
Design and Implementation of a Content-based Video
Retrieval System

by
Yaping Shi

B. E. Tsinghua University, China, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in

THE FACULTY OF GRADUATE STUDIES
(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
September 1997

© Yaping Shi, 1997

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

The University of British Columbia

2366 Main Mal l

Vancouver, Canada

V6T 1Z4

Date: _

Abstract

As computer application enters a multimedia era, video data is becoming an information

source. In this thesis, we investigate various video indexing and retrieval techniques and

describe an implementation of a prototype video retrieval system that supports queries

based on either visual or semantic content of video data.

In our system the basic unit for video indexing and retrieval is the shot. Several shot

boundary detection techniques have been implemented and evaluated.

Each shot is represented by one or more key frames. The image feature vector of each

key frame usually has very high dimensionality. So first we reduce the dimensionality

of the feature space using the Principal Component Analysis (PCA) technique because

most existing multi-dimensional indexing structure grows exponentially in size as the

number of dimension increases. We've successfully reduced the dimension of the data

sets obtained from our test video sequences from 256 to less than 10 while preserving

more than 90 percent of the distance information between data points. Then we choose

adaptive bucket k-d tree to index the PCA-transformed data points.

For the semantic annotation of video data, we propose a predicate-based annotation

which has several advantage over the existing key word based annotation, including

expressiveness and the ability to support inference. We also introduce a knowledge base

which contains some common facts and rules that can be shared by different videos.

Some of the annotations are derivable from other annotations using the rules in the

knowledge base, so they need not to be explicitly added. In this way we can save a

human annotator's work as well as storage space.

ii

Contents

Abstract ii

Contents iii

List of Tables vii

List of Figures viii

Acknowledgements ix

1 Introduction 1

1.1 The need for video indexing and retrieval tools 1

1.2 Design issues 2

1.3 Overview of existing content-based video indexing and retrieval tech­

niques 4

1.3.1 Video parsing 4

1.3.2 Video content abstraction 5

1.3.3 High dimensional indexing methods 6

1.4 Thesis contribution 8

1.5 Thesis outline 12

iii

2 Related Works 13

2.1 Video parsing 13

2.1.1 Shot boundary detection 13

2.1.2 Classification and organization of video shots 15

2.2 Video content abstraction 16

2.2.1 Text-based abstraction 16

2.2.2 Visual feature based abstraction 18

2.3 Indexing high dimensional video feature vectors 21

2.3.1 Multi-dimensional indexing structure 21

2.3.2 Principal Components Analysis for dimension reduction . . . 24

2.4 Content-based image and video retrieval systems 25

2.4.1 QBIC 25

2.4.2 ViewStation 25

3 Shot Boundary Detection 27

3.1 Review of the shot boundary detection algorithms 27

3.1.1 Histogram approach 27

3.1.2 Region histogram approach 28

3.1.3 Motion compensated approach 29

3.1.4 Twin thresholds and motion analysis 30

3.2 Experiment 33

3.2.1 Experiment Result 33

3.2.2 Summary of the experimental results 34

3.3 Conclusion 36

iv

4 Video Retrieval Based on Visual Content 37

4.1 R-frame selection 37

4.1.1 P A M 38

4.1.2 Algorithm for selecting R-frames 39

4.2 Image feature extraction from R-frames 40

4.3 Indexing visual features 41

4.3.1 Dimension reduction using P C A 41

4.3.2 Transforming quadratic form distance to Euclidean distance . 46

4.3.3 Indexing dimension reduced data using bucket adaptive k-d tree 50

4.4 Conclusion 53

5 Video Retrieval Based on Semantic Annotation 55
5.1 Video Annotation Using Predicates 55

5.1.1 Objects 56

5.1.2 Events 56

5.1.3 Relations between Objects and Events 57

5.1.4 Mapping Annotations to Video Sequence 57

5.2 Knowledge Base 58

5.2.1 Taxonomy and Synonym Based Knowledge 59

5.2.2 Image Property Related Rules 61

5.3 Video Retrieval based on Video Annotation 63

5.3.1 Overview 63

5.3.2 Query Processing for Video Annotation 64

5.4 Implementation 69

v

6 Implementation Detail of Web-based Query Interface 71

6.1 Entering query on the Web page 72

6.2 Sending the Query to the Server 74

6.3 Processing the Query on the Server 75

6.4 Showing the Query Result on the Web Browser 76

7 Conclusion and Future Work 78

7.1 Summary 78

7.2 Future Work 80

Bibliography 81

Appendix A Video Display and Processing 85

Appendix B Color Spaces conversion 89

vi

List of Tables

3.1 Test result for pirate.mpg 34

3.2 Test result for us.mpg 34

3.3 Test result for perry.mpg 35

vii

List of Figures

1.1 Framework of the content-based video retrieval prototype system . . 8

4.1 The energy distribution 44

4.2 The accumulated variance of the first K dimensions . . . 45

4.3 The energy distribution 48

4.4 The variance of first K dimensions 49

4.5 Average number of page accesses per query vs. dimensions 52

4.6 Average number of page accesses per query vs. database size 53

5.1 Annotation Derivation 64

5.2 Query Relaxation 64

6.1 Information flow between the client, server, and CGI application . . 71

6.2 User input: H T M L Form 72

6.3 User input: Java applet 73

viii

Acknowledgements

First of all, I would like to express my sincere appreciation to my supervisor, Dr.

Raymond Ng, for his guidance and support. His helpful suggestions, productive

discussions, and constant encouragemant have made this thesis possible.

I would like to thank Dr. Norm Hutchinson, my second reader, for his careful

reading of the thesis and valuable comments.

I would also like to thank David Finkelstein, Dwight Makaroff, and Jining

Tian from Dsg lab, who spent a lot of time helping me to digitize hours of video

programs. Special thanks to Andishe Sedighian, for allowing me to use her code of

bucket adaptive k-d tree.

Finally, I would like to thank staff members and students in database Lab:

Ross Carton, Dwi Faulus, Ed Knorr, and Carson Leung, for all their help.

Y A P I N G S H I

The University of British Columbia

September 1997

ix

Chapter 1

Introduction

1.1 The need for video indexing and retrieval tools

During the past decade, significant developments have taken place in VLSI, large

capacity storage devices, multimedia compression technologies, and high-speed net­

works. Developments such as fast C P U , C D R O M , Digital Versatile Discs(DVD),

J P E G / M P E G compression algorithms, A T M switches, and gigabit Ethernet have

generated unprecedented computing power, storage capacity and network band­

width which have helped greatly in overcoming the key obstacle imposed by the

vast amount of data involved in video applications.

As a result of the above advances in the video enabling technologies, digital

video can be played on most of the modern computer platforms; Numerous video

applications have emerged, such as video-on-demand(VOD), digital video libraries,

video conferencing, etc. However, while video applications are becoming ubiquitous,

many of them do not take full advantage of digital video data. They treat the video

largely as an unstructured linear medium. In these applications, the retrieval of

1

video data is based on the bibliographic description associated with each video, and

the access granularity is the whole video. For example, some Video-on-Demand ser- -

vices allow the user to select movies by titles, actors, etc. Once a title is selected, the

whole movie is delivered to the user, and only the traditional V C R functionalities,

such as play, pause, fast forward, etc, are provided to the user. If the user wants

to search for a certain part of the video, the only tool available is the fast forward

function of the video player. In a video library with thousands of hours of video

materials, using such sequential search techniques in order to locate a desired set of

video sequences is impractical. In general, video data are not used very effectively

in these applications.

Video will become an effective part of everyday computing environment only

when we can use it just as efficiently and effectively as we use alphanumeric data

today. The efficient and effective usage of video data depends on the availability

of tools that can support some efficient means of classification, organization and

retrieval of video data. However, the lack of such viable video indexing and retrieval

tools is a serious limitation to the wide spread usage of video data.

In the following, we will first identify the issues that are related to the design

of video indexing and retrieval systems, will then summarize the state of the art in

these areas, and will finally present our solutions to some of the issues.

1.2 Design issues

As a new data type, video has imposed several new requirements to a video retrieval

system. First, video cannot be used effectively without a way of accessing it in terms

of its content. When a user only wants to retrieve a segment of the video, a straight

forward method for him to express his interest is by referring to the content of the

2

video segment that he is looking for. Second, two new properties that distinguish

video data from traditional data, namely their unstructured format and their large

volume, have introduced additional difficulties to the design of a video retrieval

system.

Following are three of the most important issues in the design of an effective

and efficient content-based video indexing and retrieval system:

• Video parsing

There are two inherent units for video indexing and retrieval: the entire video

and the individual frames. For most applications the entire video is too coarse

a unit since the user may want to access only a part of the video. On the other

hand, a single frame is typically too small a unit since there are too many

frames in a video. The video has to be partitioned into some meaningful units

and then organized into some structures to facilitate its indexing and retrieval.

Inspired from film theory, most recent research works use the /textitshot as

fundamental unit for indexing and retrieval.. Shots can be further organized

into scenes, sequences, etc. As defined in [Kat94], a shot consists of a group

of frames continuously recorded by a single camera; a scene is made up from

a collection of shots unified by time and space; and a sequence is formed by

a number of scenes linked together by narrative continuity. Shot, scene and

sequence form a hierarchical structure of the video.

Automatic video parsing which includes video partitioning and organization

is the common first step in many content-based video indexing and retrieval

systems.

• Video content abstraction

3

Due to the large volume of video data, it is impossible to put a video segment

into a record in any practical indexing structure. It is also very difficult to

directly process, for example to compare, the contents of video segments with­

out some forms of abstractions. Consequently, some descriptive abstractions

for concisely describing the visual and semantic video contents are desirable.

• High dimensional indexing structure for video abstraction

Indexing structure can be constructed with respect to one or more abstrac­

tions of video content. Some video abstractions, though greatly reduced in

volume compared to the video itself, are expected to have high dimensional­

ity. An appropriate high dimensional indexing structure has to be selected.

Techniques that can reduce the number of dimensions of the video abstraction

while at the same time minimize the loss of information are also desirable.

1.3 Overview of existing content-based video indexing

and retrieval techniques

Before we introduce our framework for a content-based video retrieval system, we

briefly review the current status in the design issues discussed in the above section.

A more detailed discussion of related works will be given in Chapter 2.

1.3.1 Video parsing

Video partitioning can be achieved via shot boundary detection, a technique that

locates the boundary between two adjacent shots. There has been a great deal of

research related to the automatic shot boundary detection on both uncompressed

[NT92, ZKS93, ZMM93, ATe92, Sha95, HJW94, BR96, CB95, DLM+96] and com-

4

pressed [LZ95, 1YL95, SP95, MJC95] video data . Fairly good accuracy has been

achieved on detecting abrupt shot changes; the error rate is relatively higher in the

detection of gradual shot transitions. Motion analysis can be used to reduce false

positive identification of gradual transitions, but it also results in higher computa­

tional costs. In 2.2.1 and chapter 3, we will discuss this technique in more detail.

The automatic organization of shots in order to form higher level meaningful

units, e.g. scene and sequence in the video, is more difficult since it requires some

level of understanding of the semantic content of the video. Some methods have

been proposed in this area, but most of the existing methods either need an a priori

model or rely on certain repetitive patterns in a scene to assist the classification. For

example, [Ze94] models a news item as a sequence of shots with anchor person shots

at the beginning or the end, and [BYY96] assumes similar shots will be repeated in

a scene as a result of montage presentation.

1.3.2 Video content abstraction

There are two basic types of content abstractions: text based abstraction and visual

feature based abstraction.

In the text based approach, text descriptions (also called annotations by

some researchers) of video content are attached to video segments. Video segments

can then be retrieved by referring to their associated text descriptions. Keywords

are a commonly used text abstraction in earlier image and video databases. All the

traditional textual database techniques can be used in this case. Some enhanced

text based abstractions such as attribute-value pairs [DSS96] support synonym, and

some such as object-oriented frames [FSZ95] support taxonomy.

Visual feature based abstractions are usually achieved by using static images

5

such as key frames to represent shots or scenes, each of the frames can be further

characterized as some image features, such as color, shape, texture, etc. This ap­

proach can capture the visual content of the video more easily, and usually can be

generated automatically using image processing techniques.

Text based abstractions have two inherent problems. First, it is especially

difficult to describe visual contents such as color and shape accurately using text.

Second, automatic generation of text description is still beyond the capability of

todays machine vision. Therefore, most text abstraction has to be generated by

human operators. Because of the inherent problems with text abstraction, many

recent research works have been focusing on the visual feature based abstractions.

However, visual feature abstraction by itself is not complete since a lot of semantic

contents of the video are lost during this abstraction procedure. Text annotation of

video semantic content is indispensable, as text is nonetheless the most suitable form

of semantic abstraction. The time-consuming nature of manual annotation makes

text based abstraction hard to scale to large video databases. Therefore, machine

assistance in the annotation process in order to minimize human involvement is

desired. Moreover, how to make the annotations rich in descriptiveness also needs

to be explored.

1.3.3 High dimensional indexing methods

Once the video abstractions are available, indexes can be created with respect to

one or more abstractions. If the visual content is represented using static images

characterized as image feature vectors, the video database is essentially transformed

into an image database, and all the existing indexing techniques for image databases

can be used.

6

However, existing multi-dimensional indexing structures such k-d trees and

R-trees have two limitations [FSZ95]: the dimensionality of the search space is

relatively low (< 20), and the distance in the search space has to be Euclidean. The

existing indexing structure in most cases cannot be applied directly to the image

feature vectors, since the dimensionality of the vectors is usually high (can be over

100) and the Euclidean distance is not always a good measure.

