which represent
the subregions enclosed in'the pro’rnisihé block of Level I, and (if néce’ssary)v thed =
Level-K histograrhé which represent the sﬁbregions enclosed in thé promisihg bloék

of Level J.

e CPUj ik = (M'+ 4615+ 4€16 + 4617)Tc
° I/OfI‘I/JK'= Ta+ (M -1+ —§Jl)TM+ (M + Esii‘)TD for 8—D histograms
I-/éf,‘,’JK =Tg+(M-1 + Ble 4 £17)Th + (M + &5 + €6 +§17)TD _
' o ‘ . - for 64-D histograms
I/OZ‘I/jK_ =V-T/.1_+ (M -14+=¢ 3516 + €17)TM + (2M + 8815 + 8616 + 8617)Tp

- for 512-D hlstograms

where M > &15 > €16 > &17 2> u.
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Notice from the cost models. of the ﬁlterlng schemes which 1nvolve more than one level, the
value of each §; is determined dynamlcally For 1nstance in the best case of Scheme HIJ ‘_
the first u images are the top-u, and’ each Level-H distance -for the remaining M —u
images is greater than all Level-J. distances of the top U 1mages As such, the histograms
at Levels I and J for the M-y 1mages are not examlned thus 54 =& =u. Conversely,
in the Worst,ease, at any pomt.in time the Level—H and Level—I distances of each image
are less than some' Level—i] distance of the current top-u. As such, all the histograms at

all levels for the M images are examined; thiis, §a=&=M

Analytical Results

'The aboi/e eost models provide a éood feundation for‘analyzing'the 15 ﬁltering sehemes,
" and flor discoyering general trends. The cc.)mputation time for Padding an(i Reduction
vA]‘gorithmsi(TC‘)rdepends on the sizes‘of_the subimage query and the image subregion. For »v

the analysis, we let Tc be 3 ms for the 8-dimensional and the 64—dimensional histograms, ’
an(i',‘20_ms fo‘r the 512—‘dimensional histograms.'.'We assume that each minimum seek (T M)
takes 5 ms, each average seek (Ta) requires 15 ms, and the transfer of data in each
page (TD) with page size P = 1 KB needs 0. 3 ms. The analytical results for ﬁnding'
=101 1mages from a database of M= 1000 images are summarized in the ﬁgures on the
next few pages. In the figures, for each filtering scheme, the minimum cost is shown by-

~ the solid line, and the additional ‘cost (if any) is indicated by the dotted line
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- K VCPU Costs

Filtering Scheme

Filtering Scheme

CPU Costs for Search PV (n = 8, 64}
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(a) 8-, 64-dimensional Color Histograms

CPU Costs for Seach PV (n = 512)
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Figu/re 4.4: CPU Costs for Search PV .
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e I/0 Costs

I/O Costs for Search PV (n = 8)
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Figure 4.5: I/O Costs for Search PV
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1/0 Costs for Search PV (n = 512)
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Figure 4.5: 1/O Costs for Search PV (Continued)
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e Combined CPU and I/O Costs

CPU + 1/0 Costs for Search PV (n = 8)
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Figure 4.6: Combined CPU and I/O Costs for -Sea,rch PV
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CPU + I/O Costs for Search PV (n = 512)
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Figure 4.6: Combined CPU and I/O Costs for Search PV (Continued)

Observation 4.3 The CPU cost is affected by the dimension of the color histogram: As
the dimension of the histogram grows, the time required for CPU operations increases.

Ezplanation The CPU cost is proportional to the computation time T for Algorithms
PAD and RED. Recall from Observation 3.1 that T increases as the dimension of the

histogram grows. L]

Observation 4.4 For low dimensional (for example, 8-dimensional) color histograms,
the I/O costs for many filtering schemes appear to be the same. For example, I/OII;V =
1/04} = I/ORY,.

Ezplanation  Each of the 8-dimensional histograms occupies less than 4% of a page.
So, the Level-H, Level-I, and Level-J “records” associated with an image can fit into one
page. As a result, after the Level-H “record” of histogram is Idaded, no extra page access

is needed for histograms contained in the Level-I and Level-J “records”. [
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Ohservation 4.5 The 1/O cost is also aﬂeeted hy the .d'im‘ension of the colqr.histogram:
~ As the dimension of the histogram grows, the time required for I/ O operations increases.
FEzplanation The I/0 cost debends on the‘ numher of pages occupied by the n—dimensio_nat
color’ histogre.ms. As the dimensioh of the histograms grdwé, the humher of pages occhpied
by one histogram (= 4 pages where Pis the page size) .increases,-an_d thus the total
" number of pages occupied increases as Well.“ Henee, the 1/0 cost.increas.es.

| For the same reason, as the page size P shrinks, the number of pages eceupied-
by one histogram (= QPE pages) increases, and thus the time fequired for I/O operatidns

also increases. T ’ . S [}

Obsex;vatidn. 4.6 The '(’:ombined CPU and I/O cost is affected by theldime'n.’sion of the
color hlstogram As the dimension of the hlstogram grows the time reqmred for both
CPU and I/ o operatlons increases. | ‘ '

Ezplanation Note from Observatlon 4 3 that the CPU cost increases as the dimension
of the histegram grows, and from Observation 4.5 that the 1/0 cost also increases as the '
dimension of the histogram grows Thus the comblned CPU and I/O cost follows the

same trend. ' ’ _— - . [ ]

Observation 4.7 Fi'lteriné schemes which etart With.ﬁiter J br K often take more CPU '
and I/ O time. For example the comblned CPU and I/0 tlmes demanded by Schemes J,
PJK and K are often longer than the times: taken by the worst cases of many ﬁlterlng
schemes such as Schemes HIJ and HUK. - | . |
Ezplanation” For the scheme that starts with ﬁlter J, at least 16M hvistograms are required
to be examined; for the scheme thlat starts with filter K, at least 64M histoghame are
required 'to be examined. These numbers (of histograms to be examined) are large'when '
| compared with at most IM ( M +4M + 4M) histograms for Scheme HIJ and at most

13M (= M + 4M + 4M + 4M) histograms for Scheme HUK. .
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Observation 4.8 Filtering schemes. which skip intefmediate levels often incur greater
CPU and I/O C(_)ét. . |
Ezplanation qu the ﬁlt,eringé_cheme that dOes_‘novt skip“any level, at the next (ﬁner).
scale, we cbnsider the 4 histograms which represent the subregions enclosed ‘in fhé most
promising block of the current scale. If a filtering scheme skips,one level, then we bypass the
4 histograms at the level 'skippeAd;A however, at the next available scale, we need to consider
16 histograms, each of which ‘covers a subregio’ﬁ enclosed in the promising bloék of the
cufrént scale. Similarly, if a- ﬁltering scheme skips two consecutive levelé, t'hen. we bypa,s's V
the 8 (= 4 + 4) histograms at the levels skippéd. Unfortunately, at the next avaﬂable

scale, we need to consider 64 histograms, each of which covers a subregion enclosed in the

promis‘.ing' block of the current scale. ' - u

Observation 4.9 The combined CPU and I/O cost for the additional intermediate levels
becomes rélativély less expensivé as the dimenéionn of the histogram grows. For exampl((\a,_
as the dimension of the histogram increases,lthé combined cost.for Scheme HJ vis usually
more expensive than that for Scheme HIJ. Similarly, the cbmbined cost for Scheme HK is
usually more expensive than that for Scheme HIK or HJK, and either of these two costs
is moreAe_xpensivé than that for Scheme HIJK. |

" Ezplanation FolloWing from the pfevious dbservation, .if a filtering scheme ékips one level,
we need to consider an Aextrz.i 12 (‘= 16 — 4) hiStogr‘ams, and if the ﬁltérin"g scheme skips
two consecutive le\fels, we need to consider an extra 56 (= 64 - 8) histograms. As the
dimension of the color histogram grows, fewer histograms fit into a page. Thus, t‘he‘total
number of pages occupied by the histograms incfeases. It is relatively mOrg expensive to

bypass the intermediate levels. o - [ |

In general, the-above»énélytiqal results tend to favor the filtering schemes which
start with Level H (or Level I), and those that do not skip any intermediate level. More

precisely, Schemes H, I, HI, 1J, H1J, IJK, and HIJK afe ‘fa\{ored.
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’

4.3.2 Experimental Evaluation .

To‘ﬁn'd the appropriate\lﬁltering' ’schemes for S.ea:'rch“ PV, several experiments have been
performed using color histograms of 8, 64, ancl 512 dimensions. These color histograms
are created for a database consisting ,Of 1000 real images which are collect_ed from various
sources and stored in Vista formats [Pope and Lowe 1994]. Examples of these images are
pictures of tourist attractlons in Brltish Colﬁrhbia, photos of a water project in Californ'ia,
and‘scenic shots taken at different clties.throughout the world. ‘

As observed in Section 3.4, the comphtation time for Padding and Reduction Al-
gOrifhms is affected l)y the sizes of the subilhage query and the image shbregion In the
exper1ments we used 48 sub1mage queries of d1fferent sizes. These quenes were classified

.into four main types “and we studied the performance/speed and the accuracy ‘of each

query type.
Definition 4.3 Given that subimage querles can be of arbitrary size, we classified them
into 4 main types:

1. “h”-typed queries’—' whose sizes are larger than image sqbrégi'ons at Level I,

2. “”-typed queries — Whose sizes are smaller than 1rnage subregions at Level I but

larger than image subregions at Level J,

3. “”-typed queries — whose sizes are smaller than image subregions at Level J but

larger than image subregions at Level K, and
4. “k”-typed queries — whose sizes are smaller than image subregions at Level K. m

The execution time (denoted by TE, and measurlng the combined CPU&I/O time per
‘query on a database of 1000 1mages) can be used in assessing the efﬁc1ency of Search PV.
Several measures can be apphed in assessing the effectlveness of the strategy. Examples are

(1). fallout and (2) standard recall and precision [Salton and McGill 1983]. Fallout shows
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, the portion of rlon—relevant ir_nages' b.eing“retrie‘ved. ’Srandard _recdil indicates the oortion
Aof the relevant imagee beirlg. retrieved, ehd s'tandardprecisiorl indicates the oortion'of the
retrieved‘images tha_'t.are relevant. One problem with this set of measures is that images
ere categorized into relevant and non-relevant' however, the degree of relevancy cannot
be expressed Another example of a measure for assessmg the effectiveness of the search '
_strategy is a variant of normalized recall’ [Faloutsos et al 1994] It ‘calculates the Tatio
" of the average rank of all retrleved relevant images to the 1deal average rank. However,
_images may sorrletimes be so similar that they.are almost ihdietrngdishable; in such cases, ‘
, 'it‘,ma.y not be easy to a,ssigln exact ra,Irks .to‘the images. Hence, for each subimage query,
‘We ‘cdtegorize the detabase images into five main classes such tThat the best 2 images fall
into Class'vA, the next 3 into Class B, and t}re next 5into Class C. Then, 15 images renked

from 11-th to 25-th are categorized into Class D, while the remaining M — 25 images are =

4 categorized into Class E. All images in the same class have the same rank.

