GEODESIC SHELLS

by

PEITR RICEMOND GIRLING
B. A. Sc., UNIVERSITY OF BRITISH COLUMBLA, 1954

A TZESIS SUBIITTIED IN PARTIAL FULFILMEMT OF THE REQUIREMENIS FOR IHE DEGREE OF
M. A. Sc.

In THE DEPRRTMENT
of
CIVIL EigGINGERING

WE ACCEPT THIS THESIS AS COHFORMING HO THE REQUIRED STANDARDS .

ABSTRACT

The analysis and design is presented for a shell composed of flat triangular plates approximating a smooth spherical shell. The geometry is based on the subdivision of the icosahedron and dodecahedron into many plane triangles. All corners of these triangles lie on a circumscribing sphere so that as the triangles become nore numerous, the shell more nearly approximates a true sphere. The geometry is tabulated for a few of the possible subdivisions but may have to be carried further if a particularly large ahell composed of relating small triangles is required. While some of the geometry is similar to geodesic domes already constructed, the structural analysis is entirely different. Previous geodesic domes are space trusses where the applied loads are supported predominantly by axial force in the truss bars. The atructures considered he re are frameless and the loads are therefore supported by shell action. The exact analysis to such a shell was not obtained since the solution is not composed of tabulated functions. However, an approximate analysis is presented which, in part, is a modification of smooth shell theory. Since the shell is composed of flat plates, the bending and buckling' of. individual triangles are additional desien 'problems considered that are not present in more conventional shell design.

In order to verify parts of the theoretical analysis, experimental stadies were conducted with a plexiglas model. The experimental results verify the application of smooth shell theory to geoderic shells and determine the distribution of membrane stress. Finally the various design aspects are brought together and illustrated by the inclusion of the design notes for a typical shell.

In presenting this thesis in partial fulfilment of the requirenents for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representative. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Civil Engineering
The University of British Columbia, Vancouver 8 , Canada.

Date April 15, 1957

ACTNOHIEDGEIENT

The writer wishes to express appreciation to the Plywood Manufacturers Association of British Columbia for financial assistance in the preparation of this thesis. He also expresses his thanks to his supervisor, Dr. R. F. Hooley, who donated much of his time not only to the formulation of the basic ideas but also to the guiding of the project to a conclusion with help and encouragement. He also expresses his appreciation to Dr. D. Moore of the Department of Electrical Engineering for his help and interest in the experimental work.

COMTHRNS

Page
CHAPTER I
CGERERAL THIN SHELL THEORY 1
A. INPRODUCTION 1
B. SEELL OF REVOLUNTON - SMMETRICAL LOAD 4

1. Spherical Shell under Dead Load 8
2. Spherical Shell under Live Load 9
C. SEELL OF REVOLOTION - UNSYMETRICAL LOAD 11
3. Spherical Shell under Wind Action 13
CHAPTER II
GEOMETRY 15
A. INTRODUCTION 15
\because B. BASIC GEOMETRY 16
C. METHOD OF CAICULATION 22
D. TABULAR RESULTS 25
CHAPIER III
THEORETICAL ANALYSIS 28
A. IATRODUCTIOK 28
B. MEMBRANE STRESS 29
C. BENDING OF A TRIARGIE UNDER UNIFORM NORMAL PRESSURE 32
D. COMBINED STHESSES 39
4. Isotropic Plate. 39
5. Plysood 42
E. BUCKLING OF A TRIANGLE 45
F. BUCLLIVG OF A SHELL 54

CHAPTER IV

EXPERIMYITRAL ANALYSIS 60
A. PRELIMINARY CONSIDERATIONS 60
B. DESCRIPMION OF HODEL 62
C. ROSETIE ANALYSIS 65
D. RESULTS 69
CLAPTEER V
DESIGN OF A PLYWOOD FOLDED PLAAT SEELL 72
A. INTRODUCTION 72
B. DESIOT NOTES 73
BIBLIOCRAPHY
GRAPHS
To Follow
Page
Graph 1-1 Membrane Forces in a Spherical Shell of Constant Thickness 8
Graph 1-2 Maximum Membrane Forces in a Spherical Shell due to 14 Wind Action
Graph 2-1 Span and Height for Spherical Segments made from Given 21 Numbers of Triangles and Radius
Graph 3-1 Bending Moments and Shear Forces in a Slaply supported 36
Equilateral Triangle from Uniform Norwal Pressure.
Graph 3-2 Buckling Constants for Simply Supported Isosceles Triangles. 52
Graph 3-3 Critical Stresses in a Spherical Shell under 56
Uniform Normal Pressure
Graph 3-4 Relation between Bucking of Simply Supported Equilateral 57
Triangles and a Spherical Shell under. Uniform Normal Pressure
Graph 4-1 Stress Riser for Various Dihedral Angles 71

NOTATIONS

ρ, φ, θ	Spherical co-ordinates
$\mathrm{r}_{1}, \mathrm{r}_{2}$	Radil of curvature of a shell
$\mathrm{N} \varphi, \mathrm{Ne}$, $\mathrm{H} \mathrm{m}_{\mathrm{e}}$	Membrane forces per unit lengtio in a shell
x, y, z	Rectangular co-ordinates
w	Deflection in the z direction
$\mathrm{Nn}, \mathrm{Nt}, \mathrm{Hnt}$	Normal and shearing forces per unit length of plate
Mn, Mt, Mnt	Bending and twisting moments per unit length of plate
$Q n, Q t$	Shearing force per unit length of plate
σ	Normal stress component
τ	Shearing Stress component
E	Normel Strain
γ	Shear strain
E	Modulus of Elasticity
д	Poisson's ratio
D	Flexural rigidity of a plate
h	Thickness of a plate or shell
p	Intensity of load on a shell
q	Intensity of a uniformly distributed load on a plate
X,Y,Z	Components of load in the x, y, z directions respectively
R	Resultant load on a section of shall
a	Altitude of an equilateral triangle
δ	Grid or net interval
I	Moment of inertia
2	Section modulus

CEAPIER I

A. INTRODUCTION

A thin shell curved in two directions is an exceptionally strong and light weight structural element. A ping pong ball, an egg shell, a car roof and a balloon are only a fev examples of doubly curved shells. Considering the behaviour of an ege shell, we realize that it is capable of withstanding trem. endous compressive forces. Failure is caused by a concentrated load over a relatively small area or by impact.

The characteristic of high strength is due to two factors. First, the doubly curved surface has a high resistance to buckling. Second, the loads are carried almost entirely by forces in the plane of the shell or membrane forces. The significance of the second factor is that there is little bending moment in the shell under ideal conditions. This can be illustrated by considerinf one of the examples previously mentioned, a balloon. A rubber membrane, regardless of any applied tensile stress, has no bending resistance. Therefore, all loads applied to an inflated balloon can only be carried by membrane stress or, in this case, a reduction of the tensile stress. Thus symmetrical or unsymmetrical loads are supported by membrane action alone.

This characteristic may also be explained mathematically if we compare an arch and a shell. Stresses in an arch are governed by an ordinary differential equation to which there is only one form of solution. The solution is represented by the equilibrium polygon or thrust line. When the equilibrium polygon and the arch axis coincide, the re is only direct stress in the arch. However, when two do not coincide, there is bending as well as direct stress. It is evident then that direct otress without bending is obtained only by one form of loading since the ordinary differential equation has but one form of solution. On the other hand, stresses in a shell are governed by a partial differential equation to which there are an infinite number of forms of solution. The solution in this case is represented by an equilibrium surface rather than by an equilibrium polygon. The solution chosen is that one where the equilibrium surface coincides with the shell. Thus under every continuous loading the form of solution gives only direct or membrane stresses. Discontinuous loads are excepted since solutions to the partial differential equations can also be discontinuous whereas the slell may not be.

There are, however, ways by which bending cen occur in a shell. Under any given loading the membrane forces cause certain deformations of the shell. The deformations cause a small change of radius of the shell ΔR where R is measured to the inside surface of the shell. The strain on the inside of the ahell is

$$
\frac{\Delta \mathrm{R}}{\mathrm{~B}}
$$

and on the outside is

$$
\frac{\Delta R}{R+t}
$$

Where t is the thickness of the shell. However $t \ll R$ for thin shells so that practically speaking the strain is uniform across the thickness and the moment is therefore zero.

From a practical point of view, it is necessary to support the shell on a ring girder. This procedure produces bending stresses in the shell in the imnediate vicinity of the ring support. The strains in the ohell due to the membrane forces produce deformations causing a horizontal deflection of the shell. The forces exerted by the shell on the ring girder also produce deformations of the ring girder. Since the deformations of the shell must be the same as those in the ring girder extra forces are induced. These are a horizontal force and a moment. The resultant moment is of a local nature and dies out exponentially in a distance of ten to twenty times the shell thickness.

Finally a concentrated loed also produces bending stresses in the immediate vicinity of the load. The resulting moment is similar to that produced by a ring support and dies out exponentially in about the same distence. Where bending stresses are produced, the shell may sometimes be strengthened by increasing the thickness and adding re-inforcing.

The design of a shell is comenced by deternining the membrane stresses assuming tre bending stresses to be zero. Since unsymmetrical loads produce only membrane stress, the maximum stress is obtained where dead load plus live load act on the whole shell. .The local bending stresses are then superimposed on the membrane stresses.

Before proceeding further, it is necessary to consider in more detail a shell of revolution. The surface of such a shell is obtained by revolving a plane curve about some axis in the plene of the curve. There are, however, critical shapes that should be avoided. As a general rule, the radii of curvature should be of the same order of magnitude as the span or maximum diameter of the shell. Very shallow shells have high membrane forces. Going to the limit, if the shell is flat for any finite distance, the loads are no longer supported by membrane forces but by shears and bending moments. ${ }^{1}$

The following sections give the equations for symmetrical and unsymmetrical loads and tabulate the solution for a few specific cases. These solutions will be required later when considering the geodesic shell.
B. SHELL OF REVOLITION - SMMETRICAL LOAD.

An element of area is cut from the shell by two meridians and tro parallel circles as shown in Fig. 1-1. The radii of curveture at a point are defined as r_{1} in the meridian plane and r_{2} in the plane perpendicular to the meridian. The radius of the parallel circle, denoted by r, is then equal to r_{2} singand the area of the element is $r_{1} r_{2} \sin \varphi d \varphi d \theta$.

I An example of this is the érurve $y=K(a x)^{n}$. If n is large then that part for a $x<1$ is very flat.

For a symmetrical load, only normal forces act on the element since shear forces would produce unsymmetrical deformations. $N \Phi$ and $N \theta$ denote the normal forces per unit arc length. From symmetry, it can also be concluded that Ne does not vary with θ and is therefore the same on either side of the element. The external load per unit area of shell in this case acts In the meridian plane and can be resolved into two components, Y and Z, tangent and perpendicular to the element respectively.

Three equations of equilibrium of the element may be written by equating to zero the sum of the forces in the X, Y and Z directions. However, one of these equations, the sum of the forces in the X direction is automatically satisfied by symmetry. There remain two equations with two unknows and the structure is therefore statically determinate.

The force on the top and bottom of the element is $\operatorname{Ng} \boldsymbol{r} d \theta$ and $(N \varphi+d N \rho)(r+d r) d \theta$ respectively. : Neglecting the terms of higher order, these forces have a component in the z direction of $N \varphi r d \theta d \varphi$ (Fig. 1 - 2) Referring to Fig. $1-3$ shows that the horizontal force $N e r_{1}$ dg on the sides of the element have a component $N e r_{1} d \rho d e$ in the direction of the radius of the parallel circle. From Fig. 1-4, the component in the z direction is Ne, $d \varphi d \theta$ in $n \varphi$. Equating to zero the sum of the forces in the z direction

Fig 1-3

Fig 1-4
gives

$$
\mathbb{N} \varphi r d \varphi d \theta+\dot{N} \theta r, s 1 n \varphi d \varphi d \theta+Z r r_{1} d \varphi d \theta=0
$$

Cancelling $d \varphi d \theta$ and dividing through by r, , the equation reduces to

$$
\begin{equation*}
\frac{N Q}{r_{1}}+\frac{N Q}{r_{2}}=-Z \tag{1-1}
\end{equation*}
$$

A similar procedure carried out for the forces in the Y direction Fields a differential equation in $N \varphi$ and $N \theta$. . The solution of a differential equation is avoided, however, by considering the equilibrium of the portion of the shell above a parallel circle instead of the equilibrium of the element. Equating to zero the sum of the vertical forces, with reference to Pigure l - 5, the equilibrium equation is

$$
\begin{equation*}
N \varphi \sin \varphi \cdot 2 \pi r+R=0 \tag{1-2}
\end{equation*}
$$

where A is the resultant load on the section of shell considered.

The solution of the wembrane forces for a given loading requires first the direct solution of Equation 1-2 for $N 9$. This value is then substituted in Equation 1-1 and solved for N • . The use of the se equations is illustrated by considering a few special cases in the following subsections.

1 spherical shell of constamy thicheess juaer deaid load

In a spherical shell, $r_{1}=r_{2}=\rho$ and $r=\rho \sin \varphi$. The surface area of a shell above the parallel circle defined by φ_{1}, is

$$
\begin{equation*}
\int_{\varphi=0}^{\varphi=\varphi_{1}} 2 \pi r r_{2} d \varphi=2 \pi \rho^{2} \int_{\varphi=0}^{\varphi^{\prime}=\varphi_{1}} \sin \varphi d \varphi \tag{1-3}
\end{equation*}
$$

Since the load on the shell is conetant per unit of shell area and equal to p, then the total load on the shell is

$$
R=2 \pi \rho^{2} p \int_{0}^{\varphi} \sin \varphi d \varphi=2 \pi \rho \rho^{2}(1-\cos \varphi) \quad(1-4)
$$

Equation (1-2) then gives

$$
\begin{equation*}
N \varphi=-\frac{\rho \rho(1-\cos \varphi)}{\sin ^{2} \varphi}=-\frac{\rho \rho}{1+\cos \varphi} \tag{1-5}
\end{equation*}
$$

Noting thet the Z component of the load is $p \cos \varphi$, Equation ($1-1$) gives

$$
\begin{equation*}
N_{\theta}=-\rho \rho\left[\cos \varphi-\frac{1}{1+\cos \varphi}\right] \tag{1-6}
\end{equation*}
$$

Equations $(1-5)$ and ($1-6$) are plotted in Graph 1-1. The Graph show that $N g$ is always compressive, increasine to a meximum compressive force at $\varphi=90^{\circ}$. Ori the other hand; $N \theta$ is compressive for small values of φ but turns to tension at $\varphi=51^{\circ} 50^{\prime}$.