One way to alleviate the problems is by introducing a filtering step ([SH93],

[FEe94]) in which a low dimensional coarse representation together with an Eu­

clidean distance measure is used to approximate the original distance measure on

the full image feature vector. This is achieved either by bounding the non-Euclidean

distance, i.e. full quadratic distance, with a simple Euclidean distance; or by intro­

ducing some orthogonal transformation such as the K - L transformation to reduce

the dimensionality if the original distance measure is Euclidean. The Euclidean dis­

tance measure on the coarse representation underestimates the original distances so

it guarantees no false dismissals but allows false positives. The result of the filtering

step will be further evaluated on the full representation without indexing structure

using the original distance measure.

When the dimensionality of the original image feature vector is high and the

database is large, 2-level filtering may not be sufficient. If the dimensionality of

the coarse representation is low, then it may no longer be a close approximation.

Thus the result of the filtering step will contain too many false positives, and the

non-indexed search after the filtering step may be too costly. On the other hand, if

the dimensionality of the coarse representation is high, the efficiency of the indexing

structure in the filtering step will degrade. Multi-level filtering [Tam96] has also

been proposed to deal with this problem. This approach basically feeds the result

7

from the first filter to other indexed filters before the final non-indexed search is

performed on the original image feature vector.

1.4 Thesis contribution

The aim of this thesis is to provide a framework for content based video indexing

and retrieval, and develop a prototype system to demonstrate the feasibility of the

framework.

Image Features

PCA

Dimension Reduced
Features

, k-d tree

Indexted Features

Visual Content Abstraction

Complete Annotation

1 Semantic Content Abstrac

Query on
Semantic Content

Web-based

Query on
Visual Content

V ûery Interface/ Q u e r y o n

Video Structure

Figure 1.1: Framework of the content-based video retrieval prototype system

8

Figure 1.1 is the framework upon which this thesis is based. It includes three

major parts, video parsing, visual content abstraction and indexing, and semantic

content abstraction.

Following is a brief introduction of each part in the framework. Correspond­

ing thesis work is also described.

Part I: V ideo parsing

For shot boundary detection, we chose and implemented several techniques. Our

comparative analysis shows that the twin threshold histogram based approach with

motion analysis [ZKS93] can produce satisfactory results. This approach is inte­

grated into our prototype system. Shots can be further organized into scenes and

sequences, but these issues are not discussed in this thesis.

Part II: V i sua l content abstraction and their indexing structure

In this part, first representative frames (R-frames) are selected for each shot. Then

image features are extracted from the R-frames. The dimensionality of features may

need to be reduced. An appropriate multi-dimensional indexing structure needs to

be chosen to index the image features.

R-frame selection: We use a clustering based method to select the representative

frames of each shot. We classify the frames in a shot into one or more clusters

depending on the amount of motion in the shot. The frame closest to the

center of each cluster is selected as a R-frame. Shots with lots of motion

usually have more than one R-frame. This approach is more accurate since

the frame closest to the center of each cluster is usually more representative

compared to the first frame or the last frame as chosen by some other R-frame

9

selection methods.

Image feature extraction from each R-frame: We use color histograms as the

basic representation of image features. Other features such as shape or texture

are not discussed in this thesis, but they can be introduced in the future. Color

histogram distance measure with a color similarity matrix is integrated in our

system, since the measure is closer to human perception.

Dimension reduction: We choose and implemented the Principal Component

Analysis(PCA) technique to reduce the dimensionality of the image features

(i.e. color histogram). P C A is a dimension reduction technique that trans­

forms the original data into a new data space in which most of the variances

are captured in the first few dimensions, while at the same time preserves the

Euclidean distances between data points. Our experiments demonstrate that

P C A is very effective. Using P C A , a 256-bin color histogram can be reduced

to less than 10 dimensions while preserving more than 90% of the distance

information.

For the color histogram distance measure with color similarity matrix, P C A

cannot be applied directly due to its quadric form. We solved the problem

by exploiting a transformation derived from the color similarity matrix, to

transform the data into a new space in which the Euclidean distance is equal

to the quadric form distance in the original data space.

Indexing structure for image features: We chose the bucket adaptive k-d tree

as the indexing structure in our prototype system, since it handles point data

very well and color histograms, the image feature vector used in our prototype

system, are typical type of point data.

10

Part III: Semantic content abstraction

Predicate for annotation: We introduce predicates for video annotation. Pred­

icates are rich in descriptiveness and can more precisely express complex re­

lations among objects and events. They can also support inferences between

descriptions easily.

Knowledge base for annotation derivation: There are many types of relations

among the annotations: synonym, taxonomy and logical implications. Using

inference rules, these relations can be supported easily. Exploiting these re­

lations can remove redundancies in the annotations. The human annotator

only needs to key in the base annotation and the inference rules, and the ma­

chine can derive the complete annotation. In this way, the work of a human

annotator can be reduced.

We introduce a knowledge base to store the inference rules and annotations

that are reusable. Knowledge specific to a certain domain can be used in a

number of videos in that domain, and common knowledge can be used in the

annotation of all the videos.

Probabi l i ty inference rules: We also introduce probability inference rules by

which a semantic annotation may be derived from visual features. Proba­

bility rules can improve the effectiveness of the query at times when accurate

annotations are not available. Such inferences may not be 100% true, but it

will only generate false positives but no false dismissals. False positives gen­

erated by probability rules are basically harmless since the human user is the

final judge of the relevance of the retrieved material.

In summary, the key contributions of this thesis are as follows:

11

1. We evaluate and integrate/implement several existing techniques including

shot boundary detection, bucket adaptive kd-tree and P C A , and confirmed

their effectiveness.

2. We improved R-frame selection by using a clustering based method.

3. We propose a novel model for semantic video abstraction using predicate based

video annotations. We introduce a knowledge base to allow derivation and

reuse of annotations. We also introduced probability based rules by which a

semantic annotation may be derived from visual features.

4. We implement a prototype content-based video retrieval system which inte­

grates all the above techniques. A simple query interface is also provided to

support queries based on video structure, visual feature, and semantic anno­

tation.

1.5 Thesis outline

The remainder chapters of this thesis are organized as follows: Chapter 2 gives the

related works about three important issues in content based indexing and retrieval:

video parsing, video content abstraction, and high dimensional indexing methods.

Chapter 3 investigates the shot boundary techniques. Chapter 4 describes indexing

and retrieval based on visual content of video. Chapter 5 discusses semantic video

annotation. Chapter 6 presents some implementation details of the Web-based in-

ferface of the prototype system of our framework. Chapter 7 concludes the thesis

and discusses future work.

12

Chapter 2

Related Works

Three important issues in content-based video indexing and retrieval are: video

parsing, video content abstraction, and high dimensional indexing structure for video

abstractions. In this chapter, we will discuss some of the related works on these three

issues.

2.1 Video parsing

As we have already presented in the first chapter, video needs to be structured in

order to ease content-based retrieval. Most research works structure video into shot,

scene, and sequence as defined in film theory. Video parsing includes two parts: shot

boundary detection and shot organization. There has been significant progress on

automatic shot boundary detection, but very few on automatic shot organization.

2 . 1 . 1 S h o t b o u n d a r y d e t e c t i o n

Shot boundary detection is a common first step for many video retrieval and brows­

ing applications, and much effort [NT92, ZKS93, ZMM93, ATe92, Sha95, HJW94,

13

BR96, SP95, CB95, LZ95, DLM+96, 1YL95, MJC95] has been put into this area.

There are two types of transitions between shots: the abrupt change such as

a cut which is the natural boundary of the scene, and the gradual transitions such

as fade, dissolve and wipe which are usually caused by video editing.

Two consecutive frames with significant difference between them tend to

indicate that an abrupt shot transition has occurred. If we can express those dif­

ferences by a suitable quantitative measure, then we can declare a shot boundary

whenever that measure exceeds a carefully chosen threshold. Therefore, the key

issue in locating abrupt shot boundaries are the selections of suitable difference

measures and thresholds. The major difference measures that have been used in­

clude pixel differences, statistical differences, histogram differences [NT92], edge

differences [ZMM93], and motion vectors [AT+92].

Gradual transitions are more difficult to detect since the differences between

consecutive frames during a gradual transition are less significant than the differ­

ences observed in abrupt shot changes, and are often quantitively comparable to

the inter-frame differences caused by the moving objects in the shot or camera

movement. Among all the gradual transition detection algorithms, the twin thresh­

olds approach [ZKS93] stands out because it is simple and effective. The basic

idea behind the algorithm is that the inter-frame difference between consecutive

frames are relatively larger during the gradual transition than before and after the

transition (threshold 1), and the accumulated difference between the starting and

ending frames of the gradual transition are significant and comparable to a clear cut

(threshold 2).

Recently, some researchers are focusing on the shot boundary detection based

on compressed video ([LZ95], [1YL95], [SP95], [MJC95]), avoiding the need to decom-

14

press the frames. Essentially these works are trying to define some new characteristic

measures that can utilize the expensive parameters of the images that are readily

available in the compressed video, such as D C T coefficient in M P E G / M o t i o n - J P E G

and motion vectors in M P E G .

2.1.2 Classification and organization of video shots

Shots are the building blocks, but not the only embedded logical structure in a

video. A shot by itself is usually too short and thus insufficient to tell a complete

story. In modern cinema, montage, "the editing of the film, the cutting and piecing

together of exposed film in a manner that best conveys the intent of the work", is

extensively used to combine shots into intellectual contexts and series.

These properly combined shots often can demonstrate continuity of the mean­

ing despite of the discontinuity of the presentation. Some very important semantic

information is not embedded in any shots. Instead, it is conveyed through the con­

text, the editing and ordering of shots. So some higher level organization units

are needed in the index to reflect the inherent logical structure of the video. One

common way of organizing the shots is to structure them into scenes and sequences,

just like words can form sentences and paragraphs.

[Ze94] presents a news parsing algorithm in which the partitioning is done

at both the syntactic and semantic level. It locates the boundaries between the

shots as well as news items. Since the automatic extraction of semantic information

is beyond the capability of current machine vision techniques, an a priori model of

video structure is needed to assist the classification of shots. This method only works

on video programs, such as news, which follow a rather fixed pattern: a sequence

of news items possibly interleaved with commercials, each of which may include an

15

anchor-person shot at the beginning and/or end. The whole classification process

contains three steps. First, the spatial and temporal model of a certain type of shot

is defined. Second, a similarity measure is developed which will be used to determine

whether or not a shot and the model matches. Finally, a temporal structure of the

entire video is used to finalize the classification.

[BYY96] introduced the time constrained clustering method to classify shots

into more meaningful story units which are close approximations of scenes. The

classification is based on both visual characteristics and temporal locality of shots.

The basic idea of their approach is to take advantage of the repetition of shots

with similar contents which are commonly used in montage to represent parallel or

simultaneous events. The constraint on time prevents shots that are far apart in

time from being clustered together.

2.2 Video content abstraction

2.2.1 Text-based abstraction

Text description can be attached to video segments in a video database and can

be indexed using traditional database techniques. Video segments can be retrieved

based on the text descriptions associated with them. In the following, we describe

some of the existing text-based abstraction methods.

Keyword

Keywords are the simplest form of text-based annotations. They can be attached

to a video segment to describe its content. When a keyword matches the query,

the video segment associated with the keyword is returned to the user. Keyword

16

annotation is inadequate in several aspects. First, it does not support inheritance,

similarity, and inference between descriptions. Second, it is not rich in descriptive-

ness due to its unstructured nature. Third, it is difficult to express complex relations

since keywords are independent of each other. Some research work has been done

trying to extend the keyword approach by adding new capabilities.

Attribute-value pair

In the paper [DSS96], annotations are represented in terms of attribute-value pairs.

Both the attribute and value can be arbitrary strings. This extends the keywords

scheme in two ways. First, the attribute-value pair structure in the annotation

makes the approach richer in expressiveness when compared to the flat unstructured

key-word approach. Second, this approach supports attribute synonym matching

to avoid inconsistencies in the attribute names given by different users. When

comparing two attribute-value pairs, the similarity between the two attributes are

considered as well as the values of the two attributes.

Object-oriented frame

In paper [FSZ95], frames, a form of knowledge representation, are used to annotate

the shots. Each frame is a structure that contains several slots. Each slot can store

an object of a certain class describing a certain attribute or a set of attributes of the

shot. For example, a frame may contain slots that store time objects describing the

starting and ending time of the shot. Each object belongs to a class, and classes are

organized into a hierarchy that allows inheritance. Here inheritance means a class

at a lower position in the hierarchy inherits attributes from its ancestors above it.

Though this approach supports inheritance by exploiting the capability of an object

17

oriented system, it lacks the descriptive richness due to the rigid format of the slot

structure.

2 . 2 . 2 Visual feature based abstraction

Visual feature based abstraction is used to describe the visual content of the video.
Typically, key frames are first selected or constructed from the video. Image features
of the key frames are then extracted and used as the visual feature abstraction. In
this fashion, the problem of video retrieval is somewhat transformed to a problem
of image retrieval.

Key frames

The most common visual representation of the video shot is through a set of key

frames. This technique transforms the video database into an image database and

most of the temporal information is lost. But this approach is very simple, and

can be done automatically [zls95]. The most naive method of selecting key frames

is to pick the first, last or middle frame of the shot as the key frame of the shot.

[ZLS95] introduced a more elaborate method in which one or more representative

frames are selected for each shot depending on the variances of the frames in a

shot. The algorithm initially picks the first frame as the key frame, then all the

subsequent frames are compared with the key frame. If the difference is greater

than the threshold, that frame is selected as a new key frame and all the subsequent

frames are compared with the new key frame. The procedure repeats until the end

of shot is reached.

Salient still is an augmentation of the pure key frame approach in that it

attempts to preserve the camera operation in the representation. An single image

18

that combines the features of all the frames in a shot is constructed and used as the

representation. Camera pan can be represented using a panorama image, and zoom

can be represented using the broadest view of all the images.

Image features and their similarity measures

Color Color histogram is by far the most commonly used method to represent the

distribution of colors in an image. An N-bin color histogram can be defined by a

vector (hi, / 1 2 ,/iyv) where each bin i represent a color in a given color space, and

each element hi is the number of the pixels that are most similar to the color i. hi

maybe normalized to represent the percentage of the pixels with color i.

