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Abstract

The purpose of computer vision is to extract useful information from images. Image
features such as occluding contours, edges, flow, brightness, and shading provide geomet-
ric and photometric constraints on the surface shape and reflectance of physical objects
in the scene. In this thesis, two novel techniqués are proposed for surface reflectance
extraction and surface recovery. They integrate geometric and photometric constraints
in images of a rotating object illuminated under a collinear light source (where the illu:
minant direction of the light source lies on or near the viewing direction of the camera).
The rotation of the object can be precisely controlled. The object surface is assumed to
be C? and its surface reflectance function is uniform.

The first technique, called the photogeometric technique, uses geometric and photo-
metric constraints on surface points with surface normal perpendicular to the image plane
to calculate 3D locations of surface points, then extracts the surface reflectance function |
by tracking these surface points in the images. Using the extracted surface reflectance
function and two images of the surface, the technique recovers the depth and surface
orientation of the surface simultaneously.

The second technique, named the wire-frame technique, further exploits geometric
and photometric constraints on the surface points with surface orientation coplanar with
the viewing direction and the rotation axis to extract a set of 3D curves. The set of 3D
curves comprises a wire frame on the surface. The depth and surface orientation between
curves on the wiré frame can be interpolation by using geometric or photometric méthods.
The surface reflectance function can be extracted from the points on the wire frame and

used for photometric interpolation.
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The wire-frame technique is superior because it does not need the surface reflectance
function to extract the wire frame. It also works on piecewise uniform surfaces and
requires only that the light source be coplanar with the viewing directioﬁ and the rotation
axis. In addition, by interpolating the depth and surface orientation from a dense wire
frame, the surface recovered is more accurate.

The two techniques have been tested on real images of surfaces with different re-
flectance properties and geometrié structures. The experimental results and comprehen-
sive analysis show that the proposed techniques are efficient and robust. As an attempt
to extend our research to computer graphics, work on extracting the shading function

from real images for graphics rendering shows some promising results.
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Chapter 1

Introduction

1.1 Background and Objectives

Computer vision is the process of using computers to extract useful information about
the physical world from images. The inforrn.ation to be extracted can be color, shape,
texture, motion, or depth as well as surface reflectance, orientation and location. To ex-
tract the right information, a set of constraints has to be identified and used to interpret
images unambiguously. These constraints can be features in images such as contours,
surface marks, edges, image brightness and shading. They can also be knowledge and
assumptions about the objects in the scene and the imaging conditions, such as smooth-
ness of the object surface, the reflectance properties of the object surface, motion pattern
of the object, and the properties of the light source.

Image features provide geometric and photometric constraints on the surface shape
and reflectance of the physical objects in thé scene. These constraints can be used to ex-
tract the surface reflectance function and surface shape. Conventional stereo techniques,
which use only geometric constraints such as surface marks and edges, cannot recover
objects of uniform reflectance. Shape from shading techniques which use only one image
are usually computationally intensive and non-robust.

The major objective of this thesis is to develop robust techniques for surface re-
flectance extraction and surface recovery in a controlled environment by using both ge-

ometric and photometric constraints. The secondary objective is to apply the extracted
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reflectance function to computer graphics for realistic rendering.

1.2 Our Approach

To achieve our objectives, we explore and integrate geometric and photometric con-
straints onﬂirnages of a rotating object illuminanted by a collinear light source (where
the illuminant direction of the light source lies on or near the viewing direction of the
camera) for extracting surface reflectance function, and surface shape. The images are
taken under orthographic projection. The object surface is C?. The reflectance of the
surface is assumed to be uniform. The rotation axis of the object is perpendicular to the
viewing direction, and the rotation angle of the object can be controlled.

Although the surface is smooth and uniform, there are still a number of features such
as singular points (image points of maximum brightness), occluding contour points (image
points projected from surface points with surface normal perpendicular to the viewing
direction), and brightness in the images. Each individual image feature constrains the
surface shape and reflectance. Of critical importance is that these image features are not
independent and their integration can yield more useful constraints about the surface.
For example, under a collinear light source and orthographic projection, a singular point
In one image is rela‘téd to an occluding contour point in another image taken after /2
rotation of the object. From the relation between the singular point and its corresponding
occluding contour point, the 3D location and surface orientation at the singular point
can be determined.