2. Spherical Shell under Live Load, constant per unit of Horizontal Area.

$$
\text { Fis }(1-6)
$$

The horizontal area over which the load acts is $\pi(\rho \sin \varphi)^{2}$ $\therefore \quad \therefore$
The load on the shell is then

$$
\begin{equation*}
R=\pi \rho \rho^{2} \cdot \sin ^{2} \varphi \tag{1-7}
\end{equation*}
$$

Substituting R.into Equation (1-2) gives

$$
\begin{equation*}
N \varphi=-\frac{\rho \rho}{2} \tag{1-8}
\end{equation*}
$$

Substituting Equation (1-8) into Equation (1-1) gives

$$
\begin{aligned}
N_{\theta} & =\frac{\rho \rho}{2}\left(1-2 \cos ^{2} \varphi\right) \\
& =-\frac{\rho \rho}{2} \cos 2 \varphi
\end{aligned}
$$

Equations (1-8) and (1-9) are also plotted in Graph 1-1

In reality, a snow load of the form just discussed is not obtained because the snow does not hold to the steeper pitches. The National Building Code of Canada (1953) gives a constant snow load for slopes up to twenty degrees. Thereafter the load drops off linearly to zero at sixty-three degrees. The expression

$$
\begin{equation*}
\rho=\rho_{0} \frac{\cos \varphi-\cos 65^{\circ}}{\cos 20^{\circ}-\cos 65^{\circ}} \tag{1-10}
\end{equation*}
$$

for $20^{\circ} \leq \varphi \leq 65^{\circ}$, where p_{0} is the load on a flat surface, gives a snow load distribution slighttly heavier than the National Building Code. For $9 \leq 20^{\circ}$, Equations (1-8) and (1-9) apply. For $\varphi>20^{\circ}$, Equation (1-10) is integrated to obtain the part of the load on the shell where $\varphi>20^{\circ}$ and is added to the load on the shell for $\phi \leq 20^{\circ}$, siving the total load. Equations (1-1) and (1-2) then give the membrane forces. The membrane forces are also plotted in Graph 1 - 1.
C. SHELL OF REVOLUTION, UNSYMETRICAL LOAD.

$$
\mathrm{Fi}_{6} 1-7
$$

In the case of an unsymmetrical load, not only normal forces $N \rho$
and $N e$ but also shear forces Noe and Negact on the element as shown in Figure (1-7). Equating the sum of the moments about the axis to zero gives $N \varphi \theta=N \theta \varphi$. and reduces thereby the number of unknowns to three. Equating to zero the sum of the projections on the three co-ordinate axes gives the three equations

$$
\left.\begin{array}{l}
\frac{\partial}{\partial \varphi}(N \rho r)+\frac{\partial N \theta \varphi}{\partial \theta} r_{1}-N \theta r_{1} \cos \varphi+Y r_{1} r=0 \\
\frac{\partial}{\partial \varphi}\left(r N_{\varphi \theta}\right)+\frac{\partial N_{\theta}}{\partial \theta} r_{1}+N_{\theta \rho} r_{1} \cos \varphi+X r_{1} r=0 \\
\frac{N \varphi}{r_{1}}+\frac{N_{\theta}}{r_{2}}=-Z
\end{array}\right\}(1-11)
$$

These three partial differential equations involving the three unknowns $N Q$, N_{θ} and Neg can be solved in the general case by expanding both the load and the stresses in trigonometric series. ${ }^{2}$ The following section gives the solution for a wind pressure on a spherical shell.
2. W. Flugge, Stafik und Dynamik der Schalen, Berlin, 1934.

1. SPHERICAL SHELL UNDER WIND LOAD.

The National Building Code does not specify any wind pressure on domes. However a loading can be assumed which basically follows the findings of the National Building Code. Find pressure acts normal to the surface and increases the pressure on the windward side and decreases the pressure or causes suction on the leeward side. If the direction of the wind is in the meridian plane $\theta=0^{\circ}$ then $X=Y=0, \quad Z=P \sin \varphi \cos \theta$

Where P is the wind pressure on a vertical surface. Equation 1 - 13 gives a distribution as shown in Fig 1 - 8

$$
F \operatorname{Fig}(1-8)
$$

The solution to Equations (1-11) is given by

$$
\begin{align*}
& N_{\varphi}=-\frac{\rho \rho}{3} \frac{\cos \theta \cos \varphi}{\sin ^{3} \varphi}\left(2-3 \cos \varphi+\cos ^{3} \varphi\right) \tag{1-13}\\
& N_{\theta}=-\frac{\rho \rho}{3} \frac{\cos \theta}{\sin ^{3} \varphi}\left(-2 \cos \varphi+3 \sin ^{2} \varphi+2 \cos ^{4} \varphi\right) \tag{1-14}\\
& N_{\theta \varphi}=-\frac{\rho \rho}{3} \frac{\sin \theta}{\sin ^{3} \varphi}\left(2-3 \cos \varphi+\cos ^{3} \varphi\right) \tag{1-15}
\end{align*}
$$

Inspection of these equations show that the normal forces have a maximum compreesive value at $\theta=0^{\circ}$ and a maximum tensile value at $\theta=180^{\circ}$. The shear forces, however, attain a maximm value at $\theta=90^{\circ}$ and $\theta=270^{\circ}$. The maximum and minimum values of the forces due to wind pressure may be obtained from Graph 1 - 2 for a given value of φ. The resulting stresses due to wind action may then be superimposed over those resulting from dead and live loads.

CHAPITER II

GEOMETRY

A. INPRODUCTION

Since shells of revolution have curvature in two directions, their usafe is restricted to those materials which can be moulded to the appropriate curvatures. This limitation permits the use of concrete, steel and aluminum. Unfortunately, concrete entails the use of an elaborate fornwork and steel and aluminum each require a costly pressing process.

A structure composed of flat plates closely aprowimating a shell of revolution possesses some advantages over a continuous shell. The formwork is simpler and the pressing process is eliminated. Such a structure may be fabricated with comparative ease from a gord grade of plywood. The following section develop the geometry of such a shell which is called a geodesic or foldod plate shell.

The economy of a folded plate shell is improved by minimizing the number of different plate shupes involved. Since a sphere has an infinite number
of axes of symmetry, a sphorical shell probably hes fewer shepes than eny other shell of revolution that misht be ammoximated with flat plates.

We will deal only with trimisular shepens anco they are easier to 'rabricate and are atronger area for aroa than other shopes that ni, hit be used, such as: quadrilaterals, pentagons ani hexagons.

B. BABIC Groitemy.

The five basic polyhedra that can be inscribed in a sphere are the tetraheüror, cube, octahedron, dodecehedron and icosahedron. ${ }^{1}$ The icosahedron is composed of wenty equilatesul trioncles and the dodecohedron, of twelve pentrgons. Since the icosehedron and dodechedron have more facets, they more neurly bpproximate a-spherical whell than do the other three polynedra. For that reason, the icosahedron and dodecahedron are the better polyhedra to use as a basis for developine the geometry of a geodesic shell.

The stendard sise of plywood sheet is four feet by eight feet. Some mills produce sheets forty or fifty foet lond and extra wid th sheets may also be ordered. Generally, the four foot width coverns the maximun size of triangle。 Therefore, to obtain a practical sised sheil, it is necessary to subdivide the triangles and pentagons of tive icosehedron and dodecthedron respectively into smaller structuril elements.

[^0]

Fig 2-1 Icoschedron

Fig 2-2 Dodecahedron

It is not merely a case of breaking up the triangles and pontagons in their orm plane but rather of moving the newly formed vertices racially to the circunscribing sphere. This procodure gives a closer aphroximation of a sphere thar does the besic polyhedra. There are numerous ways of subdivicirif a triancle and since the computations are rather time corsuraing, only a few methods of subdivision have been investigetec. For that reason, the me may ie other methods of suvaivision that are more advantageous for a specific radius end aterial than those civen here $\quad \therefore$.

The icosehedron is first subdivided by bisecting tie sides of the equilateral triangle and moving the newly formed points redially to the circumscribing sphere. As show in Fig. $2-3$, one equilateral triongle of the icosaledron is roplaced by four trimgles, one equilateral and tiree isosceles. Since tie isosceles triangles are congruent ly symuetry, there are only two kinds of triangles. A sphere is now approximated by 80 tringeles istead of 20 triangles as in the icosahedron.

Fiy $2-3$

Inctead of divicine the side of the equilateral triangle into two parts, the side can be divided into three parts. One equilateral triangle of the icosahedron is now replaced by nine smaller trioncles with each new vertex displaced radially to touch the circumscribing sphere. A general subdivision, by trisecting the sides of tle equilateral triangle for exemple, gives three kinds of isusceles triangles as shown in Fig $2-4 \mathrm{a}$.

Fig 2-4a

Fig 2-4b.

Instead of trisecting the sides, it is possible to prescribe that two kinds of isosceles triencles be congruent to each other. If the triangle is subdivided, makine triangles $B 3 a$ and $C 3 a$ congruent, a subdivision is obtained as shown in Figure 2-4b. Thus a sphere is approximated with 180 triansles of two kinds.

Workine from Figure $2-3$, the sides of the icosahedron triangle may be divided into four p:irts. By prescribing coneruency, triangle A 2 of Pigure 2-3 can be subdivided into four triangles of two kinds, A4 isoscoles and B4 scalene as shown in Fie. 2 - 5. Triengle B 2 also breaks up into four triancles of two kinds, C4 equilateral and D4 isosceles. The result of the breakdown is shown in Fig $2-5$ - A sphere is $a p p r i m a t e d ~ b y ~^{2} 20$ triangles of four kinds.

Fig 2-5
korling from rigure 2-5, the trian les may again be subdivided. It does not anvear yossible to prescribe any comauncy amone the triandes obtained by subdiriding the scalene triangle 134 , so that four kinds of triangles are formed. As before the isosceles and equilateral triangles can each be broken dom into tru linds of triangles. Therefore a sphere is apriroximated by 1280 triangles of ten kinds. (itiure 2-6)

Fig 2-6

Figure 2-4b can also be subdivided in the same manter Fig 2-3
was subdivided. The subdivision may be carried out indefinitely. Unfortunately, once a number of scalene trian las appear in tie subdivision, the number of kinds of triancles grow rapidly. For example, Fig $2-6$ has ten kinds of triancles but one further subdivision of this figure has 32 kinds of triangles. However, considering that in this case there are 5120 triangles in a sphere, 32 kinds of triencles are not unreasonable.

The subdivision of the dodecahedron is irdicated in Figure 2-7. A giphere is formed in (b) by 60 triengles of one kind, in (c) by 240 triangles of
two kinds and in (d) by 960 triangles of six linds. One further subdivision, not illustrated forms a sphere of 3840 triangles of 22 kinds.

(a)

(b)

Fig 2-7

The various subdivisions indicated in the rreceding paragraphs ell yield triangles that are nearly equilateral. A one piece triangle oi plywood therefore has an altitude of approximately four foet and an area of 7.6 square feet. The total number of trisingles required to replsce a sphericol segnent is approximately equal to the spherical area diviced by 7.6. Graph 2-1 shows these results. For a given span and rise, the graph gives the radius, the total number of triangles denoted by Nt and also the aporoximate number of kinds of triangles denoted by Mk. These parameters then act as a guide to the choice of the apuropriate subdivision.

Another type of subdivision nay be visualized by referring back to Figure 2-4b which has nine isosceles triangles of two linds. The perpendicular bisector of the base breaks each isosceles triancle into two congruent parts even though the newly formed vertex is rised to the circunscribing sphere. Therefore the sphere is approximated by 360 triansles of only two kinds. The triencles are now nore nearly 30-60-90 instead of equilateral and may be obtaricd from a four by eight sheet of plywod by cutting diagonally. From a structural point of view, this shape of triangle is not as sood as the equilateral shape. The membrone forces are affected by the large variation of the dihedral angles. Also, the triangle may have to be stiffened to minimize bending and rrevent buckling. The battens conrecting the long sides towether may also bo heavier.

C. METHOD OF CALCULATION

The triangle geometry is best solved by using triconometry. Tie sphere is first divided into spherical triangles wbich are then replaced by the corresponding plane triangles. The side of the spherical triangle is in angular arc, Ψ. Reference to Figure 2-8 shows that the corresponding
 length of the side of the plane triangle is $2 \rho \sin \frac{\psi}{2}$.

Fig.2-8

The cinidral angles are solved by using analytical geometry. In Figure 2-9, it can be proved that the angle between the triangle plane ab c and the Plane o a b, is obtained from
$\left.\lambda=\tan ^{-1} \frac{\left(\sqrt{2(1+\cos \gamma)\left(\sin ^{2} \gamma-\cos ^{2} \alpha-\cos ^{2} \beta+2 \cos \alpha \cos \beta \cos \gamma\right)}\right.}{(\sin \gamma(1+\cos \gamma-\cos \alpha-\cos \beta)}\right)$
Where 0 is the centre of the sphere and α, β, γ are the
angles show. α and β are interchangeable

Fig 2-9
in this formula but γ is not. The last term under the square root sign is close to zero so it mast be evaluated accurately. However for the angles involved,
$\tan \lambda$ approaches infinity so the formula gives accurate results. Formula (2-1) must be evaluated once for each triengle on either side of the plene o a b. The dihedral angle is then the sum of the two values of λ.

The geometry for some of the subdivisions has been computed and the results presented in tabular form. The trigonometry was calculated to the nearest second of arc using six place natural functions and a desk calculator. The results therefore should be good to five significant figures.

The fabricator should cut the triangles as precisely as the material and equipment permit if the structure is to rit properly together. If the dome is fabricated in sections, the triangle goometry of an appropriate coarser subdivision gives chord distances which may be used to cireck the fabricated section.

