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ABSTRACT 

The analysis and design is presented for a shell composed of flat t r i 

angular plates approximating a smooth spherical shell. The geometry is based 

on the subdivision of the icosahedron and dodecahedron into many plane triangles. 

All corners of these triangles lie on a circumscribing sphere so that as the 

triangles become more numerous, the shell more nearly approximates a true sphere. 

The geometry is tabulated for a few of the possible subdivisions but may have to 

be carried further i f a particularly large shell composed of relating small t r i 

angles is required. While sone of the geometry is similar to geodesic domes 

already constructed, the structural analysis is entirely different,. Previous geo

desic domes are space trusses where the applied load3 are supported predominantly 

by axial force in the truss bars. The structures considered here are frameless 

and the loads are therefore supported by shell action. The exact analysis to such 

a shell was not obtained since the solution is not composed of tabulated functions. 

However, an approximate analysis is presented which, in part, is a modification of 

smoqth shell theory. Since the shell is composed of flat plates, the bending and 

buckling-of. individual triangles are additional design'problems considered that 

are not present in more conventional shell design. 

In order to verify parts of the theoretical analysis,, experimental studies 

were conducted with a plexiglas model. The experimental results verify the appli-
s 

cation of smooth shell theory to geodesic shells and determine the distribution of 

membrane stress. Finally the various design aspects are brought together and i l 

lustrated by the inclusion of the design notes for a typical shell. 
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NOTATIONS 

ft §, 6 Spherical co-ordinates \ 
r,, r 2 Radii of curvature of a shell 
N̂ Ne, N9© Membrane forces per unit length in a shell 

x,y,z Rectangular co-ordinates 
w Deflection in the z direction 

Nn,Nt,Nnt Normal and shearing forces per unit length of plate 
Mn,Mt,Mnt Bending and twisting moments per unit length of plate 
Qn,Qt Shearing force per unit length of plate 

(T Normal stress component 
L Shearing Stress component 
£ Normal Strain 
¥ Shear strain 

E Modulus of Elasticity 
p. Poisson's ratio 
D Flexural rigidity of a plate 

h Thickness of a plate or shell 
p Intensity of load on a shell 
q Intensity of a uniformly distributed load on a plate 

X,Y,Z Components of load in the x, y, z directions respectively 
R Resultant load on a section of shell 

a Altitude of an equilateral triangle 
S Grid or net interval 

I 
2 

Moment of inertia 
Section modulus 
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CHAPTER I 

A. INTRODUCTION 

A thin shell curved in two directions is an exceptionally strong and 

light weight structural element,, A ping pong hall, an egg shell, a car roof 

and a balloon are only a few examples of doubly curved shells. Considering 

the behaviour of an egg shell, we realize ihat i t is capable of withstanding trem

endous compressive forces. Failure is caused by a concentrated load over a 

relatively small area or by impact. 

The characteristic of high strength is due to two factors. First, the 

doubly curved surface has a high resistance to buckling. Second, the loads are 

carried almost entirely by forces in the plane of the shell or membrane forces. 

The significance of the second factor is that there is l i t t l e bending moment in 

the shell under ideal conditions. This can be illustrated by considering one of 

the examples previously mentioned, a balloon. A rubber membrane, regardless of 

any applied tensile stress, has no bending resistance. Therefore, a l l loads ap

plied to an inflated balloon can only be carried by membrane stress or, in this 

case, a reduction of the tensile stress. Thus symmetrical or unsymmetrical. loads 

are supported by membrane action alone. 

1 
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This characteristic may also be explained mathematically i f we compare 

an arch and a shell. Stresses in an arch are governed by an ordinary differential 

equation to which there is only one form of solution. The solution is represented 

by the equilibrium polygon or thrust line. V/hen the equilibrium polygon and the 

arch axis coincide, there is only direct stress in the arch. However, when two 

do not coincide, there is bending as well as direct stress. It i 3 evident then 

that direct stress without bending is obtained only by one form of loading since 

the ordinary differential equation has but one form of solution. On the other hand, 

stresses in a shell are governed by a partial differential equation to which there 

are an infinite number of forms of solution. The solution in this case is rep

resented by an equilibrium surface rather than by an equilibrium polygon. The 

solution chosen is that one where the equilibrium surface coincides with the shell. 

Thus under every continuous loading the form of solution gives only direct or mem

brane stresses. Discontinuous loads aie excepted since solutions to the partial 

differential equations can also be discontinuous whereas the shell may not be. 

There are, however, ways by which bending can occur in a shell. Under 

any given loading the membrane forces cause certain deformations of the shell. 

The deformations cause a small change of radius of the shell A R where R is 

measured to the inside surface of the shell. The strain on the inside of the shell 

is 

A R 
E 

and on the outside is 

A R 

R + t 



Where t i s the thickness of the s h e l l . However t « R f o r t h i n s h e l l s so that 

p r a c t i c a l l y speaking the s t r a i n i s uniform across the thickness and the moment 

i s therefore zero. 

From a p r a c t i c a l point of view, i t i s necessary to support the s h e l l 

on a r i n g g i r d e r . This procedure produces bending stresses i n the s h e l l i n the 

immediate v i c i n i t y of the r i n g support. The s t r a i n s i n the s h e l l due to the 

membrane forces produce deformations causing a h o r i z o n t a l d e f l e c t i o n of the s h e l l . 

The forces exerted by the s h e l l on the r i n g g i r d e r a l s o produce deformations of 

the r i n g g i r d e r . Since the deformations of the s h e l l must be the same as those 

i n the r i n g girder e x t r a forces are induced. These are a h o r i z o n t a l force and 

a moment. The resultant moment i s of a l o c a l nature and dies out exponentially 

i n a distance of ten to twenty times the s h e l l thickness. 

F i n a l l y a concentrated load also produces bending stresses i n the 

immediate v i c i n i t y of the load. The r e s u l t i n g moment i s s i m i l a r to that pro

duced by a r i n g support and dies out exponentially i n about the same distance. 

Where bending stresses are produced, the s h e l l may sometimes be strengthened by 

increasing the thickness and adding r e - i n f o r c i n g . 

The design of a s h e l l i s commenced by determining the membrane s t r e s 

ses assuming the bending stresses to be zero. Since unsymmetrical loads produce 

only membrane s t r e s s , the maximum str e s s i s obtained where dead load plus l i v e 

load act on the whole s h e l l . .The l o c a l bending stresses are then superimposed 

on the membrane stresses. 
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Before proceeding further, i t is necessary to consider in more detail 

a shell of revolution. The surface of such a shell is obtained by revolving a 

plane curve about some axis in the plane of the curve. There are, hovrever, 

critical shapes that should be avoided. As a general rule, the radii of curva-
f' 

ture should be of the same order of magnitude as the span or maximum diameter of 

the shell. Very shallow shells have high membrane forces. Going to the limit, 

i f the shell is flat for any finite distance, the loads are no longer support

ed by membrane forces but by shears and bending moments.''' 

The following sections give the equations for symmetrical and unsym-

metrical loads and tabulate the solution for a few specific cases. These 

solutions will be required later when considering the geodesic shell. 

B. SHELL OP REVOLUTION - SYMMETRICAL LOAD. 

An element of area is cut from the shell by two meridians and two 

parallel circles as shown in Pig. 1 - 1 . The radii of curvature at a point are 

defined as r, in the meridian plane and r 2 in the plane perpendicular to the 

meridian. The radius of the parallel circle, denoted by r, is then equal to 

r z sin^and the area of the element is r, r-, sin$>d$> d© . 

An example of this is the curve y = K (ax) n. If n is large then that part 
for a x<l is very flat. 



For a symmetrical load, only normal forces act on the element since 

shear forces would produce unsyinmetrical deformations. Ng> and NQ 

denote the normal forces per unit arc length. From symmetry, i t can also be 

concluded that Ne does not vary with 0 and is therefore the same on either 

side of the element. The external load per unit area of shell in this case acts 

in the meridian plane and can be resolved into two components, Y and Z, 

tangent and perpendicular to the element respectively. 

Three equations of equilibrium of the element may be written by 

equating to zero the sura of the forces in the X, Y and Z directions. However, 

one of these equations, the sum of the forces in the X direction is automatic

ally satisfied by symmetry. There remain two equations with two unknowns and 

the structure is therefore statically determinate. 

/ Ntf rde 
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The force on the top and bottom of the element i s H<p r de and 

(Ng> + d N<p ) (r + d r) de respectively. • Neglecting the terms of higher order, 

these forces have a component in the z direction of Nf r de dy (Fig. 1 -2) 

Referring to Fig. 1 - 3 shows that the horizontal force Ne r, dip on the sides 

of the element have a component He r, dy de in the direction of the radius of 

the parallel c i r c l e . From Fig. 1-4, the component i n the z direction i s 

Ne r, dg>de s i n<p . Equating to zero the sum of the forces in the z direction 

Ne n d$ 

Me r. d$ 

Fig 1-3 
gives 

N© n dgde 

Fig 1 - 4 

Ity r dp de + Ne r, s i n<p d<j> de + Z r r, d<p de = 0 

Cancelling d<pd 6 and dividing through by r r , , the equation reduces to 

0-0 



A similar procedure carried out for the forces in the T direction 

yields a differential equation in N$ and Ne . . The solution of a differential 

equation is avoided, however, by considering the equilibrium of the portion of the 

shell above a parallel circle instead of the equilibrium of the element» Equating 

to zero the sum of the vertical forces, with reference to Figure 1 - 5, the equil

ibrium equation is 

Ng> sin <p. r + R = 0 ( l - 2 ) 

where R is the resultant load on the section of shell considered. 

ft 

9/^ 
r \ 

9^ 

F I G . 1 - 5 

The solution of the membrane forces for a given loading requires first 

the direct solution of Equation 1 - 2 for Ng> . This value is then substituted 

in Equation 1 -1 and solved for Nd . The use of these equations is illustra

ted by considering a few special cases in the following subsections. 



1 SPHERICAL SHELL OP CONSTANT THICKNESS UNDER DEAD LOAD 

In a spherical shell, r, = r 2 = J> and r =f s'm The surface area 

of a shell above the parallel circle defined by , i s 

JsTirrzdg = z7Tf2J sin$ dj> 
<P*o 9'° (l _ 3) 

Since the load on the shell i 3 constant per unit of shell area and equal to p, 

then the total load on the shell i s 

R = Zltj*pJ sin <pd$ = 2fipf \ t.cos§>) ( i - 4) 
o 

Equation ( l - 2) then gives 

S//J*<P I + cosy 

Noting that the 2 component of the load i s pcos§>, Equation ( l - l ) gives 

Ne= - pf \ cos g> - (1-6) 
/ + cos<p 

Equations ( l - 5) and ( l - 6) are plotted in Graph 1-1. The Graph show 

that i s always compressive, increasing to a maximum compressive force at 

<P = 90°. On the otlier hand,' Ne i s compressive for small values of <jP 

but turns to tension at 51°50'. 





2 . Spherical Shell under Live Load, constant per unit of Horizontal Area. 

P 

Fig (l - 6) 

The horizontal area over which the load acts is 

The load on the 'shell is then 

R = TT p P*. sin* g> 

Substituting R-into Equation (l - 2) gives 

Substituting Equation (l - 8) into Equation (l - l) gives 

(1 - 7) 

(1-8) 

Na = (i- acosfy) (1-9) 

_ El cos Z$ 

Equations (l - 8) and (l - 9) are also plotted in Graph 1-1 
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In reality, a snow load of the form just discussed is not obtained 

because the'snow does not hold to the steeper pitches. The National Building 

Code of Canada (1953) gives a constant snow load for slopes up to twenty degrees. 

