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ABSTRACT

The analysis and design is presented for a shell composed of flat tri-
angular plates approximatiné a smooth spherical shell. The geometry is based )
on the subdivision of the icosahedron and dodscahedron into many plane tﬁéngles.
All corners of these triangles lie on & circumscribing sphere so that as the
triangles become more numerous, the shell more nearly appi‘oﬁmatee a true sphere.
The geometry is tabulated fqr a few of the possible subdivisions but may have to
be carried further if a perticularly large shell composed of ﬁelating small tri-
'angles is required. While some of the geometry is similar to geodesic domes
already constructed, the structural anslysis is entirely dii‘ferent.; Previous geo-~
desic domes are space trusses where the applied loads are supported predominantly
by axial force in the truss bars. The structures considered here ere frameless
and the loads are therefore supported by shell action. The exact analysi-s to such
a shell was not obtained since the solution is not composed of tabulated functions.,
However, an approximate analysis is presented which, in part, is a modification of
smooth shell theory. Since the shell is comf:osed of flat plates, the bénding and

buckl:tng_"' of. individual triangles are additional design problems considered that

are not present in more conventional shell design.

. In order to verify parts of the theoretical analysis, experimental studies
vere conducted with a plexiglas model. The experimental resulfs verify the appli-
catioft of smooth shell theory to geodeis’ic shells and determine the distribution of
membrane stress. Finally the varioué design aspects are brought together and il-

lustrated by the inclusion of the design notes for a typical shell.
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NOTATIONS

Spherical co-ordimtes
Radii of curvature of a shell

Membrane forces per unit length in a shell

Rectangular co-ordinates
Deflection in the z direction

. Normal and shearing forces per unit length of piate

Bending and twisting moments per unit length of plate
Shearing force per unit length of plate

Normal stress component
Shearing Stress component
Normsl Strain

Shear strain

Modulvs of Elasticity
Poisson's ratio

Flexural rigidity of a plate

Thickness of a plate or shell y
Intensity of load on a shell
Intensity of a uniformly distributed load on a plate

Compompts of load in the x, y, z directions respectively
Resultant load on a section of shell

Altitude of an equilateral triangle
Grid or ret interval

Moment of inertia

Section modulus



CHAPTER I

A. INTRODUGTION
A thin shell curved in two directions is an exceptionally strong and
light weight structural element. A ping pong ball, an egg slell, a car roof
and a balloon are only a feu examples of doubly curved shells. Considering
the behaviour of en egg shell, we realize that it is capable of withatanding trem-

endous compfessive forces, TFailure is caused by a concentrated load over a

relatively small area or by impact.

The characteristic of high strength is due to two factors. First, the
doubly curved surface has a high resistance to buckling., Second, the loads are
-carried almost entirely by forces in the.plane of the shsll or membrane forces.
The significance of the second factor is that there is little bending moment in
the shell under ideal conditions. This can be inustrated by considering one of
the examples previously mentioned, a balloog. A rubber membrane, regardless of
eny applied tensile stress, has no bending resis_tance; Therefore, all loads ap-
plied to an inflated balloon can only be carried by membrane stress or, in this
case, a reduction of the tensile stress, Thus symmetrical or unsymmetrical loads

are supported by membrane action alone.

-~



This characteristic may also be explained mathematically if we compare
an arch and & shell. Stresses in an 'arch are governed by an ordinary differential
equation to vhich there is only one form of solu.tion. The solution is represented
by the equilibrium polygon or thrust line. VYhen the equilibrium polygon and the
arch axis coincide, there is only direct siress in the arch. Hfmever, vhen two
do not coincide, there iabendiné as well as direct sfmss. It is evident then
that direct streas without tending .fn.s obtained only by one form of loading since
the ordinary differential equation has but one form of solution. On the other hand,
stresses in a shell are governed by a partial differential equation to which there
are an infinite numbter of forms of solution. The solution in this case is rep~
resented by an equilibrium surface rather then by en equilibrium polygon. The
solution chosen is that one where the equilibrium surface coincides with the shell,
Thus under every conti..nu.ous loading the form of solution gives only direct or mem~
brane stresses. Discontinuous loads am excepted since solutions to the purtigl

differential equétions can also be discontinuous whereas the shell may not be.

There are, however, ways by which bending can occur in a shell. Under
any given loading the membrane forces cause certain deformations of the shell.
The cdeformations cause a sﬁall change of radius of the shell AR where R is

measured to the inside surface of the shell. The strain on the inside of the shell

is
AR
:4
and on the outside is
AR



Where t is the thickness of the shell, However t<< R for thin shells so that
practically spesking the strain is uniform across tlf.xe thickness and the moment
is therefore zero.

From a practicel point of view, it is necessary to support the shell
on a ring girder. This procedure produces bending stresses in the shell in the

’
immediate vicinity of the ring support. The strains in the shell due to the
membrare forces produce defomﬁons causing a horizontal deflecotion of the shell.
The forces exerted by the shell on t!‘:e ring girder also produce deformations of
the ring girder. 3ince the deformations of the slell mst be the same as those
in the ring girder extra forces are induced. These are a horigontal farce and
a moment. The resultant moment is of a local nature _and dies out exponentially
in a distance of ten to twenty times the shell thickness.

Finally a concentrated load also produces bending stresses in the
immediate vicinity of the load. _'I‘he resulting moment is similar to that pro-
duced by a ring support and dies out exponentially in about the same distance.
Where bending stresses are produced, the shell may sometimes be strengthened by
increasing the thickness and adding re~inforcing.

The design of a shell is commenced by determining the membrane stres-
ées assuming tre bending stresses to be zero. Since unsymmetrical loads produce
only membrane stress, the maximum stress is obtained where dead load plus live

load act on the whole shell. .The local bending stresses are then superimposed

on the membrane stresses. . "

N
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Before proceeding furtﬁer, it is necessary to consider in more detail
a shell of revolution, The surface of such a shell is obtained by revolving a
plane curve about some axis in the plene of the curve. There are, however,
critical shapes that should be avoidedf As a general rule, the radii of curva-
ture should be of téé same order of magnitude as the span or maximum diameter of
the shell. Very shallow‘shells have high membrane forces. Going to the limit,
if the sheil is flat fo?”any finite distgnce, the loads are no longer support-
ed by membrane forces but by shears and bending momenta.1

The following sections give the equations for symmetrical and unsym-

metrical loads and tabulate tle solution for a few specific cases. These

solutions will be required later when considering the geodesic shell.

B. SHELL OF :ITQE\'I.OLUI‘ION - SYMMETRICAL LOAD,
An element of area is cut from the shell by two meridians and two

parallel circles as shown in Fig. 1 - 1. The radii of curvature at'a,point are

defined as ;'. in the meridian plane and r, in the plane perpendicular to the

meridian. The radius of the parallel circle, denoted by r, is then equal to

r; sinfand the area of the element is r, r, sing@dp 4o .

An example of this is the eurve y =K (ax)”. If n is large then that part
for a x<1 is very flat.



Fig. I-1

'

For a symmetrical load, only normal forces act on the element since
shear forcea would pfoducé unsympetrical deformations., Ng and Ne |
.denoi-:e the normel forces per unit arc length. From symmeiry, it can algo be
concluded that N does not vary with €@ and is therefore the same on either
side of the element. 'I'hé elxternal load per unit amea of shell in this case acts
" in the mefidian plane and can be resolved into two components, ¥ and 2,

tangent and psrpendicular to the element respectively.

Three equations of equilibrium of the element may. be written by
equating to zero the sum of the forces in the X, Y and Z directions. - Hovever,
one of these equations, the sum of the forces in the X direction is automatic—
; ;;lly satisfied by symmetry. There yemain two equgtions with two unknowns and

the structure is therefore statically determinate.




The force on the top and bottom of the element is Ner 6.6 and
(Ng+ aWg ) (r +d r) derespectively. .-‘Ne.glecting the terms of higher order,
these forces have a component in the z direction of N¢ r do d¢ (Fig. 1-2)
Referring to Fig. 1 ~ 3 shows that the horizontal force Ne r, dg on the sic,ies
of the element have a component Ne r, dg de in the direction of the radius of

the parallel circle. From Fig. 1 - 4, the component in the z direction is

Nor, dgpdes i ng . Equating to zero the sum of the forces in the z direction

Ne ndg de

Ne ri dgda
Pig 1 - 3 Fig 1 - 4

Ngrdpde + Ner, singdpde + Zrr, dpde = O

Cancelling d9d 6 and dividing throngh by r r, , the equation reduces to

Ne » Re - _z . (i-1)



A simillar procedure carried out for the forces in the Y direction
yields a differential equation in N¢ and Ne . . The solution of a differential
equation is avoided, however, by conéidering the equilibrium of the portion of the
shell above a parallel circle instead of the equilibrium of the element. Equating
to zero thé sum of. the vertical forces,‘with reference'to Figure'l - 5, the equil-

ibrium equation is

Ng sin@.”2TT 4+ R= 0 (1-2)

vhere R is the resultant load on the section of shell counsidered.

Ng §|ny fh 9 ra

The solution of the membrane forces for a given loading requires first

the direct solution of Equation 1 - 2 for Ng . This value is then substituted
in Equation 1 - 1 and solved for N@O. The use of these equations is illustra-

ted by considering a few special cases in the following subsections.