Many distance calculation methods have been proposed to measure the sim­

ilarity between two color histograms. The simplest solutions are to use Xi-norm

[SB90] or i/2-norm(also called Euclidean) distance metrics. The problem with these

methods is that all the color bins are independent. In other words, the percep­

tual similarity between different colors are not taken into account by these distance

measures. This will cause two images with perceptually similar colors but none in

common to have the maximum distance. For example, the distance between a pure

yellow image and a pure orange image, which are perceptually similar, is the same

as the distance between a pure yellow and pure black image, which are perceptually

very different.

To overcome this problem, Ioka proposed a quadratic form histogram dis­

tance [Iok89] which takes into account the "cross talk" between colors. If Q and /

are two iV-bin color histograms, according to [Iok89], then the distance between Q

19

and / is defined as
N N

D{I,Q) = (/ - QYA(I - Q) = E E ^ (^ - yM** - y>) i 2- 1)
i=l j=l

where A is a N X N symmetric color similarity matrix.
The above approach has been demonstrated to have desirable performance.

However, the quadratic histogram distance is computationally intensive, and it can
not be used together with existing multi-dimensional indexing structures because
of its non-Euclidean distance nature and its high dimensionality (Current multi­
dimensional indexing structures such as k-d trees, and R-trees can only support low
dimensionality (e.g. less than 20)).

In order to solve these problems, H. Sawhney proposed a filtering based
approach [SH93]. The basic idea is that the retrieval proceeds through two steps.
First, a cheap distance measure based on dimension reduced histograms will be used
on the whole database. The reduced vectors are precomputed and can be indexed
with a multi-dimensional indexing structure such as R-tree or k-d tree. They provide
a way to construct the dimension reduced histogram vectors and a distance formula
that will under-estimate the original distance. The under estimation of the distance
guarantees the answer will include all the records that are desirable, but will also
include some false positives. This is called the filtering step. Then, a more accurate
matching using full color histograms will be performed only on those records that
have passed through the filter.

This filtering approach leads to considerable savings on processing time, be­
cause now the quadratic distance is computed only on a much smaller set of images.
The distance measure used in the first step is less expensive, and it can be used in
many existing multi-dimensional indexing structures since the dimensionality has
been reduced. So ideally this approach should be able to achieve efficiency without

20

missing any hits.

Based on this approach, Dominic Tam proposed multi-level filtering [Tam96].

As described in section 1.3.3, Dominic's approach basically feeds the images which

passes coarest filtering stages to other indexed filters before the final non-indexed

search are performed on the original image feature vector. By adding additional

intermediate levels of filtering stage, both the coarsest and finest filtering stages can

be very efficicient.

2.3 Indexing high dimensional video feature vectors

Indexing is an important technique used to speed up the query answering process.

An index is a data structure that can help to quickly and easily find the data of

interest. Indexing is especially important for multimedia applications due to the

huge volume of image and video data. Most traditional indexing structures are not

suitable for indexing video data because of the high dimensionality of video feature

vectors. Hence techniques such multi-dimensional indexing structure and dimension

reduction need to be explored in order to support video indexing.

2.3 .1 M u l t i - d i m e n s i o n a l i n d e x i n g s t r u c t u r e

There are two types of commonly used multi-dimensional data: point data and rect­

angle data. An image can usually be represented using a high dimensional feature

vector, such as vector of color histograms, which are point data. An object with

a certain shape can usually be represented using its minimum enclosing rectangle.

Such bounding rectangles can provide both the position and the extent of the ob­

ject. The indexing structure on rectangles usually functions as a filter which is used

to minimize the access to real shape information. K-d tree and its variants are

21

widely used when indexing multi-dimensional points, while R-tree and its variants
are commonly used when indexing multi-dimensional rectangles.

K - d tree and its variations

The k-d tree invented by Bentley in 1975 [Ben75], is essentially an extension of the
binary search tree for multi-dimensional points where k denotes the dimensionality
of the space being represented. The major difference between a k-d tree and binary
search tree is that in the binary search tree there is only one discriminatory, the
attribute/key used to decide which branch to traverse; while in a k-d tree there are
multiple discriminators available. Only one discrimination key is used at each level,
and the keys chosen at each level circulate among all the available keys as the tree
is descended.

The problem of the k-d tree is that the shape of the tree heavily depends on
the order in which the nodes are inserted. In the worst case, a k-d tree can degenerate
into a linear linked list. Moreover, the key chosen may not be the optimum in terms
of discriminative power, since the discrimination key at each level is fixed. The
adaptive k-d tree [Sam90] tries to alleviate some of the problems of the standard
k-d tree. In the adaptive k-d tree, data are stored only in leaf nodes, and the key
chosen at each level has the highest variance of value range. This approach is static
in that it requires all the data to be known a priori in order to build the tree. The
bucket adaptive k-d tree is similar to the adaptive k-d tree. The only difference is
that the leaf nodes are now buckets with capaticty c (c > 1) instead of single data
points. The size of bucket is chosen corresponding to storage unit (i.e., page) size
of the disk to ensure efficient disk access.

Other dynamic approaches have also been proposed, but they are either not

22

very efficient due to the frequent rearrangement or not well-suited for range searches.

R-tree and its variations

R-trees are extensions of B-trees for multi-dimensional objects that are either points

or rectangles. Like B-trees, they are balanced, i.e. all leaf nodes appear on the same

level.

In the R-tree the data and the indexing keys are all represented using hyper-

rectangles. The leaf nodes store the actual data and the interior nodes store the

minimum rectangle that encloses all the objects in its subtree. R-trees and their

variants differ in the strategies of how the data rectangles are grouped and how the

interior indexing rectangles are created.

The original R-tree [Gut84] creates the interior nodes in a way that the area

of the indexing rectangles are minimized. The problem with this approach is that

indexing rectangles in sibling interior nodes may overlap such that queries for certain

data rectangles may unnecessary follow multiple paths in the index tree.

In order to solve the rectangle overlapping problem, the R+-tree [SRF87]

structure has been proposed. In an R+-tree, the indexing rectangles are no longer

required to completely enclose all the data rectangles in its subtree. A data rect­

angle can be split and covered by different* higher level indexing rectangles, and its

corresponding data entry is duplicated in each of its overlapping indexing rectangles.

R+-tree is shown to have better search performance.

R*-tree [BKSS90] is another R-tree variant which tries to integrate several

criteria into the optimization strategy. These criteria include minimizing the area of

the indexing rectangles, minimizing the overlap between indexing rectangles, mini­

mizing the sum of lengths of the rectangles and optimizing the storage utilization.

23

Experiments show that R*-tree outperforms the original R-tree and R+-tree.

2.3.2 Principal Components Analysis for dimension reduction

Though the multi-dimensional indexing structures introduced in the previous section

have provided the possibility of indexing high dimensional data, there is still a big

gap between the number of dimensions that are needed to describe multimedia

data, which is usually over 64, and the maximum number of dimensions that can

be supported, which is less than 20. Obviously some kind of dimension reduction

technique has to be introduced before these indexing structures can be applied to

the multimedia data.

Dimension reduction algrithms operate by identifying and eliminating statis­

tical redundancies in the data. The optimal linear technique for dimension reduction

is principal components analysis (PCA), which has been applied in many applica­

tions to reduce the dimensionality of the original data set. Following is a description

of P C A by Jolliffe [J0I86]: "The central idea of principal component analysis is to

reduce the dimensionality of a data set which consists of a large number of interre­

lated variables, while retaining as much as possible of the variation present in the

data set. This is achieved by transforming to a new set of variables, the principal

components (PCs), which are uncorrelated, and which are ordered so that the first

few retain most of the variation present in all of the original variables."

24

2.4 Content-based image and video retrieval systems

2.4.1 QBIC

QBIC ([NBe93], [FEe94]) is an image database system, which allows query by image

content such as color, texture , and shape of image objects and regions. The color

feature of an object or image is presented as average color and N-bin color histogram.

Two-level filtering approach is used when retrieving image based on color features.

Texture is represent as modified coarseness, contrast, and directionality features

[TMY78]. Similarity between textures of two images is computed using weighted

Euclidean distance in the three dimensional texture space. Query by shape is one

of the most challenging aspect to QBIC. Currently, they use a total of 20 shape

features which includes area, circularity, eccentricity, major axis orientation and a

set of algebraic moment invariants [N93+]. The similarity between two shape vectors

is based on weighted Euclidean distance where the weights reflect the importance of

each features. Query can be asked on any one or combination of the above mentioned

image features.

QBIC supports two ways of specifying a query, namely query by example

and direct query. In the first way, the user can choose one of displaying images,

and ask for all the images with a certain pattern similar to the selected one. Direct

query allows user specify desired image features directly using provided tools, e.g.,

selecting colors from multi-color picker or drawing a sketch.

2.4.2 ViewStation

ViewStation [?] is a sytem, developed at computer science deparment of MIT, that

is capable of transferring and displaying multimedia information. It supports au-

25

tomatic content-based indexing of digitized video programs by capturing and pro­

cessing the closed-captioned information of video. On the ViewStation, captions

are first captured and translated from raw video caption signal into text. Then,

a Caption Parser module is used to break captions into seperate components, and

the associated video sequence is also divided into corresponding smaller meaningful

units that can be replayed and examined seperately.

26

Chapter 3

Shot Boundary Detection

In this chapter, we present a comparison of several shot boundary detection tech­

niques which includes the histogram approach, region histogram approach, motion

compensated approach, and twin thresholds approach. The algorithms are evalu­

ated based on the performance of our implementation of these algorithms on a set

of benchmark video clips.

3.1 Review of the shot boundary detection algorithms

3.1.1 Histogram approach

A simple and common the used in shot boundary detection is histogram difference

comparison. The principle behind this is that two frames having an unchanging

background and objects will show little difference in their respective histograms.

Although there are some cases in which two images have similar histograms with

completely different contents, the probability of such an event is so low that we can

tolerate such errors in practice.

27

Nagasaka and Tanaka [NT92] use the following formula to measure the frame-

to-frame histogram difference:

where Hi denotes the histogram value for the zth frame and j is one of the G possible

gray levels or color bins; D{ refers to histogram difference between frame i and frame

I + If the overall difference Di is larger than a given threshold T , a shot boundary

is declared.

In most cases, this approach can successfully identify camera shots. But

there are two possible errors that may occur:

• false positive which is mainly caused by moving objects of either large size

or high speed, or high speed camera motion, or a sharp illumination change

between two frames within a shot.

• false negative which is mainly caused by video editing. Most video editing

procedures impose a gradual transition between two shots, such as fading

or dissolving. These gradual transitions cause the histograms of successive

frames during transition to be quite similar so that the inter-frame histogram

difference is not significant enough to be distinguished from noise caused by

object motion and illumination changes.

3.1.2 Region histogram approach

When the illumination does not change over the entire frame or motion is not very

large and fast, the number of false positives can be reduced by a robust histogram

approach developed by Nagasaka [NT92]. It is based on the assumption that the

momentary noise usually influences no more than half of an entire frame. Therefore,

G
(3.1)

3 = 1

28

a frame can be divided into a 4X4 grid of 16 rectangular regions; then, corresponding

regions instead of entire frames are compared. This yields 16 difference values, and

the camera break detection is only based on the sum of the eight lowest difference

values. This region histogram approach is more robust in the presence of object

motion and illumination changes, but it also increases the probability of missing

gradual scene change or even some cuts, since it lessens the difference between two

frames.

3.1.3 Motion compensated approach

In the region histogram approach, the region comparison is done by superimposing

each block of the first frame on exactly the same location of the second frame. A

more robust measure [Sha95] is proposed by utilizing a block matching process in

which each of the K blocks in the first frame is compared against the best fitting

region of the second frame in a neighborhood of the corresponding block. This

method is not only more robust in the presence of local or global motion between

two frames, but also has the advantage of extracting motion information for each

block.

The following steps are used in our implementation which is very similar to

the algorithm described by Shahraray [Sha95]. First, we divide each frame into K

blocks. For each block Bi in a frame, we search within a certain window trying

to find the best match Bm in the next frame. We use normalized mean-squared

difference given by Pascal Fua in the paper [Fua93] to measure correlation between

Bi and a trial block Bu in the next frame:

c = E((/.--7,-)-(/,-«-7 f t)) 2

 (3 2)

y/UIi-7i)2niit-7it)2

29

Where C denotes correlation value between B\ and Bn; Ii and In are the intensity

values of a pixel in Bi and Bu respectively; and Ii, In are the mean intensity of

pixels in Bi, Bn respectively. A small correlation value means the two blocks are

similar. For all the trial blocks Bn within the search window in the second frame, we

calculate the correlation between Bi and Bn. The best match Bim is declared when

the smallest correlation value C m t n is found. The difference between the positions

of block Bi and Bim is the motion vector which can be utilized to analyze camera

motion later. The inter-frame difference is then defined as:

k
Di = Y , c i (3-3)

where Di is the difference between frame i and i + 1, Cj denotes the correlation

value between block j in frame i and its best matching block in frame i + l. If this

difference value exceeds a certain threshold, a scene change is declared.

3 .1.4 T w i n thresholds and motion analysis

The region histogram approach and the motion compensated histogram approach

are better than the histogram approach in the sense that they are more robust

against the noise caused by object motion and illumination change. But none of

them can detect gradual shot transition. A naive way to detect gradual shot change

would be lower the threshold. However, this cannot be effectively employed because

if the cutoff threshold is too low then too much false detection will be caused. In

the paper [ZKS93], Hongjian Zhang developed a new approach, twin thresholds

approach, to detect gradual shot change. This is a major improvement over the

methods based on the comparison of the difference value against a single threshold.