Definition 4.4 With the categorizatioﬁ of images into five classes, the effectiveness of
the search strategy can be assessed by countmg the number of retrleved 1mages Wthh fall
into each class. A dissimilarity score (DS ) for the retrleval of the best 10 images can be

computed as a sum of the weighted dlﬂ"erence

DS =7(2=na) +5(3 = 16) + (5- o)+ Bonp +0ns . (44)
where 7; indicates the number of images falling into Class 4. In the ideal situation, the
DS'is 0. o - : : o R

The experiments were run orr a SUn‘UltraSPA'RC—i workstation using a page size
of 1 KB and user preference 3 of 0.5 6. The results (the average DS and Tg values for

the retrievals of the best 10 images from a collection of 1000 imé,ges) are summarized in

SWith the user preference B set to 0.5, both the color distribution and spatial information are of the
same level of importance.
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the tables and figures on the next few pages. The T measures the efficiency and the DS

assesses the effectiveness.

e “h”-typed queries

Filtering Dimension of Color Histograms
Scheme 8-dimensional 64-dimensional 512-dimensional
N4 MB Nc MD N4 MB Nc NMD N4 MB Nc MD
0.7 0.6 1.5 7.2 | 1.9 2.1 1.7 4.3 1.9 2.4 1.7 4.0
H = DS = 132.6 = D5 = T3.0 = DS = 67.0
Tg =24+ 11s|Tg=45+38s | Tg =434+ 225s

Table 4.1: Experimental Results for Search PV (“h”-typed Queries)

Results for Search PV (*h*~typed Queries)
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Figure 4.7: Experimental Results for Search PV (“h”-typed Queries)

Among the three dimensions of color histograms, the 8-dimensional case appears to
requi‘re the shortest execution time, but it has the largest dissimilarity value. By
contrast, the 512-dimensional case has the smallest dissimilarity value, but it requires
the longest execution time. So, in keeping a balance of efficiency and effectiveness,
the best filtering scheme for “h”-typed queries, when operated with Padding and

Reduction Algorithms, is Scheme H with 64-dimensional color histograms.
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@
1

-typed queries

Filtering Dimension of Color Histograms
Scheme- 8-dimensional 64-dimensional 512-dimensional
Na MB Nc MD A 1B 7c 1D NA MB Nc "D
0.3 09 1.3 7.5 | 1.5 2.2 1.8 4.5 1.9 2.4 14 4.3
H = DS = 138.6 = DS = 78.2 = DS =718
T =25+06s | Tg=55+15s | Tg =421+ 27.2s
0.5 0.8 1.3 7.4 | 1.8 2.1 1.8 4.3 1.9 24 1.5 4.2
| = DS = 136.2 = DS =73.6 = DS = 70.2
T =414+21s|Tg=92+85s | T =1274 £+ 879s
0.5 0.8 1.3 74 | 1.8 2.1 1.8 4.3 1.9 24 1.5 4.2
HI = DS = 136.2 = DS =73.6 = DS =70.2
T =27+06s | Tg=71£208s | Tp =604 + 27.8s

Table 4.2: Experimental Results for Search PV (“i”-typed Queries)

Results for Search PV ("i"-typed Queries)
T T T T
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Figure 4.8: Experimental Results for Search PV (“i”-typed Queries)
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To aim for a balance of performance and accuracy, the best ﬁlterlng scheme foi‘ “7-

typed queries, as observed frorn the above experlmental results is Scheme HI W1th

64—d1mensmnal color h1stograms

e “J’-typed queries

D1mens1on of Color Hlstograms

Filtering ,
Scheme 8 dimensional ' |. 64-dimensional 512-dimensional
M4 MB Mc Mp | mMa MB 7Mc MD NA 1B TNc MD
, 0.0 0.8.1.2 80 | 0.9 2.1 2.5 4.5 1.5 2.5 1.2 4.8
H = DS =1488 | = DS ='82.2 = DS =81.8
T =154+01s|Tg=26+02s| Tg=23.7+93s
00 1.0 1.3 7.7 | 1.5 2.2 1.8 4.5 1.7 2.3 1.5 4.5.
1 I = DS=1432 | = DS =782 = DS =176.6
' Tp =30+06s | T =85+ 1.6s | Tg =168.3 £ 25.6s |
0.0 1.0 1.3 7.7 |'1.5 2.2 1.8 4.5 1.7 2.3 1.5 4.5
HI = DS=143.2 | = DS =782 = DS = 76.6
Te=15+01s | Tg =34+ 0.7s| Tg =36.5+16.7s
3 0508 1.3 74 | 1.8 2.0 1.9 4.3 1.7 2.3 1.7 4.3
D || =DS=136.2 = DS = 74.0 = DS =134
T =34+ 05s | Tg =92+ 16s| Tg =188.0%+ 3745
0.5 08 1.3 74 | 1.8 2.0 1.9 4.3 1.7 2.3 1.7 4.3
HI1J . = DS = 136.2 = DS =74.0 = DS =734
T =28+ 03s | Tg=58=% 1.7 s| Tg =68.54+31.7s

Table 4.3: Experlmental Results for Search PV (“ 7 typed Queries) .
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Results for Search PV (*j*~typed Queries)
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Figure 4.9: Experimental Results for Search PV (“j”-typed Quefies)

To aim for a balance of efficiency and effectiveness, Scheme HIJ with 64-dimensional

color histograms is the best filtering scheme for “j”-typed queries, when operated

Dissimilarity Score

with Pa,dding‘and Reduction Algorithms.
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o “k”-typed qﬁeries

Filtering Dimension of Color Histograms ,
Scheme 8-dimensional | 64-dimensional 512-dimensional
M4 1B NMc Mp | ma mB Nc D N4 _MB_7Tc_ND
0.0 00 1.5 85 ] 0.5 2.0 2.7 48| 1.0 2.1 1.9 5.0
'H = DS=160.0 | =DS=898 | = DS==896
T =12+00s |Ig=18+01s| Tg=189+66s
0.0 05 1.5 80 | 0.8 2.3 2.2 47| 1.6 2.1 1.5 4.8
I = DS =150.0 | .= DS = 85.2 ='DS = 82.8
T =16+02s |Ig =42+ 05s | Ig = 1241 £ 11.1s
00 05 1.5 80 | 0.8 23 2.2 47 | 1.6 2.1 1.5 4.8
HI = DS = 150.0 = DS = 85.2 = DS = 82.8
T =12+00s |Tg=20+01s| 1 = 25.7 + 11.8s
0.4 0.3 1.3 8.0 [ 1.3 2.0 2.1 46 | 1.6 2.2 1.5 4.7
1J = DS =1484 | = DS =818 = DS = 80.8
Tz =16 £02s |Tg =44+ 0.7s | 15 = 133.3 £ 189
04 0.3 1.3 8.0 | 1.3 2.0 2.1 4.6 | 1.6 2.2 1.5 4.7
- HIJ = DS = 148.4 = DS = 81.8 " = DS =808
T =12+01s | Ig =28+ 0.7s | Tg = 52.8 + 34.3s
_ 0.4 09 0.7 81 | 1.3 2.1 2.0 4.6 | 1.6 2.2 1.5 4.7
- UK || >DS=1475 | = DS =814 = DS =808
T =18+ 04s |Tg =56+ 1.3s | Tg = 167.7 £ 52.6 s
04 09 07 81 | 1.3 2.1 2.0 4.6 | 1.6 2.2 1.5 4.7
HIJK || = DS = 1475 = DS = 81.4 = DS = 80.8
T =16+ 05s | Ig =44+ 15s | Tg = 72.1 £ 484s

Table 4.4: Experimental Results for Search PV (“k”-typed Queries)
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Figure 4.10: Experiméntal, Results for Search PV (“k”;typed Queries)
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To aim for a balance of perfofmdnce and accuracy, the best filtering scheme for “k”-

typed queries, as observed from the above experimental:results, is Scheme HIJ with

- 64-dimensional color histograms.

4.4 Summary

Given that subimaée queries can be of arbitrary: size, picking oné best scale at which At.heb
images are 5locked is not easy. To cope with this challenge, a multiscale -rg‘presentat‘i.on is-
propqsed. In or(ier to-iﬁcofporate both color .simila,rity and é'paltial similarity, tﬁe multi-
scale diét@nce function is defined as a weighted- surﬂ of the histogrém distance (D) and
~ the positional dis‘pahcé (Dp):
'D = Dy +.(1- f)Dp

where the Weighting factor (0) is a user preférence for specifying the re_ldtiye importance
of the two distances above. The .:DH’ can be est;irnafed using Padding ‘é,ﬁd Reduétion ‘
Algofithms; the Dp can be estimated as.th(;, sciuére of the shortest Euclidean diétaﬁce
between the query and the im_agé éubfegion. _

To a.irr'l'for"efﬁcieht and éffectivé fetrievais of desirea ivr:ﬁéges, the above multiscalé ;
distahce function has also been formulated in such a way that gi‘ven a query a‘n‘d an im-
: agé subrégion, the distance Va,lue;afp‘ the coéfser scale can serve as the distance value at .
the ﬁﬁér scale. With this formula‘.c‘i;)'n of the dista;née func:tion, an efficient rriultiscaie
’searc‘hA strategy,“}ith the use of 'vepiciéal'ﬁlters (Such as Search PV) is possible. Using
Search PV, we anal);tically and experimental'ly_jinvestigat_ed the suitable number of levels '
for’the representaﬁon’. In the ahélyses, Wé set ﬁp c.ost’models to evaluate 'the 15 possibl'e
ﬁl_terih_g schemes for.the 4—lévél represenfa,tidn, and estimated the;ilr VCPU, 1/0, and com-
bined CPU&i/ O costs. The analytical results tend to favor the filtering sqhéﬁes which -

start with Level H (or Level I), and those that do not skip intermediate levels. In the ex-
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periments, éubimage_ queries of arbitrary size were classified mto four main types, and' we
measured the execution time (to evaluate the pefformancé) and the ciissimilarity scofe (to
evaluate the dégree of accuracy) for eaéh filtering scheme that is favored by the analytical '
results. The ex’per.imental results show that when opera;t_ed with Padding and Reduction
Algorithms, 'Scheme'H_ With 64-dimensional histbgfams is' best for the “h”-typed queries,
‘Scheme HI is best for the “”_typed quéries, and Scheme HIJ is best for both the “j”—typéd
and the i‘k”-typed qﬁeries; Mbreover, amoﬁg the three dimensions of histograms, .while
d’.elivering better perfdrménce, the 8-dimensional cases suffer from a loss of accuracy. ‘Con-
“versely, while delivering better accuracy, the 512—dimerllsi.onalb cases suffer fromr a loss of
performaﬂce/speed. » | |

, Based‘on these analytical a,nd’ex“perimenAtaJl results, we C(;nclude that desired images
.(/:a,n be retrieved efficiently and effelc'tively using only the first three levels of the proposed
_ representation. Hence, the recommended multiscale represéntz;tion (Figure 4.11) can be.

described as follows:

e At Level H, the entire image is represented by a single global 64-dimensional color

histogram.

e At Level I, the imdge is divided into.four non-overlapping blocks, and each block is -

represented by a 6‘4-din_1ensional ‘color.histogram covering 4l'of the entire image.

e At Level J, each block at Level I is further divided iﬁt‘o four bl(:)cks, each of which is

represented by a 64-dimensional color histogram covering Tlé of the entire image.