1 SPHERICAL SHELL OF CONSTANY TEICIQESS UKDER DEAD LOAD

In a spherical shell, %i = G =f and T = fsing. The surface area

of a shell above the parallel circle defined by @, is

9= ?'5'9‘
2Trrydg = 277.{’2[ sin@ dg¢
g=0 g=o

(1-3)

\

Since the load on the shell is constant per unit of shell area and equel to p,

then the total load on the shell is

-9
R = 2ﬂ!zp_[5"" pdg = 277pfz( | - cos@) (1 - 4)

Equation (1 - 2) then gives

Ng = - pf (1-cos@) pf

STTp [Teos

(1-5)

Noting that the Z component of the load is pcos®, Equation (1 -1) gives

Ne= - pf [COSSP - ] (1-6)

| + cosy

Equations (1 - 5) and (1 - 6) are plotted in Graph 1 - 1.  The Graph show

that Ng¢ is always compressive, increasing to a meximum compressive force at

9 = 20° O the other hand; Ne is compressive for small values of ¢

but turns to tension at P = 5/°50".
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2. " Spherical Shell under Live Load, constant per unit of Horizontal Area.

P
HEEEEEEEEENEN

Fig (1 - 6)

The horizontal area over which the load acts is 7 (FPsin@)?

The load on thé -'shéll is then

R= mpPisin?g @=7
Substituting R.into Bquation (1 - 2) gives

- Pf
Ng= - 5— (1 -8)

Substituting Equation (1 - 8) into Equation (1 - 1) gives

Ne = 'P_2£ (1- 2coszp) (1 ~9)
= - %f cos 2@

Equations (1 - 8) and (1 - 9) are slso plotted in Graph 1 - 1
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In reslity, a snow load of the form just discussed is not bbtained
beceuse the snow does not hold to the steeper pitches. The .Natlonal Building
Code of Canada (1953) gives a constant snow load for slopes up to twenty degrees.
Thereafter the ioad drops off linearly to zero at sixty-three degrees. The ex-

pression

p = o cos P ~cos 65° _ (l __10)
cos 20° co8 65°

for 20°< @ € 65° , where p, is the load on a flat surface, gives a snow load
* distribution slighttly heavier than tbe National Building Code. TFor ¢ £ 207
Equations (1 - 8) and (1 - 9) apply. For $>20°, Equation (1 - 10) s
integx.'ated to obtain the part of the load on the shell where ¢ >20° and is
added to the load on the shell f;or P £20° giving the total load.
Equations (1 - 1) and (1 - 2) then give the membrane forces. The membrane

forces are also plotted in Graph 1 - 1.



C. SHELL OF REVOLUTION, UNSYMMETRICAL IOAD.

Fig 1 -7

In the case of an unsymmetrical load, not only normal forces Ng
and N6 but also shear forces Nge and Nepact on the element as shown in
Figure (1 - 7). EBquating the sum of the moments sbout the axis to zero gives
Nge =Ne¢  and reduces thereby the number of unknowns to three. Equating

to zero the sum of the projections on the three co-ordinate axes gives the three

equations

1



12.

a .
Eﬁ(NW’)*‘ a-;\jaq‘gn - Nercosgp +Ynrr

1]
O
»

(1 Nga) + e 1 +.Neg hecos@+ Xnr =0  t(1-n)

These three partial differential equations involving the three unknowns N¢, Ne
and Né9 can be solved in the general case by expanding both the load and the

2
stresses in trigonometric series. The following section gives the solution

for a wind pressure on a spherical shell.

2. W. Flugge, Stafik und Dynsmik der Schalen, Berlin, 1934,
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1. SPHERICAL SHELL UNDER WIND LOAD.

The National Building Code does not specify any wind pressure on domes.
However e loading can bg assumed which basically follows the findings of the
Nationsl Building Code. VWind pressure acts normal to the surface and increases
the pressure on the. windward side end decreases the pressure or causes suction
on the leeward side. If the di;ection of the wind is in the meridian plane' e=0°
then X =Y =0 , Z= psinpcos® | (1-12)
Where P is the wind pressure on a vertical surface. Equation 1 -~ 13 gives a

distribution as shown in Figl - 8

. Fig (1 - 8)

The solution to Equations (1 - 11) is given by

No = - B O (2 dag v cots)  (1-13)
Ne_=—%£ Cﬁ,f,g (—Elcosp'-!- 35in2g0f'2c05497) '(’_'4)

| ?
Neyz—%— W(Z‘.BCOS@ +C053¢) ('-'5)



Inspection of these equations show that the normsl forces have a mexirum compres— °

sive value at © = 0° and a maximum tensile value at © =1/80°,  The shear
forces, howevei', attain a maximm value at O = 90° and © = 270° . The
maximum and minimum values of the forces due to wind pressure may be obtained
from Gréph 1 ~ 2 for a given value of . The resulting étresses dwe to wind

action may then be superimposed over those resulting from dead and live loads.
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CHAPTER I1I

GEOMETRY
A. IMIRODUCTION

Since shells of rovolution have curvature in two directions, their
usage is restricted to those materials which can be moulded to the apprqpriate
curvatures. This limitation permits the use of concrete, steel end aluminum.
Unfortunately, concrete entails the use of an elaborate formwork and steel and

aluminum each require a costly pressing process,

A structure composed of flat plates closely aprodmating a shell of
revolution possesses some advantages over a continuoué shell., The formwork is
gimpler and the pressing process is eliminated. Such a structure may be fab-
ricated with comparative ease from a good grade of plywood. The following
section develop the geometry of such a shell which is called a geodesic or

folded plate shell.

The economy of a folded plate shell is improved by minimizing the

number of different plate shupes involved. Since a sphere has an infinite nuaber



of axes of symmetry, a spherical shell probably hes fewer shepes than sny other

shell -of revolution that might be avproximated with [lat plates.
We will denl only with ftricngular shopes since they are easier to fab-

ricate and are stronpger area {or srea than other shapes tlat mishit be used, sweh

ag: quadriletersla, pentagons an.g hexagons.

B. BASIC GROMETRY,

The five basic polyhedra that can he inscribed in a sphere are tlwe

1, = 1 7, 2
tetrzhedrorn, cube, octahedron, dodecshedron =nd icosahedrorn. The icosahedron
is composed of twenty equilsteoul triongles and the dodeccliedron, of twelve

pentagons. Since the icosshedron and dodecahedron have more facets, they more

nearly approzimute a-sphcriczl shell than do the other three polyhedra. TFor

that reason, the icosahedron and dodecahedron are the better polyhedra to use
83 2 basis for developing the geometry of z geodesic shell.

The standard size of plywood sheet is four feet by eight feet. Some
nills produce sheets forty or fifty feet long and extra width cheets may also

be oxrdered. Generally, the four foot width governs the maxivum size of” ti‘iang;leo

Therefore, to obtain & practical siued shell, it is necesscry to subdivide the
triangles and pentagons of the icosahedron and dodecahedron respectively into

smaller structurnl elements,

1 H, M, Cundy and A. R, Rollett, Mathematical Models.

Oxford University Press, 1952.
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Pig 2 = 1 Icoschedron Pig 2 = 2 Dodecahedron

It is not merely a case of brealking up the triangles and pentagons in their owm

plane but r:ther of moving the newly formed vertices radially to the circumseribing
sphere. This procodure gives a closer approximation of a sphere thar does the basiec
polyhedra, T}.x-:rg are numerous ways of subdividing a triongle and since the conputa~
tions aic rather time corsuning, only a few methods of subdivision have heen investi-

=mted. Tor that reason, there may e other methods of subdivision that are more

.

advantageous Tor ¢ specific radius zund materizl than those given here, -
The icosshedron is first subdivided by biseccting tle sides of tine. equilateral

triangle and woving the newly formed points radially to the circumscribing sphere,

As showm in Fig. 2 -~ 3, one squilateral triongle of the icosalimdron is rgplaced hy

four trs.:x'\gles, one equilateral -r"v_mll tif_ree isosceles. Since tle isoscelgs triangles

are congruent by symmetry, there arc only two kinds of triangles. A sphere is now

n
approxinated by 80 trinngles istead cof 20 triangles as in the icosnhedron.
A



Az Aa

Fig 2"’3

Inctead »f diviving: the side of the equilateral triangle into two
parts, the side can be divided into three parts. One equilaterzl triazngle
of the icosahedron is now re'placed.by nine smiller irionsles with each new
vertex displaced radially to touch the circumscribing sphere. A general sub-
division, by trisecting the sides of tle equilateral triangle for example,

gives tliree kinds of isosceles triangles as shown in Fig 2 - 4a.

B3b Bab

Bib

Fig2-4e PFig2 -41b.
Instead of trisecting the =zides, it is possible to prescribe that two kinds of
isosceles tricngles be congruent to each other, If the triangle is supdivided,
making triangles B 3a and C 3a congruent, & subdivision is obtained as shown in

Figure 2 - 4 b. Thus a sphere is approximated with 180 trianzles of two kinds.

18



Working from Figure 2 - 3, the sides of the iccasahedron triangle may be
divided into four parts. By prescribing congrvency, triangle 4 2 of Fipure 2 - 3
can be subdivided into four triangles of two ikinds, A4 isosccles and B4 scalene
as shown in Fig. 2 - 5. Triangle B2 also breaks up into four triangles of two
kinds, C4 equilateral and D4 isosceles. The result of the breakdown is shown

in Fig 2 - 5. A sphere is ap,roximzted by 320 triangles of four kinds.