Thereafter the load drops off linearly to zero at sixty-three degrees. The ex

pression 

P = po C 0 S ? -C°S 6 5 ° (1 -10) cos SO - cos 65' 

for 20°^ <P - 65° , where pa i s the load on a f l a t surface, gives a snow load 

' distribution slighttly heavier than the National Building Code. For $ £ 2.o° 

Equations ( l - 8) and ( l - 9 ) apply. For (p>2o"t Equation ( l - 10) is 

integrated to obtain the part of the load on the shell where <p > 2.0° and is 

added to the load on the shell for §> 5 20°7 giving the total load. 

Equations ( l - l ) and ( l - 2) then give the membrane forces. The membrane 

forces are also plotted in Graph 1 - 1 . 

1 



C. SHELL OF REVOLUTION, UNSYMKETRICAL LOAD. 

Fig 1 - 7 

In the ease of an unsymmetrical load, not only normal forces N$> 

and Ne but also shear forces N$>e and Nej»act on the element as shown in 

Figure (l - 7 ) . Equating the sum of the moments about the axis to zero gives 

Nye =Ne$ and reduces thereby the number of unknowns to three. Equating 

to zero the sum of the projections on the. three co-ordinate axes give3 the three 

equations 



7§>(N*>rJ + ^ r, - Na r, cos? + Yr, O 1 

(r N9e) + r , + Ne«p r, cos <p + X ^ r = " (Ml) 

Na - z 

These three partial differential equations involving the three unknowns N$>, Ne 

and N«j can be solved in the general case by expanding both .the load and the 
2 

stresses in trigonometric series. The following section gives the solution 

for a wind pressure on a spherical shell. 

2. W. Flugge, Staflk und Dynamik der Schalen. Berlin, 1934. 
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1. SPHERICAL SHELL UNDER WIND LOAD. 

The National Building Code does not specify any wind pressure on domes. 

However a loading can be assumed which basically follows the findings of the 

National Building Code. Y/ind pressure acts normal to the surface and increases 

the pressure on the windward side and decreases the pressure or causes suction 
r 

on the leeward side. If the diectLon of the wind is in the meridian plane 6 = Oa 

thenX =? = 0 , Z e p sin^ cos 9 (l - 12) 

Where P is the wind pressure on a vertical Burface. Equation 1 - 1 3 gives a 

distribution as shown in Fig 1 - 8 

N» - - ^ ^ f f f f * ( * - . 3 c o . * + W 9 ) (1-13) 

Fig (1 - 8) 

The solution to Equations (l - 11) is given by 

Ne 

Ne$> 0-15) 



Inspection of these equations show that the normal forces have a maximum compres- ' 

sive value at 6 = 0" and a maximum tensile value at & = . The shear 

forces, however, attain a maximum value at 6 = 90" and Q = 2700 . The 

maximum and minimum values of the forces due to wind pressure may be obtained 

from Graph 1 - 2 for a given value of <p. The resulting stresses due to wind 

action may then be superimposed over those resulting from dead and live loads. 





CHAPTER II 

GEOMETRY 

A. INTRODUCTION 

Since shells of revolution have curvature in two directions, their 

usage is restricted to those materials which can be moulded to the appropriate 

curvatures. Thi3 limitation permits the use of concrete, steel end aluminum. 

Unfortunately, concrete entails the use of an elziborate fonnwork and steel and 

aluminum each require a costly pressing process. 

A structure composed of flat pl:ites closely approximating a shell of 

revolution possesses aome advantages over a continuous shell. The formwork is 

simpler and the pressing process is eliminated. Such a structure may be fab

ricated with comparative ease from a good grade of plywood. The following 

section develop the geometry of such a shell which is called a geodesic or 

folded plate shell. 

The economy of a folded plate shell is improved by minimising the 

number of different plate shapes involved. Since a sphere ha3 an infinite number 



of axes of symmetry, a spherical shell probably has fewer shapes than any other 

shell of revolution that might be approximated with flat plates. 

We will deal only with triangular shapes since they are easier to fab-

ricate arid are stronger area for area tlian other shapes that ndjht be used, such 

as: quadrilateral3, pentagons rjx-H hexagons. 

B. BA~IC GTCOK?,TRY. 

The five basic polyhodra that can be inscribed in a sphere are to 

tetrahedron, cube, octahedron, dodeepjiedron p.nd icosahedron.* The icosahedron 

is composed of twenty equilateral triangles and the dodec.ohedron, of twelve 

pentagons. Since the icosahedron and dodecahedron have more facets, they more 

nearly approximate a-spherical nliell than do the other three polyhodra. For 

that reason, the icosahedron and dodecahedron are the better polyhedra to use 

as a basis for developing the geometry of a geodesic shell. 

The standard 3ise of plywood sheet is four feet by eight feet. Some 

mills produce sheets forty or f i f t y feet long' and extra width sheets may also 

be ordered. Generally, tise four foot width governs the maximum size of" triajagle. 

Therefore, to obtain a practical siued shell, i t is necessary to subdivide the 

triangles and. pentagons of the icosahedron and dodecahedron respectively into 

smaller structural elements. 

* H. Mo Cundy and A. R. Rollett, Mathematical Models 
Oxford University Press, 1952. 
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Fig 2 - 1 Ico3ahedron Fig 2 - 2 Dodecahedron 

It is not merely a case of breaking up the triangles and pentagons in their ovm 

plane but rather of moving the newly, formed vertices radially to the circumscribing 

sphere. This procedure gives a closer approximation of a sphere than does the basic 

polyhedra. There are numerous ways of subdividing a triangle and since the computa

tions arc rather time consuming, only a few methods of subdivision have been investi

gated. For that reason, there may "ue other methods of subdivision that are more 

advantageous .for a specific radius and-material than those given lie re 0 • .'. 

The icosfiiedron is f i r s t subdivided by bisecting ti-ie sides of tie equilateral 

triangle and moving the newly formed points radially to the circumscribing 3 p h e r e . 

As shown in Fig. 2-3, one equilateral triangle of the icosahedron i s replaced by 

four triangles, one equilateral find three isosceles. Since the isosceles triangles 

are congruent by symmetry, there arc only two kinds of triangles. A sphere is now 

n 
approximated by 80 trinngles iatead. cf 20 triangles as in the.icosnhedron. 



2-3 

Inctea(3 of divioivvj the side of the equilateral triangle into two 

parts, the side can be divided into three parts. One equilateral triangle 

of the icosahedron is now replaced by nine smaller triangles with each new 

vertex displaced radially to touch the circumscribing sphere. A general sub

division, by trisecting the sides of tlie equilateral triangle for example, 

gives three kinds of isosceles triangles as shown in Pig 2 - 4a. 

Fig 2 - 4 a Fig 2 - 4 b • 

Instead of trisecting the sides, i t i s possible to prescribe that two kinds of 

isosceles triangles be congruent to each other. If the triangle is subdivided, 

making triangles B Ja and C 3a congruent, a subdivision is obtained a 3 Shown in 

Figure 2 - 4 b. Thus a sphere is approximated with 180 triangles of two kinds. 
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Working from Figure 2 - 3 , the sides of the icosahedron triangle may be 

divided into four p.-irts. By prescribing congruency, triangle A 2 of Figure 2 - 3 

can be subdivided into four triangles of two kinds, A4 isosceles and B4 scalene 

as shown in Fig. 2 - 5 . Triangle B2 also breaks up into four triangles of two 

kinds, C4 equilateral and D4 isosceles. The result of -the breakdown is shown 

in Fig 2 - 5o A sphere i s approximated by 320 triangles of four kinds. 

Fig 2 - 5 

Working from Figure 2 - 5 , the triangles may again, be subdivided. It 

does not appear possible to prescribe any congruency among the triangles obtained 

by subdividing the sctdene tri-uigle B4, so that four kinds of triangles are 

formed. As before the isosceles and equilateral triangles can each be broken down 

into two kinds of triangles. Therefore a sphere i s apy>roxinnted by 1280 t r i 

angles of ten kinds, (Figure 2 - 6 ) 



ao 

Fig 2 - 6 

Figure 2 - 4b can also be subdivided in the same manner Fig 2 - 3 

was subdivided. The subdivision may be carried out indefinitely. Unfortunately, 

once a number of scalene triangles appear i n ti.e subdivision, the number of 

kinds of triangles grow rapidly. For example, Fig 2 - 6 ha3 ten kinds of t r i 

angles but one further subdivision of this figure has 32 kinds of triangles. 

However, considering that i n this case there are 5120 triangles i n a sphere, 

32 kinds of trianrles are not unreasonable. 

The subdivision of the dodecahedron i3 indicated in Figure 2 - 7 . A 

sphere i s formed in (b) by 60 triangles of one kind, in (c) by 240 triangles of 



two kinds and in (d) by 960 triangles of six kinds. One further subdivision, 

not illustrated forms a sphere of 3840 triangles of 22 kinds. 

Fig 2 - 7 

The various subdivisions indicated in the preceding paragraphs a l l 

yield triangles that are nearly equilateral. A one piece triangle of plywood 

therefore has an altitude of approximately four feet and an area of 7.6 square 

feet. The total number of triangles required to replace a spherical segment 

is approximately equal to the spherical area divided by 7*6. Graph 2 - 1 

3hows these results. For a given span and rise, the graph gives the radius, 

the total number of triangles denoted by Kt and also the approximate number of 

kinds of triangles denoted by Nk. These parameters then act as a guide to the 

choice of the appropriate subdivision. 
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Another type of subdivision may be visualised by referring back to 

Figure 2 - 4b which has nine isosceles triangles of two kinds. The perpendicu

lar bisector of the base breaks each isosceles triangle into two congruent 

parts even though the newly formed vertex i 3 rf-ised to the circumscribing 

sphere. Therefore the sphere i s approximated by 360 triangles of only two 

kinds. The triangles are now more nearly 30-60-90 instead of equilateral and 

may be obtained from a four by eight sheet of plywood by cutting diagonally. 

From a structural point of view, this 3 h a p e of triangle is not a3 good as the 

equilateral shape. The membrane forces are affected by the large variation of 

the dihedral angles D Also, the triangle may have to be stiffened to minimize 

bending and prevent buckling. The battens connecting the long sides together 

may also be lieavier. 

C. METHOD OF CALCULATION 

The triangle geometry is best solved by using trigonometry. The 

sphere i s f i r s t divided into spherical triangles which are then replaced by 

the corresponding plane triangles. The side of the spherical triangle i s 

in angular arc, 4* . Reference to Figure 2 - 8 shows that the corresponding 

length of the side of the plane triangle 

Fig-2 - 8 
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The dihidral angles are solved by using analytical geometry. In 

Figure 2 - 9 , i t can be proved that the angle between the triangle plane a b c 

and the Plane o a b, is obtained from 

( / 2 2 2 ) A= tan"' 2(l + cos, y)(sin 2f - cos <* - cos 3 + 2 cos<rfcos3 cos ir ) ^ 
( Sin b'(l + cos !f - coso( - cos (3 ) ) 

( ? - 1 ) 
Where 0 i s the centre of the sphere and If are the 

angles shown. ck and ^ are interchangeable 

Fig 2 - 9 

in this formula but X is not. The last term under the square root sign is close 

to zero so i t must be evaluated accurately. However for the angles involved, 



tan A approaclies infinity so the formula gives accurate results. Formula 

(2 - l) must be evaluated once for each triangle on either side of the plane 

0 a b. The dihedral .angle in then the sum of the two values of A. 

The geometry for sone of the subdivisions has been computed and the 

results presented in tabular form. The trigonometry was calculated to the 

nearest second of arc using sis place natural functions and a desk calculator. 

The results therefore should be good to five significant figures. 