Table 2-1

\triangle	Sides		Side	Arc	$\frac{\text { Lerigth }}{\rho}$	Edge	$\begin{gathered} 180^{\circ}- \\ \text { Dihedral } \\ \text { Angle } \end{gathered}$	
A	$a \mathrm{ab}$	60	a	$a=31^{\circ} 43103 n$. 54652	A a A	220	14^{\prime}
B	b b b	$\frac{20}{80}$	b	$b=36^{\circ} 001001$. 61804	A b B	18°	00^{\prime}

Table 2-2

\triangle	Sides	$\begin{aligned} & \text { Req'd. } \\ & \text { for } \\ & \text { Sphere } \end{aligned}$	Side	Arc	$\frac{L e n g t h}{\rho}$	Edge	$\begin{gathered} 180^{\circ}- \\ \text { Dihedral } \\ \text { Angle } \end{gathered}$	
A	$\mathrm{a} a \mathrm{~b}$	60	a	a = $20^{\circ} 04^{\prime} 36{ }^{\prime \prime}$. 34861	A a A	14°	341
B	c c b	120	b	$b=23^{\circ} 16154^{\prime \prime}$. 40358	A b A	11°	22,
		180	c	$c=23^{\circ} 46^{\prime} 02^{\prime \prime}$. 41247	B b B	14°	28'
						B ¢ B	11°	34^{\prime}

Table 2-3

\triangle	Sides	$\begin{aligned} & \text { Req'd. } \\ & \text { for } \\ & \text { Sphere } \end{aligned}$	Side	Arc	$\frac{\text { Length }}{\rho}$	Edge	$\begin{aligned} & 180^{0}- \\ & \text { Dinedral } \\ & \text { Angle } \\ & \hline \end{aligned}$
A	$a \mathrm{ab}$	120	a	$a=16^{\circ} 16^{\prime} 01{ }^{\prime \prime}$. 282959	A a A	$11^{\circ} 44^{\prime}$
B	a c d	120	b	$\mathrm{b}=18^{\circ} 57^{\prime} 12^{\prime \prime}$. 329292	A b A	$6^{\circ} 321$
C	e 9 e	20	c	$c=15^{\circ} 27^{\prime} 02^{\prime \prime}$. 268857	A a B	$11^{\circ} 04^{\prime}$
D	d de	60	d	$\mathrm{d}=18^{\circ} 00000$. 312869	B c B	$11^{\circ} 381$
		320	e	$e=18^{\circ} 41.58^{\prime \prime}$. 324920	B d D	$9^{\circ} 00 \cdot$
						Dec	$10^{\circ} 21$

Table 2-4

Δ	Sides .	$\begin{aligned} & \text { Req'd. } \\ & \text { for } \\ & \text { Sphere } \end{aligned}$	Side	Arc	$\frac{\text { Length }}{\rho}$	Edge	$\begin{gathered} 180^{\circ}- \\ \text { Dihedral } \\ \text { Angle } \end{gathered}$
A	$\mathrm{a} a \mathrm{~b}$	240	a	$8^{\circ} 11{ }^{\prime \prime} 3^{\prime \prime}$. 142816	A a A	5056
B	a c d	240	b	$9^{\circ} 36{ }^{\prime \prime}$. 167462	AbA	30101
C	c ce	120	c	$8^{\circ} 04^{\prime} 38^{\prime \prime}$. 140858	A a B	$5^{\circ} 511$
D	e gh	120	d	$9^{\circ} 28^{\prime \prime} 36^{\prime \prime}$. 165211	A a E	$5^{\circ} 311$
E	a h j	120	e	90 13' $14^{\prime \prime}$. 160756	$B \mathrm{C} B$	$5^{\circ} 55^{\prime}$
F	$f \mathrm{gi}$	120	f	$7^{\circ} 22^{\prime \prime} 24^{\prime \prime}$. 128600	$B d B$	30141
G	mmm	20	g	$8^{\circ} 07{ }^{\prime \prime}$. 141549	B c C	$5^{\circ} 46$
H	11 m	60	h	$7^{\circ} 46^{\prime} 56^{\prime \prime}$. 135721	C c C	5037
I	i i k	120	i	$9^{\circ} 031381$. 157972	C e D	3020
J	i ${ }^{1} 1$	$\frac{120}{1280}$	j	$8^{\circ} 56{ }^{\prime \prime} 2^{\prime \prime}$. 155865	D h E	$5^{\circ} 48^{\prime}$
			k	$9^{\circ} 29^{\prime \prime} 53^{\prime \prime}$. 165583	D g F	$5^{\circ} 14^{\prime}$
			1	$9^{\circ} 20$ ' ${ }^{\prime \prime}$. 163002	E j J	40371
			m	$9^{\circ} 26^{\prime} 40^{\prime \prime}$. 164650	Fff	$6^{\circ} 201$
						Fi'I	$4^{\circ} 20$
						G m H	$5^{\circ} 18^{\prime}$
						H 1 J	$5^{\circ} 11^{\prime}$
						Jk I	$5^{\circ} 221$
						I k I	4048

CHAFIER III

THEORFIICAL ANAIYSIS
A. INTRODUCTION

In the analysis of folded plate shells, the desigrer must consider membrane stress, bending stress and stability。 The membrene stress, as will be shown later, may be obtained from smooth shell theory. Bending stresses arise manly from londs perpendicular to the surface of the triangle。

Pailure of a structure may be caused not only by high stresses but also by instability. In geodesic shells, bucking may occur in two ways. The dome as a unit may buckle or an individual iriangle mqy buckle. While the latter case is due to local instability it could be sufficient to bring about complete iailure.

The followinciections consider in more detail these aspects to be considered in design and malysis. While only spherical shaped shells are considered, the concepts apply also to other shaped shells or revolution.

B. RGEMBRAUE STRESS

The exact solution of the membrane stresses in a folded plate shell is - a statically inceterminate problem. Special types of folded plate domes, such as Polygonal Domes, ${ }^{1}$ have an exact solution in terms of tabulated functions. Unfortunately, the exact solution of the folded plate shell considered here does not apperr in terms oi tabuleted functions. For this reason, it was decided to apply an aproxinate solution usinc smooth shell theory.

Fig 3-1
If the geodesic shall is compared to a smooth shell of the same radii, then the load on the triangle edge ab (Figure 3-1) is the same as the load on the corresponding arc a'bl of the smooth shell.

The validity of applying smooth shell theory to geodesic shells is shown by considering the geonetry and behsviour under load of the two types of shell. It was shown in Chapter I that loads on a smocth shell are supported by membrane action. These menbrane stresses are indicated qualitatively in Figure 3-2, a and bo The correspondine geodesic shell is show in Figure 3-2, c and d. The geodesic shell is \dot{a} doubly curved structure as is the smooth shell and both have little bending resistance. Therefore the only vay loads can be carmied in either shell is by direct atress.

Figure 3-2c is the cross section of a segment of the polyhedron having only 320 triancles approximating a sphere. Bven this apparently coarse approximetion of a sphere is not far from the true sphere. Some radius $\rho-\Delta \rho$ passes half way between the inner and outermost points on tie trianilers approximating the sphere。 $\Delta \rho$ is a very small percent of ρ and becomes even smaller as the number of triangles in the conslete polyhedron increase. Therefore the co-ordinates of the polyhedron are virtually the sone as those of the sphere

Equating the sum of the vertical forces to zero in figures (a) and (c) show that $N \rho$ mast be the same for both cases rince the loads are supported only by direct stress. Similarly in ficures (b) ard (i), equating the sum of the horizontal forces to eero show that the total force in the θ direction is the same in both cases. Therefore the total forces acting on the isolated segments in figures. (e) and (f) are the seme. Equatins, moments to zero about the point 0 show that the general distribution of $N e$ must be the sene in both cases. Since the geometry and membrarc forces are proctically the same for both shells, the application of smooth shell theory is justified.

Fig. 3-2

Applying smooth shell theory to ceodesic shells gives a near uniform distribution of membrane stress along the edge of a triangle. This is not tiue because the deformations alone the edge cause a redistribution of stress but the total load remains the same. Consider the common edse e of two triantular ilates under membrane action as shown in Fig 3-3a. By action and reaction, at the edge e the direction of stress σ is at amgle β to ecci plate. The component

(a)

(b)
Fig 3-3
in the plane of the plate causes deformation u. To preserve continuity along the comon boundery, the plate must also bend with o. deflection w. The effect is to redistribute the membrane stress into a parabolic shape with the highest stresses at the corners of the triancle. Therefore smooth shell theory gives the avorage stress on the trianclo edre but not tho naximum stress.

Fig 3-3 (c)

To eveluate the maximum membrune stross, the stress riser at the comers mast be determined. It might be determined by a Pourier analysis of two isolated triangle:, 要eserving continuity along the common boundary. However the lack of convenient tabulated functions made this anproach impractical. Instead of isolating two triancles, two rectancles were isolated and a Fourier analysis attempted. However a stress function for the membrane action was not obtained which satisfied both the boundary condition and continuity。 Because of this, it was decided to find the stress riser by experifent. The results of the experimental work are found in Chapter IV. The experimental woik does show that smooth shell theory can be used with 8 stress riser for the comers.

The differential equation of a plate under a normal pressure q is ${ }^{2}$

$$
\begin{equation*}
\nabla^{4} w=\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{q}{D} \tag{3-1}
\end{equation*}
$$

where w is the deflection at a point with co-ordinates x and y and $D=\frac{E h^{3}}{12\left(1-\mu^{2}\right)}$ is the flexurel rigiciity of the phate. This expression is besed on the small deflection theory where the deflection is mall compared to the thiciness. As long as the deflections are small, the mombrane forces, by beam colum action, have a very small effect on the actual deflection and may be onitted from the discussion. That comparatively small deflections do occur may be verified by calculatine the maximum deflection and comparine it to the plate thickness',

[^1]The solution of Equation 3-1 involves the deternination of some function for which not only satisfies this; differentiol equation but elso the boundary conditions. For a simply supported plate, the deflection and bending moments must be zero at the plate edges. Therefore the boundary conditions are

$$
\begin{equation*}
\omega=0 \tag{3-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial n^{2}}=0 \tag{3-3}
\end{equation*}
$$

at the edces whe re n is the co-ordinate aris :ernendicular to the edge. Expressing Equation 3-3 in terms of x and y for convenience only, the boundary condition becomes instead

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0 \tag{3-4}
\end{equation*}
$$

A general satisfactory expression ior u for any shape of triangular plate is not in terms of tebulated functions. A few specific cases are tabulated hovever. One such case i:s for a simply supported equilateral triangle under uniform lateral load ${ }^{3}$. For the type of done considered heie, all the triangles are very nearly equilateral. Therefore the bendins stresses may be closely approximated by considering only an equilateral triangle.

Fig 3-4
3 The bending of an equilateral plate was solved by S. "noinowsky - Krieger, Ineenieur - Archiv., vol.4,p. 254 \qquad

With co-ordinate axes as shom in Figure 3-4, tile deflection surface of a uniformly loaded, simply supported, equilaterul triarcle is 4
$-\quad W=\frac{q}{64 a D}\left[x^{3}-3 y^{2} x-a\left(x^{2}+y^{2}\right)+\frac{4}{27} a^{3}\left(\frac{4}{9} a^{2}-x^{2}-y^{2}\right)\right](3-5)$
The part of the polynomial in square brackets is the rroduct of the leit hand side of

$$
\begin{aligned}
& x+\frac{a}{3}=0 \\
& \frac{x}{3}+y-\frac{2 a}{3}=0 \\
& \frac{x}{3}-y-\frac{2 a}{3}=0
\end{aligned}
$$

which are the equations of the boundury lines. The expression in square brackets is therefore zero at the boundary. Hence the boundary condition, $w=0$, is satisfied. Successive differentiation of the polynonial gives

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=-\frac{q}{4 a D}\left[x^{3}-3 y^{2} x 3 y^{2} x-a\left(x^{2}+y^{2}\right)+\frac{4}{27} a^{3}\right] \quad(3-4 a)
$$

and

$$
\begin{equation*}
\frac{\partial^{4} w}{\partial x^{4}}+\frac{2 \partial^{4} w}{\partial x^{2} y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{q}{D} \tag{3-1}
\end{equation*}
$$

Similarly, Equation $3-4 e$ is also zero at the boundiry so tint both loumary conditions are sationied. The difforentisl equation is also antisfied. Therefore

Equation 3-5 represents the solution for the deflection surface. The maximum deflection occurs at the centroid of the triangle and is

$$
\begin{equation*}
w_{\max }=\frac{q a^{4}}{3238 D} \tag{3-6}
\end{equation*}
$$

The differential equations for the moments, as defined in figure 3-5, am

$$
\begin{align*}
& M x=-D\left(\frac{\partial^{2} W}{\partial x^{2}}+\mu \frac{\partial^{2}}{\partial y^{2}}\right) \\
& M y=-D\left(\frac{\partial^{2} w}{\partial y^{2}}+\mu \frac{\partial^{2} w}{\partial x^{2}}\right) \tag{3-7}\\
& H x y=-M y x^{*}=D(1-\mu) \frac{\partial^{2} W}{\partial x} \partial y
\end{align*}
$$

Therefore

$$
\begin{align*}
M x=- & \frac{q}{16}\left[-(5-\mu) x^{3}+(3+\mu) a x^{2}+\frac{2}{3}(1-\mu) a^{2} x-\frac{8}{27}(1+\mu) a^{3}\right. \\
& \left.+3(1+3 \mu) x y^{2}+(1+3 \mu) a y^{2}\right] \tag{3-3}\\
M y=-\frac{q}{16} a & {\left[(1-5 \mu) x^{3}+(1+3 \mu) a x^{2}-\frac{2}{3}(1-\mu) a^{2} x-\frac{8}{27}(1+\mu) a^{3}\right.} \\
& \left.+3(3+\mu) x y^{2}+(3+\mu) a y^{2}\right] \tag{3-9}
\end{align*}
$$

and

$$
\begin{equation*}
M x y=\frac{q(1-u)}{16 a}\left[3 x^{2} y+2 a x y-\frac{2}{3} a^{2} y+3 y^{3}\right] \tag{3-10}
\end{equation*}
$$

All the terms in Equation 3-10 contain y so sly y is zero alone the x axis.
Setting the partial derivatives of Bx and My with respect to y equal to zero and solving shows that the only valid solution is for $y=0$. The refore Mr and My are a maximum along the x axis. Equating y to aero and introducing the notation $S=\frac{x}{a}$, the moment equeti ins become

$$
\begin{align*}
& \left.M_{x}\right]_{y=0}=\frac{q a^{2}}{16}\left[(5-\mu) s^{3}-(3+, u) s^{2}-\frac{?}{3}(1-\mu) s+\frac{2}{27}(1+\mu)\right] \tag{3-11}\\
& \left.M_{y}\right]_{y=0}=\frac{q a^{2}}{16}\left[-(1-5, u) s^{3}-(1+3, \mu) s^{2}+\frac{2}{3}(1-u) s+\frac{8}{27}(1+u)\right] \tag{3-12}
\end{align*}
$$

The moment at the centroid of the triangle is

$$
\begin{equation*}
M_{x}=M_{y}=\frac{2 u^{2}}{5+1}(1+\mu) \tag{3-13}
\end{equation*}
$$

Since the magnitude and position or the maximum moment is auction of μ, moments for various μ arid S have been computed and are plotted in Graph 3-1.