Fig2 -5
Worling from Figure 2 - 5, the trian;les may agein be subdivided. It
does not apueer ossible to prescribe any congiucncy among the triangles cbtuined
by subdividing the scolene triangle B4, so that four kinds of triangles are
formed. As before the isosccles and equilateral triangles can each be broken down
into two kinds of {riangles. Therefore a sphere is approximated by 1280 tri-

. angles of ten kinds., (Pigure 2 - 6)
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Fig 2 -6

Figure 2 - 4b can also be subdivided in the same manrer Fig 2 - 3
vas subdivided. The subdivision may be carried out indefinitely. Unfortunately,
once a number of scalene trian-les appear in tie subdivision, the number of
kinds of triangles grow rapidly. For example, I‘ig 2 - 6 has ten kinds of tri-
ansles but one further subdivision of this figure has 32 kinds of triangles.
However, considering that in this case there are 5120 triungles in a sphere,

32 kinds of triengles are not unreasonable.

The subdivision of the dodecahedron is indicated in Figure 2 - 7. A

gphere is formed in (b) by 60 trian-les of one kind, in (c) by 240 triangles of



two kinds and in (c.) by 960 triangles of six kinds. One further subdivision,

not illustrated forms a sphere of 3840 triangles of 22 kinds.

(a) | (0) (c) B

Fig 2 -7

The_ various subdivisions indicated in tle preceding paragraphs zll
yvield triangles that are nearly equilateral. A one piece triangle oi plywood
therefore has an cltitude of approximately four feet and an area of 7.6 square
faet. The fotal number of trisngles required to repluce a spherical segment
is approximately equal to the spherical area diviced by 7.6. Graph 2 - 1
shows these results, For a given span and rise, the graph gives the radius,
the total number of triangles denoted by Nt and also the epuroximatz number of
kinds of triangles denoted by k. These paramsters tnen act as a juide to the

choice of the appropriate subdivigion,

21
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Another type of subdivision may be visualiéed by referring back to
FPigure 2 -~ 4b which has nine isosceles triangles of two kinds. The perpendicu-
lar bisector of t‘nc; base breaks each isosceles triangle into two congzuen.t
parts even though the newly formed vertex is rcised to the circumscribing
splere. Ther;efore the sphere is approximated by 360 triangles of only two
kinds. The triengles are now more nearly 30-60-90 instead of equilateral and
nay be obvtaincd from a four by eight sheet of plywood by cutting diagonally.
From a structural point of view, this shape of triangle is ;xot a8 good as the
equilateral sﬁape. The membrane forces are affected by the large variation of
| t};e dihedral angles. Also, the triangle may have to be stiffened to minimize

bendiﬁg and revent buckling, The battens conrecting the long sides together

may also ve heavier.

C. HMETHOD OF CALCULATION

The tria.ng;e geometry is best solved by using: trigonometry. Tie
sphere is {irst divided into épherical triangles which are then replaced by
the corresponding plane triangles. The side of the spherical triangle is
in angular arc, ¥ . Reference to Figure 2 - 8 shows that the corresponding

¥ length of the side of the plane triangle

IMg-2 - 8
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The dihidral angles sre solved by using anelytical geometry. In
Figure 2 - 9, it can be proved that the angle between the trinngle plane a b ¢

and the Plane o0 a2 b, is obtained from

N

[ 2 : 2
A= tan™ § 2(1 + cos ¥ )(sin ¥y - cos’d = cos B +2 cosdcoaB cosd )

( Sind{(l + cos ¥ - cosdd =~ cosg@ )

2 -
W¥here O is the centre of the sphere and «,8, ¥ are the ( 1)

angles shown., A and @ are interchangeable

Fig 2 - 9

in this Tormula but & is not. The last term under the square root sign is close

to zero so it must be evzluated accurztely. However for the angles involved,
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tan A approachtes infinity so the formula gives accurate results. Formula
(2 - 1) must be evaluated once for each trizngle on either side of the plene
o a b, The dihedral angle is then the sum of the two values of A.

The geometry for some of the subdivisions has been computed and the
results presented in tabular form. The trigonometry w‘as calculated to the
nefamgt second of arc using six place natural functions and a desk calculator.

The results therefore should be good to five significant figures.

The fabricator should cut the triangles as precisely as the material
?nd equipment pez;nit if the structure is to fit properly tegether. If the
dome is fabricated in sections,. the triengle geometry .of an appropriate
coarser subdivision gives chord distances which may be used to check the

fabriceted section.
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Table 2 = 1
Req'd. Length 180°-
Sides for Side Arc V2 Edge Dihedral
Sphere oot Angle
aab 60 a |a =310 43 03"|.54652 [[AaA | 220 14
bbb 20 b [b = 36° 00' 00"|.61804 [[AbB | 18° oo
80
Req'd. 180°-
Sides for Side Arc lLength Edge Dihedral
Sphere s Angle
aab 60 a - 200 04" 36" (.34861 A aa |14% 4
cecb 120 b = 230 16' 54" |,40358 [[A Db A 110 22
180 c = 23° 461 02" |,41247 BbB 14° 28
BecB |11° 34
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Takle 2 - 3

Req'd. Tength T80°=
Sides for Side Arc P Edge Dinedral

Sphere || Angle
aab 120 a = 160 16" 01" | .282959 || A a A 11° 44:
acd | 120 b = 18° 57 12" | .329252 | A b A 6° 32!
eece 20 c = 159 27 02" | .268857 || A a B 119 o4
dde 60 d = 18° 00* 00" | .312869 || Bc B 11° 38!
320 e = 18%° 41' 58" | ,324920 || Bd D g% 00
DeC | 10° 21»




Table 2+ -

4

. Req'd., Length , 180°-
A Sides . for Side Arc )2 Edge Dihedral
Sphere Angle

A aab 240 a | 8011 23" .142816 || A aa 50 561
B acd 240 b |90 36 22" | ,167462 || A b A 30 101
c cce 120 c 8° 04' 38" .140858 AaB 50 51+
D egh 120 d | 9° 28" 36" .165211 || AaE 50 31¢
E ahj 120 e 90 13 14" .160756 Bc B 59 551
F fgi 120 £ | 70 22' 24" .128600 | B d B 39 141
G mmm 20 g 8% o7' 01" «141549 BecC 50 46!
H 11lm 60 h | 7° 46 56" 135721 | CcC 50 371
I iik 120 i |9°03 38" | 157972 | ce D 30 201
J iji 120 3 | 8°56 22" .155865 | Dh E 50 48!

1280

k | 9% 29" 53" .165583 | Dg F 50 14

1 {9920 59" 163002 || E j J 40 37!

m |99 26" 40" | ,164650 [ Ff F 6° 201

Fil 4° 20

GmH 50 18’

Hl1J 59 11+

JkI 50 221

IkI | 49 48




CHAPTER IIT .

THEORETICAL ARALYSZIS

A. INTRODUCTION

In the anelysis of folded plate shells, the_designer must consider
membrane stress, bending stress and stability. The membrane streas, as will
be shown lazter, may be obtained from smooth shell theory. Bending stresses
arise mainly from loads perpendicular to the surface of the priangleo .

Failure of a structure may be caused not only by high stresses but
also by instability. In geodesic shells, buckling may occur in two ways. The
dome as a unit may buckle or an individuél trinngle mgy buckle. While the
latter case is due to local instability it could be sﬁfficient to bring zbout
complete failure.

The follcwing sections consider in more detail these aspects to be
considered in design and mnalysis. VWhile only spherical shaped shells are

considered, the concepts apply alse to other shaped shells of revoluticn.

28
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B. MEMBRAWE STRESS
The exact solution of the membranc stresses in a folded plate ahell is
_ & staticelly indeterminate problem. Special types of folded plate ;10mes, such
as Polygonal Domes,l have an exact solution in temms of tebulated functicns.
Unfortunately, the exact solution of the folded plate shell considered here does
not appear in terms of tabuleted functions., For this reason, it was decided to

apply an apyrroximete solution using smooth shell theory.

b b'
a&/\/ . Q' —

A

-

Pig 5 -1
If the peodesic sheall is compared to a smooth shell of the same radii,
then the load on the triangle edge ab (Figure 3 ~ 1) is the some as the load on

the corresponding arc a'b' of the smooth shell.

1 V. Flugge, Statik und Dynemi} der Schalen,

Yerlin, 1934




The validity of applying omooth shell theory to geodesic shells is
shovn by considéring the geomet:q; a_.nd _"behaviour under load of the two types of
shell. It was shown in Chanter I tha£ loads on a smooth shell are supported by
membrane action. These membrane stresses are indicated quaelitatively in
Figure 3 - 2, & and b, The corm’épondin{.-; geodesic shell is shown in Figure 35 - 2,
c and d. The geodesic shell is a doubly curved structure as is the smooth shell
and both have little bending resistance. Therefore the only way loads can be
carried in either shell is by direct stress,

Figure 3 - 2 ¢ 1is the cross section ¢i a segment of the polyhedron
having only 320 trisnsles apuroximeting a sphere. Even this apparently coarse
approximation of a sphere iz not far from the true sphers. Some radius F-af
passes half way between the inner and outermost points on tie triengles approxi-
mating the sphere, AP is a very small percent of P and becomes even smaller
as the number of triangles in the comislete polyhedron increase., Therefore thé
co-ordinates of the polyhedron arc virtunlly the szawe as those of the sphere.