(b) Level I

Figure 4.11: The Recommended Multiscale Representation
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C‘haptevr 5
Search Strategies

To search a multiscale repfesentation, séme search strategies may require frequent jumping
back and forth in the data file so as.to gét the necessary feature vectors representing
the éubreglons of the images. HoWever, sucll jumpillg makes it hald to optimize ﬁle.
organization and bﬁffar management, and may generate a large number of I/Os. To avoid
. such jumplng, asealj(':h st‘rat‘egy — Pure Vertical — was :proposed 'a,I'l(l studied in Chapter 4.
In addition to the Pure Vertlcal Search, lwe conslder two other strategleé, namély Pure
Horizontal ‘and Horizontal-and-Vertical. We investigate analytically ancl experimentally
these strategies slo as to find the best one which avoids frequent jumping and at the same

~ time maintains a good balance of efficiency and effectiveness.
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5.1 Problems of Branch-and-Bound Search

To use the branch-and-bound strategyA for séarching multiple scales [Chén et al 1997), al‘l._'
the database images are ﬁrstAch»ec’ked at ‘the coé,rsest écale, and. the sei;,r(;h proceeds to
finer scales in non-descending order of di."stance value. In general, the branch-and-bound
search works in such a way that it a,l\ways keeps track of the distance values of all im'ages
contending for further consideration. Images with smallest values are “exteﬁded” to a
finer scale. Then, these rnos.t recently ‘;extended” images are considered along with the
remaining ones. Again, images with smallest values are “exﬁendéd”. The process repeats
'_until'the targét irﬁages are found.. | | | |

Definition 5.1 To conduct the brancﬁ—and;bound séarch for retrieving the top u limages

from the collection of M images:

1. Check all M images in the database at the coarse scale in the first iteration, and

compute the distance value for each image.

2. Sort all images in non-descending -order of distance value. Images with the current '

u smallest values become the current top-u.
3. Repeat until all the top » images have reached the finest scale:

(a) For each of the u images,

i if the image has not reached the finest scale, exﬁend one level/scale;
ii.- update the distance value of the extended image with the distance at the . -
extended scale.

(b) Sort all images in non-descending order of distance value, and obtain top u

images for the next iteration.. | , [ |

! As meritioned in Chapter 4, u is the number of images requested by the user.
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| Due to the effectlveness of the brand and bound strategy for handllng whole—lrnage querles
. .;thIS strategy can be adapted to handle subrmage querles However, at each iteration of the '
- branch-and-bound search, the feature vectors used in the cqmputatlon/ of distance values
may be at a different level / scale and may be for images different frorn those in the previous‘ '
iteration As a resuit‘ it can be'inefﬁcient for large databases. In ‘partrcular .tne number

of i 1mages the strategy must keep track of can be large. Jumpmg back and forth in‘the

- data file to get the necessary feature vectors for computatron seems unavordable

Example 5.1 In many database applications, it is not unusual to retrieve the desired
- images from a collectionrot” thousands of inrages, For simplicity, ‘in this example, we try
to ﬁnd the top two images from a coliection of seven images 'usiing the branch-and-bound
search (with Scheme HI1J). | | |
In the first iteration of the branch-and-bound search; all seven images are checked
at tne.coarse scale (Level H), and a distance value is computed for each imaAge.ﬂ These
'images are then sorted in vnon—desc‘ending order of distance value, and‘ the'i'.mAag‘es with
the two ‘srnallest vatues are the potent'ral top two images. In each subsequent ite‘ration,
.the potential top two images are extended one level/scale, and their distance values are.

updated' images are then sorted and a new set of the potential top two images is obtained.

In the following trace the number at ‘the slot representlng an 1mage at a partlcular -

level is the estlrnated distance value and the superscript on its left denotes the search

order (w1th the iteration number in brackets).

To find the top two images using the branch-and-bound search» '

Img 1 . Im‘g 2 Img3 Img4 Img 5 Img6 Img7

Level H || 1195~ 2nd(1)s  3rd(t)gs  4th(1)gg  5th(1)1g 6th(1)>70_-7th(1)(68

Level I || 11tA(3)35  8th(2)3g ' 9th(2)15

Level'J 12th(4)39 = 4 ' 10th(3)9()
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Observe that j Jumplng back and forth among 1rnages and levels may frequently be requlred

' Wthh makes it hard to opt1m1ze file organlzation and buffer management and may 1mpose

a high I/O cost. Hence, we consider three search strategies — Search PV (Pure Vertlcal) |

Search PH (Pure Horizontal), and Search HV _(Horizontal—and—Vertlcal) — which avord :

“such jumping.

5,’.2 Pure Vertical Search

We have studied Search PV (Pure yertical) in the last chapter; herev', we summarize the
main points Like the branch-and-bound search, .Search PV is' also accurate in its search
However, 1nstead of j Jumpmg back and forth to get the necessary data dur1ng the search
Search PV checks the i 1mages one after another At any pomt in time ‘a set, of u 1magesi ‘
currently hav1ng smallest distance values are kept For each 1mage the algorlthm keeps.-
proceeding to finer scales until (1) the distance value at a partlcular scale is already S0
large that the image cannot qualify as a good 'match, or (2) the finest scale is reached and
th.e ’.image is either discarded‘ or selected as a member of the answer -set; depending on the
distance value | : | |

To 1nvest1gate the efﬁc1ency and the effectlveness of Search PV, analytlcal and

'experimental evaluations have been carried out. The results show that when operated with

Padding and Reduction Algorithms Scheme H with 64—dimensional histograms is best for .
the “h”-typed queries Scheme HI is best for the “”-typed querles and Scherne HIJ is

best for both the “j” typed and the “k”- typed querles

;'5.3_ Pure Horizontal Search

. Note that Search PV tends to require manycomparisons at the finest scale, particularly

at the beginning of the search. Thus, we consider another search strategy — Search PH
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(Pure Horizontal) — that may require fewer comparisbns af the finest scale. In Search PH,
horizontal filters search “horizontally” across the database level by level, and the number

of comparisons are predetermmed The 1dea is that all M images in the database are

- checked by a horlzontal filter at the c coarse scale in the first iteration. The best u matches

(where u < .p << M ,and pis a predetermlned parameter that controls the number of _

comparisons) are carried over from the current level to the next level (finer scale), while

poor matches at the coarse scale are eliminated. In subsequent iterations, images left from -

the previous level are checked by horizontal filters at finer scales, and poor matches are

. again removed. The process repeats until the finest scale is.reached and the top u images

are returned.

'Deﬁmtlon 5.2 (Search PH). To conduct the Pure. Horizontal Search for retrieving the

top u images from a collectlon of M images:

1. Check all M images at the coarsest scale/level, and compute the distance value for:
each image.
2. Sort the images in non-descending order of distance value. A subset of these images
(the y images with current smallest values) are carried over to the next level.
3. For each of the remaining levels: .
(a) Check the images which are carried over from the previous level, and compute
the distance value for each image.

(b) Sort the images in non-descending order of distance valie; a subset of these

images are again carried over to the next level.

(c) Repeat Steps 3 (a)-and (b) for the next level. . . : =
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Example 5.2 Let us find the top two images from a collection of seven images’ using
Search PH (With Scheme HI1J ) 2. In the following trace, the number at the slot representing
an image at a; oarticular level is the estimated distance value, and the superscript on its

left denotes the search order.

To find the wtop' two images using Search PH

Imgl Img2. Img 3 Img4 Imgb5 Img6 Img7

Level H Ist 95 2nd 5 . 3rd 65 4th 80 .Sth 10 6th 70 Tth 68

- = top five images are Imgs 1, 2, 3, 5, and 7

| Level I "‘8th 35 A 9th 30 1th 200 . '. ‘ ‘llth 15 7 12th 78

:> top three images are Imge 1,2, and 5

Level J || 13th g7 1thgy 15th 90

= top two images are imgs 2 and 5

Since the hlstograms are exammed level by level the best way to .orga,mze the precomputed |
‘ feature Vectors in the data ﬁle is to arrange them on a level-by- level basns More prec1sely,
the histograms of one level are followed by the hlstograms of another level (finer scale)
Therefore, the file organization is of the form: |

oM s ... J's Pss .- Ps %1% - I%
for M images for M images for M imagee for M images

5.3.1 AAr'xa‘lytical Evaluation "
Cost Models
To measufe the efficiency of Search PH, we set u'p cost models to estimate the CPU ahd.

the I/O costs. The CPU cost depends mainly‘ on the time required to apply -Padding and

?In many database applications, it. is not unusual to retrieve the desired i 1mages from a collectlon of
thousands of i images. For simplicity, in the example we try to retneve two desired images from a collection
of seven images.




Reduction Algorithms to the data (color histo’gréms), and the computation time for each
histogram (denoted by T¢) can be estimated using the expérirﬁental results in Section 3.4.
The I/O cost depends mainly on the time reduired to sequentially or randomly access
the pages co_n-t_dininvg. the data (color h_istégrafns):, ‘and this access time can be affected by
the size of data as well as the number of buffers. With the ﬁlé organization-described
above, histograms at the first chosen level éa_n be -accessed sequentiaily. Given a minimum
buffer size (oné pagej and an intelliéent buffer management scheme, the number of random
page accesses at the remaining levels can be estimated with the use of Cirdenas’ Formula

[Cérd’eha‘s 1975] or Yao’s Forrﬁula [Yao 1977].

Definition 5.3 (Cardenas’ Formula) Given that R “records” divided into m pages
and ’that r “récords” satisfying the‘query are distributed uniformly dmdné the m pages,
the expression 1 — % .gives the probability that a particular page does not céntain a
pa.rticular “record”. If.r “records” are éelected in'dependently, :then t’he probability that a
particular page not being hit is given by (1= %), and 1 — (1 — %) gives the probability
that a particular 'page'is hit. Therefor'e, the number of page accesses for a given query can

be estimatéd using .

C(m,r).;m[1_<1_i)f]' e

3

Definition 5.4 (Yao’s Formula) Given R “records” grouped into m pages (where 1 <
m < R), each contains £ “records”. If r “records” (where r < R — £) are randomly
selected from the R “records”, the expected number of page accesses (pages with at least

one “record” selected) is given by

4 T RA-)-j+1
Y(R,m,r) = m 1—]’_1:_[1‘ BT

(5.2) |

Ifr>R- % or m = 1, then all m };ages are expected to be accessed. ' [
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In the cost ‘models,'color. histograms at each level for each imagé are treated as’
. a “record”. Debending on the le‘vel at which the histograms are represented, the size of _
“record” may vary.. Sometimes a “record” may occupy a small. portion_of ‘ovne page. For
exémple, with a page size bf 1 kilobyte (KB), the “record” of one Level-H 64—dimensional
color histogram takes less than 30% of a page. With the ﬁle.organization for Search PH,
after the page containing a “record” of the LeQel—H histograms is loaded, ﬁ_o extra page _
~ access is.needed for reading the Level-H “record” of the next image. Howév'er, sométimes
a. “record” fna,y occupy more than one page. For éxample, with the a,bové page size,
the' “record” of sixteen Level-J 64—diménsional color histograms occupies’ more than 15
pages. The cost of accessing all the histografns in this “record” is the sum of the time
required to randomly acéess the first page and the time required t;) sequentially access the
~ remaining pages. | |

Like Search PV, for the vast majority of subimage queries, in the casé‘tlhat't.he
image subregions Is"® and ISYP are the best matches (which-. give the smallest Bs) at their
corresponding levels, I8 is one of the subregions enclosed in I®**. When aiming for a
balance of efficiency and effectivenés's, che_ckiné all the histograms in a “record” fnay seem
unnecessary, @nd only a portion of the “record” (some of the histograrﬁs) may need to be

examined. As a result, both the CPU and the .I/O costs can be reduced.