Fie 3-6
The moments on any element of area in the plate as shown in Figure 3-6 are given by

$$
M_{n}=M x \cos ^{2} \alpha+M y \sin ^{2} \alpha-2 M x y \sin \alpha \cos \alpha
$$

and

$$
\begin{equation*}
M_{n t}=M_{x y}\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)+(M x-M y) \sin \alpha \cos \alpha \tag{3-14}
\end{equation*}
$$

where α is tine angle between the x and n axes. The maximum value of M occurs at $y=0$ and $\alpha=90^{\circ}$ and is therefore equal to the maximum value of my plotted in

Graph 3-1. The absolute maximum value of Pint occurs at $y=0, x=.405 a$ and $\alpha=45^{\circ}$ and is equal to

$$
\begin{equation*}
M_{n i t}= \pm .23 .7 \frac{2 a^{2}(1-\mu)}{16} \tag{3-15}
\end{equation*}
$$

The corresponding moment on this plane is from Equation 3-14

$$
\begin{equation*}
\left.M_{n}\right]_{\substack{\alpha=45^{\circ} \\ x=.405 \mu}}=\frac{2 u^{2}(1+\mu)\left[s^{3}-5^{2}+\frac{4}{27}\right]=.05(1+\mu) \frac{4 a^{2}}{8},(1)}{} \tag{3-15a}
\end{equation*}
$$

The differential equations for the shear forces as defined in Fig 3-5
are

$$
\begin{align*}
& Q_{x}=-D \frac{\partial}{\partial x}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \\
& Q_{y}=-D \frac{\partial}{\partial y}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3-16}
\end{align*}
$$

Therefore ,

$$
\begin{equation*}
Q_{x}=-\frac{2}{40}\left[-3 x^{2}+2 u x+3 y^{2}\right] \tag{3-17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{y}=-\frac{q y}{2 x}[3 x+a] \tag{3-18}
\end{equation*}
$$

The shear force along the edge $x=-\frac{a}{3}$ is

$$
\begin{equation*}
Q_{x}=-\frac{3 q}{4 a}\left[y^{2}:-\frac{a^{2}}{3}\right] \tag{3-19}
\end{equation*}
$$

and is identical to the shear force on the other two sides by symmetry. The sheer curve is shown also in Graph 3-1. The maximum shear on the edge, at $y=0$, is also the maximum shear force in the plate with a value.

$$
\begin{equation*}
Q x_{\max }=Q n_{\max }=\frac{q a}{4} \tag{3-20}
\end{equation*}
$$

The average shear stress along the edege of the triangle, obtained by dividing the total lo:d on the plate by the perimeter is

$$
\begin{equation*}
Q_{N_{i v e}}=\frac{q_{u}}{6} \tag{3-21}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
Q_{r_{\text {max }}}=\frac{3}{2} Q_{\text {ale }} \tag{3-22}
\end{equation*}
$$

The distribution of reactive forces along the edge of a plate is not usually the same as the distribution of shear forces Q. This is because the twisting moments Mxy and Myx contribute an extra load tern to the shear Q. The twisting moment kxy acting on an element of leneth dy may be replaced, using Seint Venent's principle, by two vertical forces Mxy, ay ajart, as shown in Figure 3-7,

FiE 3-7
Summing the forces in the z direction show that the distribution of the twisting moments is staticully equivalent to a distribution of shearing forces of $-\frac{\partial M x y}{\partial y}$ per unit length. Therefore the reactive force is

$$
\begin{equation*}
V_{x}=Q x-\frac{\partial M_{x y}}{\partial y} \tag{3-23}
\end{equation*}
$$

For the equilateral triangle along the edge $x=\frac{a}{3}$,

$$
\begin{equation*}
\frac{\partial M x y}{\partial y}=\frac{q(1-\mu)}{16 a}\left(4 y^{2}-a^{2}\right) \tag{3-24}
\end{equation*}
$$

Therefore the reactive alone, this edge is

$$
V_{x}=-\frac{\dot{q}}{16 a}\left[12 y^{2}-4 a^{2}+(1=u)\left(9 y^{2}-a^{2}\right)\right]
$$

$$
(3-25)
$$

This curve iss also plotted in Graph 3-1 for values oi $\mu=0$ and $\mu=3$ only. Since the two curves lie closs together, intermediate values oft μ are easily interpolated.

D. COMBTMED STPRSBSS

1. Isotropic Plate.

Before computing the bendine stresses and cumbining then with the membrane stresses, it is convenient to define the stresses that may occur. In Figure 3-8, a lamina of the element of mate is separated and the symbolism and positive directions of the stresses indicated.

Figure 3-8
The nomal stresses, denuted by σ_{n} end σ_{t} arise from bending moments Mn and t and membrane forces hin and Nt respectively. Shell theory gives the nembrene forces in the φ and θ directions only. If the φ, θ co-ordinate axes are not coincident with the n, t axes, Nin and Nt must be determined frou either Mohr's circle of $N \varphi$ and $N \theta$ or the correspondine equations. Remembering that tie units for N are lbs rer unit leneth and for M are inch-lbs per unit length, then the stress at
the outside fibre is

$$
\begin{equation*}
\sigma_{n}=\frac{N_{n}}{A} \pm \frac{M_{n}}{Z} \tag{3-26}
\end{equation*}
$$

where A and 2 are the area and section modulus of a unit length respectively. In deteraining the most severe combination of stress, it should be remembered that the equilateral triangle has three axes of symmetry and the equations previously derived used only one such axis. Also, the position and orientation of the triangle within the shell may vary somewhat.

The membrane shear force Nnt and triangle twisting moment Mnt produce shear stresses $\tau_{n t}=\tau_{t n}$. Shear stresses from Nnt are uniformly distributed across the thickness of the plate. Shear stresses from Mnt are distributed linearly, increasing from zero at the middle plane to a maximum at the outside fibre. Therefore the shear stress at the outside fibre is

$$
\begin{equation*}
\tau_{n t}=\frac{N_{n t}}{A} \mp M_{n t} \frac{6}{h^{2}} \tag{3-27}
\end{equation*}
$$

The shear forces $Q n$ and $Q t$ produce snear stresses $\tau_{n z}=\tau_{z n}$ and $\tau_{t z}=\tau_{z t}$ and do not combine with any stresses produced from shell action. These stresses are distributed parabolically across the plate with the largest stress at the middle plane. Therefore at the middle plane

$$
\begin{equation*}
\tau_{n z}=\frac{3}{2} \frac{Q_{n}}{h} \tag{3-28}
\end{equation*}
$$

The maximuin shear stress in the plate is, from Equation 3 - 20,

$$
\begin{equation*}
\tau_{n z} \max =\tau_{x z_{\max }}=\frac{3}{2} \frac{Q_{x} \max }{h}=\frac{3}{8} \frac{q a}{h} \tag{3-29}
\end{equation*}
$$

2. Plywood.

The equations previously derived are based on an isotropic material. Plywood, however, is not isotropic and the stress equations must be suitably modified. Since two dimensional stress is not usually encountered in the design of more common plywood structures, a brief discussion is included here.

The strength properties of an element of plywood vary with the orientation of the element with respect to the face grain. However, in computing the allowable forces, the element is always considered as oriented so that the n and t axes are parallel and perpendicular to the face grain respectively. Therefore the forces acting on an element are resolved into components giving normal and shear forces as shown in Figure 3-9. Then the forces must be such that ${ }^{5}$

$$
\begin{equation*}
\left(\frac{f_{n}}{F_{n}}\right)^{2}+\left(\frac{f_{t}}{F_{t}}\right)^{2}+\left(\frac{f_{n t}}{F_{n t}}\right)^{2} \leq 1 \tag{3-30}
\end{equation*}
$$

where
denotes the actual forces acting and F denotes the permissable

Fig. 3-9
5

> Airforce - Navy - Civil Aviation Committee, A.N.C. Handbook on the Design of Wood Aircraft Structures, T.S. Dept. of Agriculture,1942, P. 38
force in that direction if no other forces are acting.
In the determination of nomal stress, only those plies with their grain parallel to the applied force are considered as acting. The areas, section moduli and moments of inertia parallel and perpendicular to the face grain for a one foot wide strip are tabulated in Table 1 of the Douglas Fir Plywood Technical Handbook. Denote these velues by An, At, Zn, Zt, In and It respectively. Then the combined normel stresses at the outsile fibre capable of resisting stress are

$$
\sigma_{n}=\frac{N_{n}}{A_{n}} \pm \frac{M_{n}}{Z_{n}}
$$

and

$$
\sigma_{t}=\frac{N_{t}}{A_{t}} \pm \frac{M_{t}}{Z_{t}}
$$

The shear stress $\tau_{n t}=\tau_{t n}$ is called "shear through the thickness" in the Douglas Fir Plywood Technicel Handbook. In computing this shear stress, the whole cross sectionsl area is considered as acting. Therefore the equation

$$
\begin{equation*}
\tau_{n t}=\frac{N_{n t}}{A} \mp M_{n t} \frac{6}{h^{2}} \tag{3-27}
\end{equation*}
$$

derived for an isotropic plate nay be used.
The values of σ_{n}, σ_{t} and $\tau_{n t}$ for a point (x, y) are substituted directly into Equation 3-30. The allowable stresses in the denominator of this Equation nay be obtained from lable 3 of the Douglas Fir Plywood Ciechnical Handbook. The worst stress condition occurs where the left hand side of Equation 3 - 30 is a maximum. This maximum value depends on tine co-ordinates of the point, the orientation of the face grain and the position and orientation of the triangle in the shell. Therefore it is not feasible to determine where the maximun occurs other
than by a trial and error process. It is recommended nere to determine the maximum stresses in the triangle from lateral loads only and then combine them with the membrane stresses in the most severe possiole way since it is almost certain that one triangle will be oriented such that this condition applies. The shear stresses $\tau_{n z}=\tau_{z n}$ and $\tau_{t z}=\tau_{z t}$ produce rolling shear in plywood. The distribution of shear stress is irregular because only those plies parallel to the shear stress act. The shear stresses are given by

$$
\because \tau_{z n}=\frac{Q_{n} S_{n}}{I_{n} W}
$$

and

$$
\tau_{z t}=\frac{Q t S t}{I t W}
$$

where Sn and St are the first moments of area of those plies parallel to the n and t axes respectively outside the plane considered. The symbol W denotes the width of the section and the symbols $Q n, Q t$, In and It are as previously defined. First moments of area are not tabulated in the Douglas Fir Plywood Technical Handbook and so must be computed from the tabulated thicknesses of the plies. The distribution of rolling shear is indicated qualitatively in Figure 3-10 for both the n and t directions of a typical section. The shear stress is constant across a perpendicular ply and is distributed parabolically across a parallel ply. Therefore the maximum rolling shear for both the n and t directions may be evaluated at the glue line of the innernost ply. Though the shear stress at the neutral axis for either the n or the t directions is numerically greater, it is not rolling shear but horizontal shear. Since the allowable horizontal shear stress is greater than the allowable rolling shear stress, rolling shear remains the critical stress.

Fig. 3-10

E. BUCKLING OF A TRIANGLE

The differential equation for a buckled plate is ${ }^{6}$

$$
\begin{equation*}
\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{1}{D}\left(N_{x} \frac{\partial^{2} w}{\partial x^{2}}+N_{y} \frac{\partial^{2} w}{\partial y^{2}}+2 N_{x y} \frac{\partial^{2} w}{\partial x \partial y}\right) \tag{3-33}
\end{equation*}
$$

where $N x$, Ny and $N x y$ are forces per unit length in the plane of the plate. A lower critical stress is obtained if Nx and Ny are both compressive since tension forces by either $\mathbb{N x}$ or Ny tend to stabilize the plate. In the most severe case, $N x=N y$ and Mohrs circle becomes a point so that $N x y=0 /$ The differential equation then reduces to

$$
\begin{equation*}
\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=N_{D}^{N}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3-34}
\end{equation*}
$$

or writing in shorthand notation

$$
\begin{equation*}
\nabla^{4} w=\frac{N_{x}}{D} \nabla^{2} w \tag{3-35}
\end{equation*}
$$

For an exact solution, some function for the deflection w must be obtained which satisfies not only the buckling equation but also the boundary conditions for a simply supported plate. The method of solution closely parallels the solution for bending of an equilateral triangle. However in this case, the expression for w is more complicated and an exact solution does not appear to be feasible.

A solution may be obtained, however, by using finite dipference equations. The plate is divided by a grid or network of lines and $\nabla^{4} W$ and $\nabla^{2} W$ writton for each point of intersection of the net. Substituting these expressions into Equation 3-34 gives one equation for each point on the plate. The resulting equations are then solved siniultaneously for Nx . The degree of accuracy obtained depends on the number of points taken or the finess of the grid interval.

A triangular net is particularly suitable for obtaining a solution to the buckling problem of an equilateral triangle since the net lines are parallel to the edges of the triangle and the boundary conditions are easy to satisfy. Since triangular nets are not in such coinmon use as rectangular nets, a brief explanation is included here.

Fig 3-11
TRIANGULAR MET

Referring to Figure 3-8, jet

$$
\varepsilon w_{1}=w_{1}+w_{3}+w_{3}+w_{4}+w_{5}+w_{6}
$$

and

$$
\varepsilon w_{7}=w_{7}+w_{3}+w_{9}+w_{10}+w_{11}+w_{12}
$$

It can be proved that 7 •

$$
\frac{9 \delta^{4}}{16}\left(\nabla^{4} w\right)_{0}=12 w_{0}+\varepsilon w_{1}-3 \varepsilon w_{1}
$$

and

$$
\begin{equation*}
\left.9 \delta^{2}\left(\nabla^{2} w\right)_{0}=9 \varepsilon w_{1}-\varepsilon w_{7}-48 w_{0}\right\} \tag{3-36}
\end{equation*}
$$

Dividing the side of an equilateral triangle into seven equal parts with a triangular net gives fifteen points on the triangle as shown in Figure 3-12

FAllen, D.N., Relaxation Methods,

By symmetry thou g, the are only four different points.