Under the illumination of a collinear light source and orthographic projection, the
surface reflectance function, which describes the relation between the image brightness
and the surface orientation at a surface point, is a function only of the emergent angle, the

angle between the viewing direction and the surface normal. Because of this simplicity,
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the surface reflectance function can be determined by tracking brightness and surface
orientations of some surface points on a rotating object.

Assuming the reflectance function is strictly monotonic, then its inverse exists. The
inverse of the extracted surface reflectance function can be used to determine the ori-
entation at a surface point. The image brightness value of a surface point provides one
constraint on its surface normal. The brightness values of a surface point in two images
taken after the object rotation by two different angles will fully determine its surface
normal. To extract the brightness values of a surface point in two different images, the
projections of the surface point in the two images must be known. The: projections can
be computed from the 3D location of the surface point.

For a C? surface, the locations of surface points can be integrated from surface orien-
tations. If surface orientation is known everywhere on the surface, then what is needed -
is the location of a starting surface point for the integration. As an image is a discrete -
2D spatial array, the integration at each step is approximated by the first-order Taylor
series.

Suppose the location of a surface point is known. Its surface orientation can be
determined from its brightness values in two images. Then the locations of its neighboring -
surface points can be approximated by the first-order Taylor series. For each neighboring -
point, after its location has been obtained, its projections on images can be located and -
its surface orientation caﬁ be determined from its brightness values in. the images. The
location and surface orientation at each neighboring point can be used to calculate the
loc“ations of the surface points around each neighboring point. In this way, the 3D location
and surface and surface orientation can be recovered over the entire visible surface.

By further exploring and integrating the geometric and photometric constraints, we -
find that the location and surface orientation on a p = 0 curve (a curve on which the

surface normal at every point is parallel to the plane of the rotation axis and viewing
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direction) can be determined without the surface reflectance function. Each point on a-
p = 0 curve gives the same brightness value in the two images taken after the object has
been rotated by the same angle but in the two different directions. The disparity of the-
projections of a surface point in the two images depends only on the depth of the surface
point. The depth (the distance from a surface point to the plane which is parallel to
the image plane and contains the rotation axis) on a p = 0 curve can be measured from -
the corresponding occluding contour in the image taken after 7/2 rotation of the object.
Using these constraints, the projections of a p = 0 curve in the two images are found by
a search method. Then the location of the p = 0 curve is calculated from the projections. .
Rotating the object by an angle, another 3D curve on the surface will become a p = 0
curve. The location of the curve can be found by the same method. In this way, a set of.
curves on a surface can be obtained.

The surface reflectance function in computer vision and the shading function in com-
puter graphics both describe the relation between brightness and surface orientation in
the image formation process. A typical shading function has a set of parameters and
these parameters are usually determined heuristically. The surface reflectance function
extracted from images directly comes from the image formation process. In theory and
practice, to achieve realistic graphics rendering, the reflectance function extracted from
images will give better results than the heuristic shading function. The shading function
is intended to render objects under arbitrary viewing and illuminant directions while
the surface reflectance function extracted from real images only gives the relation un-
der a collinear light source. However, the surfa;ce reflectance function can be considered
as a shading function under a collinear light source and the parameters of the shading
function can be estimated from the surface reflectance function. Then the estimated
shading function can be used to generate synthetic images of surfaces to achieve realistic

rendering.
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a. 0 rotation b. 7/6 rotation c. m/3 rotation d. m/2 rotation
Figure 1.1: Four images from an image sequence of a rotating vase.
1.3 Experimental Results

The techniques have been tested on real images of several objects with different sur-
face reflectance properties and surface geometry structures. Figure 1.1 shows four of
a nineteen image sequence of a rotating clay vase. The solid line in Fig. 1.2 displays
the surface reflectance function extracted from the image sequence. Figures 1.3 and 1.4
show the depth and surface orientation recovered from images using the photogeometric
technique.

Figure 1.5 shows six of a thirty six image sequence of a rotating porcelain cup. Fig-
ure 1.6 shows the 3D wire frame extracted from the image sequence using the wire-frame
technique. Figure 1.7 shows the recovered surface of the cup.