Equating the sum of the vertical forces toc zero in figures (a) ana (c)
show that N¢ must bc the samé for both casges vince the loads are supported only
by direct stress. Similarly in fipures (b) and (ﬂ), equating the sum of the
horizontal forces .to zero Si’.lO'.\'l that the total force in the 6 direction is the
semeé in both cases. Therefore the total forces acting on the isolated segments
in figures-(e)“and (f) are the seme. Bquating moments to zero gbout the point O
sﬁow that the general distribution of Ne must be the same in both caszes. Since
the geomctry and membrarc forces are proctically the same for both shells, the

application of amooth shell theory is justified.
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Applying smooth shell theory to pcodesic shells gives a near uniform
distribution of membrane stress along the edge of a triangle. This is not true
because the deformztions along the edge cause a redistribution oi stress but the
total load remeins the same., Consider the common edge e of two triangular ilates
under membrane é.ction as shovn in Fig 3 - 3 a. By action and reaction, at the

edge e the direction of stress (¢ is at angle @ to each plate. The comyponent

2@ \:*/\ I‘,ﬁ‘“e \
wg!
. (3

\
\

(a) . ' (b)
Fig 3 -3

in the plane of the unlate causes deformstion u. To preserve continuity along the
common boundary, thé plate must also bend with o deflection wr. The effect is to
redistribute the membrane stress into a parabolic shape with the highest stresses
at the corners of the triangle. Therefore smooth shell theory gives the average

stress on the triongle edge but not the naximum stress.

h—

L 4 - A Ir
mean
0 max -l ™




N
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To evaluate the maxirum membrune siress, the stress riser at the corners
mugt be determined. It might be determined by a Fourier analysis of two isolated
triangle:, yreserving continuity along the common boundary. However the lack of
convenient tabuleted functions mode this approach impractical. Instead of isolat-
ing two triangles, two rectangles were isola'ted and a Fourier analysis attempted.
However a stress function for the membrans action wns not obtained which satisfied
both the boundary condition mmd continuity. Because of thié, it was decided to
find the stresgs riser by experiggnt. The results of tho experimental work are

found in Chapter IV. The experimental woik does show ithat smooth snell theory can

be used with o stress rieser for the cormers.

C. BENDING O A TRIANGLE UNDER UNIVCRE HCRIMAL PRESSUNE.

The differential equation of a plate under a normel pressure 4 is

4 4 4 4
Vw, %w | 5> 2w | w | %
dx* dx?dy? 3y* D (-1
. — 3 .
vhere w is the deflection at a point with co-ordinates x and y end D = %‘;wis

the flexural ric;.;idity of the plate. This expression is based on the small deflec-
tion theory where the deflection is small compared to the thickness. 4s long as
the deflections are small, the mombrane forces, by beam column zction, have a very
small effect on the actual deflection and may be omitted from the discussion.
That comparatively small deflectiona do occur may be verified by calculating the

A
maximum deflection and comparing it to the nlate thickness,

2
© 8. Tinmochenko, Theory oi Plcies
llew York, Nelrew-lill, 1940, P. 883.
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The solution of Equation 3 - 1 involves the deteraindtion of some function
for w which not only satisfies this differential equation but elso the boundary
conditions. Tor a simply supported plate, the deflection and bending moments must

be zero at the plate edges. Therefore the boundary conditions are

w =0 ’ (3"'2)
and 2
?3::_—-0 (3 - 3)

at the edges where n is the co-oiﬂiﬁate axis rerrendicular to the edge. Expressing
Equation 3 - 3 in terms of x and y for convenience only, the boundary condition
becomes instead

2 .
Pw , Fw o

3 x? 9y* . (3 - 4)

4 gereral satisfactory expression for w for any shape of triangular i ate
is not in terms of tebulated functions. A few specilic cases are te.‘ouiated hovever.
One such case is for a simply supported equilateral triangle under uniform lateral
load3. Tor the type of dore cor.xsidercd hcre, all the triangles are very nearly

equilateral. Therefore the bending stresses may e closely approximated by consider-

ing only an equilateral triangle.

%

T
[
Y

Fig 3~ 4

° The bending of an equilaterasl plate was solved by
%o woinowsky - Kricger, Ingenieur - Archiv., vol.4,p.254 .
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With co-ordinate axea as shown in Figure 3 - 4, tie deflection surface of a

uniformly loaded, simply supported, equilaterzl triangle is 4

3 - 2\ 2 2 2
- W o= q [}:)-3y2x-n(}:2+y)+%78.3(%&)-:{ -y?)] (3 - 5)
642D 9
The part of the polynomial in squere brackets is the product of the left hand side of

x+%=0

2
2+ y-55 =0
3
- 3-2— 20
3 5 3

vhich are the equations of the boundary lines. The expression in squsrre brockets is
therefore zero at the boundary. Hence the boundary condition, w = 0, is satisfied.

Succensive differentiation of the wvolynmomiul gives

3% + 3% - q [x3 - 3y2 X 3y2 X - a(x2 + y2) + 2747'- 33} (3 - 4a)
J x? 3y? 48D -
and

84\4 +2<)4w + a4w = (3 - 1)

axt  9x%y? d y4

Similarly, Zquation 3 - 4a is 2lso zero at the boundary so tint both boundary conditions

q
D

are sctiotied. The differential e-mation is olso satisfied. Therefore
Qy
M)! My
Qx
Mx
dy
Mxy

IM
M_y + 'a-jy‘iy

4 3. Timoshenko, Theory of Plates ané Shells
New York, McCGraw-Hill, 1940, p.293
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Equation 3 - 5 represents the solution for the deflection surface. The maxirum
deflection occurs at the centroid of the lriengle and is
4
W q &
max = : (3-6)

5888 D

The differential eguations for. the moments, as defined in Figure 3 - 5, am

ix = - 2y 92
Mx = D(du + n i)

3x ay°
2 2
v o2 L d S
By=-D 2y + nly (3-7)
Ay J x
. (32
Mry ==-Myx = D (1 -p) W,
ox Ay
There fore
. - 2
MX = - 3E—(5-p)}:3+(3+p)ax2+§ (l~11)ax—§(l+p)a3
16 a 3 27
2 . 2
+3 40+ @ e3n) a”] (3-8)
My ==~ [(1-5}1,-7: +(1+3}1)ax -2(Q1 -p)ax- ._(nr;u)a
16 a 3 27
v 2 2
+3(3 v nixy” + (3 +n) ay J (3-9)
and . - .
- = q ¢ > o 2 2 2
Mxy = __.gl-u) 3xy + 2 axy -~ :3’— ay+3y (ﬂ—lo)
16 a

A1l the terms in Bquation 3 - 10 contain ¥y so IIxy is scro along the x axis.
Setting the partial derivatives of Mx and My with resyect to y equel to zero and
solving sho;rs that the only valid solution iz for y = O. Therefore Mx and My are
s maximum olong the x axis. Equating y to nero and introducing the notation

X X
S = -a- , the woment equntl mns become
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Mx | q.a* [(524)s” -(3+.0)5%-F (1-u)5 + 2, ()] (3-)

J =9 lo

Mo = 22 [ (507 (10 20)3% () e ()] (3-

The moment at the centroid of the trian.le is

2,0
Mx = My = i‘g} (1+4) (3 - 13)

Since the magnitude and vosition or the maximum momunt is a function of u, moments

for various u and S have been computed and zre plotted in Graph 3 -~ 1.

Moment Vectors

Mnt

Y Mn
' n

Fig 3 - 6

~

The moments on’ar;;-,r elenent of area in the plate as shown in Tigure 3 - 6
are given by
Mn = Mx cos®d + M)/ sin? ol - 2 M.<_',/ sind cosd
and ) (3 ~ 14)
Mnt = My (cos?d™ sin3d ) +(Mx =Py ) sind cos 4
wheie & is the angle between the x mnd n 2xes. The maximum value of Mn occurs at

o . . g A
y=0 andd= 90 and is therefore equal to the marimum velus of My plotted in



7

N
i

T
;




Graph 3 - 1. The absolute maximum value of Mnt occurs at y = 0, x = .405a and

oL = 450 and is equal to

Mntmm‘ =+ .23.4 q,al‘;(’l—_u) (3—]-5)

The corresponding moment on this plane is from Equation 3 - 14

] Qa0 ed <2 4 _ a* _
Mh aaz %_-(Itu)l_b—.)+§:, = os(mu):%__ (3-15a.)

The differentisl equationg for the shear forces as defined in Fig 3 - 5

are
d [/ dw A2 wr
Q""“DSI?PJ’ ag“) -
3 - 16
Q. -0 (Lw . Fw) o
y= "Pay oz T Gy2
Therefore »
Qx = _-‘_1%' L_3x2+2\12: +3)/2J (3 - 17)
and

a
The shear force slong the edge x = -3 1s

Q22 [ 5] <

and is identical to the shear force on the other {wo sides by symmetry. The shezr

19)

W
i

curve is shown also in Graph 3 - 1. The maxirum shear on the edge, at y = 0, is

also the meximmu shear force in the plate with o velue .