Writing the expressions for $\left(\nabla^{4} w\right)_{n},\left(\nabla^{2} w\right) n$, and collecting terms we obtain: $9 \frac{\delta^{4}}{16}\left(\nabla^{4} w\right)_{1}=10 w_{1}-6 w_{2}+w_{4}$
$9 \frac{\delta^{4}}{16}\left(\nabla^{4} w_{-}\right)_{2}=-3 w_{1}+8 w_{2}-2 w_{3}-2 w_{4}$
$9 \frac{\delta^{4}}{16} \cdot\left(\nabla^{4} \omega\right)_{3}=-4 w_{2}+11 w_{3}-5 \cdot v_{4}$ $9 \frac{S^{4}}{16}\left(\nabla^{4} w\right)_{4}=w_{1}-4 w_{2}-5 w_{3}+6 w_{4}$

$9 \delta^{2}\left(\nabla^{2} w^{-}\right)_{1}=-46 w_{1}+18 w_{2}-w_{4}$
$9 \delta^{2}\left(\nabla^{2} w\right)_{2}=9 w_{1}-38 w_{2}+8 w_{3}+8 w_{4}$
$9 \delta^{2}\left(\nabla^{2} w^{-}\right)_{3}=\quad+16 w_{2}-47 \omega_{3}+17 \omega_{4}$
$9 \delta^{2}\left(\nabla^{2} w\right)_{4}=-w_{1}+16 w_{2}+17 w_{3}-30 w_{4}^{-}$

Before substituting into Equation 3-34, it must be modiried to

$$
\begin{equation*}
\frac{9 \delta^{4}}{16}\left(\nabla^{4} u r\right)_{n}=\left[\frac{N_{x} \delta^{-2}}{D} 16\right] 9 \delta^{2}\left(\nabla^{2} u\right)_{n} \tag{3-39}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{9 \delta^{4}}{16}\left(\nabla^{4} w\right)_{n}=\beta \quad 9 \delta^{2}\left(\nabla^{2} w\right)_{n} \tag{3-40}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{N \times \delta^{2}}{16 D} \tag{3-41}
\end{equation*}
$$

Substituting Equations (3-57) and 3-38) into Equation (3-40) and collecting terns give

$$
\begin{gathered}
(10+46 \beta) w_{1}-(6+18 \beta) w_{2}+0+(1+\beta) w_{4}=0 \\
-(3+93) w_{1}+(8+38 \beta) w_{2}-(2+83) w_{3}^{-}-(2+8 \beta) w_{4}=0 \\
0-(4+163) w_{2}+(11+47 \beta) w_{3}-(5+17 \beta) w_{4}=0 \\
(1+\beta) w_{1}-(4+16 \beta) w_{2}-(5+17 \beta) w_{3}+(6+30 \beta) w_{4}=0
\end{gathered}
$$

One solution of the four equations is $W=0$. However this is not 2 buckled shape and is therefore a trivial solution. The only non zero solution is for the determinant of the coefricients to vanish. Therefore the solution of the tour equations is obtained from

$$
\left|\begin{array}{cccc}
(10+46 \beta) & -(6+18 \beta) & 0 & (1+\beta) \\
-(3+9 \beta) & (8+38 \beta) & -(2+8 \beta)-(2+8 \beta) \\
0 & -(4+16 \beta) & (11+47 \beta)-(5+17 \beta) \\
(1+\beta) & -(4+16 \beta) & -(5+17 \beta) & (6+30 \beta)
\end{array}\right|=0
$$

which yields

$$
1,141,114 \beta^{4}+820,358 \beta^{3}+207,858 \beta^{2}+21,266 \beta+686=0
$$

The real root of this equation giving the smallest compressive load is $\beta=-.059$

Substituting into Equation 3-41 gives

$$
\frac{N \times \delta^{2}}{16 D}=-.059
$$

Replacing by its value b/7, multiplying the numerator and denominator by π^{2} and arranging terns, the critical load is

$$
\begin{equation*}
(N x)_{c r}=-4.66 \frac{\pi^{2} D}{b^{2}} \tag{3-42}
\end{equation*}
$$

where b is the length of the side of the triangle. The form of Equation 3-42 is now the same as the form of the buckling equation for a colum since $\mathrm{D} \cong \mathrm{EI}$. The minus sign in Equation 3-42 indicates that the critical force is compressive as was suggested in the previous discussion of the buckling problem. A similar procedure using a different number of points on the triangle gives various values of K in the equation

$$
\begin{equation*}
\left(N_{x}\right)_{c r}=K \frac{\pi^{2} D}{b^{2}} \tag{3-43}
\end{equation*}
$$

Plotting a graph of K versus the total number of points on the triangle gives the curve shown in Figure 3-13. Since the curve is asymptotic to $K=-4.75$, the equation for buckling of a simply

Fig 3-13
supported equilateral triangle is

$$
\begin{equation*}
(N x)=-4.75 \frac{\pi^{2} v}{b^{2}} \tag{3-44}
\end{equation*}
$$

Not all the triangles comprising a ceodesic shell are equilateral so that the coofiricient K must be determined for other shapes as well. For convenience, only isosceles triongles are considered so that the shape of a triangle is determined by the two parameters, b and γ, as defined, in Figure 3-14. Fos the same

Fig 3-14
stress conditions, $\mathrm{Nx}=\mathrm{My}$, Timoshenko ${ }^{8}$ gives the bucking load on a simply supported isosceles right triangle, $\gamma=45^{\circ}$, as

$$
(N x)=-10 \frac{\pi^{2} D}{b^{2}}
$$

While all the triangles encountered in a geodesic shell lie within the range

$$
45^{\circ}<\gamma \leq 60^{\circ}
$$

it is not safe to essume a linear verintion of K. Since boundary conditions are
hard to satisfy without convenient co-ordinates, it is impractical to invesiigete cases within the rance

$$
45^{\circ}<\gamma<60^{\circ}
$$

However, investigation of a few cases outside this range makes it possible to draw the curve of K and γ with sufficient accuracy.

For the case $\gamma=30^{\circ}$, using a triancular net and writing four finite difference equations again, the critical load is

$$
\begin{equation*}
(H x)=-32 \cdot \frac{\pi^{2} D}{b^{2}} \tag{3-45}
\end{equation*}
$$

The buckling load for a bimply supported rectangular plato when $\mathrm{Nx}=\mathrm{Ny}$ is ${ }^{9}$

$$
\begin{equation*}
(d x)=-\frac{\pi^{2} D}{b^{2}}\left(1+\frac{b^{2}}{a^{2}}\right. \tag{3-46}
\end{equation*}
$$

when a and b are the lengths of the aides. This formula may be used to investigate the limitime conditions of $\gamma=0^{\circ}$ and $\gamma=90^{\circ}$. As $\gamma \rightarrow 90^{\circ}, a \rightarrow \infty$ and

$$
\begin{equation*}
(\pi x)=-\frac{\pi^{2} D}{b^{2}} \tag{3-47}
\end{equation*}
$$

As $\quad \gamma \rightarrow 0^{\circ}, \quad a \rightarrow 0$ and

$$
(N x) \rightarrow-\infty
$$

Graph 3-2 shows the resalt of plotting K as ordinates and γ as sbscissae.

Some of the triancies encountered in the dome may be scalene instead of isosceles. The change from an isosceles trisngle is not great. Therefore substituting with care on isosceles triangle for a scalene triangle gives a gooc value of the critical load.

Despite the fact that there is some rigidity at the boundary, assurning simply supported plates is not unreasoneble because one plate may buckle in and the other out as shown in Figure 3-15. Therefore the joint rigidity does little to prevent buckline.

Fig 3-15

The flexural rigidity of a plate, ppearing in the buckling equation, is

$$
\begin{equation*}
D=\frac{E h^{3}}{12\left(1-\mu^{2}\right)} \tag{3-48}
\end{equation*}
$$

where h is the thichess of the plate, Lettine $\mu=0$, the flexural rieidity becones

$$
\begin{equation*}
D=\frac{E h^{3}}{12}=\mathbb{I} \tag{3-49}
\end{equation*}
$$

since $h^{3} / 12$ is the moment of inertia of a unit wiath of plate. While Equation 3-48 is apilicable for icotropic plates, Equation 3-49 is better used for plynood: Using $E=1.8\left(10^{\circ}\right)$ and determining the average I from Table 1 of the Douglas Fir Plywood Technical flandbook, an average flexursl rigidity is easily obtained.
F. bucking of tie sheld

Since the analysis of the critical stress of thin shells is a fairly complex problem no attempt will be made here to present the lengthy differential and energy equations. Instead, the general atteck and finsl results will be discussed and the latter put into a form useful for the design of geodesic shells. The latter part of this section is devoted to the application of these equations to plywood since the original derivations assume an isotropic plate.

For a spherical shell under a unitorm external pressure p, Mohr's circle of stress is a point and

$$
\begin{equation*}
\sigma=\frac{\rho^{\rho}}{E h} \tag{3-50}
\end{equation*}
$$

For this stress conciition, the so-called classical theory of buckling of thin shells gives a critical stress of

$$
\begin{equation*}
\sigma_{c r}=\frac{1}{\sqrt{3\left(1-u^{2}\right)}} \frac{E h}{\rho} \tag{3-51}
\end{equation*}
$$

This classical theory assumed small doflections and a buckled surface dependant only on φ and independant of θ. However experinental results give a buckling stress three times lower than the classical theory. A similar discrepancy also exists between the theoretical and experimental analysis of cylinarical shells under axial load. Many well knom scientists attempted to explain this discrepancy by considering the effect of end conditions and indtial deviations from the true shepe. Their results indicated a plastic failure of the material which is not substantiated experimentally since releasing the load removes the buckling waves. Also buckling occurs suddenly not gradually as is required for a plastic failure.

The real reason for the discrepancy was later explained by T. von Karman and Hsue - Shen Tsien ${ }^{10}$. These authors pointed out that the classical theory assumed small deflections and thus obtained a linear differential equation determining the equilibrium position of the shell whereas actually large deflections occur and the differential equation is non linear. They also observed that the buckled wave form was not as predicted by the classical theory but formed a small dimple subtended by a solid ancle of approximately sixteen degrees. Therefore they confined their analysis to one dimple incicated in Fig 3-16.

Fig 3-26
They assumed that : the soliu angle 2β is mall, the deflection is rotationally syminetric, the deflection of any element of the shell is parallel to the axis of rotationsl symmetry and that Poisson's ratio is zexo. They then obtained an erergy equation for the extensional energy before and after buckling, the bendine energy, and the work done by the external pressure during bucking.

Minimizing this expression to obtain the lowest energy condition gave an expression

$$
\begin{equation*}
\frac{\sigma \rho}{E h}=f\left(\beta^{2} \frac{\rho}{h}, \frac{w_{0}}{h}\right) \tag{3-52}
\end{equation*}
$$

where w_{0} is the maximum deflection of the dimple. Then assigning a value to either $\beta^{2} \frac{\rho}{h}$ or $\frac{w_{0}}{h}$, a plot of the romaining two dimensionless quantities is obtained. Such a plot is show in Graph 3-3. From this graph the minimum value is

$$
\begin{equation*}
\left(\frac{\sigma \rho}{E h}\right) \operatorname{\operatorname {tin}}=\cdot 183 \tag{3-5j}
\end{equation*}
$$

This value of the critical stress is appoximately tiree, times lower than the classical theory and corresponds very closely with experimental results. That large deflections occur is shown by the fact that for the minimum value of $\frac{\sigma \rho}{E h}$, $\frac{w_{0}}{h}=10$ whereas mall deflection theory requires that $\frac{w}{h} \leq \frac{1}{2}$.

Since the shape of a geodesi: shell so closely conforms to the shape of a true sphere it seens reasonablo to apply Karman and Teien's results to shells of this type. Since the shan of the eoderic shell is not exctly similar, the work done by the extermal pressure is leas than in the Karman and Tsien andysis. However tile bendine energy of the joining battens is not included so that any error tends to idalance out. The magnitude of the solid angle subtending the buckled dimple is approxinately sixteen degrees. This suggests that in a geodesic shell the apex of a group of five or six triansles would buckle inwards. Buckling comences at least as a type of local instability since the dimples are simell and were analyzed as a single unit. Therefore even though a shell under external pressure is an unusual load for a roof as a whole, it is very nearly the case for

the section near the crown. At the crow, dead and live loads produce equal membrane stresses in all directions and the load is nearly normal to the surface. Therefore the loading at the crow is the same as for a spherical shell under external pressure and the energy expressions of Karman and Tsien are justified for this section of the roof. At other sections of the roof the loading is less severe with regard' to buckling sirce the external load is less and the membrane stresses are amaller.

Instability may occur in a geodesic shell in one of two ways. A Eroup of triangles may buckle or an individual triangle may cuckle. In the first case, as presented in this section, $\left(\frac{\sigma \rho}{E h}\right)$ is a constant. In the second case, discussed in the previous section, the buckling force is ,

$$
\begin{equation*}
\mathbb{N}_{c r}=K \frac{\pi^{2} D}{b^{2}} \tag{3-43}
\end{equation*}
$$

where b is defined as the base of the triangle and K is a constant depending on the shape of the triangle. However the base is a function of the radius.

