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A b s t r a c t 

The purpose of computer vision is to extract useful information from images. Image 

features such as occluding contours, edges, flow, brightness, and shading provide geomet­

ric and photometric constraints on the surface shape and reflectance of physical objects 

in the scene. In this thesis, two novel techniques are proposed for surface reflectance 

extraction and surface recovery. They integrate geometric and photometric constraints 

in images of a rotating object illuminated under a collinear light source (where the illu^ 

minant direction of the light source lies on or near the viewing direction of the camera). 

The rotation of the object can be precisely controlled. The object surface is assumed to 

be C2 and its surface reflectance function is uniform. 

The first technique, called the photogeometric technique, uses geometric and photo­

metric constraints on surface points with surface normal perpendicular to the image plane 

to calculate 3D locations of surface points, then extracts the surface reflectance function 

by tracking these surface points in the images. Using the extracted surface reflectance 

function and two images of the surface, the technique recovers the depth and surface 

orientation of the surface simultaneously. 

The second technique, named the wire-frame technique, further exploits geometric 

and photometric constraints on the surface points with surface orientation coplanar with 

the viewing direction and the rotation axis to extract a set of 3D curves. The set of 3D 

curves comprises a wire frame on the surface. The depth and surface orientation between 

curves on the wire frame can be interpolation by using geometric or photometric methods. 

The surface reflectance function can be extracted from the points on the wire frame and 

used for photometric interpolation. 
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The wire-frame technique is superior because it does not need the surface reflectance 

function to extract the wire frame. It also works on piecewise uniform surfaces and 

requires only that the light source be coplanar with the viewing direction and the rotation 

axis. In addition, by interpolating the depth and surface orientation from a dense wire 

frame, the surface recovered is more accurate. 

The two techniques have been tested on real images of surfaces with different re­

flectance properties and geometric structures. The experimental results and comprehen­

sive analysis show that the proposed techniques are efficient and robust. As an attempt 

to extend our research to computer graphics, work on extracting the shading function 

from real images for graphics rendering shows some promising results. 
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Chapter 1 

In t roduct ion 

1.1 Background and Objectives 

Computer vision is the process of using computers to extract useful information about 

the physical world from images. The information to be extracted can be color, shape, 

texture, motion, or depth as well as surface reflectance, orientation and location. To ex­

tract the right information, a set of constraints has to be identified and used to interpret 

images unambiguously. These constraints can be features in images such as contours, 

surface marks, edges, image brightness and shading. They can also be knowledge and 

assumptions about the objects in the scene and the imaging conditions, such as smooth­

ness of the object surface, the reflectance properties of the object surface, motion pattern 

of the object, and the properties of the light source. 

Image features provide geometric and photometric constraints on the surface shape 

and reflectance of the physical objects in the scene. These constraints can be used to ex­

tract the surface reflectance function and surface shape. Conventional stereo techniques, 

which use only geometric constraints such as surface marks and edges, cannot recover 

objects of uniform reflectance. Shape from shading techniques which use only one image 

are usually computationally intensive and non-robust. 

The major objective of this thesis is to develop robust techniques for surface re­

flectance extraction and surface recovery in a controlled environment by using both ge­

ometric and photometric constraints. The secondary objective is to apply the extracted 

1 



Chapter 1. Introduction 2 

reflectance function to computer graphics for realistic rendering. 

1 . 2 Our Approach 

To achieve our objectives, we explore and integrate geometric and photometric con­

straints on images of a rotating object illuminanted by a collinear light source (where 

the illuminant direction of the light source lies on or near the viewing direction of the 

camera) for extracting surface reflectance function, and surface shape. The images are 

taken under orthographic projection. The object surface is C2. The reflectance of the 

surface is assumed to be uniform. The rotation axis of the object is perpendicular to the 

viewing direction, and the rotation angle of the object can be controlled. 

Although the surface is smooth and uniform, there are still a number of features such 

as singular points (image points of maximum brightness), occluding contour points (image 

points projected from surface points with surface normal perpendicular to the viewing 

direction), and brightness in the images. Each individual image feature constrains the 

surface shape and reflectance. Of critical importance is that these image features are not 

independent and their integration can yield more useful constraints about the surface. 

For example, under a collinear light source and orthographic projection, a singular point 

in one image is related to an occluding contour point in another image taken after 7r/2 

rotation of the object. From the relation between the singular point and its corresponding 

occluding contour point, the 3D location and surface orientation at the singular point 

can be determined. 

Under the illumination of a collinear light source and orthographic projection, the 

surface reflectance function, which describes the relation between the image brightness 

and the surface orientation at a surface point, is a function only of the emergent angle, the 

angle between the viewing direction and the surface normal. Because of this simplicity, 
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the surface reflectance function can be determined by tracking brightness and surface 

orientations of some surface points on a rotating object. 

Assuming the reflectance function is strictly monotonic, then its inverse exists. The 

inverse of the extracted surface reflectance function can be used to determine the ori­

entation at a surface point. The image brightness value of a surface point provides one 

constraint on its surface normal. The brightness values of a surface point in two images 

taken after the object rotation by two different angles will fully determine its surface 

normal. To extract the brightness values of a surface point in two different images, the 

projections of the surface point in the two images must be known. The: projections can 

be computed from the 3D location of the surface point. 

For a C2 surface, the locations of surface points can be integrated from surface orien­

tations. If surface orientation is known everywhere on the surface, then what is needed 

is the location of a starting surface point for the integration. As an image is a discrete 

2D spatial array, the integration at each step is approximated by the first-order Taylor 

series. 

Suppose the location of a surface point is known. Its surface orientation can be 

determined from its brightness values in two images. Then the locations of its neighboring 

surface points can be approximated by the first-order Taylor series. For each neighboring 

point, after its location has been obtained, its projections on images can be located and 

its surface orientation can be determined from its brightness values in the images. The 

location and surface orientation at each neighboring point can be used to calculate the 

locations of the surface points around each neighboring point. In this way, the 3D location 

and surface and surface orientation can be recovered over the entire visible surface. 

By further exploring and integrating the geometric and photometric constraints, we 

find that the location and surface orientation on a p = 0 curve (a curve on which the 

surface normal at every point is parallel to the plane of the rotation axis and viewing 
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direction) can be determined without the surface reflectance function. Each point on a 

p = 0 curve gives the same brightness value in the two images taken after the object has 

been rotated by the same angle but in the two different directions. The disparity of the 

projections of a surface point in the two images depends only on the depth of the surface 

point. The depth (the distance from a surface point to the plane which is parallel to 

the image plane and contains the rotation axis) on a p — 0 curve can be measured from 

the corresponding occluding contour in the image taken after TT/2 rotation of the object. 

Using these constraints, the projections of a p — 0 curve in the two images are found by 

a search method. Then the location of the p = 0 curve is calculated from the projections. 

Rotating the object by an angle, another 3D curve on the surface will become a p = 0 

curve. The location of the curve can be found by the same method. In this way, a set of 

curves on a surface can be obtained. 

The surface reflectance function in computer vision and the shading function in com­

puter graphics both describe the relation between brightness and surface orientation in 

the image formation process. A typical shading function has a set of parameters and 

these parameters are usually determined heuristically. The surface reflectance function 

extracted from images directly comes from the image formation process. In theory and 

practice, to achieve realistic graphics rendering, the reflectance function extracted from 

images will give better results than the heuristic shading function. The shading function 

is intended to render objects under arbitrary viewing and illuminant directions while 

the surface reflectance function extracted from real images only gives the relation un­

der a collinear light source. However, the surface reflectance function can be considered 

as a shading function under a collinear light source and the parameters of the shading 

function can be estimated from the surface reflectance function. Then the estimated 

shading function can be used to generate synthetic images of surfaces to achieve realistic 

rendering. 
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a. 0 rotation b. 7r/6 rotation c. w/3 rotation d. TT/2 rotation 

Figure 1.1: Four images from an image sequence of a rotating vase. 

1.3 Expe r imen ta l Resul ts 

The techniques have been tested on real images of several objects with different sur­

face reflectance properties and surface geometry structures. Figure 1.1 shows four of 

a nineteen image sequence of a rotating clay vase. The solid line in Fig. 1.2 displays 

the surface reflectance function extracted from the image sequence. Figures 1.3 and 1.4 

show the depth and surface orientation recovered from images using the photogeometric 

technique. 

Figure 1.5 shows six of a thirty six image sequence of a rotating porcelain cup. Fig­

ure 1.6 shows the 3D wire frame extracted from the image sequence using the wire-frame 

technique. Figure 1.7 shows the recovered surface of the cup. 

The preliminary experiments on estimating the shading function from real images for 

graphics rendering show that the technique is feasible. The dashed line in Fig 1.2 repre­

sents the shading function estimated from the surface reflectance function. Figure 1.8 is a 

group of synthetic images generated by rendering the surface orientation data, recovered 

by the photogeometric technique, with the shading function. Each image in the group of 
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250 
Image Brightness 1(e) 

Figure 1.2: The extracted reflectance function (dashed line) and the estimated shading 
function (dashed line) of the vase. 

0 400 

Figure 1.3: Surface depth plot of the recovered vase. Figure 1.4: Recovered 
surface orientation. 
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7r rotation 4n/3 rotation 5TT/3 rotation 

Figure 1.5: Six images from an image sequence of a rotating cup. The label indicates 
the rotation angle of the object. The pig figure violates the smooth and uniform surface 
assumption. 

Figure 1.6: A 3D wire frame 
extracted from images of a cup 

Figure 1.7: The surface depth plot of 
the recovered cup 
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a. illuminated 
at (0,0,1) 

b. illuminated c. illuminated 
at ( - t an |,0,1) at (tan | , 0,1) 

d. illuminated 
at (0, tan ^,1) 

Figure 1.8: Synthetic images of the vase rendered with the estimated shading function. 

Figure 1.9: Real images of the vase viewed and illuminated under the similar conditions. 
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real images (see Fig. 1.9) corresponds to an image in the group of synthetic images. The 

corresponding images are illuminated and viewed under the same condition so that the 

visual comparison can be made to verify the similarity between the real and synthetic 

images. 

1.4 Thesis Out l ine 

The rest of this thesis is organized as follows: 

Chapter 2 gives a comprehensive survey of the work closely related to this thesis. 

Chapter 3 explores geometric and photometric constraints as well as their relations 

in an image sequence of a rotating object illuminated under a collinear light source. 

Chapter 4 proposes what we call the photogeometric technique, which extracts the 

surface reflectance function from an image sequence and then recovers the surface depth 

and orientation using the surface reflectance function. 

Chapter 5 describes what we call the wire-frame technique, which extracts a 3D wire 

frame on an object surface from the image sequence of the object without using the 

surface reflectance function. 

Chapter 6 discusses the practical problems with the experimental conditions and the 

measures used to overcome these problems. This chapter can be skipped without affecting 

the understanding of the rest of this thesis. 

Chapter 7 evaluates the proposed techniques and analyzes the errors caused by various 

factors by using real and synthetic images of an object with ground truth. 

Chapter 8 presents preliminary work on estimating a shading function from real im­

ages for realistic graphics rendering. 

Chapter 9 summarizes this thesis, discusses the strengths and limitations of our ap­

proach, and suggests future research directions. 



Chapter 2 

Previous Research 

This chapter is a general overview of surface recovery from brightness in images. The 

overview also includes some related work in surface recovery by using or integrating other 

image features with brightness. Surface recovery refers to the process of reconstructing 

the 3D shape of an object from one or more images. Surface recovery from brightness 

is based on the fact that the surface reflection is determined by surface geometric and 

reflectance properties when the illuminant and viewing conditions are fixed. The survey 

starts with the various surface reflectance models that have been used in computer vision' 

and computer graphics. Techniques for estimating the surface reflection function are 

presented in Section 2. Theories and techniques for surface recovery from brightness • 

are reviewed in Section 3. An investigation of surface recovery techniques from relative 

rotation between an object and a camera is given in Section 4. A brief overview of 

shape from contour methods is presented in Section 5. The strategies and techniques of 

integrating different image features or different vision modules are viewed in Section 6. 

A summary of the survey is given in the final section. 

2.1 Surface Reflectance M o d e l s 

The foundation of surface recovery from image brightness is the constraint on the relation' 

between surface geometry and its surface reflectance. This constraint has been formulated 

for different reflectance models. Three representations can be used to express these 

reflectance models. First, surface reflectance can be expressed in terms of B R D F [29], 

10 



Chapter 2. Previous Research 11 

which stands for Bidirectional Reflectance Distribution Function. Let the light source 

direction be (#,-,</>,•) and the viewing direction be (9e,cf)e) in a local coordinate system 

specified by polar angle and azimuth. The B R D F , expressed as /(#,-, <j>i\ 9e, <f>e), is the ratio 

of 8E(9i, 4>i), the radiance falling on the surface from the direction (0;, </>t), to SL(9e, </>e), 

the irradiance of the surface as seen from the direction (9e,cf>e). For an isotropic surface, 

its surface reflectance at a surface point is invariant to the rotation around the surface 

normal at the point, so its surface reflectance can be expressed as (f>(i, e,g) in an object 

centered coordinate system [27]. The incident angle i is the angle between the incident 

ray and the surface normal, the emergent angle e is the angle between the emergent ray 

and the surface normal, and the phase angle g is the angle between the incident and 

emergent rays. When both the illuminant and viewing directions are fixed, the surface 

reflectance can be expressed as a reflectance map R(p,q), with p and q as the surface 

slopes in the x and y direction [28, 29]. The B R D F is the most general and powerful. The 

reflectance function <j)(i,e,g) and the reflectance map R(p,q) can be be calculated from 

the B R D F [33]. While the reflectance map is the most restrictive, the viewer centered 

representation makes it amenable to applications in physics-based vision, especially for 

surface recovery from image brightness. 

2.1.1 Lamber t i an mode l 

The Lambertian reflectance model [29] is the most widely used reflectance model in 

computer vision. In the Lambertian model, the intensity of the reflected light only 

depends on the incident direction and the intensity of the light source. The change of the 

viewing direction will not affect the observed intensity of the reflectance. The reflectance 

function of a Lambertian surface can be expressed as E — ̂  cosi, where i is the incident 

angle and p is the surface's albedo. The albedo of a surface is the fraction of the light 

incident on the surface that is reflected over all the directions. 
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2.1.2 Torrance-Sparrow model and Beckmann-Spizzichino model 

The Torrance-Sparrow and Beckmann-Spizzichino models are originally from the optics 

community and have been extensively used in computer vision and computer graphics 

to derive other reflectance models. Both describe primarily the phenomenon of specu­

lar reflection. In the Beckmann-Spizzichino model [2], the surface height is assumed to 

be normally distributed, and the light reflectance is described as the reflection of plane, 

electromagnetic waves. The wavelength of the incident light is small compared to the 

undulation of the surface, and the surface is assumed to be a perfect conductor, such as 

copper and aluminum. The reflectance function of a metal surface is modeled by two 

components: a specular component which consists of a broadly distributed lobe with sig­

nificant specular reflection into many different directions, and a specular spike which is a 

mirror-like reflection and can only be seen in the specular direction. The magnitudes of 

the two components change as the surface roughness changes. In the Torrance-Sparrow 

model [68], the surface is treated as a collection of planar micro-facets, and the light re­

flection is described as the reflection of directional rays from surface. The model assumes 

that the wavelength of the light is much smaller than the size of the micro-facets. A 

specular reflection component is used to represent the direct reflection from the incident 

direction to the viewing direction by the micro-facets on the surface. The magnitude 

of the specular reflection is determined by the angle between the viewing direction and 

the vector which bisects the incident direction and the viewing direction. A diffuse com­

ponent is used to model the multiple reflection and internal scattering of among the 

micro-facets on the surface. This diffuse component is modeled as Lambertian. Unlike 

the Beckmann-Spizzichino model, the Torrance-Sparrow model can predict reflections 

from both conductors and non-conductors. 
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2.1.3 Diffuse-reflection model 

Subsurface multiple reflection and internal scattering are usually termed diffuse reflection 

and considered as Lambertian which depends only on the incident direction. By observa­

tion of experimental data, Wolff [73, 74, 75] pointed out that for dielectric surfaces, such 

as surfaces of plastic and ceramic, the Lambertian reflectance model is only valid when 

both incident angle and emergent angle are less than 50°. Using results of radiative-

transfer theory and considering surface boundary effects on subsurface scattering, he 

derived a new diffuse reflection model for smooth inhomogeneous dielectric surfaces. In 

his model, the diffuse reflection is a function of both viewing angle and incident angle 

and the diffuse albedo is calculated from physical parameters of the dielectrical surface. 

Oren and Nayar [50, 51] also pointed out that the Lambertian model can prove to be a 

very inaccurate approximation to the diffuse component. They described a phenomenon 

in which the brightness value of a rough diffuse surface increases as the viewer approaches 

the source direction. They presented a different diffuse model for rough diffuse surfaces. 

In their model, the diffuse reflection also depends on both the incident direction and 

the viewing direction. Compared to Wolff's diffuse model, their model is not limited 

to surfaces of dielectric materials and can be applied to both isotropic and anisotropic 

rough surfaces. 

2.1.4 Three component reflection model 

Based on the comparison between Torrance-Sparrow model and Beckmann-Spizzichino 

model, Nayar et al. [47] proposed a surface reflectance model of three components: a dif­

fuse lobe, a specular lobe and a specular spike. The diffuse lobe is considered as Lamber­

tian. The specular lobe is expressed by the specular component in the Torrance-Sparrow 
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model. The specular spike is expressed by a modified specular spike in the Beckmann-

Spizzichino model. This three component reflection model unifies the Torrance-Sparrow 

and Beckmann-Spizzichino models and can be applied to a wide class of surfaces. 

2.1.5 M-lobed reflectance model 

The m-lobed reflectance model [65] was proposed by Tagare and deFigueiredo. Tagare 

and deFigueiredo observed that most previous reflectance models have "lobes" and these 

lobes have a common mathematical structure. They formulated these properties and 

constructed a class of reflectance functions called m-lobed reflectance maps. They define 

the plane of incident direction and viewing direction as the principal plane and a set 

of vectors which lie on the principal plane and between the incident direction and the 

viewing direction as principal vectors. In an m-lobed reflectance map, except for a 

constant term, each lobe is associated with a principal vector and each lobe is a monotonic 

function of the angle between the surface normal and the associated principal vector. The 

multiple lobe reflectance model is not derived from physical principles and it is only a 

mathematical abstraction. However, this model proved to be useful in the theoretical 

analysis of non-Lambertian photometric stereo [65]. 

2.1.6 Reflectance map 

The reflectance map was introduced by Horn [28, 29]. It relates the orientation of the 

surface normal to the image intensity caused by that orientation. A surface z is expressed 

as a height function on the image plane in coordinates x,y. The surface orientation is 

determined by the gradient (p,q) with p = dz/dx and q = dz/dy. When the surface 

type and illuminant configuration are given, the image intensity is a function of p and q. 

The function is called reflectance map and written as I = R(p,q). The reflectance map 
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can be calculated from the B R D F and the surface reflectance function <f>(i,e,g) [27, 33, 

28, 78, 29]. 

2.1.7 Reflectance models in computer graphics 

In computer graphics, a number of reflectance models have been developed for rendering 

a surface to achieve visual reality [19]. One of the widely used model is the Phong-Blinn 

model of three components: the ambient component, diffuse component, and specular 

component. The ambient component is the reflectance caused by illumination from the 

light reflected from surfaces present in the environment. The diffuse component is Lam­

bertian. The specular component is represented by the Torrence-Sparrow model. An 

alternative for the specular component is Phong's model [19] in which the specular re­

flection is approximated by cos" a. The angle a is the angle between the viewing direction 

and specular direction. The exponent n is the roughness of the surface. The above mod­

els are based on hueristic approaches. Some physics-based reflectance models [16, 24] 

have been developed for realistic rendering. 

2.2 Estimating the Surface Reflectance Function 

The B R D F of a surface can be determined experimentally by using goniometers. A go­

niometer has two axes of rotation so that the device or a sample surface mounted on it can 

be accurately adjusted in any direction. This procedure is tedious and impractical [29] 

since at least three variables are involved. The surface reflectance can also be calculated 

from physical parameters of the surface material. However, the physical parameters of 

a surface material are generally not available. Even if these parameters are known, the 

calculation is still very complicated since the reflectance properties of a surface are also 

related to the properties of the light source such as polarization and wave length. The 
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reflectance function can also be measured or computed from the images of a surface. In 

general, precisely calculating the reflectance function of a surface under arbitrary illumi-

nant and viewing directions is impossible and sometimes unnecessary. For example, in 

photometric stereo, the surface reflectance maps obtained under a fixed viewing direction 

with three different illuminant directions are sufficient for extracting a surface shape. 

2.2.1 E s t i m a t i n g reflectance parameters from one image 

Under the assumption of Lambertian reflectance or Lambertian reflectance plus a con­

stant component, it is possible to estimate jointly the composite albedo (product of 

albedo and the illuminant intensity) and the constant component with surface orienta­

tion from just one image. Zheng and Chellappa [85] showed that if the surface normals 

have a certain kind of distribution, the composite Lambertian albedo and the constant 

component as well as the illuminant direction of the light source can be derived from the 

first and the second statistical moments of the brightness values in one image. Lee and 

Rosenfeld [41] showed that after the tilt and slant at a surface point have been found, the 

composite albedo at a surface point can be calculated from its image intensity value and 

the image intensity values of its two opposite neighbor points in the gradient direction. 

In [8], Brooks and Horn describe a regularization method which estimates the surface 

orientation and the composite albedo at the same time in an iterative computation. Un­

der the spherical point (point on a sphere) approximation and Lambertian reflection, 

Pentland [53] proved that the composite Lambertian albedo, surface orientation, illumi­

nant direction and curvature can be calculated from the image intensity and the first and 

second directives of the image intensity at a surface point. 

Estimating the surface reflectance from one image only applies to surface of simple 

reflectance properties. Other restrictive assumptions have to be made and the results are 

usually not accurate. 
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2.2.2 Joint estimation using photometric stereo images 

Some techniques attempt to avoid the calibration process in Woodham's photometric 

stereo. A common point among these techniques is that they assume that the surface 

reflectance function has some particular form with undetermined parameters and these 

parameters are jointly estimated with surface orientation. Coleman and Jain [14] devel­

oped four light-source photometric stereo to extract the shape of textured and specular 

surfaces. In their work, they assume that the textured surface has Lambertian reflectance 

E = Rcosi with varying reflectance factor R, and four light sources are distributed in a 

way so that at any surface point, no more than one light source would cause a specular 

reflection. From every triple of the four intensity values of a surface point, a value for 

the reflectance factor is calculated and a relative deviation of the four values for the 

reflectance factor is computed. If the relative deviation is smaller than a threshold, a 

specular component is not considered to be present and the reflectance factor is com­

puted as the average of the four. If the relative deviation is greater than the threshold, 

the reflectance factor is considered as the smallest of the four. 

Solomon and Ikeuchi [59] also use four light source photometric stereo. They assume 

a simplified Torrance-Sparrow reflectance model for a uniform surface. They divide the 

surface into regions illuminated by different numbers of light sources. In the four light 

source illuminated area, they use a method, which is similar to that of Coleman and 

Jain [14], to compute the Lambertian albedo and the surface normal and to segment 

image pixels into Lambertian and specular. They propagate the results to the area 

illuminated by three light sources and then to the area illuminated by two light sources 

to compute surface normals and segment the image pixels. To estimate the specular 

roughness and the specular strength, an optimization procedure is called to search for 

the values of the reflectance parameters which fit the brightness values of the specular 
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image pixels into a simplified Torrance-Sparrow reflectance model. 

Tagare and deFigueiredo [64] use eight light sources and an a priori estimate of pa­

rameters of a reflectance function with Lambertian and specular components to compute 

the reflectance function.and the surface orientation by using regularization. 

Estimating the surface reflectance from photometric stereo images can deal with more 

complicated surface reflectance and obtain more accurate results than methods that rely 

on a single image. 

2.2.3 Photometric sampling 

Photometric sampling [49] is a method for obtaining shape and reflectance from a large 

number of images. Each image is taken with a different position of an extented light 

source. A hybrid reflectance model of a Lambertian component and a specular spike 

component is assumed and the image intensity at a surface point is sampled at a minimum 

sampling frequency determined by the angle width of specular component of the extended 

source radiance function. The extraction of the surface orientation, the strength of 

the Lambertian component and the strength of the specular component are all based 

on two constraints: the unique surface orientation constraint and minimum sampling 

frequency constraint. The algorithm tries to separate the intensity values containing 

only a Lambertian component from the intensity values containing both Lambertian and 

specular components. The intensity values containing only a Lambertian component are 

used to compute the surface normal, and the Lambertian strength by least-squares fitting. 

Then the Lambertian intensity component is deducted from pixels and the resulting 

intensity values are used to compute the specular strength and the surface normal. 

Photometric sampling is capable of estimating complicated surface reflectance func­

tions. However it uses more complicated experimental setting and more images than the 

other methods. 
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2.2.4 Measuring the reflectance map by calibration 

Photometric stereo was first introduced by Woodham and later on developed by a number 

of researchers. In Woodham's photometric stereo, the reflectance function is assumed to 

be known [77] or obtained from a calibration procedure [79, 81]. A calibration object, 

of known shape and with the same reflectance properties as the object to be recovered, 

is used to measure the reflectance function of the surface material. Three images of the 

calibration object are taken under the same viewing and illuminant conditions as that 

for the object to be recovered. Since the shape of the calibration object is known, at each 

image pixel, the corresponding surface gradient (p, q) can be calculated and the relation 

between gradient and image intensity value can be determined. Because the reflectance 

map is measured empirically from images and no assumptions on the reflectance of the 

surface are made, the reflectance function obtained is accurate and the technique can be 

applied to a wide class of surfaces of uniform reflectance. 

2.2.5 Estimating reflectance from range and brightness images 

Ikeuchi and Sato [36] use a range image given by a range finder and a brightness image 

given by a T V camera to estimate the reflectance property of an object surface. They 

assume a simplified Torrance-Sparrow reflectance model, and they extract Lambertian 

strength, specular strength, and specular sharpness, as well as light source direction. 

Since the surface normal can be calculated from the range image and the number of the 

reflectance parameters is far smaller than the size of the brightness image, least-squares 

fitting is used to estimate the parameters. In the first stage, the light source direction 

and the Lambertian strength are calculated by an iterative least-squares fitting method. 

During the iteration, specular and interreflection pixels are discarded by comparing the 
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observed intensity value with the intensity value calculated with the estimated param­

eters at each pixel. Therefore only Lambertian pixels are picked for determining the 

Lambertian strength and light source direction in the final iteration. With the estimated 

light source direction and surface orientation, the specular pixels are extracted from the 

brightness image. With these specular pixels, the strength and sharpness of the specular 

reflectance are also estimated by an iterative least-squares fitting method. Ikeuchi and 

Sato's method requires both a range image and a brightness image and works only on a 

uniform surface. 

2.3 Shape Recovery from Image Brightness or Shading 

The reflectance models provide a constraint on the relation between surface orientation 

and image brightness. Since surface orientation has two degrees of freedom, the surface 

orientation at a surface point is not fully constrained by its image brightness in one 

image. Additional assumptions or more images must be introduced to make the surface 

orientation fully constrainted. Sometimes, special consideration have to be made for 

coping with image noise and making the computation on the surface orientation robust 

and accurate. In this section, we review different approaches to surface recovery from 

image brightness or shading, the variation of image brightness. 

2.3.1 Horn's shape from shading 

The characteristic strips method developed by Horn [26] was the first algorithm for 

general shape from shading. In this approach, the problem is described by a set of 

five coupled ordinary differential equations and then solved along a set of curves with 

the initial starting values. Horn and Brooks [31] also developed a parallel and iterative 

method which is based on a variational principle. The constraints on the irradiance 
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equation, surface smoothness and integrability are reflected in a cost function which is 

a functional of surface orientation. The Euler equation which minimizes the integral 

of the functional over the object image is found and solved with boundary conditions. 

The solution of the Euler equation gives a surface gradient field which best matches 

the image intensity values. Later on, Horn [30] refined and improved the variational 

approach. Using the sum of the squared differences between the first derivatives of surface 

height and the estimates for surface gradients as the integrability constraint, he derived 

a coupled system of second-order partial differential equations on surface gradient and 

surface height. Thus the solution of this system gives an estimation of surface gradient 

and surface height at the same time. In order to get a fast and correct solution, Horn 

introduced an adaptive regularization parameter for the smoothness departure term and 

used a linearization of reflection map. 

2.3.2 Other global shape from shading techniques 

In recent years, other global shape from shading techniques have been developed. Leclerc 

and Bobick [40] formulated the cost function directly with respect to the surface height 

on a regular grid. In the cost function, the first and second finite difference of surface 

height is used to approximate the surface gradient and the partial derivatives of the 

surface gradient. The problem then can be considered as minimizing the cost function 

with respect to the surface height at each grid point. The conjugate gradient method 

is used to find an optimal solution. They pointed out that their algorithm can fuse 

stereo data. Lee and Kuo [42] also directly use the surface height in the cost function. 

They use a triangular mesh surface model with a linearized reflectance map to directly 

relate image intensity with the surface height at the three vertices of a triangular surface 

element. The minimization of the cost function is turned into the solution of a system of 

linear equations. Using an iterative method, the linear approximation of the reflectance 
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map and surface height are updated until a stable state is achieved. 

Dupuis and Oliensis [17] adapted the dynamic programming approach in optimal con­

trol to the shape from shading problem. They showed that the surface shape within an 

image region containing a singular point can be recovered without using regularization, 

and that the algorithm is fast and provably convergent. Based on Dupuis and Oliensis's 

work, Bichsel and Pentland [3] developed a simpler algorithm. The algorithm is described 

by a minimum downhill principle which reveals the direct connection between their al­

gorithm and Horn's characteristic strip approach. They reported that the algorithm is 

fast and converges to the right solution in fewer than 10 iterations. 

Vega and Yang [70] presented a heuristic approach to recover shape from shading. 

The heuristics are derived based on the geometrical interpretation of the Brooks and 

Horn's algorithm [8]. They use weighted neighbor operations to enforce a smoothness 

constraint, a minor slant adjustment operation to minize the brightness error, and a 

normal complementary operation to change the convexity of the solution to avoid local 

minima. They claim that although their algorithm is heuristically based, it has better 

performance than Brooks and Horn's original algorithm. 

Pentland [54] developed an algorithm based on the linearization of the reflectance 

map. He shows that under some conditions, the reflectance map on an image region can 

be approximated by a linear function, and through Fourier transform, the surface height 

can be directly recovered on the image region. 

2.3.3 Local shape from shading 

Local shape from shading was first formulated by Pentland [53]. Under the assumption 

that a surface point can be approximated as a point on a sphere and that the surface 

reflectance is Lambertian, he derived a set of equations which uses the image intensity and 

the first and second directives of image intensity at a surface point to estimate the surface 
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normal at that point. Since the first and second directives of the image intensity are not 

reliable, the estimation can be very inaccurate as pointed out by Andrew Blake [5]. In an 

improved local shading method, [41], under the same assumption made by Pentland but 

by using the light source coordinate system, Lee and Rosenfeld proved that the surface 

normal can be estimated from the first order derivatives of image intensity. This leads a 

more robust surface orientation estimator than that using the first and second derivatives 

of image intensity. 