30

Twin thresholds

The following is Zhang's twin thresholds method [ZKS93]: in twin-comparison, two

cutoff thresholds are used. T& is used for camera break detection in the same man­

ner as was described before. A second, lower threshold Ts is used for gradual shot

change detection. The detection process begins by comparing consecutive frames

using a difference measure such as region histogram difference. Whenever the dif­

ference value exceeds threshold Tb, a camera break is declared. In addition, the

twin-comparison also detects differences that are smaller than Tf, but larger than

Ts. Any frame that exhibits such a difference value is marked as the potential start

of a gradual transition. This frame is then compared to subsequent frames. The

difference measured is called the accumulated difference. During a gradual transi­

tion, this accumulated difference value will normally increase. The end frame of the

transition is detected when the frame-to-frame difference decreases to less than Ts,

while at the same time, the accumulated difference has increased to a value larger

than Tb. The accumulated difference is only computed when the difference between

consecutive frames exceeds Ts. If the frame-to-frame difference value drops below

Ts before the accumulated difference value exceeds Tb, then the potential start point

is dropped and the search continues for other gradual transitions or camera breaks.

Such an approach performs well in detecting gradual transitions, but it also

increases the possibility of false detection caused by some camera operations such

as panning and zooming, because changes due to camera movements tend to induce

successive difference values of the same order as those in gradual transition. In

paper [ZKS93], motion detection and analysis techniques are applied to distinguish

camera movements from gradual transitions.

31

Motion analysis

The specific feature that serves to detect camera movement is optical flow which

is also called motion vector. The optical flow fields resulting from camera pan

and zoom have some special patterns that are not shared with gradual transitions.

Therefore, if such motion vector fields can be detected and analyzed, then changes

induced by camera movements can be distinguished from those due to gradual tran­

sition. During a camera pan, motion vectors will have relatively large length and

predominantly the same direction (Certainly, if there is also object movement in

the scene, not all vectors need share this property). In the case of zoom, the field

of motion vectors has a minimum value at the focus center. If the focus center is

located in the center of the frame and there is no object movement, then the mean

of all the motion vectors will be the zero vector. For simplicity, we assume the focus

center is always located in the center of the frame.

In our implementation, the block matching algorithm, which is the same as

described in section 3.1.3, is used to get the field of motion vectors. This algorithm

requires partitioning of the frame into blocks, and motion vectors are computed for

each block by finding the minimum value of correlation over a set of trial vectors.

Then the mean length L , mean phase the phase deviation CT$ of the motion

vectors, along with the mean motion vector are calculated. If the length L is large

and cr$ is small, which means the vectors are almost parallel, then it is a camera

panning. If both the length L and <r$ are large and the mean vector is close to zero,

then a camera zooming is declared.

32

3.2 Experiment

In our implementation, we use a 256-bin color histogram in the histogram approach,

and 4X4=16 regions with a 256-bin color histogram in the region histogram ap­

proach. For motion compensated approach, after block matching, color histogram,

instead of correlation value, is used to measure inter-frame differences since the

latter performs poorly in scene change detection. Here we only give the result of

4x4 blocks with (-10, 10) search range which appears to have the best result in

our experiment. In the test, if the multiple consecutive frames are detected as shot

boundaries, only one is counted.

For the threshold used in shot change detection, we use following formula:

Thresh = m + ad (3.4)

Where m is the mean of the frame-to-frame difference and d is the standard devia­

tion of difference values. The selection of a varies according to different detection

methods and video sources.

The test is conducted on two sets of video clips: one involves intensive object

motion and camera movement, and the other contains a lot of gradual transitions.

Using these two sets of data, we can test both the robustness of a method against

noise and its ability to detect gradual transitions.

3.2.1 Experiment Result

• test on videos containing motions

The following tables give our test results, in which Nc stands for the number

of shots correctly detected; Nm stands for the number of shots missed; Nj

stands for the number of false detections.

33

tested file: pirates.mpg, num of frames=280, num of shots = 18, type:movie
histogram approach

m=59, d=99, runtime=0.3s
region histogram approach
m=39, d=60, runtime=3.9s

motion compensated histogram
m=37, d=59, runtime=197.4s

a Nc Nm Nf a Nc Nf a Nc Nm Nf
1.2 18 0 4 2.5 18 0 2 1.2 18 0 1
1.5 17 1 3 3.0 18 0 1 1.4 18 0 0
1.8 15 3 2 3.5 18 0 0 1.6 18 0 0
2.0 12 6 1 4.0 17 1 0 1.8 17 1 0

Table 3.1: Test result for pirate.mpg

tested file: us.mpg, num of frames=123, num of shots = 9, type:movie
histogram approach

m=38, d=66, runtime=0.1s
region histogram approach
m=20, d=38, runtime=1.6s

motion compensated histogram
m=25, d=35, runtime=90.4s

a Nc Nm
Nf a Nc Nm

Nf a Nc Nm Nf

0.8 9 0 2 3.0 9 0 0 1.0 9 0 0
1.0 8 1 1 3.5 9 0 0 1.2 9 0 0
1.2 7 2 0 4.0 8 1 0 1.4 8 1 0

Table 3.2: Test result for us.mpg

• test on videos containing gradual transitions The tests of twin threshold ap­

proach carried on two 8 minutes long video clips which contain totally 125

gradual transition. The approach successfully detected 105 of them.

3.2.2 Summary of the experimental results

• The region histogram approach is simple and efficient. It is a good choice

for the application where video sources do not contain many gradual scene

changes, correctness is important, and missing some scene changes is not so

crucial.

• If a video program contains many special effects like dissolving and fading,

then the twin thresholds approach with motion analysis is a good solution.

However, it may need a better filter to reduce the number of false detections,

34

tested file: perry.mpg, num of frames=548, num of shots = 12, type: animation
histogram approach

m=33, d=67, runtime=0.5s
region histogram approach
m=26, d=37, runtime=10s

motion compensated histogram
m=22, d=40, runtime=646.9s

a Nc Nm Nf a Nc Nm Nf a Nc Nm
Nf

1.8 12 0 1 3.5 12 0 . 1 1.4 12 0 1
2.0 12 0 1 4.0 12 0 1 1.6 12 0 1
2.5 11 1 1 4.5 11 1 1 1.8 12 0 1
3.0 11 1 0 5.5 10 2 1 2.0 11 1 1

Table 3.3: Test result for perry.mpg

since this method can only handle false positives that result from pans and

zooms, but cannot deal with those arise from object movement or from more

complex camera motions.

• Motion compensated histogram method is an improvement of the region his­

togram approach in the sense that it can reduce some noise caused by large

object motion. But this slight improvement is obtained at the cost of great

increase of computational complexity. Thus it might not be a wise choice.

However, if an application is also interested in camera movement analysis,

then the computation of motion vectors is inevitable. In that case, we can use

these motion vectors to further improve the result of region histograms in shot

change detection.

• Threshold selection is very crucial to the result of scene change detection.

Setting a high threshold will reduce the number of false positives at the cost

of missing more scene changes, while a lower threshold will get the opposite

result. So threshold selection requires a trade-off between false negative and

false positive according to different application scenarios.

35

3.3 Conclusion

For the video "American castle" which is used in our video retrieval system, twin

threshold approach with region histogram difference is selected as the shot boundary

detection algorithm since this approach has good perfomance on detecting gradual

transitions which occur frequently in video "American castle".

Motion analysis discussed in the section 3.1.4 is not incorporated in the

detection procedure since it is too expensive and can not handle the complicated

combinations of camera movement and object motion.

36

Chapter 4

Video Retrieval Based on Visual

Content

In this chapter, we- will discuss the second part of our framework: visual content

abstractions of video and their indexing structures.

4.1 R-frame selection

In this section, we will present an algorithm that can select one or more frames as

representative frames (R-frames) for each shot. Our approach is to first group all

the frames in a shot into a number of clusters using a certain clustering method,

and then to select the centrally located frame in each cluster as an R-frame. In this

way, a shot is well represented by R-frames.

In our implementation, we choose P A M (Partitioning Around Medoids), a

k-medoid based clustering method developed by Kaufman and Rousseeuw [KR90],

as the basis of our algorithm. P A M works satisfactorily on small data sets, e.g. 100

objects in 5 clusters [NH94]. So it is considered suitable for our application, in which

37

a shot usually contains dozens to hundreds of frames and less than 5 R-frames.

4.1.1 PAM

To find K clusters, PAM first determines a representative object (called medoid)
for each group, which is the most centrally located object within the cluster. Then
each non-selected object is grouped with its most similar mediod.

Initially, PAM arbitrarily selects K objects. Then, in each iteration, all pos­
sible swaps between a selected object Oi and a non-selected object Oh are evaluated,
and the most effective swap in terms of improvement in the quality of the clustering
is made. This procedure repeats until no swap can lead to a better clustering.

The quality of the clustering can be measured by the average distance from
an object to its corresponding medoid. The cost of a swap can be evaluated by
comparing the quality of the clustering before and after the swap. The most effective
swap is the one that can lead to the most reduction in the average distance.

The cost Cjih of a swap between a selected object Oi and a non-selected
object Oh as far as object Oj is concerned is calculated as follows:
If Oj belongs to the cluster represented by Oi, and Oj,2 is the second most similar
medoid to Oj, then

C jih
d(03,Oji2) - d{03,Oi) if d{03,Oh) > d{Oj,Oj,2)

{ d(Oj,Oh) - d{03,Oi) if d{03,Oh) < d{03,03,2)

If Oj belongs to the cluster represented by the object other than Oi, say Ojt2, then

Cjih — \
0 Xd{03,Oh)>d{Oj,Oj,2)

{ d{Oj, Oh) - d { 0 3 , 0 3 > 2) if d{03,Oh) < d(03, O i a)

where d{Oj,Oh) denotes the distance between two objects Oj and Oh- The total

38

cost of replacing 0; with Oh is

TCik = ^] Cjih
j

Following is the P A M algorithm given in [NH94]. A detailed discussion of

the algorithm can also be found there.

A l g o r i t h m P A M

1. Select K representative objects arbitrarily.

2. Compute TCih for all pairs of objects O,-, Oh where 0; is currently selected,

and Oh is not.

3. Select the pair O,-, Oh which corresponds to the minimum TCih for all possible

Oi and Oh- If the minimum TCih is negative, replace 0, with Oh, and go back

to Step (2).

4. Otherwise, for each non-selected object, find the most similar representative

object. Halt.

4.1.2 Algori thm for selecting R-frames

The number of R-frames in a shot is determined by the amount of motion in a shot,

which can be evaluated by means of the variance of frames in the shot. If a shot is

relatively static then only one R-frame is need. More R-frames should be selected

when there is a lot of object movement or camera motion in the shot.

Following we present the algorithm for selecting R-frames. Here MaxRep is

the maximum number of R-frames that are allowed in each shot; TH is the threshold

value used to determine the appropriate number of R-frames for each shot.

1. Let K = l .

39

2. Apply P A M to the set of frames in the shot to determine K medoid-frames, and

assign frames in the shot to the groups represented by each medoid-frame. In

step 1 of P A M , K trial medoid frames are needed. We pick the K — 1 medoid-

frames from the previous iteration as K — 1 trial medoid-frames and randomly

pick the A'th trial medoid-frame.

3. For each group calculate variance of color histograms of all the frames that

belong to that group.

4. Compare all variances with the threshold TH. If any variance > TH and

K < Max Rep, then increment K and go to step (2).

5. Otherwise let the K medoid-frames be the R-frames for the shot and halt.

4.2 Image feature extraction from R-frames

Once the R-frames are selected, image features can be extracted from these frames

as visual content abstraction of the video shots. As we have discussed in chapter

1 and 2, the image features can be color, shape, texture, etc. In our system, we

choose color histogram as the visual content abstraction because of its simplicity

and popularity. The system can be augmented later to include the support for

other image features such as shape and texture.

The distance measure dN,A{Q-,J) between two color histograms Q and / is

calculated using the formula 2.1 discussed in chapter 2. The color similarity matrix

A = {aij} is a N X N symmetric matrix, where N is the number of color bins in

the histogram. Each element a4j in the matrix is a real number between 0 and

1 denoting the similarity between color bin i and color bin j , with 1 representing

the most similar and 0 the least. It is computed according to the formula given in

40

[SH93]:
= , _ fei) (4 . „

where c; and Cj are the ith and jth color in the color histogram, d(cj ,Cj) is the

Euclidean distance between color i and color j in the CIE L U V color space, and

d-max is the maximum distance between any two colors. CIE L U V space is used here

because the Euclidean distance in this color space is close to human perception.

In our implementation, the number of color bins is 256, and thus the simi­

larity matrix A is a 256 X 256 symmetric matrix.

4.3 Indexing visual features

In order to facilitate video retrieval, the extracted visual features need to be indexed

using a multi-dimensional indexing method. There are two obstacles that prevent us

from directly employing some existing multi-dimensional indexing structures: 1) the

dimensionality of the feature vector may be too high; 2) the desired distance measure

of the visual feature may not be Euclidean. In this section, we will discuss how

these two problems are solved in our system using color histogram as an example.

The bucket adaptive k-d tree is selected as the underlying indexing structure. Its

performance on dimension reduced color histograms is evaluated.

4.3.1 Dimension reduction using PCA

First, let us deal with a simpler case in which the Euclidean distance is used as the

color histogram difference measure. Thus we can focus on the dimension reduction

of feature vectors, which is the solution to the first obstacle that we mentioned

above.

41

A simple way to reduce the high dimensionality of color histograms, 256 in

our experiment, would be the direct merge of color bins. However, this usually will

lead to unacceptable loss of information. The method we used in our system is the

principal components analysis (PCA), the optimal linear technique for dimension

reduction. The principal components analysis of a data set is essentially a certain

orthogonal transformation and a ranking of the dimensions by descending variance.

This procedure concentrates most of the information in the first few dimensions so

that those few dimensions can be used to represent the whole data set without losing

much of the information.