Represent this function by λ which is tabulated in Chaptor II. For the case $\mu=0, D=\frac{E h^{3}}{12}$ and the critical force is

$$
\begin{align*}
& N c r=K \pi^{2} \frac{E h^{3}}{12 \lambda^{2} \rho^{2}} \tag{3-54}\\
& \frac{\sigma \rho}{E h}=\frac{K \pi^{2}}{12 \lambda^{2}}\left(\frac{h}{\rho}\right) \tag{3-55}
\end{align*}
$$

This function is plotted in Graph 3-4 for an equilateral triangle and various values of $\frac{\rho}{h}$. Superimposed on this graih is the stratight line $\frac{\sigma \rho}{E h}=.183$, the critical condition for shell buckling. Entering the graph with values of $\frac{\rho}{h}$ and λ determines which type of buckling occurs at the lower stress.
Relation between Bucking of Simply Supported Egutitaterat Triangles and Spherical Shells under Uniform Normal Pressure:
0

For plywood, substitutine into the dinensionless quantities $\frac{\sigma \rho}{E h}$ and $\frac{\rho}{h}$ immedietely raises the question of what values to use for E and h. If the full thickness is used then E must be reduced from the parallel to grain value to some smaller averace value. This procedure is given in the Wood Handbook. ${ }^{1 l}$. However there is an easier ajproach which yields almost identical results. In the previous section the flexurel ricidity was modified to

$$
\begin{equation*}
\frac{E h^{3}}{12\left(1-\mu^{2}\right)} \approx \frac{E h^{3}}{12}=E I \text { ave. } \tag{3-49}
\end{equation*}
$$

where Iave is the average of the moments of inertia perallel and perpendicular to the face grain for a unit width. Carrying this approach one step further gives

$$
\begin{equation*}
h_{\text {eff }}=\sqrt[3]{\text { Iave }} \tag{3-56}
\end{equation*}
$$

when Iave is for a one foot width. Equation 3-56 derines an effective thickess in inches for substituting into the dimensionless quantities $\frac{\sigma \rho}{E h}$ and $\frac{\rho}{\bar{h}}$ used in Graph 3-4. When the effective thickness is used, Young's modulus mey be taken es $E=1.8 \times 10^{6}$ p.s.i. Values of the effective thiclness are tabulated in Table 3-1. This table illustrates an interesting relation between the effective and nominal thicknesses. The refore the effective thickness may equally well be taken as

$$
h=.79 \mathrm{~h} .
$$

11 Forest Products Laboratory, Wood Handbook, Weshineton, J. S. Department of Agriculture, 1955, p. 280.

Table 3-1

h	I_{11}	I_{\perp}	I uve	heff	$\frac{h \text { heff }}{h}$
$3 / 8 \mathrm{~s}$.0435	.00926	.0264	.298	.795
$3 / 8 \mathrm{U}$.0427	.00474	.0237	.287	.765
$1 / 2 \mathrm{~s}$.0730	.0520	.0625	.397	.795
$1 / 2 \mathrm{U}$.0961	.0252	.0606	.392	.785
$5 / 8 \mathrm{~S}$.121	.123	.122	.496	.794
$5 / 8 \mathrm{U}$.194	.0353	.1147	.486	.777
$3 / 4 \mathrm{~S}$.228	.194	.211	.596	.795
$3 / 4 \mathrm{U}$.250	.160	.210	.594	.792

CHAPITER IV

EXPERRIEENTAL ANALYSIS

A. PRELINTNARY CONSIDERATIONS.

Because of a lack of tabulated functions, the exact analysis was not obtained. The approximate solution developed used smooth shell theory to give the average membrane force on the edge of a triangle but did not give the distribution of these forces. The Fourier analysis for the distribution of the membrane forces also lacked tabulated functions so it was necessary to obtain the distribution experimentally. Therefore the purpose of the model analysis is twofold. First of all, it should demonstrate the validity of applying the membrane theory of emooth shells to folded plate shells as outlined in Chapter 3. Secondly, it should indicate the distribution of membrane force along the edges of the triangle. It is not the object of the experimental wark to ascertain the stress at all points of the dome.

The previous chapter suggested that the distribution of membrane force was, in part, dependent on the dihedral angle formed by two adjacent triangles with the highest stress riser accompanying the largest departure from a dihedral angle of 180°. Excluding the icosehedron es too rough an approximation of a sphere, the next worse case is a sphere compored of 80 triangles. the size of the triangles is governed by the number of points necessary to plot accurately the distribution curve. Electric resistance strain rosettes are approximately two inches square. Therefore to obtain a distribution curve elong the edge of a triangle from seven or eight points, the minimum sice of triangle must be sixteen to eighteen inches on a side. These criteria outline the geometric limiting conditions of the model.

The three materials considered for making the model were aluminum, plywood and plexiglas. With the equipment available, plywood is the easiest to work with, followed by plexiglas then aluninum. The disadvantages of plywood for model analysis though are important. It is not isotropic with the result that the principal strains are not in the same direction as the principal stresses. In addition, the elastic properties vary uncertainly with e change of moisture content in the plywood. The muerical value of the elastic properties is another prime consideration. Values of Youngs Modulus are approximately:

Aluminum	$10 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}$	
Hood	1.8×10^{6}	$\mathrm{lb} / \mathrm{in}^{2}$ (Parallel to grain)
Plexiglas	0.5×10^{6}	$\mathrm{lb} / \mathrm{in}^{2}$

The comparatively heavy loads required to produce high membrane stresses in a shell are difficult to apply in the laboratory without special loading equipment. But for the same load and cross sectional area, plexiglas gives strains twenty times larger than aluminum. These larger strains are more accurately read on the strain indicator. To obtain the same strain for a given load, aluminum must be $1 / 20$ the thickness of plexiglas. This, however, reduces the buckling load 400 times and aluminum aheet becomes more unstable than plexiglas. Weighing the advantages and disadvantages so far outlined, plexiglas appears the most suitable material for the model.

Plexiglas does have a definite tendency to creep, particularly at the higher stresses. About 85% of the creep occurs in the first few seconds of loading and the ramaining 15% over a period of ten to fifteen minutes. However the unit stresses are so low and the time factor so short that creep is not of major importance in this case.
B. DESCRIPTION OF MODEL

After some thought and a few preliminary tests, it was decided to build a five foot diameter hemisphere of forty triangles made from $1 / 8^{\prime \prime}$ plexiglas. This gives ten equilateral triangles 18.54 inches on an edge and thirty isosceles triangles with a base of $18.54^{\prime \prime}$ and two sides 16.40 inches. Pictures of the model are included in the photographic supplement. To resemble a dome in actual practise, battens one inch wide and $1 / 4^{\prime \prime}$ maximum depth were used to reinforce the joint. The battens were not conmected together and stopped short of the
triangle vertices by $1 / 4^{\prime \prime}$. Ordinary CIL cement was used to hold the structure together since laboratory tests showed it to be stronger than other glues tested including a mixture of plexiglas and ethylene ohloride. The dome was supported on a heavy ring about three and a half feet above the floor. The ring resisted any horizontal deflection of the base of the shell but was not connected to the shell in a manner to resist rotation of the base of the shell.

After the triangle thickness was measured with a micrometer, thirty eight SR 4 strain rosettes were glued on one isosceles triangle. The position and orientation of the rosettes and the plate thiclenesses are given in Figure 4-1. The type CR - 1 rosette was used which is made of Iso-elastic wire. In this type of rosette, three strain gages are superimposed one on the other and oriented at forty five degrees to each other.

Iso-elastic rosettes were used because they have a Gage Factor of 3.42 compared to 2.0 for the more common type of rosette made from Constantan wire. If the Gage Factor dial of the Strain Indicator is set at 2.0 when Iso-elastic gages are used, the indicated strain is not the true strain. The true strain is given by

$$
\begin{equation*}
\in \operatorname{true}_{j}=\in \text { indicated } x \frac{\text { G.F. dial }}{\text { True G.F. }} \tag{4-1}
\end{equation*}
$$

Thus Iso-elastic gages magnify the true unit strain by 71\%. This is particularly advantageous when measuring small strains. The disadvantage to Iso-elastic gages is that they are highly sensitive to temperature changes.

Fig 4-1
Placing of Rosettes as Viewed from the outside of the shell. Plate thicknesses are in parentheses.

The rosettes were wired with a common ground on each side of the shell. For the other wirea, a simple color code facilited differentiating between gages. Red designates all gages normal to the edge of the triangle; white, 45° to the edge and blue, parallel to the edee. The weight of wire was carried by two trianguler wooden frames suspended approximately $3 / 4^{\prime \prime}$ above and below the rosettes.

Since there are 114 active wires and two ground wires leading from the shell to the Strain Indicator, a switching unit would be useful. Investiggation revealed, however, that this was impractical because the contact reaistance of commercial type switches was not constant, giving erroneous strain readings! Good switching units with a near constant contact resistance are very expensive and were therefore beyond reach considering the number required. The only alternative was to connect each wire directly to the Strain Indicator, individually, as required. To separate tho maze of wires, they were separated in groups of nine, attached to circular discs, and clearly labelled.

It was noticed with the temperature sensitive gages used that when the the
circuit was closed, ${ }^{\text {Wheatstone Bridge did not stay balanced. Visually, the }}$ galvanometer needle deflected rapidly at first but gradually slowed as time expired. A permanent balance of the bridge was obtained about five minutes later. This phenomenon was probably due to the heat produced from the electric current passing through the gage resistance. Galvanometer equilibrium would then ocour when the strain gage was in thermal equilibrium。

Though temperature compensating gages were used, they are not practicalIy speaking loof efficient. This slight inefficiency is greatly magnified by the temperature sensitive Iso-alastic gages. Therefore any change of room temqurature
over the period of testing slightly changes the zero load reading of the gage. In addition, changes of room temperature induce temperature stresses in the model.

These temperature effects are eliminated by the method of loading. One gage is connected to the Strain Indicator and the circuit closed. After the Wheatstone Bridge appeared permanently balanced, loads were applied relatively quickiy, taking intemittent readings, up to the maximum load and back again to the zero load. If the Bridge balance was the sane at the end of loading as it was at the start, then all temperature effects are nullified and the recorded strains are due only to the applied load.

The loading of the ahell was accomplished using one hydraulic jack and an arrangement of beams dividing the total load into six equal parts. One sixth of the load was applied at the top and the remaining five sixths at the five uppermost points formed by the five triangles adjacent to the top. The total load applied to the shell was measured with a proving ring graduated in 1.065 pound divisions. The jack was regulated by levers permitting the operator to control the load and read the Strain Indicator from the asme position.
C. ROSBITHE ANALYSIS.

After a consistent set of readings, void of temperature effects, were obtained, the values for each side were averaged and the results were plotted. The readings are tabulated in Table 4-1 and a typical graph is shown in Figure 4 - 2. In all cases, the results plotted as a straight line.

Table 4-1

Gage		Total Load in Lbs.									
		Side A (outside)					Side B (inside)				
		\bigcirc	100	200	300	400	\bigcirc	100	200	300	400
1	R	1299	1375	1458	1540	1621	1356	1368	1381	1394	1409
	w	939	941	942	943	944	1141	1063	983	905.	825
	B	1079	1061	1042	1024	1004	1202	1152	1099	1045	991
2	R	1203	1213	1223	1233	1242	1220	1248	1278	1307	1338
	w	1020	978	931	888	843	1068	1078	1088	1099	1110
	8	1928	1898	1864	1831	1799	1183	1173	1163	1152	1141
3	R	1160	1163	1167	1169	1172	1470	1488	1508	1527	1547
	w	1330	1302	1274	1245	1214	1238	1252	1270	1288	1306
	B	1460	1437	1410	1383	1356	1310	1298	1281	1265	1250
4	R	1100	1107	1113	1121	1129	1599	1607	1616	1625	1633
	W	1381	1363	1343	1323	1303	1600	1616	1631	1648	1663
	B	1121	1100	1078	1055	1032	1588	1569	1550	1531	1512
5	R	1303	1315	1328	1341	1355	1338	1336	1332	1330	1328
	\dot{w}	1511	1499	1479	1462	1447	1328	1332	1339	1341	1348
	B	1440	1420	1400	1380	1359	1259	1240	1221	1201	1180
6.	R	1557	1572	1589	1606	1623	1753	1742	1731	1721	1710
	w	959	940	919	898	878	938	923	909	893	878
	B	1212	1193	1172	1151	1129	888	866	842	818	793
7	R	1591	1602	1615	1627	1640	1359	1340	1321	. 1302	1283
	W	1202	1166	1128	1088	1050	1223	1181	1132	1083	1032
	B	1175	1153	1129	1107	1081	990	960	927	892	858
8	R	1375	1350	1319	1292	1262	1102	1078	1045	1012	978
	w	1395	1321	1239	1163	1083	1935	1856	1761	1671	1578
	B	1602	1570	1537	1500	1461	1878	1860	1842	1823	1802
9	R	1441	1444	1443	1451	1455	1243	1289	1340	1390	1442
	w	1300	1262	1223	1183	1145	1290	1271	1252	1233	1214
	B	1498	1431	1358	1286	1212	948	890	825	761	692
10	R	1889	1890	1890	1891	1891	1259	1298	1340	1381	1425
	w	1227	1192	1158	1125	1091	1528	1519	1512	1504	1497
	B	999	933	868	802	733	1530	1477	1419	1361	1301

Table 4-1 (cont'd.)

Gage		Total Load in Lbs.									
		Side A (outside)					Side B (inside)				
		0	100	200	300	400	\bigcirc	100	200	300	400
11	R	1552	1549	15.45	1541	1538	1092	1138	1184	1230	1277
	w	1340	1302	1262	1222	1182	1162	1172	1182	1192	1202
	B	914	848	778	707	632	922	e72	817	762	708
12	R	1297	1281	1265	1247	1229	1070	1132	1201	1268	1336
	w	1250	1193	1132	1071	1008	1510	1539	1570	1600	1632
	B	1378	1305	1225	1143	1065	1470	1421	1372	1322	1270
13	R	1231	1210	1187	1163	1140	1248	1342	1445	1547	1650
	w	1579	1488	1387	1292	1192	1402	1453	1511	1564	1622
	B	1502	1412	1317	1222	1121	940	900	860	820	778
14	R	1000	1049	1102	1155	1210	1000	1130	1269	1409	1548
		1000	1018	1038	1058	1079	1000	1034	1071	1.108	1147
	B	1000	885	761	640	516	1000	925	842	759	673
15	-R	1558	1563	1571	1577	1582	1433	1361	1281	1204	1124
		1322	1415	1513.	1610	1709	1208	1173	1139	1108	1074
	O	1355	1449	1548	1648	1752	1092	1122	1155	1188	1222
16	R	1250	1263	1278	1293	1309	1059	1009	953	901	847
	w	1432	1486	1548	1603	1665	1269	1250	1231	1212	1192
	B	1428	1488	1553	1618	1682	000	040	006	128	170
17	R	1765	1772	1782	1792	1802	1362	1321	1277	1232	1187
	w	1397	1439	1472	1512	1552	1378	1368	1358	1348	1338
	B	1659	1717	1778	1839	1900	1178	1221	1267	1311	1360
18	R	1610	1621	1633	1645	1657	1634	1592	1549	1503	1458
	w	1270	1299	1329	1357	1388	1559	1553	1550	1545	1540
	B	1589	1648	1709	1770	1831	1449	1488	1530	1571	1612
19.	R	1117	1131	1145	1158	1170	1532	1478	1416	1358	1299
	W	1775	1797	1819	1839	1860	1295	1287	1278	1269	1260
	B.	332	399	466	531	600	1729	1764	1802	1840	1878

The slope of the line was determined from the graph and then corrected for the Gage Factor by Equation 4-1. Mohr's circles of strain were then plotted for a total load on the shell of 100 pounds. Strains were converted to stresses by superimposing Mohr's circle of stress over that for strain. The results for a typical rosette are shown in Figure 4-3. Since the superposition of Mohr's circle of stress over the circle of strain is not too common, a brief discussion is included here.