The fabricator should cut the triangles as precisely as the material 

and equipment permit i f the structure i 3 to f i t properly together. If the 

dome is fabricated in sections,, the triangle geometry of an appropriate 

coarser subdivision gives chord distances which may bo used to check the 

fabricated section. 
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Table 2 - 1 

A Sides 
Req'd. 
for 

Sphere 
Side Arc 

Length 
f Edge 

180°-
Dihedral 
Angle 

A a a b 60 a a = 31° 43' 03" .54652 A a A 220 141 

B b b b 20 b b = 36° 00» 00" .61804 A b B 18° 00' 
80 

a 

r 

b * 

teble 2 - 2 

A Sides 
Req'd. 
for 
Sphere 

Side Arc Length 
S 

Edge 
180°-

Dihedral 
Angle 

A a a b 60 a a - 20° 04' 36" .34861 A a A 14°* 34' 

B c c b 120 b b = 23° 16' 54" .40358 A b A 11° 22« 

180 c c = 23° 46' 02" .41247 B b B 

B c B 

14° 28' 

11° 34' 
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J . C C 

Table 2 - 3 

A Sides 
Req'd. 
for 
Sphere 

Side Arc 
Length 
f Edge 

18U°-
Dinedral 
Angle 

A a a b 120 a a - 16° 16' 01" .282959 A a A 11° 44' 

B a c d 120 b b - 18° 57» 12" .329252 A b A 6° 32' 

C e 3 e 20 c c a 15° 27' 02" .268857 A a B 11° 04» 

D d d e 60 d d = 18° 00' 00" .312869 B c 3 11° 38' 

320 e e = 18° 41' 58" .324920 B d D 9° 00' 

D e C 10° 21' 



Table 2- 4 

Sides . 
Req'd. 
for 
Sphere 

Side Arc 
Length 

f Edge 
180°-

Dihedral 
Angle 

A a a b 240 a 8° 11' 23" .142816 A a A 5° 56' 

B a c d 240 b 9° 36' 22" .167462 A b A 3° 10' 

C c c e 120 c 8° 04' 38" .140858 A a B 5° 51' 

D e g h 120 d 9° 28' 36" .165211 A a E 5° 31» 

E a h j 120 e 9° 13' 14" .160756 B c B 5° 55' 

F f g i 120 f 7° 22' 24" .128600 B d B 3° 14« 

G • m m ra 20 g 8° 07' 01" .141549 B c C 5° 46' 

H 1 1 m 60 h 7° 46' 56" .135721 C c C 5° 37' 

I i i k 120 i 9° 03' 38" .157972 C e D 3° 20' 
T 

u i j 1 120 i 8° 56' 22" .155865 D h E 5° 48« 
1280 

k 9° 29' 53" .165583 D g F 5° 14' 

1 9° 20' 59" .163002 E j J 4° 37' 

m 9° 26' 40" .164650 F f F 6° 20' 

F i I 4° 20' 

G m H 5° 18' 

H 1 J 5° 11' 

J k I 5° 22' 

I k I 4° 48' 



CHAPTER III 

THEORETICAL ANALYSIS 

A. INTRODUCTION 

In the .analysis of folded plate shells, the designer aust consider 

membrane stress, bending stress and st a b i l i t y 0 The membrane stress, as will 

be shown later, may be obtained from smooth shell theory. Bending stresses 

arise mainly from loads perpendicular to the surface of the triangle« 

Failure of a structure may be caused not only by high stresses but 

also by instability. In geodesic shells, buckling may occur in two w a y 3 . The 

dome as a unit may buckle or an individual triangle may buckle. While the 

latter case is due to local instability i t could be sufficient to bring about 

complete failure. 

The following sections consider in more detail these aspects to be 

considered in design and analysis. While only spherical shaped shells are 

considered, the concepts apply also to other shaped shells of revolution. 
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B. MEMBRANE STRESS 

•The exact solution of tlie membrane stresses in a folded plate shell i s 

a statically indeterminate problem. Special types of folded plate domes, such 

as Polygonal Domes,"'' have an exact solution in terms of tabulated functions. 

Unfortunately, the exact solution of the folded plate shell considered here does 

not appear in terms of tabulated functions, For this reason, i t was decided to 

apply an approximate solution using smooth oliell theory. 

Fig 3 - 1 

If the geodesic shall i s compared to a smooth shell of the same radii, 

then the load on the triangle edge ab (Figure 3 - l ) i s the same as the load on 

the corresponding arc a 'b' of the smooth shell. 

W. Flugge, Statik und Dynamil der Schalen, 
Berlin, 1934 
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The validity of applying smooth shell theory to geodesic shells i s 

shorn by considering the geometry and'behaviour under load of the two types of 

shell. It was shown in Chapter I that loads on a smooth shell are supported by 

membrane action. These membrane stresses are indicated qualitatively in 

Figure 3 - 2, a and b„ The corresponding geodesic shell i s shown in Figure 3 - 2 , 

c and d. The geodesic shell i s a doubly curved structure as is the smooth shell 

and both lunre l i t t l e bending resistance. Therefore the only way loads can be 

carried in either shell i s by direct stress. 

Figure 3 - 2 c i s the cross section'of a segment of the polyhedron 

having only 320 triangles approximating a sphere. Even this apparently coarse 

approximation of a sphere is not far from the true 3phere. Some radius P - &P 

passes half way between tlio inner and outermost points on tlie triangles approxi

mating the sphere o Af is a very small percent off and becomes even smaller 

as the number of triangles in the complete polyhedron increase„ Therefore the 

co-ordinates of the polyhedron are virtually the 3ame as those of the sphere » 

Equating the sum of the vertical forces to zero in figures (a) and (c) 

show that Nj> must be the same for both cases since the loads are supported only 

by direct stress. Similarly in figures (b) and (d), equating the sum of the 

horizontal forces .to zero show that the total force in the 9 direction i s the 

same in both cases. Therefore the total forces acting on the isolated segments 

in figures- (e) and (f) are the same. Equating moments to zero about the point o 

show that the general distribution of Ne must be the sane in both cases. Since 

the geometry and membrane forces are practically the same for both shells, the 

application of smooth shell theory is justified. 
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Applying smooth shell theory to gcoder.,ic shells gives a near uniform 

distribution of membrane stress along the edge of a triangle. This iy not true 

because the deformations along the edge cause a redistribution of stress but the 

total load remains the same 0 Consider the common edge e of two triangular plates 

under irembrane action as shown in Fig 3 - 3 a. By action and reaction, at the 

edge e the direction of stress (T is at angle (3 to each plate. Trie component 

(a) • (b) 
Fig 3-3 

in the plane of the plate causes deformation u. To preserve continuity along the 

cominon boundary, the plate must also bend with a deflection ur. The effect i s to 

redistribute the membrane stress into a parabolic shape with the highest stresses 

at the corners of the triangle. Tlierefore smooth shell theory gives the average 

stress on the triangle edge but not tho naximum stress. 

0" mean 

Fig 3-3 (c) 
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To evaluate the maxiraj» membrane stress, the stress riser at the corners 

must be determined. It might be determined by a Fourier analysis of two isolated 

triangle::, j;resei*ving.continuity along the common boundary* However the lack of 

convenient tabulated functions made this approach impractical. Instead of isolat

ing two triangles, two rectangles were isolated and a Fourier analysis attempted. 

However a stress function for the membrane action was not obtained which satisfied 

both the boundary condition and continuity. Because of this, i t was decided to 
m 

find the stress riser by experiment. The results of tho experimental work are 

found in Chapter TV. The experimental work does show that smooth shell theory can 

be used with a stress riser for the corners. 

C. BENDING OF A TRIANGLE UNDER UNIFORM HCRKAL PRESSURE. 
2 

The differential equation of a plate under a normal pressure £̂  is 

ax* a*aa«j* ay* " D 1 .3-1; 

where ur i3 the deflection at a point with co-ordinates x and y and D - . . . i a 

the flexural rigidity of the plate. This expression is based on tho small deflec

tion theory where the deflection i s small compared to the thickness. As long a3 

the deflections are small, the mombrane forces, by beam column action, have a very 

small effect on the actual deflection and may be omitted from the discussion. 

That comparatively small deflections do occur may be verified by calculating the 

maximum deflection and comparing i t to the plate thickness. 

2 „ „ . 
S. Tinoonenko, T j & j ^ q f .Plates and Shells. 
New York, McOraw-Tfill, 1940, P. 88. 



The solution of Equation 3 - 1 involves the determination of some function 

for W which not only satisfies thir, differential equation but elao the boundary 

conditions. For a simply supported plate, the deflection and bending moments must 

be zero at the plate edges. Therefore the boundary conditions are 
or = 0 

and 
d n 1 = 0 

(3 - 2) 

( 3 - 3 ) 

at the edges where n. i s the co-ordinate -axis jierpendicular to the edge. Expressing 

Equation 3 - 3 in terms of x and y for convenience only, the boundary condition 

becomes instead 

d J C J 

(3 - 4) 

A general satisfactory expression for for any shape of triangular plate 

i s not in terms of tabulated functions. A few specific cases are tabulated however. 

One such case in for a 3imply supported equilateral triangle under uniform lateral 

load . For tiie type of dome considered hoie, a l l tlio triangles are very nearly 

equilateral. Therefore the bending stresses may be closely approximated by consider

ing only an equilateral triangle. 

Fig 3 - 4 

^ The bending of an equilateral plate was solved by 
P . '.'.oinowsky - Krioger, Ingenieur - Archiv., vol.4,p.254 
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With co-ordinate axea as shown in Figure 3-4, the deflection surface of a 

4 uniformly loaded, 3imply supported, equilateral triangle i s 

w = 
64aD 
S_ (" x3 - 3y 2 x - a(x: 

aD L 
2 2v 4 3 / 4_ 2 + y j + * 7 a' ' a " f it ^ r- 2\ 

( a a - x - y ) ( 3 - 5 ) 

The part of the polynomial in square brackets is the product of the l e f t hand side of 

x + „ = 0 

x + y -
3 

2a 
3 3 
2a 

£ - y -
3 3 3 

= 0 

= 0 

which are the equations of the boundary lines. The expression, in sqw.ro brackets if 

therefore aero at the boundary. Hence the boundary condition, w = 0, i 3 satisfied. 

Successive differentiation of tho polynomial gives 

[r? - 3y 2 x 3y 2 x - a(x 2 + y 2) + ± a 3 ] (3 - 4a) 3 ̂ w + d ̂ w == - <1 
3 x 2 3 y2 4idT 

and 

34w +?a4w + 34w = j. 
3x4 £)x2y2 a y 4 D 

(3 - 1) 

Similarly, Equation 3 - 4a is also zero at the boundary so tint both boundary conditions 

are satisfied. Tho differential equation is olso satisfied. Therefore 

Qy 

ax 

Fig 3 - 5 

3. Timoshenko, Theory of Plates and Shells 
New York, McGraw-Hill, 1940, p.293 

http://sqw.ro


Equation 3 - 5 represents the solution for the deflection surface. The maximum 

deflection occurs at tho centroid of the triangle and is 

4 
w q a 
max = _ (3 

3880 D 
The differential equations for.the moments, as defined i n Figure 3 - 5 , are 

2 A 2 Kx = - D / 3 w + u Yws 
dx d y 

Ky = - D (_3fw + u l J V ) ( 3 . 

dy 3 x*" 

Kxy = - Myx" = D ( l - _u) <3 w 
dx dy 

The re fore 

and 

Mx = - i f- (5 - ja) x 3 + (3 + ji) ax 2 + 2 (l-^) a x - 8 ( 1 + ^ ) a -

16 aL 3 27 

+ 3 (1 + 3*)xy2 + ( l + 3 ») ay 2 j (3 -

My = - 1 |"(l - 511) xJ + ( l + 3)i)ax2 _ 1 ( l - u) a 2x - (iru)a3 

16 a L 3 27 

p 2 1 
+ 3(3 r JLl)xy- + (3 + n) ay" J (3 • 

- q (l-u) |3x 2y + 2 axy - a 2y + 3 y 3 / (3 
in ., L 3 J v 
l b a 

A l l tho terms in Equation 3-10 contain y so TIxy i s aero along tho x axis. 