2.3.4 Photometric stereo 

Shape from shading using one image is usually an ill-posed problem. To solve the prob­

lem, additional constraints must be applied and sophisticated mathematical methods 

must be used. In photometric stereo, multiple images taken under different illuminant 

directions are used to make the problem overdetermined and only simple computation is 

used. The basic idea of photometric stereo was first described by Woodham [77, 78], and 

first implemented by Silver [58]. Multiple images of an object are taken under different 

illuminant directions with a fixed viewing direction. Assuming that the reflectance func­

tion of the object surface is known, two images of a surface are sufficient to determine 

the surface orientation at each surface point. However, in general, since the reflectance 

function is nonlinear and more than one solution is possible, a third image is used to 

overdetermine the surface orientation. Woodham proved that for a Lambertian surface 

three images taken under three non-coplanar light sources are necessary and sufficient to 

determine surface orientation and albedo at each surface point. In the implementation of 

photometric stereo [58, 79, 81], a calibration procedure is used to obtain the reflectance 

of the surface from images. Using photometric stereo, Woodham shows that intrinsic 

surface curvature can also be locally estimated from the local intensity derivatives [79]. 

First the Hessian matrix at a surface point is estimated from intensity derivatives of 



Chapter 2. Previous Research 24 

this point in three images. Then from the Hessian matrix and the surface normal, the 

principal curvatures and their associated directions are determined. Recently, Woodham 

described a near-real-time implementation of photometric stereo which includes confi­

dence measurements for local gradient and curvature estimate [81]. He showed that 

triples of intensity values of a uniform surface are confined on a 2D surface in the 3D 

space of intensity values. Because of interreflection and cast shadows, the measured triple 

of intensity values may not lie on the 2D surface. The distance between the measured 

triple and the 2D surface is used as a confidence measure for surface orientation and 

curvature. The near-real-time implementation of photometric stereo makes it appealing 

for practical applications. 

Color photometric stereo [10] recovers the shape of a colored object from two or more 

color images of the object. The method is based on the fact that color provides more 

constraints on the surface orientation than grey level brightness. As a consequence, the 

surface shape can be recovered more accurately. 

2.3.5 V a r i a t i o n s o f p h o t o m e t r i c s te reo 

Since Woodham's photometric stereo was introduced, variations of photometric stereo 

have been developed. Tagare and deFigueiredo [65] conducted a theoretical study on 

photometric stereo with an m-lobed reflectance function model. They proved that only 

three light sources are needed to derive surface orientation uniquely under the m-lobed 

reflectance model. They also discussed the problem of how many light sources are needed 

to derive a complete surface orientation on a hemispherical surface ii i the general case. 

In the work described in another paper [64], they used a 3-lobed reflectance function 

and regularization to recover surface orientation and albedo simultaneously. Four light 

source photometric stereo techniques [15, 59] for jointly estimating the surface reflectance 

function and surface orientation have been discussed in the previous section, so we will 
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not talk about them here again. 

Hayakawa [23] uses an arbitrary moving light source to illuminate a Lambertian sur­

face with varying albedo. The computation is based on factorizing an image intensity 

matrix of multiple pixels into two parts: one is the product of surface albedos and surface 

normals and the other is the product of light intensities and light source directions. The 

surface normals, albedos, light strength and light directions are obtained from the fact 

that surface normals and light source directions are unit vectors. Iwahori et al. [38] 

illuminate a uniform Lambertian surface with a point light source undergoing controlled 

motion in 3D space. Using perspective projection and inverse square law for Illuminance, 

they recover surface orientation as well as absolute depth of an object. Like Iwahori 

et al., Clark [13] also uses a moving light source to recover the absolute depth, but he 

assumes a general surface reflectance function. The light source moves around a small 

area, and the image intensities and the derivatives of the image intensities with respect 

to the changes in light position are used to compute depth at each surface point. To get 

an accurate estimate of depth, seven images and a least-squares estimate are used. 

2.4 Shape from Rotation 

To observe different aspects of an object for surface recovery, we can change either the 

camera viewing direction or the object orientation. To change the camera direction, 

we usually have to use some calibration technique to determine the precise location of 

the camera. In most cases, fixing the camera and controlling the orientation of the 

object is easier. Thus it is natural to consider rotating an object in front of a camera. 

In photometric stereo, in order to recover the surface orientation of the whole object, 

Woodham puts the object on a rotary table [81]. In Szeliski's shape from rotation [60, 63], 

Szeliski places the object on a spring-wound microwave turntable. The turntable is taped 
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with a position encoding grid on its side so that its rotation angle can be detected from 

the image sequence. In Szeliski's work, only optical flow or contour is used to derive 

the 3D model of the surface. In Zheng's 3D model acquisition [82], Zheng did some 

experiments on both plaster models and real people. For plaster models, he put the 

object on a turntable controlled by a computer. For real people, he put the subject on a 

swivel chair and attach some markers to the subject's shoulder to estimate the rotation 

angle. In his work he used only contours to recover the surface shape. Zheng [83] also 

has considered shape recovery from the highlight of a rotating object. His technique 

works well on a specular surface. Boyer [7] also uses a turntable to rotate an object and 

extracts the contours in images for surface recovery. Although there are different image 

features available, such as brightness, contour, optical flow and texture, from the images 

of a rotating object, the work mentioned above used only one of them. 

2.5 Shape from Contour 

When an object is viewed from different directions, contours in images directly reflect 

the geometry of the object. A mathematical approach to shape from contour is described 

by Giblin and Weiss [22]. The object is modeled as the envelope of its tangents from its 

profiles. An algorithm is used to reconstruct the object and compute surface curvature 

from profiles under the assumption that the viewing directions are in a plane. Some 

experiments on planar curves verified their algorithm. Like Giblin and Weiss, Zheng [82] 

also assumes that the viewing directions are in a plane. Zheng pointed out that some 

regions, such as concave regions, can not be exposed as contours in images. He presented 

a method for detecting and locating the unexposed regions and extended this method to 

both orthographic and perspective projection. 

Unlike Giblin and Weiss, Vaillant and Faugeras [69] assume more general camera 
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motion. Under arbitrary change of the camera viewing direction, they derived a set of 

equations for computing the 3D shape as well as curvatures from occluding contours 

(profiles). They model the object as the envelope of its tangents and use Gauss map 

to compute surface depth and curvature. They showed some experiments on calculating 

principal curvatures and directions and reconstructing local surfaces. 

Cipolla and Blake [11] use epipolar parametrization for surface recovery from occlud­

ing contours in the image sequence. They assume arbitrary nonplanar and curvilinear 

camera motion under perspective projection. They derived a set of formulas for comput­

ing depth, surface orientation and surface curvature from contour motion in three images 

taken with slightly different view positions. Since computing surface curvature involves 

the first and second order differential quantities of 2D location of the contours and these 

quantities are usually not reliable, they use the difference of the image motions of a pair 

of surface points; one is a surface marking and the other is a point on an occluding 

boundary. In the implementation they use B-spline snakes for image contours, and use a 

parabolic curve to fit contour points tracked over epipolar planes. They demonstrated the 

power of this technique for robot application in circumnavigating curved obstacles and 

picking up a curved surface object under visual guidance. Boyer [7] extended Zheng [82], 

Cipolla and Blake [11] 's work and used aregularization method to get a smooth surface 

from image contours of a rotating object. 

Szeliski and Weiss [63] also use epipolar planes for surface recovery from contours in 

image sequence. But they are mainly concerned with 3D surface location. They derived 

a very simple linear equation for fitting a circular arc to the points on the extremal 

boundary points tracked over epipolar planes. Then they use different techniques such as 

least-squares estimate, Kalman filter and linear smoother (a generalization of the Kalman 

filter to update previous estimates) for fitting piecewise circular arcs to the surface by 

using contours in an image sequence of a rotating object. They showed some expirements 
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with both synthetic and real images. 

There is an inevitable problem in all shape from contour methods. It is that the object 

regions which are not exposed as contours in images can not be recovered. Therefore other 

image features have to be used to recover these regions. 

2.6 Integration of Vision Cues and Modules 

When an object is moving or rotating relative to a camera, there are different vision 

cues available, such as brightness, texture, flow, and contour. Some vision modules just 

use one of above vision cues and work under some specific assumptions. It is possible 

to integrate different vision cues or different vision modules to achieve more reliable and 

robust solutions. Woodham [77, 78] compared photometric stereo with binocular stereo 

and pointed out they can be considered complementary to each other. Thus it is natural 

to consider integrating photometric stereo and binocular stereo. Indeed some work has 

been done on this subject. Here we give a general review on integrating different vision 

cues and integrating different vision models. 

2.6.1 Integrating photometric stereo with binocular stereo 

Ikeuchi [35] combined photometric stereo with binocular stereo by using a dual photo­

metric stereo system. Instead of one camera in the conventional photometric stereo, there 

are two cameras with different viewing directions in the system. Two sets of photometric 

images with different viewing directions are used to produce a pair of surface orientation 

maps. The surface orientation maps are segmented into different regions. Using epipo-

lar, area, and surface orientation constraints, region matching is done from the coarse 

level to fine level between the two orientation maps. The disparity of the mass center 

of corresponding regions determines the absolute depth. The experiment demonstrates 
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that the system can work in a scene of several objects. 

Lee and Brady [43] reported a system which helps physicians to monitor the devel­

opment of glaucoma, a complex eye disease. In the first stage, the system uses a pair of 

binocular cameras to get a pair of stereo images of the optic disk. The edge-based stereo 

algorithm is used to match blood vessels and the edge of the optic disk to get a sparse 

depth estimation. In the next stage, a pair of photometric images of the optic disk is 

taken under different illuminant directions. Under the Lambertian surface assumption 

and the coplanar light source and viewing direction, the photometric image pair is used 

to compute the surface gradient component p at every point. The field of the gradient 

component p is smoothed by regularization and then is integrated, starting from a profile 

supplied by binocular stereo, to get a dense depth map. An elastic plate model is used 

to combine the two estimates obtained from photometric stereo and binocular stereo. 

The initial shape is determined by photometric stereo and then is deformed so that the 

corresponding surface points conform to the depths given by binocular stereo. 

Recently Wolff and Angelopoulou [76] present a new method for depth recovery by 

using the photometric stereo ratio in two sets of photometric images taken by a binocular 

camera. The key point in their method is that the surface reflectance function can be 

factorized into two different parts: one is the function of the incident angle only and 

the other is the function of the emergent angle only. So the photometric ratio, the 

ratio of the brightness value of a surface point illuminated by a light source in one 

direction to the brightness value of the surface point illuminanted by the light source 

in another direction, is an invariant with respect to the viewing direction. Wolff [74] 

derived a surface reflectance function which can be factorized into the two different parts 

for dielectric surface and verified that the model is more accurate than Lambert's law. 

Since the photometric ratio is viewing direction invariant, the ratio can serve as surface 

marks for searching for stereo correspondence. They report that in their experiments the 
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surface depth (the distance from the surface to the camera) can be recovered within 1% 

accuracy. 

2.6.2 Integrating binocular stereo with shading 

Blake et al. [5] studied the uniqueness of the solution when stereo is supplied with analysis 

of shading in a special case. They discussed the construction of a C2 surface patch with 

a continuous boundary obtained from binocular stereo. If the boundary is piecewise 

differentiable and the normal component of surface orientation on the boundary is not 

equal to zero, if there is at most one singular point in the image of the patch, and if the 

surface can be recovered, the recovered surface is unique up to an inversion. 

Hougen and Ahuja [34] integrate shading and stereo at the module level. Their 

system consists of several modules. An initial depth map is obtained from a pair of 

stereo images by a stereo module using an area-comparison based method. The regions 

of uniform albedo in one of the images are segmented by a segmentation module and 

the albedo for each region is computed by an albedo module. The light source direction 

is estimated by a source module with the initial estimate on the depth and the surface 

albedo. The final surface shape is refined by a shape from shading module which uses 

Leclerc and Bobick's method [40]. : 

Chiaradia et al. [9] developed an approach to surface recovery by integrating stereo 

and shading. A sparse depth map is obtained by edge-based binocular stereo technique. 

A local shading analysis method is applied to one of the two images to get an estimation 

of surface orientation in terms of a raw needle map. To integrate the sparse depth 

map with the raw needle map, the raw needle map is first segmented into connected 

regions corresponding to continuous surfaces of the object. For each segmented region, 

by using the known sparse depth values within that region, the surface is interpolated 

by polynomial approximation. This interplation process will give a good approximation 
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under the assumption that each region contains enough points of known depth. 

2.6.3 Integrating multi-cues and multi-modules 

Markov Random Fields (MRFs) can be used as a scheme for integrating different vision 

cues or modules. Poggio et al. [55] implemented a parallel integration of vision mod­

ules based on coupled M R F lattices on the Connection Machine. In this approach, the 

assumptions and constraints on different vision cues can be embedded into an a priori 

probability distribution of the field. A discontinuity is handled by explicitly adding a 

line process to M R F field. In their implementation, several early vision modules includ­

ing depth, motion, texture and color, are coupled to discontinuity in surface properties. 

The problem then is to find the maximum of the posterior distribution which is the best 

estimate of the surface for the. input data. The solution can be obtained by means of 

Monte Carlo techniques. 

Fua and Leclerc [21] integrate different information cues for surface recovery by using 

a 3D triangular mesh. The framework of their approach is combining different constraints 

on the surface into a cost function. The cost function is a weighted sum of several com­

ponents corresponding to the different constraints. The minimization process searches 

for surface shape which satisfies the constraints by deforming the 3D mesh. Information 

cues such as silhouettes, 3D points, 3D lines, stereo, shading, can be integrated in the 

cost function. Since the whole process is an optimization process, the method works well 

when a good initial estimation of the surface shape is available. 

Zheng [84] proposed the problem of combining different visual cues into a 3D model. 

He addressed the problem by analyzing an image sequence of a rotating object. He 

described how to classify different cues, such as contour, edge, flow, shadow and highlight 

in the image sequence so that different methods can be applied to different cues. He also 

described the strategy for selecting different vision modules and combining the estimation 
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obtained by the different modules. Finally, he pointed out that the only way to recover 

the shape in a concave area without distinct image features is using a shape from shading 

method. 

Pankanti et al. [52] discussed an implementation of the integration of different vision 

modules in the context of the quality of surface reconstruction. The models used in the 

reconstruction are perceptual organization, stereo, shape from shading and line label­

ing. In their integration scheme, the interaction between shape from shading and stereo 

modules is a two-way and tightly coupled interaction. One depth map is determined by 

linear interpolation of the sparse depth obtained from stereo module. The other depth 

map is integrated from surface normals produced by shape from shading module. A 

corrected depth map is computed by summing up the two depth maps with different 

weights. Then the corrected map is passed to both modules to compute a refined sparse 

depth and surface normals. The interactions between other modules are one-way and 

straight forward. 

Clark and Yuille [12] took a constraint based approach to integrate various infor­

mation sources obtained from sensory data. They considered integrating information 

sources (or data fusion in their literature) as the embedding of multiple constraints on 

information sources into a solution process. They described two methods, a Bayesian 

method and a regularization method as well as their incorporation strategy for embed­

ding the constraints. They presented a group of examples to show how the constraint 

based approach is used in solving problems in computational vision. Their approach 

provides a mathematical foundation on which integration algorithms can be constructed 

and analyzed. 
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2.7 Summary 

A brief survey on surface reflectance extraction and shape recovery from images has been. 

presented. Extracting the surface reflectance function from images is not trivial. The 

surface reflectance function is usually assumed to be Lambertian or have a particular 

form with undetermined parameters. This is not true in the general case. So far the 

most simple and robust method for extracting the surface reflectance function is using a 

calibration object of known shape. The method requires that the calibration object have 

the same surface reflectance as the object to be recovered and the calibration object be 

imaged under the same conditions as the object to be recovered. 

In general, shape from shading information in one image is an under-constrained 

problem. The solution to this problem is usually computationally intensive, non-robust 

and non-unique [32, 56]. Local shape from shading relies on the assumption that a sur­

face patch can be approximated as a spherical surface and uses the derivatives of image 

brightness. The results obtained can be inaccurate. Photometric stereo is the first tech­

nique using image brightness in multiple images for surface recovery. The computation 

in this technique is simple and robust. However it requires a calibration procedure to 

obtain the surface reflectance function and works on objects of uniform reflectance. The 

variations of photometric stereo try to overcome these drawbacks. Some of them use opti­

mization or regularization to estimate jointly the surface reflectance function and surface 

orientation. Thus they lose the essence of the computational simplicity and robustness 

in the original photometric stereo. 

While photometric stereo fixes the camera and the object but changes the illuminant 

direction, other techniques fix the illuminant and viewing directions but change the 

orientation of the object. A commonly used scheme is rotating an object in front of a fixed1 

camera. In this case, there are several image features such as contour, brightness, stereo, 
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texture and optical flow available for surface recovery. The technique using contour can 

only obtain a surface of limited resolution and can not recover concave regions. The 

technique using flow or stereo requires surface marks on the object surface and cannot 

work on uniform surfaces. So far, no other work on integrating several information cues 

from the image sequence of a rotating object has been reported. 
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Geometric and Photometric Constraints 

One of the primary tasks in computer vision is to find a set of constraints that allow a 

computer to extract useful information from images unambiguously. Features in images 

provide constraints on geometric and photometric properties of the object surfaces in the 

scene. Knowledge and assumptions of the objects in the scene as well as the imaging 

conditions provide other constraints on how the image features are generated. These con­

straints are not independent. Exploring and integrating these constraints yield solutions 

for vision problems. In a controllable environment, by properly setting the imaging con­

dition and controlling the object motion, the constraints as well as the relations among 

these constraints are made simple. However, even in a controlled environment, iden­

tifying the constraints and finding the relations among the constraints are not trivial. 

This chapter describes the constraints we used in our photogeometric and wire-frame 

techniques. 

Section 3.1 of this chapter describes the imaging apparatus and assumptions. Section 

3.2 investigates geometric constraints, which are mainly related to the geometric property 

of the object in the scene. Section 3.3 explores photometric constraints, which are mainly 

related to the photometric property of the object in the scene. Section 3.4 gives a 

summary of this chapter. The relations among these constraints will not be described in 

a separate section since they are introduced in the descriptions of the constraints or used 

in the following chapters. 

35 
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Y 

Figure 3.10: Imaging Apparatus. The light source direction and viewing direction are 
collinear. 

3.1 Imaging Apparatus and Assumptions 

The imaging apparatus is shown in Fig. 3.10. The object is on a turntable whose 

rotation angle can be precisely controlled. The Y axis coincides with the rotation axis 

of the turntable. A parallel projected light source is used to illuminate the object. It 

gives uniform radiance over time and the illuminated area. Both the illuminant direction 

of the light source and the viewing direction of the camera are aligned with the Z axis. 

Since the illuminant direction and the viewing direction are collinear, the light source is 

called a collinear light source. As the camera is far away relative to the size of the object/ 

the projection from the object on the image plane is assumed to be orthographic. The 

origin of the coordinate system is projected on the center of an image. Images are taken 

when the object rotates around the Y axis in the direction from the X axis to the Z 
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axis. The projection of the rotation axis of the object in the images can be determined 

by a very simple method (see Section 6.5). The actions of taking images and rotating 

the object are synchronized by a computer program. 

The surface is assume to have form z = f(x,y) and to be C2. The surface reflectance 

function is assumed'to be isotropic, uniform, and strictly monotonic. It has the maximum 

brightness value when the surface normal is in the viewing direction. This assumption is 

true for most opaque surfaces. The surface is assumed to be generic so that there is at least 

one point of surface normal parallel to the viewing direction. This assumption is necessary 

for extracting surface reflectance function from images(see Section 4.2). Each image is 

assumed to contain the whole surface which can be seen from the viewing direction. The 

surface is also assumed to have low curvature, especially in the x direction. 

3.2 Geometric Constraints 

3.2.1 Rotational transformation 

Since the surface is C 2 , its second partial derivatives exist, and are continuous. The 

coordinates are measured in image pixels. Since the coordinate system is defined by the 

viewing direction and the rotation axis, a 3D point on a surface changes its coordinate and 

surface orientation during object rotation. The rotation angle of an object is described 

relative to an initial state of the object in which the rotation angle of the object is 

zero. In the general case, when we talk about the 3D coordinate and surface orientation 

without specifying the rotation angle, we refer to the initial state. In this thesis, we use 

the rotation angle as subscript to denote the values of all variables after the object has 

been rotated by that angle. For example, (xQ,y0,z0) and (xa,ya, za) are the coordinates 

of a 3D point on an object before and after the object has been rotated by a; imageo 

and imagea are the images taken before and after the object has been rotated by a. 
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Let (.To, yo, zo) be a 3D point on a surface. After the object has been rotated by a, the 

coordinate (xa,ya, za) of this 3D point is 

xa = XQ cos a — ZQ sin o, (3-1) 

ya = yo, (3.2) 

za — x0 sin a 4- ZQ cos a. (3-3) 

The surface orientation is defined as (—p, —q, 1) with p =  d Zg^ y^ and g = d z f ^ y

v ^ • Thus 

the unit surface normal is n = l~p'~l?'1= when p ^ ±oo and g 7̂  zbcxs. Let (—po, —<7o, 1) 
V ( P 2 + 9 2 + 1 ) 

be the surface orientation of a 3D point. Considering the surface orientation at the 

3D point as a vector in 3D space, after the object has been rotated by a, the three 

components of the vector in the x, y, z are 

—u — — po cos a — sin a, 

-v = -q0, 

w = cos a — po sin a, 

respectively. Scaling the three components to make the component in the z direction be 

1, the surface orientation after a rotation of the object is (—pa, —qQ, 1) with 

po cos a + sin a 
Pa = : , (3.4) 

cos a — po sm a 
qa = ^ — • (3.5) 

cos a — po sm a 

These two equations describes the surface orientation changes during object rotation: 

Since the brightness value of a surface point is determined by its surface orientation, these 

equations also provide constraints on the brightness changes during object rotation. In 

surface recovery, the depth, that is the coordinate of 2, and the surface orientation are 

recovered at every point in an image. 
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3.2.2 Image correspondence 

Since orthographic projection is used, a 3D point of coordinates (x,y,z) is projected on 

an image plane as an image point of coordinate (x, y). In the case of no ambiguity, when 

we talk about surface orientation at image point (x,y) we mean the surface orientation 

at point (x,y,z), and when we talk about the depth at image point (x,y) we mean the 

z coordinate at point (x,y,z). A 3D surface point on an object surface will appear in 

several images taken during object rotation. Let (,To,yo5~o) be a 3D surface point d. In 

the images taken after the object has been rotated by Q 0 , a i , ctn, the image locations 

of d will be (xao,yao), (xai,yQl), (xQn,yQn) and the locations can be computed by 

using 'Equations 3.1-3.3 if the initial coordinate (.To,yo?^o) of d is known. Since rotating 

the object in front of a fixed camera is equivalent to rotating the camera around a fixed 

object, the epipolar and disparity constraints used in conventional stereo still apply to 

the images taken during object rotation. As the rotation is around the y axis and the 

image projection is orthographic, all the image points of a 3D surface point will have the 

same y coordinate. In our imaging condition, the epipolar and disparity constraints are 

simpler than those used in the general stereo techniques. 

3.2.3 Occ lud ing contour 

The occluding boundary (contour generator, extremal boundary, rim) consists of a set of 

surface points which are tangent to the viewing direction. For a generic smooth object, 

the occluding boundary is a part of a smooth 3D curve on the surface. The projection 

of an occluding boundary on the image plane is an occluding contour (apparent contour, 

extremal contour, silhouette). Occluding contours in images give rich information on the 

geometry at the corresponding occluding boundaries. 

At a surface point on an occluding boundary, p = ±oo and q — ±oo. The surface 
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normal at the surface point can be directly determined from the corresponding occluding 

contour in the image. Under orthographic projection, the surface normal is perpendicular 

to the viewing direction and to the tangent at the corresponding point on the occluding 

contour. The x and y coordinates of an occluding boundary can be directly determined 

from its occluding contour. However, the z coordinates on an occluding boundary are 

lost under the projection from 3D to 2D. 

There are two kinds of occluding contours in images: background-occluding contours 

and self-occluding contours. A background-occluding contour is caused by the occlu­

sion of the object surface against the background. Since a black curtain is used as the 

background in our experiment, the brightness of the background is dark and uniform. A 

background-occluding contour can be extracted by thresholding the background bright­

ness. A self-occluding contour indicates that one part of the object surface is occluded by 

another part of the object surface. Since both the occluded part and the occluding part 

are brighter than the background, a self-occlusion contour cannot be extracted simply 

by thresholding the background brightness, but it can be extracted by using the Canny 

edge detector. Figure 3.12 shows the background-occluding contour on the left side and 

the self-occluding contour on the handle in an image of a cup (see Fig. 3.11). The protru­

sion and the color on the right side of the cup violates our smooth and uniform surface 

assumption so that the occluding contour on the right side cannot be detected as a con­

tinuous curve. The self-occluding contour is detected by using the Canny edge detector 

with cr = 2 and threshold 20 for gradient. The self-occluding contour caused by the 

handle is well detected and can be seen as connected edge points. Sometimes, a segment 

of an occluding contour is a background-occluding contour and the other segment is a 

self-occluding contour. So both thresholding and edge detection have to be used. Then 

the different segments of an occluding contour are connected by using the continuous 

surface assumption. 
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Figure 3.11: An image of a cup. Figure 3.12: Occluding contours ob­
tained by thresholding and edge detec­
tion. 

3.2.4 p = 0 curve 

Under orthographic projection, the surface orientation of a 3D point of p = 0 (3z/dx = 0) 

is parallel to the plane of the viewing direction and the rotation axis. For a C2 surface, 

the points of p = 0 consists of a smooth 3D curve. We define the curve as a p = 0 curve. 

The image of a p = 0 curve on a smooth surface does not give any feature which can be 

used to determine the location of the curve. 

Although there is no distinguishing image feature for a p = 0 curve, after T T / 2 or 

— TT/2 rotation, a p = 0 curve will become an occluding boundary and the projection of 

the curve will be an occluding contour if the curve is not occluded by the other part of 

the object after the rotation. Since occluding contours cause sharp brightness changes, 

they can be detected and located in images. 

Let a 3D surface point (x 0 , J/o7
 zo) have surface orientation (— po,—qo,l) with po — 0 

before object rotation. From Equation 3.1-3.3, after T T / 2 rotation of the object, we have 

— xw/2 — ~0i = 2/0, ~7r/2 = - ' '0, & ^ (•*" TT/2 5 1/^/2) = ?0-

In the above equations, JT^X^IVVJIT) LS the tangent on the occluding contour at point 

(XK/2I 1/71/2)- These equations tell us the geometric relation between a p = 0 curve and 
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its corresponding occluding contour. The relation is used to compute the 3D coordinate 

and surface orientation at surface points of p = 0. 

3.2.5 Disparity 

For a surface point (x0, y0, ZQ), after ao and a\ rotation of the object, we have 

%a0 — So cos Oo — ZQ sin OCQ: (3-6) 

zQo = x0 sin Q 0 + z0 cos a0, (3.7) 

x 0 l = x0 COS a i — z0 sin a 1 ? (3-8) 

•^ai — xo sin a i + ô c o s Q i - (3-9) 

Subtracting Equation 3.8 from Equation 3.6, 

%a0 — Xai — a"o(cosQo — c o s Q i ) — zo(sin ao — sinaii). (3.10) 

The quantity xao — xai is called the disparity of the two image points, (xao7yao) and 

( x _ 0 l , y _ a i ) . The disparity depends on the x and z coordinates of the surface point. 

However, when ct\ = — ao, 

xao — xai = — 2o(sinao — sin ax) = —220sinao- (3-U) 

This means that for a surface point, the disparity of its two image points in the two 

images taken after the object has been rotated by a and —a, respectively, depends only 

on the depth of the surface point and the rotation angle. For convenience, we define a 

and —a, which represents the same amount of rotation but in the two different directions, 

as two symmetric angles. 

3.2.6 Surface approximation 

For a C2 surface z = f(x,y), its first and second partial derivatives exist, and are 

continuous. If p(x,y) =  d z<g^ and q(x,y) = dz^y^ are known everywhere on the surface 
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and the z coordinate ZQ is known at a starting point (x0,J/o), the z coordinate z(x,y) at 

another point (x,y) can be computed by integrating the surface orientation along a path 

which connects (xo,yo) to (x,y) a s 

z(x,y) = z0+ I p(x,y)dx + I q(x,y)dy. 
Jx0 Jyo 

For a C2 surface, the computed z(x,y) is independent of integration path since p and q 

are integrable. In computer vision, the data obtained or computed are usually at image 

points on a uniform grid. Assuming p(x,y) and q(x,y) are known at every image point 

and the z coordinate is known at a starting point (x 0 , yo), the surface can be approximated 

by 
x y 

z(x,y) = z0 + ^ p ( x , y ) A . x + ^q(x,y)Ay, 
xo yo 

where A x and A y are the distances between the two adjacent image points in the x and y 

direction respectively. In the general case, A x = A y . Taking A x or A y as unit distance, 

we have 
x y 

z(x,y) = z0 + 2~2p{*,y) + zZ^x^v)- (3-12) 
X Q yo 

Generally, p and q computed from images are not integrable. Therefore z(x,y) may be 

different if a different integration path is used. 
3.3 Photometric Constraints 

3.3.1 Reflectance function under a collinear light source 

In the general case, the image brightness of a surface point under a distant light 

source is determined by the reflectance function R(i, e,g) [77]. As shown in Fig. 3.13, the 

incident angle i is the angle between the illuminant direction and the surface normal, the 

emergent angle e is the angle between the viewing direction and the surface normal, and 

the phase angle g is the angle between the illuminant direction and viewing direction. 
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Surface normal 

Camera 

Figure 3.13: The image brightness is a function of the angles i , e and g. The incident 
angle i is from the illuminant direction to the surface normal. The emergent angle e is 
from viewing direction to the surface normal. The phase angle g is from the illuminant 
direction to the viewing direction. 

Surface normal 

Figure 3.14: The image brightness is a function only of the emergent angle e under a 
collinear light source. 
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Under a collinear light source, as shown in Fig. 3.14, the phase angle g becomes zero 

and the emergent angle e becomes the same as the incident angle i. In this case, all the 

components of the reflectance such as the specular component, diffuse component and 

other components defined in Tagare's paper [65] are functions only of the emergent angle 

e. Thus for a uniform surface, its image brightness value £ at a surface point can be 

written as 

E = R(e) (3.13) 

where e, 0 < e < TT/2, is the emergent angle at the surface point. While the emer­

gent angle e is defined in an object centered coordinate system, the surface orientation 

(— p, —q, 1) is defined in a viewer centered coordinate system. The relation between the 

emergent angle e and the surface orientation at a point can be expressed as 

cos e = „ (3.14) 
Vp2 + q2 + i 1 

Since the surface reflectance function is strictly monotonic, the inverse of the surface 

reflectance function e = R~1(E) exists. For convenience, sometimes we express the 

surface reflectance function as E — Q(cose). It is easy to show that the inverse surface 

reflectance function, cos e = Q~1(E), also exists. In surface recovery, the inverse function 

Q~1(E) is used to compute the surface normal from the image brightness values of a 

surface point. 

Under a collinear light source, the surface reflectance function is simplified to a func­

tion only of one variable. This simplification is crucial in surface reflectance extraction 

and surface recovery. 

3.3.2 Singular points 

A singular point is an image point which has a particular brightness value (maximum) and 

this particular brightness value corresponds uniquely to a particular surface orientation. 



Chapter 3. Geometric and Photometric Constraints 46 

Under a collinear light source, the particular brightness value is the maximum brightness 

value in an image and the particular surface orientation is the direction normal to the 

image plane. This property can be directly derived from the surface reflectance function 

of an object under a collinear light source. 