Q"m:u = Q"ma.x = -92_5'- (3 "20)

The average shear stress along the edge of the .triangle, obtained by dividing the

total lo~d on the plate by the perimeter is

Q'\' g'&\’e _Qa‘_.‘"

©

P

(3 - 21)

Therefore . (3 ~ 22)-

N 3
WA prux 2— a0,

[

The distribution of reactive forces olong the edge of a plate is not
usually the same as the distribution of shear forces Q. This is because tle
twisting moments Mxy and Myx contribute an extra load term to the shear Q. The
twisting moment lxy acting on an element of length dy may bLe replaced, using Seint
Venant's principle, by two vertical forces Mxy, dy apart, as shown in Figure 3 - 7,

o oM
1Mxy + Sjudf
4 Mxy

l _

-~ . X ,
720 S R —
/ 4 ’

// / 2 ij // \
AMx
/ y; Mxy + de] y \>>‘
/ 7/
S Mxy

AMxy .
Mx_y + —éyqu

Y

Fig 3 - 1
Summing the forces in the z direction show that the distribution of the twisting
moments is statically sgquivalent to 2 distrivution of shearing forces of - Ay

3y

per unit length. Therefore the reactive force is



Vi = Qx - 2Mxy (3 - 23)
dy '
For the equilaterzl triangle along the edge x = %
1
IMxy _ @ (1-u) (gqy? - a?
y  lea (4 ) (3 - 24)

Therefore the reactive along this edpe is

» -9 |iay*-4a®+ (1-u)(9y*-a?
Ve = o =y a® + (1-u)(9y )] G - 2)

This curve is also nlotted in Graph 3 - 1 for values of u = 0 and p =.3 only.
Since the two curves lie closse together, intermediate values oi u are easily

interpolated.

D. COMBIIED STRES3ES
1. Isotropic Plate.
Before com}mf..ing-, the bending stressés and coumbining them with the
membrane stresses, it is convenient to define the stresses that may occur. In
Figure 3 - 8, a lomina of the element of :laote is separated and the symbolism and

positive directions of the stresses indicated.

39
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Figure 3 - 8

The normal stresses, denuvted by Un end Ot arise from bending moments Mn
and ¥t and membrane forces Fi and Nt respegtively. Zhell theory gives the mémbrane
forces-in the @ and & directions only. If the §,6 co-ordinate exes are not co-
incident with the n, t axes, Nn and Nt must be determined from either Mohr's circle
of N¢ and N6 or the corresponding equations. Remembering that the units for N

are 1bs rer unit length and for M are inch-lbs per unit lenzth, then the stress at
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the outside fibre is

On - I\/l\" + '\g" ‘ (3 - 26)

where A and Z are the area and section modulus of a unit length respectively;
In determining.the most severe combination of stress, it should be remembered
that the equilateral triangle has three axes of symmetry and the equations
previously derived used only one such axis; Also, the position and orientation
of the triangle within the shell may vary somewhat.

The membrane shear force Nnt and triangle twisting moment Mnt
produce shear stresses (nt =>ttn- Shear stresses from Nnt are uniformly
distributed across the thickness of the plate, Shear stresses from Mt are

distributed linearly, increasing from zero at the middle plane to a maximum at

the outside fibre. Therefore the shear stress at the outside fibre is

Tnt = N/:t T Mnt _é_;‘_z (3 - 27)

The shear forces Qn and Qt produce snear stresses Tmz=Tzn and Tiz=Tit
and do not combine with any stresses prodﬁced from shell action. These
stresses are distributed parabolically across the plate with the largest siress

at tne middle plane. Therefore at the middle plane

Thz = % Qn (3 - 28)

X

3

N

]
L

o

N

[}
N[h,
E

1
wlw

ga (3 - 29)
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2. Plywood.

‘ The equations previously derived are based on an isotropic material,
Plywood, however, is not isotropic and the stress equations must be suitably
modified. Since two dimensional stress is not usually encountered in the design
" of more commoﬁ plywood structures, a brief discussion is included here.

The strength propertlies of an element of plywood vary with the
orientation of the element with respect to the face grain. However, in computing
the allowable forces, the element is always considered as oriented so that the
n and t axes are parallel and perpendicular to the face grain respectively.
Therefore the forces acting on an element are resolved into components giving

normal and shear forces as shown in Figure 3 - 9. Then the forces must be-such

(LF:)Z’“ (%)2 ’ _’Cp_t)z ol (3 - 30)

where  denotes the actual forces acting and F denotes the permissable

that?

P /‘ o P,
\ Directicn of
o ———
Face Grain
—— P3

Pn . \\
. g PA-

Fig. 3 -9

> pirforce - Navy - Civil Aviation Committee, A.N.C. Handbook on the Design of
Wood Aircraft Structures, TU,S. Dept. of Agriculture,ld942, P.38




force in thet direction if no other forces are acting.

In the determination of normal stress, only those plies with their
grain parellel to the applied force ore considered zs acting. The areas, section
moduli and moments of inertia parallel and per'éendicular to the face gruin for a
one foot wide strip ere tabulated in Table 1 of the Douglas Fir Plywood Technieal

Handbook. Denote these vazlues by An, At, 7n, Zt, In and It respectively. Then

the combined normsl stresses at the outside fibre capable of resisting stress are

Fn- Nn + Mn f !
An Zn E
and .i (3 - 31}
0t = Nt + Me sl
At 2t

The shear stresas Tnt =ltn is czlled "shear through the thickmess" in
the Douglas Fir Plywood Techniczl landbook. In computing this shear stress, the

whole cross sectional area is considered as acting. Therefore the equation

Z- t = M + (4
n A + M’lk hz (3 - 27)

derived for an isotropic plate may be used.

The values of Un,0t and Tnt for a point (x, y) are substituted
directly into Equation 3 - 30. ’i‘he allowable.stmsses in the denominetor of this
Equation may be obtained from Table 3 of the Douglas Fir Plywood Yechnical Handbook.
The worst stress condition occurs where the left hand side of Equatiuﬁ 3-30is a
maximm. This maxisum value depends on tne co-ordinates of the point, the orienta-
tion of the face grain and the position and orientation of the triangle in the

shell. Therefore it is not feasible to determine where the maximum occurs other

>
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than by a trial and error procesz. It is recommended here to determine the
maximum stresses in the triangle from lateral loads only and then combine them
with the membrane stresses in the most severe possible way since it is almost
certain that one ﬁriangle will be oriented such that this condition applies.

The shear stresses Tnz = Tzn and 'Trl=ﬁtft produce rolling shear in
plywood, The distribution of shear stress is irregular because only those plies

parallel to the shear stress act. The shear stresses are given by

" Tzn--. @n Sn
In W
and ., (3 = 32)
th = Qt' St‘
It W

where Sn and St are the first moments of area of those plies parallel to the
n and t axes respectively outside the plane considered, The symbol W denotes
the width of the section and the symbols Qn, Qt, ™ and It arc as previously
defined, First moments of area are not tabulated in the Douglas Fir Plywood
Technical Handbook and so must be computed from the tabulated thicknesses of
the plies. The distribution of rolling shear is indicated qualitatively in
Figure 3 - 10 for both the n and t directions of a typical section. The
shear stress is constant across a perpendicular ply and is distributed
paraboiically across a pérallel ply. Therefore the maximum rolling shear for
both the n and t directions may be evaluated at the glue line of the innermost
ply. Though the shear stress a£ the neutral axis for either the n or the t
directions is numerically greater, it is not rolling shear but horizontal shear.
Since the allowable horizontal shear stress is greater than the allowable

rolling shear stress, rolling shear remains the eritical stress,
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E. BUCKLING OF A TRIANGLE

The differential equation for a buckled plate 186

 w w . *w _ O wr s . Pwr %
ax+ "% damagr * y* D(N" ax= " N3y +2Nxy <)x9y) (3 =33)

where Nx, Ny and Nxy are forces per unit length in the plane of the plate, A
lower critical stress is obtained if Nx and Ny are both compressive since
tension forces by either Nx or Ny tend to stabilize the plate. In the most
severe case, Nx = Ny and Mohrs circle becomes a point so that Nxy = 0/ The

differential equation then reduces to

*w d*w . D%*w - Nx/d%w . dw ) .
d x* dx? Jy? dy* D \ 9x? 3y?