Setting the partial derivatives of Mx and My wiiii respect to y equal to zero and 

solving shows that the only valid solution i s for y = 0. The refore Mx and My are 

a maximum along the x axis. Equating y to zero and introducing the notation 

S =s ~ , the moment equations become a ' 1 
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The moment at t!)e centroid of the triangle i s 

Mx * = ^ < W J ( 3 - 1 3 ) 

Since the magnitude and .vosition ox" the maximum laomunt is a function of jx, moments 

for various ji and S have been computed and are plotted in Graph 3 - ! • 

X 

F i g 3 - 6 

The moments on any element of area in the plate as shown in Figure 3 - 6 

are given by 

and 

Mn = Mx cos3d + My S\ns d - 2 M.</ s'md coad 

Mnt = M*y (cos*oi - sin*o( ) + (Hv - My j sin** cos -k 

( 3 - 1 4 ) 

wheie is the angle between the x raid n axes, The maximum value of Mn occurs at 

y = 0 and d= go and is therefore equal to the maximum valua of My plotted in 





Graph 3 - 1 . The absolute maximum value of Mnt occurs at y = 0, x = .405a and 

oC = 4 5 ° and is equal to 

Mnt = + la3 ( 3 - 1 5 ) max — * 

The corresponding moment on this plane is from Equation 3 - 1 4 

The differential equations for the shear forces- as defined in Fig 3 - 5 

are 

d us + dxur 
^ dx \ doc3- * 

( 3 - 16) 

Therefore 

and 

+ 3 ^ 2 J ( 3 - 1 7 ) 

(?y = - | ^ [ 3 5 c + a j (3 - 13) 

a The shear force along the edge x = - 5 is 

and is identical to the shear force on the other two sides by symmetry. The sheer 

curve is shown also in Graph 3 - 1 . The maximum shear on the edge, at y = 0, is 

also the raaxinun 3hear force in tJie plate with a v.-iluc 
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Q, 
4 

(3 - 20) 

The average shear stress along tho edge of the triangle, obtained by dividing the 

total lo.-.d on the plate by the perimeter i s 

(3 - 21) 

Therefore (3 - 22) 
^'A rrux = 

The distribution of reactive forces along the edge of a plate is not 

usually the same as the distribution of shear forces Q. Thi3 is because the 

twisting moments Kxy and Myx contribute an extra load term to the shear Q. The 

twisting moment Hxy acting on an element of length dy may be' replaced, using Saint 

Variant's principle, by two vertical forces Kxy, dy apart, as shown in Figure 3 - 7p 

Mxy 

Fig 3 - 7 

Summing the forces in the z direction show that the distribution of tho twisting 

moments is statically equivalent to a distribution of shearing forces of - dffox 

per unit lengths Therefore tlie reactive force is 



Vx = Qx - <t]±y (3 - ?3) 
3y 

£1 
For tlie equilateral triangle along the edge x = -3 , 

3 M x y = q^O-M) (ly* _ a< ) 
3y /6 <x (3 - 24) 

Therefore the reactive along this edge i s 

Vx = _ A- \ I2y*-4CL2 + 0zu)(9yx- a.2 ) ] 
1 ^ L (3 _ 25) 

This curve is also plotted in Graph 3 - 1 lor values of p. = 0 and - 3 only. 

Since the two curves l i e close together, intermediate values o fju aru easily 

interpolated. 

D. COMBINED STRESSES 

1. Isotropic Plate. 

Before computing the bending stresses and combining them with the 

membrane stresses, i t is convenient to define the stresses that may oc<;ur. In 

Figure 3 - 8» a lomi.ua of the element of j;;lnte i s separated and the symbolism and 

positive directions of the stresses indicated. 

http://lomi.ua
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Figure 3-8 

The normal stresses, denoted by Un and (it arise from bending moments Mn 

and Mt and membrane forces Nr. and Ht respectively. Shell theory gives the ciembrane 

forces-in the $ and. & directions only. If the <Pj Q co-ordinate axe3 are not co

incident with the n, t axes, Kn and Wt mu3t be determined from either Mohr's circle 

of Ng> and or the corresponding equations. Remembering that the units for N 

are lbs per unit length and for M are inch-lbs per unit length, then the stress at 
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the outside fibre i s 

(Tn _ Nn. + Mn » (3 . 26) 
A " z 

where A and Z are the area and section modulus of a unit length respectively. 

In determining the most severe combination of stress, i t should be remembered 

that the equilateral triangle has three axes of symmetry and the equations 

previously derived used only one such axis. Also, the position and orientation 

of the triangle within the shell may vary somewhat. 

The membrane shear force Nnt and triangle twisting moment Mnt 

produce shear stresses T « t = >-tn . Shear stresses from Nnt are uniformly 

distributed across the thickness of the plate. Shear stresses from Mnt are 

distributed linearly, increasing from zero at the middle plane to a maximum at 

the outside fibre. Tnerefore the shear stress at the outside fibre is 

T«t = Nnl + Mnt -fe (3 - 27) 
A h 

The shear forces Qn and Qt produce snear stresses 'Tni=~zn and Tti*Tzt 

and do not combine with any stresses produced from shell action. These 

stresses are distributed parabolically across the plate with the largest stress 

at tne middle plane. Therefore at the middle plane 

Tnz = 3_ j£jx (3 - 28) 
2 h 

The maximum shear stress in the plate i s , from Equation 3 - 20, 

T n z = Txz = A Qx max = 3 ( 5 - 2 9 ) 
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2. Plywood. 
The equations previously derived are based on an isotropic material. 

Plywood, however, is not isotropic and the stress equations must be suitably 
modified. Since two dimensional stress is not usually encountered in the design 
of more common plywood structures, a brief discussion is included here. 

The strength properties of an element of plywood vary with the 
orientation of the element with respect to the face grain. However, in computing 
the allowable forces, the element is always considered as oriented so that the 
n and t axes are parallel and perpendicular to the face grain respectively. 
Therefore the forces acting on an element are resolved into components giving 
normal and shear forces as shown in Figure 3-9. Then the forces must be such 
that-

(3 - 30) 

where denotes the actual forces acting and F denotes the permissable 

P, 

Fig. 3-9 
^ Airforce - Navy - Civil Aviation Committee, A . M . C . Handbook on the Design of 

Wood Aircraft Structures, U.S. Dept. of Agriculture>1942, P.38 
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force in that direction i f no other forces are acting. 

In the determination of normal stress, only those plies with their 

grain parallel to the applied force are considered as acting. The areas, section 

moduli and moments of inertia parallel and perpendicular to the face grain for a 

one foot wide strip are tabulated in Table 1 of the Douglas Fir Plywood Technical 

Handbook. Denote these values by An, At, Zn, Zt, In and It respectively. Then 

the combined normal stresses at the outside fibre capable of resisting stress are 

Tn = Nn ± Mn v \ 
An Zn " J 

and { (3 - 31) 

ut = N t r Mt 

At Zt 
The shear stress Tnt =Ltn i s called "shear through the thickness" in 

the Douglas F i r Plywood Technical Handbook. In computing this shear gtress, the 

whole cross sectional area i s considered as acting. Therefore the equation 

derived for an isotropic plate may be used. 

The values of ffn , fit and Tnt for a point (x, y) are1 substituted 

directly into Equation 3-30. Tlie allowable stresses in the denominator of this 

Equation may be obtained from Table 3 of the Douglas Fir Plywood Technical Handbook. 

The worst stress condition occurs where tlie left hand side of Equation 3 - 30 is a 

maximum. This maximum value depends on the co-ordinates of the point, the Orienta

tion of the face grain and tlie position and orientation of the triangle in the 

shell. Therefore i t is not feasible to determine where the maximum occurs other 
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than by a trial and error process. It is recommended here to determine the 

maximum stresses in the triangle from lateral loads only and then combine them 

with the membrane stresses in the most severe possible way since i t is almost 

certain that one triangle will be oriented such that this condition applies. 

The shear stresses Tnz-Tzn and f e z . =Tzt produce rolling shear in 

plywood. The distribution of shear stress is irregular because only those plies 

parallel to the shear stress act. The shear stresses are given by 

Tza = fa?n, 5a 
In W 

and . (3 - 32) 
Tzt , £*JL 

It W 

where Sn and St are the first moments of area of those plies parallel to the 

n and t axes respectively outside the plane considered. The symbol W denotes 

the width of the section and the symbols Qn, Qt, In and It arc as previously 

defined. First moments of area are not tabulated in the Douglas Fir Plywood 

Technical Handbook and so must be computed from the tabulated thicknesses of 

the plies. The distribution of rolling shear is indicated qualitatively in 

Figure 3-10 for both the n and t directions of a typical section. The 

shear stress is constant across a perpendicular ply and is distributed 

parabolically across a parallel ply. Therefore the maximum rolling shear for 

both the n and t directions may be evaluated at the glue line of the innermost 

ply. Though the shear stress at the neutral axis for either the n or the t 

directions is numerically greater, i t is not rolling shear but horizontal shear. 

Since the allowable horizontal shear stress is greater than the allowable 

rolling shear stress, rolling shear remains the criti c a l stress. 



Fig. 3 - 1 0 

E. BUCKLING OF A TRIANGLE 

The di f f e r e n t i a l equation for a buckled plate i s^ 

where Nx, Ny and Nxy are forces per unit length in the plane of the plate. A 

lower c r i t i c a l stress i s obtained i f Nx and Ny are both compressive since 

tension forces by either Nx or Ny tend to stabilize the plate. In the most 

severe case, Nx = Ny and Mohrs c i r c l e becomes a point so that Nxy s 0/ The 

di f f e r e n t i a l equation then reduces to 

a4ur + z a^m- ^ a4-or = N< / a V + d zus \ 
3 a: 4 dx zdy z 3y* D \ 3xz dy* J (3-34) 

6 S. Timoshenko, Theory of Elastic Stability, 
New York, McGraw-Hill, 1936, p. 524 
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or writing i n shorthand notation 

D 

For an exact solution, some function for the deflection w must be 

obtained which satisfies not only the buckling equation but also the boundary 

conditions for a simply supported plate. The method of solution closely paral

l e l s the solution for bending of an equilateral triangle. However in this case, 

the expression for w i s more complicated and an exact solution does not appear 

to be feasible. 

A solution may be obtained, however, by using f i n i t e difference equations. 

and . o 

The plate i s divided by a grid or network of lines AV^d and V W written for 

each point of intersection of the net. Substituting these expressions into 

Equation 3 - 3 4 gives one equation for each point on the plate. The resulting 

equations are then solved simultaneously for Nx. The degree of accuracy obtained 

depends on the number of points taken or the finess of the grid interval. 

A triangular net i s particularly suitable for obtaining a solution to 

the buckling problem of an equilateral triangle since the net lines are p a r a l l e l 

to the edges of the triangle and the boundary conditions are easy to satisfy. 

Since triangular nets are not i n such common use as rectangular nets, a brief 

explanation i s included here. 



47 

Pig 3 - 1 1 

TRIANGULAR NET 

Referring to Figure 3-8, let 

and 

7 • . It can bo proved that 
4-

and 
9 &z ( 7*u / ) 0 = 9 6 ur, - <£ ur7 - 4-d 

' (3 - 36) 

Dividing the side of an equilateral' triangle into seven equal parts with a 

triangular net gives fifteen points on the triangle as shown in Figure 3 -|2 

Al1en, D.N., Relaxation Methods. 
New York, McGraw-Hill, 1954, p. 146 



By symmetry though., there are only four different points. 