EXample 5.3 In Scheme HIJ, we examine all M ..'histogramsi at Level H, and carry the
best up.images over to Level I where the 4 Level-1 histdgrarﬁs for each of these images
are examined. Then, at Level J, for éach of the besﬁ pr images (where pg > py) carried
over from Level I,'wev examine the 4 histograrhs representing the subregions enclbsed in
the promising block of Level I. Hence, using a 64—dimensiondl color histogram with page

size P = 1 KB, the cost model for Scheme HIJ can be described as follows:

‘@ The CPU cost is the product of T¢ and the total number of histograms used in the

computation. In Scheme HIJ, Level-H histograms are examined for all M images,
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4 Level-1 histograms are checked for each of the I H images, and 4 Level-J histograms
are examined for each of the pr images (where M > pg > pr > u, and both LH

and pr are pred‘eﬁn'ed) Hence CPUHIJ = (M + 4,uH +4un)Te.

K The I/O cost is the sum of total seek times and total data transfer times. Using
~the above ﬁle organlzatlon for Search PH an average seek time (denoted by T4). ..
is charged for moving the read head to the ﬁrst record” at Level H, and for each
" random page access of records 'at the remaining levels. When a page,of data (color
histograms) is loaded, a data transfer tirne‘ (denoted by TD) is ch'arged. .
| More precisely, for Scherne HIJ, T4 is needed to get to the Level-H his- |
btovgrem.of the 'ﬁ‘rs_t image, and Tp is char'g:ed for loading the .page containing the
_ histogram. Si'nce‘ all Level-H hrstograms are stored contiguously, no seek is charged '
for .acceSsing s'uh_sequent Level-H histograrns, -and only Tp is charged for each se-
quential page access of data. At Levels I and J, the numher_ of random page ac- - :
cesses can be esti‘mated by ‘Cérdenasi Formula, and each random page.:a,ccess re-
* - quires one T4 and one TD Hence, IJOEH, = 1 -}-"C’(M, p‘H) +C(AM,p)])Ta +
(% + C(M, psr) + C(4M, ) T |

The cost models for other filtering schemes, color histograms of other dimensions, other

page sizes, or for Yao’s Formula can be formulated in a similar manner. O

The cost models for the 15 ﬁlterrng schemes (Wlth page size’ P 1 KB, usrng’.

64—d1men31onal color hxstograrns and Cérdenas’ Formula) are shown below
1. Scheme H
We examine all M histograms at Level H.
"o CPUEH = MT¢

e I/OFF =T4+ YTp
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2. Scheme I
We examine all 4M histografns’ at Level I. -
e CPUPT = 4MTC
o I/OPH T4 + MTp
3. Scheme HI
We examine all M .histograms at Level H, and earry the best ppy irhages'-over to
Level I where the 4 h.ist_ograms for each of thesé images are examined.' '
. CPUPH =(M +4,UH)TC .
e 1/Of =14 C, w) Tat |4 +C(M, p)| To

where HH is a predeﬁned parameter that controls the number of i 1mages to be carried

over from Level H,to, the next level (Level T) 3, and its value lles between @ and M.
| 4. Scheme J
We -exqmine' all 16 M histogfarﬂé at Level J.
e CPUPH = 16MTy
° I/O_I;H =Ty +4MTp
5. Scheme HJ
We examine all M histograms at Level H, and carry the best pg iv‘magesuover to
Level J where the 16 his'tograms' for each of these imégés are examined.
[ CPUPH = (M +'16,U,H)T_C

. I/OH_] = [1 + C(4M,vl‘H)]‘TA + [%i +_4,C(4M’ ,UH)] Tp

‘ SSimilarly, prand pyin thefollowjng cost models control the number of images to be carried over to
the next available level from Level I and Level .J respectively. .
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6. Scheme 1J
We examine all 4M histograms at LeVel I, and Carry the best .,uI images over to
Level J where for each of these images, the 4 hlstograms representlng the subreglons
enclosed i in the promlsmg block of Level I are examined. |
. CPU}f,H = (4M + 4u)Tc
o I/Of = [1+C(4M, un)] Ta + [M + C(4M, p1)]) Tp
7. Scherhe HI1J
We examine all M hiétog’rams at Level H, and carry the best pp images over to
Level I where the 4 LgvélQI histograms for each of th.esé'images are examined. Then,
at Level J, for each of the best p; imdges (where ppr > pr) carried over from Level I,
" we exarﬁine the-4 histograms representing the subregions enclosed in the promising
 block of Level L. | ‘
. CPUHU = (M + 4uy + 4un)Te
. I/OH” = [1+C(M, pm) + C(AM, p1)) Ta+ % + C(M, prr) + C(4M, 1) | Tp
8. Scheme K
We examine all 64M histograms at"Level K.
® CPUII:H = 64MTC
‘o IJOBH =T, +16MTp
- 9. Scheme HK

We examine all M histograms at Level H, and carry the best pH images over to the

Level K where the 64 histo‘grams for each of these images afe'exam_ined.

. I/OHA = +C(16M ui)] Ta + [M + 16C’(16M ,UH)] Tp
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10.

11..

12.

13.-

Scheme 1K _'

 We examiné all 4M histograms at Level I, and carry the Best p imeges over to.

Level K where for each of these images, the 16 histograms representing the subregions

enclosed in the promising block of Level I are.exa,rnined. '

o CPUFH = (4M + 16p1)Tc
. I/Oﬁf—’ = [14+C(16M, )] Ta + [M + 4C(16M, u1)] T

Scheme JK

 We examme all 16 M histograms at Level J, and carry the best pJy 1mages over to

Level K Where for each of these 1mages the 4 hlstograms representing the subreglons

enclosed in the promising block of Level J are exammed

o CPUEH = (16M + 4u5)To

e 105 =1+ Cliom, )| T+ (404 + CO0M, 1)) T

Scheme HIK

We exa_uriine all M hisfograr’ns at Level H, and carry-the best ,L'I,H. images over to
Level I where the 4 Level—I histograrhs fo‘r each of 'these-images are examined. Then,
at Level K, for each of the best u 1images (where HH > p 1) carried over from Level I,

we examine the 16 histograms representmg the subreglons enclosed in the promising -

block of Level I.
o CPUEH. = (M + 4py + 16p;)To

. I/OHU\ = [1{+C(M,/m)+C,(16M»,u_1)]_TA
| + (4 +C(M, par) +4C(6M, 1) Tp

Scheme HJK o

“We examine all M histegrams a’h 'Le\‘fel H, and carry the beks.t"'uH images over to

‘Level J where the 16 Level-J histograms: for each of these images are examined.
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14.

15.

Then, at Level K, for each of th_e'be'st w1y images (where pg > pg) carried over from

Level J, we examiné the 4 histograms representing the subregions enclosed in the

promising block of Level J.

o CPURf = (M + 16y + 4uy)Tc

o+ [ 4C(AM, p) + C6M, )| Tp

Scheme 1JK

We examine all 4M histogra}mmsl at Level I, a_nd_carry the best ur imaéesp_ver to
Levél J where for eééh of these images, the 4 histogramé represéﬁting the subfegions
ehc}bsed in the promising block of Level I are examined. Thén, af Level K, for each
of the best uy images‘ ('whereb,u1>l;j‘]v) carried over from Level J, we examine the 4

histograms representing the subregions enclosed in the promising block of Level J.

° CPUI}?]I}\.— = (4M+4u1 + 4ug)Te

o I/OFH = [14 C(4M, ug) + C(16M, 413)| Ta
+[M + C(aM, pr) + C(16M, 1)} Tp

Sghemg HIJK

We examine all M histograms at Le.ve;l H, and carry the best uy images over to
Level I where the 4 Level-I histograms for each of these images are examined.;Thén,
at Level J, for each of the best ,uI ‘images (where pgr > pp) carried over from Level I,
we examine the 4 ﬁistograms _fepresenting the subregions enclosed in the promising
block of Level I, and carry the best py images (where pr > pj) over to Level K

where the 4 Level-K histograms for each of these images are examined..

o CPURH K, = (M + 4pn + 4ur + 4p)To
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o 1/0FH =0 +‘C(M, pE) + C(AM, pr) + C(A6M, )] Ta -
+ [¥ +C(M, pr) + CAM, 1) + C(16M, )| Tp -

1Analyti:cal R.e;ults‘

- The above cost rAnodelsvprovide a good foundation for analyzing the 15 filtering schemes,
and for discovefing general trends. The computation time for Padding and Reduction
Algorithms (T¢) depends on the sizes ofl the sui)image query and the image sﬁbregion.
For the analysis, we let T¢ be 3 ms for the 8-dimensional and the 64-dimensional his-
tégrams, and 20 ms for thé 512—dimenéional Histograms. We assume that each minimum

~seek (Tr) takes 5 mé, each average seek (Ta) feq'uires 15 ms, and the transfer of data in
each page (Tp) with page size P =1 KB ﬁ'eeds 0.3 ms, and that pH, pr and pg are 160, 80,
and 40 respectively. Analyses on finding » = 10 images from a dgtabase of M=1000 irﬁ-
ages were then conducted. As obéerVed from the experimental resul>ts of Search PV, while ’.
delivering better performance, the ﬁltéring schemes with the 8-dimensional histografn suf-
fer from a loss of effectiveness. By cbntra@st, while delivering better acéuracy, the schemes
with the .512—di_r‘ne.nsion.al histogram suffer from a,‘ loss of efﬁCieﬁ_cy. So, we summarize only
thé analytical resﬁlts for the 64—dimensi0nai color histogrémé in fhe figures on thé next .
few pages. In the figures, for each filtering scheme, the CPU, I/O, or combined CPU&I/O

cost is shown by the solid line.
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CPU Costs for Seach PH (n = 64)
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(a) CPU Costs for Search PH
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Figure 5.1: Analytical Results for Search PH (64-dimensional Color Histograms)
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CPU + I/O Costs for Seach PH (n = 64)
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(c) Combined CPU and I/O Costs for Search PH

Figure 5.1: Analytical Results for Search PH (Continued)

Observation 5.1 The CPU and the I/O costs for every filtering scheme are deterministic.
The best-case analyses are the same as the worst-case analyses.

Ezplanation Since the number of images to be carried over from the current level to the
next level is controlled by the predefined parameter u;, we know statically the nufnber of

images to be considered and to be retained at a particular level. ]

As for Search PV, the following trends are observed:

1. The CPU cost is affected by the dimension of the color histogram: As the dimension

of the histogram grows, the time required for CPU operations increases.

2. The I/O cost is affected by the dimension of the color histogram: As the dimension

of the histogram grows, the time required for 1/O operations increases.