The x and y coordinates of a singular point can be directly detected from images by 

searching for points of the maximum brightness value. The depth at a singular point can 

be determined from the corresponding contour point. If there is no occlusion, after 7r/2 

rotation of the object, the image of the surface point corresponding to the singular point 

will be a contour point in imaged/2. Let the surface point corresponding to the singular 

point in imageo be (xQ,y0, z0). After 7r/2 rotation of the object, from Equation 3.1, we 

have 

-Xn/2 = z0 (3.15) 

The quantity —x^/2 can be measured as the distance from the corresponding contour point 

to the projection of the rotation axis. It is easy to find the correspondence between a 

singular point and a contour point since the two image points have the same y coordinates 

and the tangent on the occluding contour at the contour point is vertical in image7rf2-

Once the 3D location of a singular point is known, the projections of the corresponding 

surface point on the images taken during object rotation can be calculated. The image 

brightness values of the surface point are used to build the surface reflectance function. 

The singular points are also used as starting points for surface recovery. 

3.3.3 Equi-brightness constraint on p = 0 curve 

The surface orientation at a surface point changes during object rotation. So does the 

image brightness value of the surface point. Let the surface orientation at a surface point 

on a p = 0 curve be (—po, —qo, 1) with p0 — 0. After the object has been rotated by a, 
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(a < 7r/2), from Equations 3.4-3.5, the surface orientation of the point is 

= sina _ t a n Q 

r u t cos a ' 

^ u cosa 
The cosine of the emergent angle at the surface point is 

1 1 
cos e„ = vte+# + l v / t a n 2 a + ^ ) 2 + 1 ' 

If the object has been rotated by —a, instead of a, the surface orientation at the point 

after the rotation is 
_ sin^a _ _ t a n Q 

' w cos — c x 

a — qo — go 
' & r . n s - ry cnsr> 

The cosine of the emergent angle at the surface point is 

1 1 
cos e_Q = , = , = = cos eQ. VP2-* + P2-a + 1 V

/ ( - t a n a ) 2 + ( ^ ) 2 + l 

Let the surface reflectance function be E = Q(cos e). The brightness value of this surface 

point after a rotation is Ea = Q(cosea). The brightness value of the same surface point 

after —a rotation is E-a = <5(cose_a). Since cos(e_0) = cos(ea), we have 

Ea = E_a. 

This equation tells us that under a collinear light source, each point on a p = 0 curve 

gives rise to the same brightness in two images taken after the object has been rotated 

by two symmetric angles. The equi-brightness constraint comes from the fact that for a 

p = 0 point, ea = e_a. 

3.3.4 Surface orientation from brightness values 

Under a collinear light source, the surface reflectance function has the form E = R(e) 

or E = Q(cose) with cose = \j\jp1 + q2 + 1. When an object rotates, the surface 

file:///j/jp1
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orientation of a surface point on the object changes and so does the image brightness 

value of this point. Let a surface point T have surface orientation (—po, — qo, 1), and the 

image brightness value Eo = Q(cose0). After the object rotates by ft, let the surface 

orientation of T be (—pa, —qa, 1) and the brightness value of T be Ea = Q(cosea). The 

following calculation shows how we derive the surface orientation of a surface point from 

its two image brightness values, E0 and Ea. 

First, we show that the surface orientation of T can be calculated from cos e0 and 

coseQ. From Equation 3.14, 

cos e0 = , , (3.16) 
yjpl + ql + 1 

cos ea = , (3-17) 

Using Equation 3.4 and 3.5 to substitute pa and qa in Equation 3.17, we have 

cos ea — , ' : . = ( c o s a — pp sin ft). (3.18) 
h I / P o c o s a + s i n a \ 2 | ( go ~|2 2 , 2 i 1 

V ^ cos a —po sin a ' * cos a—po sin a ' y rO > HO ' 

By using Equation 3.16, this equation can be simplified to 

cos ea = cos eo(cos a — p0 sin ft). (3.19) 

Solving the above equation for po, 

Po — 7 ~ — (3.20) 
tan ft sm a cos eo 

Applying the inverse of the surface reflectance function to the image brightness values, 

Eo and Ea, to estimate cos eo and cos ea and substituting the estimated values for cos eo 

and cos ea in Equation 3.20, we get 
1 1 Q-HEa) 

P o = 7 : n-ujp \- t'3'21) 
tan a sm ft Q (Eo) 
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After po has been calculated, q0 can be solved from Equation 3.16 as 

(3.22) 

The geometric explanation for the solution of p 0 and qo is shown in Fig. 3.15. Since 

Figure 3.15: The solution for surface orientation is the intersection of two cones. 

rotating an object in front of a collinear light source is equivalent to rotating the collinear 

light source around a fixed object, we assume Eo is the image brightness of T illuminated 

and viewed in direction VQ and EQ is the image brightness of T illuminanted and viewed 

in direction V A . The value of cos eo determined from the brightness Eo gives the emergent 

angle eo and all the surface normals with angle eo to VQ form a cone with Vo as its axis. 

The value of cos ea determined from the brightness Ea gives the emergent angle eQ and 

all the surface normals with angle eQ to VA form the other cone with VA as its axis. The 

intersection of the two cones generates two vectors which are the solutions for the surface 

orientation at T. The q components of the two vectors have the same magnitude but 

opposite signs just as indicated by Equation 3.22. Since only one of the two solutions 

is valid, there is a two-way ambiguity. This ambiguity can be removed by using other 

constraints. 
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3.4 Summary 

In this chapter, we have described the geometric and photometric constraints in images 

of a rotating object under a collinear light source. We have also implicitly introduced the 

relations among these constraints. Under orthographic projection and the illumination 

of a collinear light source, both geometric and photometric constraints are simplified 

and easy to identify from images. Also the relations among these constraints are easy 

to explore. These constraints and their relations are the theoretical foundation for our 

work. 

In the following chapters, we will further explore the relations among these constraints 

and integrate these constraints for surface reflectance extraction and shape recovery. 

In Chapter 4, we present the photogeometric technique. The technique extracts the 

surface reflectance function directly from images of a rotating object and then applies 

the extracted surface reflectance function to surface recovery. In Chapter 5, we describe 

the wire-frame technique which extracts a set of 3D curves on the object surface without 

the knowledge of the surface reflectance function. 



Chapter 4 

Photogeometric Technique 

In this chapter we describe a new technique, called the photogeometric technique, for 

surface reflectance extraction and surface recovery. We show that under a collinear light 

source, the surface reflectance function of a rotating object can be directly extracted 

from the image sequence of the rotating object. We also show that the depth and surface 

orientation of the object can be recovered simultaneously by using brightness in two im­

ages of a rotating object once the surface reflectance function is obtained. Experiments 

are conducted on real image sequences of objects of different surface reflectance and dif­

ferent geometric properties. The experimental results show that the technique is feasible 

and effective. Section 4.1 of this chapter describes the imaging apparatus. Section 4.2 

presents a method for extracting the surface reflectance function directly from an image 

sequence of an object. Section 4.3 describes the surface recovery process. Section 4.4 

present a method to remove the ambiguity in the q component of surface orientation. 

Section 4.5 describes the recoverable area in an image. Section 4.6 to Section 4.8 show 

some experimental results on real image sequences of different objects. The final section 

summarizes this chapter. 

4.1 Experimental Conditions 

The imaging apparatus for surface recovery has been described in Section 3.1. A cal­

ibrated image facility built in our lab is used to control the object rotation and the 
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imaging apparatus (see Section 6.1 for further details). A DC powered and parallel pro­

jected light source is mounted on the top of the camera. The light source and the camera 

point in the same direction towards the object on a turntable. In practice, the radiance 

of the light source is not constant over the illuminated area. A uniform white board is 

used to calibrate the non-uniform illumination (see Section 6.3). Since the distance from 

the camera to the object is far larger than the size of the object, the camera is set to 

telephoto mode and orthographic projection is assumed as a reasonable approximation. 

The actions of rotating'an object and taking images are well synchronized by a computer. 

4.2 Extracting the Surface Reflectance Function 

As we have shown in Subsection 3.3.1, under the illumination of a collinear light source, 

the surface reflectance function of an object is simplified to a function only of the emergent 

angle e. Let the surface reflectance function be E = /2(e), 0 < e < ir/2. To build the 

surface reflectance function, we only need to find the correspondence from e to E. This 

is much easier than building a reflectance function of two variables. 

The surface reflectance function can be extracted from any surface points of known 

3D location and surface orientation. From the known 3D location, their image locations 

during rotation can be found and their image brightness values can be extracted. From 

the known surface orientation, their emergent angles during rotation can be calculated. 

Then the correspondence from the brightness values to the emergent angles can be built. 

Since it is easy to find the 3D locations and surface orientations of the surface points 

whose images are singular points, these surface points are used as sample points for 

building the surface reflectance function. Other surface points, such as p = 0 points, 

can be used to extract a pseudo surface reflectance function which can also be used for 

surface recovery (see Subsection 7.3.2). 
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The 3D coordinates of the sample points are calculated by the method described in 

Subsection 3.3.2. Let (xo,yo,zo) be the calculated coordinate of a sample surface point 

S. The projection (xQ,ya) of 5 on imageQ, which is taken after a rotation of the object, 

can be computed by using Equation 3.1- 3.3. Thus the brightness value Ea(S) of S in 

imagea can be extracted. The projection of S on an image may be located between pixels 

and linear interpolation between image pixels is used to calculate the image brightness 

value. As the image of 5 in image0 is a singular point, the initial emergent angle eo(S) of 

S is zero. It is easy to show that the emergent angle ea(S) at S after the object rotation 

by a is a. Since the rotation angle of the object is precisely controlled, the rotation angle 

is taken as the emergent angle of S. Therefore the surface reflectance function we build 

is a function from the rotation angle of the object to the brightness value of S*, that is 

Ea(S) = R(a) or Ea(S) = (J(cosa) 

Since ea(S) = a during rotation, we have 

Ea{S) = R(ea(S)) or Ea(S) = Q(cosea(S)). 

As the surface reflectance is uniform, the function can be applied to any surface point. 

Then we have 

E = R(e) or E = Q(cose). 

Assuming that the reflectance function obtained is strictly monotonic, its inverse exists. 

The function we actually used for surface recovery is the inverse function cos e = Q~l(E). 

The inverse function is linearly interpolated for every integer brightness value ranging 

from 0 to 255. 
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4.3 Surface Recovery 

After the surface reflectance function has been obtained, surface recovery can be done 

by using any two images in the image sequence of the rotating object. Wi thout losing 

generality, we use the first image, imageo, and the image taken after the object has been 

rotated by a , imagea, a < TT/2. The depth and surface orientation are computed at 

every point in image0. Three subprocedures are used in surface recovery. 

The first subprocedure calculates the image location of the corresponding image point 

in imagea for an image point of known depth in images. Let (x0(S),yo(S)) be the 

image of a surface point S in imageo wi th depth zo(S). The location of image point 

(xa(S),ya(S)) of S in imagea is computed by using Equations 3.1-3.2 as 

xa(S) = xo(S) cos a — Zo(S) sin a; 

Va(S) = ijo(S). 

The second subprocedure determines the orientation (— po(S), ~qo(S), 1) at an image 

point from its image brightness Eo{S) in imageo and the brightness of its corresponding 

image point Ea(S) in imagea by using Equation 3.20 and Equation 3.22, 

( 5 ) = _ J 1 Q-\Ea{S)) 
tana sma Q~l(Eo(S))1 

Q O ( S ) = ±VVHA(S))] 2 - [ M S ) ] 2 - H 

The third subprocedure does local expansion of depth from an image point of known 

depth and surface orientation by using the first-order Taylor series approximation. Let 

be another surface point which is close to S so that the image of N in imageo is 

{x0(N),yo(N)) = (x0(S) + l,y0(S) + 1). The depth z0{N) at image point (xQ(N),y0(N)) 

can be calculated by using Equation 3.12 as 

Zo(N) = Zo(S)+Po(S) + qo(S). 
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The surface recovery procedure starts at the image points whose depths are known. 

These starting points could be the images of the sample surface points we used to extract 

the surface reflectance function. By iterating the three subprocedures, the computation 

can be extended over the whole object image to obtain the depth and surface orientation 

at the same time. At a background image point, the depth is set to zero and the surface 

orientation is set to a particular value. The surface recovery procedure can be described 

as follows. 

Surface recovery procedure 

1. Take a point in image0 of known depth as an input point. For the input point, do 

step 2-4; 

2. Use the first subprocedure to calculate the location of its corresponding image point 

in imagea. 

3. Use the second subprocedure to determine its surface orientation from its image 

brightness in imageo and the brightness of the corresponding image point in imagea. 

4. Use the third subprocedure to compute the depth for its neighboring points. 

5. Take each of the neighboring points as the input point and repeat step 2-4 until 

the computation is extended to every pixel in images. 

4.4 R e m o v i n g A m b i g u i t y in q 

When we compute a new depth z0(N) for the next image point N by using the depth 

Zo(S) at the current image point S in the y direction, we have z0(N) = z0(S) + qo{S) 

with qo(S) as the q component of the surface orientation at S. An ambiguity in depth 

occurs as there are two solutions of different signs for q (see Subsection 3.3.4). There 

is no ambiguity when we extend the computation in the x direction as the solution for 
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p is unique. The ambiguity in the depth caused by the ambiguity in q can be removed 

by the C2 surface assumption and some image points of known depths. In the actual 

implementation of surface recovery, the computation for depth and surface orientation is 

extended along a p = 0 curve first by integrating the q component. After removing the 

depth ambiguity on the p = 0 curve, the computation is extended from every point in 

the p = 0 curve in the x direction. Assume that the surface recovery procedure starts 

from one image point of known depth to another image point of known depth along a 

non-horizontal path and that the q values along the path have the same sign. During 

surface recovery, two sets of q values of different signs are obtained. Thus two sets of 

depths along the path are calculated by using the two sets of q values. It is clear that 

only one of the two corresponds to the actual depths along the path. The set of depths 

matching the depth at the end point of the path are the actual depths. In this way, the 

ambiguity in the depth can be eliminated. 

Generally, the computed depth will not exactly match with the known depth at the 

end point of a path, because of image noise, non-uniform surface reflectance and other' 

factors, but one set of depths will be close enough to the known depth at the end point so 

that the ambiguity on the depth can be removed. If a path connects two closest singular 

points, then the sign of the q component along the path can be determined from the sign 

of the difference of the two depths at the two closest singular points. 

4.5 Recoverable Area 

In surface recovery, the depth and surface orientation could not be recovered at every 

point in image®. The part of the surface that can be recovered must be visible in both 

images used for surface recovery. Some surface points visible in one image may not visible 

in the other image. If image0 and imagea are used, a surface point whose p component 
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of surface orientation is larger than tan(7r/2 — a) will not be visible in imageQ. 

Gaussian filtering is applied to the input images to reduce image noise and quanti­

zation effects. At the image points close to the background, the brightness values are 

blurred with the background brightness by Gaussian filtering. The surface recovery at 

these image points is not accurate and reliable. So a brightness threshold, which is a 

little bit larger than the background brightness, is used to detect these image points. 

The depth and surface orientation are recovered only at the image points of which the 

brightness values are larger than the threshold. The threshold is empirically determined 

by the brightness value E = Q(cos Ho"). Thus the surface can only be recovered at the 

surface points whose image brightness values in both images are larger than the thresh­

old. For the surface points whose images are close to the occluding contours in imageo 

or imagea, their depths and surface orientations cannot be recovered. 

The recoverable area in imageo is determined by the surface orientation of the surface 

and the two images used for surface recovery. But the actually recovered area in imageo 

may not be exactly the same as the recoverable area because of image noise, non-unform 

surface reflectance, and other factors. In addition, Gaussian filters of different sizes give 

different degree blurring effects, the actually recovered area may change with the sizes of 

Gaussian filters used. 

4.6 A n Exper imen t w i t h M a t t e Surface 

4.6.1 Surface reflectance function 

To extract the surface reflectance of a vase, nineteen images of the vase are taken 

during TT/2 rotation with each successive image taken after a 7r/36 successive rotation. 

Figure. 4.16 shows four of the image sequence. Images (a), (b), (c), and (d) are taken after 

0, 7r /6, T T / 3 , and 7r/2 rotation, respectively. The white line in the middle of each image is 
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a. image0 b. image^/Q c. image^/s d. imagen/2 

Figure 4.16: Tracking sample points over image sequence. The center of a square box is 
the image of a sample point. 

the rotation axis of the object. Three sample surface points are used to extract the surface 

reflectance function. The image brightness and surface orientation of the sample points 

are tracked over the nineteen images. The initial 3D coordinates of the three sample 

surface points are obtained from the singular points in image0 and the corresponding 

occluding contour in image^/2- The center of a small square box in Fig 4.16 marks the 

image of a sample point. The average of the brightness values of the three sample points 

is used to build the reflectance function. The solid line in Fig. 4.17 shows the surface 

reflectance function extracted from images. The emergent angle is represented by the 

vertical axis in degrees for simplicity in plotting, and the image brightness is represented 

by the horizontal axis in integers. The plus line in the figure is the Lambertian reflectance 

function which has the same maximum brightness as the surface reflectance function. 

The difference of the two reflectance function shows that the surface of the vase is not 

Lambertian although it is made of clay and considered as a diffuse surface. 



Chapter 4. Photogeometric Technique 59 

Figure 4.17: The solid line shows the reflectance function obtained by averaging the 
three reflectance functions. The plus line is Lambertian reflectance function of the same 
maximum brightness. The other three lines show the three reflectance functions extracted 
from the three sample points of the vase. 
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4.6.2 Surface recovery on a p = 0 curve 

In surface recovery of the vase, imageo (Fig- 4.18(a)) and imaged/is (Fig- 4.18(b)) 

are used. Depth and orientation are recovered at each point in imageo- Starting from 

each singular point of known depth, depth and surface orientation are recovered along a 

p = 0 curve first. The depth and surface orientation could be first computed in the x 

direction along some q = 0 curves and then extended in the y direction at every point on 

the q = 0 curves. However, this requires solving the depth ambiguity on every path along' 

the y direction. Also the depth computed along the y direction is less accurate since, 

at every image point, the computed q component is not as accurate as the computed p. 

component (see error analysis in Chapter 7). A p = 0 curve passes through some singular 

points in imageo- The sign of q on a path which connects the two closest singular points 

is determined by the sign of the depth difference at the two singular points. To compute 

the depth and orientation on a p = 0 curve, take a singular image point in imageo as an 

input point and do 

1. Starting from the input point, extend the computation on depth and surface in the 

two directions along the x axis in imageo until a p = 0 point is found. 

2. At the p = 0 point, use the third subprocedure to calculate the depth for its 

adjacent image point in the next row. If the adjacent image point is close to the 

background, stop. Otherwise take the adjacent point as the input point and go to 

step 1. 

Figure. 4.18(c) shows the depth computed on a p = 0 curve. The straight line in the 

middle of Fig. 4.18(c)-(e) represents the line of zero depth. The horizontal distance from 

a point to the line is the depth. The center of a small box in the diagrams represents the 

true depth at a singular point or a contour point in imageo-, which is obtained from the 

corresponding contour point in image^/2 and used to remove the ambiguity in q. The 
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c. depth computed d. depth from two directions e. after weighted average 

Figure 4.18: (a) and (b) are images for surface recovery. The white curve in (a) is a 
p = 0 curve. The square boxes denote the depths at singular or contour points. The 
distance from a point to the vertical black line is the depth, (c) the depth computed in 
one direction, (d) the depth computed in two directions, (e) the depth after the weighted 
average. The smooth curve is the real depth obtained from the corresponding contour. 
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white curve on the body part of the vase in Fig. 4.18(a) is the curve of p = 0 on which 

the depth and surface orientation are recovered first. The curve consists of several paths 

which connect a singular point to another singular point or a contour point. Since the 

depth computed at an end point of a path will not be exactly the same as the known 

depth at the end point because of image noise, non-uniform albedo and other factors, 

the depth on the p = 0 curve will not be continuous (see Fig. 4.18(d)). 

A distance-weighted averaging method is used to make the computed depth contin­

uous on the curve. The idea is to make the depth at the two ends of a path equal to the 

known depths. For a path which connects two points (,T 0 ,yo) a n d (xkiVk) with y 0 ^ y^, 

the computation of the depth and orientation along the path can start from either of the 

two points. Thus two sets of depths along a path can be obtained (see Fig. 4.18(d)). Let 

Z{, (i = (0,&)) be a set of depths computed along the path starting from (X,-,J/J-) and 

ending at (xk-i,yk-i)- Let the known depth at the point (.xt-,y;) be z,. Let point (xj,yj), 

0 < j < fc, be a point on the path and let z,j be a depth in Z, and computed at point 

(xj,yj). Since (x0,yo) is the starting point for ZQ and (xk,yk) is the starting point for 

Zk, we have zo.o = ZQ and Zk.k — Zk- In the general case, zQ:k ^ Zk and Zkp ^ ZQ. A new 

depth Zj is calculated at point (xj,yj), 0 < j < k7 by 

(k - j)z0,j jzk,j 

k 
+ J - ^ ± (4.23) 

It is easy to show that i 0 = z0,o = z0 and Zk = Zk,k = Zk- After recomputing depth 

for each path, we get continuous depth on the curve. The true depth (extracted from 

occluding contour in imaged/2) and the recomputed continuous depth are represented in 

one image. The two sets of depths are quite close. 

We have shown that the depth and surface orientation on a p = 0 curve can be 

determined from a few singular points of known depth and surface orientation. In fact, 

the depth on a p = 0 curve can be directly determined from the occluding contour in 
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image^/2 and the x location of the p = 0 curve in imageo can be determined by a search 

method. We will describe the search method in Subsection 4.7.2. 

4.6.3 Extending surface recovery over the entire image 

Using the points on the p — 0 curve as the starting points, we extend the computation 

on the depth and surface orientation in the x direction by z(N) = z(S) + p(S) with S 

as the current point and A/ as the next point. Since the p value is unique, there are 

no ambiguities when the computation is extended in the x direction. Some areas in 

the image may not be recovered by extending the computation in the x direction since 

the computation may stop at a background image point before reaching another image 

area. Figure. 4.19 shows the depth plot of the partially recovered surface. The top of 

the body part and the handle are not recovered by extending the computation from the 

p = 0 curve on the body. We assume a single surface in the image so the image area of 

the surface is connected. These unrecovered areas must connect to the recovered area 

in the y direction since they don't connect the recovered area in the x direction. For 

each unrecovered area, a p = 0 curve is computed first in the area. The p = 0 curve is 

computed by using a p = 0 point at the boundary, which connects the unrecovered area, 

of an recovered area as the starting point. The depth ambiguity on the p = 0 curve is 

removed by using the depth at singular points or contour points. Then the depth and 

surface orientation are extended in the x direction. In this way, the entire visible surface 

can be recovered. 

The depth and surface orientation are computed at every pixel in imageo- The bright­

ness values in imageK/i8 are linearly interpolated between pixels as the projection of a 3D 

point on imaged/9 may be located between pixels. The depth plot of the final recovered 

vase is shown in Fig. 4.20. The depth plots are displayed with Matlab [45]. We did not 

do any smoothing or regularization on the depth and surface orientation data. 
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o 

Figure 4.19: The surface depth plot of the partial!}' recovered vase 

o 

0 400 

Figure 4.20: The surface depth plot of the recovered vase 
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4.7 A n Exper imen t wi th Specular Surface 

4.7.1 Surface reflectance function 

We also experimented with a porcelain cup. Nineteen images are taken during TT/2 

rotation. The rotation angle between successive images is 7r/36. The reflectance of the 

cup presents a strong specular reflection so the brightness values at singular points are 

saturated. Figure. 4.21 contains four images of the cup. Images (a) to (d) are the images 

of the cup taken after 0, TT/6, 7r /3 , and n/2 rotation. Three sample points are tracked 

over the image sequence to extract the surface reflectance function. In Fig. 4.22, the solid 

line represents the surface reflectance function of the cup, and the dash-dot line is the 

Lambertian reflection which has the same maximum brightness value as the extracted 

surface reflectance function. The difference between the two reflectance functions is 

mainly caused by the specular reflection of the surface. Also the diffuse reflection of the 

surface is deviated from the Lambertian model when the emergent angle is large [74]. 

4.7.2 Al t e rna t ive method for surface recovery on a p = 0 curve 

In surface recovery of the cup, imageo and imaged/is are used. Like the surface recovery of 

the vase, the depth and surface orientation are recovered on a p = 0 curve first. However, 

for the cup, the depth on a p = 0 curve is determined directly from the occluding contours 

in imagev/2 of the cup. A p = 0 curve will project on image^/2 as an occluding contour 

after TT/2 rotation of the object (see Subsection 3.2.4). The horizontal distance from a 

point on the occluding contour to the image of the rotation axis gives the depth for the 

corresponding point on the p = 0 curve. The two white curves in Fig. 4.21 (d) are the 

occluding contours extracted from imagev/2. One occluding contour corresponds to the 

p = 0 curve on the body of the cup and the other corresponds to the p = 0 curve on the 

handle. 
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Figure 4.21: Tracking the sample points over the image sequence of a cup. The middle 
white line is the rotation axis, the center of a square box marks the image of a sample 
point. The white curves in imageK/2 are the detected occluding contours. 
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Figure 4.22: The surface reflectance function of the cup extracted from images(solid line). 
Lambertian reflectance function of the same maximum brightness (dash-dot line). 
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Although the depth on a p = 0 curve can be known from the corresponding occluding 

contour, the x coordinate on the p = 0 curve in imageo still needs to be determined. 

To find the x coordinate, in each row in image0, a search is carried on for an image 

point which has the measured depth and whose p component is zero. The search can be 

parallel by rows. To reduce the search space, the search is carried row by row starting 

from a singular point in imageo- Based on the C2 surface assumption, the result in the 

current row is used to conduct the search in the next row so that the search space can 

be limited within a ID window. The following procedure inputs the same row from the 

two images, the depth measured from the occluding contour, and a ID window in imageo 

and outputs the x location of a point on the p — 0 curve. 

1. Take the first point in the window as an input point. For the input point do 

2. Use the first subprocedure and the depth to calculate its correspondence in imagea; 

3. Use the second procedure to determine its surface orientation from its brightness 

and the brightness of the calculated correspondence. If the p component is zero, 

output the x location of the input point. Otherwise, take the next point in the 

window and goto step 2. 

The two black curves in Fig. 4.23 (a) are the two p = 0 curves computed by using the 

search method. The 3D location of a p = 0 curve can also be obtained by the method we 

used in surface recovery of the vase. The method we used here has several advantages. 

First, the depth on a p = 0 curve is more accurate because the distance measured from 

occluding contour can be accurate within one pixel and there is no accumulated depth 

error on the curve. Second, the method does not have any ambiguity in depth. Finally, 

the depth given by the occluding contour is continuous. However, a p = 0 curve may not 

appear in imagev/2 as an occluding contour because of occlusion. In this case, a part of 

a p = 0 curve can be recovered by using the method described in this section and the 
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a. images b. imagevj\% 

Figure 4.23: Images of the cup used for surface recovery. The black lines are p = 0 curves 

rest of the curve can be recovered by the method used in the recovery of the p = 0 curve 

on the vase. 

4.7.3 Detecting surface orientation discontinuity 

The object surface is assumed to be continuous in the second partial derivatives. That 

means the surface orientation change is smooth. However, for the general object surfaces, 

this assumption does not always hold. Surface orientation discontinuities occur between 

different parts of an object. For the surface of the cup, the discontinuity appears at 

the joint between the body and handle. When surface recovery is extended over the 

discontinuity, the depth and surface orientation obtained will be inaccurate. 

The surface orientation discontinuity should be detected in order to avoid surface 

recovery error. The discontinuity can be found by the Canny edge detector. Figure. 4.24 

(a) shows edges in imageo of the cup. The edges are generated by the Canny edge 

detector with o — 2 and threshold 20 for gradient. There are many image features which 

cause edges. Distinguishing the edges caused by occluding contours from the edges 
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(a) Edges in imageo (b) Edges used for recovery 

Figure 4.24: Detecting surface orientation discontinuity 

caused by surface orientation discontinuity can be done by tracking edges in three or 

more images [69] or using some other criteria. How to determine the type of an edge (e.g, 

surface mark, orientation discontinuity, shadow, occluding contour) is not the subject of 

this thesis so we just pick up the edges caused by surface orientation discontinuity (see 

black lines in Fig. 4.24 (b)) by hand and use the edges for surface recovery. 

4.7.4 Surface recovery of the cup 

The edges of orientation discontinuity are used as boundaries when the computation 

is extended on imageo- To recover the body or handle of the cup, starting from every 

point on the p — 0 curve, the computation for depth and surface orientation is extended 

in the x direction and stopped at the edges of orientation discontinuity or the occluding 

contour. Figure. 4.25 is the partially recovered cup. What is left uncovered is the tip 

which is a part of the handle. A p — 0 point on the boundary, which connects to the 

unrecovered area, is used to compute a p = 0 curve on the tip. Then the surface recovery 

is extended from the p = 0 curve in the x direction. Figure. 4.26 shows the depth plot of 
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Figure 4.25: The depth plot of the partially recovered surface of the cup 

the entire visible part of the cup. The surface orientation is also recovered for the cup. 

The sign of the q component is determined by using the sign of the difference of the depth 

in the y direction. Since the depth along the y direction is not smooth at some points 

because of surface recovery errors, the computed sign of q may not be be correct at these 

points. Under the C2 surface assumption, the surface orientation should be smooth so 

the q component should be smooth. The sign of the q component is finally determined by 

taking the sign that the majority of its neighbor points have. Figure. 4.27 is the needle 

map which represents the surface orientation of the recovered cup. The needle map is 

generated by projecting the surface normal of the cup on to a 2D plane. The normals 

are sampled from the points in every eighth row and column in image0. 
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Figure 4.27: The surface orientation of the recovered cup 
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Figure 4.28: Four images from the image sequence of the pillow. The square box marks 
the image of a sample point. The white vertical line is the rotation axis. The white curve 
in (d) is the detected occluding contour. The black curve in (a) shows the p = 0 curve. 

4.8 An Experiment with a Concave Object 

We also conducted the experiment with a concave object nicknamed "pillow". The ob­

ject is designed by Woodham and used by Ying Li [44] in her Ph.D work. The object is 

manufactured in a workshop and made of white clay. The images of the pillow are taken 

during T T / 2 rotation of the object. The rotation angle of the object between the two 

successive images in the sequence is 7r/36. Figure. 4.28 shows four of the nineteen images 

of the pillow taken during n/2 rotation. We can see that the pillow has strong inter-

reflection in the concave area. The 3D locations of the two sample points are calculated 

from the locations of the singular points in imageo and its corresponding contour points 

in image^/2- The images of the two sample points are labeled with small square boxes 

in Fig. 4.28. The surface reflection function shown in Fig. 4.29 is built by tracking the 

images of the two sample surface points in the image sequence. The occluding contour 

in imageN/2 ( s e e white curve in Fig. 4.28 (d)) is used to compute the 3D location on the 

p = 0 curve. 
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Figure 4.29: The surface reflectance function of the pillow. 

The two images, imageo and imaged/is, of the pillow are used for surface recovery. 

The depth and surface orientation on a p = 0 curve in imageo (see black curve in Fig. 4.28 

(a)) is recovered by using the search method which is used to recover the p = 0 curves 

on the cup. Then the depth and surface orientation is extended from every point on 

the p = 0 curve in the x direction. Figure. 4.30 shows the recovered surface depth 

and orientation of the pillow. The surface orientation plot is the projection of the surface 

normals of the recovered surface. The sign for the q component is determined in the same' 

way as we used for the q component of the cup. The surface normals are extracted from 

every fourth row and column in imageo- From the depth plot, we see that the surface of 

the pillow is recovered reasonably well in the area of strong interreflection although the 

recovered surface looks less concave than the manufactured pillow. The interreflection is 
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considered the major cause which made the recovered surface less concave. 