The preliminary experiments on estimating the shading function from real images for
graphics rendering show that the technique is feasible. The dashed line in Fig 1.2 repre-
sents the shading function estimated from the surface reflectance function. Figure 1.8 1s a
group of synthetic images generated by rendering the surface orientation data, recovered

by the photogeometric technique, with the shading function. Each image in the group of




Chapter 1. Introduction 6

Emergent Angle e (degrees)
W H [9)] [e)] ~l o [{o]

n
o
T

—
o
T

0 50 ) 100 150 200 250
Image Brightness I(e)
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0 rotation 7 /3 rotation 27 /3 rotation

T rotation 47 /3 rotation 57 /3 rotation

Figure 1.5: Six images from an image sequence of a rotating cup. The label indicates
the rotation angle of the object. The pig figure violates the smooth and uniform surface
assumption.

Figure 1.6: A 3D wire frame Figure 1.7: The surface depth plot of
extracted from images of a cup the recovered cup
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a. illuminated b. illuminated c. illuminated d. illuminated
at (0,0,1) at (—tan g,0,1) at (tan £,0,1) at (0,tan {5, 1)

Figure 1.8: Synthetic images of the vase rendered with the estimated shading function.

a. illuminated b. illuminated c. lluminated d. illuminated
at (0,0,1) at (—tanZ,0,1)  at (tanf,0,1)  at (0,tan {5, 1)

Figure 1.9: Real images of the vase viewed and illuminated under the similar conditions.
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real images (see Fig. 1.9) corresponds to an image in the group of synthetic images. The-
corresponding images are 1lluminated and viewed under the same condition so that the
visual comparison can be made to verify the similarity between the real and synthetic

images.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 gives a comprehensive survey of the work closely related to this thesis.

Chapter 3 explores geometric and photometric constraints as well as their relations
in an image sequence of a rotating object illuminated under a collinear light source.

Chapter 4 proposes what we call the phbtogeometric technique, which extracts the
surface reflectance function from an image sequence and then recovers the surface depth:
and orientation using the surface reflectance function.

Chapter 5 describes what‘ we call the wire-frame technique, which extracts a 3D wire
frame on an object .surface from the image sequence of the object without using the:
surface reflectance function.

Chapter 6 discusses the practical problems with the experimental conditions and the.
measures used to overcome these problems. This chapter can be skipped without affecting’
the understanding of the rest of this thesis.

Chapter 7 evaluates the proposed techniques and analyzes the errors caused by various®
factors by using real and synthetic images of an object with ground truth.

Chapter 8 presents preliminary work on eétimating a shading function from real im-
ages for realistic graphics rendering.

Chapter 9 summarizes this thesis, discusses the strengths and limitations of our ap-

proach, and suggests future research directions.




Chapter 2

Previous Research

This chapter is a general overview of surface recovery from brightness in images. The
overview also includes some related work in surface recovery by using or integrating other
image features with brightness. Surface recovery refers to the process of reconstructing
the 3D shape of an object from one or more images. Surface recovery from brightness
is based on the fact that the surface reflection is determined by surface geometric and
reflectance properties when the illuminant and viewing conditions are fixed. The survey:
starts with the various surface reflectance models that have been used in computer vision-
and computer graphics. Techniques for estimating the surface reflection function are
presented in Section 2. Theories and techniques for surface recovery from brightness.-
are reviewed in Section 3. An investigation of surface recovery techniques from relative
rotation between an object and a camera is given in Section 4. A brief overviéw of .
shape from contour methods is presented in Section 5. The strategies and techniques of
integrating different image features or different vision modules are viewed in Section 6.

A summary of the survey is given in the final section.