Normal strains, denoted by ϵ, are positive when they are elongations. Shearing strains, denoted by γ, are positive when the originally rectangular element is distorted with respect to the co-ordinate axes as shown in Figure 4-4. Then the atrain on

Fig 4-4
a plene whose outward normal is at a counter clockurise angle θ to the X axis is

$$
\begin{align*}
& \epsilon_{\theta}=\frac{\epsilon_{x}+\epsilon_{y}}{2}+\frac{\epsilon_{x}-\epsilon_{y}}{2}+\frac{\gamma x y}{2} \sin 2 \theta \\
& \gamma_{\theta}=\left(\epsilon_{y}-\epsilon x\right) \sin 2 \theta+\gamma x y \cos 2 \theta \tag{4-2}
\end{align*}
$$

Referring to the principal axes of strain rather than the X and Y axes, Equations (4-2) become

$$
\left.\begin{array}{l}
\epsilon_{\alpha}=\frac{\epsilon \max +\epsilon_{\min }^{2}+\frac{\epsilon \max -\epsilon_{\min } \cos 2 \alpha}{2}}{\gamma_{\alpha}=\left(\epsilon_{\min }-\epsilon_{\max }\right) \sin 2 \alpha}
\end{array}\right\}(4-3)
$$

where α is tive counterolockwise angle from the positive principal strain axis to the outward normal of the plane under consideration.

Rosettes \#13

Strain Scale: $1^{\prime \prime}=20 \times 10^{-6} \mathrm{in} / \mathrm{in}$.

Fig. 4-3.

Let

$$
\epsilon \frac{\max +\epsilon \min }{2}=A
$$

and

$$
\epsilon \frac{\max -\epsilon \min }{2}=B
$$

then Equations (4-3) reduce to

$$
\begin{aligned}
& \epsilon_{\alpha}=A+B \cos 2 \alpha \\
& \gamma_{\alpha}=-2 B \sin 2 \alpha
\end{aligned}
$$

Mohr's circle of strain is a plot of ϵ as abscissa, positive to tie right, and $\frac{\gamma}{2}$ as ordinate, positive down. From equations (4-5), it can be seen that A is the distance from the origin to the centre of Bohr's circle of strain and Bis the radius of the circle.

Considering stresses as positive when producing positive strain, the stress equations ore very similar to the strain equations: Referring the stress or any plane to the principal stress axes, the stress equations are

$$
\begin{align*}
& \sigma_{\alpha}=\frac{\sigma_{\max }+\sigma_{\min }}{2}+\frac{\sigma_{\max }-\sigma_{\min }}{2} \cos 2 \alpha \\
& \tau_{\alpha}=\frac{\sigma_{\min }-\sigma_{\max }}{2} \sin 2 \alpha \tag{4-6}
\end{align*}
$$

But

$$
\begin{aligned}
& \sigma_{\max }=\frac{E}{1-\mu^{2}}\left[\epsilon_{\max }+\mu \epsilon_{\min }\right] \\
& \left.\left.\sigma_{\min }=\frac{E}{1-\mu^{2}} \right\rvert\, \epsilon_{\min }+\mu \epsilon_{\max }\right]-
\end{aligned}
$$

$$
\{(4-7)
$$

Substituting Equations (4-7) and (4-4) into Equations (4-6), the stress equations become

$$
\begin{aligned}
& \sigma_{\alpha}=\frac{E}{1-\mu} \cdot\left[A+\left(\frac{1-\mu}{1+\mu}\right) B \cos 2 \alpha\right] \\
& \tau_{\alpha}=\frac{E}{1-\mu}\left[-\left(\frac{1-\mu}{1+\mu}\right) B \sin 2 \alpha\right]
\end{aligned}
$$

$$
\{(4-8)
$$

Comparing Equations (4-8) with Equations (4-5) show that if the stress scale is $\frac{E}{1-\mu}$ times the strain scale, Mohr's circles of stress and strain are concentric. Furthermore the radius of the stress circle is $\frac{1-\mu}{1+\frac{\mu}{\mu}}$ times the radius of the strain circle.

A piece of Perspex approximately $1 / 8^{\prime \prime}$ thick, $2 \frac{1}{2}$ wide and $17^{\prime \prime}$ long was cut from the same material as was used for the model. Two strain rosettes were attached, one on each side. The specimen was submitted to a tensile test in the Boldwin-Southwark Testing Machine. From the readings recorded, graphs were plotted and the elastic properties calculated. The results of the tests are

$$
\begin{aligned}
& E=4.64 \times 10^{5} \quad 1 \mathrm{~b} / \mathrm{in}^{2} \\
& \mu=.337 \sim \frac{1}{3}
\end{aligned}
$$

Referring to Equations ($4-8$) and using the determined elastic properties show that the radius of Mohrs circle of stress is

$$
\frac{1-\frac{1}{3}}{1+\frac{1}{3}}=\frac{1}{2}
$$

the radius of Mohr's circle of strain. The comordinates of any point on the stress circle are measured using the strain circle scale and then multiplied by $\frac{4.64 \times 10^{5}}{1}=.695 \times 10^{6}$:
$1-\frac{1}{3}$
While part of the quantitative experimental results are disappointing, the overall results are reasonable. The application of smooth shell theory to this type of folded plate shell does seem justified."Any slight discrepancy between theory and experiment in the model is greater than the corresponding discrepancy in a shell composed of more triangles because the latter is a closer approximation of a smooth shell. Therefore, to obtain the maximum membrane stress in a folded plate shell, the smooth shell membrene stress is multiplied by the appropriate stress riser from Graph 4-1.
D. RESULIS

From Mohr's circle, the normal and shear stresses were determined on the planes parallel to the edges of the triangle. The resulting stress distribution curves are shown in Figures (4-5 and (4-6). These curves prove that the stress distribution is not linear as in amooth shells but rather a parabolic shape. There is an unsymetrical normal stress reversal near the upper vertex on the side of the triangle lying in the meridian. This pecullarity may perhaps be explained by the fact that part of the load was applied at the vertex of the triangle. The proximity of the concentrated load may result in secondary effects at this point. Except for this one point the rest of the points appear to plot as relatively smooth curves.

Fig 4-5
Distribution of Normal Stress
in p.s.i. on the Gage line Triangle

Fig 4-6

In order to check the accuracy of the experimental work, the curves of Figures $(4-5)$ and $(4-6)$ were plotted to a much larger acale on graph paper. The area under the curves was determined and then replaced by concentrated forces and moments as shown in Figure (4-7). The forces shown are all in the same plane so there are three equations of equilibrium. Taiking an arbitrary set of axes as shown and writing the three equations gives

$$
\begin{aligned}
& \varepsilon X=+4.21-5.16=-0.95 \mathrm{ib} \\
& \varepsilon Y=+4.04-3.86=+0.18 \mathrm{ib} \\
& E M=+71.49-64.95=+6.54 \mathrm{in} .1 \mathrm{~b}
\end{aligned}
$$

The additional force required for equilibrium acts as shown in the Figure. The results of the sum of the forces in the X direction is not particularly good. However the results of the $\mathcal{E} Y$ and the $\mathcal{E M}$ are fairly good with an error of $4 \frac{1}{2} \%$ and $9 \frac{1}{2} \%$ respectively.

To compare the experimental forces to the theoretical forces, the gage $\therefore \quad \therefore$ lines must be produced to the actual boundary of the triangle. This resulta Prom the fact that the membrane force distribution in the folded plate shell is not linear, the majority of the force being near the edge of the triangle. In computing the theoretical forces, Equation (1-2) was used. It was rem fined slightly by using for φ^{*}; the actual alope of the particular plane triangle and not the φ for the aphericel triangle. This procedure is justified in this case because the model is a much poorer approximation of a sphere than one formed of more triangles. The results are shown in Fig $4-8$. Though there is a slight displacement of the normal forces, numerically, they agree very well.

Fig 4-7

Fig 4-8 and Theoretical Results.

That the loads on the shell are supported by membrane action and not bending action may be demonstrated in yet another way. A transit set up thirteen feet from the model was sighted on the crown where part of the load was applied as a concentrated force. When the full load of 400 pounds was applied to the shell, this point deflected only two hundredthe of en inch. This deflection was verified more accurately using a dial gage. Similarly, the transit was sighted on a point of the model where $\varphi \approx 60^{\circ}$. Onder full load, no vertical or radial deflection was observed since any deflection that did occur was so slight that it was obscured by the transit cross hairs. These deflections show that the loads are carried predominantly by membrane action because bending would produce larger deflections. There may be some bending action however, beneath the concentrated loads.

The stress riser was determined from large acale curves of Figure 4 -5. These curves were produced to the boundary of the actual triangle. The area under approximately one half the curve was determined and converted to an average stress. Then the stress riser is

$$
K_{s R}=\frac{\sigma_{\text {max. }}}{\sigma_{\text {ave }}}
$$

The results are plotted in Gragh 4-1. There are only five points plotted instead of six because of the unsymmetrical stress reversal discussed previously. When the deflection angle is 180°, the stress riser is equal to one as in a smooth shell. This enables a fairly good curve to be drawn despite the fact most of the experimentel points plotted are for relatively small dihedral angles.

CHAPIER V

DESIGN OF A PLYWOUD GEODESIC SHELL

A. INTRUDUCTION

After ths size and shape of the spherical shell have been determined, the geodesic geometry may be selected with the aid of Figure 2-8. As this Figure gives only average values, the triangles should be laid out accurately and the altitudes scaled as a check that the triangles can be cut from a four foot wide panel. Less material is wested if the triangles are cut from panels longer than the standard eight feet. Since long panels are more expengive per square foot, the economy between the two alternatives should be investigated.

When the dead load has been estimated and the live loads determined, the membrane forces from each load are computed individually using smooth shell theory. Graphs 1-1 and 1-2 may be of use for this determination. The membrane forces from the various loads are then combined to give the lergest
numerical membrane force for a given angle φ. Since the largest membrane stress occurs at the vertices of the triangle, the smooth shell stress at this* point must be multiplied by the appropriate stress riser from Graph $4-1$.

At interior points in the triangle, the membrane stresses are combined with the stresses arising from lateral loads on the triangle. Since these points are remote from the vertices, the membrane stresses are not multiplied by a stress riser.

The forces required for buckling of the triangle and the dome must also be computed and compared to the actual membrane forces. Buching is caused by an average force on the triangle so that no stress riser is used. Buckling probably will occur within the elastic range and may govern the design. The factor of safety against buckling should not be less than four.

DESIGN NOTES
 for
 PLYWOOD FOLURD PLATE HEMISPIERE

WITH A 28' RADIUS.

Geometry:

The hemisphere may be formed from 640 triangles of ten kinds using the geometry from Table 2-4. An accurate check of the geometry shows that the equilateral triangle has the largest altitude. For a 28 foot radius, this altitude is four feet and the triangles may be cut from the standard four foot width panel.

Dead Load:

Plywood
Battens, waterproofing interior facing and lighting

2 psf
$\frac{3}{5 \mathrm{pgf}}$

Live Loesd:

The National Buildine Code for the Vancouver area cives:
(a) Snow Load - 40 paf of horizontal area
(b) Wind -90 mph gust velocity

At a height of 20 feet above the ground, the Code gives a wind force of $18.5 \approx 20 \mathrm{psf}$. of which approximately half is distributed on each side of the structure. Therefore for External wind use $p=10$ psf. Wind action may also produce a uniform internal radial force, either in or out, of $.2(20)=4 \mathrm{psf}$.

Membrane Forces in lbs/ft (Forces marked * do not occur simultaneously.)

Φ	Dead	Load	Snow Load		Ext. Wind.		Int. Wind		Abs. Max. (no wind)		Abs. Max. (wind) $\theta=0^{\circ}$		Wind $\theta=90^{\circ}$ Nge
	No	Ng	$N \varphi$	$N e$	$N \varphi$	Ne	$N \varphi$	Ne	No	Ne	$\mathrm{N} g$	Ne	
0°.	-70	- 70	-600	-600	0	0	± 56	± 56	-670	-670	-726	-726	0
10°	$=71$	-67	-600	- 564	± 12	± 37	"	"	-671	*-631	-739	-724	± 12
20°	-73	-59	-600	-460	± 24	± 72	*	"	-673	-519	-753	-647	± 25
30°	-75	-46	-576	-198	± 33	± 107	$"$	"	-651^{\prime}	-244	-740	-407	± 38
40°	-79	-28	-528	+60	± 41	± 139	"	"	-607	+60	-704	+255	± 53
50°	-86	-4	-468	+264	± 45	± 170	"	"	-554	+264	-655	* +490	± 70
60°	-94	+23	-408	+360	± 44	± 198	"	"	-502	+383	-602	${ }_{+}^{*}+637$	± 90
70°	-104	+56	-354	+354	± 39	± 224	"	"	-458	$+410$	-553	* +690	± 114
80°	-119	+95	-318	+318	± 25	± 251	"	"	-437	+413	-518	$\pm+720$	± 145
90°	-140	$+140$	-295	+295	0	$\pm 280^{\circ}$	"	"	-435	+435	-491	${ }^{*}+771$	± 187

Assume 5/8" Sanded, Douglas Fir Plywood, Good 1 Side

This size plywood has five veneers; two faces each $1 / 10^{\prime \prime}$ thick, two cores perpendicular to the face each $1 / 6^{\prime \prime}$ thick, and one centre core parallel to the face $1 / 6^{\prime \prime}$ thick. The properties for a 12 inch width, where n and t are the axes parallel and perpendicular to the face grain respectively, are:

$$
\begin{array}{lll}
\text { An }=3.47 \text { in }^{2} & \text { At }=4.03 \mathrm{in}^{2} \\
\mathrm{In}=0.388 \mathrm{in}^{3} & \mathrm{Zt}=0.488 \mathrm{in}^{3} \\
\text { In }=0.121 \mathrm{in}^{4} & \ddots & \text { It }=0.123 \mathrm{in}^{4}
\end{array}
$$

The allowable working stresses in psi for dry location are:

Tension	σ_{n}	$=\sigma_{t}=1875$
Compression	σ_{n}	$=\sigma_{t}=1360$
Shear through the thickness	$\tau_{n t}=\tau_{t n}=192$	
Rolling Shear	$\tau_{z n}=\tau_{z t}=72$	

No Wind

The maximun stresses in a triancle from a lateral snow load occurs when $\varphi \leq 20^{\circ}$. One severe combination of membrane forces act at $\varphi=0^{\circ}$. Therefore, the triangle adjacent to the crom must be analysed. The average membrane forces are $N \rho=N \theta=-670 \mathrm{lbs} / \mathrm{ft}$ and $\mathbb{N} \varphi \theta=0$ and the lateral snow load is $40 \mathrm{Ib} / \mathrm{ft}^{2}$. The points to be analysed are shown in the Figure.