4.9 Summary 

We have presented the photogeometric technique for surface recovery from images of a 

rotating object illuminated under a collinear light source. The technique contains two 

parts: one is the surface reflectance function extraction and the other is surface recovery. 

We also have conducted some experiments with different objects. The results show that 

the technique is simple, feasible and effective. 

The surface reflectance function under a collinear light source is easy to compute, 

easy to store and easy to use. Any surface point of known 3D location and surface 

orientation can be used as sample points for extracting the surface reflectance function. 

For the surface points whose images are singular points, it is easy to determine their 3D 
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Figure 4.30: The surface depth and orientation of the recovered pillow. 

locations and surface orientations. So these surface points are used as sample points. 

The search for singular points in images is linear with the number of pixels in an images. 

The maximum cost for finding the corresponding occluding contour of singular points is 

0(mk) with m as the number of pixels in a row of an image and k as the number of 

the singular image points. The cost for extracting the brightness values of sample points 

from images is 0(vw) with v as the number of images and w as the number of the sample 

points used for extracting the surface reflectance function. For a uniform surface, only 

a few sample points and a limited number of images are needed to extract the surface 

reflectance function. So the total cost for extracting the surface reflectance function is 

linear with the image size. The cost can be reduced by using the results in the current 

row to conduct the computation in the next row. A look-up table of 255 entries can 

be used to store the inverse of the surface reflectance function. To compute the surface 

orientation from two brightness values, either the formulas 3.20 and 3.22 or a look-up 

table of 255 * 255 entries can be used. 
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The surface recovery process consists of the three sub-procedures. Starting from some 

points of known depth and iteratively applying the three subprocedures, the depth and 

surface orientation can be recovered on the whole object image. The surface recovery can 

start from any point of known depth. To make it easy to remove the depth ambiguity, 

surface is recovered on a p = 0 curve first. Two methods can be used to find the location, 

depth and surface orientation on a p = 0 curve. The first method only needs depths 

on some singular points and extends the computation from singular points along the y 

direction. The second method uses the corresponding occluding contour of a p = 0 curve 

as the depth for the curve and gives more accurate results. The two methods can be used 

at the same time for surface recovery on a p = 0 curve. 

To recover surface orientation of a surface point, its two brightness values from two 

different images are required and the two image points corresponding to the surface 

point must be found. Since there is no surface marking on a uniform surface, to find the 

correspondence by matching points in two images is impossible. The matching is avoided 

by first computing the 3D coordinates of a surface point and then projecting the surface 

point on the two images. 

When surface recovery is extended in the x direction from a p = 0 curve, there may 

be some areas which can't be recovered. To recover these areas, the depth and surface 

orientation on a p = 0 curve in an area are recovered and then extended in the x direction. 

If there is no p — 0 curve in the area, we can start from any point with known depth at 

the boundary or recover the corresponding surface by using the other images taken after 

the object has been rotated by different angles. 

The size of the Gaussian filter used in surface recovery is small and about several 

pixels. Let n be the size of the Gaussian filter; then the time required for filtering one 

image of size N is 0(2nN). The Gaussian filtering can be implemented in real time by 

using hardware. The maximum computational cost in surface recovery on a p = 0 curve 
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is linear with N. The maximum computational cost in extending the surface depth and 

orientation in the x direction is also linear with N. Therefore the total cost for surface 

recovery is linear with the image size N. 

There are several factors such as noise, non-collinear illumination, non-uniform surface 

reflectance, and interreflection that may cause surface recovery error. Chapter 7 will give 

a detailed analysis of the effects of different factors on surface recovery. 



Chapter 5 

Wire-frame Technique 

In Chapter 4, we described the photogeometric technique for surface recovery. The tech­

nique is capable of building the surface reflectance function of the object and recovering 

the depth and surface orientation of the object surface. The experimental results show 

that the technique is feasible and effective. The technique can be applied to any uniform 

surface of isotropic reflection. However, the assumption on the uniformity of the surface 

reflectance function is too restrictive to apply the technique for general surface recovery. 

Moreover, integrating surface gradients for depth recovery will accumulate errors caused 

by image noise, non-uniform albedo, and interreflection. To solve these problems, we 

further explore the constraints on image sequence of a rotating object. By integrating 

these constraints, we propose another technique, called wire-frame technique for surface 

recovery. In this technique, we extract a wire frame of 3D curves on the object surface. 

Then the whole object surface is recovered by interpolating the surface between curves 

on the wire frame. The interpolation can be done by using geometric or photometric 

methods. The photometric method is the application of the photogeometric technique 

we described in the previous chapter. The technique presented in this chapter does not 

need the surface reflectance function for extracting a wire frame. Moreover the tech­

nique makes it possible to deal with piecewise uniform objects by extracting the local 

reflectance function from the wire frame and then applying the local reflectance function 

for local surface recovery. 

Section 5.1 in this chapter reviews the geometric and photometric constraints on a 

79 
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p = 0 curve. Section 5.2 describes how to find the correspondence between a p = 0 curve 

and an occluding contour. Section 5.3 presents a search method which finds the 3D 

coordinates on a p = 0 curve by integrating the geometric and photometric constraints. 

Section 5.4 shows how to extract a wire frame from an image sequence. Section 5.5 and 

Section 5.6 demonstrates the experiments with surfaces of matte and specular reflectance. 

Section 5.7 summarizes this chapter. 

5.1 Geometric and Photometric Constraints on a p = 0 Curve 

In order to further explore the geometric and photometric constraints on the image se­

quence of a rotating object for surface recovery, we look at geometric and photometric 

constraints on a p = 0 curve. A p = 0 curve, after 7r/2 or —7r/2 rotation of the ob­

ject, will become an occluding boundary and be projected as an occluding contour on 

the image if there is no self-occlusion on the curve. The geometric information on the 

corresponding occluding contour provides the geometric information on the p = 0 curve 

(see Subsection 3.2.4). The x coordinates on the corresponding occluding contour give 

the depths on the p = 0 curve. To determine the 3D location of a p = 0 curve, we 

still need to find the x coordinate of each point on the curve. For a p = 0 curve on 

a surface illuminated under a collinear light source, each point on a p = 0 curve gives 

the same brightness value in two images taken after the surface has been rotated by two 

symmetric angles. This constraint is called the equi-brightness constraint and has been 

discussed in Subsection 3.3.3. Also, for any surface point, the disparity of its two image 

points in two images taken after the surface has been rotated by two symmetric angles 

can be calculated from its depth (see Subsection 3.2.5). The geometric or photometric 

constraint alone is not sufficient for determining the 3D location of a p = 0 curve. A 

search method which integrates both geometric and photometric constraints can be used 
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to solve this problem. 

5.2 Corresponding Occluding Contour of a p = 0 Curve 

The correspondence from a p = 0 curve in image® to the corresponding occluding contour 

in imagen/2 can be found by using singular points in image® since a singular point in 

image® is a point on a p = 0 curve. As shown in Subsection 3.3.2, for a singular 

point, it is easy to find its depth and its corresponding occluding contour. The equi-

brightness constraint can be used to check the correspondence from a singular point to 

its corresponding occluding contour point. If the correspondence is correct, the two image 

points, which are projected by using the depth at the singular point, should have the 

same brightness value in imagea and image^a. Under the C2 surface assumption, both a 

p = 0 curve and its corresponding occluding contour are smooth and continuous. So once 

the correspondence from a singular point to a contour point is built, the correspondence 

from a p = 0 curve to an occluding contour is determined. 

5.3 Integrating Geometric and Photometric Constraints 

Let (x®,y®,z®) be a surface point on a p = 0 curve, and (xa,ya) and (.x_ a ,y_ 0) be the 

images of the surface point in imagea and image-a, respectively. Then ya = y_ Q . In 

Section 3.2.5, we have shown that the disparity D of the two image points is 

D = - 2 z 0 s i n a , (5.24) 

and the depth z® can be measured from the corresponding contour point in image^/2-

The two image points, (xa,ya) and (x_a,y_a), must satisfy the two constraints: 

xa - x_a = D & E(xQ,ya) = E(x-a,y-a). 
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Three images, image7T/2, imageQ and image-a, are used in search for the x location of 

a p = 0 curve. The same row in the three images are used to search for the two image 

points, which satisfy the above two constraints, in imagea and image-a. Then the 3D 

location of the p — 0 point is calculated from the locations of the two corresponding 

image points. The search and calculation can be parallel by rows. But to reduce the 

search space, the result in the current row is used to conduct the search in the next row 

so that the search can be confined within a small window. The search starts from image 

points corresponding a singular point in images. The following procedure inputs the 

same row from the three images and outputs the location of a p = 0 point with subpixel 

accuracy. The procedure assumes that, for the two corresponding image points which 

satisfy the two constraints, the point in imagea is within a ID window. For each row in 

the three images, do 

1. In image-xii, find the occluding point which corresponds to the p = 0 point. Mea­

sure the distance from the occluding point to the rotation axis. The distance gives 

the depth ZQ for the p = 0 point. Compute disparity D by using Equation 5.24. 

Pick the first image point in the window in imagea; 

2. For the image point in imagea, use the disparity D calculated in step 1 to locate 

the corresponding image point in image-a; 

3. Compute the brightness difference of the two corresponding image points. If the sign 

of the brightness difference is different from the brightness difference computed at 

the previous point, calculate the x locations of the two corresponding image points, 

which satisfies the two constraints, in imageQ and image-a with subpixel accuracy 

and then compute the x location for the p = 0 point by 

Xa ~\- X—Q, 
xo = -z , 

I cos a 
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where the x coordinates of the two corresponding image points 

obtained by searching. Otherwise, pick the next image point in the window in 

imagea and go to step 2. 

In step 3, linear interpolation is used to obtain subpixel accuracy in the locations of 

the two corresponding image points. In the general case, the two image points which 

satisfy the above two constraints lie between image pixels. The sign of the brightness 

difference of the two image points is checked when the search is going on. Let xa and 

xa be the x coordinates of two adjacent image points in imagea with xa = xa + 1, and 

X-a and i-a be the x coordinates of two image points in image_a with x _ a = 'xa — D 

and i _ a = xa — D. We will drop the y coordinate in the following expressions since 

all the image points used in the calculation have the same y coordinate, ff the sign of 

E(xa) — E(x-a) is different from the sign of E(xa) — E(&-a) and the image brightness 

values between two adjacent image points can be linearly interpolated, the x coordinates, 

xa and x-a, of the two image points which satisfy the two constraints can be computed 

with subpixel accuracy by the following calculations. Using linear interpolation, we have 

E(xa) = E(xa) + (E(xa) - E(xa))(xa - xa) = E{xa) + AE(xa)(xa - xa) (5.25) 

E(x-a) = E(x-a) + (E(x-a) - E(x_a))(x_a-x-a) = E{x_a) + AE(x-a)(x_a-x_a), (5.26) 

where E(xa), E(xQ), E(x-Q) and E(x-a) are the image brightness values at the corre­

sponding image points; AE(xQ) = E(xa) — E(xa) and AE(x-a) = E(x-a) — E(i-a). 

Since the two image points must satisfy the equi-brightness constraint, 

E(xa) + AE(xa)(xa - xa) = E(x-a) + A£ (x_ a ) ( . x_ Q X-a). (5.27) 

(5.28) 
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5 . 4 Extracting Wire Frame 

Since the coordinate reference system is fixed with the viewing direction, a curve of 

p = tan(—9) on an object surface can be transformed to a curve of p — 0 by rotating the 

object by 9. So the 3D location and surface orientation of a curve of p = tan(—9) can 

be determined in the same way. As the depth and x location of a curve of p = tan(—9) 

computed in this way are the depth and x location at image points in imageo, a curve 

of p = tan(—9) is defined as a p = 0 curve in images. For example, a p = 0 curve in 

imaged/9 means the computed depth and x location of the curve are at image points in 

image^/9. Let n = 2TT/9 and 9 divide 2TT, and let the images of an object be taken after 

the object has been rotated by k9, (0 < k < n). In total, n images are taken during 2ir 

rotation. To extract a p — 0 curve in images, three images, imageg+7r/2, imageg+ke and 

imageg-k$, ( k9 < TT/2) can be used. A l l the curves extracted from images comprise a 

wire-frame on the object surface. The depth and surface orientation between two adjacent 

curves on the wire-frame can be interpolated by using either geometric or photometric 

method. 

5 . 5 A n Experiment with a Matte Surface 

5 . 5 . 1 Image sequence 

The imaging condition for our wire-frame technique is the same as that for the photoge­

ometric technique. Thirty six images are taken during 2rr rotation of an object with a 

7r/18 increment for each image. The images are smoothed with a Gaussian filter of a = 1 

to filter noise and quantization effects. A clay ellipsoid is used for our first experiment. 

The surface of the ellipsoid can be considered a matte surface. Twelve images from the 

image sequence of the ellipsoid are shown in Fig. 5.31. 
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imageo image^fe imagev/s image^/2 

image2-K/3 image^/Q image27r image-f^/Q 

image47T/:i image^/2 image5w/3 imageU7T/e 

Figure 5.31: Images from an image sequence of a rotating ellipsoid. 
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5.5.2 Wire frame on an ellipsoid 

To extract the p = 0 curve in image$, three images-taken after (9 + 7r/2) mod 2n, 

(9 — a) mod 2ir, (9 + a) mod 2TT rotation are used. In our experiment, a = TT/9. For 

example, to extract the p = 0 curve, image^^, image^/Q and imaye 1 7 7 r / 9 are used. These 

three images are shown in Fig. 5.32 (a)-(c). The black vertical line in image (a) is the 

rotation axis. The occluding contour in image (a) is extracted by a simple thresholding 

method. The horizontal distance from each contour point to the rotation axis gives the 

depth for the corresponding point on the p = 0 curve. For each point on the p = 0 

curve, the disparity of its two image points in imagenfg and imagel777/g is calculated by 

Equation 5.24 and the x coordinates of its two images in image^/g and imagel7v/g are 

determined by the search method we described in the previous section. The black curve 

in image (d) is the projection of the p = 0 curve on image0. The other curves of constant 

p are extracted in the same way. A l l these curves comprise a wire frame on the object 

surface. The projection of the wire frame on imageo is shown in Fig. 5.33 (a). 

5.5.3 Geometric interpolation 

Each curve on the wire frame is computed as a p = 0 curve from images taken after the 

object has been rotated by certain angles. The q component on a p = 0 curve is com­

puted from the tangent on the corresponding contour. A proper transformation is used 

to transform the 3D location and surface orientation of a p = 0 curve to its initial coor­

dinates. The surface orientation and depth between adjacent curves on the wire frame 

are geometrically interpolated by using depth and orientation data on the wire frame. 

The interpolation is implemented with graphics program Optik [1]. First we connect the 

areas between each two adjacent curves with triangles and get a triangular mesh of the 

surface(see Fig. 5.33 (b)). Then we input the 3D coordinates and surface orientations at 
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a. image^/2 b. imageK/9 c. image^^/v d. imageo 

Figure 5.32: Extracting a p = 0 curve from images (a)-(c). The black line in (a) is the 
rotation axis and the white curve is the occluding contour which gives the depth for the 
corresponding p =0 curve. The black curves in (b) and (c) are the locations of the p = 0 
curve obtained by the search method. The black curve in (d) is the projection of the 
computed p = 0 curve on imageo-

the vertices of the mesh to the program Optik. Optik does surface orientation interpo­

lation and gives a smooth shaded image of the recovered surface. In Fig. 5.33, (c) and 

(d) are the synthetic images of the recovered surface. The pose of the ellipsoid in image 

(c) is the same as that in imageo- The viewing direction and illuminant direction used 

to generate image (c) are collinear so that we can compare the synthetic image with the 

corresponding real image imageo- The viewing and illuminant direction as well as the 

pose of the ellipsoid for synthetic image (d) are different from those for the real images. 

5.6 A n Exper imen t wi th a Specular Surface 

5.6.1 W i r e frame on a porcelain cup 

We also experimented with a porcelain cup. The surface reflectance of the cup con­

tains a strong specular component but this does not affect the wire frame extraction. 
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a. Wire frame b. Triangular mesh c. Shaded image 1 d. Shaded image 2 

Figure 5.33: (a) the wire frame extracted from images, (b) the triangular mesh built 
by connecting points on the wire frame, (c) and (d) synthetic images generated under 
different viewing and illuminant conditions. 

An image sequence of thirty six images are taken during 2TT rotation with a fixed incre­

mental angle between two successive images. Twelve images from the image sequence of 

the rotating cup are shown in Fig. 5.34. Since the object is not a simple convex object, 

there may be more than one p = 0 curves in any image. Three images, image (a), (b) 

and (c) in Fig. 5.35, are used to extract the p = 0 curves on the cup. In this experiment, 

both background-occluding contours and self-occluding contours are used. The occluding 

contours are detected by the method described in Subsection 3.2.3. Image (a) shows the 

occluding contours in imagen/2

 a s t h e white curves. One of the contours in image (a) 

is a self-occluding contour and corresponds to the p — 0 curve on the handle. The x 

coordinates of these white curves give depths for the corresponding p — 0 curves. Images 

(b) and (c) in Fig. 5.35 are images taken after T T / 9 and 17~/9 rotation of the object, 

respectively. The projection of the p = 0 curves in imagen/9 and imageUjr/9 are deter­

mined by searching for the image points which satisfy the disparity and equi-brightness 

constraints. The black curves in (b) and (c) of Fig. 5.35 are projections of the p = 0 
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image^/2 image5jr/3 imageU7r/6 

Figure 5.34: Images from an image sequence of a rotating cup. 
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c. image17ir/9 d. imageo 

Figure 5.35: Extracting p = 0 curves from images. The black line in (a) is the rotation 
axis and the white curves are the occluding contours which give the depths for the 
corresponding p =0 curves. The black curves in (b) and (c) are the locations of the p = 0 
curves obtained by the search method. The black curves in (d) are the projection of the 
computed p = 0 curves on imageo. 
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curves in irnagev/9 and imagen^fg. The black curves in Fig. 5.35(d) are the two p = 0 

curves in imageo. The p = 0 curves in other images are extracted in the same way. These 

extracted curves comprise a wire frame on the object surface. The projections of the wire 

frame on images are shown in Fig. 5.36. We can see that some curves are not completed 

and some curves are missing. This is because the corresponding occluding contours are 

partially occluded or totally occluded by other part of the object. It is notable that a 

curve on the handle is totally missing. This is because the occluding contour point which 

corresponds to the singular image point on the curve cannot be detected. There is a pig 

figure on one side of the cup. The protrusion and the color of the figure violates our 

uniform and smooth surface assumption so that the curves on the body part of that side 

cannot be extracted. 

5.6.2 Pho tomet r i c in terpolat ion 

Since the wire frame on the cup surface is incomplete, some details of the surface will 

be lost in recovery if geometric interpolation is used. For example, there is not sufficient 

geometric information on the wire frame to interpolate the joints between the handle and 

the body of the cup. Photometric interpolation is the application of the photogeometric 

technique described in Chapter 4. Instead of starting from a few 3D surface points, the 

surface recovery here starts from a wire frame. To apply the photogeometric technique, 

the surface reflectance function of the cup must be known. It is extracted by using the 

same method as we described in Section 4.2. Figure 5.37 shows the reflectance function 

extracted from the images of the rotating cup. 

Photometric interpolation uses two images taken at different rotation angles of the 

object and recovers the depth and surface orientation at every pixel in one of the two 

images. The interpolation starts from image points on the wire frame. The computation 

for depth and surface orientation is propagated in the x direction until an image point on 
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projected on imageo projected on imagew/6 

projected on image^/^ projected on iraage l l 7 r / 6 

Figure 5.36: Projections of the wire frame on the original images. 
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300 
Image Brightness R(e) 

Figure 5.37: The surface reflectance function of the cup. 

another curve of the wire frame is reached. In this way, the depth and surface orientation 

between the curves of the wire frame can be recovered. Because of the accumulated error 

caused by image noise and other facts, the depth calculated at the end point may not meet 

the depth on the wire frame. This will cause a discontinuity in the depth. To overcome 

this problem, the distance-weighted averaging method described in Subsection 4.6.2 is 

used. Figure 5.38 shows the surface depth plot of the the recovered cup. The depth data 

is directly used for display without any smoothing or regularization. Figure 5.39 is the 

surface orientation map of the recovered cup. 
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o 

Figure 5.38: The surface depth plot of the recovered cup. 
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Figure 5.39: The surface orientation plot of the recovered cup. 
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5.7 Summary 

The wire-frame technique has been presented in this chapter. The technique extracts a 

3D wire frame on an object surface from images without using the surface reflectance 

function. The experimental results show the technique is simple and reliable. The com­

putational cost of the technique depends on the image size and the number of curves on 

the wire frame to be extracted. The maximum cost for detecting singular points and 

occluding contours in an image is linear with the image size. The maximum cost for 

determining the 3D coordinate on a p = 0 curve by searching for image points which 

satisfy the given disparity and equi-brightness constraint is linear with the image size. 

So the maximum cost for extracting a wire frame of k curves of constant p from images 

of size N is linear with kN. The cost can be reduced by using the results in the current 

row for the computation and search in the next row. 

The most important aspect of the technique is that the surface recovery on the wire 

frame is local. The computation is local so that there is no accumulated error. The infor­

mation used is local so that the object surface can bepiecewise uniform. As depth and 

surface orientation are recovered at every point on the wire frame, the brightness values 

of the points on the wire frame can be used to build the surface reflectance function even 

when no singular image points are available from images. Then the surface reflectance 

function extracted can be used in the photogeometric technique for surface recovery. By 

tracking the surface points on the wire frame the surface reflectance function for the local 

area can be built and then be applied for surface recovery for the local area as long as 

the surface can be segmented into different areas of uniform reflectance. 

To extract the 3D coordinates on a p = 0 curve, the curve must be visible in imaged/2, 

imagea, and imagea. However, the curve may be partially or totally occluded by the 

other part of the object so that they are partially or totally not visible in these images. 
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In this case, only a part or none of any part of the p = 0 curve can be extracted. For 

example, for any surface curve within a concave area, it can not be seen as an occluding 

contour in images. Therefore, a p = 0 curve within a concave area cannot be extracted 

by the wire frame technique. 

In Chapter 7, we will show that a collinear light source is not necessary for extracting 

the wire frame. We will also give detailed error analysis on the 3D location of the 

extracted wire frame. 

The next chapter will discuss some practical issues related to the experimental con­

ditions. The chapter can be skipped without losing the continuity of this thesis. 



Chapter 6 

Expe r imen ta l Considerat ions 

This chapter describes some practical problems with the experimental conditions. It can 

be skipped since it is not necessary for the understanding of the other chapters of this 

thesis. The first section talks about the imaging facility we used for surface recovery. 

The second section introduces a simplified camera model. The third section presents a 

calibration method for overcoming photometric distortion. The fourth section discusses 

geometric aberration of the camera. The last section describes how to determine the 

projection of the rotation axis in images. 

6.1 Ca l ib ra ted Imaging Facil i t ies 

The imaging facility we used is the calibrated imaging facility (CIF) built in our lab. The 

CIF has been used for photometric stereo [81, 37], photometric optical flow [80, 57] and, 

several other projects [44]. The imaging facility is isolated in a dark room surrounded 

by black curtains. The black curtains block light from outside and absorb the ambient 

light reflected inside the dark room. It also gives a uniform dark background on the 

images of an object. The base of the CIF is an optical bench on which apparatus can be 

mounted at various positions and pointed in different directions. The camera is mounted 

on a pedestal on the optical bench through a support so that its 3D position and viewing 

direction can be adjusted. There is a motion stage on the optical bench consisting of a 

translation mechanism and a rotary table so that object can be translated and rotated 

on a horizontal plane. The rotary table is controlled by a computer. It can be rotated 
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in any direction by any amount of angle. The rotation angle can be controlled with an 

accuracy of one thousandth of a degree. 

The camera of the CIF is a 3CCD Sony camera with DCX-755 control unit. The zoom 

lens has a wide range of focal lengths from wide angle to telephoto mode. The camera 

provides three B & W images which correspond to the three images from red, green and 

blue channels. Since color information is not needed in our surface recovery, only B & W 

images from one channel are used. The camera control unit is used to adjust the iris of 

the camera and to control the gain of the video output from the camera. The unit can 

also be used to set the gamma correction of the video output on and off. 

There are three directional light sources available(red, green and blue). Since we only 

need B & W images from one color channel, only one of them is used. These light sources 

are focused by a set of optical lenses so that the outcoming light rays are projected 

in parallel or almost in parallel. The light sources are designed to make the radiation 

over the illuminated area as uniform as possible. Ideally, the illuminant direction of 

the light source and the viewing direction of the camera should be aligned along a line. 

We considered putting a half-silvered mirror in front of the camera to make the viewing 

direction and illuminant,direction precisely collinear. However, the half-silvered mirror 

reflects only a small portion of the light to the object and blocks a large portion of the 

reflection from the object surface to the camera. As the half-silvered mirror does more 

harm than help, we just directly put the light source on the top of the camera. The 

distance from the object under recovery to the camera and the light source is about 

242cm and the distance between the optical center of the camera and the optical center 

of the light source is about 8cm. So the angle between the optical axis of the camera 

and the light source is about 0.033 radians. This angle violates the collinear light source 

assumption. However the error caused by this small angle is not serious. The effects of 

this small angle will be analyzed in Section 7.4.2. 
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An image sequence of an object is taken when the object is rotating on the rotary 

table. In taking an image sequence of the object, the iris, the focus, the gain control 

of the camera are fixed and the gamma correction is turned off. Since the object is far 

away, the camera is set to telephoto mode. The action of rotating an object and taking 

images of the object are well synchronized by a computer program. The accuracy of the 

rotation control is within 1 thousandth of a degree. Usually, each image is taken after 

the object has been rotated by a fixed angle increment. The video output from camera 

is digitized by a frame grabber of Max-Video200 image processor and from the frame 

grabber the images can be downloaded and saved as digital image files. A digital image 

is stored in a file as a 512x480 8 bit array. Therefore the maximum brightness value in 

an image is 255. 

6.2 Simplified Camera Model 

The light source we used has ±10% of spatial variation in radiation uniformity according 

the specification. This violates the assumption on the uniformity of the light source. In 

addition, the vignetting effect of the camera [29] makes brightness fade away from the 

center to the boundary of an image. To overcome these problems, a calibration process 

is used. The calibration process is based on a simplified linear camera model. 

The digital image used in computer vision is a two dimensional function E(x, y) where 

both the domain and range of E are digitized. A C C D camera has a two dimensional array 

of photo sensors. When light (photo flux) hits a photo sensor, electrons are generated. 

If the camera shutter speed is fixed and the sensor is exposed to the light in a unit time 

defined by the fixed shutter speed, the number of electrons generated is fcL, where the 

factor k is the quantum efficiency (electrons generated/incident photon flux) and L is the 

irradiance of the incident light over the photo sensor. The image brightness value at an 
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image point is determined by the electrons collected at the corresponding photo sensor. 

At each photo sensor, there are also some free electrons produced by thermal energy. 

These free electrons are called dark current and they are highly temperature dependent. 

If we ignore the shot noise (noise generated by quantum nature of light), the number of 

electrons collected at each sensor is kL + D, with D as the dark current. For a C C D 

sensor array, the dark current D is a constant at certain temperature. After electrons 

are collected at each photo sensor, they are transformed into a voltage signal, amplified 

by the camera output circuit, and digitized by a frame grabber. In the frame grabber, 

the brightness value of an image point is expressed as E = g(kL + D) with g as the gain 

of the output amplifier. The quantity gD can be determined from the brightness values 

in the images which are taken by blocking light to the camera with a lens cap. 

In a camera with a compound lens, some light rays that pass through a lens may be 

blocked by the lenses behind. The entering ray with larger inclination is.more likely to 

be blocked by some lenses. This effect is called vignetting [29]. As a result, even when 

the irradiance is uniform over the front lens of the camera, the sensors away from the 

optical axis of the camera gather less light than the sensors close to the optical axis. The 

vignetting of the camera is related to the configuration of the camera lens. When the 

iris and the focal length of a camera are smaller, the vignetting effect is more severe. If 

the iris and focal length are fixed, the vignetting effects purely depend on the physical 

location of each photo sensor. We model the vignetting effect by using a vignetting factor 

for each photo sensor. Assuming the irradiance is uniform over the front lens of a camera, 

the ratio of the irradiance over the photo sensor to the irradiance over the front lens is 

defined as the vignetting factor h. 

When an object is illuminated by a light source, the surface reflection in the direction 
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of the camera at the surface point whose image is image point can be written as 

R(x,y) = I(x,y)Q(x,y). 

I(x, y) is the irradiance of the light source at the corresponding surface point and Q(x,y) 

is the surface reflectance function under a unit irradiance. For a uniform surface, Q 

is a function of the incident angle z, emergent angle e and phase angle g at a surface 

point. Assuming a photo sensor in the CCD array corresponds an image point, then the 

brightness value E(x,y) of image point (x,y) can be expressed as 

E(x, y) = g[k(x, y)h(x, y)R(x, y) + D) = g[k(x, y)h(x, y)I(x, y)Q(x7 y) + D]. (6.29) 

Quantities with properties that depend on location (x,y) are explicitly indicated. In 

the above formula, k(x,y) is the quantum efficiency at the corresponding photo sensor, 

h(x,y) is the vignetting factor which accounts for vignetting effect of the camera. 

The above imaging model does not consider the spectrum of the light source since the 

model is a simplified model and also the light source we used is filtered with a very narrow 

band filter. The model also does not consider shot noise, amplifier noise, signal transfer 

noise and digitization noise either because the effects of these noises are equivalent to a 

uniform distributed Gaussian noise. The noise can be filtered by a Gaussian filter. In 

deriving the imaging model, we assume the surface reflectance is uniform. But the model 

also applies to the object of non-uniform surface. 

6.3 Photometric Calibration 

From the term k(x,y)h(x,y)I(x,y) in Formula 6.29, we see that because of the different 

quantum efficiency of the photo sensor, the vignetting effects of the camera, non-uniform 

illumination of the light source, the image brightness value of a surface point is not a 
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simple function of the surface orientation. A single calibration process can be used to 

remove all the above effects. 

The calibration is based on the fact that when the camera configuration and. light 

source are fixed the value for k(x,y)h(x,y)I(x,y) will be fixed at each image point and 

it is invariant to the time and the object surface. If the value for k(x,y)h(x,y)I(x,y) 

at each image point can be calculated, the brightness value can be adjusted to remove 

these effects. To calculate k(x,y)h(x,y)I(x,y), a uniform flat board is used. The surface 

reflectance Q(x,y) is a constant for the uniform flat board. The image of the calibration 

board is called the calibrating image and the brightness value Eb(x,y) of the calibrating 

image is 

Eb(x, y) = g[k{x, y)h(x, y)I(x, y)C + D) 

with C as the surface reflectance of the uniform flat board. Then we have 

gk(x, y)h(x, y)I(x, y)C = Eb(x, y) - gD. 

For calibration, the quantity gk(x, y)h(x, y)I(x, y)C is sufficient. Assume we have another 

generic object of smooth curved surface. Suppose the reflectance of the surface is uniform 

and the surface reflectance function is Qs(x,y). If the image of the object is taken with 

the same camera configuration and the same illuminant condition, the brightness value 

of the object image is 

E,(x, y) = gk(x7 y)h(x, y)I(x, y)Q,(x, y) + gD. 