3. The combined CPU and I/O cost is affected by the dimension of the color histogram:
As the dimension of the histogram grows, the time required for both CPU and 1/0

operations increases.
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4. Filtering schemes which start with filter J or K take more CPU and I/O time. For
example, the combined CPU and 1/O"times demanded by Schemes J, JK, and K

are longer than the times taken by the worst cases of many filtering schemes such

as Schemes HIJ and HIJK.
5. Filtering schemes which skip ihtermediate levels incur greater CPU and I/O cost.

6. The combined CPU and I/O‘cost for the addihional intermediate levels becomes
relatively less expensive as the dimension of the hiStogram grows. For example, as
the dimension of the histogram increases the combined-'co;st for Scheme HJ is more

. expensive than that for Scheme HIJ Similarly, the combmed cost for Scheme HK is -
‘more expenswe than that for Scheme HIK or HJ K and elther of these two costs is

more expenswe than that for Scheme HIJ K.

In general, the above analytical results tend to favor the filtering schemes which start with
Level H (or Level I), and those that do ndt skip«é,riy ‘intermediate level. More precisely,

Schemes ‘H, I, HI, 1J, HIJ, IJK and HIJK ‘are favored

5.3.2 Experimental Evaluation

To find the appropriate ﬁltefing sche'mes for Search PH, several experiments have been
performed using the same set of data (color histograms) as for the -experimental evaluation
. of Search PV. .Aga,in, for each subimage query, we categorize the database images into five -
main .classes,; and the effectivehess of the search strategy is assessed by counting the number
of retrieved images which fall into each class; The dissimilarity score (D.S) for the retrieval

of the best 10 images is computed as:
DS = 7(2~ 1)+ 5(3 — 18) + (5= n0) + 15np + 40ng

‘where 7; indicates the number of images falling into Class j. The efficiency .of Search PH

can be assessed using the execution time (Tg) which measures the ¢ombined CPU&I/O
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' cost per query on a database of 1000 images.
Let ,uH, pr and ,u_] be 160, 80, and 40 respectlvely The expernments were rurl on a
Sun UltraSPARC 1 workstation usmg a page size of 1 KB and user preference ﬁ of 0.5 .
The results (the average DS and Tg values for the retrlevals of the best 10 images »from a
- cellection of 1000 images) are summarized in the tables end ﬁgures on the next few pages.

The Tr measures the efficiency and :the DS assesses the effectiveness.

e “h”-typed queries.

F iltering. T 64—riimensional Color Histograms
~Scheme || n4 B nc np = DS | TE
| H [19 2117 43 730|34:t195|

" Table 5.1: EXperimental_Results for Search PH (“h”%yped Queries)

“ ”

° -typed querles R

Filtering 64-dimensional Color Histograms

Scheme || na n8 nc 7p = DS| Tk

“H |15 22 1.8 4.5 78241 +16s ]|
I |17 21 1.8 44 75.81 5.9+ 43s |
HI 1.7 2.1 1.8 4.4 75853+ 11s

Table 5.2: Experlmental Results for Search PH (47 typed Querles)

4Withthe user preference 3 set to 0.5, both the color distribution and spatial information are of the
same level of importance.
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Results for Search PH ("i"-typed Queries)
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Figure 5.2: Experimental Results for Search PH (“i”-typed Queries)

“j"-typed queries

4
75.5 76

1
76.5

1
77

77.5

Dissimilarity Score

78

Filtering 64-dimensional Color Histograms
Scheme nA MB Nc Np = DSI Tg
H 0.9 2.1 25 4.5 822 |14+02s
I 1.5 2.2 1.8 4.5 78274+ 16s
HI 1.5 22 1.8 4.5 782 |22+ 03s
1J 1.6 2.0 2.1 4.3 75.2 | 77+ 16s
HIJ 1.6 2.0 2.1 4.3 752|251+ 03s

Table 5.3: Experimental Results for Search PH (“j”-typed Queries)
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Results for Search PH ("j"-typed Queries)
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Figure 5.3: Experimental Results for Search PH (“j”-typed Queries)

e “k”-typed queries

78

79

80

Dissimilarity Score

81 82

Filtering 64-dimensional Color Histograms
Scheme || na n8 nc D éDS[ T
H 0.5 2.0 2.7 4.8 89.810.7£0.1s
I 0.8 2.3 2.2 4.7 85.2)|3.1+05s
HI 0.8 23 2.2 4.7 85.2|113+0.1s
1J 1.1 2.1 2.2 4.6 826 | 3.3 £0.5s
HILJ 1.1 2.1 2.2 4.6 82.6 | 1.4 £ 0.2s
DK 1.2 2.0 2.2 4.6 824 | 34+05s
HIJK 1.2 2.0 2.2 4.6 824 1.6 £ 0.2s

Table 5.4: Experimental Results for Search PH (“k”-typed Queries)
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Results for Search PH ("k"-typed Queries)
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Figure 5.4: Experimental Results for Search PH (“k”-typed Queries)

Like Search PV, when operated with Padding and Reduction Algorithms, Scheme H is best
for“h”-typed queries, Scheme HI is best for “i”-typed queries, and Scheme HIJ is best for
both “j”-typed and “k”-typed queries. Unlike Search PV, the DS values for Search PH
appear to be higher than those for Search PV. However, the Tg values for Search PH
appear to be smaller than those for Search PV. In other words, while delivering efficiency,

Search PH suffers from a loss of effectiveness.

5.4 Horizontal-and-Vertical Search

Note that in Search PH, horizontal filters are used not only at one level, but at' all the
levels. Hence, the number of images to be carried over from one level to another needs to
be chosen carefully. If this set of numbers (ug, pr, and py) is not determined carefully
(say, the numbers are too small), then for some queries, an image I that gives a good

match at a finer scale could have been eliminated before reaching this finer scale. This
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mey h'z;pperr whéﬁ ,there are sufﬁeienﬂtly many image_s which are not as good as I at the
finer seele but which are better than I at the coarser'seale. Corlsequerrtly, while delivering
efficiency, Searc_h.PH may suffer from a less of effectiveness. So, we consid'er another
~ strategy —— Seareh- HV (Horizontal-and-Vertica]) —— which is a h.ybrrd of Séarc»h‘ }PV'ahd

| Search PH. With it, a horizontal ﬁ_llteris applied:» only to the. coarsest level‘ 5 and vertical’ |
Afilters ere then applied to the remaiﬁing levels. The idea is that all "M images m the .
database are checked by a horizontal filter at the coarse scale in the first iteration.- The

" best p matches (where u < p < M) are carried over from the current level to the next

level (finer scale); while poor rrréxtchee at the coarse Seele ere eliminared. Then, 511 these
best u _imagee are checked one after another usirlg' vertical filters. At arry point in time,

the current u smallest distances (at the finest scale of the u 1mages where u < p) are
kept. When an image is tested, if its distance value at the current scale is already greater
‘than some dlstance'value of the current u smallest, v_t,he’tested image can be eliminated. ‘
Otherwise, a finer scale is used. The process repeats urltil. the image is (1) eliminated or
(2)‘ added to‘becorne one of the current u smallest (when it'reaches the ﬁnest scale). By .
so domg, the detalled search with the use of vertical filters is applied not to the set of all

the 1mages, but only to its most promlsmg subset.

‘Definition 5.5 (Search HV) To conduct the Horizontal-and-Vertical Search for retriev-

~ ing the top u images from a collection of M images:

1. Check all M images at the coarsest scale/ level, and compute the distance value for.

each image.

2. Sort the 1mages in non- descendmg order of dlstance value. A subset of these images

(the i images with current smallest values) are.carried over to the next level.

SWith one level of horizontal level, we only need to carefully assign a value to one (instead of three)
predefined parameter i that controls the i images to be carried over.
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3. The first u images in this subset are checked at all remaining levels, and the distance
. value is computed for each image at the finest scale. These u ifnagéé become the

current top-u.
4. For each of the remaining p — u images: ‘

" (a) Let the second coarsest scale be the current level/scale.

(b) Compute the distance value. If the \}aplﬁe is less than some value of the top-u,
extend one level/scale (provided that we have not reached the finest level) and

repeat Step 4 (b) for the extended scale. ]

Example 5.4 Let us find the top two images from a collection of seven images using
Search HV (with Scheme HIJ). In the Afollowing.trace,:the number at the }sld't representing
an image at a particular level is the estimated distance value, a,nd.tvhe‘vsuper_script on its

léft denotes the search order. .

To find the top two images using Search HV

Img1l| Img2 | Img3 |Img4| Img5  |Img6 | Img7

.Level H st 95 " 2nd 5 3rd 65 4th g 5th 10 6th 70 ' 7fh 68
- = top five images are Images 1, 2, 3, 5, and 7 T '

Level I 8th 35 10th 30 | 12th 900 13th‘15 | 15th 78 '
Level J || oth 67 | 11th 32 14th 20

A \ 4 4 R
Top two || Img 1 | * Imgs Imgs ' Imgs Imgs
images - 2and 1| 2and 1 5 and 2 5 and 2

In Search HV, the histograms are examined image by image at the coarsest scale, and level

by level at the remaining scales. So, the way in which the precomputed feature vectors
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in the data file are organized depends on the filtering scheme. More precisely, for the

schemes which started at Level H, the best file organization is of the form:

D1 PsDPsifs slsIf -:o ['sI's I%
. . A
for M 1mages for Image 1 for Image 2 for Image M

Similarly, for the schemes which started at Level I, the best ﬁle organization is of the form

T IR GO Y . Psif e DPsI%
for M images for Image 1 for Image 2 for Image M

‘ and for the schemes which started at Levels J and K the best file organlzatlon is of

the form:

\IJS,IJS ‘e I'JSJ !KS IKS ..‘.' IKSJ

for M ?mages for M ‘i’mages

In general, the histograms of _the‘cdarsest scale are arranged in such a way that the
“histograms of o’ne image are followed by those of another image. By 50 doing, an efﬁcievnt
sequential read of these histograms at the coarsest scale is possible.‘ F(')r-‘the'v remaining
scales, histoérams are arranged in such' a way that for eac_h image, the histog'rams at thel

second coarsest scale are followed by the histograms at finer scales.
5.4.1 Analytical Evaluation
Cost Models:

To measure the efﬁc1ency of Search HV, we set up ccst models to estimate the CPU and the
I/O costs. The CPU cost depends malnly on the: number of hlstograms to be examined -
and the computation time T¢; the I/O cost depends malnly on the time requlred to
- sequentially or randoml)r access the pages cdntaining the data (color histograms). With N
- the file organization described above, histograms at the first chosen level can be accessed
seduentially. Given a minimum buffer si-ze (one page) and an intelligent buffer management

scheme, the number of page accesses at the remaining.levels can be esti_mated with the

© - 'use of statistical formulations.