Perform P C A on color histograms

In our system, P C A is performed on color histograms by the following procedure:

1. First we select m sample frames from the whole collection of R-frames of

the videos (m is between 1000 and 3000 in our experiment). The color his­

tograms of sample frames form a data matrix D = [Hi, H2, • • •, Hm] where

Hi(i = 1, 2, • • •, m) is the n-bin color histogram column vector of sample frame

i (n=256 in the experiment). So here D is an n x m matrix.

2. Next, the average color histogram of the m sample images is calculated:

m

Ha = l/mY,Hi
i=l

3. Then the covariance matrix C of m sample color histograms is computed:

C = -±—D'D'T

m — 1

Where D' = [Hi - Ha, H2 - H a , H m - Ha]

42

4. The PCs of the data set can be obtained by computing the eigen values A;

and eigen vectors 6, of the covariance matrix C. The eigen vectors are ranked

in decreasing order according to their corresponding eigen values.

5. The first few PCs with largest eigen values will be chosen and the rest of PCs
be discarded. In our experiment, we choose the first k PCs with over 90%
of total variance. Here k is the smallest number that satisfies the following
condition:

k ra

X>,-/5>,->=0.9 (4.2)
;=i i=i

The first k PCs then form the transformation matrix T — [&i, b2,bk].

The number of PCs that need to be selected depends on how much of the
total variance an application wants to keep. A typical choice is the first K

eigenvectors that contain between 60% to 80% of the variance in the original
data set. The reason we choose 90% of the variance is that the result of PC
calculation shows that the energy of our data set is highly concentrated. Such
a choice can improve the accuracy of the approximated distance, and thus may
avoid a subsequent refinition step using full dimension data without indexing
structure, which is necessary if the approximated distance is not very close to
the original one.

6. Finally, the original data can be projected into the new data space using the

following formula:

Y = Tt{X-Ha)

where X is the original n-bin histogram, Ha is the average color histogram in

the original data space, and Y is the transformed k-bin histogram. Here k is

43

a much smaller number than n.

Experiment result

In our experiment, we test P C A on four sets of video clips which contain movies,

news, documentary, and a combination of all the above three categories. The results

are similar on all of the four different data sets. Below we only present the result from

the data set that contains a mixture of different video types, because we believe it

is more representative. The data set contains color histograms extracted from 1000

R-frames in around 40 minutes of video material.

35

<J
s
2 30

"C CS 25 > 25

o 20
cu
M
es 15
e
U 10
t.

10
<u

0. 5

• pea

• sort

El original

l _ f l [J r l r l - r J J u l , J
6 7 8 9 10 11 12 13 14 15

Dimension

Figure 4.1: The energy distribution

Figure 4.1 is the energy (variance) distribution of 3 sets of color histograms,

in which horizontal axis is the dimension, and the vertical axis is the variance in

percentage that each dimension carries. Only variances of the first few dimensions

are shown in the figure due to limited space. The first set of data is the original color

44

histogram obtained directly from the R-frames of the test video clips. The second

is the color histogram with color bins rearranged by decreasing variance. The third

is the PCA-transformed color histogram.

The result shows that the energy of the original data (labeled as "original")

is distributed sporadically throughout all the dimensions. After the ranking of the

dimensions (labeled as "sort"), the dimensions with the most variances are moved

to the front, and the energy is concentrated to some extent. After performing P C A

on the color histograms, which essentially rotates and ranks the dimensions, the

energy concentration is more significant. The first dimension after P C A actually

accounted for over 35% of the total variance.

L 4 6 £ ir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of dimensions

Figure 4.2: The accumulated variance of the first K dimensions

Figure 4.2 shows the accumulated variances in percentage that the first K

dimensions contain. After P C A , the first 5 dimensions capture 80% of the total

variance, and the first 9 dimensions cover over 90% of the variance of the original

45

data.

4.3.2 Transforming quadratic form distance to Euclidean distance

For color histograms, Euclidean distance is not a good distance measure in that it

does not take into account the similarities among different color bins. So the full

quadratic form distance measure involving all cross terms, as given in formula 2.1,

is used in our system. However, for most of the existing multi-dimensional indexing

structures, the distance in the search space is Euclidean. Moreover, P C A can only

preserve Euclidean distance. Therefore, some sort of preprocessing is necessary

before we can compress or index the color histogram.

Following we present a solution to the problem which is inspired from Sawh-

ney's filtering approach [SH93]:

For any normalized color histogram x, y, the quadratic distance between x

and y is:

d = (x - y)TA(x — y) = zTAz = [ZTZN]

where z = x — y, zT = [z\ • • ••ZJV-I], and A = [AN-I — a*jvTT — lA*N + ANN^T}-

It can be proven [SH93] that for the choice of a,j in equation 4.1, A is

symmetric and is Positive Semi-definite(PSD). Thus A can be decomposed into a

product of three matrixes using Singular Value Decomposition (SVD):

A = BTAB

where A = diag(X\, X2, • • •, A„) with Ai > A2 > • • • > A n > 0. The quadratic form

distance measure can then be written as :

d = zTAz = zTBTVXTVABz = (VABZ)t{VABZ) = {Uz)T(Uz)

46

AN-i

O-NN

z
- zTAz

where U = y/r\B. By using matrix U, we can transform the original ./V-dimension

color histogram x to a (N — l)-dimension histogram x'\

x' = Ux (4.3)

where x contains the first N — 1 components of a;. Thus the quadratic form distance

on the original color histograms can be transformed to the Euclidean distance on U -

transformed data. Now, we can apply the P C A method as described in section 4.3.1

to reduce the dimensionality of U-transformed data.

Our approach differs from Sawhney's approach [SH93] in that we use the

transformation obtained from S V D only as a method to convert quadratic form

distance to the Euclidean distance, so that we can subsequently apply P C A to

reduce the dimensionality of the transformed data. Here we do not care whether

the transformation U can concentrate energy or not. In Sawhney's approach, they

are relying on U to reduce the dimensionality of the color histogram. First they

derive another matrix Uk by selecting the first k rows of U. The original (N — 1)

dimensional histogram vectors x are then projected into a k dimensional data space:

xk = Ukx (4.4)

The Euclidean distance

4 = zTU?Ukz = (Ukz)T(Ukz) (4.5)

is used as an approximation of the original quadratic distance. Sawhney proves that

for a given k, dk can minimize the maximum difference between the true distance d

and the approximation dk for all possible z.

The reason that we do not directly adopt Sawhney's approach is that we

think his approach is not the optimum in terms of dimensionality reduction since

47

it doesnot utilize the statistical properties of the data; nor does it use any a-priori

model that well understands the data's statistical properties.

Experiment result

Figure 4.3: The energy distribution

To compare the effectiveness of P C A and S V D in terms of energy concen­

tration, we conducted several experiments on the test data which are the same as

those used in figure 4.1 and figure 4.2.

The energy distribution and accumulated variance that first K dimensions

can capture are shown in figure 4.3 and figure 4.4. The first set of data are the results

from Sawhney's approach (labeled as "SVD"), i.e., the data transformed from the

original color histogram using the matrix U according to equation 4.3. The second

set of data are the results from our approach (labeled as "SVD+PCA"), i.e., the

data transformed by first using matrix TJ, then further processed by using P C A .

The results from the original color histogram (labeled as "Original") are also shown

48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of dimensions

Figure 4.4: The variance of first K dimensions

here as a reference.

From figure 4.3 we can see that SVD does have some ability to concentrate

energy, as some of the first few dimensions have relatively high variance. But we can

also see that the dimensions are not arranged in decreasing variance. Applying P C A

after S V D can significantly enhance energy concentration. The first dimension after

P C A contains over 60% of the total variance. In figure 4.4 the difference between

P C A and S V D are more evident. The first 5 dimensions after P C A account for over

90% of the total variance, while the first 5 after SVD account for only 50%.

From our experimental results, we can conclude that: 1) For image features

with Euclidean distance, applying P C A can result in significant reduction in the

dimensionality of the feature space while still keeping most of the information. This

agrees with the result of QBIC [FEe94], in which P C A is applied to reduce the

dimensionality of shape features, and the result from Andieshi's experiments on

eigenimages. This further confirms the applicability of the P C A technique in di-

49

mensionality reduction of image features. 2) For image features with non-Euclidean

distance, if possible, the data should first be transformed to a new space with Eu­

clidean distance; then P C A can be applied to reduce the dimensionality.

4 . 3 . 3 Indexing dimension reduced data using bucket adaptive k-d

tree

Once the dimensionality of the image features is reduced to an indexable size, the

next stage would be to select an appropriate multi-dimensional indexing structure

to organize the dimension-reduced image features. According to our application sce­

nario, we need a multi-dimensional indexing structure for point data that supports

efficient fixed radius search and/or n-nearest neighbor search which are often used

in similarity match. The structure should be able to scale to a large number of data

points, since the video database is expected to be large. It should also be able to

support a relatively high number of dimensions.

The reason for chosing bucket adaptive k-d tree

Based on these requirements and the analysis of various multi-dimensional indexing

structures given in [Sed96], we choose the bucket adaptive k-d tree (BA-kd tree) as

our underlying indexing structure for the following reasons:

1. It is designed for point data.

2. It supports several search types including fixed radius search and n-nearest

neighbor search.

3. It does not explode in index size for large data sets. And it does not seem

to grow as rapidly as some other structures when the number of dimensions

50

increases.

4. P C A transformed data are usually non-uniformly distributed. But this non­

uniform distribution has no significant adverse effect on BA-kd tree.

5. The dimensions at different levels of the indexing structure are prioritized

according to their spread of values.

6. According to Andishe Sedighian's [Sed96] comparative analysis of B-PR-Q

trees, B - P R - K D trees, BA-kd trees, Gridfile, Multi-paging, R*-trees, and her

experiments on Gridfile, BA-kd trees, and R-trees, the BA-kd tree is the most

suitable structure for organizing PCA-transformed data. Her experiment was

conduced on a set of 400 gray-scale face images whose dimensionality is reduced

by the eigen image approach which also utilizes the principal components

analysis technique.

The only restriction of the BA-kd tree is that it is a static indexing structure

as it requires the data to be known a priori. This does not affect our application

very much since we are dealing with archival video data which do not change very

often.

Experiment results for bucket adaptive k-d tree

In this section we will test the performance of bucket adaptive k-d tree on the

dimension reduced color histograms. The implementation of the bucket adaptive

k-d tree used in our system is borrowed from Andishe Sedighian at the University

of British Columbia. In her implementation, the fixed radius near neighbor search

is approximated using range search with the range along each dimension calculated

from the given radius.

51

Given that I/O time is the dominant factor in the overall search time, we only

analyzed the I/O behaviour of the bucket adaptive k-d tree in our experiment. The

I/O performance on a certain set of data is evaluated in terms of average number of

disk accesses per query. The tests are run on three data sets which contain 500, 4000

and 7000 color histograms repectively. For each data set, we use both Sawhney's

approach (labeled "SVD-") and our approach (labeled "SVD+PCA-"), which are

discussed in the previous section, to transform the original color histogram to new

data spaces in which the distance measure is Euclidean and the energy is more

concentrated. In the new spaces, we select the first 1, 2, up to 10 dimensions as the

coarse representation of the original color histogram, and use bucket adaptive kd-

tree to index the resulted coarse representation. We performed fixed radius search on

the created k-d trees. For each test data set, some 100 to 200 queries are generated

with query points selected from data set and radius set to 0.03.

Figure 4.5: Average number of page accesses per query vs. dimensions

The experimental results are shown in figures 4.5 and 4.6. The y axis in

52

a.
200 j
180 • •
160 ••
140<i

O
O

- O SVD-500 A SVD-4000
O SVD-7000

SVD+PCA-500
• — SVD+PCA-4000

SVD+PCA-7000

1 2 3 4 5 6 7 8 9 10

Number of Dimensions

Figure 4.6: Average number of page accesses per query vs. database size

both figures is the avarage number of disk page accesses performed per query, and
the x axis is the number of dimensions of the coarse representation in figure 4.5,
and database size in figure 4.6. From figure 4.5, we can see that our approach
consistantly outperformed Sawhney's approach in terms of savings on I /O time.
Figure 4.6 shows how the two methods scale with database size. From the fact
that the I /O saving our method gains over Sawhney's approach increases when the
dataset size grows, our method is especially suitable for the large size database.

4.4 Conclusion

In this chapter, we have presented a PAM based R-frame selection algorithm which

can generate key frames that are more representative. We also showed that PCA

can be used to reduce the dimensionality of image features such as color histograms

whose desired distance measure is not Euclidean. SVD is used to convert the quadric

form distance measure of color histograms to Euclidean distance before PCA can be

performed. We also applied bucket adaptive kd-tree to index the dimension reduced

53

image features.

54

Chapter 5

Video Retrieval Based on
Semantic Annotation
In this chapter, we first present how to use predicates to annotate an object or

event that appears in a video clip. Then the knowledge base, which is introduced to

reduce the redundancy in the annotation and the amount of human work required,

is discussed. Finally, we discuss how to retrieval a video sequence based on video

annotations and the knowledge base.

5.1 Video Annotation Using Predicates

As we have discussed in the first chapter, we use predicates to the annotate semantic

content of video because of its richness and expressiveness. In the following section

we will present how to annotate an object, event and their relations using predicates.

55

5.1.1 O b j e c t s

We use object-attribute-value representation to describe a single attribute of an

object. The notation oav(0bj, Att, Val) means object Obj has value Val for

attribute Att. Obj can either be an object name or id. The annotation for a certain

object will be a set of oav() predicates with the same Obj.

The reason we use a set of oav() predicates instead of one predicate to

describe each object in the video is that the contents of the video are diverse and

unpredictable. It is difficult to find a fixed predicate template which anticipates

all possible attributes for objects. More importantly, this object-attribute-value

representation is modular and flexible. It is easy for an annotator or user to see

which values go with which attributes. It is also very easy to add new attributes and

to ignore information that is unknown or in which the annotator is not interested.