Writing the expressions for ( V̂ W)n> (v*^)"- i and collecting terms vre obtain: 

9 ^ - ( 7 V ) , 

9 ^ ( 7 ^ 

9 £ (7V), = 

9 62 (rtcr), = 

9 r (7*u/) a = 

9 d " ( 7 V ) , = 

9 ( ^ ) * = 

10 or. - 6 ur2 + u/4_ 

- 3 Uf, + 8UJI - 2 1 ^ - 2 Cu~4. 

- 4 u£ + l l u/"3 - 5 '.^A. 

- 4 uJz - 5 w3+ 6 W± 

- 46 or, + 18 urz - ix>4. 

9 u/, - 38 usz + 8 + 8 u/4. 

+ 16 UJZ - 47 U J 3 + 17 LU4. 

- ^ + 16 + 17 - 30 

/" (3 - 37) 

(3 - 33) 
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Before substituting into Equation 3 - 3 4 , i t must be modified to 

Nx 6 
D ie> 3 o"2 ( Vzw)n (3 - 39) 

or 

9 6' 
\<6 (3 - 40) 

where 

• " (3 - 41) 

Substituting Equations (3 - 37) ;jnd 3 - 38) into Equation (3 - 40) and collecting 

terms give 

(10 + 460 )UJ, - (6 + 18(3 ) uSj, + 0 +(1+0 ) ^ 4 - = 0 

- (3 + 9 3 )wi + (8 + 38(3 ) arz - (2 + 8.3 )u>"- (2 + 8,3 ) u £ = 0 

0 - (4 + 16 3 ) uij. + (11 + 473 )w3 - (5 + 17(3 )u£ = 0 

(1+0) us, - (4 +I6(3)a£- (5 + 17^)u^+ (6 + 30(3)u£ = 0 

One solution of tlie four equations is .'»' = 0. However tMs is not a buckled shape 

and i s therefore a t r i v i a l solution. The only non zero solution i s for the deter

minant of the coefficients to vanish. Therefore the solution of the four 

equations i s obtained from 

0 (l+(3) 

-(2 + S3 ) -(2 + 8(3 ) 

( l l + 47(3 ) -(5 + 17(3 ) 

(10 + 460 ) 

- ( 3 + 30) 

0 

(l +(3) 

- (6 + 183 ) 

(8 + 380) 

- (4 + 16(3 ) 

- ( 4 + 16(3) - ( 5 + 17(3) (6 + 30(3) 

= 0 

which yields 

1, 141, 114(34"+ 820,358(33 + 2 0 7 , 8 5 8 3 % 21,266 0 + 686 = 0 

The real root of this equation giving the smallest compressive load i s (3 = - .059 
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Substituting into Equation 3-41 gives 
z 

16 D 
= - . 059 

Replacing by i t s value multiplying the numerator and denominator by n 

and arranging terms, the critical load is 

(N,)er . -*.<.(. 110 
b 

where b is the length of the side of the triangle. The form of Equation 3-42 

is now the same as the form of the buckling equation for a column since Da EI. 

The minus sign in Equation 3-42 indicates that the critical force is 

compressive as was suggested in the previous discussion of the buckling problem. 

A similar procedure using a different number of points on the 

triangle gives various values of K in the equation 
(Nx)cr- _ K 0 

(3 - 43) 

Plotting a graph of K versus the total number of points on the triangle gives 

the curve shown in Figure 3-13. Since the curve is asymptotic io 

K a - 4.75, the equation for buckling of a simply 

-5 

K 

-4 

K = - 4•75 

5 IO IS 

T o t a l • Number of Points 

2.0 
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supported equilateral triangle i3 

(Nx) = - 4.75 jHp_ (3 - 44) 
b 2 

Not a l l the triangles comprising a geodesic shell are equilateral so that 

the coefficient K must be determinea for other shapes as well. For convenience, 

only isosceles triangles are considered so that the shape of a triangle is determin

ed by the two x>£rameterst b and X , as defined in Figure 3-14. For the sane 

i g 3-14 
8 

stress conditions, Nx = Ny, Timoshenko gives tho buckling load on a simply support

ed isosceles right triangle, JT = 45°, as 
(Nx) = - 10 "* p 

b 2 

While a l l the triangles encountered in a geodesic shell l i e within the range 

45°< r * 60° 

i t i s not safe to assume a linear variation of K. Since boundary conditions are 

8 S. Timoshenko, Theory of Plates and Shells, 
Hew York, McCraw-Hill, 1940, p 311 



hard to s a t i s f y without convenient co-ordinates, i t i s i m p r a c t i c a l to invesLigate 

cases w i t h i n the range 

45° < X < 60° 

However, i n v e s t i g a t i o n of a few cases outside t h i s range makes i t possible to draw 

the curve of K and Y with s u f f i c i e n t accuracy. 

For tlie case Y = 30°, using a t r i a n g u l a r net and w r i t i n g four f i n i t e 

difference equations again, the c r i t i c a l load i s 

(Nx) •= -32-JHB. (3-45) 
b a 

9 
The buckling load f o r a simply supported rectangular plate when Nx = Ny i s 

(Nx) =-iLlp_(l + -! (3-46) 
b* a 

when a and b are the lengths of the qides. This formula may be used to i n v e s t i 

gate tlie l i m i t i n g conditions of Y - 0° and IC = 90°. As Y ~*~ 90°, a-^co and 

<te> - - (3 - 47) 

As Y-+- 0°, a-*-0 and 

(Nx) - -co 

Graph 3-2 shows the r e s u l t of p l o t t i n g K as ordinates and Y as abscissae, 

Timoshenko, S., E l a s t i c S t a b i l i t y 
New York, McGraw-Hill, 1936, p 333 





Some of the t r i a n g l e s encountered i n the dome may be scalene instead of 

i s o s c e l e s . The change from an is o s c e l e s t r i a n g l e i s not great. Therefore s u b s t i 

t u t i n g with care an is o s c e l e s t r i a n g l e f o r a scalene t r i a n g l e gives a good value 

of the c r i t i c a l l o a d . 

Despite the f a c t that there i s some r i g i d i t y at the boundary, assuming 

simply supported plates i s not unreasonable because one plate may buckle i n and 

the other out a3 shown i n Figure 3 - 15. Therefore the j o i n t r i g i d i t y does l i t t l e 

to prevent' buckling. 

Buckled Shape 

F i g 3-15 
The f l e x u r a l r i g i d i t y of a p l a t e , appearing i n the buckling equation, i s 

where h i s tlie thickness of the p l a t e . L e t t i n g j u = o, the f l e x u r a l r i g i d i t y 

becomes „, 3 

D = f§ = E I (3-49) 

since ^ /l2 i s the moment of i n e r t i a of a u n i t width of p l a t e . While Equation 

3 - 48 i s applicable f o r i s o t r o p i c p l a t e s , Equation 3 - 49 i s be t t e r used f o r 

plywood; Using E = 1.8 (l0°) and determining the average I from Table 1 of the 

Douglas F i r Plywood Technical Handbook, an average f l e x u r a l r i g i d i t y i s e a s i l y 

obtained. 
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F. BUCKLING OF THE SHELL 

Since the analysis of the c r i t i c a l stress of thin shells i s a fai r l y 

complex problem no attempt will be made here to present the lengthy differential 

and energy equations. Instead, the general attack and final results will be 

discussed and the latter put into a form useful for the design of geodesic shslls. 

The latter part of this section is devoted to the application of these equations 

to plywood since the original derivations assume an isotropic plate. 

For a spherical shell under a uniform external pressure p, Mohr's 

circle of stress i s a point and 

<r - f £ ( 3 - so) 
For this stress condition, the so-called classical theory of buckling of thin 

shells gives a c r i t i c a l 3tress of 

O'er - ' Eh 

VJc ' r^y f (3 - 51) 
This classical theory assumed small deflections and a buckled surface dependant 

only on cp and independent of 0. However experimental results give a buckling 

stress three times lower than the classical theory. A similar discrepancy also 

exists between the theoretical and experimental analysis of cylindrical shells 

under axial load. Many well known scientists attempted to explain this discrep

ancy by considering the effect of end conditions and i n i t i a l deviations from the 

true shape. Their results indicated a plastic failure of the material which is 

not substantiated experimentally since releasing the load removes the buckling . 

waves. Also buckling occurs suddenly.not gradually as is required for a plastic 

failure• 



The real reason for Hie discrepancy was later explained by T. von Karman 

and Hsue - Shen Tsien*^. These authors pointed out that the classical theory 

assumed small deflections and thus obtained a linear differential equation 

determining the equilibrium position of the shell whereas actually large deflec

tions occur and the differential equation i s non linear. They also observed 

that the buckled wave form was not as predicted by the classical theory but formed 

a small dimple subtended by a solid angle of approximately sixteen degrees. 

Therefore they confined their analysis to one dimple indicated in Fig 3-16. 

Fig 3-16 

They assumed that : the solid angle 2 0 is small, the deflection i s 

rotationally symmetric, the deflection of any element of the shell is parallel 

to the axis of rotational symmetry and that Poisson's ratio i s zero. They then 

obtained an erergy equation for the extensional energy before and after buckling, 

the bending energy, and the work done by the external pressure during buckling. 

Th. von Karman and Hsue-Shen Tsien, "The Buckling 'of Spherical Shells by  
External Pressure", Journal of the Aeronautical Sciences, vol. 7 (December 1939). 

pp. 43 -50 
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Minimizing this expression to obtain the lowest energy condition gave an expression 

Ff C ( azf M •) 

, EK " 7 \ P h 9 K / (3 -52) 
where u^is the maximum deflection of the dimple. Then assigning a value to either 

(3 ~- or ^ , a plot of the remaining two dimensionless quantities is obtained. 

Such a plot i s shown in Graph 3 - 3 • From this graph the minimum value i3 
(TP 

0|F£- ) rdn = . 183 (3 - 55) 

This value of the c r i t i c a l stress is approximately three, times lower than the 

classical theory anu corresponds very closely with experimental results. That 
rrp 

large deflections occur i s shown by the fact that for the minimum value of , 

= 10 whereas small deflection theory requires that ^ — . 

Since the shape of a geodesi-; shell so closely conforms to the shape 

of a true sphere i t seeras reasonable to apply Karman and Tsien's results to shells 

of this type. Since the shape of the .̂-eodenic shell i s not exectly similar, the 

work done by the external pressure is less than in the Karman and Tsien analysis. 

However tlie bending energy of the joining battens is not included so that any 

error tends to balance out. The magnitude of the solid angle subtending the 

buckled dimple is approximately sixteen degrees. This suggests that in a geodesic 

shell the apex of a group of five or six triangles would buckle inwards. Buckling 

commences at least as a type of local instability since tho dimples are small and 

were analyzed as a single unit. Therefore even though a shell under external 

pressure i s an unusual load for a roof a3 a whole, i t is very nearly the' case for 
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the section near the crown. At tlie crown, dead and live loads produce equal 

membrane stresses i n a l l directions and the load is nearly normal to the surface. 

Therefore the loading at the crown is the same as for a spherical shell under 

external pressure and the energy expressions of Karman and Tsien are. justified 

for this section of the roof. At other sections of the roof the loading is less 

severe with regard'1 to buckling since the external load is less and the membrane 

stresses are smaller. 

Instability may occur in a geodesic shell i n one of two ways. A 

group of triangles may buckle or an individual triangle may fcuckle. In the f i r s t 

case, as presented in this section, ("jr^ ) is a constant* In the second case, 

discussed in the previous section, the buckling force is v 

N c r = K JLfD (3 - 43) 
b 

where b is defined as the base of the triangle and K i s a constant depending on 

the shape of the triangle. However the base i s a function of the radius. 