(3 - 34)

6 5. Timoshenko, Theory of Elastic Stability,
New York, McGraw-Hill, 1956, p. 324
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or writing in shorthand notation

viw - Ne v2w (3 - 35)
D

For an exact solution, some function for the deflection w must be
obtained which satisfies not only the buckling equation but also the boundary
conditions for a simply supported plate., The method of solution closely péral-
lels the solution for bending of an equilateral triangle. However in this case,
the expression for w 1s more complicated and an exact solution does not appear
to be feasible,

A solution may be obtained however, by using finite difference equations,
The plate is divided by a grid or network of 11ne;nib4w andﬂvzw written for
each point of intersection of the net. “ubstituting these expressions into
Equation 3 - 34.gives one equation for each point on the plate. The resulting
equations are tnén solved simultaneously for Nx. The degree of accuracy obtained
depends on the number of poirits taken or the finess of the grid interval,

A triangular net is particularly suitable for obtaining a solution to
the buckling problem of an equilateral triangle since the net lines are parallel
to the edges of the triangle and the boundary conditions are easy to satisfy.
Since triangular nets are not in such common use as rectangular nets, a brief

explanation is included here,



Fig 3 - 11

TRIANGULAR NET

Referring to Figure 3 - 8, let

Ew = W, + Wy + W3 + Wy +Ws + We

-~

and
Ew; = W7 + Wg +Ws + Wo + Wy + Wia

- It can be proved that

Dividing the side of an equllateral triangle into seven equal parts vith a

triangular net gives fifteen points on the triangle as shiown in 1*1 gare 3 -2

7Allen, D.N., Relaxation Methods,

New York, McGrew-iill, 1954, p. 146

47
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By symmetry though, there are only four different points.

VAVAVAVAVAVAVAVAV
VAVAVAVAVAVAVANR
VAVAVASRVAVAN

AFig 3 - 12X AN X

Writing the expressious for (V W)n, (v -‘l)n , .';md collecting terms we obtain:

4

9%— (Vviw), = 10w - 6u; + Wy

§% (o4 s _
9Té“'(vu.l)2 =-3W + 8Buw; -~ 2 Wy « 2 Wy
s (3 - 37)
9 & (V) = - AW+ Llwy- 5 W
o & (vw), = wi - 4wz~ Swyr 6 WL ]
9 §2(vi), = ;-46u/7 + 18W, - Wa
9 §'(viw),= 9w - 3BUL+ BW; + BUL

- (3 -38)

9 &' (viw), = + 16W, - 4Tws+ 17 We
9 51 (Vz“’)4= - W o+ 16w+ 1TW; - 30 Wi ]
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Before substituting into Equation 3 - 54, it must be modified to

(v, - [$5]05 (7200

5 g (3 - 39)
or \
85t (vhw), = 8 o8 (Viwh G-
vhere
| 8 - ‘;Nf’g (5 - 41)

Substituting Equations (3 = 37) und 3 - 38) into Equation (3 - 40) and collscting
terms give

(10 + 468 )w

(6 +188)w, + O +(1+8)wse = 0

- (3+93)wi+ (8+383)uw;

(2+83)w;- (2+83)u= 0

0 (4 +163)wy + (11 +478) w3~ (5+178)w, = O

(L+g)w (4 +163)uy

(5+178)wz+ (6+308)w,= 0

One solution of the four equations is W = 0. However this is not 2 buckled shape
and is therefcre a trivial solution. The only non zero solution is for the deter-
minant oi the coefiicients to vanish. Therefore the solution of the tour
equations is obtained from

(10 + 468 ) -,(6+1é_6) 0 (1 +8)

-(3+ 968) (8+388) -(2+88)~(2+88)
0 -(4+168) (11 +478) -(5 +1713) -7
(1+3) -(4+168) -(5+178) (6+308)
v-fhich yields .
1, 141, 114 Chn 820,358(33 + 20’7,85832+ 21,2666 + 686 = 0

The real roct of this equation giving the smallest compressive load is 8= - .059



50

Substituting into Equation 3 - 41 gives

Nx 8" _ _. 059
e D :
Replacing by its value bf?, multiplying the numerator dnd denominator by mE
and arranging termns, the critical load is A
2
H
(NX )cr = - 4.66 ZD (3 - 42)

b
where b is the length of the side of the triangle. The form of Equation 3 -~ 42

is now the same as the form of the buckling equation for a colum since D ¥ EI.

The minus sign in Equation 3 - 42 indicates that the critical force is

compressive as was suggested in the previous discuséion of the buckl@ng problem.
A similar procedure using a different number of points on the

triangle gives various values of K in the equation

2
o, D
(NK)L = K “bl . (3 - 43)

\

Plotting a graph of K versus the total number of poiﬁts on the triangle gives
the curve shown in Figure 3 -~ 13, Since the curve is asymptotic ﬁo

K=-4,75, the equation for buckling of a simply

-5}
K=-4.75
———
K //O
-4}
-3 ' 5 o 5 20

Total - Number of Points

Fig 3- 13
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supported equilateral triangle is

=2
(Fx) =- 4.75 71°D (3 ~ 44)
b2
Not all the trizngles comprising a geodegic shell are equilateral so that
the coefiicient K must be detemminell for other shapes as well. For convenience,

only isosceles triangles are considered so that the shape of a triangle is determin-

ed by the two parometers, b and ¥ , as defined in Figure 3 - 14. For the same

A
X

Fig 3 - 14
stress conditions, Nx = Ny, 'I‘J'.moshenl'co8 gives the buckling load on a simply support-
ed isosceles right triangle, ¥ = 450, as

(Nx) =-10 1°D
bZ

While all the triangles encountered in a geodesic shell lie within the range
45°< Y = 60°

it is not safe to assume a linear varintion of K. Since boundary conditions are

& S. Timoshenko, Theory of Plates and Shells,

Hew York, McCraw-l!lill, 1940, p 311




herd to satisfy without convenient co-ordinstes, it is impractical to inves.igate
cases within the range
45°< ¥ < 60°
However, investigation of a few cases outside this range mekes it possible to draw
the curve of K and ¥ with sufficient accuracy.
For the case ¥ = 30o , uaing a trisngular net and writing four finite

difference equations again, the critical load is

(kx) = =32 T%p (3 - 45)
bZ
The buckling load for 2 simply supported rectangular plate when MNx = i\Iy is 9
2
(x) =- T2 (1+3) - (3 - 46)
2 2 )

vhen a and b are the lengths of the gides. This formula may be used to investi-
gate the limiting conditions of § = 0° and ¥ = 900. As ¥ > 900, a-+® ard
) 1= D
HX 22 -
(1) i (3 - 47)

As Y- 00, a—+0 and

(I‘Iz.) - - XD

Graph 3 - 2 shows the result of plotting K us ordinates and ¥ as sbscissae.

9

Timoghenko, S., Elagtic Stability
liew York, McGraw-Hill, 1936, p 333
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Some of the triangles encountered in the dome may te acalene ingfead of
isosceles. The change from an isosceles triengle is not great. Therefore substi-
tuting with care an isosceles triangle for a scalene triangle gives a good value
of the critical load,

Despite the foct that there is some rigidity at the boundary, sssuming
s8imply supported plates is not unreasonable becasuse one plate may buckle in and
the other out as shown in Figure 3 - 15. Therefore the joint rigidity does little

to prevent buckling.

Buckled Shape

Fig 3 - 15

The flexural rigidity of a plate, sopearing in the buckling equation, is

3 .

Eh .
where h is tie thicimess of the plate.  Letting m = o, the flexural rigidity
becones Eh ;

D= 75 =E1 (3 - 49)

since h3/12 is the moment of inertia 'of 2 unit width of plate. While Equation
3 =~ 48 is apylicable for icotrppic plates, Lquation 3 - 49 is better umzed for
plyvwood., Using B = 1.8 (106)‘ ant cetermining the average I from Table 1 ;>i' the
Douglas Fir Pl.ywood_'l‘echnical Nandbook, an average f lexural‘ rigidity is easily

obtained,
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F. BUCKLING OF TI® SHELL

Since the analysis of the critical stress of th;.n shells is a fairly
complex problem no attempt will be made here to present the lengthy differential
and energy equations. Instead, the general attack and final results will be
discussed and the latter put into a form useful for the design of geodesic shells,
The latter part of this section is devoted to the application of these equations
to plyvood since the originel derivations assume an isotropic plate.

For a spherical shell under a uniform external pressure p, Mohr's
circle of stress is a point and

G = .L'_i:; (3.~ 50)

For this stress condition, the so-called classical theory of buckling of thin

shells gives & critical stress of

Ger _ I Eh
J30-ury F (3 - 51)

This classical theory assumed small deflections and a buckled surface dependant

only on @ and independént of €. Hovever expverimental results give a buckling
stress three times lower than the claszical theory. A similar discrepancy also
exists between the theoretical and experimental analysis of cylindrical shells
under axial load. Meny well known scientists attempted to explain this discrep-
ancy by congidering the eftfect of end conditions and initisl deviations from the
true shape. Their results indicated a plastic failure of the meterial which is

not substantiated experimentally since releasing the load removes the buckling _'

waves, Also buckling occurs suddenly not graduslly as is required for a plastic

failure.
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The real rcason for the discrepancy was later expl:ai‘ned by T. von Kazﬁan
and Hsue - Shen Tsienlo. These authors pointed out that thé classical theory
assumeé amall deflections and thus obtained a linear differential equation
determining the equilibrilum rosition of the shell whereas actually large deflec-
tions occur and the differential equation is non linear. They also observed
that the buckled wave form was not as predicted by the classical theory but formed
a small dimple subtended by & solid angle of approximately sixteen degrees.

Therefore they confined their analysis to one dimple indicated in Fig 3 - 16.

Fig 3 - 16
They assumed thaet : the solid angle 2B is small, the deflection is
rotationally symmetric, the deflection of any element of the shell iz parallel
to tle axis of rotational symmetry and that Poisson's ratio is zero. They then
obtained an erérgr' equation for the extensionul energy before and after buckling,

the bending energy, and the work done by the extermal pressure during buckling.