Example 5.5 In Scheme HIJ, we examiue all M histograms at Level H. Then_,dfor each
of the best jig images carried .over ‘from Level. H, we e;(emiue the 4 Level-1 histograms,
and - if necessary 6, we consider the 4 Level-J histograms which represent the subregions
enclosed in the promising block of Level I. Hence, using a 64-dimensional color histogram

with page size P = 1 KB, the cost model for Scheme HIJ can be described as follows:

) The CPU cost is the product of Tc and the total uumber of histograms used in the
coruputation.' In Scheme ‘HIJ , Level-H histograms are examined for all M images,

4 Level-1 hiStograms are checked for each ot‘ the pp images, and 4 Level-J histograms
‘_are exammed for each of the s 1ma,ges (where M > pH 2 & = u, and py is
predefined but &s s determlned dynamlcally at runtime). Hence, C'PUH” = (M +

dpp + 48)Tc

e The 1/0 cost-is the sum of total seek times and total data transfer times. Using the
appropriate file organization for Search HV- mentioned atbove, an averatge seek time
(denoted by T'4) is charged for moving the read head to the hrst “record” at Level H,
and for each random page access of “records” at the second level (.Level D). Since all .
Level—I end Level-J “records” for a particular image are stored contiguously, only a
_m1n1mum seek time (denoted by TM) is charged for each jump between the data (for

~example, Jumplng from the fourth Level-1 hlstogram to the third Level J histogram
~ of the same image). Moreover, when a page of data (color histograms) is loaded, a

data transfer tlme (denoted by Tp) is charged.

More prec1sely, for Scheme HIJ, T4 is needed to get to the Level H hlstogram
of the ﬁrst image, and Tp is charged for loadlng the page containing the histogram.
Since all Level-H histograms arevstored contiguously, no seek is charged for accessing

subsequent Level-H histograms and only Tp is charged for each sequential page

SWe consider the 4 Level-J histograms of an image .if the D at Level I is less than any D of the
current top-u.
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access of data. Then, T4 is needed to get f_o the Level-I histograms of each irr;age
carried’ over frorﬁ Le'vel: H, and ‘TD' is.‘charged for loading the‘ page confaining the
histograms. Since only 4 histograms can ﬁf into a-page, if the 4 Level-J histograms
happen to be examined, then we lééd the next page. Thereis a brobability of % that
- ‘the selected 4 Level-J histogfams a;ré stored contiguously after the loaded Level-I

histograms. Hence, I/OE}/J =1+ pa)Ta+ %TM + (% +pg+&)Tp.
The cost models for other filtering schemes, color histograms of other dimensions, or other
- page sizes can be formulated in a similar manner.-. : ]
‘The cost models for the 15 ﬁlteriﬁ-g schemes (with pagesize P = 1 KB and using
64—dimensional color histograms) _afe shown'belowz '

1. Scheme H |
‘We examine all M histograms at Leyel H.
o CPUY = MT¢
o I/OHV =T, + M7,
‘2. Scheme I
We examine all 4M histograms ;i.t Level I. -
o« CPUHY = 4MT;
° f/OffvaA+MTD' ‘
. 3. Scheme HI

We examine all M histograms at Level H. For e.a;ch of the best g imageé carried.

»over‘ from Level H, we examine the 4 Level-I hiétograms;

° CPUII;IIVWI (M +4up)Tc
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' e I/OHI —-'_(1+,uH)TA+( +#H)T

.Where J7 H is. a predeﬁned parameter that controls the number of 1mages to be carried |

- over: from Level H to the next- level (Level I) 7, and its value hes between U and M.

y Scheme J

o We examine- all 16M hrstograms at Level Jo

e éPU?V = 16MTe

o I/OHY =T,y +4MTp

. Sche:me. HJ :

" We examine all M h1stograms at Level H For each of the best ,uH 1mages carrled

'

over frorn Level H, we examlne the 16 Level J hlstograms

ho"C'PUHV = (M + 16yH‘)Tc'

. I/OHJ = (1 +pw)Ta + (5 +4pm)Tp

. Scheme IJ

We examine all aM h1stograms at Level L. For each of the best K 1mages carrled over

'from Level I ‘we examine the 4 Level—J hlstograms whrch represent the subreglons

enclosed in the promlsmg block of Level L
. ® CPUHV =(4M + 4#[)TC‘

. I/ou = (14 u0)Ta + (M +u1)Tp

. Scheme HIJ
- We examrne all M hrstograms at Level H. For each of the best 1H 1mages carrred )

‘ over from Level H we examine the 4 Level I h1stograms and 1f necessary ) con31derv

Slmlla.rly, pr and pyin the followmg cost models. contrdl the number of images to be carned over to'-
the next available level from Level I and Level J respectlvely

8We consider the 4 Level-J histograms of an image if the D at Level I is less tha.n any- D of the current
top—u Slmlla.r conditions apply to the ﬁltenng schemes 1nvolvmg more than two levels. : o
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10.

11.

the 4 Level-J hlstograms which represent the subregions enclosed in the promising )

block of Level L.

J I/OHIJ = (1+pm)Ta+ 2Ty + (M + pg + &)Tp

where ug > & > u.

. Scheme" K

We examine all. 64M “histegrams at Level K.

o CPURlV = 64MTo

. I/OHV Ta+ 16MTp.

. Scheme HK

We examine all M histograms e;tl Level H. For each of the best py images carried

over from Level H, we examine'the 64 Level-K histograms.

. I/OHI\ = (1+#H)TA.+( + 16#H)T

Scheme IK
We examine all 4M hlstograms at Level .I. For each of the best 134 1mages carried

over from Level I, we examine the 16 Level-K histograms.

o CPUHY = (4M + 16u1)To

. I/OII\ =1+ p)Ta+ (M +4p)Tp

Scheme JK

We examine all 16M hlstograms at Level J. For each of the best pj 1ma,ges carried

~over from Level J, we examine the 4 Level-K hlstograrns
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-12.

- 13.

o CPUBY = (16M + 4p)T¢ .
o I/ORY = (1+ ps)Ta + (4M + py)Tp

Scheme HIK

‘We examine all M histograms at Level H. For each of the best py images carried

over from Level H, we examine the 4 Level-I histograms, and if necessary, consider

the 16 Level-K histograms which represen.t'the subregions enclosed in the promising

block of Level 1.

o CPUf{fie= (M + 4ppg + 16&10)To
o I/OFYi = (1+ uu)Ta + §10Tm + M+ pg + 4510)TD
where up > £10 > u.

Scheme; _HJK."

~ We examine all M hist‘ogr'a)ms.at ‘Level H. For each of the best pH images carried

14,

over from Level H, we examine the 16 Level-J histograms, and if necessé,ry, consider

the 4 Level-K histograms which represent the subregions enclosed in the promising

block of Level J.
o CPUHY, - (M + 16p5 +‘4§12')1.“0A |
o /0¥ = (14w Ta+ 48T+ (S + 4+ 602) T
where prr > €12 > .
Scheme IJK - | ,
We examine‘all 4 M histograms at Level 1. For each of thé best p1r images carried over

from Level I, we examine the 4 Level-J histograms which represent the subregions

enclosed in the promising block of Level I, and if necessary, consider the 4 Level—K '

~ histograms which represent the s_ubpegioné enclosed in the pro'mis‘,ing block of Level J.
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e CPUIJK = (4M +4ps + 4614)Te
. I/OF} = (1 + pur)Ta + B84Ty + (M + pr + &4)Tp
where AIILI >€14 2 u.

l5. Scheme HIJK
We examine all M 'histograms atiLevel H. For each of the best ,uH. images carried
over from Level H, we examine the 4 Level—I hlstograms then consider (if necessary)
the 4 Level-J histograms which represent the subregions enclosed in the promising
block of Level I, and consuler (if necessary) the 4 Level—K_hlsto_grams Whlc}i represent

* the snbregions enclosed in the promising block of Level J S

o CPUf[1x = (M + 4pn + 416 + 4&17)Tc
o 1/Of 1k = U+ pm)Ta+ (B + &) Tu + (B + pu + &6+ &17)Tp
where i,uH 2 §16 > &7 > u.

- Note from the cost models for ﬁlterlng schemes 1nvolv1ng more thatn two. levels, the value -
of each §J is’ determmed dynamically. For instance, in the best ‘case of Scheme HIJ the‘_
first u 1mages carried over from Level H are the top—u, and each Level-I dlstance for the
remaining pkH — u images is greater than all Level-J distances of the top u images. As
- such, tlie histograms at Level J for the pg — u images are not examined; thns_, & = u.
Conversely, in the worst case,. at atny point 1n .time the Lei/ele diStance of each image is
le_ss than some Level-J distance of the currént top-u. As such, all histograms at all levels

for the ug images are examined; thus, & = pg.

Analytical Results

The above cost models provide a good foundation for analyzing the 15 .ﬁlt'ering schemes,

and for discovering general trends. The computation time for Padding and Reduction:
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Algorithms (T¢) depends on the sizes of the subimage query and the image subregion. For
thé analysis, we let T be 3 ms for the 8-dimensional and the 64-dimensional histograms,
and 20 ms for the 512-dimensional histograms. We assume that each minimum seek (Tnr)
takes 5 ms, each average seek (T4) requires 15 ms, and the transfer of data in each
page (Tp) with page size P = 1 KB needs 0.3 ms, and that pug, gy and py are 160,
80, and 40 respectively. Analyses on finding u = 10 images from a database of M=1000
images were then conducted. As in Search PH, we summarize only the analytical results
for the 64-dimensional color histograms in the figures on the next few pages. In the figures,
for each filtering scheme, the minimum cost is shown by the solid line, and the additional

cost (if ény) is indicated by the dotted line.

CPU Costs for Search HV (n = 64)
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(a) CPU Costs for Search HV

Figure 5.5: Analytical Results for Search HV (64-dimensional Color Histograms)




1/0 Costs for Search HV (n = 64)
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(b) I/O Costs for Search HV
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Figure 5.5: Analytical Results for Search HV (Continued)
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As fop_Searches PV and PH, the followi'ng tr_'ends are observed:

1. The CPU cost is affected by the dlmensmn of the color hlstogram As the dlmensxon :

of the hlstogram grows the time requlred for CPU operatlons increases.

2. The 1/O cost is affected by the dimehsion of the color histogram: As the dimension

. of the histogram grows, the time required for I/O operations increases.

" 3. The comblned CPU and I/ 0] cost is affected by the dimension of the color hlstogram
© As the dlmensmn of the h1stogram grows the time required for both CPU and I/0

'opera,tlons 1ncreases.

- 4. Filtering schemes which start with filter J or K often take more CPU and I/O time.
For example, the combined CPU and I/O times demanded by Schemes J, JK, and
K are often longer than the times taken by the worst cases of many ﬁltermg schemes

| such as Schemes HIJ and HIJ K.

5. Filtering schemes which skip intermediate levelsof‘ten incur greater CPU and I/0

“cost. .

6. The combined CPU and I/O cost for the additional intermediate levels becomes
relatively less expensive as the dimehsion of the histogram'gvr:ows. For” example, .
as the dimension of the histogram increases, the combined cqst.for Scheme HJ is
usually more expensive than that for Scheme HIJ_ . Similarly, the combined cost for

: écheme HK 1s usually moreé expensive then that fof Scheme H'IKio‘r HJK, and either

of these two costs is more expensive tha,h that for Scheme HIJK.