The predicate oav() can also be used to represent the attribute of a certain

concept or class in the knowledge base. The notation can only be used to express

attribute values that are shared by all the instances of that concept or class. For

example, the predicate oav(Cls, Att, Val) can be used to express that all the

instances of class Cis have value Val for attribute Att.

5.1.2 E v e n t s

We can define a similar predicate eav(Evt, Att, Val) to represent events. Each

event will be assigned with a unique name or id Evt. Following are some common

attributes of events:

56

eav(Evt, act iontype, Val) , indicates the type of the action;

eav(Evt, actor , Val) , specifies the initiator of the action;

eav(Evt, r e c i p i e n t , Val) , specifies the recipient of the action;

eav(Evt, object , Val) , indicates the object involved in the action;

eav(Evt, l oca t ion , Val) , describes the location where the event happened;

eav(eid, time, Val) , describes the time when the event happened.

For example, the statement "John gave Marry a book yesterday in the library" can

be expressed using the following eav predicates:

eav(e01, actiontype, give)

eav(e01, actor , John)

eav(e01, r e c i p i e n t , marry)

eav(e01, object , book)

eav(e01, l oca t ion , l i b r a r y)

eav(e01, time, yesterday)

5.1.3 Relations between Objects and Events

Relations between objects and relations between events can be described by predi­

cate r e l (I d l , Id2, RelType, RelVal) , where RelType, RelVal are the type and

value of a relation respectively, and Id l , Id2 can be either event or object ids

depending on the type of the relation. For example, r e l (o b j l , obj2, post ion,

l e f t) can be used to express the description of "objl appears on the left of obj2".

5 .1 .4 Mapping Annotations to Video Sequence

Predicate sequence(Startld, Endld, OE) is used to map a video sequence to the

annotations. In the predicate, S t a r t l d and Endld are start and end shot ids, and OE

57

can be an object, an event, or an identifier associated with an object or event. The
usage of predicate sequenceO can be extended to map video sequences to image
properties. This feature will be discussed in section 5.2.2.

But the granularity of the mapping is at the object level which may not be
enough for some cases. For example, a video clip may use separate shots to present
several aspects of an object. A user may be interested only in one of the aspects, but
the system will return the shots related to every aspect of that object. The problem
can be alleviated by assigning multiple ids to an object, each of which corresponds
to certain attributes.

5.2 Knowledge Base

People may view the same video segment differently with different levels of abstrac­

tion or from different angles. The annotator and the query users are very likely to

use different ways or vocabularies to express the same idea. From this point of view,

video annotation can never capture all the details present in the video segments.

However, a good video annotation system should consider as many interpretations

of video as possible to increase the possibility of matching the query to the annota­

tion. On the other hand, if we include all the possible annotations for every video

segment to accommodate a wide range of user query, there will be redundancies

in the annotations. For example, in one episode of "American Castle", Jay Goud

appears in the video repeatedly. It will be very tedious, if we include the fact that

"Jay Goud is the owner of castle Lynhurst, and he was a very rich businessman

..." in the annotations for each segment where Jay Goud appears. By introducing

a knowledge base to store the facts that are reusable and inference rules which can

derive some annotations from existing ones, we can avoid the redundancy and at

58

the same time provide a high level of query flexibility. In fact, this can also save a

lot of annotator's work since the derivation of new annotations from existing ones

based on knowledge base can be done automatically. In our annotation system, we

put the facts and rules shared by a group of videos in a domain specific knowledge

base, and put the knowledges shared by all the videos in a common knowledge base.

5.2.1 Taxonomy and Synonym Based Knowledge

Synonyms and taxonomy hierarchies are the two major types of knowledge that

describe relations among concepts. With this knowledge many of the different views

can be linked together. The video annotation system can be much more flexible and

powerful by supporting synonyms and taxonomies.

Taxonomy Hierarchy and Taxonomy Based Rules

Taxonomy relations between objects and concepts are represented by predicate

isa(A, B) which means A is a subclass of B or A is an instance of class B.

The individual inherits all the attribute-value of the class that it belongs

to, and the subclass inherits all the attribute-value that its superclass has. This is

because according to our definition of predicate oav(), the attribute of a class has

the same value for all the instances of that class.

Attribute values of objects and events can be generalized. One can substitute

a specific attribute value with a more general concept. For example, Marry has a

textbook logically implies Marry has a book. Here the concept book subsumes the

concept textbook. If a predicate says an object has a certain attribute value AttVal,

then the predicate is also true for the subsumer of that attribute value (i.e., concepts

that subsumes that attribute value). General attribute values are represented by

59

super classes in the taxonomy hierarchy, and specific attribute values are represented

by subclasses in the taxonomy hierarchy.

In order to perform taxonomy related reasoning, we need the taxonomy hi­

erarchy and the related rules. In our annotation system, the taxonomy hierarchy

is represented using a set of isa() predicates. The rules for handling property in­

heritance and concept generalization, which can be used in conjunction with any

particular taxonomy hierarchies, are shown as following:

isa(A, C) <— isa(A, B) A isa(B, C) (5.1)

oav(A, Att, Val) i— isa(A, B) A oav(B, Att, Val) (5.2)

oav(Obj, Att, C) <— isa(B, C) A oav(Obj, Att, B) (5.3)

eav(E, Att, Y) <— isa{X, Y) A eav(E, Att, X) (5.4)

Rule 5.1 defines the transitivity of the i s a relation. Rule 5.2 allows objects or

subclasses to inherit all the attribute-values of the class they belong to. Note that

the inheritance rule can not apply to events, since there is no taxonomy definition

among events. Rules 5.3 and 5.4 mean the value of an attribute can be generalized,

i.e., specific values can be replaced by more general values.

Synonym Based Rules

Similarity between two concepts can be expressed by predicate issimilar(Conceptl,

Concept2). Following are synonym based rules:

issimilar(A, B) <— issimilar(B, A) (5-5)

issimilar(A, B) i— issimilar(A, C) A issimilar(C, B) (5.6)

60

oav(Obj, Att, A) <— issimilar(A, B) A oav(Obj, Att, B) (5.7)

oav(Obj, Attl, Val) <— is similar (Attl, Att2) A oav(Obj, Att2, Val) (5.8)

eav(E, Att, A) <— issimilar(A, B) A eav{E, Att, B) (5.9)

eav(E, Attl, Val) <— issimilar(Attl, Att2) A eav(E, Att2, Val) (5.10)

Rule 5.5 and 5.6 define the symmetry and transitivity of the issimilar relation.

Rule 5.7 and 5.9 allow an attribute value to be replaced by a similar concept.

Rule 5.8 and 5.10 means the name of an attribute can also be replaced by a similar

concept.

5.2.2 I m a g e P r o p e r t y R e l a t e d R u l e s

We also need rules to establish relations from the syntactic properties of a frame,

such as color histogram or color layout, to its semantic properties, such as objects in

the frame. This might be the ultimate solution towards automatic video semantic

annotation, since image properties can be generated automatically by machine. In

reality, we know that there will never be such a rule which can guarantee the cor­

rectness of the result. For example, if the dominant color of a frame is blue, then

it can be the sky, or the ocean, or even a picture with blue background. So these

image property related rules should always have a probability range to indicate the

level of uncertainty.

As we discussed in Chapter 1, it is more appropriate to use numerical feature

vectors to represent image features rather than to use text description (e.g. predi­

cates). But for simplicity, we only illustrate image property related rules by using

predicates to describe image features. In this thesis, we will not investigate the issue

of how to generate the predicates from image feature vectors.

We use predicate iav(Iid, Att, Val) to represent an image property, where

61

l i d is used to uniquely identify the property, and Att is the attribute name which

can be any image related properties, such as dominant color or dominant texture.

Predicate sequence (Start , End, l i d) can be used to map a video sequence to an

image property identified by the l i d .

Predicate iav() can only express properties of the whole image. If we want to

express a property of only a part of the image, we need a new predicate. Predicate

pav(I id , Partit ionMethod, P a r t i t i o n l d , A t t , Val) can be used to describe

color or texture layout. Here PartitionMethod should be a predefined identifier

indicating how the frame is partitioned. For example, if we use P03 to define a

partition that divides a frame into 3 horizontal parts (top, middle, and bottom),

and C L to represent color layout, then a frame with color layout as top blue, middle

white, and bottom green can be expressed as follows:

pav(I id , P03, 1, CL, blue)

pav(I id , P03, 2, CL, white)

pav(I id , P03, 3, CL, green)

For video series "American Castle", through some sampling procedures, we

can draw a conclusion that if the color layout of a frame is top blue, middle white,

and bottom green then it has a 80% probability that the picture is related to the

outer look of a castle. We can express the above rule as follows:

[.8, .8]sequence(X, Y, 'outlook') <— sequence(X, Y, lid) A pav(Iid, P03,1, C L , blue)

Apav(Iid, F03, 2, CL, white) A pav(Iid, P03, 3, CL, green)

62

5.3 Video Retrieval based on Video Annotation

5.3.1 Overview

Video retrieval based on video annotation starts with the query input expressed by

a set of predicates. The query should always contain the predicate sequence(X, Y ,

OE/ID) , where X and Y are the start and end shot ids respectively. For example,

if a user wants to retrieve all the shots in which someone is talking, then he can

submit the query usequence(X,Y, ID) A eav(ID,actiontype,talk)". The query is

then submitted to the query processing engine, which will find the appropriate

values for all the variables in the query based on the annotations of the video and

the knowledge base. Multiple answers may be found, each of which is associated

with a probability range indicating its relevence to the query. Then the values of X

and Y are used to retrieve the actual video segments.

The query processing procedure for video annotation can be implemented in

one of the following two ways:

1. Annotation derivation before query

The base annotation needs to be pre-compiled using the rules in the knowledge

base. All the possible annotations are generated by applying the rules to the

existing annotations until the result stops growing. Now we have a complete

version of the annotation. Then a simple matching algorithm can be used

to find answers for the user queries. The advantage of this method is that

the query processing will be very fast. The disadvantage is the problem of

annotation explosion. The complete version of the annotation will be too large.

Besides, whenever some new facts or new rules are added to the system, the

annotation needs to be recompiled.

63

Figure 5.1: Annotation Derivation

2. Query Relaxation

Here the rules are directly applied to the query. Usually the user query is

translated into a set of new queries. The new queries will then be asked

on the base annotations to find answers. The advantage of this approach is

that there is no need to generate a complete version of the annotation, but

the disadvantages is that the relaxation must be done in run time so the

query processing will be slower. We choose this strategy because it is easy to

implement and it can avoid annotation explosion.

Figure 5.2: Query Relaxation

5.3.2 Query Processing for Video Annotation

The knowledge base in our annotation system contains the probability rules, which

will be consulted when no definite answer to the query can be deduced. Special care

must be taken in the query processing procedure when probability rules are involved.

For the query processing of our annotation system, we adopt some of the procedures

64

proposed in [Ng94] which can support inductive reasoning based on probability rules

and ranking of the answers when more than one are found. We simplified ranking

of the answers by sorting the answers in decreasing probability ranges of matched

clauses instead of calculating and ranking the maximally preferred classes.

In the paper [Ng94], a database or program containing empirical probability

rules is usually called an empirical program or an empirical deductive database.

Query processing for empirical programs consists of compilation of the empirical

program and query answering. Following we briefly describe some related definitions

and algorithms applied in our annotation system. Detailed discussion can be found

in [Ng94].

Definition

Definition 5.1 gives the formal definition of an empirical program or empirical de­

ductive database.

Definition 5.1 An empirical program, or empirical deductive database, P = (C, E)

consists of a context C and a finite set E of empirical clauses, where

• a context C is a finite set of clauses of the form Lo <— L\ A ... A Ln where

— for all 0 < i < n, Li is a literal; and

— any variable appearing in Lo must appear in any one of L \ , L n .

• an empirical clause is of the form [ci, C2~\LQ <— L\ A ... A Ln where

— ci ,C2 are real numbers in [0, 1] such that c\ < c2, [ci,C2J ^ [0, 0],

and [ci,c2] ^ [1, 1];

— for all 0 < i < n, Li is a literal; and

— any variable appearing in Lo must appear in any one of L \ , L n .

65

Example 5.1 Following is an example of an emprical program. It annotates that

the dominant color in the upper half of frames in shot 10 is blue, and the

dominant color in the lower half of frames in shot 12 is green. It contains two

inference rules saying that shots with meadow or with sky in them are about

outdoor views. It also contains two emprical rules saying that 50% of the shots

with blue top contain skies, and 30% of the shots with green bottom contain

meadows.

C:

iav(iidl,topcolor,blue) <—

iav(iid2,bottomcolor, green) <—

sequence(10,10, iidl) <—

sequence(12,12, iidl) <r-

sequence(X,Y, outdoor view) <— sequence(X,Y, sky)

sequence(X,Y, outdoorview) <— sequence(X,Y, meadow)

E:

[.5, .5]sequence(X, Y, sky) <— sequence(X, Y, Id) A iav(Id, topcolor, blue)

[.3, .S]sequence(X, Y, meadow) <— sequence(X, Y, Id) A iav(Id, bottomcolor, greer,

Compilation of Empirical Programs

An empirical program can be compiled to simplify the query processing. Algorithm

5.1 describes how to use empirical clauses in E and clauses in context C to generate

other empirical clauses. This algorithm should be carried out at compile-time since

the generation process is query-independent.

Algorithm 5.1 Let P = (C, E) be an empirical program.

66

1 Set To to E and i to 1.

2 Construct the set S\ = { [1 — c2,1 — ci] ->LQ <— LI A ... A L. "n [ci,c 2]

Lo i i A ... A Z/n is a clause in T,_i }.

3 Construct the set S2 = { [0,0] L\ LQ [0,0] Z/o ̂~ L\ is a clause in

Ti-! }.