10 Th. von Karmmen and Hesue-Shen Tsien, "The Buckling of Svhericasl Shells by
External Pressure”, Journal of the Aeronautical Sgiences, vol. 7 (December 1939).
pp. 43 -50
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Minimizing this expression to obtain the lowest energy condition gave on expression

% ’f(az%auﬁ) (3 - 52)

vhere w;is the maximum deflection of the dimple. Then assigning a value to either

2 Ff or ‘.‘_’hﬁ , & plot of the remaining two dimensionless quantities is obteined.

Such a plot is shovmn in Graph 5 - 3 . Trom this graph the minimum value is
ar . =
(—ET\—) nin =, 183 . (3 -53)

This value of the critical stress is approzimately three, times lower than the

classical theory anud corresponds very closely with experimental results., That

large deflections ccour is shown by the fact that for the minimum valus of g—‘-‘—g ’

. , ' 1
We < 10 whereas small deflection theory requires that _u'r{_ < 5 -

Since the shape of a geodesi: shell so closely conforms to the shape
of a true sphere it seems reasonable to apply Karman and Teien's results to stells
of this tyve. BSince the chape of the reodenic shell is not exrctly gixuil:u‘, the
work done by the external pressure is less than in the Karman and Tsien anslysis,
However tie bending energy of the joining'battens is not included so that any
error tends to valance out. The magnitude of the solid angle subtending the
buckled dimple is spyroximately sixteen degrees. This suggests that in a geodesic
shell the apex of a group of five or six triangles would buckle inwards. 3Buckling
coumences at least as a type of local instability since the dimples are small and
were analyzed as a single unit. Therefore even though a shell under ex’tefnal

vressure is an unusuzl load for a roof as a whole, it is very nearly the case for
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the section near the crown. At the crowm, dead and live loads produce equal
membrane stresses in all directions and the load is nearly normal to the surfacs.
Therefore the loading at the crown is thé—z same as for a spherical shell under
external pressure and tiwe energy expl;essions of Karman and Tsien ars justified
for this section of the roof. At other sections of the roof the loading is less
severe with regard: to buckling sirce the externzl load is less and the membrane
stresses are smaller,

Instability may oceur in a geodesic shell in one of two ways. A
group of triangles may buckle or an individunl trisngle may tuckle. In the first
case, as presented in this section, (-CE{L ) is a constont. In the second case,

discussed in the previous section, the buckling force is \

where b is defined as the base of the triangle and K is a constant depending on
the shape of the triangle. Houever the base is a function of the radius,.

Represent this function by A which is tabulated in Chapter II. For the case
3

a=0, D= % and the critical force is
~2 3
= KU _Eh .
Ner - > Aip2 (5 - 54)
o ar . K ﬂ‘(L)
Eh 12 A2\ f (3 - 55)

This function is plotted in Grzph 3 - 4 for an equilatersl triangle and various

values of —”}: . Superimposed on thi:z grayh is the straight line %";—f— = L,183 ,
the critical condition for shell buckling. Entering the graph with values of %

and A determines which type of buckling occurs at the lower stress.
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For plywood, substituting into the dimensionless quantities -g%; and
ﬁs immedietely raises the guestion of what values to use for E and h. If the
full thickness is used then E must be reduced from the parallel to grain value to

some amaller average value. This vrocedure is given in the Wood Hahdbook.ll'

However there is an easier apuvroach which yields almost identical results. In
the previous section the flexural rigidity was modified to

3 3 _
E.}l 2 ~ .B..}.\... = B I ave. (3 - 49)
12(1-u°) 12

where Iave is the average of the moments of inertia parallel and perpendicular

to the face grain for a unif width.. Carrying this approach one step further

gives
heff = 3 Iave (3 - 55)
vhen Iave is for a one foot width. Equation 3 - 56 defines an effective thickness
in inches for substituting into the dimensionless quantities Q}: a f
_ Eh h used

in Grapn 3 ~ 4. Vhen the effective thickness is used, Young's modulus mey be
taken as E = 1.8 x 106 p.s.i. Values of the effective thickness are trbulated

in Table 3 - 1. This table illustrates an interesting relation hetween the effect-

ma
ive and nominal thicknesses. Therefore the etffective thicknessAequally well be
taken es
h = .TGSh.

1 Forest Products Laboratory, Wood Handbook,

Weshington, U. S. Department of Agriculture, 1955, p.280.



* Table 3 -1

h In I. Tuve heff b eff
o

7/8 S 0435 .00926 0264 .298 .795
3/8 U 0427 00474 .0237 287 .765
1/2's 0730 .0520 0625 .397 795
1/2 U .0961 L0252 L0606 .392 185
5/8 S 121 123 .122 .496 .T94
5/8 U .194 L0353 1147 486 ST
3/4 S .228 194 211 .596 795
3/4 U 260 .160 210 594 792




CHAPTER IV

EXPERIMENTAL ANALYSIS

A. PHRELIMINARY CONSIDERATIONS.

Bacauge of a lack of tabulated functions, the exact analysis was
not obtained. The approximate solution developed used amooth shell theory to
give the average membrane force on the edge of a trizngle but did not give the
distribution of these forces. The Fourier analysis for the distribution of the
membrane forces also lacked tabulated functions so it was necessary to obtain the
distribution 'experime’ntaily. Therefore the purpose of the model analysis is 'L.wo-
fold. First of all, it should demonstrate the velidity of applying the membrane
theory of moc;th shells to folded plate shells as outlined in Chapter 3.
Secondly, it should indicate the distribution of membrans force along the edges
of the triangle. It is not the object of the experimental work to ascertain the

stress at all points of the dome.

60
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The previous chapter suggested that the distribution of membrane force
was ,'.in part, dependent on the dihedral angle formed by two adjacent trisngles
with the highest stress riser accompanying the largest departure from a dihedrai_l
angle of 180°. Exeluding the icosshedron es too rough an approximation of a
sphere, the next worse case .is a2 sphere composed of 80 triangles. The size of
the triangles is governed by the numbef of points necessary to plot accurately
the distribution curve. Electric resistance strain rosettes are approximately
two inches square. Therefore to obtain a distribution curve elong the edge of a
triangle from seven or eight points, the minimum size of triangle must be sixteen
to éighte,en inches on a side. These criteria outline the geometric limiting
conditions of the model.

'.l;he three materials considered for making the model were a:!.umimnn,
élyweod and plexiglas .. With the equipment available, plywood is the easiest to
wori: with, follbyred by plexiglas then aluminum. The disadvantages of plywood for.
model analysis though are important. It is not isotropic with the result that the
principal strains am not in the same direction as the principal stresses. In
addition, the elastic properties vary uncertainly with a change of moisture
content in the plywood. The numerical value of the elastic properties is another
prime conmideration. Values of Youngs Modulus are approximatel-ys

Aluninum 10 z 10° 1v/ in®

Wood 1.8 x 10° 1b/ in° (Parallel to grain)

Plexiglas 0.5 x 10° 1/ in’



62

The comparatively heavy loads required to produce high membrane stresses in a
shell are diff‘icult to apply in the laboratory wi"daoﬁt apecial loading equipment.
But for‘the same load and cross sectional area, plexiglaes givea strains twenty
times lerger than aluminum. These larger strains are more accurately read on
the strain indicator. To obtain the sams strain for a given load, aluminum must
be 1/20 the thickness of plexigles. This, however, reduces the buckling load 400
timeg and aluminum sheet hecomes more unstzble than plexiglas. Weighing the
advantages snd disadvantages so far outlined, plexiglas appears the most suitable
mate:t:ial for the model.

Plexiglas does have a definite tendency to creep, particularly at the
highsr stregses. About 85% of the creep occurs in the first few seconds of
loading end the remaining 15% over a period of ten to fifteen minutes. However

the unit stresses are s0 low end the time factor so short that creep is not of

major importance in this case.

B. DESCRIPTION OF MOIEL

After some thought and a few preliminary tests, it was decided to build
a five foot diameter hemisphere of forty triangles made from 1/8" plexiglas.
This gives ten equilateral triangles 18.54 inches on an edge and thirty
isosceles triangles with a base of 18.54" and two sides 16.40 inches. Pictures of
the model are included in the photographic supplement. To resemble a dome in
actual éracﬁse, battens one inch wide and 1/4" maximum depth were used to rein-

force the joint, The battens were not conrected together and stopped short of the
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triangle vertices by 1/4". Ordinary CIL cement was used to hold the structure
together since laboratory tests showed it to te stronger than other glues tested
| hinclu.d.ing a mixture of plexiglas and ethylens chloride. The dome was supported
on a heavy ring about three and a half feet abowve the floor. The ring resisted
any horizontal deflection of the base of the shell but wes not conmcted to the
shell_in a menner to resist rotation of the base of the shell, |
After the triangle thickness was measured with a micrometer, thirty

éimt S R 4 strain rosettes were glued on one isosceles triangle. The position
and orientation of the rosettes and the plate thicknesses are given in Figure 4 ~1.
The type CR - 1 rogsette was used vhich is made of Iso-elastic wire. In this
type of rq‘getba,- three stirain .g;ages are superim.posed one on the other and oriented

at forty i:iv‘e degrees to each ot'he'r.
Iso-elastic rosettes were used because they have a Gage Factor of 3.42
. c@mmd to 2,0 for the more cammon type of rosette made from Constantan wire.
If the Gage Factor dial of the Strain Indicator is set at 2.0 when Iso-elastic
gages are used, the indicated strain is not the true strein., The true strain is
glven by

G.F. dial

€ true = € indicated x (4 - 1)

True G.F.
Thus Iso-elastic goges magnify the true unit strain by Ti%. ‘This is particular-
ly advantageous when measuring- small strains. The disadvantage to Iso-elastic

" gages is that they are highly sensitive to temperature changes.
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The rosettes were wired with a common ground on each side of the shell.
For the other wires, a simple color code facilited differentiatihg between gages.
Red designates all gages normal to the edge of the triangle; white, 45° to tb;
edge and blue, parallel to the edge. The weight of vwire was carried by two
triangular wooéen fromes suspended approximately 3/4" above and below the rosettes.