In general, the above analytical results tend to favor the filtering schemes which start with;
Level H (or Level I), and those that do not skip ahy. intermediate level. More precisely,

Schemes H, 1, HI, 1J, H1J, 1JK, and HIJK are favored.
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5.4.2 Experimental Evaluation

To find the appfopriate filtering schemes fop Search HV, several experirnehts have been
performed using the same.set of data (colof histograms) as fer the experimental evaluation
- of Search PV Agam for each subimage query, we categorlze the database images into ﬁve A
. main classes and the effectlveness of the search strategy is assessed by countmg the number
of retrieved images which fall into each class. The d1ss1m11at1_ty score (DS) for the retrieval

of the best 10 images_ is com'puted as:
DS =7(2=n4) + 53— 18) + (5 — nc) + 157 + 407

where 7; indicates the nuihber of images falling into Class jl The efficiency of Search HV. '
_can be assessed using the execution time (Tg) which measures the combmed CPU&I/O
cost per query on a, database of 1000 i images.
Let _HH: pr and gy be 160,{8{0, and 40 respectively. The experlments were r.un on
-'a Sun UltraS‘PARCv—l_ wor.kstation using a page size of 1‘. KB. and usel preference Bof0.5. . .
The results (the average DS and Tg Valhes for the retrleyals of the best 10 images from a.
collection of 1000 images) are summarized in the tables and figures on the next few pages.

The Tx measures the efficiency and the DS assesses the effectiveness.

e “h”-typed queries

Filtering .64-dimensional Color Histograms |
- Scheme na 8 Nc Mp = DS | ' Tg

| H |]1921 1.7-4.3 ,730"|36.i19-s|

Table 5. 5 Expenmental Results for Search HV (“h” typed Querles) '
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@i
1

-typed queries

Filtering 64-dimensional Color Histograms
Scheme na mB Nc np = DS ] Tg
H 1.5 22 1.8 4.5 782|144+ 1.6s
| 1.7 2.1 1.8 44 75.8 | 84 £4.2s
HI 1.7 2.1 1.8 44 7.8163x13s

Table 5.6: Experimental Results for Search HV (“i"-typed Queries)

Results for Search HV ("i"~typed Queries)

T T T

8.5

oedl’

7.5F 7

O 64HI

Execution Time (in sec)

4.5 1
O 64H

4 1 1
755 76 76.5 77 715 78 78.5
Dissimilarity Score

Figure 5.6: Experimental Results for Search HV (“i”-typed Queries)
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e “j"-typed queries

Filtering
Scheme

64-dimensional Color Histograms

N4 1UB Mo D :>DS| Tg

H

0.9 2.1 25 4.5 822 | 1.7£02s

I

1.5 2.2 1.8 4.5 82| 7T7£16s

HI

1.5 2.2 1.8 4.5 7821 25£04s

L)

1.8 2.0 1.9 4.3 74.0]80x16s

HILJ

1.8 2.0 1.9 4.3 74.0]|28+£03s

Table 5.7: Experimental Results for Search HV (“j”-typed Queries)

9 T T

Results for Search HV ("j"-typed Queries)

8r O 641J

~
i3

(2]
T

Execution Time (in sec)
» [4)]
T T

w
T

0 64HIJ

U} 1

T T T T T

O 64l

O 64HI

O 64H

1 1 1 1 L

1
73 74 75

Figure 5.7: Experimental Results for Search HV (“j”-typed Queries)

76 77 78 79 80 81 82
Dissimilarity Score
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o “k”-typed queries

Filtering 64-dimensional Color Histograms
Scheme n4a B Nc np = DS I Tg
H 0.5 2.0 2.7 4.8 89.8109%0.1s
I 0.8 2.3 2.2 4.7 85.2 1 34+£05s
HI 0.8 2.3 2.2 4.7 852 | .7£0.2s
1J 1.2 2.1 2.1 4.6 8201 3.6+ 0.5s
HIJ 1.2 2.1 2.1 4.6 820 | 1.5£0.2s
[JK 1.3 2.1 2.0 4.6 814 (38+05s
HIJIX 1.3 2.1 2.0 4.6 814120+ 0.2s

Table 5.8: Experimental Results for Search HV (“k”-typed Queries)

Results for Search HV ("k"-typed Queries)

4 T T T T T T
O 64IJK
o 641J
35
o 64l
3r 4
o
()
w
£
;2.5 I
E
'—
=
S ol o 64HIK : i
3
[}
i 0 64HI
15F O 64HIJ 4
T 0 64H
0.5 1 1 L 1 5 = 1 1 1 1
81 82 83 84 85 86 87 88 89 90 91

Dissimilarity Score

Figure 5.8: Experimental Results for Search HV (“k”-typed Queries)

Like Searches PV and PH, when operated with Padding and Reduction Algdrithms,
Scheme H is best for“h”—typed queries, Scheme HI is best for “i”-typed queries, and
Scheme HIJ is best for both “j”-typed and “k”-typed queries. Unlike Search PH, the DS
values for Search HV appear to be lower than those for Search PH; unlike Search PV, the

Tk values for Search HV appear to be smaller than those for Search PV. In other words,
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Search HV keeps a good balance of efficiency and effectiveness.

5.5 The Best Search Strategy

Three search strategies — namely, Search PV, Search PH, and Search HV — have been
suggested to avoid the kind of frequent jumping incurred in the branch-and-bound strategy.
To find the best strategy among the three, analyses and experiments have been carried out.
Analytically, we set up cost models to evaluate the filtering schemes and estimate their
CPU, 1/0O, and combined CPU&I/O costs. All three strategies share a common trend:
Filtering schemes starting with Level H (or Level I) and those not skipping intermediate

levels are considered to be favorable.

CPU Costs for Three Search Strategies (n = 64)

16
e — HIUK
14 — 1K
12+
o 10
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&
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—_— HI PV
) — ] PH
(I —tiV
=]
0 L " L L L " L L
0 0.5 1 15 2 2.5 3 35 4
Time (in ms) x 10

(a) CPU Costs for Three Search Strategies

Figure 5.9: Analytical Results for Three Search Strategies (64-dimensional Color His-
tograms)
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1/0 Costs for Three Search Strategies (n = 64)
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(b) I/O Costs for Three Search Strategies

CPU + I/0 Costs for Three Search Strategies (n = 64)
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(c) Combined CPU and I/O Costs for Three Search Strategies

Figure 5.9: Analytical Results for Three Search Strategies (Continued)

As observed from Figure 5.9, the CPU, 1/0, and combined CPU&I/O costs for
Search PV are generally higher than those for the other two strategies. The costs for

Searches PH and HV are usually almost the same.
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I/0 Costs for Four Search Strategies (n = 64)
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Figure 5.10: 1/O Costs for Four Search Strategies (64-dimensional Color Histograms)

As observed from the above figure, the I/O costs for the branch-and-bound strategy
(denoted by B&B and indicated by purple lines) are potentially high. This explains why
we need to consider the three search strategies which reduce the 1/O costs.

Experimentally, subimage queries of arbitrary size are classified into four main
types, and we measure the execution time (showing the performance) and the dissimilarity
score (showing the degree of accuracy) for each of these favorite schemes. Again, all
three strategies agree on the results obtained when operated with Padding and Reduction
Algorithms. Scheme H with 64-dimensional histograms is the best filtering scheme for _'
“h”-typed queries, Scheme HI is the best one for “i”-typed queries, and Scheme HIJ is the

best for both “j”-typed and “k”-typed queries.
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Query. .~ .7 - Search Strategies _
Type .- Search PV '~ . Search PH Search HV.
o _MA 1B Nc_1D. N4 MB Nc Mp | 7Ma 1B NMc_ D
“ - 1.9 21717 43 | 1.9 21 1.7 4.3 1.9 2.1 1.7 4.3
| Scheme || = DS =730 |.° = DS =713.0 - =>DS=1730
H ||T5=4454+380s | Te =3.39+1.90s | Tg = 3.56 £ 1.91 s
5§ 1.8 2.1 1.8 4.3 1.7 21 1.8 44 | 1.7 21 18 44 |
Scheme || - = DS = 73.6 = DS=758 | =DS=758
HI:- | Tg =715+ 0.76s.| Tg = 5.33 £ 1.11 s TE =6.32 + 1.33s
“ 182019 43 [ 16.20 21 43 1.8 2.0 1.9 4.3
‘Scheme ||| = DS=740 | =DS=752 | ='DS=740
‘HU. || T5 =580+ 1.66s | Tg =247+ 0.28s | Tg'=2.76 + 0:33 s
“% [ 13202146 [ 1.1 21 22 46| 1.2 21 2.1 456
‘Scheme || =DS=818 | =DS=826 | =DS=820 "
HIJ TE=276:l:073S Tp=145%0.16 TE:154:|:021S

Table 5. 9 Experlmental Results for Three Search Strateg1es e

Comparing the runtimes and the accurac_iesv of the best cdnﬁguration for each strat-

' egy,' we found that Search HV is more efﬁcient than Search PV because the‘us‘e of vertical

: ﬁlters in the latter is. apphed to the whole set of all Mi 1mages In Search HV the deta1led‘

search W1th the use of vert1cal ﬁlters is apphed not’ to" the set of all the 1mages but only»

‘ to its most prom1s1ng subset

Search HV 1s more effectlve than Search PH; because the latter ‘uses horlzontal

' ',ﬁlters at all levels If the number of i 1mages to be carrled over. from the current level to the

next level is not determlned carefully (say, the number is too small), then for some quer1es

3

an 1mage 1 that g1ves a good match at a finer scale could have been ellmlnated before

reachmg this. ﬁner scale This may happen when there are sufﬁcnently many 1mages Wthh‘

- are not as good as I at the finer scale but better than I at the coarser scale. Consequently,
‘Wh1le dehvermg efﬁc1ency, Search PH may suffer from a loss of effectlveness In Search HV '
' a horizontal ﬁlter is apphed not to all the levels but to the coarsest level So we only .