2.1 Surface Reflectance Models

The foundation of surface recovery from image brightness is the constraint on the relation:
between surface geometry and its surface reflectance. This constraint has been formulated.
for different reflectance models. Three representations can be used to express these

reflectance models. First, surface reflectance can be expressed in terms of BRDF [29],

10
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which stands for Bidirectional Reflectance Distribution Function. Let the light source
direction be (0;,¢;) and the viewing direction be (0., ¢.) in a local coordinate system
specified by polar angle and azimuth. The BRDF, expressed as f(8;, ¢;; 0, ¢.), is the ratio
of 0E(9;, ¢;), the radiance falling on the surface from the direction (6;, ¢;), to d L(f., ¢.),
the irradiance of the surface as seen from the direction (., ¢.). For an isotropic surface,
its surface reflectance at a surface point is invariant to the rotation around the surface
normal at the point, so its surface reflectance can be expressed as ¢(i, e, g) in an object
centered coordinate system [27]. The incident angle ¢ is the angle between the incident
ray and the surface normal, the emergent angle e is the angle between the emergent ray
and the surface normal, and the phase angle g is the angle between the .incident and
emergent rays. When both the illuminant and viewing directions are fixed, the surface -
reflectance can be expressed as a reflectance map R(p,q), with p and ¢ as the surface -
slopes in the z and y direction [28, 29]. The BRDF is the most general and powerful. The
reflectance function qb(z, ¢,g) and the reflectance map R(p,q) can be be calculated from
the BRDF [33]. While the reflectance map is the most restrictive, the viewer centered
representation makes it amenable to applications in physics-based vision, especially for

surface recovery from image brightness.

2.1.1 Lambertian model

The Lambertian reflectance model [29] is the rﬁost widely used reflectance model in
computer vision. In the Lambertian model, the intensity of the reflected light only
depends on the incident direction and the intensity of the light source. The change of the
viewing direction will not affect the observed intensity of the reflectance. The reflectance
function of a Lambertian surface can be expressed as E = £ cos i, where ¢ is the incident

angle and p 1s the surface’s albedo. The albedo of a surface is the fraction of the light

incident on the surface that is reflected over all the directions.




Chapter 2. Previous Research 12

2.1.2 * Torrance-Sparrow model and Beckmann-Spizzichino model

The Torrance-Sparrow and Beckmann-Spizzichino models are originally from the optics
community and have been extensively used in computer vision and computer graphics.
to derive other reflectance models. Both describe primarily the phenomenon of specu-
lar reflection. In the Beckmann-Spizzichino model [2], the surface height is assumed to
be normally distributed, and the light reflectance is described as the reflection of plane.
electromagneti;: waves. The wavelength of the incident light is small compared to the-
undulation of the surface, and the surface is assumed to be a perfect conductor, such as
copper and aluminum. The reflectance function of a metal surface is modeled by two
components: a specular component which consists of a broadly distributed lobe with sig--
niﬁcarft specular reflection into many different directions, and a specular spike which is a
mirror-like reflection and can only be seen in the specular direction. The magnitudes of
the two components change as the surface roughness changes. In the Torrance-Sparrow -
model [68], the surface is treated as a collection of planar micro-facets, and the light re--
flection is described as the reflection of directional rdys from surface. The model assumes
that the wavelength of the light is much smaller than the size of the micro-facets. A
specular reflection component is used to represent the direct reflection from the incident
direction to the viewing direction by the micro—fdcets on the surface. The magnitude
of the specular reflection is determined by the angle between the viewing direction and
the vector which bisects the incident direction and the viewing direction. A diffuse com-
ponent is used to model the multiple reflection and internal scattering of among the-
micro-facets on the surface. This diffuse component is modeled as Lambertian. Unlike |

the Beckmann-Spizzichino model, the Torrance-Sparrow model can predict reflections’

from both conductors and non-conductors.
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2.1.3 Diffuse-reflection model

Subsurface multiple reflection and internal scattering are usually termed diffuse reflection
and considered as Lambertian which depends only on the incident direction. By observa-
tion of experimental data, Wolff [73, 74, 75] pointed out that for dielectric surfaces; such
as surfaces of plastic and ceramic, the Lambertian reflectance model is only valid when
both incident angle and emergent angle are less than 50°. Using results of radiative-
transfer theory and considering surface boundary effects on subsurface scattering, he
derived a new diffuse reflection model for smooth inhomogeneous dielectric surfaces. In
his model, the diffuse reflection is a function of both viewing angle and incident angle
and the diffuse albedo is calculated from physical parameters of the dielectrical surface.