Using the calibrating image to calibrate the image of the generic object, the brightness 

value Es(x,y) of the calibrated image is 

- Ea(x,y)-gD gk(x, y)h(x, y)I{x, y)Qs{x, y) Qa(x,y) 
E ' { X ' 9 ) = * ( * , „ ) - f l 0

 + 'JD = 9 t ( x , „ ) A ( x , „ ) / ( x , , ) C + 9 ° = + ^ 

Since Qs(x,y) depends only on surface orientation, so does the brightness value of the 

calibrated image Es(x,y). This is the desired property which is consistent with our 
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a. calibrating image b. image to be calibrated c. image to be calibrated 

b'. calibrated image c'. calibrated image 

Figure 6.40: (a) is an image of white board used for calibrating other images, (b) and 
(c) are the images of a gray board and a yellow board before calibration, (b') and (c') 
are the calibrated images of (b) and (c). 

assumptions. After calibration, the effects of different quantum efficiency, vignetting and 

non-uniform illumination are eliminated. The term Eb(x,y) — gD can be scaled to avoid 

the brightness values of the calibrated image exceeding the maximum possible brightness 

value. The scale factor can be determined from the maximum brightness value in the 

images to be calibrated. 

The calibration board is made of a piece of thin glass painted on one side. The 

flatness and uniformity of the board are very important. Otherwise, additional errors 

will be introduced by the calibration process. We have tried flat surfaces of different 

materials, such as cardboard, plastic, and metal. None of them is as uniform and flat as 

painted glass boards. Before taking an image sequence of the object to be recovered, we 
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adjust the iris, focal length and focus of the camera as well as the illuminant intensity 

of the light source. With the fixed imaging condition, the images of the calibration 

board and the object are taken. When we take the image of the calibration board, the 

unpainted side of the calibration board is facing the camera. To avoid specular reflection, 

the surface normal of the calibration board is tilted a little bit with respect to the viewing 

direction. This does not affect the calibration very much. But to make the calibration 

more accurate, another image of the calibration board is taken with the surface normal 

tilted by the same amount but in the opposition direction. The average of these two 

images is used as the calibrating image. Before the calibration, a Gaussian filter is used 

to filter the image noise in the calibrating image. Then the image sequence of an object 

taken under the same imaging conditions is calibrated by the calibrating image. 

The calibration process is evaluated by calibrating other flat surfaces of uniform 

reflectance. These flat surfaces are also made of thin glass but painted with different 

colors. In Fig. 6.40, (a) is the calibrating image, (b) and (c) are images of a flat yellow 

board and a flat gray board, (b') and (c') are the calibrated images of (b) and (c). The 

standard deviation o, 

a = [ W^i _ 

is used to compute the brightness variations of images before and after the calibration. 

In the above formula, M is the mean of the brightness values and N is the number of 

pixels in an image. For the yellow board, o = 14.93 before the calibration and o = 2.05 

after the calibration. For the gray board, o = 10.58 before the calibration and o = 1.685 

after the calibration. To give a better visualization of the calibration results, Figure 6:41 

gives the brightness plots of the images of the yellow and gray boards before and after 

the calibration. The brightness values of the plot are extracted from every sixth row 

and column in an image. Ideally, the calibrated images should have constant brightness 
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value. Because of image noise, slight non-uniformity of the calibration board, and other 

causes, there are still some small variations on the brightness values. Comparing the 

standard deviations before and after the calibration, we can see significant differences. 

The calibration results confirm the simplied camera model and show that the calibration 

process is necessary and effective. 

6.4 Geomet r ic A b e r r a t i o n 

In the calibration process, we assume that each point in an image corresponds to a photo 

sensor of the C C D array in a camera. This is not true in our case. The C C D sensor in the 

3CCD Sony camera is a 768x493 array. The video signal from the output of the camera 

is resampled by the frame grabber of the Max-Video200 image processing hardware. The 

output image is a 512x480 array with an incorrect aspect ratio. The resampling does 

not affect the calibration process since the calibrating image and the images calibrated 

are all resampled in the same way. However it does affect the results of surface recovery 

because the recovery process uses surface derivatives to compute depth. To get the right 

aspect ratio, images have to be scaled with different factors in the dimensions x and y. 

The scaling factors can be easily found from the image of a flat board with a grid of 

squares. 

In the general case, there will be some geometric aberrations, such as barrel distortion 

and radial distortion, introduced by camera lens. The degree of the distortion depends 

on the focal length of the camera. Under our imaging conditions, the object is far away 

and the camera is set to telephoto mode so that the distortion is very small. A flat board 

with a grid of squares is used to detect the distortion. We found that the distortion is so 

small that the effects of the geometric aberrations can be ignored. 
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(a') calibrated image (b') calibrated image 

Figure 6.41: (a) and (b) are the brightness plots of images of a gray board and yellow 
board before calibration, (a') and (b') are the brightness plots of the calibrated images 
of (b) and (c). 
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6.5 Projection of the Rotation Axis 

The images used for surface recovery are taken during the rotation of an object. To 

recover the object surface from its images, the projection of the rotation axis in the 

images must be known. Since the rotation axis is used as y axis in the coordinate 

reference system, the projection of the rotation axis should be a vertical line in images. 

To make the projection of the rotation axis vertical and to find out the location of the 

rotation axis in images, a thin and transparent flat card with tilted lines (see Fig. 6.42 

(a)) is used. The surface normal of the card is perpendicular to the image plane. Two 

images of the card are taken before and after the card is rotated by n. The two images 

are superimposed together as one image (see Fig. 6.42(b)) The line which passes through 

the symmetric center of the image is the projection of the rotation axis(see dotted line in 

Fig. 6.42(b)). The location of the rotation axis in the image can be determined from the 

intersections of the two groups of tilted lines. By adjusting the orientation of the camera, 

the projection of the rotation axis can be made vertical. With the camera position and 

the rotation axis fixed, the projection of the rotation axis in the images taken during the 

object rotation will be also fixed. The projection of the rotation axis can be determined 

with subpixel accuracy. From analysis in the next chapter, we will see that this accuracy 

is sufficient for surface recovery. 
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(a) 
The plastic card used for 
determining the location 
of the rotation axis 

(b) 
The symmetric center 
line is the projection 

of the rotation axis 

Figure 6.42: Determining the projection of the rotation axis, (a) is a flat transparent 
plastic card with tilted lines. The surface normal of the card is perpendicular to the 
image plane, (b) is the image obtained by overlaying two images taken before and after 
7r rotation. The symmetric center of the tilted lines gives the rotation axis 



Chapter 7 

Analysis and Evaluation 

In the previous chapters, we have described techniques for surface reflectance extraction 

and surface recovery and presented some experimental results. We have also discussed 

some practical problems with experimental conditions and the methods used to overcome 

the problems. In this chapter, we will give detailed analysis and evaluation of these 

techniques. An ellipsoid with ground truth is used in the analysis and evaluation. There 

are many factors which can affect the accuracy of the surface recovery. We will consider 

some major factors. Section 1 introduces the measurements used in the evaluation and 

analysis. Section 2 describes the experiments with an ellipsoid with ground truth. Section 

3 discusses the surface reflectance function extracted from the images. Section 4 analyzes 

the surface recovery error caused by image noise, non-uniform surface reflectance, non-

collinear light source, error accumulation, and other factors in surface recovery using the 

photogeometric technique. Section 5 evaluates and analyzes the wire-frame technique. 

The final section summarizes the evaluation and analysis of the two techniques. 

7.1 Measurements in Analysis 

Before we perform quantitative analysis, we would like to introduce some error measure­

ments. From now on, we denote the computed or estimated value for variable d as d and 

the real value for d as itself. For example, z is the computed depth and z is the real 

depth. Also we denote the difference of the computed value d and the real value d as 

5d. For instance, 8z — z — z. In analysis, 3D and 2D locations are measured in image 
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pixels. One of the most widely used error measurements is the root of mean square error 

(r.m.s.) given by: 

(E,,ySd(x,y)y/2

 = ^ E , , y ( ^ , y ) - ^ , y ) ) 2 y / 2 

where d(x,y) is the computed value and d(x,y) is the real value at image point (x,y) 

and N is the number of data used. 

The calculations for r.m.s. error in depth, p and q component are straightforward. 

The angular error gives the angle between the computed surface normal and the real 

surface normal. The r.m.s. angular error is computed by 
[J2x,yangle(x,y)2^1/2 

\ N 

with 

p(x, y)p(x, y) + q(x, y)q(x, y) + 1 
angle(x,y) = arccos 

y/p(x, y)2 + q(x, y)2 + ly/p(x, y)2 + q(x, y)2 + 1 

Besides r.m.s. error, sometimes average error, ^~ ' x , v

N ^ is used to check if the error 

is biased or not. Since we compute the surface depth and orientation at every pixel in 

an image, we can measure the error between the computed data and the real data at 

each pixel. It is natural to think about representing the error in brightness at each pixel. 

Therefore we define a set of error maps in terms of images. 

A depth error map is an image. The brightness I(x,y) of a point in the error map is 

defined by 

128 + 1276z{x,y)/Td if -Td < 5z(x,y) < Td 

Hx,y) = I 0 if Sz(x,y) < -Td 

255 if 6z(x,y) > Td 

with Td as a threshold. If (x,y) is on the background, I(x,y) = 128. 
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A p error map is an image. The brightness I(x,y) is defined by 

255 - 254\5p(x,y)\/Tp if \Sp(x,y)\ < Tp 

= < 
0 otherwise 

with Tp as a threshold. If point (x,y) is on the background, I(x,y) = 255. 

A q error map is defined in the same way as the p error map except that 8p(x,y) 

and Tp are substituted by 8q(x,y) and Tq, respectively. In both p and q error maps, the 

darker the brightness in the map, the larger the error in the computed data. 

An angular error map is an image. The brightness I(x,y) is defined by 

with Ta as a threshold. If point (x7y) is on the background, = 255. Thus, the 

darker the brightness in the map, the larger the angular error in the computed surface 

normal. 

The values for the thresholds can be adjusted so that the brightness in a map can be 

changed. The values are empirically determined as Td = 4, Tv = 2, Tq = 2 and Ta = 20. 

By comparing the brightness values between pixels in a map or between two maps, the 

variations of error can be visualized. We also use profiles to view the depth error. The 

profiles of the computed depth and real depth are extracted from some specified rows or 

columns and overlaid so that direct visual comparison can be made. 

7.2 Analysis with an Ellipsoid 

7.2.1 Surface recovery of an ellipsoid 

An ellipsoid object, which is designed by Woodham and used by Ying Li in here Ph.D 

work [44], is used as the object in the analysis for the photogeometric and wire-frame 

I(x,y) = < 
255 - 254angle(x, y)/Ta if L{x, y) < Ta 

0 otherwise 
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techniques. The geometric model of the ellipsoid can be expressed as 

J^L- + _I(L + = i (7.30) 
{bSy (95) 2 (3S')2 V ; 

where 5 is a scale factor. A sequence of fifty four images of the ellipsoid is taken during 27r 

0 50 100 150 200 250 
Image Brightness R(e) 

Figure 7.43: Surface reflectance of the ellipsoid extracted by averaging nine sample points 

rotation of the object. The rotation angle between the successive images is 7r/36 during 

zero to 7r rotation and 7r/18 during n to 27r rotation. Figure 5.31 shows some images 

from the sequence. For extracting the surface reflectance function, the images taken 

during zero to 7r/2 rotation are sufficient. To reduce the error in the surface reflectance 

function, more sample points are used and thus more images are needed. The surface 

reflectance function of the ellipsoid is extracted by tracking 9 sample points. The sample 

points have surface orientation (— tan(&7r/18), 0,1), 0 < k < 9. The 3D locations of the 
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sample points are computed from the singular points in imaged/is and the corresponding 

occluding contour points in ima^e^.^/i 8 + 7 r/2, 0 < k < 9. The surface reflectance function 

(see Fig. 7.43) is obtained by averaging the nine reflectance functions extracted from 

the 9 sample points. To recover the surface of the ellipsoid, imageo and imagev/ls (see 

a. image0 b. imaged/is c- image^/2 d. p = 0 curves 

Figure 7.44: (a) and (b) are images used for surface recovery. The white curve in (c) 
is the occluding contour. Square boxes denote the singular point and its corresponding 
contour point. The curves in (d) are the real p = 0 curve and the computed p = 0 curve. 

Fig. 7.44 (a) and (b)) are used. The depth and surface orientation on the p = 0 curve are 

recovered first by using the occluding contour in imaged/2 (see white curve in Fig. 7.44 

(c)). In Fig. 7.44 (d), the smooth curve is the real p = 0 curve, and the other curve 

is the computed p = 0 curve. The depth and surface orientation on the whole surface 

of the ellipsoid are recovered by extending the computation from the p = 0 curve in 

the x direction. The depth plot of the recovered surface is shown in Fig. 7.45. The 

surface orientation plot of the recovered surface is shown in Fig. 7.46. The sign for the q 

component at an image point is determined by the ground truth of the ellipsoid. 
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7.2.2 Pose determination 

Since the handle for supporting the manufactured ellipsoid is not aligned with any axes 

of the ellipsoid, the pose of the ellipsoid in the images is not the same as that described 

by Formula 7.30. To analyze error in the recovered surface of the ellipsoid, the pose of the 

ellipsoid must be found. The six parameters, three for rotation and three for translation, 

need to be computed. The three parameters for rotation are defined as angles 7, <p, and 

8, which are clockwise around the z, x and y axes respectively. The three translation 

parameters are 5x, Sy and Sz. The transformation from a point (x,y,z) on the ellipsoid 

defined by Formula 7.30 to a point (x0, y 0 , z0) on the ellipsoid of the initial pose in image0 

is 

x0 
x 5x 

yo — RpR^Ry y + 8y 

. z° . z Sz 

where Rp, Rv, R-y are the rotational transformations about y, x, z axes respectively. 

The images of the ellipsoid are taken during rotation of the ellipsoid around the y 

axis. After the object has been rotated by a, a point (xo,yo, z0) on the ellipsoid will be 

transformed to a point (xa,yQ, zQ). Let the rotation transformation be Ra; we have 

xa X0 

I X 5x \ 

xa = Ra yo = Ra RpRvR~, y + Sy (7.31) 

xa zo \ z Sz ) 
To determine Sx, Sy and Sz, the image centroids of the ellipsoid in imaged/is, (0 < 

k < 36), are computed. Then Sy is determined by averaging the y coordinates of the 

centroids; Sx and Sz are calculated by minimizing ^2(Sx sin a + c^zcosa — Xca)2 with 

Xca as the x coordinates of the centroids. The scale factor 5", rotation angle 8, and 

7 are determined by optimization. The depths on the p = 0 curves in image2k-n/\s-, (0 < 
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k < 18), of the ellipsoid are calculated from the occluding contours in ima<7e2A-7r/i8+7r/2-

The depths on the corresponding p = 0 curves of the ellipsoid defined by Formula 7.31 

are computed. The values of 5', 3, <p and 7 which minimize the least-squares difference 

of the two sets of depths are found. Finally, we have all the parameters determined with 

±0.01 accuracy. 

s P 7 8x 8y 5z 
19.42 -26.39° 1.78° 2.11° 1.77 -0.24 1.06 

Table 7.1: The scale factor and the initial pose of the ellipsoid. 

7.2.3 Surface recovery error 

After the pose of the ellipsoid has been determined, the ground truth on the depth 

and surface orientation at each pixel in imageo can be found. The number of image 

pixels corresponding to the recoverable area in imageo is 48982. The depth and surface 

orientation are actually recovered at 47781 image points. So the surface is recovered on 

about 98% of the recoverable area in imageo- The recovered depth and surface orientation 

are compared with the ground truth. The depth error map in Fig. 7.47 (a) shows the 

depth error of the recovered surface. When the brightness at a pixel in the map is darker 

than the pixels corresponding to the background, the recovered depth at that pixel is 

smaller than the true depth. Otherwise, the recovered depth at that pixel is larger than 

the true depth. To give a better illustration of the depth error, the depth profiles of both 

recovered surface and true surface are extracted from several rows and columns, which 

are labeled as the white lines in image0, and shown in Fig. 7.47 (b) and (c). 

The maps of p error, q error and angular error are shown in Fig. 7.47(d), (e) and 

(f). In these error maps, the darker the brightness, the larger the error. From the fact 
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a. depth error b. row profiles c. column profiles 

d. p error e. q error f. angular error 

Figure 7.47: Surface recovery error of the ellipsoid, (a) shows the depth error map. 
When I(x,y) — 128, 8z(x,y) — 0; when 7(x,y) = 0, 8z(x, y) < —4; when / (x ,y) = 255, 
8z(x, y) > 4. (b) and (c) are the depth profiles of the true depth and computed depth from 
some rows and columns labeled in (a) with white lines, (d) and (e) are the error maps of 
p, q. When I{x,y) = 0, \8p(x,y)\ > 2 or \8q(x,y)\ > 2; when I(x,y) = 255, \8p(x,y)\ = 0 
or \8q(x,y) \ = 0. (f) is the angular error map. when I(x,y) = 0, angle(x,y) > 20; when 
7(x,y) = 255, angle(x1y) — 0. 
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that the points near the boundary of the object are darker than the points inside the 

object, we know the error is larger at the points near the boundary. Comparing the 

brightness in the p error map to that in the q error map, we can see that the error in the 

q component is larger than the error in the p component at most pixels. Table 7.2 gives 

the r.m.s. errors in depth and surface orientation of the recovered surface. Considering 

the maximum depth of the ellipsoid is 69, we can have a rough idea of how much the 

r.m.s. depth error is relative to size of the ellipsoid. The table verifies that the error 

in the q component is larger than the error in the p component. The error listed in 

depth p component q component Angular 
r.m.s. error 1.622 0.130 0.251 7.336° 

Table 7.2: The surface recovery error of the ellipsoid 

this table may contain the error caused by the error in the pose of the ellipsoid. The 

maximum depth and orientation errors caused by the error in the pose can be calculated 

since the maximum error in the parameters for the pose are within 0.01. By applying 

0.01 perturbation on all the parameters and comparing the depth and orientation of the 

ellipsoid before and after the perturbation, the maximum depth and orientation errors, 

caused by the error in the pose are calculated and shown in Table 7.3. The errors in the 

table, especially the angular error, are very small compared to the surface recovery errors-

of the ellipsoid. 

depth p component q component Angular 
r.m.s. error 0.076 0.033 0.075 0.09° 

Table 7.3: Bounds on the depth and orientation error contributed by the error in pose 
determination of the ellipsoid. 



Chapter 7. Analysis and Evaluation 119 

7.3 Surface Reflectance Function 

7.3.1 Accuracy of surface reflectance function 

The surface reflectance function used in the photogeometric technique is extracted by 

tracking sample points during object rotation. The calculation of the 3D locations of 

sample points has been described in Section 3.3.2. Because of image noise, quantization, 

and the local surface shape, the calculated 3D location of a sample point may contain 

error. The error in the location will cause the error in the surface reflectance function 

extracted from these points. 

One way deal with the problem is to use multiple sample points on the surface. For 

a generic smooth object, many surface points will give rise to singular points in images 

and will also be contour points during rotation. A l l of these surface points can be used 

as sample points for extracting the surface reflectance function. The surface reflectance 

function obtained by averaging the brightness values of the sample points reduces the 

error caused by image noise, quantization, local surface shape and other random effects. 

Figure 4.17 shows the surface reflectance functions, R\ (dotted line), R2 (dash-dot line), 

and i ?3 (dashed line) extracted, respectively, from the three sample points of the vase 

(see Fig. 4.16). The differences between the three reflectance functions are evident. The 

solid line in Fig. 4.17 is the surface reflectance function obtained by averaging the three 

reflectance functions. 

function Rt function R2 function R3 

r.m.s. difference 4.426 2.129 4.055 
average difference -3.83 0.248 3.58 

Table 7.4: The difference between the averaged surface reflectance function and the 
surface reflectance function extracted from each sample point on the vase. 
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Table 7.4 shows the r.m.s. and average differences between each surface reflectance 

function and the averaged surface reflectance function of the vase. The r.m.s. difference 
L. l u /y"[^(e)-R(e)]2A1//2

 1 , 1 i-rr • ^ 1 1 Y[Ri(e)-R(ej\ 

is computed by I ̂  £ — I and the average difference is computed by ̂  ^ 

with k = 19 as the number of the image brightness values used for building each surface 

reflectance function. Ri(e) and R(e) are, respectively, the reflectance functions extracted 

from each sample point and the averaged reflectance function. 

Ro Ri R2 R3 
i?4 R5 Re RT R8 

r.m.s. difference 1.57 1.35 3.92 1.92 1.41 5.20 3.64 4.89 5.69 
average difference 0.19 -0.36 3.12 1.48 1.19 -3.57 -2.84 -3.34 4.12 

Table 7.5: The r.m.s. difference and average difference between the averaged reflectance 
function and the reflectance function extracted from from each sample point on the 
ellipsoid. 

The surface reflectance function of the ellipsoid (see Fig. 7.43) is built by averaging 

the brightness values of nine sample points. Table 7.5 shows the r.m.s. and average 

differences between each surface reflectance function i?,-(e) (0 < i < 9) and the averaged 

surface reflectance function. From the two tables, we can see that the differences are large 

among the reflectance functions extracted from sample points. The large differences are 

caused by either the inaccurate calculation of the 3D locations of the sample points or 

the different reflectance factors of the sample points. The second case implies that the 

surface reflectance of the ellipsoid is not uniform. 

7.3.2 Pseudo surface reflectance function 

The accuracy of the surface reflectance function will affect the accuracy of the recovered 

surface. However, if only surface depth and the p component of surface orientation are 

concerned, a pseudo surface reflectance function is sufficient. 
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Let reflectance function E = Q(cos e) be the real reflectance function of a surface. 

Let E = Qs(cose) be another reflectance function which satisfies the following condition: 

Q:\EQ) = Q-\Ep) 

Q?{Ea) Q-^Ea) { ' ; 

for any image brightness values of Eo and Ea. The above condition is equivalent to the 

condition 

Q-S\E) = KQ-\E) 

for any brightness value E. Here K is a constant. The reflectance function Qs is called 

a pseudo reflectance function of Q. In surface recovery, we developed the formula 

1 1 Q~\Ea) 
p = —: 

tana sin a Q~1(EQ) 

to compute the p component (see Equation 3.21). Since = Q-i(j|oj> calculating p 

using Qj1 gives the same results as calculating p using Q~1. If surface depth is integrated 

only by using the p component, the depth recovered by using the two reflectance functions 

will also be the same. 

A pseudo reflectance function can be extracted from p = 0 surface points. Let d 

be a point of surface orientation (— po(d), — qo(d), 1) with po(d) = 0. Assume the 3D 

location of d is known so that we can calculate the projection and extract the image 

brightness values of d from the image sequence taken during object rotation. Let eo(d) 

be the emergent angle of d before the rotation of the object; then cosen(rf) = , * 

After rotating the object by a, from Equation 3.19, we have 

/ i \ / A , cos ea(d) 
cos ea(d) = cos eo(d) cos a & c o s a = —-. 

cose0(a) 

If qo(d) is known, the emergent angle of d during object rotation can be calculated and 

the surface reflectance function can be built from the correspondence between emergent 

angle and the brightness value of d. If qo(d) is unknown, another surface reflectance 

file://Q:/Eq
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function can be built by using the rotation angle a of the object as the estimated value 

for the emergent angle of d. Then the reflectance function built is 

cos ea{d) 
Ea = /(cos a) = f( -7-77) 

cos e0(d) 

and the inverse function is 

f-\Ea) = - ^ 2 - = l——Q-l{Ea). 
coseo(a) coseo(a) 

From the definition, function / is a pseudo reflectance function of Q. 

In extracting the surface reflectance function, the sample points of initial surface 

orientation (0,0,1) are used. In the presence of error, the q component of the surface 

orientation of the sample points may not be zero. Thus the surface reflectance function 

extracted may not be the real surface reflectance function but a pseudo reflectance func­

tion. When no singular image points are available from images, the pseudo reflectance 

functions can be extracted and used for surface recovery. 

The pseudo surface reflectance function can be used to compute the p component, and 

the surface depth can be computed by integrating p along the x direction. After the depth 

has been obtained, the q component at each point can be computed from the derivatives 

of the depth along the y direction. After both depth and surface orientation has been 

found at some image points, the real surface reflectance function can be estimated. 

7.4 Analysis of the Photogeometric Technique 

7.4.1 Effects of image noise 

There are several error sources in surface recovery. One of them is image noise, which may 

come from the C C D sensor, output amplifier, signal transfer cable, and somewhere else. 

Image noise is usually considered as additive Gaussian noise with zero mean. To analyze 
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the effects of image noise, a set of synthetic images of the ellipsoid with image noise at 

different levels is generated and the surface recovery technique is applied to the synthetic 

images. Then the recovered surfaces are compared with the ground truth. To make 

the analysis applicable to the surface recovered from the real images of the ellipsoid, the 

synthetic images are generated under the same illuminant and viewing conditions as those 

under which the real images are taken. The pose of the ellipsoid in each synthetic image is 

the same as that in the corresponding real image. The synthetic images are rendered with 

the surface reflectance function extracted from the real images. The synthetic images 

are also labeled as imcigea with a as the rotation angle of the ellipsoid. The idea is 

to generate the synthetic images which are the same as the corresponding real images 

except that the image noise level in the synthetic images can be controlled. A random 

process 

N(x) = —\=e~)i(°)2 

is used to add Gaussian noise to synthetic images. The parameter a determines the noise 

level. The image noise levels we used are 1, 2, 4 and 6. At each level, two synthetic 

images, images and imaged/is, are generated. Figure. 7.48(a)-(d) shows imageo of the 

synthetic images at different noise levels and the diagram below each image shows the 

brightness profiles extracted from the three rows labeled with black lines in the image. 

At each of the four noise levels, the surface is recovered by using the two synthetic 

images, imageo and image^/i^. Since we do not consider the noise effects on the surface 

reflectance function extraction, we don't extract the surface reflectance function from 

the synthetic images. The surface reflectance function used in surface recovery from the 

synthetic images is the same as that used to render the synthetic images. To filter image 

noise, Gaussian filters of different sizes are used( see Table 7.6). The best surface recovery 

results are obtained with the Gaussian filter of the given sizes. In order to compare the 
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a. o = 1 b. o = 2 c. o = 4 d. cr = 6 

e. f. g. h. 

Figure 7.48: (a)-(d) are the synthetic images of the image0 of the ellipsoid at different 
image noise levels, (e)-(h) are the brightness profiles extracted from the corresponding 
images in the same column. 
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surface recovered from the real images with those recovered from the synthetic images, 

the p = 0 curve recovered from the real images is used for the surface recovery from the 

synthetic images. The surface recovery starts from the p = 0 curve and extends in the x 

direction. 

noise level u = 1 (7 = 2 (7 = 4 (7 = 6 real images 
filter size(in pixel) 9 13 19 21 11 

Table 7.6: The size of the Gaussian filter used for the imaees at different noise levels 

Figure 7.49: The surface depth recovered from synthetic images of noise level 6 

The depth and surface orientation of the surface recovered from the synthetic images 

of noise level 6 are shown in Fig. 7.49 and Fig. 7.50. The sign of the q component 

is determined from Formula 7.31 which is used to generate the synthetic images. The 

depth errors in the recovered surfaces at different noise levels are shown in Fig. 7.51. The 

diagrams in the same column correspond to the same image noise level. The first row 

in Fig. 7.51 is the depth error maps. The second and third rows are the depth profiles. 
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W. 

Figure 7.50: The surface orientation recovered from synthetic images of noise level 6 

The rows and columns from which the profiles are extracted are shown in Fig. 7.51(a) 

as white lines. For comparison, the true depth profiles are overlaid with the computed 

depth profiles in each diagram. The p, q and angular error maps corresponding to each 

noise level are shown in Fig. 7.52. The diagrams in the same column are the error 

maps of the surfaces recovered from the same synthetic images. Comparing the p error 

map with the q error map at the same noise level, the q error map is darker than the 

p error map. This means that, in surface recovery, the error in q component is larger 

than the error in p component. The r.m.s. errors of depth, p, q, and angular listed in 

Table 7.7 verify this observation. To make the r.m.s. errors in the surfaces recovered 

from the synthetic images comparable with those recovered from the real images, the 

r.m.s. errors are computed from the image points in the area on which the depth and 

surface orientation are recovered from both synthetic images and real images. The area 

contains 47615 image points, which are about 97% of the image points in the recoverable 

area. The r.m.s. errors in the surface recovered from the real images are recomputed by 
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e. o = 1 f. <r — 2 g. <7 = 4 h. (j = 6 

i . er = 1 j . cr = 2 k. cr = 4 1. <7 = 6 

Figure 7.51: (a)-(d) are the depth error maps of the surfaces recovered from the synthetic 
images of the different noise levels, (e)-(h) are the row depth profiles extracted from the 
recovered surfaces, (i)-(h) are the column depth profiles extracted from the recovered 
surfaces. The rows and columns are labeled in (a) with white lines 
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\ 

a. p error a = 1 b. p error a = 2 c. p error cr = 4 d. p error cr = 6 

\ 

/ 
e. cy error cr = 1 f. c/ error cr = 2 g. q error cr = 4 h. c/ error a = 6 

N 

i. angular error 
cr = 1 

mm 

j . angular error 
cr = 2 

V:. 
k. angular error 

cr = 4 

i ' ^ . 
- r V 

1. angular error 
(J = 6 

Figure 7.52: (a)-(e) are p error maps of the surfaces recovered from synthetic images of 
the different noise levels, (f)-(h) are q error maps of the recovered surfaces. (i)-(I) are 
angular error maps of the recovered surfaces. 
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o = 1 cr = 2 o = 4 cr = 6 real image 
depth error 0.311 0.417 0.621 0.824 1.616 
p error 0.070 0.080 0.102 0.122 0.103 
q error 0.133 0.149 0.189 0.220 0.246 
angular error 3.685° 4.602° 5.676° 6.568° 7.279° 

Table 7.7: The r.m.s. error of surface recovery from synthetic images at different noise 
levels 

using the data in the joined area. From the table and the error maps, we can see that 

the surface recovery error increase as the noise level increases. In Fig. 7.53, (a) is imageo 

of the real images, (c) is imageo of the synthetic images with noise level 1. (b) and (d) 

are brightness profiles extracted from the two images from the rows labeled with the 

black lines. Visually comparing the two profiles, we see that the noise level in the real 

images is about 1. Therefore the errors caused by image noise in the surface recovered 

from the real images should be close to that in the surface recovered from the synthetic 

images at noise level 1. Because of the other factors, such as non-uniform reflectance, 

inaccurate surface reflectance functions, non-collinear illumination etc., the error in the 

surface recovered from real images is much larger. 

The following is mathematical analysis of the effects of image noise on surface recovery. 

In surface recovery, the formula 

z = zo + / pdx 

is used to compute the depth at each pixel in imageo except at the p = 0 curve. In the 

formula, x0 and z0 are the coordinates of a starting point and p is computed by 

1 1 cos ea _ 1 1 Q-\EQ) 
^ tana sin a cos e0 tana sin a Q~l(Eo) 

Let the object surface be a uniform Lambertian surface. The surface reflectance function 

can be expressed as E = Q(cos e) = C cos e with C as a constant. The inverse reflectance 
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a. imageQ of the b. brightness c. imageo of the d. brightness 
real images profiles from a. synthetic images profiles from c. 

Figure 7.53: (a) is the real image used for surface recovery, (c) is the synthetic image, 
with Gaussian noise of o = 1, used for surface recovery, (b) and (c) show the brightness 
profiles of the real images and the synthetic images, respectively. 

function is cos(e) = Q~l(E) = E jC. In the presence of random image noise n, E = E+n. 