'need to carefully -assign a value to one. (1nstead of three) predeﬁned parameter w that .
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controls the numbér‘of imaées to be carried'over.f As such, the chance of having the above
me_ntiohed I being elimiﬁﬁted before reaching the finer scale is reduced. - |

Moreover, the experimental _resﬁlts on Se_arches P‘V,.PH; and HV suggest that

‘ Séarcﬁ HV 1s the'best'stréfegy-'for the retrieval of desired images When operaﬁed with

. Padding_ and Re’ductidh Algorithms. The reasoh is théf.in addition to avoiding the kind

of fréqueﬁt; jumping ébsefved in the br;)dngh—and—bound strategy, Sear‘é}; HV als'o-.keeps a

balance of efficiency and effectiveness. °

5.6 Summary

Although the branch-and-bound algorithm is accurate iﬁ its search, it can be inefﬁciént for
large databases. InApartiéular, fhe nhmber of images the algorithm ‘must keep track of‘ca,n
" be large, and jilmbihg back and forth am(.)ng"images and SCaleé may frequentl.'y- be reguifed,
" To a‘voidlsuch, jﬁrﬁping, we studied three strategies, namely Seafch PV, Search PH, and
- Search HV. | - |
In Sear;h PV, the images are .ch'ec:ked one after anothervus‘ing vertical filters. At
any p’oi“ntAin time;~ a s.et'of % images currently_'ha,\iing smallest distan.c,e' values Aé,revl.{eptl.' For
each image, the anorithm keeps proceeding to finer-scales until (1) thedistancg value. at ’
a particﬁlar scale is already so large ‘th'at the image cannot Bé qdaiiﬁed as a good ﬁlatCh,
_.J or (2) the finest scale is reached and the image is either discarded or selected as a .member-.‘
.Of the answer 'set,‘ depending 6n the diétance value. | |
A In Search YPH, all the images in thé datab‘a»‘se are checked l;y the hérizontal filter
at the coarsest s:cale in the first iteration. Poor matches‘ at t:his scalé are fhen elimin@ted.
In subsequent iterations, images that are left from the ";;revivous scale/ levellarve'c'hecke_d by
. filters at finer scé,les,'-and poor mat‘c‘hes afe‘a.gain rerﬂdved; The procéssl repeats until the . -
finest scale is re“achedr and the top u images are returned. | |

Search HV is a hybrid of the above two in which we use a horizontal filter on the
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Afirst level and vertical filters on. the rémaining levels. The results of the analytical and

experimental investigations show that Search HV is the best strategy for.avoiding the

" frequent jumping and at the same time keeping a good balance of performance/speed and

accuracy. When operated with Padding and Reduction Algorithms, the best 10 desired
images can be retrieved efficiently and effectively from a collection of a thousand images

in about 3.5 seconds.
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Chapter 6
Conclusions

6.1 Conclusions

As network connectivity has ;:ontinued its explosi\}é growth and s_t.orage devices have be-
come smaller, faster, and lesé expe_nsive; the number of on-line digitai images has increased
rapidly. We can no longer rely solely on traditional database retrieval technolégy based
on manually associating textual descriptions Witﬂ imagé contents. Thé development of
’efﬁcient‘elmd effective cb;xtent-based ret.rieval sy,sféms based on aﬁtomated extracted con-
tents (such as colbr) are necessary. In order to achieve this goal, several researcii projects
have been carfied out. Over the past few years, multi-dimensional indexing structures
have been designed, multi-level ﬁltering.approaches have Been propbséd, and information
preserving transformations have been suggested for providing efficient ihdexing. Expres-
sive query language systems ha{ve' also beén develqped to accommodate efﬁcieﬁt querying
from image détabases for applications with dense and sparée ifnage spaces. Other research
projecté for supporting efficient and effective query processing and oétimization have also’
béen carried out. - | | |

With the populari.ty of similarity matching on co.lor‘and spafciai vin_t'"ormati'on, ﬁany :

"image database management systems store the information in local color histograms. To

143




process user queries some systems use ﬁxed grid segmentation»approaches : For further
1mprovement on the efﬁc1ency and the effectlveness of content- based retr1eval multiscale -
matchmg approaches have been proposed However, detalled analytical and exper1mental
vresults on the determination of the su1table number of levels for these approaches are
. seldom reported and comparlsons of dlﬁerent strategies for searching multiple scales are
also rare. Moreover, in many 51tuat10ns users are interested in, or can remember, only
local image contents, therefore sublmage query processing is needed Unfortunately, not
“many 1mage database management systems can handle arb1trary -size sub1mage queries
based on color and spatial srmilarity For the systems that can deal with subimage quer1es
of arbitrary size, multlscale matching is rarely used.

In this thesis, our first issue of investigation was to find a method for dealing with
arbitrary—siZe 'subimage queries." To answer queries of this kind, some systems segment an
image into several blocks, each of which has an associated color histogram. One problem
with this arrangement is that subimage queries may be of arbitrary size that not 'neces-
sarily an integral multiple of the chosen_ block size. Other systems use template-based
matching algorithms.' A key problem ivith those algorithms is that a lot of computation
is needed, ‘because of the large number of positions to be comp’ared. Correspondingly, ,
‘we proposed two algorithms called Paddmg and Reduction for deahng w1th sub1mage
" queries of arbitrary size. Knowmg the image subregion I represented by the precomputed
.feature vector may not necessarlly contam ‘the same number of pixels as the query Q, we
used Padding and Reduction Algorith'ms to estimate the best possible color histograms.
for Q and I. Here, vve either 1) enlarged Q into a new query @’ that is of the same size
as I or (2) reduced I to a new image subregion T’ that is of the same size‘as Q. In terms
‘of effectiveness, both algorithms give the same best-case lower bound to the histogram
distance., In terms of efficiency, the Padding Algorithm outperforms'the Reduction Algo- -

rithm when the size differential betwee_n the subimage query and the image subregion ,is“
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large, and vice versa when the differential ;issmall.

Given subimage queriesof arbitrary size, multiscale representation may improve
the efﬁciency and the effectiveness of content—based retrievals. The idea is that depending
on the scale or the need ofa given query, a rnore appropriate scale can be used.. So, a 4-level
representatlon was proposed such that the entire 1mage is. d1v1ded into four subregions
and each subreglon is recurs1vely divided 1nto four subreglons, and so on. Since image
contents are usually pre—extracted and stored, our second issue of 1nvest1gat10n was to
.determlne the sultable number of levels for such a representatlon To do so, we analytically

~and experimentally studied the performance and the accuracy of the multi-level ﬁlterlng

schemes available for the representatlon In the analyses, we used cost models to estirnate-
the CPU, 1/0, and,comblned CPU and I/O costs for ea'ch scheme. The results favor
the schemes which-start with the coarsest level (or the second coarsest level) of the 4-
level representation and those that do not skip 1ntermed1ate levels. In the experlments,
vvv‘given a sublmage query, we measured the executlon time (showmg the performance) and.
_computed- the d_1ss1m11ar1ty score (showing the accuracy). The results suggest that when
using Padding and Reduction Algorith'ms, the desired images can be retrieved efficiently.
and effectively using only the top three levels. Hence, a 3—leifel hie_rarchy (up to the 4 x 4
segmentation) is preferred. -

Several strategies for searching rnuitiple scales. can beapplied to the retr‘ievall‘ of .
desired images from a collection of 'database irnages which arestored in the multiscale
representation. Branch—and-bound is one of the strategieS' it is accurate in its :sea'rch
but it can be inefficient for large databases In partlcular the number of images to be
kept track of can be qulte large, and frequent Jumpmg back and forth among the. data'
lmay be required. So, our third issue of mvestlgatlon was to.find an efficient and effectlve .
strategy for searching rnultiple scales. In this thesis, we studied three search strategies,

namely Pure Vertical, Pure Horizontal, and Horizontal—and-Vertical.' In‘ the Pure Vertical
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Search, images ére chécked “vertiéally” by vertical filters 'Q-ne ,after‘ another, and a set of
potentiaﬂy desired images ié kept. After a new imagg is checked, it is either discarded

. or s_élected‘ as a membgr of the anS\}verv set. I‘n thev', Pure Horizontal Search, images are
checked “horizontally” level by level using horiz;)ﬁtal filters. After images ‘are checked at
a p_afticular level, pbof matches at thg;; level are elimina@ed,' apd all remaining images are
cafrigd QVéf to the next level where they .are checked by another horizontai filter. . The
'hybrid strategy — Horizontal—and—Vértlical _ uses a horizontal ﬁlter on the first levél and
vertical filters on the rén:laining levels for the most promising subset 6f the database im@ges.

To ﬁﬁd the best st'rategy.amon‘g the tﬁree, analyticaland experimental evaluatiql‘lsv were

" performed. The reéults indicate that .fﬁe Horizont;i—and-\}ertical Search is the best when

. 'op.erated‘ with Padding and Reduction Algorithms, nét only because the Search avoids the

kind of frequent jumping as in the branch.—and-‘bound, but because it keeps a good balance -

of perfofmance/_speed and accilracy. With it, the best 10 desired images can be r_etrieved'

efficiently and effectively from a collection of a thousand imagesfn about 3.5 seconds.

6.2 Future Work

Although' the results of tHe fhesis afe very prorﬁising, there are some aspects to coh.side_r _
for further improvement. One a,sbect is to investigate meth§ds to extend our“ Padding
and Reduction Algofithrhs for dealing \l)vith arbi'ltrary—size subim@ge queries of arbitrary
shapes. .For‘instance, a uséf may want to find images with a ship in the bottom right
corner. It is well known that human mémdry is weak in re@aining a fine granuquity of .
spatial ihfbrmation of color. The user may not remember (or he may not be interested in)
any other, portion of the images (not even a region next to the ship). In such a case, the
subirﬁage QUery he wants to submit may be of.irregular éhape‘ (as shown in Figure 6.1, for
example). Our Padding and Reduction Algof_ithms may be able to estimate the histogram

" distance. However, the algorithm for estimating the positional distance between the query
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and the image subregion may need to be modified; computational geometry techniques

may be required for handling queries of complex irregular shapes.

Figure 6.1: Example of a Subimage Query of Arbitrary Shape

Again, in some situations, due to the poor human memory capability for retaining
a fine granularity of spatial information of color, the user may only be able to recall the
information on the boundary of the region he is interested in, but not the center. In such
cases, the query is no longer “solid” but “hollow”. Examples of these queries are a ring-like
query and the one in Figure 6.2. If the “hole” is small, Padding and Reduction Algorithms
are expected to provide a reasonable estimation to the histogram distance. However, if the
“hole” turns out to be large, care needs to be taken in handling this “hollow” subimage
query of arbitrary size. Moreover, in some other situations, the user may not care about
the color information on the “hole”, and it can match any color. To deal with these kind
of queries containing “don’t care” parts, approaches similar to those for handling “hollow”

queries can be applied.

Figure 6.2: Example of a “Hollow” Subimage Query

Since some users have poor memories, they may demand support for “hollow”
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queries and queries containing “don’t care” parts. However, other users may remember
more than one portion of the images they have seen before. Hence, methods for handling
subimage queries with these multiple “known” portions (for example, Figure 6.3) are
also needed. A naive approach is to apply Padding and Reduction Algorithms to each
portion independently. An intersection is then applied to the candidate sets of images
returned by the Algorithms, and the resulting images are ranked thereafter. One problem
with this naive approach is that for a subimage query with multiple “known” portions,
performing Padding and Reduction for each portion may be time-consuming. Hence, more
efficient approaches are necessary for handling arbitrary-size subimage queries of arbitrary
shapes, “hollow” queries, queries containing “don’t care” parts, and queries with multiple

“known” portions.

LR

Figure 6.3: Example of a Subimage Query with Multiple “Known” Portions

Enhancements to multiscale search strategy should also be explored. In the pro-
cess of determining the appropriate number of levels in the multiscale representation and
finding the best search strategy, the histograms which are examined during a seérch are
of the same dimensibn. For example, with the best scheme for handling “j”-typed queries,
all the histograms checked at Levels H, I, and J are of 64 dimensions. For possible en-
hancement, we may explore the use of histograms of mixed dimensions. For example, in
the Horizontal-and-Vertical Search, we can study the possible improvement (or degrada-
tion) using 512-dimensional color histograms for horizontal filtering on the first level and

8-dimensional color histograms for vertical filtering on the remaining levels.
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Moreover, in the experiments foil determining the appropriate number of levels in
the mulfiscale .representétion and for finding. the best search strategy, color histograﬁs
of 8, 64, and 512 din{ensions are used. Theée color histograms were created"lf(‘)r feal
images collected from \'rarious sources and coveriﬁg wide. application domains. However,
the possibility of bias in particular domains may exist. Correspondingly, we can generate
‘rea,listié' raﬁdom color histograms [Stricker 1994], and use the resulting histograms to

strengthen our findings.
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