Represent this function by A which is tabulated in Chapter II. For the case 
Eh 3 

jx = o, D = — and the c r i t i c a l force is 

Ncr = K TT2 E h 3 

L Z ^ F 2 ( 3 - 5 4 ) 

This function is plotted in Graph 3 - 4 for an equilateral triangle and various 
9 (Tf 

values of -r- . Superimposed on this graph i s the straight line ~ — = .183 , ft ah 
p the c r i t i c a l condition for shell buckling. Entering the graph with values of ±-
n 

and A determines which type of buckling occurs at the lower stress. 
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erf 
For plywood, substituting into the dimensionless quantities — and 

Eh-
P -pj- immediately raises the question of what values to use for E and h. If the 

f u l l thickness i 3 used then E must be reduced from the parallel to grain value to 

some smaller average value. Thi3 procedure is given in the Wood Handbook. 

However there i s an easier approach which yields almost identical results. In 

the previous section the flexural rigidity was modified to 

3 3 
Ml 2 ~ 5k- = E I ave. (3 - 49) 
12(1-/) 12 

where lave is the average of the moments of inertia parallel and perpendicular 

to the face grain for a unit width.. Carrying thi3 approach one step further 

gives 

h *ff = Vlave (3 - 56) 
when lave is for a one foot width. Equation 3-56 defines an effective thickness 

(Tf f 
in inches for substituting into the dimensionless Quantities — and ,-

Eh h used 

in Graph 3 - 4 . When the effective thickness is used, Young'3 modulus may be 

taken as E = 1.8 x 10^ p.s.i. Values of the effective thickness are tabulated 
in Table 3 - 1 . This table illustrates an interesting relation between the effect-

may 

ive and nominal thicknesses. Therefore the effective thickne3S^equally well be 

taken as 
h = . 7 9 h. 

^ Forest Products Laboratory, Wood Handbook. 
Washington, U. S. Department of Agriculture, 1955, p.280. 



Table 3 - 1 

h In I x lave hcff 
K 

3/8 S .0435 .00926 .0264 .298 .795 
3/8 U .0427 .00474 .0237 . .287 .765 

1/2 S .0730 .0520 .0625 .397 .795 
1/2 U .0961 .0252 .0606 .392 .735 

5/8 S .121 .123 .122 .496 .794 
5/8 U .194 .0353 .1147 .486 .777 

3/4 3 .228 .194 .211 • 596 .795 
3/4 U .260 .160 .210 .594 .792 



CHAPTER IV 

EXPERIMENTAL ANALYSIS 

A. PRELIMINARY CONSIDERATIONS. 

Because of a lack of tabulated functions, the exact analysis was 

not obtained. The approximate solution developed used smooth shell theory to 

give the average membrane force on the edge of a triangle but did not give the 

distribution of these forces. The Fourier analysis for the distribution of the 

membrane forces also lacked tabulated functions so i t was necessary to obtain the 

distribution experimentally. Therefore the purpose of the model analysis is two

fold. First of a l l , i t should demonstrate the validity of applying the membrane 

theory of smooth shells to folded plate shells as outlined in Chapter 3. 

Secondly» i t should indicate the distribution of membrane force along- the edges 

of the triangle. It is not the object of the experimental work to ascertain the 

stress at all points of the dome. 

60 
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The previous chapter suggested that the distribution of membrane force 

was, in part, dependent on the dihedral angle formed by two adjacent triangles 

with the highest stress riser accompanying the largest departure from a dihedral 
o 

angle of 180 . Excluding the icosahedron as too rough an approximation of a 

sphere, the next worse case is a sphere composed of 80 triangleso The size of 

the triangles is governed by the number of points necessary to plot accurately 

the distribution curve. Electric resistance strain rosettes are approximately 

two inches square. Therefore to obtain a distribution curve along the edge of a 

triangle from seven or eight points, the minimum size of triangle must be sixteen 

to eighteen inches on a side. These criteria outline the geometric limiting 

conditions of the model. 

The three materials considered for making the model were aluminum, 

plywood and plexiglas. With the equipment available, plywood is the easiest to 

work with, followed by plexiglas then aluminum. The disadvantages of plywood for 

model analysis though are important. It is not isotropic with the result that the 

principal strains are not in the same direction as the principal stresses. In 

addition, the elastic properties vary uncertainly with a change of moisture 

content in the plywood. The numerical value of the elastic properties is another 

prime consideration. Values of Youngs ModuluB are approximately: 

Aluminum 10 x 106 lb/ i n 2 

Wood 1.8 x 106 lb/ i n 2 (Parallel to grain) 
Plexiglas 0.5 x 106 lb/ i n 2 
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The comparatively heavy loads required to produce high membrane stresses in a 

shell are difficult to apply in the laboratory without special loading equipment. 

But for the same load and cross sectional area, plexiglas gives strains twenty 

times larger than aluminum. These larger strains axe mora accurately read on 

the strain indicator* To obtain the same strain for a given load, aluminum must 

be l/20 the thickness of plexiglas. This, however, reduces the buckling load 400 

times and aluminum sheet becomes more unstable than plexiglas. Weighing the 

advantages and disadvantages so far outlined, plexiglas appears the most suitable 

material for the model. 

Plexiglas does have a definite tendency to creep, particularly at the 

higher stresses. About 85% of the creep occurs in the first few seconds of 

loading and the remaining 15$ over a period of ten to fifteen minutes. However 
* 

the unit stresses are so low and the time factor so short that creep is not of 

major importance in this case. 

B. DESCRIPTION OP MODEL 

After some thought and a few preliminary tests, i t was decided to build 

a five foot diameter hemisphere of forty triangles made from l/8" plexiglas. 

This gives ten equilateral triangles 18.54 inches on an edge and thirty 

isosceles triangles with a base of 18.54" and two sides 16.40 inches. Pictures of 

the model are included in the photographic supplement. To resemble a dome in 

actual practise, battens one inch wide and l/4" maximum depth were used to rein

force the joint. The battens were not connected together and stopped short of the 
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triangle vertices by l/4 w. Ordinary OIL cement was used to hold the structure 

together since laboratory tests showed i t to be stronger than other glues tested 

including a mixture of plexiglas and ethylene chloride. The dome was supported 

on a heavy ring about three and a half feet above the floor. The ring resisted 

afly horizontal deflection of the base of the shell but was not connected to the 

shell in a manner to resist rotation of the base of the shell. 

After the triangle thickness was measured with a micrometer, thirty 

eight 8 R 4 strain rosettes were glued on one isosceles triangle. The position 

and orientation of the rosettes and the plate thicknesses are given in Figure 4 -1 . 

The type CR - 1 rosette was used which is made of Iso-elastic wire. In this 

type of rosette j three strain gages are superimposed one on the other and oriented 

at forty five degrees to each other. 

Iso-elastic rosettes were used because they have a Q-age Factor of 3»42 

compared to 2,0 for the more common type of rosette made from Constantan wire. 

If the Gage F actor dial of the Strain Indicator is set at 2.0 when Iso-elastic 

gages are used, the indicated strain is not the true strain. The true strain is 

given by 

G.F. dial 
tz true = t indicated x (4 - l) 

True G.F. v* ' 

Thus Iso-elastic gages magnify the true unit strain by 71$. This is particular

ly advantageous when measuring small strains. The disadvantage to Iso-elastic 

gages is that they are highly sensitive to temperature changes. 
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Pig 4 - 1 Placing of Rosettes as viewed from 
the outside of the shell» Plate 
thicknesses are i n parentheses. 
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The rosettes were wired with a common ground on each side of the shell. 

For the other wires, a simple color code facilited differentiating between gages. 

Red designates a l l gages normal to the edge of the triangle; white, 45° to the 

edge and blue, parallel to the edge. The weight of wire was carried by two 

triangular wooden frames suspended approximately 3/4" above and below the rosettes* 

Since there are 114 active wires and two ground wires leading from the 

shell to "the Strain Indicator* a switching unit would be useful. Investigation 

revealed, however, that this was impractical because the contact resistance of 

commercial type switches was not constant, giving erroneous strain readings* 

Good switching units with a near constant contact resistance are very expensive 

and were therefore beyond reach considering the number required. The only 

alternative was to connect each wire direotly to the Strain Indicator, individu

ally, as required. To separate tho maze of wires, they were separated in groups 

of nine, attached to circular discs, and clearly labelled. 

It was noticed with the temperature sensitive gages used that when the 
ttie. 

circuit was closed,AWheatstone Bridge did not stay balanced. Visually, the 

galvanometer needle deflected rapidly at first but gradually slowed as time 

expired* A permanent balance of the bridge was obtained about five minutes later. 

This phenomenon was probably due to the heat produced from the electric current 

passing through the gage resistance. Galvanometer equilibrium would then occur 

when the strain gage was in thermal equilibrium. 

Though temperature compensating gages were used, they are not practical

ly speaking 100?o efficient. This slight inefficiency is greatly magnified by the 

temperature sensitive Iso-elastic gages. Therefore any change of room tenqaarature 
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over the period of testing slightly changes the zero load reading of the gage. 

In addition, changes of room temperature induce temperature stresses in the 

model. 

These temperature effects are eliminated by the method of loading. 

One gage is connected to the Strain Indicator and the circuit closed. After 

the Wheatstone Bridge appeared permanently balanced, loads were applied 

relatively quickly, taking intermittent readings, up to the maximum load and 

back again to toe zero load. If the Bridge balance was the sane at the end 

Of loading as i t was at the start, then a l l temperature effects are nullified 

and the recorded strains are due only to the applied load. 

The loading of the shell was accomplished using one hydraulic jack 

and an arrangement of beams dividing the total load into six equal parts. 

One sixth of the load was applied at the top and the remaining five sixths at 

the five uppermost points formed by the five triangles adjacent to the top. 

The total load applied to the shell was measured with a proving ring graduated 

in 1.065 pound divisions. The jack was regulated by levers permitting the 

operator to control the load and read the Strain Indicator from the same posi

tion. 

C. ROSETTE ANALYSIS. 

After a consistent set of readings, void of temperature effects, were 

obtained, the values for each side were averaged and the results were plotted. 

The readings are tabulated in Table 4-1 and a typical graph is shown in 

Figure 4-2. In a l l cases, the results plotted as a straight line. 
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Table 4 - 1 

Gage 

Total Load i n L b s . 

Gage Side A (outside) S,de 3 ( i n s i d e ) Gage 

o loo 200 300 400 0 100 200 3oo 400 

R ia99 \375 \A-58 I540 16 2 1 I35C 1368 1381 1394 140 9 
I w 939 941 9A-2 . 943 944- 1141 1063 983 905. 825 

6 [079 106/ 1042 I02 4 I004- I202 1152 1099 I045 991 

(? \2o3 1213 1223 1233 1242 l22o 1248 1278 007 1338 
a W 1020 978 931 888 843 IO68 I078 to 88 I099 mo 

8 1928 1898 1864- 1831 1799 1183 II 73 1163 1152 114/ 

R \\60 H63 1167 1169 1172 1470 1488 1508 1527 /547 
3 w 1330 I3Q2 1274- 1245 1214- 1238 1252 1270 1288 l3o6 

B 14-60 14-37 14-10 1383 \356 I3IO 1298 1281 1265 I250 

R noo II07 1113 1121 1129 1599 I6Q7 1616 1625 1633 
4 w 1381 1363 134-3 1323 1303 I600 1616 1631 16 48 1663 

B 1121 n oo toje loss 1033 1588 1569 15 5o 1531 1512 

R \3o3 1315 1328 1341 1355 1338 1336 1332 1330 1328 
5 & 1511 1439 1479 1462 144-7 1328 1332 1339 134-1 1348 

6 1440 1420 \400 1380 1359 1259 1240 1221 I20I 1180 

R 1557 1572 1589 1606 1623 1753 1742 1731 1721 (7 IO 
sv 959 940 919 898 878 938 923 909 893 879 
6 1212 1193 H72 1151 1129 888 866 34-2 8ie 793 

f? 1591 I602 1615 I&27 1640 1359 1340 1321 •1302 1283 
7 w 1202 1166 1128 IO88 \050 12.23 1181 1132 1083 IO 32 

B IIJ5 (153 1129 I107 I08I 990 960 927 892 858 

R 1375 1350 1319 1292 1262 II02 I078 I045 IOI2 978 
w 1395 '321 1239 1083 1935 1856 1761 I671 1578 
B 1602 /570 I53J 1500 14-61 I878 I860 1842 1823 I802 

R 14-4-1 144-4- 1443 1451 1455 124-3 1289 I340 1390 1442 
W \3oo 126,8. 1223 1183 1143 I290 1271 1252 1233 1214-
0 14-98 14-31 1358 1236 1212 948 890 825 761 692 

R 1883 l89o 1890 1891 1891 1259 1298 1340 1381 1425 
IO W 1227 1192 1158 U25 (09I 1528 1519 1512 1504 1497 

8 999 933 868 802 733 I530 1477 1419 1361 I30X 

file:///A-58
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Table 4 -1 (cont'd.; 

T o t a l L o a d in L b s . 