Applying the inverse function, we have cose = Q~1(E) = (E + n ) /C , where cose is the 

estimated value for cos e. Let n 0 and na be two independent Gaussian noise processes in 

imageo and imagea of the object, respectively. Then 

E0 + n0 EQ = C cos(e0) + no = EQ + n0 & cos e0 = 

and 

En C cos(eQ) + na = Ea + na & cos e~a — 

C 

Eg + nc 

C 

The computed p component is 

1 
P = 

1 cos ea 1 En 

tan a sin a cos e0 tan a sin a EQ -\- n0 tan a sin a EQ \ 1 + |£-

Using the binomial series expansion and assuming that EQ ^> no, we have 
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The depth z computed by using p is 

. r . , , X - X Q 1 / fx Ea r* na Ean0 n0na \ 
z = ZQ + / prfx = zo + : / — dx + / ( - =2 T j ^ - ) ^ • 

7a;o tan o; sm a \Jx0 EQ JX0 EQ EQ EQ J 

As Eo = C cos eo and Ea = C cos e a, 

a; - x 0 1 [x cosea 1 n a i? a «o «o"o x , 

z = z0 + - : / dx + - / (— —2 ^r)dx. 
tan a sm a Jx0 cos e0 sm a A 0 £/o EQ EQ 

The second integral represents the effects of image noise. Since no a n c l na are independent, 

the mean and deviation of the integration of will become zero. 

From the above equation, we conclude that 
1. The image noises, n 0 and suppressed by image brightness values. 

2. The error caused by image noise is accumulated over the integration path. The 

mean of the accumulated error is zero and the deviation increases as the integration 

computed along the path. 

A surface which gives only specular reflection is called a specular surface. A surface 

which gives both diffuse and specular reflection is called a hybrid surface. The above 

conclusions can also be made on specular and hybrid surfaces(see Appendix A) . 

In signal processing, noise signals are usually characterized as signals of high frequency 

and low magnitude. The Fourier transform of integration is, 

F( f f(x)dx) = — F ( / ( x ) ) 
J —UJ 

where to is the signal frequency. The term ^ suppresses high frequency signals. The 

Fourier transform of integration gives another explanation on why the photogeometric 

technique is resistant to image noise. 
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7.4.2 Effects of non-collinear light source 

In surface recovery, the images are assumed to be taken under a collinear light source. 

But in practice, exactly aligning the illuminant direction and the viewing direction along 

a straight line is impossible. We put the light source at the top of the camera and adjust 

the light source so that the optical center of the light source is pointed at the object. 

In this case, there is a very small angle between the illuminant and viewing direction. 

Under the illumination of a non-collinear light source, the brightness value at a surface 

point is no longer a function only of the emergent angle, that is 

E ^ Q(cose). 

However, if the angle between the illuminant direction and viewing direction is suffi­

ciently small, we still can treat a non-collinear light source as a collinear light source and 

extracting the surface reflectance function in the same way as before. Then the surface 

reflectance function extracted will be an approximation of the surface reflectance function 

extracted under a collinear light source. 

For a uniform Lambertian surface, its surface reflectance function has the form E — 

C cosi. The incident angle i (0 < i < 7r/2) is the angle between the surface normal and 

the illuminant direction. The constant C is determined by surface albedo and radiance of 

the light source. Let the illuminant direction of a non-collinear light source be (0, —qi, 1), 

and qi sufficiently small. If we consider the light source as a collinear light source and 

extract the surface reflectance function with the same method described in Section 4.2, 

the surface reflectance function to be extracted can be predicted by calculation. 

Let surface point S be a sample surface point whose image in imageo is a singular 

point under the non-collinear light source. Then the surface orientation of S is (0, —g/, 1). 

After rotation by a, 

Pa(S) = tan a, & qa(S) = —^-—, 
C O S Q 
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cos i a (S) 
(-pa(S), -qa(S), 1) • (0, -qi, 1) = qf + cos a 

and 

Ea(S) = C c o s i a ( 5 ) = C 
9/ + cos a 

qf + l ' 
If we approximate the non-collinear light source as a collinear light source and take the 

rotation angle a of the object as the emergent angle e of the sample point as we did in 

Section 4.2, the surface reflectance function we extracted and its inverse are 

E = Q(cose) = Cq'+(™e & cose = Q-\E) = ^(qf + l)-qf, 

where cos e is the approximated value for cos e. 

Now let's look at surface recovery error caused by using this surface reflectance func­

tion. Let a 3D surface point have surface orientation (—po, —9o5 1). The image brightness 

value of this surface point in imageo is 

{qoqi +1) E0 = C cos i0 = C —, . 
y/q? + lVPo + <?o + l 

After rotation by a, the brightness value of this surface point in imagea is 

, (qoqi + cos a — po sin a) 

(7.33) 

En C cos ia = C-
VV + 1 v̂ o + ̂ o + i 

The computed p component at the point is 

1 1 Q-l(Ea) 1 1 cose,. 

(7.34) 

1 
P = 

1 Ea/C(qf + l)-qf 
tana sin a Q~l(Eo) tana sin a cos eo tana sin a Eo/C(qf + 1) — qf 

Substituting Eo and £ Q with Equation 7.33 and 7.34, we obtain 

„ _ 1 1 (qoqi + cos a - po sin a)^qf + 1 - qfy/pl + <?o + 1 

P _ t a n a s ina + 1 ) ^ / ^ + 7 - 9 ? ^ + %2 + 1 " ' 

Similarly, the computed q component at the point is 

q=± 
I 

y/pl + ql +1 

\ \(qoqi + l)yfqJ^-qlyJpJ+~qJVl 
- p 2 - 1. 
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Both p and q can be considered as functions of qi. When q\ is small, the error in the 

computed surface orientation can be calculated by 

dp cos a — po sin a — 1 
dp = p - p 0 w — (0)g/ = qiqo : , 

dqi sm a 

and 
da. x rpo(l — cos a) , 

^ = 9 - qo « / 0 «?/ = ± g / F ^ ^ - (1 + ql)]. 
dqi sm a 

The above two equations give the errors in computing p and q for Lambertian surfaces 

illuminated under a non-collinear light source. For a uniform specular surface, if the 

illuminant direction is (0, —qi, 1) and the surface orientation at a point is (—Po, —qa, 1), 

the error in the computed p and q components can be derived in the same way as that 

for a Lambertian surface(see Appendix B). For a specular surface, 

qi cos a — po sin a — 1 
°P = 7T9o :—: , 

I sin a 
qi rpp(l - cosaj 2 

^ = ± 7 ^ 11^ (! + %) • 
z sm a Note that under a non-collinear light source, if two points have the same surface orien­

tation, the error in the computed surface orientation for the point on a specular surface 

is half as much as that for the point on a Lambertian surface. 

For a uniform hybrid surface, if the illuminant direction is in (0, —qi, 1) and the surface 

orientation at a point is (— po, — <7o, 1), the error in the computed surface orientation 

cannot be calculated exactly. But the error range for the p and q components can be 

determined (see Appendix C). 

In our imaging condition, the light source is mounted at the top of the camera. The 

distance from the object to the camera is 242cm and the distance between the optical 

center of the camera and the optical center of the light source is about 8cm. The angle 

between the illuminant direction and viewing direction is ^ = 0.033 radians so the 
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a. p error b. p error c. p error 

cl. q error e. q error f. (/ error 

g. angular error h. angular error i . angular error 

Figure 7.54: Orientation error caused by a non-collinear light source in the direction 
(0,0.033,1). The first column is the error maps for a Lambertian surface. The second 
column is the error maps for a specular surface. The last column is the error maps of 
the maximum error for a hybrid surface. 
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Lambertian specular hybrid real 
p error 0.019 0.009 0.052 1.616 
q error 0.045 0.022 0.0112 0.103 

angular error 1.662° 0.838° 2.368° 7.279° 

Table 7.8: The orientation error of an ellipsoid illuminated under a non-collinear light 
source in direction (0,0.033,1). 

illuminant direction is (0, 0.033,1). In surface recovery imageo and imaged/is are used so 

a = 7r/18. Since the surface orientation at every point in imageo of the ellipsoid is known 

as ground truth, the surface orientation error at every point caused by the non-collinear 

light source can be calculated. Three groups of error maps (see Fig. 7.54) are generated 

under the assumption that the ellipsoid has Lambertian, specular, or hybrid reflectance, 

respectively. Table 7.8 lists the corresponding p, q and angular r.m.s. errors under 

the assumption of the different reflectance properties. To make the results comparable 

to those computed from the real images and the synthetic images with noise, the data 

at the image points in the area, on which the r.m.s. errors caused by image noise are 

computed, is used for computing the r.m.s. error caused by the non-collinear light source. 

Under the hybrid surface assumption, the r.m.s. errors in p, q, and surface normal are 

computed by using the maximum of \5p\ and the maximum of \Sq\ at every point. 

Note that the error given under the assumption of the hybrid surface reflectance is 

the maximum error. The maximum error happens when a surface point gives Lambertian 

reflection in one image but specular reflection in the other image. This is not true for 

surface points on a real object surface. Therefore the error computed under the hybrid 

surface assumption should be smaller than the maximum error given in the table. 
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7.4.3 Effects of non-uniform reflectance 

In our surface recovery process, we assume that the surface reflectance is uniform so the 

surface reflectance function extracted from the sample points can be applied to the whole 

surface. In practice, most surfaces are not uniform although they look uniform. The non­

uniform reflectance will cause surface recovery error in the general case. However, for 

a Lambertian surface, the non-uniform reflectance has no effects in computing the p 

component. 

For a Lambertian surface, the non-uniform reflectance is caused by changing albedo 

on the surface. The reflectance function of a Lambertian surface can be expressed as 

E = Q(cose) = AC cose. The albedo A, (0 < A < 1), specifies the fraction of the 

incident light reflected by the surface. It has certain value at each surface point. Let 

A(5) be the albedo at a sample point S and the surface reflectance function extracted 

from the sample point be E = Q(cose) = A(S')Ccose; then the inverse reflectance 

function is 

cose = = - ^ | ^ . (7.35) 

For a surface point d, let X(d) be its albedo, Eo be its brightness value in imageo and 

Ea be its brightness value in imagea; then Eo = X(d)C coseo and Ea = X(d)C cos ea. 

Applying the inverse function 7.35 to the brightness values E0 and Ea, we have 

Q~l{Ea) _ j(s)c _ X ( f ) i c o s e ° _ cos ea 

The albedo change causes changes in both Q~1(EQ) and Q~1(Ea). In computing Q - I | ^ ° | , 

the change in Q~1(Ea) is compensated by the change in Q~1(Eo)- Therefore, the term 

Q-'(go) ' s n o ^ affected by the albedo change so neither is the p component which is 

computed by p = — Q - i | g ° ) • If only the p component is used to compute surface 

depth, then the surface depth will not be affected by the non-uniform reflectance. 
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To compute the q component for point d, we have 

1 - p2 _ I = ± 
1 p2 - 1. 

(^-W))2 ' • ^ \ J ( x ( S c ) 2
 " ~ " ^ ( ^ c o s ^ 

The term corresponding to the albedo change in the above expression is If X(d) ^ 

A(S'), the computed q component will be inaccurate. 

For a specular or hybrid surface, the reflectance function under a collinear light source 

can be written as E — Q(cose) = Ag(cose), where the variable A (0 < A < 1), represents 

the reflectance factor at a surface point and it plays the same role as albedo in Lambertian 

reflectance function. The reflectance factor is a variable over a non-uniform surface. 

Let X(S) be the reflectance factor at a sample point S; then the surface reflectance 

function extracted from the sample point is E = Q(cose) = X(S)g(cos e) and the inverse 

reflectance function is 

cose = Q-1(E) = g - \ J ~ ) . (7.36) 

For a surface point d, let X(d) be its reflectance factor, Eo be its brightness value in 

image0 and Ea be its brightness value in imagea. Then Eo = X(d)g(cos e0) and Ea = 

X(d)g(cos ea). Applying the inverse function 7.36 to the brightness values E0 and Ea, 

p = ^ 1 ^ 1 ( ^ § ) ) _ 1 1 g - H l ^ e q ) ) . 
tana s i n a ^ r ^ ^ ) tana sin a ^ ( I M ^ G O S e 0 )) ' 

Let 8X = X(S) - X(d); then 

9'1 (j^9(cos ea)) = g'1 (g(cos ea) + ~ y # ( c o s e a ) ) . 

Since function g and g~x are continuous so linear approximation can be used. Assuming 

8X sufficiently small, then 

g'1(9(cosea) + J^g(cosea)) « cos ea + j^'J^se]) 
8\ g(coseQ) 

C O S e a ( l -f- ^ j^j g'(coseQ) coseQ 
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In the same way, we have 

,,X(d) , 5X g(cose0) 
9 T T o ^ c o s e ° ~ c o s e ° 1 + UQ\ x \ • • A(6) X(b) g'(cos e0) cos e0 

The p component can be approximated by 

P = 

/ 1 , r5A q(cose Q) 
i i cos ea(1 + T y ^ - r r ^ — — 
-1 " V A(S) 5 (coseQ) cose a tana sin a C ose 0 ( l + ^ ^ c o s e °> 

u \ A(o) g (coseo) coseo 

If the rotation angle a is small (a < 7r/18), the emergent angle of a surface point 

will not change very much after rotation. So cos eo is close to cos eQ, <?(cos eo) is close to 

g(cosea) and </(cose0) is close to g'(cose 0). Therefore, 

• ^ _ i _ 5A fl(coseQ) 
' A(S) g'(cose a)cose a ^ ^ 
i 5 A g(cosep) 

A(S) a'(cos eo) cos eo 

When 8\ <C A(S'), the above approximation will be more close to equality. 

For a specular or hybrid surface, although the effects of the non-uniform reflectance 

in computing p can not be totally compensated, it remains fairly small. The error in 

the surface depth computed along the horizontal direction will not be as large as we first 

thought it might. However, the effect of the non-uniform reflectance in computing q is 

larger and the surface depth computed by using q component is less accurate. 

To check if the ellipsoid used in analysis is uniform or not, the brightness values of 

its real images are compared with the brightness values of its synthetic images. Let the 

surface reflectance function extracted from the real images be X(S)g(cos e) with X(S) 

as the reflectance factor of the sample point. In generating the synthetic images, the 

ellipsoid surface is assumed to be uniform and rendered with the surface reflectance 

function A(S')^(cos e). The location and surface orientation of the ellipsoid in a synthetic 

image is the same as that in the corresponding real image. A U-map is defined as an 
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e. image47r/is f. image5w/18 g. image67V/iS h. imagei4jT/18 

variation and white (brightness=255) is 20% variation. 
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image and the brightness value I(x,y) at each pixel (x,y) in the map is determined by: 

I(x,y) = 

128 + 127BiX:y)-?r{x'y) if -0.2 < B,(x,y)-BT(x,y) Q 3 
0.2*Bs(x,y) B!(x,y) 

0 if B.(x,y)-BT(x,y) _Q 3 

Bs(x,y) 

255 if B.[x,y)-BT(x,y) Q g 

Bs(x,y) 

where Bs(x,y) = \(S)g(cos e(x, y)) is the brightness value in a synthetic image and 

Br(x,y) = X(x, y)g(cos e(x, y)) is the brightness value in the corresponding real image. 

The threshold 0.2 is empirically determined. The quantity (Bs(x, y) — Br(x, y))/Bs(x, y) = 

x( s)~^(x'y) used in generating U-maps is the normalized variation of the reflectance factor 

at each corresponding surface point. Although the surface reflectance function of the 

ellipsoid may not be as simple as X(S)g(cos e), the U-maps give a rough view on the 

variation of the reflectance factor. 

Figure 7.55 shows a set of U-maps for image^/m (0 < k < 11) of the ellipsoid. From 

these maps we can observe some patterns moving during the object rotation. These 

patterns can be caused by either the non-uniformity of the surface reflectance or the 

local surface orientation changes. Either case will increase the difference between the 

recovered surface and the ground truth of the ellipsoid. 

It is notable that in the U-maps the upper part of the ellipsoid is darker than the 

lower part. This phenomenon is caused by the non-collinear illumination. In generating 

the synthetic images, the illuminant direction is collinear. However, in taking real images, 

the illuminant direction is tilted on the plane of the viewing direction and rotation axis 

by a small angle. The non-collinear illumination causes the upper part of the ellipsoid 

to be brighter and the lower part to be darker. In generating the U-maps, when the 

brightness value at a pixel in the real image is brighter, the brightness value at the same 

pixel in the U-map will be darker and vice-versa. 



Chapter 7. -Analysis and Evaluation 142 

7.4.4 Accumulated error 

In our surface recovery, at an image point in imageo, its depth is used to compute the 

,x coordinate of its correspondence in imagea, and its brightness value and its corre­

spondence's brightness value are used to compute its surface orientation, then its surface 

orientation is used to compute the depth for its neighboring points. An error in the depth 

will cause an error in the x coordinate of the correspondence and therefore an error in 

the brightness value of its correspondence. This in turn will cause an error in the surface 

orientation computed at this image poiat and then an error in the depth computed for the 

neighboring points. It seems that the depth error at one image point will cause a depth 

error at every following image point and the error will accumulate along the integration 

path. However this is not always the case. Even if the depth error accumulates in one 

direction along the path, we can change the integration direction to avoid accumulating 

error. 

When the depth and surface orientation are computed in the positive x direction, the 

depth z at the next image point N is 

z(N) = zo+po with po = : n _ U l P v 
tan a sm a Q (EQ) 

where z0 and p0 are the depth and the p component at the current image point (x0, yo) in 

imageo, Eo is the brightness value of (#0,2/0)
 a n d Ea is the brightness value of the image 

correspondence in imageQ. The x coordinate of the image correspondence in imagea 

is computed by xa = xo cos a — z 0 s i n a . If there is an error 8ZQ in the depth ZQ, the 

computed x coordinate of the correspondence in imagea will become xa = xa + 8xa, 

where 8xa = — 8zos'ma. And the brightness value of the image correspondence will 

become Ea = Ea -f 8Eai where 8Ea is caused by Sxa. Then the computed p component 
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at image point (x0,y0) is 

. = _ J 1 Q-y(Ea) = _ L 1 Q-\Ea + 8Ea) 
tana sin a Q~l(E0) tana sina Q~1(EQ) 

Assuming 5Ea is small and applying linear approximation to Q~1(Ea + 8Ea), we have 

r 771 

Q-\EQ + ££„) = Q " 1 ^ ) + [Q-\Ea)}'5E0 = Q-\Ea) + a 

(̂ COS Ba j 

- = _ J 1_ fQ-HEc) _ SEa \ = ^ 1 SEa 

tana sina \Q~1(Eo) Q'(cos ea)Q~l(Eo)) sin a Q'(cos e a) cos eo 

where (5'(cos e a) is the derivative of Q at cos e a. The term containing 8Ea represents 

the error in p. Let the surface orientation at the image correspondence (xa,ya) be 

(-pa, -qa, 1); then cos ea = , 1 and 

r r i dQ(cos ea) dcos ea 3 , . „ n , 
6EQ = — 6xa = cos eaQ (cos ea)[rapa + taqa)8z0 sm a. (7.39) 

a(cose a) raa 

where, r a = l^ 2- and ta = | ^ - . Substituting 8Ea in Equation 7.38 with 7.39, we have 

cos3 ea(rapa + taqa) 
P = PO OZ0. 

cos e 0 

Then the depth for the next image point is computed by 

z(N) = (z0 + 8z0)+p = z0 + 5z0 + P o - C M 3 e a (

c

r ° ; + M a ) ^ 

= ( ^ o + P O ) + ( 1 - c o s 3 e ± t : + t a q a ) ) 5z°-

The term which contains 8z0 in the above expression represents the depth error at the 

next image point. Since cos ea > 0 and cos eo > 0, depending on the sign of (rapa + taqa), 

the factor before 8z0 can be larger or smaller than 1. When (rapa -\-taqa) < 0, the factor 

is larger than 1, and the depth error will be increased at the next image point. Otherwise, 

the factor is smaller than one and the depth error will be partially compensated at the 

next image point. The magnitude of the factor is also related to the surface curvature in 
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the x direction. The higher the curvature, the larger the error increase or compensation 

and vice-versa. 

If the depth is computed in the negative x direction, then the depth for the next 

image point is 
~,An . (, . cos3ea(raPa + taqa)\ z(N) = z0 - po + 1 -| dz0. \ cos e 0 / 

Just opposite to the depth computed in the positive x direction, when (rapa -\-taqa) > 0, 

the depth error will be increased at the next image point. Otherwise, the depth error will 

be partially compensated at the next image point. By computing the depth along the 

right direction, the depth error accumulating can be avoided. Assuming that (rapa+taqa) 

does not change its sign within a small area, by examining the change of the computed 

depth at the next image point with a small perturbation on the depth at the current 

image point, we can determine which direction is the right direction for reducing the 

depth error. 

Figure 7.56 (a) shows a cross section of a piece of circular cylinder after it has been 

rotated by a. We can choose any of the three points of known depths, a, b or c, as 

the starting point for depth recovery. Since t = 0 for a cylindrical surface, the sign of 

(rp + tp) is determined by rp. Between a and b, rp < 0 and between b and c, rp > 0. 

If we choose a as the starting point and move along from a to 6, the depth error will 

accumulate. If we choose b as the starting point and move along from 6 to a, the depth 

error will be reduced. It also can be shown that depth recovery from b to c will be more 

accurate than from c to b. The same analysis can be applied to a piece of cylinder with 

the other side towards the viewing direction as shown in Fig. 7.56 (b). We can verify 

that the directions for reducing the depth error are the same. 

In surface recovery from the real images of the ellipsoid, we applied some perturbations 

on the depth at the starting point at which both p and q components are zero, then 
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a c X b x 
b a c 

z 
(a) (b) 

Figure 7.56: The cross section of a piece of circular cylinder with the different side towards 
the viewing direction. 

compared the recovered depths with the real depths. The depth perturbation at the 

starting point is from -5 to 5 pixels. Figure 7.57 (a) shows the profiles of the real depth 

and the depth recovered with perturbation 5 to 1. Figure 7.57 (b) shows the profiles 

of the real depth and the depth recovered with perturbation -5 to -1. The vertical line 

indicates the x location of the starting point. From Fig. 7.57, we can see that the depth 

error becomes smaller and smaller away from the staring point. Table 7.9 gives r.m.s. 

and average errors corresponding to the different amounts of perturbation. The table 

shows that both r.m.s. error and average error of the recovered depth are smaller than 

the perturbation at the starting point. This means that the depth errors are reduced 

during the computation. 

7.4.5 Orthographic projection 

In our surface recovery, orthographic projection is used as an approximation for the 

image projection. The error caused by the approximation can be analyzed using a pin 
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perturbation 5 4 3 2 1 -1 -2 -3 -4 -5 
r.m.s. 3.69 2.94 2.21 1.48 0.74 0.74 1.48 2.21 2.95 3.69 
average 3.17 2.54 1.91 1.27 0.64 -0.63 -1.27 -1.90 -2.54 -3.17 

Table 7.9: The depth error caused by the depth perturbation at the starting point 

(a) (b) 

Figure 7.57: The vertical line indicates the x coordinate of the starting point, (a) shows 
the depth profiles recovered with perturbation 5 to 1 (5 at top), (b) shows the depth 
profiles recovered with perturbation -5 to -1 (-5 at top). The real depth profile is overlaid 
with the computed profile. 
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Y 

Q 
c 

z(d) 

Figure 7.58: A pin hole camera model. The image plane Q is parallel to the xy plane. 
The focal length / is the distance from the viewing point C to the image plane Q and 
z(d) is the distance from C to the xy plane. 

hole camera model shown in Fig. 7.58. In the figure, the y axis is the rotation axis of 

the object, the z axis lies along the optical axis of the camera, the focal length / is the 

distance from the viewing point C to the image plane Q which is parallel with the XZ 

plane, z(d) is the distance from C to the XY plane. In taking images, the focal length 

is fixed. In surface recovery, the distance between image pixels is used as the unit for 

the 3D coordinates of surface points. If all the surface points are on a plane z = z(r), 

the transformation from the world coordinate (x,y,z) to the pixel measured coordinate 

(x, y, z) will be 

changes its depth from point to point. Let the depth of a surface point s be z(s) and 

Sz(s) — z(s) — z(r) be the depth change with respect to the reference plane, the change 

x = kx; y = ky; z = kz. 

of the image coordinates of s caused by the change of the depth 8z(s) can be calculated 
by 

Sx(s) dx(s) 
dz(s) 5z(s) = x(s) 

Sz(s) 

Sy(s) dy(s) Sz(s) = y(s) 
z(d) — z(s)' dz(s) z(d)-z(sY 
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The relative change of the image coordinates is 

5x(s) 5z(s) $y(s) 8z(s) 

x(s) z(d)-z(rY y(s) z(d) - z(r) 
In our surface recovery, the object center is close to the rotation axis, and the max­

imum depth of our object's surface is about 4cm. The distance from the camera to the 

rotation axis is about 242cm. Assume the depths of all the visible surface points are 

larger than zero and z = 2cm is the reference plane; then for any surface point of s, 

the relative error in the image coordinates under the scale orthographic projection is 

within ± ^ 7 7 ; = ±0.0083. This error is so small that it will not cause visual effects on the 
2 4 0 

recovered surface. 

In the photogeometric technique, for image points in image0, their correspondences 

in imagea are computed the rotation transformation. Let the world coordinates of a 

surface point be (x0,yo,z0) when the imageo is taken and be (xa,ya, za) when imagea is 

taken; then 
/ _ / 

xo = xo—rr, ; J/o = yo-
z(d) - z 0 ' z(d) — z0 

and 

-. - • f ~ - / 
xa — xa . , ya — ya 

z(d) — za z(d) — za 

If za = z0, then Xo = kxo7 xa = kxa, ya = kya, yo = kyo with k = -rJ-—. In this case, 

there is no error in the location of the image correspondence. If ZQ ^ za, there will be an 

error in the location of the correspondence. The error is determined by the difference of 

Zo and za and can be calculated by 
X - _ - Z ° ~ ' Z ° X - _ -

 Za ~~ zo 
0Xa — Xa , Oy<y — J/a" 

z(d) - ZQ z(d) - z0 

In our experiment, the ellipsoid is confined within a cylinder of diameter 7.4cm around 

the rotation axis and the rotation angle a is TT/18. The maximum depth change for 
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a surface point before and after the object rotation by a is 7.2 -f- 2.x sin a = 0.62cm. 

Taking z(d) — z0 as 240cm, the maximum relative errors in the x, y image coordinates 

of the correspondence are 8xa = 0.0026xa and 8ya = 0.0026yQ. In the images of the 

ellipsoid used in our analysis, —93 < x < 93 and —176 < y < 176. Therefore the 

maximum errors in the x and y coordinates of the correspondence are 0.25 pixel and 

0.45 pixel respectively. When the surface curvature is small, the small change in the 

image coordinate of the correspondence will cause a small change in: the brightness of 

the correspondence. Therefore there is no substantial effect in surface recovery. However 

when a surface point is far away from the optical axis and the curvature at the point 

is large, the non-orthographic projection may cause surface recovery error. After the 

initial depth recovery, some compensation for non-orthographic projection can be made 

to get more accurate results. It is also possible to buy orthographic lenses, which ensure 

orthographic projection, but they are quite expensive. 

7 . 4 . 6 Other factors 

Besides image noise, non-collinear illumination, non-uniform surface reflectance and error 

accumulation, there are some other factors which cause errors in surface recovery. One 

important factor is interreflection. 

Interreflection is the light reflection among different objects or among the different 

elements of an object surface. Its effects lead to complicated structures in scene radiance. 

Accounting for its effects in surface recovery is very difficult in the general case. Formu­

lation and analysis of interreflection have been done by Koenderink and Van Doorn [39] 

as well as Forsyth and Zisserman [20]. Quantitative treatments of interreflection in shape 

recovery have been conducted by Nayar et al. [48] and Wada et al. [71]. The effects of 

interreflection are ignored in our surface recovery, since interreflection did not cause as 
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serious a problem as we thought it might. Most of the vase is concave, yet surface recov­

ery worked quite well. However, in highly curved concave regions, such as the joint on 

the vase handle, the effects of interreflection are substantial. Without explicitly modeling 

interreflection, we still can make some qualitative analysis on its effects. In our surface 

recovery, the interreflection effects are partially compensated in the calculation of the 

p component of the surface orientation. This in turn reduces the effects on the surface 

depth computed by integrating the p component. In computing the p component, the 

quantity ^_w^a? is used. In the case of interreflection, both Ea and Eo become larger. 

Since Q~l is strictly monotonic, both Q~1(Ea) and Q~1(E0) become larger. Therefore 

the effects caused by interreflection are partially compensated in computing Q-i |^°j • 

Quantitative analysis of the interreflection effects is difficult and will be investigated in 

future experiments. 

The surface curvature of the object also affects the accuracy of the recovered surface. 

In surface recovery, the surface depth is obtained by integrating the first partial deriva­

tives only. The terms corresponding to the high order partial derivatives are ignored. 

The error caused by ignoring these terms is directly related to the surface curvature of 

the object since the magnitudes of the high order partial derivatives are proportional to 

the surface curvature. When the surface curvature of the object is small, the error will 

be small. Otherwise it will be large. As derivatives are computed on pixels, the object 

should be imaged as large as possible. 

The x coordinate of the reference system is defined by the rotation axis of the object. 

The error in the location of the rotation axis will cause errors in computing the locations 

of surface points and their image projections during rotation. The following calculation 

will show how much the surface recovery will be affected by the error. Let (xo, yo, ZQ) 

be the initial location of a surface point. After the object has been rotated by a, the 

location of the surface point can be calculated as ya, za). Let 8x be an error in the 
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location of the rotation axis in images; then after a rotation of the object, the location 

of the surface point is calculated as (xa,ya, za) with 

xa = (xo — Sx) cos a — Zo sin a = xa — 8xcoset; 

lie = yo = ya; 

zQ = (X'Q — Sx) sin a -j- ZQ COS a — za — Sxs'ma. 

Since the rotation axis is also shifted 5x in iinageQ} the computed x coordinate of the 

surface point in imagea is xa + 8x — xa — Sx cos a + Sx. The errors caused by the shift 

Sx of the rotation axis are 

Sxa = (1 — cos a)Sx &c Sza = c>a:sina. 

The above error will happen in the two cases in surface recovery. One is in computing 

the image correspondence in imagea for an image point in image0. In this case, the 

rotation angle is usually small so that the error is small. For example, if a = T T / 1S, 

Sxa = (1 — cos a)Sx = 0.0152c>x. Thus Sx has to be very large to cause a substantial 

error. The other is in computing the depth for sample image point. In that case, the 

rotation angle is TT/2 and the error in the depth is Sx. In practice, the location of the 

rotation axis can be determined with subpixel accuracy (see Section 6.5) so the error in 

the location of the rotation axis can be ignored. 

The distance of the object center from the rotation axis of the rotary table affects 

surface recovery. If the distance is large the dynamic range of the distance from the 

surface to the light source will be large since the light source is fixed. When the object 

is close to the light source, it will appear to be brighter than it does when the object is 

far from the light source. This will violate the assumption that the brightness value on 

the object surface only depends on the surface orientation. For best results, the object 

center should be located at the rotation center. However, within a small dynamic range, 

the effect is so small that it can be ignored. 
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In surface recovery, imageo and imageQ are used. How large should the rotation angle 

a be? In computing the p component at an image point, p = — ^ ^ Q - i ( g ° j - If there 

is an error in Q~1(Ea), the error will be scaled by a factor of So a should be large. 