- Oren and Nayar [50, 51] also pointed out that the Lambertian model can prove to be a
very inaccurate approximation to the diffuse component. They described a phenomenon
in which the brightness value of a rough diffuse surface increases as the viewer approaches
the source direction. They presented a different diffuse model for rough diffuse surfaces.
In their model, the diffuse reflection also depends on both the incident direction and
the viewing direction. Compared to Wolft’s diffuse model, their model is not limited
to surfaces of dielectric materials and can be applied to both isotropic and anisotropic

rough surfaces.

2.1.4 Three component reflection model

Based on the comparison between Torrance-Sparrow model and Beckmann-Spizzichino
model, Nayar et al. [47] proposed a surface reflectance model of three components: a dif-

fuse lobe, a specular lobe and a specular spike. The diffuse lobe is considered as Lamber-

tian. The specular lobe is expressed by the specular component in the Torrance-Sparrow
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model. The specular spike is expressed by a modified specular spike in the Beckmann-
Spizzichino model. This three component reflection model unifies the Torrance-Sparrow

and Beckmann-Spizzichino models and can be applied to a wide class of surfaces.

2.1.5 M-lobed reflectance model

The m-lobed reflectance model [65] was proposed by Tagare and deFigueiredo. Tagare
and deFigueiredo observed that most previous reflectance models have “lobes” and these
lobes have a common mathematical structure. They formulated these properties and
constructed a class of reflectance functions called m-lobed reflectance maps. They define
the plane of incident direction and viewing direction as the principal plane and a set
of vectors which lie on the principal plane and between the incident direction and the
viewing direction as principal vectors. In an m-lobed reflectance map, except for a
constant term, each lobe is associated with a principal vector and each lobe is a monotonic
function of the angle between the surface normal and the associated principal vector. The
multiple lobe reflectance model is not derived from physical principles and it is only a
mathematical abstraction. However, this model proved to be useful in the theoretical

analysis of non-Lambertian photometric stereo [65].

2.1.6 Reflectance map

The reflectance map was introduced by Horn [28, 29]. It relates the orientation of the
surface normal to the image intensity caused by that orientation. A surface z is expressed
as a height function on the image plane in coordinates «,y. The surface orientation is
determined by the gradient (p,¢) with p = 0z/0z and ¢ = 0z/Jdy. When the surface
type and illuminant configuration are given, the image intensity is a function of p and ¢.

The function is called reflectance map and written as I = R(p, q). The reflectance map
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can be calculated from the BRDF and the surface reflectance function ¢(z, e, ¢g) [27, 33,

28, 78, 29].

2.1.7 Reflectance models in computer graphics

In computer graphics, a number of reflectance models have been developed for rendering
a surface to achieve visual reality [19]. One of the widely used model is the Phong-Blinn
model of three components: the ambient component, diffuse component, and specular
component. The ambient component is the reflectance caused by illumination from the
light reflected from surfaces present in the environment. The diffuse component is -Lam-
bertian. The specular component is represented by the Torrence-Sparrow model. An
alternative for the specular componént is Phong’s model [19] in which the specular re-
flection is approximated by cos™ a. The angle « is the angle between the viewing direction
and specular direction. The eéxponent n is the roughness of the surface. The above mod-
els are based on hueristic approaches. Some physics-based reflectance models {16, 24]

have been developed for realistic rendering.

2.2 Estimating the Surface Reflectance Function

The BRDF of a surface can be determined experimentally by using goniometers. ‘A go-
niometer has two axes of rotation so that the device or a sample surface mounted on it can
be accurately adjusted in any direction. This procedure is tedious and impractical [29]
since at least three variables are involved. The surface reflectance can also be calculated
from physical parameters of the surface material. However, the physical parameters of
a surface material are generally not available. Even if these parameters are known, the
calculation is still very complicated since the reflectance properties of a surface are also

related to the properties of the light source such as polarization and wave length. The
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reflectance function can also be measured or computed from the images of a surface. In
general, precisely calculating the reflectance function of a surface under arbitrary illumi-
nant and viewing directions is impossible and sémetimes unnecessary. For example, in
photometric stereo, the surface reflectance maps obtained under a fixed viewing direction

with three different illuminant directions are sufficient for extracting a surface shape.