4. Construct the set 53 = { [ex, 1] £'f-LiA...AZy„ | [ci, c2] Lo <— L\A...ALn

is a clause in T,_i and X' <— Lo is a logical consequence of C }.

5. Set T8- = Tj_i u 5 i U 5 2 U 5 3 . If T; is the same as T;_i, then set comp(P) =

(C,T{) and halt. Otherwise (T,- ̂ increment i and go to Step 2.

Example 5.2 Apply Algorithm 5.1 to compile the emprical program given in ex­

ample 5.1. In the first iteration, Si consists of [.5, .5]->sequence(X, Y, sky) <—

sequence(X, Y, Id)Aiav(Id, topcolor, blue) and [.7, .7]-<sequence(X, Y, meadow) <—

sequence(X,Y, Id) A iav(Id,bottomcolor,blue). S2 is empty. 53 consists of

[.5, l]sequence(X, Y, outdoorview) <— sequence(X,Y, Id) Aiav(Id, topcolor, blue)

and [.3, l]sequence(X, Y, outdoorview) <— sequence(X,Y, Id)Aiav(Id, bottomcolor, green).

In the second iteration, nothing is generated, and the compilation ends.

Query Answering

Finally, we describe the algorithm which can handle non-ground queries as well as

ground queries in an empirical program. Basically, this algorithm poses the query

against the Context C. If the context can deduce the definite answer, then the

process stopped. Otherwise, the process tries to induce the probability by consulting

the empirical clauses in E. This procedure first gets all of the applicable empirical

clauses, then ranks the matched clauses according to the corresponding probablity

67

range, and finally returns the unifiers and corresponding probability ranges of the

top N matched clauses in order of decreasing rank. The details of the algorithm are

as follows:

Algorithm 5.2 Let L be a query, and comp(P) = (C, E) be the compiled version

of an empirical program.

1. For all most general unifiers 9, if L9 (or ->L9) is a logical consequence of

C, return 9 and [1,1] (or [0,0] respectively), and halt.

2. Construct the set 5 = { Cl \ Cl = [ci,C2] V <— Body is an empirical

clause in E, and there exists a unifier 9 that unifies L and V and that

Body9 is a direct logical consequence of C }. If S is empty, halt.

3. Otherwise, rank the clauses in E in descending order based on the value

of the lower bound of the associated probability range. The unifiers with

their probability ranges of the top N ranking clauses are returned.

Example 5.3 Consider posting a query "retrieve all the sequences about outdoor

view" (Q — sequence(X,Y, outdoorview)) to the compiled version of the em­

pirical program given in example 5.1. According to algorithm 5.2, no definite

answer is found in step 1. In step 2, S consists of [.5, l]sequence(X, Y, outdoorview)

sequence(X, Y, Id)Aiav(Id, topcolor, blue) and [.3, l]sequence(X, Y, outdoorview) <

sequence(X,Y, Id) A iav(Id,bottomcolor, green). In step 3, two answers are

found: X=10, Y=10 with probability range [.5, 1], and X=12, Y=12 with

probability range [.3,1].

68

5.4 Implementation

Our implementation of processing for query on video annotation is a mixture of

C and Prolog. The base annotation, the knowledge base (complied by using al­

gorithm 5.1), and algorithm 5.2 are written in SICStus Prolog 2.1 #9 which was

developed in the Swedish Institute of Computer Science.

The interface between the Prolog engine and the CGI program are written

in C . The two parts are linked together using the SICStus Prolog runtime library.

When the user submits a query, the prolog engine is invoked via the CGI interface.

The query string is passed to the prolog engine from CGI interface, and the cor­

responding start, end shot ids and probability ranges of the top N matched video

sequences will be returned. The following steps are used to interact with the Prolog

engine from C:

1. Initiate the prolog engine with SP_initialize().

2. Load Prolog code compiled to Prolog object files into the runtime system with

SPJoad(). Those files include base annotations, the complied version of the

knowledge base, and the Prolog code for query answering.

3. Form query in Prolog format with SP_predicate(). This also involves convert­

ing C data to Prolog term. The C functions which can achieve such conversion

include SP_put_variable(), SP_put_string(), etc.

4. Issue the query to Prolog engine and retrieve multiple solutions:

• Issue the query with SP_open_query().

• Call SP_next_solution() to find a solution and call it again to find more

solutions.

69

• Termination the query with SP_close_query().

Getting the results in C data from the Prolog terms: the query results obtained

from SP_next_solution() are in Prolog terms, so functions such as SP_get-integer()

must be called to convert Prolog terms to C data.

70

Chapter 6

Implementation Detail of
Web-based Query Interface
We have discussed the three central parts of our video retrieval system in the pre­

vious chapters. Now we will give some implementation' details on the Web-based

query interface of the system.

Web Browser

FORM:
(user submits data)

and / or

Java Applet
(user submits data)

HTML doc

HTTP request

(URL/URL+querystring)

HTTP response

(HTML document)

Web Server

Retrieve the doc
HTML doc

(static)

Query string

Dynamically generated
HTML document

CGI
scripts

Videos

Figure 6.1: Information flow between the client, server, and CGI application

The web-based user interface of our video retrieval system is designed and

71

implemented using H T M L / J A V A / C G I . One part of the interfaces is web pages con­

taining H T M L forms or Java applets that let users enter query parameters to search

the database. The rest of the interface lies in the CGI scripts, which take the user

input, search the database, and return the results in the form of dynamically gener­

ated web pages. The information flow between the web brower, the web server and

the C G I scripts are show in the Figure 6.1. We will discuss how this is achieved in

our implementation in the following sections.

6.1 E n t e r i n g q u e r y o n t h e W e b p a g e

1. Use H T M L F O R M

o 1 i &| €1 j • * • S ft

location; ifrttp: / / l o c a l h < > s t : $ 0 0 0 / c g i - b i n / q u e r y

What's Newt) What's am?: Destinations j Net Search

Query input for conditions on predicates
p l e a s e e n t e r p r e d i c a t e s b e l o w :

H e l p ! f o r m a t a n p r e d i c a t e s a n d r u l e s .

U s e r o p e r a t i o n j a l l o w y o u i n s e r t

r u l e s t o t h e k n o w l e d g e b a s e .

P

ss

Figure 6.2: User input: H T M L Form

A web page which contains the < F O R M > tag allows customizable input forms,

including check-boxes, text-fields, choice list, radio buttons, regular buttons,

and etc. Figure 6.2 shows an example of form used in our interface which

allows users to input the queries on predicate based video annotation.

72

Use Java applet

ft
find

• "• ' •

location: Ihftp: / / loca lhos t : : ;8000 /cg i ''query

What's Now? What's Cadi. Dwtlnati at: Search); Boopjoj! Sofhwroj

Query by Color Histograms

insmictisa:

J. F iwt thKhj ladtobot la i i (^select*slot , t t*os«l«t> colra fiom«.lMpid«< tat«utslot,tpncmt^t fot U u t c d l n i u i n i Uw sctoiVb^ttothe H ; t ^ o f |
thtKmaintt will in m n l f ttaurttuttdi«M fe tfu prafiua. 3 •. :\HSubmftbunsnuHuKhhQ(nthf4kOtim

SlibmitCR&duced Histogram)| SubmitCimiiar i ty Matrix)! Kesetf

i Back Co Main M « «

Figure 6.3: User input: Java applet

Java also provides buttons, choice lists, text-fields, etc. The advantage of using

a Java applet is that it enables the program to run at the client machine, as

opposed to form (CGI), which runs programs on the web server. So Java

applet is suited to the query input that needs a lot of user interaction which

does not involve accessing database, e.g. detailed manipulation of an image.

For our user interface, we use a Java applet to create an interactive color picker

(Figure 6.3). It respondes user selection of color and percentage by showing

the result at corresponding places, and also calculates the total percentage for

the colors picked so far and makes sure this value will be less than or equal to

100%. All this is executed at client side and does not need to talk to the web

73

server. Only after the user hits the "submit" button, is the entire query sent

to the web server and search performed.

The interactive color picker can also be implemented using H T M L F O R M / C G I .

However in this case, whenever a color is chosen or a percentage is adjusted,

the web server will be contacted and the whole window in the browser will

be refreshed in order to reflect the changes in user selection. This unnec­

essarily wastes time, server resources and network bandwidth. Besides, the

refreshment of window from time to time is often annoying.

.2 Sending the Query to the Server

1. From an H T M L file using F O R M

We use P O S T method in the < F O R M > tag. When the user clicks on the

"submit" button, the contents of the form are encoded in the form of

"namel=vall&name2==val2&...&nameN=valN". This data are sent to the web

server in a data block, and then passed to the CGI program from STDIN by the

web server. All the above procedures are done automatically by web browser

or server according to H T T P or CGI protocols.

2. From Java Applet

After the user hits the "submit" button, first we need to encode the query

input in exactly the same format as H T T P does for the html F O R M . Then

we use a URLConnection object to generate an H T T P Post request to the

CGI program on the machine from which the applet was loaded, with the

results being read inside the applet. Following code shows how a Java applet

communicates with the CGI program on the web server:

74

try{
//Connected to server/CGI script
URL queryURL = new URL("http://hostname:8000/cgi-bin/CGIscript");
URLConnection connection = queryURL.openConnectionO;

// Send user query to server/CGI script
connection.setDoOutput(true);
PrintStream os = new PrintStream(connection.getQutputStreamO);
os.println(querydata);
os.closeO ;

//Read result from server/CGI script
DatalnputStream is=new DatalnputStream(connection.getlnputStreamO)
String line;
while ((line = is.readLine()) != null) {

rdata += line ;
}

// Showing result on the web brower
ShowHTML.showPage(this, rdata);
is.close();

} catch (MalformedURLException me) {

} catch (IOException ioe) {

}

6 . 3 P r o c e s s i n g t h e Q u e r y o n t h e S e r v e r

After the web server prepares the enviroment, it launches the CGI. Here, the CGI

script does not have to know whether the request is initiated by H T M L F O R M or

Java applet, since we chose the request method as P O S T for both cases and the

75

http://hostname:8000/cgi-bin/CGIscript

input data are encoded in the same fashion.

The basic structure of the CGI scripts we wrote contains three parts: ini­

tializing query input, processing query, and ouputing the query result to S T D O U T .

What the script does in the intialization phase is to read the input stream from

STDIN and parse them into the format of query input. Following is the detailed

procedure:

1) make sure environment variable REQUEST_METHOD equals to "POST";

2) retrieve value of environment variable CONTENT_LENGTH;

3) i f CONTENT_LENGTH is greater than zero, read CONTENT_LENGTH

bytes from STDIN;

4) parse STDIN data into seperate variables;

5) decode parsed variables;

After initializing its environment, the CGI script can process the query by

accessing the database. The output of the CGI script, which is a header and an

H T M L document that contains the query result, looks like:

content-type: text/html

<HTML>

<HEAD> ... </HEAD>
<B0DY> query result is put in here </B0DY>
</HTML>

6.4 Showing the Query Result on the Web Browser

For a request initiated from the html file using form, the web browser receives and

displays the output from the CGI script.

76

In the Java applet case, the output of the CGI script was read inside the

applet, and there is no portable way in the Java language to tell the browser to

display the results. However, if the browser is Netscape (only netscape supports Java

script), we can achieve this by exploiting Java script. First, the Java applet encodes

the content of the query result page into a special U R L starting with "Javascript:".

Then it opens this U R L in the netscape via showDocurnent. Netscape will invoke

the javascript interpreter to display the entire result page. Following are Java codes

to achieve this functionality:

public class ShowHTML {
// Open a URL via showDocurnent
public static void showPage(Applet app, String html) {
URL page = makeJavascriptURL(html);
app.getAppletContextO.showDocurnent(page);

}

//Encode the query result received in the applet into a URL
public static URL makeJavascriptURL(String html) {

try {
URL page = new URL("javascript: "' + html + " ' ") ;
return(page);

} catch(MalformedURLException mue) {
System.out.println("Illegal URL: " + mue);
return(null);

}

}

77

Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we designed and implemented a content-based video retrieval sys­

tem. We addressed three important issues in the design of an effective and efficient

content-based video indexing and retrieval system: 1) video parsing which segments

the video into smaller units for indexing and retrieval, 2) video content abstraction

which extracts the most representative features of both the visual and semantic

content of video, and 3) indexing structures for the video abstracts with high di­

mensionality.

In our system, the basic unit for video indexing and retrieval is the shot.

Therefore, all the video materials in our system are first partitioned into shots.

Several shot boundary detection techniques have been implemented and evaluated.

The experiments show that in most cases abrupt shot changes can be detected ac­

curately, but it is still difficult to distinguish shots with intensive object and camera

motion from gradual transition. We selected the twin threshold approach with mo­

tion analysis proposed by Dr. Hongjian Zhang, which shows better performance

78

under combined criterion of efficiency and accuracy, and integrated it in our proto­

type system.

In visual content abstraction, each shot is represented by one or more R-

frames selected using a P A M based algorithm. Visual features are then extracted

from selected R-frames and the dimensionality of the features are reduced. We

demonstrated that P C A can be used to reduce the dimensionality of color features

on which the distance measure is not Euclidean, if the color features are transformed

properly using SVD. Our experiments show that the combined S V D / P C A transfor­

mation can reduce the dimensionality of color histogram image feature from 256 to

less than 10, while keeping over 90% of the information.

In semantic content abstraction, we use the predicate-based video annota­

tion. The system also utilizes knowledge bases to derive complete video annotations

from the base annotation, and thus reduces the human annotator's work. The an­

notation system also supports probability inference rules that can derive semantic

annotations directly from visual features. We provide basic predicate templates for

the annotation of objects and events in the video, and provide rules for synonym and

taxonomy based inference. We also adopt the algorithm proposed in [Ng94] to deal

with query processing in our video annotation system which contains probability

rules.