Point 1

The combination of membrone stresses is a maximan at this point. Mohr's circle is a point. From Figure 4-9, K $S_{R}=1.7$. Therefore the stresses are

$$
\begin{aligned}
& \sigma_{n}=-\frac{670(1.7)}{3.47}=-328 \mathrm{psi} \\
& \sigma_{t}=-\frac{670}{4.03}(1.7)=-283 \mathrm{psi} \\
& \tau_{n t}=0
\end{aligned}
$$

Substituting into Equation 3-30 gives

$$
\left(\frac{328}{1360}\right)^{2}+\left(\frac{283}{1360}\right)^{2}+\left(\frac{0}{192}\right)^{2}=.058+.043=.101 \ll 1
$$

Point 2

At the centroid of the triangle $M x=M y=14.8 \quad \mathrm{lbs}$.
Mohr's circle of moments is a point and Mohr's circle of membrane stress is also a point so that the same stresses occur on all planes considered. From Equations 3-31 the stresses are

$$
\begin{aligned}
& \sigma_{\mathrm{n}}=-\frac{670}{3.47}+\frac{14.8}{.388}(12)=-193 \pm 457=-650 \mathrm{psi} . \\
& \sigma_{\mathrm{t}}=-\frac{670}{4.03}+\frac{14.8(12)}{.488}=-166+364=-530 \mathrm{psi} \\
& \tilde{\tau}_{\mathrm{n} t}=0 .
\end{aligned}
$$

$$
\left(\frac{650}{1360}\right)^{2}+\left(\frac{530}{1360}\right)^{2}=.228+.152=.380<1
$$

Point 3

At this point My is a maximum but $M x=0 \quad$ The severe orientation of the plywood is when the n axis is coincident with the y axis. Then $\mathrm{Mn}=16 \mathrm{lb}$ and $\mathrm{Nn}=\mathrm{Nt}=-670 \mathrm{lb} / \mathrm{ft}$. The stresses are

$$
\begin{aligned}
& \sigma_{\mathrm{n}}=-\frac{670}{3.47} \pm \frac{16(12)}{.388}=-193 \pm 495=-688 \mathrm{psi} \\
& \sigma_{\mathrm{t}}=-\frac{670}{4.03} \pm 0 \quad=-166 \mathrm{psi} \\
& \tilde{L}_{\mathrm{nt}}=0
\end{aligned}
$$

Then

$$
\left(\frac{688}{1360}\right)^{2}+\left(\frac{166}{1360}\right)^{2}=.257+. .015=.272<1
$$

Point 4

At this point Mint is a maximum when the n axis is 45° to the x axis. Mohr's circle of membrane stress is a point so Nn and Nt act also. The values of the moments and forces are

$$
\begin{aligned}
& \mathrm{Nint}]_{\alpha}=45^{\circ}= \pm .234 \frac{\mathrm{a}^{2}}{16}(1-\mathrm{u})=9.35 \mathrm{lbs} \\
& \mathrm{Nn}]_{\alpha}=45^{\circ}=\frac{.05 \frac{\mathrm{a}^{2}}{8}=4 \mathrm{lbs}}{\mathrm{Nn}=\mathrm{Nt}=-670 \mathrm{lb} / \mathrm{ft} .}
\end{aligned}
$$

The stresses are

$$
\begin{aligned}
& \sigma_{n}=-\frac{670}{3.47} \pm \frac{4(12)}{.388}=-193-124=-317 \mathrm{psi} \\
& \sigma_{t}=-\frac{670}{40} \pm \frac{4(12)}{488}=-166-98=-254 \mathrm{psi} \\
& \tau_{n t}= \pm 9.35 \frac{6}{\mathrm{~h}^{2}}=\frac{9.35(6) \frac{64}{25}=144 \mathrm{psi}}{} .
\end{aligned}
$$

Then

$$
\left(\frac{317}{1360}\right)^{2}+\left(\frac{254}{1360}\right)^{2}+\left(\frac{144}{192}\right)^{2}=.054+.038+.563=.655<1
$$

Point 5

By symmetry, Mat is also a maximum here. However, since Mohr's circle of normal stress is a point, the combined stress is the same as at Point 4.

Point 6

At this point Q is a maximum giving the largest rolling shear. The value of $Q_{\max }$ is $\frac{q \text { a }}{4}$. Before determining the rolling shear stress, the first moment of area at the innermost glue line must be computed.

$$
P_{o l n_{n t}} \sigma\left(c_{o n t^{\prime} d}\right)
$$

$$
\begin{aligned}
& \begin{aligned}
s_{n} & =10(12) \times\left(\frac{1}{20} \times \frac{1}{6}+\frac{1}{12}\right) \\
& =\frac{12}{10} \times \frac{18}{60}=0
\end{aligned} \\
& s_{t}=\frac{1}{6}(12) \quad 60=\frac{2}{25} \frac{1^{3}}{r_{t}} . \\
& T_{102} \quad 6=\frac{2}{3} \frac{i^{3}}{f t} \\
& \tau_{z_{n}}={ }^{s t_{r_{\theta_{s_{\theta_{s}}}}}}
\end{aligned}
$$

Reviewing the points just anelysod, it is noted that the shear stress from twisting moments is largely responsible for producing the most severe combination of stress. Therefore if the twisting moment remains constan't and additional membrane ahear stresses occur, a more severe stress condition may result. Such a condition may occur at Point 4 when the triangle is at $\varphi=20^{\circ}$. In this position the lateral load is still 40 psf but Mohr's'circle is no longer a point and is as shown in the Figure. On the plane with maximum shear, the

shear force is $\frac{N \Phi-N \theta}{2}=-77^{1 b / f t}$. and the normal force is $\frac{N Q+N \theta}{2}=-596 \mathrm{Ib} / \mathrm{ft}$.

Point $4 \quad \varphi=20^{\circ}$
The most severe stresses occur when maximum membrane shear and maximum twisting moment occur on the same plane. The moments are the same as before so the forces and moments are:

$$
\begin{aligned}
\mathrm{Nn}=\mathrm{Nt} & =-596^{\mathrm{lb} / \mathrm{ft}} \\
\text { Nnt } & =77^{\mathrm{lb} / \mathrm{ft}} \\
\mathrm{Mn} & =4 \mathrm{lb} \\
\text { Fint } & =93.5 \mathrm{lb}
\end{aligned}
$$

Therefore the stresses are

$$
\begin{aligned}
& \sigma_{n}=-\frac{596}{3.47} \pm \frac{4(12)}{.388}=-172-124=-296 \mathrm{psi} \\
& \sigma_{\mathrm{t}}=-\frac{596}{4.03} \pm \frac{4(12)}{.488}=-148-98=-245 \mathrm{psi} \\
& \tau_{\mathrm{nt}}=\quad \frac{77}{7.5}+93.5(6)\left(\frac{8}{5}\right)=10+144=154 \mathrm{psi}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\frac{296}{1360}\right)^{2}+\left(\frac{246^{2}}{1360}\right)+\left(\frac{154}{192}\right)^{2} & =.048+.033+.642 \\
& =.723<1
\end{aligned}
$$

For 9 greater than 20°, the membrane shear force becomes larger but the twisting moment becomes smaller. The net effect produces a less severe stress condition. While the worst atress combination may not bave been evaluated, its value will vary only a little from point 4. Since the ellowable increase is comparatively large before the left hand side of Equation 3-30 is greater than unity, it is not necessary to carry the investigation further for the case when no wind is acting.

WIND ACTIITG

In practise, an increase in the allowable stress may be permitted for wind action. Even if no increase in stress is permitted, it does not appear necessary to investigate Points $1,2,3$ and 6 since the factor of safety is so large. To illustrate the analysis for wind, only one point will be investigated.

Point $4 \quad Q=20^{\circ} \quad \theta=0^{\circ}$
The lateral loads on the triangle are caused not only by snow loads but also by internal and external wind pressure. The lateral loads are

$$
\begin{array}{rlc}
\text { Dead Load }= & 5 \\
\text { Snow } & = & 40 \\
\text { Int. Wind }= & 4(20)=. & 4 \\
\text { External }=p \sin \varphi=10 \sin 20^{\circ} & =\frac{3.5}{52.5} \mathrm{psf}
\end{array}
$$

The membrane forces are

$$
\begin{aligned}
& \mathrm{N} \varphi=-753 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~N} \theta=-647 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Taking as before the most severe stress condition when maxirum membrane shear and maximum twisting moment cccur on the seme plane, the forces and moments are: $\mathrm{Nn}=\mathrm{Nt}=-\frac{753-647}{2}=-\frac{1400}{2}=-700 \mathrm{lb} / \mathrm{ft}$.
$\mathrm{Nnt}=-\frac{753+647}{2}=-\frac{106}{2}=53^{16} / \mathrm{ft}$.
Mnt $= \pm .234 \frac{q a^{2}}{16}(1-u)=.234(52.5) \frac{16}{16}=12.31 \mathrm{bs}$.
$\operatorname{Mn}=.05 \frac{\hat{a}^{2}}{\frac{a^{2}}{2}}=.05(52.5) \frac{16}{8}=5.25 \mathrm{Iba}$.

The stresses are:

$$
\begin{aligned}
\sigma_{n} & =-\frac{700}{3.47} \pm \frac{5.25(12)}{.388}=-202 \pm 157=-359 \\
\sigma_{t} & =-\frac{700}{4.03} \pm \frac{5.25(12)}{.488}=-174 \pm 129=-303 \\
\tau_{n t} & =-\frac{53}{7.5} \pm 12.3(6)\left(\frac{8}{5}\right)^{2}=-7 \pm 188=-195
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(\frac{359}{1360}\right)^{2}+\left(\frac{303}{1360}\right)^{2}+\left(\frac{1055}{192}\right)^{2} & =.070+.050+1.01 \\
& =1.13>1
\end{aligned}
$$

A 13% increase in stress is not unreasonable for such short term loading.

Buckling of Triangle (Equilateral triangle is critical)

$$
D=E I=1.8\left(10^{6}\right) \frac{(.121)}{12}=1.815\left(10^{4}\right) \mathrm{lb}-\text { in }
$$

From Fig 3-11, $K=4.75$
$b=48 \frac{(2)}{\sqrt{3}}=55.4 \mathrm{in}$
$(\mathrm{NX})_{\mathrm{Cr}}=\mathrm{K} \frac{\pi \mathrm{D}}{\mathrm{b}^{2}}$
$=-4.75 \frac{\Pi^{2}\left({ }^{2} 815\right)\left(10^{4}\right)}{(55.4)^{2}}=277 \frac{\mathrm{lb}}{\mathrm{in}}$
$=3320 \frac{\mathrm{lb}}{\mathrm{ft}}$
Factor of safety is $\frac{3320}{726}=4.5$
which is satisfactory.

Buckling of Dome

$$
\frac{\sigma \rho}{E h}=.183
$$

$$
\therefore \text { Nor }=.183 \frac{\mathrm{E} \text { hoff }}{\rho}
$$

$$
=.183 \frac{(1.8)\left(10^{6}\right)(.496)^{2}}{28}=2890 \frac{1 \mathrm{~b}}{\mathrm{rt}}
$$

Factor of safety is $\frac{2890}{726}=4.0$
which is satisfactory.

Design of Marginal Beams

If the beams are nail glued to the triangles, the membrane force is tranmitted to the beam by rolling shear. This governs the width of the beam. The membrane force is transmitted to the next triangle in the beam by tension or compression perpendicular to its length. Ihis governs the depth. Since wood is weak in tension perpendicular to the grain, plywood should be used since some laminae will have their grain parallel to the stress. Some bending of the beam may also occur but this is small and may be neglected.

Max membrane force is $+771 \mathrm{lb} / \mathrm{ft}$.
$\mathrm{Ks}=1.7$
Max force is $1.7(771)=1310 \mathrm{lb} / \mathrm{ft}$.
Allowable stress in rolling shear is 72 psi
Total width of beem is

$$
2 \frac{1310}{72(12)}=3.04 \mathrm{in}
$$

Use minimun width of 4 inches to facilitate nailing.
Assume 5/8 S Plywood with face grain parallel to the joint.
Area perpendicular to face grain is 4.03 in ${ }^{2}$
Therefore tension stress is

$$
\frac{1310}{4.03}=325<18750 . \mathrm{K}
$$

BIBLIOGRAPHY

A. Books

Allen, D. N. deG. Relaxation Methods. New York, MoGraw-Hill, 1954.
Army-Navy Civil Committee. A. No.C. Gandbook on the Design of Wood Aircraft Structures. Hashington, U.S.Department of Agriculture, 1942.

Cundy, H. M. and Rollett, A.P. Mathematical Models. Oxford, Clarendon Press,1952.

Flugge, : Statik und Dymamik der Schalen. Berlin, 1934

Forest Products Laboratory, Wood Handbook Washington, U.S.Department of Agricul ture, 1955.

Hetenyi, M. I. ed. Handbook of Experimental Stress Analysis. Mew York, Wiley, 1950

Lee, G. H. An Introduction to Experimental Stress Analysis, Hew York, Wiley, 1950

Perry, C. C. and Lissner, H. H., Strain Gape Primer, New York, McGraw-Hill, 1955

Timoshenko, S. Theory of Plates and Shells. New York, McGraw-Hill, 1940

Timoshenko, S. and Goodier, J. N. Theory of Elasticity. New York, McGraw-Hill, 1921

Timoshenko, S. Theory of Elestic Stability. New York, McGraw-Hill, 1936

Timoshenko, S. and MacCullough, G. H. Elements of Strength of Materials. New York, Van Hostrand, 1949.

B. Periodicels

Bossaxt, K. J. and Brewer, G. A. "A Graphical Method of Rosette Analysis". Proceedings of the Sociaty for Experimental Stress Analysis. Vol. 4, No. 1. (1946), pp.1-8

Hewson, T. A. "A Nomographic Solution to the Strain Rosette Equations". Proceedings of the Society for Fxperimental Stress Anelysis. Vol. 4, No. 1 (1946), pp. 9-19.

Karman, T. von and Tsien, H. "Buckling of Thin Cylindrical Shells in Axial Compression" - Journal of the Aeronautical Sciences, Vol.8, No. 8 (1941) pp. 203-213.

Karman, T. von and Tsien, H. "The Buckling or Spherical Shells by External Pressure". Joumal of the Aeronautical Sciences, Vol.7,No.2, (1939) pp. 43-50

C. Famphlets.

Plywood Menufacturers Association of British Columbia, Dougles Fir Plywood Technical Eandbook, Vancouver. Keystone Press.

Plywood Manufacturers Association of British Columbia, Douglas Fir Plywood for Concrete Form Work. Vancouver Keystone Press.

[^0]: 1 H. M. Cundy and A. R. Rollett,
 Mathematical Models Oxfort University Prese, 1952.

[^1]: ${ }^{2} \mathrm{~S}$. Timonhenlo, Theory of Platee and Shells, Ilew York, Jocrev-lilil, 1940, P. 83.