2.2.1 Estimating reflectance parameters from one image

Under the assumption of Lambertian reflectance or Lambertian reflectance plus a con-
stant component, it is possible to estimate jointly the composite albedo (product of
albedo and the illuminant intensity) and the constant component with surface orienta-
tion from just one image. Zheng and Chellappa [85] showed that if the surface normals
have a certain kind of distribution, the composite Lambertian albedo and the constant
component as well as the illuminant direction of the light source can be derived from the
first and the second statistical moments of the brightness values in one image. Lee and
Rosenfeld [41] showed that after the tilt and slant at a surface point have been found, the
composite albedo at a surface point can be calculated from its image intensity value and
the image intensity values of its two opposite neighbor points in the gradient direction.
In [8], Brooks and Horn describe a regularization method which estimates the surface
orientation and the composite albedo at the same time in an iterative computation. Un-
der the spherical point (point on a sphere) approximation and Lambertian reflection,
Pentland [53] proved that the composite Lambertian albedo, surface orientation, illumi-
nant direction and curvature can be calculated from the image intensity and the first and
second directives of the image intensity at a surface point.

Estimating the surface reflectance from one image only applies to surface of simple
reflectance properties. Other restrictive assumptions have to be made and the results are

usually not accurate.
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2.2.2 Joint estimation using photometric stereo images

Some techniques attempt to avoid the calibration process in Woodham’s photometric
stereo. A common point among these techniques is that they assume that the surface
reflectance function has some particular form with undetermined parameters and these
parameters are jointly estimated with surface orientation. Coleman and Jain [14] devel-
oped four light-source photometric stereo to extract the shape of textured and specular
surfaces. In their work, they assume that the textured surface has Lambertian reflectance
FE = Rcost with varying reflectance factor R, and four light sources are distributed in a
way so that at any surface point, no more than one light source would cause a specular
reflection. From every triple of the four intensity values of a surface point, a value for
the reflectance factor is calculated and a relative deviation of the four values for the
reflectance ‘fa,ctor is computed. If the relative deviation is smaller than a threshold, a
specular component is not considered to be present and the reflectance factor is com-
puted as the average of the four. If the relative deviation is -gfeate'r than the threshold,
the reflectance factor is considered as.'thel smallest of the four.

Solomon and Ikeuchi [59] also use four light source photometric stereo. They assume
a simplified Torrance-Sparrow reflectance model for a uniform surface. They divide the
surface into regions illuminated by different numbers of light sources.. In the four light
source illuminated area, they use a method, which is similar to that of Coleman and
Jain [14], to compute the Lambertian albedo and the surface normal and to segment
image pixels into Lambertian and sbecular. They propagate the results to the area
illuminated by three light sources and then to the area illuminated by two light sources
to compute surface normals and segment the image pixels. To estimate the specular

roughness and the specular strength, an optimization procedure is called to search for

the values of the reflectance parameters which fit the brightness values of the specular
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image pixels into a simplified Torrance-Sparrow reflectance model.

Tagare and deFigueiredo [64] use eight light sources and an a priori estimate of pa-
rameters of a reflectance function with Lambertian and specular components to compute
the reflectance function. and the surfacé orientation by using regularization.

Estimating the surface reflectance from photometric stereo images can deal with more
complicated surface reflectance and obtain more accurate results than methods that rely

on a single image.

2.2.3 Photometric sampling

Photometric sampling [49] is a method for obtaining shape and reflectance from a large
number of images. FEach image is taken with a different position of an extented light
source. A hybrid reflectance model of a Lambertian component and a specular spike
component is assumed and the image intensity at a surface point is sampled at a minimum
sampling frequency determined by the angle width of specular component of the extended
source radiance function. The extraction of the surface orientation, the strength of
the Lambertian component and the strength of the specular component are all based
on two constraints: the unique surface orientation constraint and minimum sampling
frequency consfraint. The algorithm tries to separate the intensity values containing
only a Lambertian component from the intensity values containing both Lambertian and
specular components. The intensity values containing only a Lambertian component are
used to compute the surface