On the indexing structure for visual features (color histogram), our work

includes the integration of BA_kd tree into our prototype system. We confirmed

that the BA_kd tree can be used with our combined S V D / P C A approach. The test

results showed that BA_kdtree with our combined approach can achieve between 30

and 60 percent reduction in terms of average number of page access when compared

to BAJcdtree with SVD.

79

A web based user interface has also been integrated into the system. H T M L

forms and Java applets are used to collect user query input, and CGI scripts are

used to process the query.

7.2 Future Work

Further research work can be directed to the following areas:

• In this thesis, we use shot as the basic indexing unit. Introducing some other

higher level indexing units can bring more flexibility to the system. So auto­

matic organizing the shots into higher level units need to be further investi­

gated.

• We selected a simple and commonly used visual feature, color feature, in our

system. Support for other visual features such as texture, shape, motion, etc,

are yet to be implemented.

• We have investigated in how to integrate probability rules in the video annota­

tion system. However, more systematic approaches for generating probability

rules need to be developed.

• More user friendly utilities that can help the user to generate predicates as

query input for video annotation are also needed.

80

Bibliography
[ATe92] A . Akutsu, Y . Tonomura, and etc. Video indexing using motion vectors.

In Visual Communicatins and Image Processing, pages 1522-1530. SPIE,
1992.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for asso­
ciative searching. Communications of the ACM, Vol. 18(No. 9):509-517,
1975.

[BKSS90] Norbert Beckmann, Han-Peter Kriegel, Ralf Schnedier, and Bernhard
Seeger. The r*-tree: An efficient and robust access method for points
and rectangle. In Proceedigs of ACM SIGMOD Conference, pages 322-
331, 1990.

[BR96] J . S. Boreczky and L . A . Rowe. Comparison of video shot boundary
detection techniques. In Ishwar K. Sethi and Ramesh C . Jain, editors,
Storage and Retrieval for Still Image and Video Databases IV, pages
170-179. SPIE, February 1996.

[BYY96] R. M . Bolle, B. Yeo, and M . M . Yeung. Video query: Beyond the key­
words. Technical Report RC20586, IBM, 1996.

[CB95] Mourad Cherfaoui and Christian Bertin. Temporal segmentation of
videos: a new approach. In Digital Video Compression: Algorithms
and Technologies, pages 38-47. SPIE, 1995.

[DLM+96] E . Deardorff, T . D . C . Little, J .D. Marshall, D. Venkatesh, and R. Walzer.

Video scene decomposition with the motion picture parser. In Digital

Video Compression on Personal Computers: Algorithms and Technolo­

gies, pages 44-55. SPIE, February 1996.

[DSS96] Asit Dan, Dinkar Sitaram, and Junehwa Song. Brahma: Browsing and
retrieval architecture for hierachical multimedia annotation. In Second

81

International Workshop on Multimedia Information Systems, pages 25-
29, Sep 1996.

[FEe94] C . Faloutsos, W . Equitz, and etc. Efficient and effective query­
ing by image content. Journal of Intelligent Information Systems,
Vol.3(No.3/4):231-262, 1994.

[FSZ95] B. Furht, S. W . Smoliar, and H. Zhang. Video and Image Processing in
Multimedia Systems. Kluwer Academic Publisher, 1995.

[Fua93] Pascal Fua. A parrallel stereo algorithm that produces dense path maps
and preserves image features. Machine Vision and Applications, 1993.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the ACM SIGMOD Conference, pages 47-
57, 1984.

[HJW94] A . Hampapur, R. Jain, and T Weymouth. Digital video segmentation. In
Proc. ACM Multimedia 94, pages 357-364, San Francisco, C A , October
1994.

[Iok89] Mikihiro Ioka. A method of defining the similarity of images on the basis
of color information. Technical Report RT0030, IBM Tokyo Research
Lab, 1989.

[J0I86] I. T . Jolliffe. Principal Components Analysis. Springer-Verlage, 1986.

[Kat94] Ephraim Katz. The film encyclopedia. HarperCollins Publishers, 1994.

[KR90] L . Kaufman and P.J. Rousseeuw. Finding Groups in Data: an Introduc­
tion to Cluster Analysis. John Wiley and Sons, 1990.

[1YL95] Boon lock Yeo and Bede Liu. A unified approach to temporal segmenta­
tion of motion jpeg and mpeg compressed video. In Proc of the Second
Internation Conference on Multimedia Computing and Systems, May

1995.

[LZ95] Hain-Ching H. Liu and Gregory L . Zick. Scene decomposition of mpeg
compressed video. In Digital Video Compression: Algorithms and Tech­
nologies, pages 26-37,1995.

[MJC95] J . Meng, Y . Juan, and S. Chang. Scene change detection in a mpeg

compressed video sequence. In Digital Video Compression: Algorithms

and Technologies, pages 14-25. SPIE, Feb 1995.

82

[NBe93] W . Niblack, R. Barber, and etc. The qbic project: Querying images by
content using color, textur e, and shape. In Proceedings of SPIE: Storage
and Retrieval for Image and Video Database, pages 173-187, Feb 1993.

[Ng94] Raymond Ng. Semantic, consistancy and query processing of empirical
deductive databases. Technical Report TR94-11, Department of Com­
puter Science, University of British Columbia, 1994.

[NH94] Raymond Ng and Jiawei Han. Efficient and effective clustering meth­
ods for spatial data min ing. In Proceedings of the 20th International
Conference on Very Large D atabases, pages 144-155, 1994.

[NT92] A Nagasaka and Y . Tanaka. Automatic video indexing and full-video
search for object appearances. In E . Knuth and L . Wegner, editors,
Visual Database Systems II, pages 113-127. Elsevier Science Publishers,
1992.

[Sam90] Hanan Samet. The Design and Analysis of Spatial Data Structures.
A D D I S O N - W E S L E Y , 1990.

[SB90] Michael J . Swain and Dana Ha. Ballard. Indexing via color histograms.
In Proceedings: Computer Vision, pages 390-393, 1990.

[Sed96] Andishe Sedighian. A comparative analysis of multi-dimensional index­
ing structures for eigenimages. Master's thesis, University of British
Columbia, 1996.

[SH93] H . Sawhney and J . Hafner. Efficient color histogram indexing for
quadratic form distance function. Technical Report RJ9572, IBM, 1993.

[Sha95] B. Shahraray. Scene change detection and content-based sampling of
video sequences. In Doigital Video Compression: Algorithm and Tech­
nologies, pages 2-13. SPIE, February 1995.

[SP95] I. K. Sethi and N. Patel. Statistical approach to scene change detection.
In Wayne Niblack and Ramesh C . Jain, editors, Storage and Retrieval

for Image and Video Databases III, pages 329-339. SPIE, February 1995.

[SRF87] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree:

A dynamic index for multi-dimensional objects. In Proceedings of the

13th VLDB Conference, pages 507-518, 1987.

[Tam96] Dominic Tam. An analysis of multi-level filtering for high dimensioanl

image data. Master's thesis, University of British Columbia, 1996.

83

[Ze94] H . J . Zhang and etc. Automatic parsing of news video. In Proceeding
of the International Conference on Multimedia Computing and Systems,
pages 45-54. I E E E , May 1994.

[ZKS93] H.J . Zhang, A . Kankanhalli, and S.W. Smoliar. Automatic partitioning

of full-motion video. Multimedia Systems, Vol.1:10-28, 1993.

[ZMM93] R Zabih, J . Miller, and K. Mai. A feature-based algorithm for detecting
and classifying scene breaks. In Proc. ACM Multimedia 95, pages 189-
200, San Francisco, C A , November 1993.

84

Appendix A

Video Display and Processing
The format of digital videos used in our test experiment is M P E G - 1 . Following

we describe how we digitize, display and process M P E G - 1 videos in our system.

Most of those M P E G tools and libraries we used can be obtained from the web site:

"ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg/bmtlrl .tar.gz".

1. Video Digitizing

In order to generate M P E G video stream, we first used the parallax video

grabber to digitize the analog videos (taped from T V) into to J M O V I E format

digital videos. Then, we used a tool named Compressor, which is included in

the N V R Digital Media Development Kit (V2.0.2), to convert J M O V I E video

to M P E G - 1 video only stream.

2. Video Displaying

We use M P E G _ P L A Y (V2.3) to display video streams. Developed at U C

Berkeley, M P E G - P L A Y is a software-only M P E G - 1 video decoder. It decodes

and displays an M P E G - 1 video stream, but cannot handle audio streams. The

85

ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg/bmtlrl

reason we choose this player is because it is widely used, and more importantly

free of charge.

. Video processing

In order to perform shot boundary detection and other analysis, we need to

first extract individual frames from the video streams. It is difficult to directly

use the source code of M P E G _ P L A Y , since it is specifically geared towards dis­

playing video streams in X window. Fortunately, the M P E G library, which is

a collection of C routines to decode M P E G videos, directly provides the func­

tion that we need. As a front end to the Berkeley decoding engine, the M P E G

library was developed by Greg Ward at Montreal Neurological Institute. Ba­

sically, it extracts the useful MPEG-related source code from the Xll-specific

and display related source of M P E G _ P L A Y , and provides a simple interface

that allows a programmer to extract frames from an M P E G stream. The

M P E G Library (version 1.2) used in our system is obtained from web site

"ftp.mni.mcgill.ca/pub/mpeg".

Following are three useful routines M P E G Library provides, and basically all

we need to extract frames from video streams:

• SetMPEGOptionO: allows you to set a variety of options related to M P E G

decoding, including the dithering mode which controls how YCrCb values

are converted to R G B space.

• OpenMPEGO: prepares an M P E G stream for decoding. It initializes in­

ternal data structures for decoding and dithering, and creates a color

map.

• GetMPEGFrameO: decodes the next frame from the movie. The decoded

86

http://ftp.mni.mcgill.ca/pub/mpeg

frame is an array of pixels, each of which contains either rgb values or an

index value in the color map depending on the different dither option set

by SetMPEGOptionO routine.

4. Dynamically generating M P E G video streams

The result of query in our video database system will be a set of video sequences

which at most times may not be the entire video streams. However, for the

M P E G player we chose in our system, random access is not allowed (This is not

due to a fundamental weakness with M P E G , but the nature of the decoding

engine of M P E G - P L A Y) . That means if the part of video that a user wants is

located at the end of the entire video stream, he probably has to wait a long

time for decoder to uncompress the video from the very beginning before he

can view the part he is interested in. More seriously, if the database system is

distributed, returing the entire stream will waste a lot of network bandwidth.

In order to solve the problem, for each video program we generate a set of

Group of Pictures (GOPs) instead of having one M P E G stream. Whenever

a query is performed, we calculate the number and positions of the corre­

sponding GOPs according to start and end frame numbers of matched video

sequence, and combine those G O P files together to from a M P E G file dynam­

ically as the final query result. G O P is a roughly independently decodable

sequence of frames. It starts with an I-frame which is followed by several B

and P frames. The G O P files can be joined together at any time later. Since

most compression work has already been done during the time GOPs were

generated, the dynamic combine will not take much time.

The software we use to generate G O P and combine GOPs is MPEG-1 video

87

encoder (version 1.5), which was written by Kevin L. Gong in the Berkeley

Plateau Multimedia Research group. Specifically, we use the following two

commands:

• mpeg_encode -gop num param_file: using this commend, we can en­

code a single GOP. Here parameter file should specify how many frames

each GOP will contain (for MPEG-1 format video, the number of frames

of every GOP is same), the IBP pattern (e.g. IBBBPBBBPBBBP),

search window for motion vectors, search algorithm, etc.

• mpeg.encode -combine_gops paramf i l e : this command causes the en­

coder to combine some GOP files into a single MPEG stream. Here the

parameter file need contain the YUV_SIZE value, an ouput file, and a list

of input GOP files.

88

Appendix B

Color Spaces conversion
In our system, we use the 256 colors in the color map generated by the M P E G

decoder as color bins. In order to compute the entries a tj (formula 4.1) in the

similarity matrix A used in color histogram difference calculation (formula 2.1),

we need to calculate the differences between any two of the 256 color bins we have

chosen. Euclidean distance in CIELUV space is used to measure the difference

between two color bins, because this distance measure is close to human perception.

Since frames extracted M P E G - 1 stream contains color values in R G B space, we need

to convert the colors into CIELUV space. The conversion from R G B to CIELUV

also involves intermediate CIEXYZ space. In the next two sections, we will give

the transformation matrix used to convert a color from RGB space to CIEXYZ

space, and from CIEXYZ to CIELUV space.

RGB - CIE X Y Z conversion

R G B values in a particular set of primaries can be transformed to CIE X Y Z by a

three-by-three matrix transform. We use the R G B system defined in C C I T T ITU-

R Recommendation B T 709 with CIE Iluminance D65 white point in our system.

89

Following is the transformation from 709 R G B space to CIE X Y Z space:

X 0.412453 0.357580 0.180423 R

Y = 0.212671 0.715160 0.072169 G

Z 0.019334 0.119193 0.950227 B

The reference white color (Xn, Y„, Zn) in CIE X Y Z space can be computed by

transforming white point (1, 1, 1) in R G B using the above formula.

CIE X Y Z - CIE L U V conversion

For each color, its L*, u* and v* values in CIELUV space can be calculated from

its X, Y , Z values in CIEXYZ space with (Xn, Yn, Zn) as reference white point by

using following formula:

f 116 * {Y/Yny/3) - 16 Y/Yn > 0.008856
L* = <

903.3F/y n Y/Yn <= 0.008856

u* = 13 * L* * (u — un)

v* = 13 * L* * (v — v'n)

where

u = 4 * X/(X + 15 * Y + 3 * Z)

v = 9 * Y/(X + 15 * Y + 3 * Z)

un = 4* Xn/(Xn + 15 * Yn + 3 *

vn = 9 * Yn/{Xn + 15 * Yn + 3 * Zn)

90