Cage Side A (outside) Side B ( i ns i de ) 

• O /OO 200 300 4 o o 0 100 £00 3oo 

n 
f? 

S 

1552 
1340 
9/4 

1549 
1302 
046 

15-45 
1262 
778 

154/ 
1222 
707 

1538 
II 62 
6 32 

1092 
1162 
922 

1138 
II72 
872 

1134 
1182 
817 

1230 
1192 
762 

1277 
1202 
70a 

12 
R 
W 
B 

1297 
IZ50 
1378 

1281 
H93 
1305 

\Z65 
1132 
1225 

1247 
to 71 
1143 

1229 
I0O8 
I06S 

IO70 
I5IO 
I470 

1132 
1539 
1421 

l2o/ 
I570 
1372 

1263 
1600 
1322 

1336 
1632 
I27O 

13 
R 
w 
S 

1231 
1379 
15 02 

I2IO 
1488 
1412 

1187 
1387 
1317 
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The slope of the line was determined from the graph and then corrected for isbB 

Gage Factor by Equation 4-1. Hohr's circles of strain were then plotted for a total 

load on the shell of 100 pounds. Strains were converted to stresses by superimposing 

Mohr's circle of stress over that for strain. The results for a typical rosette are 

shown in Figure 4-3. Since the superposition of Mohr's circle of stress over the 

circle of strain is not too common, a brief discussion is included here. 

Normal strains, denoted by£, are positive when they are elongations. Shearing 

strains, denoted by JT, are positive when the originally rectangular element is distort

ed with respect to the co-ordinate axes as shown in Figure 4-4. Then the strain on 

Y 

Fig 4 - 4 

a plane whose outward normal is at a counter clockwise angle 6 to the X axis is 

(4 - 2) 
If3 = (£y -€x) sin 29 + ^xy cos 2 6 $ 

Referring to the principal axes of strain rather than the X and Y axes, Equations (4-2) 

s- € max. + 6nin . £ max - 6 min cos 2 d 
1 (4-3) 

become 
£ fc max 

2 T 2 
Yd = (£rain -6 max) sin 2 d ^ 

where cL is tlie counterclockwise angle from tlie positive principal strain axis to tlie 

outward normal of the plane under consideration. 



F i g . 4 - 3 . 
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Let 

6 max -f € min _ A 

2 

and 

£ max - 6 min = B 
2 

( 4 - 4 ) 

then Equations ( 4 - 3 ) reduce to 

Mohr's 

and \ 

that A 

strain 

= A + B cos 2 

= - 2 B sin 2d. 
( 4 - 5 ) 

stress 

stress 

circle of strain is a plot of 6 as abscissa, positive to tiie right, 

as ordinate, positive down. Prom equations (4 - 5 ) , i t can be seen 

is the distance from the origin to the centre of Mohr'a circle of 

and B i s the radius of the circle. 

Considering stresses as positive when producing positive strain, the 

equations are very similar to the strain equations; Referring the 

or any plane to the principal stress axes, the stress equations are 

^ _ Q~nax + (Twin + G~wax - (Trnin 2.d-
2. 2. 

T = (Tyiin - (Tmax yin. Z <k ( 4 - 6 ) 

But 

max -

\ - / * L 

(fmin _ E 
I -JUL* 

max 
I ( 4 - 7 ) 
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Substituting Equations (4 - 7) and (4 - 4) into Equations (4-6), the stress 

equations become 

A + (-j^) B cos 2otJ (4-8) 
Comparing Equations (4 - 8) with Equations (4-5) show that i f the stress 

E 
scale is — - times the strain scale. Mohr's circles of stress and strain 

I 'A . 

are concentric. Furthermore the radius of the stress circle is 1 7 ^ 

times the radius of the strain circle. 

A piece of Perspex approximately l/8" thick, 2-J-" wide and 17" long 

was cut from the same material as was used for the model. Two strain rosettes 

were attached, one on each side. The specimen was submitted to a tensile test 

in the Baldwin-Southwark Testing Machine. From the readings recorded, graphs 

were plotted and the elastic properties calculated. The results of the tests 
are 

E a 4.64 x 105 lb/in 2 

3 

Referring to Equations (4 - 8 ) and using the determined elastic 

properties show that the radius of Mohrs circle of stress is 2. = -171 
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the radius of Hohr's circle of strain. The co-ordinates of any point on the 

stress circle are measured using tlie strain circle scale and then multiplied 

by i*** 105=, .695 * 10 6: 

While part of the quantitative experimental results are disappointing, 

the overall results are reasonable. The application of smooth shell theory to 

thi3 type of folded plate shell does seem justified." Any slight discrepancy 

between theory and experiment in tlie model is greater than the corresponding dis

crepancy in a shell composed of more triangles because the latter is a closer 

approximation of a smooth shell. Therefore, to obtain the maximum membrane stress 

in a folded plate shell, the smooth shell membrane stress is multiplied by tlie 

appropriate s tress riser from Graph 4 - 1 . 

D . RESULTS 

From Hohr's circle, the normal and shear stresses were determined on the 

planes parallel to the- edges of the triangle. The resulting stress distribution 

curves are shown in Figures ( 4 - 5 and (4-6). These curves prove that the stress 

distribution is not linear as in smooth shells but rather a parabolic shape. There 

is an unsymmetrical normal stress reversal near the upper vertex on the side of the 

triangle lying in the meridian. This peculiarity may perhaps be explained by the 

fact that part of the load was applied at the vertex of the triangle. The proximity 

of'the concentrated load may result in secondary effects at this point. Except for 

this one point the rest of the points appear to plot as relatively smooth curves. 
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Fig 4 - 5 Distribution of Normal Stress 
in p.s.i. on the Gage Line Triangle 



To follow 

r =-11.35 

Fig 4 - 6 Distribution of Shear Stress 
In the RB plane of the Gage Line Triangle 
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In order to check the accuracy of the experimental work, the curves 

of Figures ( 4 - 5 ) and (4 - 6 ) were plotted to a much larger scale on graph 

paper. The area under the curves was determined and then replaced by concen

trated forces and moments as shown in Figure (4 - 7 ) . The forces shown are 

all in the same plane so there are three equations of equilibrium. Taking an 

arbitrary set of axes as shown and writing the three equations giveB 

ax « + 4 . 2 1 - 5 . 1 6 » - 0 . 9 5 lb 

gy = + 4 . 0 4 - 3 . 8 6 = + 0 . 1 8 lb 

£ H a + 7 1 . 4 9 - 6 4 . 9 5 = + 6 . 5 4 in'.lb 

The additional force required for equilibrium acts as shown in the Figure. 

The results of the sum of the forces in the X direction is not particularly 

good. However the results of the £ Y and the £M are fairly good with an 

error of 4 ^ and 9 ^ respectively. 

To compare the experimental forces to the theoretical forces, the gage 

lines must be produced to the actual boundary of the triangle. This results 

from the fact that the membrane force distribution in the folded plate shell 

is not linear, the majority of the force being near the edge of the triangle. 

In computing the theoretical forces, Equation (l - 2 ) was used. It was re

fined slightly by using for the actual slope of the particular plane t r i 

angle and not the $ for the spherical triangle. This ̂ procedure ls justified in 

this case because the model is a much poorer approximation of a sphere than 

one formed of more triangles. The results are shown in Fig 4 - 8 . Though 

there is a slight displacement of the normal forces, numerically, they agree 

very veil* 



a.GO ib. 

Fig 4 - 7 Resultant Forces on Gage Line Triangle 
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Fig 4 - 8 Comparison of Experimental 
and Theoretical Results. 
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That the loads on the shell are supported by membrane action and not 

bending action may be demonstrated in yet another way* A transit set up 

thirteen feet from the model was sighted on the crown where part of the load 

was applied as a concentrated force. When the f u l l load of 400 pounds was 

applied to the shell, this point deflected only two hundredths of an inch. 

This deflection was verified more accurately using a dial gage. Similarly, 

the transit was sighted on a point of the model where <p»* 60°. Under full 
load, no vertical or radial deflection was observed since any deflection that 

did occur was so slight that i t was obscured by the transit cross hairs. These 

deflections show that the loads are carried predominantly by membrane action 

because bending would produce larger deflections. There may be some bending 

action however, beneath the concentrated loads. 

The stress riser was determined from large scale curves of Figure 4-5. 

These curves were produced to the boundary of the actual triangle. The area 

under approximately one half the curve was determined and converted to an 

average stress. Then the stress riser is 

K _ (Tmax. 
SR — 

U awe. 

The results are plotted in Graph 4-1. There are only five points plotted 

instead of six because of the unsymmetrical stress reversal discussed previously. 

When the deflection angle is 180°, the stress riser i 3 equal to one as in a 

smooth 3 h e l l . This enables a fairly good curve to be drawn despite the fact 

most of the experimental points plotted are for relatively small dihedral angles. 





CHAPTER V 

DESIGN OF A PLYWOOD, GEODESIC SHELL 

A. INTRODUCTION 

After ths size and shape of the spherical shell have been determined, 

the geodesic geometry may be selected with the aid of Figure 2 - 8 . As this 

Figure gives only average values, the triangles should be laid out accurately 

and the altitudes scaled as a check that the triangles can be cut from a four 

foot wide panel. Less material i s wasted i f the triangles are cut from panels 

longer than the standard eight feet. Since long panels are more expensive per 

square foot, the economy between the two alternatives should be investigated. 

When the dead load has been estimated and the live loads determined, 

the membrane forces from each load are computed individually using smooth shell 

theoryo Graphs 1 - 1 and 1-2 may be of use for this determinationo The mem

brane forces from the various loads are then combined to give the largest 

72 
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numerical membrane force for a given angle <p. Since the largest membrane 

stress occurs at the vertices of the triangle, the smooth shell stress at this 

point must be multiplied by the appropriate stress riser from Graph 4 - 1 . 

At interior points in the triangle, the membrane stresses-are 

combined with the stresses arising from lateral loads on the triangle. Since 

these points are remote from the vertices, the membrane stresses are not 

multiplied by a stress riser. 

The forces required for buckling of the triangle and the dome must 

also bo computed and compared to the actual membrane forces. Buckling is 

caused by an average force on the triangle so that no stress riser is used. 

Buckling probably will occur within the elastic range and may govern the 

design. The factor of safety against buckling should not be less than four. 



DESIGN NOTES 

for 

PLYWOOD FOLDED PLATE HEMISPHERE 

WITH A 281 RADIUS. 
* 

Geometry; 

The hemisphere may be formed from 640 triangles of ten kinds using 

the geometry from Table 2 - 4 . An accurate check of the geometry shows that 

the equilateral triangle has the largest altitude. For a 28 foot radius, this 

altitude i s four feet and the triangles may be cut from the standard four foot 

width panel. 