On the other hand, the x coordinate of the image correspondence in imageQ is computed 

by Xa = xo cos a — ZQ sin a. If there is error in depth, a larger rotation angle will cause 

a larger error in the location of the image correspondence in imagea. In this case, a 

should be small. The other considerations include that the two images should cover as 

much common surface area as possible so that larger surface area can be recovered from 

the two images. The conclusion is that the rotation angle should neither too large nor 

too small. Empirical experiments show that a should be about 7r/18. 

7.4.7 Contour comparison 

We recovered the surfaces of a clay vase and a porcelain cup from their images. Although 

there is no ground truth on the depth and surface orientation of these two objects, the 

occluding contours in the images of the objects can be used to judge how well the surfaces 

have been recovered. Assuming the recovered surface is rotated and viewed in the same 

way as the original surface, the recovered surface can be projected onto the original 

images of the object. The distance between the projected occluding contours and the 

original occluding contours shows the accuracy of the recovered surface. 

The recovered surface is represented as the depth and surface orientation at each pixel 

in imageo and these data are related to the 3D coordinates before object rotation. A 3D 

curve of p = tan(7r/2 — a) will be an occluding boundary after the recovered surface has 

been rotated by a. Thus the occluding contours in imagea are computed by searching 

for points of p = tan(7r/2 — a) on the recovered surface, then rotating these points by a 

around the y axis and projecting these points on imagea. The search is conducted row 

by row in imageo. Generally, an occluding boundary is a part of continuous curve on 
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the surface. To make the search more efficient, the results of the current row are used in 

the search in the next row. To find the more accurate 3D locations of these curves, the 

depth and surface orientation are interpolated between pixels in imageo.. 

Figure 7.59 and 7.60 show the occluding contours projected from the recovered surface 

on the original images of the cup. Only the occluding contours projected from the 

occluding boundaries of p = +oo are shown. To avoid confusion, the occluding contours 

in the original images are not shown in the images. The last image in Fig. 7.60 shows 

the projection of all 3D curves, which generate the occluding contours, on imageo- In 

the real images of the cup, some occluding contours are occluded by another part of the 

cup. In generating the occluding contours of the recovered surface, we don't consider 

the occluding effects. In some images (for example, image13n/18), although the handle 

blocks some segments of the occluding contour on the body of the cup, those segments 

are still shown in the image. In the surface recovery of the cup, imageo and imagew/18 are 

used. The depth and surface orientation at the image points on or close to the occluding 

contours in imageo and %magevj\8 cannot be recovered(see Section 4.5). So there is no 

occluding contour in imageo and imagevji8. 

From Fig. 7.59 and 7.60, we can have a rough visual impression on how close the 

recovered surface is to the original surface. The curves of constant p are not smooth 

and even not continuous at some points because of surface recovery error. From the last 

image in Fig. 7.60 and the occluding contours in image\^j\8 and imagenK/i8, we can 

see that the surface orientation data at the joints between the handle and the body are 

not well recovered. Interreflection between the handle and the body is considered as the 

major problem in recovering the joints. 

Table 7.10 gives a quantitative analysis of the distance between the original and the 

projected contours. The distance is measured from a projected contour point (.x4, y2) to 

the closest original contour point (,T,-,J/,-) in the horizontal direction. The r.m.s. distance 
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imaged/is imageS7r/18 image9n/18 

Figure 7.59: image^j\8-image9v/18 superimposed with the occluding contours projected 
from the recovered surface 
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imagel67V/i8 irnagei77l/is Projection on imageo 

Figure 7.60: imageio-n/xs-irnagenK/w superimposed with the occluding contours pro­
jected from the recovered surface. The last diagram shows the projection of the curves, 
which generate the occluding contours, on imageo-
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image 2TT/18 3TT/18 4TT/18 5TT/18 6rr/18 7TT/18 S T T / I S 9TT/18 
r.m.s. distance 1.816 1.860 1.982 2.178 1.648 1.430 1.036 0.500 

average distance 1.555 1.371 •1.253 1.167 0.239 -0.094 -0.3445 -0.075 

image IOTT/18 IITT/18 12TT/18 13TT/18 14TT/18 15TT/18 167T/18 177T/18 
r.m.s. distance 1.085 2.072 2.388 2.610 3.041 2.477 2.178 2.082 

average distance 0.594 0.582 1.604 1.775 2.512 1.981 1.861 1.718 

Table 7.10: The first row is the subscripts for the images. The second and the third 
row are, respectively, r.m.s. and average distances between the original contours and the 
projected contours. 

is calculated by and the average distance is calculated by S^-37') with N 

as the number of contour points used in the calculation. For some projected contour 

points, the corresponding original contour points cannot be found in.the image because 

of occlusion effects and failure in contour detection. There are in total 8163 projected 

contour points in these images and 7499 of them are used in the calculation. The first 

row in the table is the subscripts for images. The second row and the third row are the 

r.m.s. distance and average distance between the original and the projected contours. 

In image 9 , / 1 8 , both the r.m.s. and average distances are the smallest. This is because 

the depth on the p = 0 curve of the recovered surface is obtained directly from the the 

original occluding contour in imaged/is and the surface recovery starts from the p = 0 

curve so that the accumulated error is the smallest compared to other curves of constant 

p. Considering that the distance from a surface point on the body of the cup to the 

rotation axis is roughly about 130 pixels, the r.m.s. and average distances listed in the 

table show that the depth recovery error is relatively small. 

The contour comparison method described here can only give a rough evaluation on 

the recovered surface. However, for a convex object, if the accuracy on the locations of 

the occluding contours in images is known (this is true in the general case), from the 
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difference between the original contours and the projected contours, the error range of 

the recovered surface can be determined. For general objects with concave areas, the 

surface recovery error cannot be determined by the contour comparison method. 

7.5 Analysis of the Wire-frame Technique 

The wire-frame technique described in Chapter 5 extracts a set of 3D curves from an 

image sequence. The experiments in Chapter 5 show that the technique is robust. In 

fact, a collinear light source is not necessary for extracting the 3D curves and the object 

surface does not have to be uniform. We will analyze the effects of different factors on 

the location error of the extracted curves. 

7.5.1 Coplanar light source 

A coplanar light source is a light source of which the illuminant direction is coplanar 

with the viewing direction and the rotation axis. To extract a wire frame, a coplanar 

light source is sufficient since the equi-brightness constraint still holds for points on a 

p = 0 curve. The image brightness value of a surface point under a coplanar light source 

can be expressed by the general surface reflectance function of the incident angle i, the 

emergent angle e and the phase angle g. As the light source and camera are fixed, the 

phase angle g is constant during object rotation. We can show that, for a surface point of 

p = 0, the angle i as well as the angle e is the same, therefore its image brightness value 

is the same, after the object has been rotated by two symmetric angles. Furthermore, 

under the assumption of orthographic projection, the corresponding occluding contour 

of a p = 0 curve under a coplanar light source is the same as that under a collinear 

light source. Since both the geometric and photometric constraint are unchanged, the 

wire-frame technique can be applied to surfaces illuminated under a coplanar light source. 
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The wire frame extracted will be the same as that extracted under a collinear light source 

except the part of the wire frame in the self-shadowing area. The self-shadowing area is 

caused by the angle between the illuminant direction and viewing direction. If the angle 

is small the difference between the two wire frames will also be small. 

7.5.2 Piecewise uniform surface 

The assumption of uniform surface reflectance is not necessary for extracting a wire frame 

on the object surface. The surface reflectance can be piecewise uniform. The object 

could have areas of different colors or different materials. For an object of piecewise 

uniform reflectance, the equi-brightness constraint for p — 0 curves still holds and the 

corresponding occluding contours still can be extracted in the same way as before. The 

only thing we may need to do is to segment the images into different areas of the same 

reflectance to avoid mismatch in search for correspondence. Segmentation is unnecessary 

if good starting points are available to guide the search. This is always the case since the 

singular points are on p = 0 curves. It is easy to identify the singular points and to find 

their depth from the corresponding contour points. On the other hand, the boundaries 

between areas of different reflectance can be used as surface markings and conventional 

stereo techniques can be applied to compute the 3D location at the boundaries. 

7.5.3 The depth on a wire frame 

The depth on a p = 0 curve is determined by the x coordinates on its corresponding 

occluding contour. The corresponding contour can be a background-occluding contour 

or a self-occluding contour. A background-occluding contour is extracted by thresholding 

the background brightness. The position on an extracted background-occluding contour 

is mainly affected by the quantization of image space so that the position usually can be 

determined within one pixel accuracy. A self-occluding contour causes a sharp brightness 
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drop in images. In the images we used in our experiments, the width of a sharp change 

caused by self-occluding is usually less than 4 to 5 pixels. The Canny edge detector is 

used to locate a self-occluding contour. An edge point generated by the Canny edge 

detector is at the middle of a sharp drop. Thus the maximum location error of a self-

occluding contour located by using the Canny edge detector will be less than 2 to 2.5 

pixels. The actual location of an occluding contour point should be at the image point 

where the sharp brightness drop happens. The error can be reduced by finding the exact 

location where the brightness drop starts. 

7.5.4 The x coordinate on a wire frame 

The error in the location of an occluding contour affects not only the depths but also the 

x coordinates computed on the corresponding p = 0 curve. The error in the location of an 

occluding contour point first affects the disparty of the two corresponding images points. 

Let (xa, ya) and (x-a, y~a) be the images of a p = 0 surface point in imagea and image-Q, 

respectively. From the constraints on a p = 0 point, we have D — xa — x_a = 2xw/2 sin a 

and E(xa,ya) = E{x-.a,y_a), where D is the disparity of the two image points and x^/2 

is the x coordinate of the corresponding contour point in imagen/2(see Section 5.3). Since 

all the image points under consideration have the same y coordinates, the y coordinates 

will be omitted in the following expressions. If there is an error b~xvj2 in xn/2, there will 

be an error 8D = 2Sxv/2 sin a in disparity D. The disparity error in turn will cause an 

error in the x locations of the two corresponding image points determined by the search 

method described in Section 5.3. Let the computed disparity be 

D = x0-x_a + 8D, (7.40) 

and let the x coordinates of the two image points determined by searching for the cor­

responding image points which have the computed disparity D and the same brightness 
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value be xa = xa + 5xQ and X-a = x-a + 5x_ a , respectively. Then 

E(xa + 8xa) = E(x-a + 8x„a) 

and 

D — (xa + 8xa) - (X-Q + 8x-a) = xa - x-a + (8xa - & c _ a ) . (7-41) 

Using linear approximation yields 

E{xa) + ^ ^ - 8 x a = E(x_a) + d E } X - a ) 8 x _ a . (7.42) 
OXa OX-a 

Since E(xa) = E(x_a), Equation 7.42 can be simplified as 

£ | W f e o = ^ z J f e _ 0 . (7.43) 

The x coordinate of a p — 0 point is computed by ,x-o = ^lla" • When there are 

errors in xa and x-a, x.0 = (*«+**«)+(*-«+**-«) = X q + Sx*+5x-a = + s T h e n t h e 

" " ' u 2 cos a " 2 cos a u 

error in x 0 is 8xQ = faa+fa-a _ The error is related to the surface curvature at the p = 0 
" u 2 cos« ^ 

point. This can be proved from the following derivations. 

From Equation 7.40 and 7.41, 8D = 8xa — 8x-a. Using substitution Sx-a = 8xa — 8D, 

from Equation 7.43, we get 
dE(Xa)Sxa = dE(x_a){5xa _ W ) { 7 M ) 

dxa dx-a 

Solving for 8xa, 

Similarly, 

8xr 

dX-a 

5x_o = _^pH5Di 
Oxa 

From the above two equations, we get, 

& 0 = _ , B f ^ + ^ ) V , ^ _ ^ ^ | / ( 2 c o s Q ) . ( 7 i 4 s ) 

\ OXa dX-0 J \ 8xa OX-c
 1  

dxa dX-Q 

'dE(xa) dE(x_a) 

k dxa dx-a 

dE(xa) dE(x-ay 
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We can prove that (see Appendix D) 

dE(xa) dE(x_a) 2Q'(cos ea)t0q0; (7.46) 
dxa dx-

dE(xa) dE(x_Q) 2(5'(cos ea)r0(l + ql) tan a. (7.47) 
dxa dx^, 

Combining Equation 7.45-7.47 and using substitution SD — 25xJT/2s'mct, finally we have 

The error in the x location of a wire frame caused by the error in the location of the 

corresponding occluding contour has nothing to do with the surface reflectance function. 

It is determined by the second partial derivatives of the surface. Note that when r 0 is 

small the error is large and vice-versa. 

The wire-frame technique has been applied to a synthetic image sequence of the 

ellipsoid. The ellipsoid in synthetic images is rendered with the reflectance function 

extracted from the real images and illuminated and viewed under the same conditions 

as the ellipsoid in the real images. The depth on a p = 0 curve is determined from the 

corresponding occluding contour extracted from the synthetic images. Table 7.11 shows 

the errors in the computed x locations of the p = 0 curves in the synthetic image2kv/9, 

(0 < k < 9), of the ellipsoid. The errors are mainly caused by the quantization effects of 

image brightness and image space. The subpixel accuracy on the x location proves that 

the wireframe technique is effective and accurate. 

7 . 5 . 5 Rotation angle and surface curvature 

Even if there is no disparity error, the quantity ro affects the accuracy of the x location 

on the wire frame. Let xa and x_a be the x locations of the images of a p = 0 point 

mimagea and image-a respectively, and let D be the disparity xa — X-a. If there a 

Sx0 

toqo 
ro( l + 9o)' 
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image 0 4vr/18 8TT/18 127T /18 16TT/18 20TT/18 24TT/18 28TT/18 32TT/18 
r.m.s. error 0.29 0.21 0.13 0.26 0.09 0.30 0.04 0.26 0.14 

average error 0.06 0.07 -0.05 -0.08 0.02 0.10 0.01 -0.09 -0.04 

Table 7.11: The first row is the subscripts for the images. The second and the third row 
are, respectively, r.m.s. and average errors in the x locations of the p = 0 curves in the 
corresponding synthetic images of the ellipsoid. 

small perturbation 5x on x Q , the x coordinate of the image point, which is computed by 

disparity D, in image-a will be x_„ + Sx. Using linear approximation gives 

E(xa + Sx) - E(x_a + Sx) = \E(xa) + dEjXahx 
dXr 

E{x_a) + — Sx 
OX—a , 

Since E(xa) = E(x-a), 

E(Xa + Sx) - E(x„a + Sx)=(&ESXa) - d E j x ~ a ) | Sx. (7.48) 
i d X (y C) — fy 

The difference of the brightness gradients in the above equation is related to the quantity 

ro as indicated in Equation 7.47. The larger the quantity r 0 , the larger the difference. 

From Equation 7.48, we see that the larger the difference, the more sensitive the equ-

brightness constraint to the perturbation Sx and therefore the more accurate the locations 

of the two image points. Comparing the wire frame on the body of the cup with that 

on the handle (see Fig. 5.36), the wire frame on the handle is more smooth because the 

quantity ro on the handle is much larger. 

The difference of the brightness gradients in Equation 7.47 also depends on the rota­

tion angle a. To make the x location on the wire frame accurate, the rotation angle a 

should be large. However, a large rotation angle tends to cause occlusion on the curve in 

imagea and image-a. In our experiments, the rotation angle a used is TT/9. 
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7.5.6 Effects of image noise 

If we assume uniform distributed image noise, the effects of image noise will also depend 

on the difference of the brightness gradients of the two image points. In the presence of 

image noise, there will be errors in the x coordinates of the two image points computed by 

linear interpolation described in Section 5.3. In the following calculation, the definitions 

of all the variables are the same as those in Section 5.3 except the new variables and 

symbols. Let image noise be n(), and the x location error of the two image points, which 

is caused by image noise, be Sx. Similar to Equation 5.25 and 5.26, we have 

E(x0 + Sx) = E(xa) + n(xQ) + (AE(xa) + An(xa))(xa + Sx - xa) (7.49) 

with An(xa) = n(xa) — n(xa), and 

E(x-a + Sx) = E(x_Q) + n(x-a) + (AE(x_a) + An(x-a))(x-a + Sx - i _ 0 ) (7.50) 

with A n ( x _ a ) = n(x_ a ) — n(x_ a ) . Since the two image points must satisfy the equi-

brightness constraint, 

E(xa + Sx) = E(x_a + Sx). 

Substituting the two sides with Equation 7.49 and 7.50 and simplifying the equation by 

using Equation 5.27, we have 

n(ia) + AE(xa)Sx + An(xa)(xa + Sx — i -

a ) = n(i_ a) + AE(x-a)Sx + An(a;_ a)(x_ a + Sx — X-Q) 

Solving for Sx, 

x x _ n ( x - c ) - nixa) + A n ( .T _ a ) ( x _ a - x-g) - An(xa)(xa - xa) (7 51) 
X ~ AE(xa) - AE(x-a) + An(xa) - A n ( x _ a ) ' \ • > 

where AE(xa) — AE(x-a) can be considered as an approximations for d ^ a ^ — 9 E ^ ~ a ^ • 

The above equation shows that the larger the difference between the brightness gradients 
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of the two image points, the smaller the error in their locations affected by image noise 

and vice-versa. As the difference is associated with r 0 , for the cup, we know that the 

difference of the image gradient for points on the handle is larger than that on the body. 

So the x location of the curves of constant p on the handle of the cup are more resistant 

to image noise than those on the body. This gives another explanation of why the wire 

frame on the handle is more smooth. 

Figure 7.61 shows the extracted p = 0 curves in the real images, image2kTt/9i (0 < fc < 

9) of the ellipsoid. The extracted p = 0 curves are overlaid with the real p = 0 curves. 

Table 7.12 shows the errors in the x locations of the p = 0 curves in the real images, 

image2kTr/97 (0 < k < 9), of the ellipsoid. Image noise adds one more error source in the 

x location of the p = 0 curves computed from the real images. Comparing Table 7.12 

with Table 7.11, we can see how much error is caused by image noise. From Fig. 7.61 

and Table 7.12, we can see the errors in the x location of the p = 0 curves in image^/m 

and image327r/i8
 a r e larger than those in the other images. This is because the flatter 

side of the ellipsoid is facing the viewing direction in these images and the second partial 

derivative ro on the p = 0 curves is smaller. The smaller ro leads to the larger errors in 

the x location of the p = 0 curves. This result is consistent with the our analysis in the 

previous subsection. 

image 0 4TT/18 8TT/18 127T/18 16TT/18 20TT/18 247T/18 28TT/18 32TT/18 
r.m.s. error 0.63 0.64 0.78 0.91 1.24 0.44 0.33 0.57 1.14 

average error -0.34 0.32 -0.21 0.30 0.61 0.17 -0.22 0.37 0.54 

Table 7.12: The first row is the subscripts for the real images of the ellipsoid. The second 
and the third row are, respectively, r.m.s. and average errors in the x location of the 
p = 0 curves in the corresponding image of the ellipsoid. 
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0 4TT/18 8TT/18 12TT/18 16TT/18 20TT/18 24TT/18 28TT/18 32TT/18 

Figure 7.61: The extracted p = 0 curves and the real p = 0 curves of the ellipsoid. The 
label below each curve denotes the image in which the corresponding p = 0 curve is 
located. 

7.6 S u m m a r y 

The detailed analysis and evaluation on the photogeometric technique and wire-frame 

technique show that the two techniques are robust and efficient. 

To analyze the surface recovery error caused by different factors, a manufactured 

ellipsoid with ground truth is used. Synthetic images are generated from the geometric 

model of the ellipsoid. The two techniques are applied to both real images and synthetic 

images of the ellipsoid. The surface recovery errors are calculated. The errors are listed 

in tables and displayed with a set of error maps. 

The surface reflectance function can be made more accurate by using multiple sample 

points. However, a pseudo surface reflectance can be used to recover the p component 

and the depth. 

The effects of image noise on surface recovery are analyzed by using the synthetic 

images of the ellipsoid at different noise levels. The photogeometric technique is applied 
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to the synthetic images. Comparing the error in the surface recovered from the synthetic 

images with the error in the surface recovered from the real images, we find that the error 

caused by image noise only takes a small part of the total error. Mathematical analysis 

also shows that the photogeometric technique is resistant to image noise. 

The effects of non-collinear light source are investigated for Lambertian, specular and 

hybrid surfaces of known surface orientation. When the illuminant direction of a non-

collinear light source is fixed, the error in surface orientation recovery can be calculated. 

For a surface point on a Lambertian or specular surface, the error in the computed surface 

orientation is a function of its real surface orientation. For a surface point on a hybrid 

surface, the maximum error in the computed surface orientation is within a range defined 

by its real surface orientation. 

The surface recovery error caused by non-uniform surface reflectance is also analyzed 

under the assumption of Lambertian, specular and hybrid surfaces. For a Lambertian 

surface, the non-uniform surface reflectance does not introduce error in computing the p 

component. Thus the depths calculated by integrating the p component are not affected 

by the non-uniform reflectance either. For specular and hybrid surfaces, the effects of 

the non-uniform reflectance are not as serious as we thought it might because the effects 

are partially compensated in computing the p component. However, the non-uniform 

reflectance does cause an error in computing the q component at a surface point. The 

error is proportional to the difference of the reflectance factor of the surface point and 

the reflectance factor of the sample surface point. 

Mathematical analysis shows that the accumulated error in the depth calculated by 

integrating the p component is related to the surface curvature and integration direction. 

The accumulated error increases in one direction but compensates in the other. Since 

the direction that increases the error can be detected, the error can be reduced by choose 

the right integration direction. Experimental results verify the mathematical analysis. 
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To reduce surface recovery error, the image should be imaged as large as possible and 

the object center should be located in the rotation center. The rotation axis of the object 

can be located with subpixel accuracy and this accuracy is sufficient for surface recovery. 

The rotation angle between the two images used for surface recovery should neither too 

large nor too small. Empirical tests show that the angle should be about 7r/18. 

When the precise shape of the object is not known, the occluding contours in the 

images can be used to judge the recovered surface. The comparison between the occluding 

contours in the original images and the occluding contours projected from the recovered 

surface gives the error between the real surface and recovered surface. As the error in 

locating the occluding contours in images can be determined, the range of the depth 

recovery error can be estimated from the difference between the two sets of contours. 

The analysis on the effects of the different factors shows that, in surface recovery, the 

error in the q component is larger than the error in the p component. The error near the 

boundary of the object is larger than the error in the interior of the object. The surface 

recovery results from both real images and synthetic images confirm the analysis. 

For the wire-frame technique, we have shown that a coplanar light source is sufficient 

and the object surface can be piecewise uniform. The error in the depth on the wire 

frame is determined by the error in the location of the corresponding occluding contours. 

The error in the x location on a wire frame is also affected by the location error in its 

corresponding occluding contour as well as the second partial derivatives. The effects of 

image noise on the x location of a curve depend on the brightness gradient difference. 

The brightness gradient difference depends on the surface curvature and the rotation 

angle between the two images used to extract the curve. 

In the next chapter, we will show how the recovered surface can be used as surface 

model and how the surface reflectance function extracted from real images can be used 

for realistic rendering in computer graphics to achieve virtual reality. 
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E x t r a c t i n g the Surface and Shading Funct ion from R e a l Images 

8.1 In t roduct ion 

Computer vision and computer graphics are two complementary fields of computer sci­

ence. Computer graphics deals with direct problems, that is, generating images from 

predefined shading models and geometric models, while computer vision studies inverse 

problems, that is, extracting reflectance and 3D geometric information from real images. 

Because of the nature of the two problems, graphics and computer vision have been on 

two separate tracks for many years. Since both of them are trying to achieve realistic 

descriptions of the physical world, they share some common aspects and their interaction 

is inevitable, especially in reflectance modeling and surface modeling. Both reflectance 

models [74, 50] in computer vision and shading models [16, 24] in computer graphics 

attempt to achieve physics-based relistic description of light reflection. So the research of 

these models can benefit each other. Both computer graphics and computer vision have 

to deal with surface modeling. The notion of a generalized cylinder was first introduced 

by Binford [4] in computer vision long ago and has been widely used in computer graphics. 

Terzopoulos's physics-based models, such as finite element models [46], adaptive meshes 

[67] and deformable superquadrics [66], can be directly applied to animation in computer 

graphics. The oriented particle surface model developed by Szeliski et al. [62, 61] is useful 

in both computer vision and computer graphics. 

We attempt to integrate computer vision with computer graphics in both reflectance 

168 
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a. imageo b. image^/Q c. imaged/3 d. imagen/2 

Figure 8.62: Tracking the sample points over an image sequence. The center of a square 
box is the image of a sample point. The vertical line is the rotation axis. The white 
curves in (d) are the detected occluding contours. The black curves in (a) are p = 0 
curves. 

modeling and surface modeling for more realistic visualization. The surface reflectance 

function is extracted from an image sequence of a rotating object illuminated under a 

collinear light source. The extracted reflectance function is used to recover surface shape 

of the object. A shading function is estimated from the extracted surface reflectance 

function by an optimization method. Then the estimated shading function is used for 

rendering the recovered object surface under the general illuminant and viewing condi­

tions. Experiments with objects with diffuse surfaces and specular surfaces show that 

the technique is feasible and promising. 

8.2 Surface Reflectance Funct ion 

The surface reflectance function of an object is extracted from the image sequence 

taken during the rotation of the object. The imaging conditions and the method for 

extracting surface reflectance function are the same as those described in Sections 4.1 
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and 4.2. Nineteen images of a rotating vase are taken during 7r/2 rotation with TT/36 

rotation between two successive images. Figure 8.62 shows four images in the image 

sequence. Three singular points in imageo are detected and their depths are computed 

from the corresponding contour points in image^^. The 3D surface points corresponding 

to the singular points are taken as sample points for extracting the surface reflectance 

function. Their images and brightness values are tracked over every image in the image 

sequence. The center of a small square box in image (a)-(d) of Fig. 8.62 marks the location 

of a sample point. The surface reflectance function is built from the correspondence from 

the brightness values of the sample points in an image to the emergent angles of the 

sample points. The average of the brightness values of the three sample points are used. 

The continuous line in Fig. 8.63 shows the surface reflectance function of the vase. 

8.3 Surface Recovery 

The surface of the vase is recovered by using the photogeometric technique. The depth 

and surface orientation is recovered at every pixel in imageo- To recover the surface of 

the vase, the 3D locations of the two p = 0 curves (see black lines in Fig 8.62(a)) are 

recovered first. Starting from the p = 0 curves, the computation on the depth and surface 

orientation is then extended in the x direction until the background is reached. This 

process may not cover some areas, such as the top of the body part. The computation 

is extended in the y direction to reach those areas. Figure 8.64 shows the surface depth 

and orientation of the recovered vase. 

8.4 E s t ima t ing the Shading Funct ion 

In computer vision and computer graphics, the terminology used to describe the relation 

between image brightness and surface orientation is different. In computer vision, the 
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Figure 8.63: The solid line shows the surface reflectance function extracted from images 
of the vase. The clashed line shows the estimated shading function of Phong-Blinn model. 

relation is called the surface reflectance function. In computer graphics, the relation is 

called the shading function. The shading function is used to render object models and 

generate synthetic images. One of the objectives in computer graphics is to generate 

virtual images which look like real images. In computer graphics, a shading function 

usually has a set of parameters and these parameters are determined heuristically. Some 

work has been done in trying to get physics-based shading function by analytical mod­

eling [16, 24] or by using measurement devices [72]. We attempt to get the shading 

function from real images. The surface reflectance function extracted from real images 



Chapter 8. Extracting the Surface and Shading Function from Real Images 

o 

0 400 

a. The depth plot 

b. The surface orientation plot 

Figure 8.64: The surface depth and orientation of the recovered vase 
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gives a description of how bright a real surface point in the real physical world will be 

when a surface is illuminated and viewed under certain conditions. However, the surface 

reflectance function extracted from images can only give the relation between brightness 

value and surface orientation under the fixed illuminating and viewing directions under 

which these images are taken. It can't be directly used in computer graphics to render 

the objects under arbitrary illuminating and viewing directions. The surface reflectance 

function can be considered as a shading function under a collinear light source and then 

the parameters for the shading function can be estimated from the surface reflectance 

function. Once the shading function is estimated, it can be used to render object surfaces 

under any illuminating and viewing directions. 

The surface reflectance function we extracted is a function under a collinear light 

source and it has the form 

E = Q(cos e) 

with e as the emergent angle at a surface point. One of the most widely used shading 

models in computer graphics is the Phong-Blinn shading model [6]. It has the form 

I = Ia + Id(N • L) + I,(N • H)n, (8.52) 

where N is the surface normal, L is the illuminant direction vector, and H is the vector 

halfway between the viewing direction and the illuminant direction. In the function, Ia, 

Id and Is are coefficients for the ambient component, diffuse component, and specular 

component respectively. The exponent n in the function represents the roughness of the 

surface. In computer graphics rendering, these parameters are determined by ad hoc 

methods. We consider the surface reflectance function extracted from the real images as 

the shading function under a collinear light source. In this case, 

N • L = cos e & N • H = cos e 



Chapter 8. Extracting the Surface and Shading Function from Real Images 174 

and 

/ = Ia + Id cos e + Is cos" e. 

Now our task is to find a set of values for Ia, Id, Is and n which minimizes the difference of 

the two functions under a collinear light source. The value for Ia can be determined from 

the background brightness in the real images. When cose = 1, the surface reflectance 

function takes the maximum brightness value and so should the shading function. Let 

the maximum brightness value be Ima,x\ then 

fmax — Ia + Id + Is ^ Is — Imax la Id-

The shading function under a collinear light source can be rewritten as 

I = h + Id COS e + (Imax ~ h ~ h) COS™ e. 

Since Ia and Imax are known, only Id and n need to be determined. 

The values for Id and Imax are determined by minimizing the least-squares error of 

the two functions which can be expressed as 

/(cos e, Id, n) = J2[Q(cos e ) - (4 + Id cos e + (Imax - Ia - Id) cos71 e)]2. 

Starting from an initial guess for n, Id can be calculated by solving <9/(cos e, Id, n)/dld-

By using one dimensional search with first derivatives, a new value of n which minimizes 

/(cos e, Id, n) can be found. By using the new value of n, a new value for Id can be 

calculated. Iterating the above process, the values of Id and n which minimize the least-

squares error can be determined. The parameters for the shading function estimated 

from the surface reflectance function of the vase are Ia = 7, Id = 80, Is = 141 and 

n = 1.4. Thus the estimated shading function is 

1 = 7 + 80(N • L) + Ul(N • H)1A 
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and shown as a dashed line in Fig. 8.63. Though the surface of the vase is close to a 

diffuse surface there is still a weak specular surface reflectance component in the estimated 

shading function. 

8.5 Rendering with the Estimated Shading Function 

Using the estimated shading function and the surface orientation data recovered from 

the image sequence, we generate synthetic images of the recovered surface by rendering 

the surface under different illuminant directions but fixed viewing direction. Figure 8.65 

shows two groups of images. The images in the upper row are synthetic images generated 

under different illuminant directions. The images in the lower row are the corresponding 

real images. The illuminant direction and viewing direction for the synthetic image and 

the real image in the same column are similar. The location and orientation of the object 

in the synthetic image and the corresponding real image are similar. The synthetic images 

are generated by a simple shading algorithm which only considers local shading, i.e., the 

shading directly caused by the light source illumination. To simulate the blurring effect of 

the camera, the synthetic images are filtered with a Gaussian filter of o = 1. Comparing 

the synthetic images with the real images in the same column, we see that the differences 

between the synthetic images and real images are very small. The small differences show 

that the shading function is a good approximation of the real surface reflectance function 

and it gives realistic rendering. 