Dead Loadt 

Plywood 2 psf 

Battens, waterproofing 3. 
interior facing and lighting 5 psf 

Live Load: 

The National Building Code for the Vancouver area gives: 

(a) Snow Load - 40 psf of horizontal area 

(b) Wind - 90 mph gust velocity 

At a height of 20 feet above the ground, the Code gives a wind force 

of 18.5s* 20 psf. of which approximately half i s distributed on each side of the 

structure. Therefore for External wind use p = 10 psf. Wind action may also 

produce a uniform internal radial force, either in or out, of .2(20) = 4 psf. 



Membrane. Forces in lbs/ft ( Forces marked *• do not occur simultaneously 

9 
Dead Load Snow Load ' Ext. Wind. Int. Wind Abs. Max. 

(no wind) 
Abs. Max. 

{wind ) 6 - 0' Wind 
6 = 30' 
Nye 

9 
Ng> Ne Ne N<f Ne N& Ne N 9 Ne N<p Ne 

Wind 
6 = 30' 
Nye 

-70 -70 -600 -600 0 0 ±56 ±56 -670 -670 -726 -726 O 

10' -•71 -67 -bOQ -564 ± 1 2 + 37 M •• -671 
* 

-631 -739 -724 ± 1 2 

2.0° -73 -59 -COO -460 ±24 +72 »• -673 -513 -753 -647 ±25 

30° -15 -46 ~57<o -198 ±33 ±107 M •• -651' -244 -740 -407 ±38 

AO' -79 -28 -528 +60 ±41 ±139 ' 1 •• -607 +60 -704 +255 ± 5 3 

50' -8<b -4 -468 +264 ±45 ±170 it -554 
* 
+264 -655 *+490 ± 7 0 

60° -94 +23 -408 +360 ± 44 ± 198 II •• -502 +383 -602 
* 
+637 ± 9 0 

70° -104 -354 +354 ±39 + 224 i' -458 +410 -553 +690 ±114 

80' -119 -318 +3IS ±25 ±251 » ti -437 + 413 -518 +720 ±145 

90° -140 + 140 -295 
« 

+295 0 
• 

±280'-
** 

• I -435 +435 -491 
* 
+771 ±187 
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Assume 5/8" Sanded, Douglas Fir Plywood, Good 1 Side 

This size plywood has five veneers; two faces each l/lO" thick, two 

cores perpendicular to the face each l/6" thick, and one centre core parallel 

to the face l/6" thick. The properties for a 12 inch width, where n and t are 

the axes parallel and perpendicular to the face grain respectively, are: 

.An = 3.47 i n 2 At = 4.03 i n 2 

Zn = 0.388 i n 3 Zt = 0.488 i n 3 

In = 0.121 i n 4 . It = 0.123 i n 4 

The allowable working stresses in psi for dry location are: 

Tension 

Compression 

Shear through 
the thickness 

Rolling Shear 

Tn = Ot = 1875 

(Tn= fft = 1360 

r „ t = I t * = 192 

Tzn = Tzt = 72 



No Wind 

The maximum stresses i n a triangle from a lateral snow load occurs 

when <P± 20°. One severe combination of membrane forces act at <p= 0°. 

Therefore, the triangle adjacent to the crown must be analysed. The 

average membrane forces are Ny = Ne = - 670 lbs/ft and N$>e =0 and the 

lateral snow load i s 40 lb/ft . The points to be analysed are shown in the 

Figure. 

\ 
\ 

/ 
" / 

Axis of Symmetry 



73 

Point 1 

The combination of membrane stresses i s a maximum at this point o 

Kohr's circle i s a point,. Prom Figure 4 '- 9» KSR= 1.7. Therefore the 

stresses are 

(7n «= - 670 (1.7) = - 328 psi 
3.47 

(ft = - 670 (1.7) = - 283 psi 
4.03 

TJnt = 0 

Substituting into Equation 3-30 gives 

< 1 3 » > 2 * ( 1 ^ ) 2 + < l9? ) 2 " -058 + .043 = .101« 1 

Point 2 

At the centrold of the triangle Mx = My = 14.8 lbs. 

Mohr's circle of moments i s a point and Mohr's circle of membrane stress i s 

also a point so that the same stresses occur on a l l planes considered. From 

Equations 3-31 the stresses are 

(Tn = - 620 + 14.8 (12) = - 193 - 457 = - 650 psi 
3.47 .388 

0~t = - 6J0 + 14.8 (12) = - 166 + 364 = - 530 psi 
4.03 .438 

Tnt = 0 



Point 5 

At t h i s point My i s a maximum but Mx = 0 The severe o r i e n t a t i o n 

of the plywood i 3 when the n axis i s coincident with the y a x i s . Then 
1 v. 

Mn = 16 l b and Nn = Kt = - 670 / f t . The stresses are 

(Tn = - 670 + 16 (12) = - 195 ± 495 = - 688 p s i 
3 .47 ~ .388 

(Tt = - 620 + 0 = - 166 p s i 
4.03 

Tnt = 0 

Then 

/ 688x 2 + / _ 1 6 6 \ 2 = .257 + . .015 = *272<1 
K1360J V 1 3 6 0 ; 

Point 4 

At t h i s point Mnt i s a maximum when the n axis is 4 5 ° to the x a x i s . 

Mohr's c i r c l e of membrane s t r e s s i s a point so Nn and Nt act a l s o . The values 

of the moments and forces are 

MntJ, ._o = + .234 a 2 ( 1 - u ) =» 9 .35 l b s 
^ = 4 5 . " 16 

Mn]o£= 4 5 ° = .05Q_a 2 = 4 l b s 
8 

Nn = Nt • - 670 lb/. f t . 



The stresses are 

(Tn = - 670 + 4(12) = - 193 - 124 = - 317 psi 
3.47 ~ .388 

(Tt = - 670 + 4(12) = - 166 - 98 = - 254 psi 
40 " 488 

Tnt = + 9.35 ~o = 9.35 (6) 64 = 144 psi 
h 25 

Then 

/ 317? + /_25jt2 + /144.2 = .054 + .038 +• .563 = .655 <1 
^1360; v1360y v192; 

Point 5 

By symmetry, Mnt is also a maximum here. However, since Mohr's 

circle of normal stress is a point, the combined stress is the same as at 

Point 4 . 

Point 6 

At this point Q is a maximum giving the largest rolling shear. 

The value of Q is % a . Before determining the rolling shear stress, 
4 

the first moment of area at the innermost glue line must be computed. 
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Reviewing the points just analysed, i t i3 noted that the shear stress 

from twisting moments is largely responsible for producing the most severe 

combination of stress. Therefore if the twisting moment remains constant and 

additional membrane shear stresses occur, a more severe stress condition may 

result. Such a condition may occur at Point 4 when the triangle is at <p= 20°. 

In this position the lateral load is still 40 psf but Mohr's circle is no longer 

a point and is as shown in the Figure. On the plane with maximum shear, the 

N shear 

shear force is N<j> - N 0 = - 77 ^ / f t . and the normal force is 
2 . 

N <p + Ne a - 596 l b / f t 

2 

Point 4 <P = 20° 

The most severe stresses occur when maximum membrane shear and 

maximum twisting moment occur on the same plane. The moments are the same as 

before so the forces and moments ares 

Nn = Nt = - 596 l b / / f t 

Nnt = 77 l b / f t . 

Mn = 4 lb 
Hnt = 93.5 lb 
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Therefore the stresses are 

(Tn = - 596 + 4(12) = - 172 - 124 =-296 psi 
5.47 " .588 

(Tt = - J£6 + 4(12) = - 148 - 98 =-246 psi 
4.03 " .488 

Tnt = XL + 93.5 (6)/82 = 10 + 144 = 154 psi 
7.5 V 

Then 

( i2i? + ( 2412\ + /154? » .048 + .033 + .642 
V1360; V1360 } v192; 

= .723 < 1 

For (p greater than 20°, the membrane shear force becomes larger 

but the twisting moment becomes smaller. The net effect produces a less 

severs stress condition. While the worst stress combination may not have been 

evaluated, its value will vary only a lit t l e from point 4. Since the allowable 

increase is comparatively large before the left hand side of Equation 3 - 30 is 

greater than unity, i t is not necessary to carry the investigation further for 

the case when no wind is acting. 
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WIND ACTING 

In practise, an increase in the allowable stress may be permitted for 

wind action. Even i f no increase in stress is permitted, i t does not appear 

necessary to investigate Points 1, 2, 3 and 6 since the factor of safety is so 

large. To illustrate the analysis for wind, only one point will be investigated. 

Point 4 4> = 20° G « 0° 

The lateral loads on the triangle are caused not only by snow loads 

but also by internal and external wind pressure. The lateral loads are 

Dead Load = 5 
Snow a 40 
Int. Wind = .2 (20) = • 4 
External = p sin <p = 10 3 in 20° = 5.5 

^ a 52.5 psf 

The membrane forces are 

Ng> = - 753 l b / f t 

He - - 647 l b / f t 

Taking as before the most severe stress condition when maximum membrane shear 

and maximum twisting moment occur on the same plane, the forces and moments are : 

Nn = Nt = - 753 - 647 = - 1400 = - 700 l b / / f t . 
2 2 

Nnt = - 753 + 647 = - 106 =53 l b / f t . 
2 2 

16 
Knt = + .234 ̂ a 2 >'l - u) = .234 (52.5) ^ | = 12.3 lbs. 

Mn - .05 £_a = -05 (52.5) 



35 

The" stresses are: 

(Tn = - 700 
3.47 

+ 5.25(12) = 
.388 

- 202 + 157 = - 359 

<rt 700 
4.03 

+ 5.25(12) = 
.488 

- 174 + 129 = - 303 

f n t = - 53 
7-5 

+ 12.3(6)(8)2 

5 
= - 7 + 188 = - 195 * 

Then 
(_252\ + / 303? + /1952 = .070 + .050 + 1.01 
v1360; ^1360; K192J 

= 1.13>1 

A 12$ increase in stress is not unreasonable for such short term loading. 

Buckling of Triangle (Equilateral triangle is critical) 

D = EI = 1.8 (106)(.121) = 1.815 (104) lb - in 
12 

Prom Pig 3-11, K = 4.75 

b = 48 = 55.4 in 

(Nx)cr = K IT D 
b 2 

- ~ 4.75 TT2 (lj>gl5)(^Q4) = 277 g 

= 3320 ^ 

(55.4)' 

Factor of safety is -2220 = 4.5 
726 

which is satisfactory. 

Buckling of Dome 
€L m .183 
Eh 2 

Ncr = .183 E heff 

,6W A n c \ 2 _ ooonlk - .183 (1.8)(10°)(.496) •= 2890 
Factor of safety is ^ 2 ° - m 4.0 

726 
which is satisfactory. 

28 F T 



Design of Marginal Beams 

If the beams are nail glued to the triangles, the membrane force is 

transmitted to the beam by rolling shear. This governs tlie width of the beam. 

The membrane force is transmitted to the next triangle in tlie beam by tension or 

compression perpendicular to its length. This governs the depth. Since wood 

is weak in tension perpendicular to the grain, plywood should be used since some 

laminae will have their grain parallel to the stress. Some bending of the beam 

may also occur but this is small and may be neglected. 

Hex membrane force is + 771 lb/ft. 

Ks =. 1.7 

Max force is 1.7(771) = 1310 lb/ft. 

Allowable stress in rolling shear is 72 psi 

Total width of beam is 

2 1310 = 3.04 in 
72(12) 

Use minimum width of 4 inches to facilitate nailing. 

Assume 5/8 S Plywood with face grain parallel to the joint . 
p 

Area perpendicular to face grain is 4.03 in 

Therefore tension stress is 

1310 = 325 < 1875 O.K. 
4.03 

1 
• 21" 

T 
4-

• i 

Fig 5 - 2 Cross Section of Typical Beam. 
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