8.6 Experiment with a Specular Surface 

We performed another experiment with a porcelain cup and tried to estimated a 

shading function of the Phong-Blinn model from the surface reflectance function extracted 

from the images of the cup. The surface of the cup is quite specular. Some images from 
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a. illuminated 
at (0,0,1) 

b. illuminated c. illuminated 
at ( - t an §, 0,1) at (tan §, 0,1) 

Synthetic images of the recovered surface 

d. illuminated 
at (0,tanf^,l) 

a. illuminated 
at (0,0,1) 

b. illuminated c. illuminated 
at ( - t an £,0,1) at (tan | , 0,1) 

Real images of the original object 

d. illuminated 
at (0,tan j ^ , l ) 

Figure 8.65: The synthetic images of (a)-(d) are rendered with the shading function 
estimated from the surface reflectance function extracted from the real images. The 
illuminant and viewing conditions for generating a synthetic image are similar to those 
used in taking the corresponding real image in the same column. 
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imaged/3 image^ 

Figure 8.66: Four images of an image sequence of a rotating cup. 

the image sequence of the rotating cup are shown in Fig. 8.66. The reflectance function 

extracted from the images is shown in Fig. 8.67 as a solid line. The depth plot and the 

orientation map of the recovered surface are shown in Fig. 5.38 and Fig. 5.39. Since the 

surface of the cup is highly specular, the singular points in the images have saturated 

brightness values. The value for [ m a x should be larger than the saturated brightness value. 

An initial larger value is used as a guess for Imax. To estimate a shading function from 

the surface reflectance function of the cup, the least-squares error of the two functions 

under a collinear light source is minimized. The initial value of l m a x is set to 297 and 

the same minimization method (see Section 8.4) is used to get the shading function 

1 = 7 + 220(N • L) + 70(N • H)20m. 

The function is shown in Fig. 8.67 as a dashed line. 

In fact within certain region, the least-squares error is not sensitive to the change of 
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Figure 8.67: The solid line shows the surface reflectance function extracted from images. 
The dashed line shows the estimated shading function of the Phong-Blinn model. The 
plus line shows a better shading function of different model which is closer to the surface 
reflectance function. 
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illuminated at (0,0,1) illuminated at (0,0,1) 

illuminated at (0,tan jg, 1) illuminated at (0,tan ^5,1) 

Figure 8.68: The left column is the synthetic images of the recovered surface and the right 
column is the real images of the original object. The synthetic images are rendered with 
the estimated shading function. The illuminant and viewing conditions for generating a 
synthetic image are similar to those used for taking the corresponding real image in the 
same row. 
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Imax and n. When n is large, say n > 500, the specular component is a spike-like function 

and its effects are quite localized. The major part of the least-squares error is caused by 

the diffuse component in the shading function. The large least-squares error between the 

two functions reveals that the Phong-Blinn model is not the right shading model for the 

surface of the cup. 

There are two groups of images in Fig. 8.68. Each image on the left side is a synthetic 

image and each image on the right side is the real image corresponding to the left side 

synthetic image. The synthetic images are generated by using the recovered surface orien­

tation data of the cup and the estimated shading function. The location and orientation 

of the object in a synthetic image and the corresponding real image are similar. Each 

image in the synthetic images is rendered under the similar illuminating and viewing di­

rections to those under which the corresponding real image is taken. Visual comparison 

can be made between a synthetic image and its corresponding real image. The specular 

spots in the synthetic images show that the specular spike is modeled reasonably well. 

The differences between the synthetic images and real images are visible. The bright­

ness in the synthetic images is not as smooth as that in the real images. The specular 

spots in the synthetic images are different from those in the real images. The differences 

are mainly caused by error in the recovered surface orientation. The orientation data, 

especially, the q component is not smooth. 

8.7 Summary 

The experimental results indicates that our technique works. However, the work de­

scribed here is preliminary. The depth and surface orientation are recovered only from 

one view and they are not continuous at some points along the y direction. The dis­

continuity in surface orientation is visible from the synthetic images of the recovered 
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surface. We have tried to obtain smooth surfaces by using surface fitting techniques 

without achieving satisfactory results. The two surface fitting techniques [25, 18]. we 

used require that the distance between adjacent data points be uniform. But the data 

obtained by our surface recovery technique does not meet the requirement. Fitting the 

depth and surface orientation data with smooth surfaces is not trivial so we take this as 

a future research direction. 

The reflectance function of some surfaces cannot be model properly by the Phong-

Blinn shading model. The four component model in computer vision [47] gives a better 

description of the surface reflectance of the porcelain cup. The model contains four 

components: ambient, diffuse, specular and specular spike. A shading function which 

fits the reflectance function of the cup better is 

1 = 7 + 10(N • L) + 210(iV • tf)1-3 + 70(AT • tf)2000. 

It contains a weak specular component and a strong specular spike. The function is 

shown in Fig. 8.67 as a plus line. 

The integration of computer vision and computer graphics is inevitable. The positive 

initial results demonstrate the potential of computer vision techniques to enhance realistic 

modeling in computer graphics. 



Chapter 9 

Conclusion 

This thesis explores geometric and photometric constraints in an image sequence of a 

rotating object illuminated under a collinear light source and develops techniques for 

surface reflectance extraction and surface recovery by integrating geometric and photo­

metric constraints. The first section of this chapter summarizes the major contributions 

of this thesis. The second section discusses the strength and weakness of the proposed 

techniques. The last section talks about the extensions and future research directions. 

9.1 Contributions 

The major contributions of this thesis are the following: 

• We have presented a new method which directly extracts surface reflectance from 

images. 

A l l surface recovery techniques using brightness or shading require the surface re­

flectance function of the object to be recovered. The surface reflectance function 

can be obtained from a calibration process, or extracted from images. The cali­

bration process requires that the shape of the calibrating object is known and the 

surface reflectance function of the calibrating object is the same as that of the 

object to be recovered. The existing methods for extracting surface reflectance 

from images assume that the reflectance function has a certain form and fit the 

form with the image data. However, the method described in this thesis directly 

extracts the surface reflectance function from images of the object to be recovered. 

182 
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It assumes only that the surface reflectance function is isotropic and monotonic. 

This assumption is true for most surfaces. Therefore the method is simple, reliable, 

and accurate. . • 

• We have developed an effective and practical imaging process for extracting surface 

reflectance and shape of a rotating object. 

In a controllable experimental environment, we can arrange the illuminant of the 

light source and the viewing condition of the camera, as well as the motion of 

the object. A proper arrangement will make the imaging process simple and the 

surface recovery task easier. By using a collinear light source and an approximation 

to orthographic image projection, the surface reflectance function is simplified and 

can be extracted directly from images of an rotating object. Both geometric and 

photometric constraints as well as their relations in the images also simplified so 

that geometric and photometric constraints can be integrated in a natural way for 

surface recovery. 

• We have demonstrated a technique which recovers surface depth and orientation 

simultaneously. 

There are several kinds of image features available for surface recovery when an 

object is rotated in front of a camera. Most techniques just use one of them. 

Techniques using contour cannot recover concave regions. Techniques using flow 

or stereo require surface marks or texture on the object surface. Techniques using 

shading are vulnerable to image noise. Integrating these image feature will yield 

more powerful and robust techniques. So far. no other work on integrating several 

image features from the image sequence of a rotating object has been reported. The 

photogeometric technique described in this thesis integrates contour and brightness 
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in images in a natural way and recovers the surface depth and orientation simulta­

neously at each pixel in an image. The integration of other image features, such as 

stereo and flow, is a straight forward extension of the techniques proposed in this 

thesis. 

• We have developed a technique which extracts a 3D wire frame on an object surface 

from its images without knowing the surface reflectance function. 

The wire-frame technique is the result of the further integration of the geometric 

and photometric constraints. The technique does not need the surface reflectance 

of the object to be recovered. It can work on an object of piecewise uniform surface. 

The illuminant direction does not need to be collinear but to be coplanar with the 

rotation axis and viewing direction. 

• We have designed a new method for extracting the shading function from real 

images for realistic graphics rendering. 

The shading function used in graphics is often based on heuristic approach. This 

thesis proposes a method for extracting the shading function from real images for 

realistic surface rendering. The work is preliminary but it is feasible and promising. 

9.2 Discussion 

The techniques are feasible and effective. The computation is simple and efficient. The 

depth,data obtained is reliable and resistant to image noise. However, in computing 

the surface orientation, the q component is less accurate than the p component. The q 

component is more sensitive to image noise, non-uniform reflectance of the surface, and 

non-collinear illumination as well as other error sources. The p component is mainly 

determined by the ratio of Q~L(EA) to Q~1(E0), while the q component is determined 

by the ratio and a term of Q~1(EQ). Whenever an error source causes changes in the 
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brightness value Eo and Ea, it will cause a larger error in computing the q component. 

The wire-frame technique cannot extract a p = 0 curve in a concave area since the 

p = 0 curve in a concave area cannot be seen as an occluding contour in images. The 

wire-frame technique also requires a p = 0 curve be seen from the two images taken as 

the object is rotated by two symmetric angles. Therefore the wire frame extracted from 

the images may not be complete. To get a complete wire frame, the photogeometric 

technique can be used after the surface reflectance function has been extracted. 

The imaging geometry is approximated by orthographic projection. The techniques 

will fail under perspective projection. Under perspective projection, the viewing direction 

changes as the viewing angle changes over the surface so that the phase angle g changes. 

As a result, even under the illumination of a collinear light source, the emergent angle e 

will not equal to the incident angle i except in the direction of the optical axis. The image 

brightness value is no longer the function only of the surface orientation. Therefore all 

the photometric constraints used in the techniques for surface recovery no longer exist. 

In addition, some geometric constraints we used also disappear under the perspective 

projection. 

The light source for the photogeometric and the wire-frame techniques is not necessary 

to be collinear with the viewing direction, that is, the optical axis of the light source does 

not have to be aligned with the optical axis of the camera. A collimated light source 

(where the illuminant direction of the light source is parallel to the viewing direction of 

the camera) is sufficient. 

The photogeometric technique cannot recover depth and surface orientation correctly 

in the area of high curvature along the x direction. Since the technique uses the first 

order Taylor series approximation to compute the depth at the next image point, the 

error caused by ignoring the terms above the first order will be larger in the area of 

higher curvature. 
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Interreflection still poses a problem in surface recovery. To overcome the interreflec-

tion problem, new techniques involving sophisticated computational methods must be 

developed. 

The potential applications of our two techniques are computer graphics modeling, 

fast prototyping, surface inspection, object recognition and computer aided design. 

9.3 Future Research Direct ions 

The photogeometric technique can be improved to achieve possible real-time speed. The 

only time consuming operation is Gaussian filtering which can be sped up by using 

specialized hardware. The surface recovery in the x direction can be parallelized. The 

computation of surface orientation can be implemented much faster by using a lookup 

table. The wire-frame technique requires much less computation and it is much easier to 

implement in real-time. 

A direct extension of our techniques is surface recovery of an object with arbitrary 

motion and rotation. As long as the motion and rotation of the object can be controlled or 

estimated, the change of 3D location and surface orientation of surface points in 3D space 

can be determined. It is possible to determine the 3D location and surface orientation of 

some particular surface points and then extract surface reflectance function from these 

surface points by tracking their surface orientation and brightness values. Once the 

surface reflectance function is obtained, the surface can be recovered from two images of 

the object. The basic principles described in this thesis can be extended and applied to 

surface recovery under arbitrary motion and rotation. 

It is possible to extract the surface reflectance function and recover the surface by 

using only four images. Three images, imagev/2, imagea and image-a can be used to 

extract a p = 0 curve. The brightness value and surface orientation at every point on the 
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p = 0 curve can be used to build the surface reflectance function. The two images, imageQ 

and imagea can be used for surface recovery by using the photogeometric technique., 

The surface recovered from images is represented as surface depth and orientation data 

at image pixels. One extension of our work is to transform the depth and orientation 

data recovered from different viewing directions into a concise description of a 3D surface 

model. There are several algorithms which fit a set of 3D points with smooth surface 

model. In our case, we obtain both 3D location and surface orientation at each point so 

that fitting the points with smooth surfaces should be relatively easy. 

The work described in Chapter 8 can be improved by using the appropriate shading 

models. To get a more accurate estimation of the parameters of a shading function, more 

images illuminanted and viewed from different directions can be used. 

Interreflection poses a common problem for all techniques which use image brightness 

or shading information. Although our techniques are relatively resistant to interreflec­

tion, they still suffer from it. The interreflection problem is complicated but still tractable 

in some cases. The surface reflectance function extracted from images and the surface 

recovered by using the photogeometric technique make a good start in solving the inter­

reflection problem. 
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Appendix A 

Noise Effects on Specular and Hybrid Surfaces 

For a uniform hybrid surface, let its surface reflectance function be E = Q(cose) and its 

inverse function be cos e = Q~1(E). In the presence of image noise process n, E = E + n 

and the estimated value for cos e is 

cosg = Q-\E) = Q~1(E + n). 

Since the function E = Q(cos e) is a continuous function, so is its inverse cos e = Q~1(E). 

Assuming n <C E and applying linear approximation to Q~x yield 

cos e = Q (E + n) = Q (E) + ,„ n = cos e + 
dE Q'(cose)' 

Usually, 0 < cos e < 1 and 0 < E < 255. If Q' is relatively uniform with the defined 

range, Q'(cose) >̂ 1 and -p^-,—^ <S 1 when n is small. 
o ! v y Q'(cose) cos e 

Let the brightness value of a surface point in imageo be .Eo = EQ + n 0 , the brightness 

value of the surface point in imagea be Ea = Ea + na with no and n a two independent 

Gaussian noise processes of zero means. Using Eo and Ea to estimate cos e0 and cos ea 

gives 

cos e0 = Q~l{E0) = cos e0 + n ° — r & cos e a = Q~\Ea) = cos e a + — - . 
^'(coseo) Q ( c o s e a ) 

Then the p component at the point can be estimated by 

_ J 1 Q-\EQ) = _1 1 cose a ( l + Q t ( c o s ^ ) c o g e a ) 

tana zmaQ-\Ea) tana sin a cos e 0 ( l + Q T T ^ J T ^ ) ' 
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As — <C 1, using the binomial series expansion, we have 
\c£ I C O S C Q I C O S 6 Q 

~ 1 7 \ • 
1 + 7 v 7 — ^ Q'fcos e0) cos e0 

V (coseo) coseo v ' 
The computed p component at the point can written as 

1 , na n0 n0na 

p = P i — : ( — — ), 

sina Q'(cos ea) cos eo (Q'(cos eo) cos eo)2 (J'(cos eo)Q'(cos e a) cos2 eo ' 

where p is the actual value at the point and the second term is the error caused by image 

noise. 

The depth z computed by integrating p along the x direction is 

1 [x, na n0 n0na 

Z = Z -r~ / ( — — )CIX. 
sin a Jx0 Q'(cos ea) cos eo (Q'(cos eo) cos eo)2 Q'(cos eo)Q'(cos ea) cos2 eo 

The first term z is the accurate depth and the second term is the depth error caused 

by image noise. Since n® and na are independent, the deviation of the integration of 

Q'(coSe0)Qn'(coasea)cos3 e0
 w i l 1 b e z e T O - Comparing the magnitudes of Q'(cos e0) and Q'(cos ea) 

with the magnitudes of n0 and na, we can derive the same conclusion we had on the effects 

of image noise on a Lambertian surface (see Subsection 7.4.1). 



Appendix B 

Effects of Non-collinear Illumination on a Specular Surface 

For a uniform specular surface, the surface reflectance function can be expressed as 

E = g{cosj). 

The specular angle j (0 < j < n/2) is the angle from the surface normal to the specular 

vector. The specular vector is halfway between the viewing direction and the illuminant 

direction. Let the illuminant direction of a non-collinear light source be (0, —qi, 1), and 

qi sufficient small; then the specular vector is (0 , -^ ,1) with q^ = qi/2. Assume the 

surface reflectance function is built, in the same way as before, from a sample point S 

whose image in imageo is a singular image point under the non-collinear illumination. 

Since S has the maximum brightness in imageo, its initial surface orientation is the same 

as the specular vector, that is (0, —qh, 1)- After rotation by a, 

qh pa(S) = tan a, & qa(S) = 

cosja(S) = 

cos a 
(-Pa(S), -qa(S), 1) • (0, -qh, 1) ql + cos a 

and 

y/fi{S) + ql(S) + ly/ti + l + l 

Ea(S) = g(cosja(S))=g(q2h + C ° S a 

+ l /' 
If we approximate the non-collinear light source as a collinear light source and consider 

cos e(S) = cos a as the estimated value for cos e(S), the surface reflectance function built 

from the sample points and its reverse are 

E = Q(cosi) = g(^±^ )j k cose = Q-\E)=g-\E)(ql +I)-ql 
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Let a surface point have surface orientation (—po, — Qo, 1); then the image brightness 

value of this surface point is 

rp f • \ I gogfe + 1 

E0 = <7(cosjo) =g ^-_=_ 

After rotation by a, the brightness value of this surface point is 

(B.53) 

EA = g(cosja) = g q0qh + cos a - p0 sm a 

^q2

h + l^/p2o + q2o + l 
(B.54) 

To compute the p component for the point, 

1 
P 

1 Q~\ET 1 1 cos eo 1 1 9-\Eo){ql + l)-ql 
tana sin a Q~1(EA) tana s inacose a tana s inag 1 (Ea)(q2, + 1) — q2 

Substituting EQ and EA with Equation B.53 and B.54, we have 

. _ _ L 1 (qoqh + cos a - pp sin ot)\J{q2

h + 1) - ql{\J{po + ql + 1) 

P _ t a n a sina + l)y/(ql + 1) - ql{y/(jti + 4 + 1) 

The rest of the calculation is similar to that in deriving surface orientation error caused 

by non-collinear illumination for a Lambertian surface (see Subsection 7.4.2). Noting 

that qh = qi/2, finally we have 

qi cos a — po si*1 ot — 1 
op = ~qo : ; 

2 sm a 
qi p 0 ( l - cos a) 2 

<^ = ±-[ -r— 1 + %) • 
2 sm a 



Appendix C 

Effects of Non-collinear Illumination on a Hybrid Surface 

The surface reflectance function of a uniform hybrid surface is a function of both the 

incident and specular angle. It can be written as 

The three terms in the function are the ambient component, Lambertian component 

and specular component, respectively. The ambient component is a constant which 

represents the object surface reflection caused by the illumination of the reflected light 

in the environment. 

Let the illuminant direction of a non-collinear light source be (0, — qt, 1), and qi suf­

ficient small; then the specular vector is (0 , -^ ,1) with qh = qi/2. Taking the light 

source as a collinear light source and tracking brightness values of some sample points as 

described in Section 4.2, the surface reflectance function for a hybrid surface can be built. 

Let surface point S be a sample surface point whose image in imageo is a singular point. 

Since S gives the maximum brightness value in imageo and both g and / are monotonic 

increasing positive functions, its surface orientation will lie in between the illuminant 

direction and the specular vector. Thus if the surface orientation of S is (0, —qih, 1), qih 

is between q\ and q^. After a rotation of the object, the brightness value of S is 

E = A + /(cos i) + g(cosj). 

with 
qiqih + cos a 

(C.55) 
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and 
• /Cs Qhqih + cos a 

cosJa(S) = r rir—- (C-56) 

By tracking the brightness value of the sample point S and taking the rotation angle a as 

the approximation for the emergent angle of S, we build the surface reflectance function 

Ea(S) = Q(cosa) = Q(cose(S)). 

Applying the inverse function to estimate the cos e from image brightness value, we have 

cose = Q'l{E). 

We will prove that, for any surface point, the range of cose estimated from the above 

inverse function can be determined from its real surface orientation. 

Let a surface point d have orientation (— p(d), — q(d), 1). Then the brightness value 

of this point 

E(d) = A + /(cos i(d)) + g(cosj(d)) 

wi ith 

and 

q(d)qi + 1 
cos i(d) = , , (C.57) 

V ^ M > ( < 9 2 + ?(<03 + I 

cos j ( c Q = , q ( : d ) q h + 1 (C.58) 

I f £ ( d ) = £ a ( S ) , 

A + /(cos i(cO) + g(cosj(d)) = A + /(cos i a (5) ) + g(cosja(S)). 

Since both / and g are monotonic increasing and positive functions, either 

cosi(d) < cosia(S) & cosj(rf) > cosja(S) 
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or 

cosi(d) > cosi a(S) & cosj(d) < cosja(S). 

Applying Q~l to the brightness value E(d), we get the estimated value cos e(d) for cos e(d) 

anc 

cos e(d) = Q-\E(d)) = Q-l(Ea{S)) = cos a. (C.59) 

Theorem 1. If cosi(d) < cosia(S) and cos j(d) > cos ja(S), 

(q(d)qh + l)Jq[+l (q(d)qi + l)^qj+l 
i ~ qihqh > cos e(d) > - qlhqh (C.60) 

^P(dy + q(dy +1 ^P(dy + q(dy +1 
Proof: From Equation C.59 and C.55, 

cose(d) = cos a = cosia(S)\J q2 + l\Jq2

h + 1 - qiqih-

Since cosi(cf) < cosia(S), 

cose(d) > cos i(d)\Jqf + 1 \/9/k + 1 - 9/9//i-

Substituting cosz(cf) with Equation C.57 and simplifying the expression yield 

cos e(d) > . - ^9/. (C.61) 

From Equation C.59 and C.56, 

cos e(d) = cos a = cos ja(S)\Jq2

h + 1^9^ + 1 -

Since cos j (of) > cos ja(S), 

cose(d) < cos j{d)^/q2

h + l^Jqfh + l- qhqlh. 

Substituting cos j(d) with Equation C.58 and simplifying the expression give 

, . ,(gfcg(rf) + i)y^+T ^ 
cos e(d) < • , - qlhqh. (C.62) 

0>(<O2 + q(d)2 + 1 
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Combing Equation C.61 and C.62, we finish the proof. 

Theorem 2. If cosi(d) > cosia(S) and cos j(d) < cos ja(S), 

l.(q(d)ql + l)^qf 
e(d) < . qihqi- (C.63) 

y/p(d)* + q(df + 1 yjp{dy + q{df + 1 

The proof of Theorem 2 is similar to the proof of Theorem 1. 

The right side in Expression C.60 and C.63 is the estimated value for cos e(d) when 

the brightness value at point d is assumed to contain only the Lambertian component. 

The left side in Expression C.60 and C.63 is the estimated value for cos e(d) when the 

brightness value at point d is assumed to contain only the specular component. The 

above two theorems state that the estimated value for cos e from the brightness at a 

point on a hybrid surface is within a range determined by the values computed under a 

Lambertian surface assumption and a specular surface assumption. 

Now, we can estimate the error caused by noncollinear illumination in computing 

surface orientation for points on a hybrid surface. Let a surface point d have surface 

orientation (— po-,— 9o51) a n d its brightness values in imageQ and imagep be EQ and Ep 

respectively. The estimated values for cos e0 and cos ep from the brightness values EQ and 

Ep will be cos eo and cos ep. From Theorem 1 and 2, cos eo is within the range defined by 

either Expression C.60 or Expression C.63. We can prove that it does not matter which 

range cos eo is in, the final results are similar. So we only consider 

(q0qh + 1)^'q2

h + 1 (qoqi + l)yfq? + 1 
/ = = = qihqh > cos e0 > , qihqi-

yjpo + q2o + i \JPO + q0 + i 

After the object rotation by /3, there are two cases for cos ep, either 

qihqi 

or 

qih'qh'< cosep < qihqi-
V^o + So + l ^/pj+qj+l 
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The p component at point d is computed by p = ^ - ^ f ^ f j f } = ^ - ^ ^ f . 

Since cos ep and cos eo are within certain ranges, the computed p component will also 

be within a certain range. The maximum and minimum values for the p component are 

determined by the minimum and maximum values of c o s ef. The maximum and minimum 
J coseo 

1 r coseg j , • i i moifcos en) i rm'nfcos e«) , • i 

values of —z2- are determined by — r 4 — a n d — — # r , respectively. 
coseo mzn(coseo) ma:r(coseo) 7 r J 

In the first case, using the maximum value of c o s ef to compute the p component, the 
C O S C Q 

estimated value p is given by, 

. _ 1 _ (ghgo + cosB-posm0)yJql + 1 - qihqh\J{pl + <?o + 1) 
P ~ tan/? sin 6{(qiqo + l)y/qj+l - qikqiyj(p2

0 + ql + 1)] 

Substituting y for q^ and aqi ( a = qih/qi) for c^, p becomes a function of q\. Since qi is 

sufficient small, the error Sp can be computed by using the first derivative of the function 

with respect to q\. Then 

r dp . . cos 8 — po sin 8 — 0.5 
d(qi) sm 8 

If the minimum value of 22i££ j s U S ed to compute the p component, then 
C O S C Q 

„ _ 1 (g/go + cos /j - pp s'm(3)^qf + 1 - qihqi\J(Po + ql + 1) 
P ~ ^n/? s i n ^ [ ( ^ 0 + 1 ) ^ + i _ qihqhJ(p> + q* + 1)] 

Similarly, 
0.5(cos/? — p 0 sin/?) — 1 

<fy = 9/9o: ^—5 • 
sm p 

So the error in computing the p component for a surface point of orientation (— p 0 , — c/o, 1) 

on a hybrid surface is within the range defined by 

Sp = [mm ( g , Q 0

c o s ^ n 7 ^ ^ , 
max ( q i q Q

c o s ^ j , M o ° - 5 ( c ° ^ T y i n 1 ) ]. 
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The maximum and minimum values computed for the q component are determined 

by using max(cosy) a n c [ " i m ^ c o s e / | . Similar to the calculation of Sp, 

Sq = [ m * n ( ± ^ o 5 ^ - ( l + ^ 
max (±qi(P0°-^f£ - (1 + ql.)), ̂ qW^^ ~ (1 + ql 

In the above calculation, the extreme values — a r e used to compute Sp and Sq. 
' coseo t- r i 

The extreme values are obtained by assuming that point d gives Lambertian reflection 

in one image and specular reflection in the other image. This assumption is not valid for 

real surfaces. Therefore the actual surface orientation error is less than that computed 

with the extreme values. 

In the second case, Sp computed by using the maximum and minimum values of , 

respectively, are 
cos 3 — po sin (3 — 1 

sp = qiqo r — 5 
sm p 

and 
cos 3 — po sin (3 — 1 

°P = qm • 
2 sm p 

The error Sq computed by using the maximum and minimum values of , respectively, 

are 
r , r p 0 ( l - C O S / ? ) 2 

S q = ± q i [ sin/3 + 

and 
qi po(l - cos (3) 2 

5 q = ± 2 [ — ^ + 

Therefore, in the second case, the error in computing the p component for a surface point 

of orientation (— p0, — qo, 1) on a hybrid surface is within the range defined by 

Sp = [mm (g/go^^^f^Ng^o^^r^"1)» 
max (̂ ocosfflr;n'"^^gocosff-r?/3'1)]̂  
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and the error in computing the q component for the point is within the range defined by 

Sq = [min ( ± q i [ ^ ^ - (1 + %2)], ±f ~ (1 + %2)]) , 

max (±qi[P-^^ - (1 + g0
2)], ±%[^S^1 - (1 + %2)])] 

Comparing the above Sp and Sq with those computed for a Lambertian and a specular 

surface, we see the surface orientation error in the second case is between the error com­

puted under a Lambertian surface assumption and the error computed under a specular 

surface assumption. This is because in the second case the extreme values are obtained 

by assuming that a surface point gives Lambertian reflection or specular reflection in 

both images. 

Finally, let min(Sp) be the minimum and max(Sp) be the maximum of the following: 

w o c o s / ? - : ° y- ° - 5 , qiqooMcosPz°psinP)~^ 

qiq-p-Zfp-\ and qm™?-*™^ 

and min(Sq) be the minimum and max(Sq) be the maximum of the following: 

i f l O * 9 ^ " + fc2))' ± . « f o 1 = S s * " (1 + ?o»> 
± ? ' [ E 2 i S ^ - ( l + 9o2)] ™ * ± | [ E 2 i S ^ - ( l + go2)]-

The errors in the p and q components computed from the brightness values of a surface 

point of orientation (—po, —qo, 1) on a hybrid surface is within the ranges defined by 

Sp = [min(Sp), max(8p)] & Sq = [min(Sq), max(Sq)]. 



Appendix D 

Brightness Gradient Difference of the Correspondence of a p = 0 Point 

Let (xa,ya) and (x_ a , y_„ ) be the images of a p = 0 point (xo,yo,zo) in imagea and 

image-a respectively, and let (— pa, — qa, 1) and (— p-a, — q-a, 1) be the surface orienta­

tions at the two image points respectively; then E(xa, ya) = Q(cos ea) and E(x-a, y~a) = 

Q(cose_Q.) with cose a = —,—= and cos e_a = —y=—1 From the equi-brightness 

constraint on a p = 0 point, we have cos ea = cos e_a and E(xa,ya) = E(x_a, y-a). Since 

we are only interested in the image points in the same row, we will drop the y coordinate 

in the following expressions. From above, we have 

d^fo") = dQ(cos ea)dcos ea _ _ c o g 3 e ^ Q / ^ c o s ea)(rapa _|_ taqa) (D.64) 
Oxa a(cos ea) oxa 

with ra = dpa/dxa and ta = dqa/dxa; and 

dE(x_a) _ dQ(cose-a) dcose-a _ _ ^ 3 e _ ^ g / ^ c o s e _ a ) ( r _ a P _ a -f t_aq_a) (D.65) 
ax_ a a(cos e_Q) aa;_a 

with r_ a = dp-ajdx-a and t_ a = dq-ajdx-a. Let the surface orientation of the p = 0 

point be (— po, —c/o, 1), then r 0 = dpo/dx0 and t 0 = dqo/dxo- The termsp a , c/Q, r a , £ a , p_ a , 

g_ a , r _ a and t_ a can be expressed in terms of po, qo, r0 and to by using Equations 3.1-3.5. 

As po, qo, r0 and to are functions of x0 and y0, 

_ dpa _ dpa dxp 
a dxa dxo dxa 

and 
. _ dqa_ _ dqa dxp 

a dxa dx0dxa 
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From Equation 3.4 

r « = 7 : vf n—• (D.66) 
(cos a — po sm ay oxa 

Since x0 = xa cos a + za sin cv, 

<9z0 = cos a + p a sin a. (D.67) 
dxa 

Substituting pa in the above expression with Equation 3.4 and simplifying the expression 

yields 
dx0 1 
dxa cos a — po sin a 

Combining Equation D.66 with Equation D.67, we get 

ro 

For ta, we have 

Since po = 0, 

Similarly, 

ta 

(cos a — po sin a ) 3 

to(cos a — po sin a) + r0q0 sin a 
(cos a — po sin a ) 3 

, , ro(! + qi)sma + toq0cosa 
rapa + taqa = . (D.68) 

cos4 a 

r _ a P _ a + = " r o ( 1 + 9 ° 2 ) s i r + M o C O S a - (D-69) 
cos4 a 

Substituting rapa+taqa and r_ a p_ a +t_ a c/_ a in Equation D.64-D.65 with Equation D.68-

D.69 and noting that cos ea = cos e_a and Q'(cot e a) = Q'(cos e_ a), finally we have 

dE(xa) dE{x_a) 
1 -x = -2Q (cos ea)t0q0 

CJX (y CJ X (y 

and 
dE(xa) dE(x_a) 
— - = -2Q (cos e a J r 0 ( l + qQ) tan a. 

(J X (y CJ X — (y 