3ince there are 114 active wires and two grourd wires leading from the
shell to the Strain Indicator, a switching unit would be useful. Invesiigation
;'evealed, however, that this was impractical because the contact resistance qf
commercial type swﬁcheé vas not constant, giving erroneous strain readingsj
Good switching units with a near comstant contact resistence are very expensive
and were therefore beyord reach considering the number required. The only
;a,itemative was to connect each wire directly to the Strain Indicator, inddvidu~

ally, as mquired., To separate the maze of wires, they were separated in grbups

of niﬁe, attachsd tf)?.c.i‘.rcular disca, and clearly labelled.

It wvas noticed with the temperature sensitive gages used that when the
eircuit was closea::;heatatoné Bridge did not stay balanced. Visually, the
galvanometer needle deflected rapidly at first but gradudlly slowed as time

.expir:ed. A pema'neﬁt balence of the bridge was obtaired about five minutes later.
This phenomenon‘was probably due to the heat pro&uced from the electric current
passing through the gage registance. ‘. Galvanomster equil_ibriﬁm would then occuz; _
vhen the strain gage was 1n t‘negmal -equilibriumo

Though temperature compensating gages were usged, tk;ey are not practical-~
1y speaking 100% efficient. This slight :'l..nafﬂciency is greatly magnified by the

temporature sensitive Iso-elastic gages. Therefore any change of room temgsratiu'e
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over the period of testing slightly changes the zero load reading of the gage.
In addition, changes of room temperature induce temperature stresses in the
model.

These temperature effects are eliminated by the method of loading.
One gage is connected to the Strain Indicator a.nd'the circuit clogsed., After
the Wheatstore Bridge appeared permanently belsnced, loads were applied
relatively quickly, taking intemittent readings, up to the maximum load and
back again to the zero load. If tbe Bridge balaﬁce was the sare at the end
of loading as it was at the start, then all temperature effects are nullified |
and the recorded strains are due only to the applied load.

T‘he loading of the shell was accomplished using one hydraulic jack
and an arrangement of beams dividing the total load into six equal parts.
One sixth of the load was applied at the top and the remeining five sixths at
the five uppermost points forned' by the five triangles adjacent to the top.
The total load applied to the shell was measured with a proving ring gradx.mted
in 1,065 pound divisions. The jack was regulated by levers permitting the
operator‘ to control the load and read the Strain Indicator from the ssme posi-

tion.:

c. RGSETTE ANALYSIS.

Affer a consistent set of readings, void of ‘temperature effects, wers
cbtained, the values for each side were averaged and the results were plotted.
The readings are tabulated in Table 4 - 1 and a typical graph is shown in

Figure 4 -2. In=2ll cas‘e.s, the results plotted as a straight line.



Te follow &5

Table 4 -1
Total Load in Lbs.
Gage Side A (outside) Side B (inside)
o joo 200 300 400 Q 100 200 300 400
R | 1299 1375 | 1458 | 1540 1621 | 135¢ | 1368 | 1381 | 1394 | 1409
L w 939 941 942 | 943 944 "4 1063 983 9051 825
8 1079 1061 042 j024| too4 j202 1152 1099 | 1045 991

1203 1213 1223 | 1233 1242} 1220 | 1248 | 1278 | 1307 | 1338

2 020 | 978 | 931 | 888 | 843 | 1068 | 1078 | 1088 | 1099 | 1110
1928 | 1898 | 1864 | 1831 | 1799 | 1183 | 1173 | ed | 1152 | L4
lHeo 1He3 | 1167 | 1169 | 1172 | 1470 | 1488 | 1508 | 1527 |. 1547

1330 1302 | 1274 | 1245 | 1214 | 1238 | 1252 | 1270 1288 | 1306
1460 1437 1410 | 1383 1356 | 1310 1298 | /281 1265 | 1250

oo | oy | 1113 | 1iar | a9 | 1599 | 1607 | 1616 | 1625 1633
1381 1363 | 1343 | 1323 | 1303 | 1600 | 1616 | 1631 | 1648 1¢63
12t 1{00 1078 1055 1032 1588 1569 1550 1531 1512

i303 | 1315 | 1328 | 1341 | 1355 | 1338 | 1336 | 1332 | 1330 | 1328
151 1499 | 1479 | 1462 | 1447 | 1328 | 1332 | 1339 | 1341'| 1348
1440 | 1420 | 1400 | 1380 | 1359 | 1259 | 1240 | 1221 1201 | 1180

1557 | 1572 | 1589 | 1606 | 1623 | 1753 | 1742 | 1731 721 | 1710
959 940 919 898 878 938 923 909 | gs3 878

212 | 1193 172 | st 129 | 888} 8géo 842 818 793
1591 1602 | 1615 | (62] | 140 | 1359 | 1340 | 1321 | 1302 1283
7 1202 | 1166 | a8 | 1088 | 1050 | 1223 | 18I | 1132 | 1083 | 1032
Hn7s | us3 | 129 | tioy | 1081 990 | 960 | 927 892| 8s8

1375 | 1350 | 1319 | 1292 | i1262 | 1102 | 1078 | 1045 | (012 | 978
1395 | 1321 | 1239 | He3 | 1083 | 1935 | 1856 | 1761 | 171 | 1578
1602 | 1570 | 1537 | 1500 | 1461 | 1878 | i8¢0 | 1842 | 1823 | 1802

1441 | 1444 | 1443 145/ | 1455 | 1243 1289]| 1340 1390 | 1442
1300 | 1202 | 1223 | 1183 | 1145 | 1290 | 1271 | 1252 1233 | 1214 |
1498 | 1431 | 1356 | 1286 | 1212 | 948 | @90 | 825| 761 | ¢92

18689 | 1890 | 1890 | 1891 | 1891 | 1259 | 1298 | 1340 [38/ | 1425
1227 | 192 | 1s8 | 1125 | (091 | 1528 | i1519 | 1512 | 1504 | 1497
999 933 | 868 | 8o2 | 733 | 1530 | 1477 | 1419 1361 | 1301

10

[\3)
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Table 4-1 (cont'd)
_ Total Load in Lbs.

Gage Side A (outside) Side B (inside)
(o) 100 200 300 400 o 100 200 300 400
R| 1552 | 1549 | 1545 | 1541 1536 | 1092 | 1138 | 1184 | 1230 | 1277 .
N]lwl| 1340 | 1302 | 1262 | 1222 | ns8za | 1e2| 172 | 1182 | 1192 | 1202
B| 914 | @48 778 707 | €32 922 | @gy2 817 762 708
R | 1297 | 1281 | 1265 | 1247 | 1229 | 1070 | 1132 | 120/ | 1268 | 1330
121w\ 1250 | 1193 1132 | 1071 | 1008 | 1510 | 1539 | 1570 | le00 | 1632
8 | 1378 | 1305 | 1225 | 1143 | 1065 | 1470 | 421 1372 | 1322 | 1270
AR | 123 (210 187 | 1163 | 1140 | 1248 | 1342 | 1445 | 1547 | 1650
13 w| 1579 | 1488 | 1387 | 1292 | 1192 1402 | 1453 | 1511 | 1564 | 1622
B | 1502 | 1412 1317 | 1222 | 1121 940 900 860 | 820 778
R | 1000 | 1049 | 1102 | 1155 | 1210 | 1000 | 1130 | 1269 | 1409 | 1548
14 {w|looo | 1018 | 1038 | 058 | 1079 | 1000 | 1034 | 1071 | 1108 | 1147
8 | 1000 885 761 640 5/6 looo 925 842 759 673
‘R | 1558 | 1563 | 1571 1577 | 1582 | 1433 | 136/ | 1281 | 1204 | 124
15|w | 1322 | 1415 | 1513 | 1610 | 1709 | 1208 | 1173 | 1139 | 1108 | (074
B | 13565 | 1449 | 1548 | 1648 | 1752 | 1092 | 22 155 | n8g | 12z2
R | 1250 | 1263 | 1276 | 1293 | 1309 | 1059 | 1009 | 953 | 901 | @47
lo|W)] 1432 | 1486 | 1548 | 1603 | 1665 | 1269 | 1250 | 1231 | 1212 | 1192
B| 1428 | 1468 | 1553 | I16l8 | 682 | o0co| o040 | 0B6 /28 | 170
R| 1765 | 1772 | 1782 | 1792 | 1802 | 1362 | 1321 1277 | 1232 | 1t87
I7|W | 1397 | 1433 | 1472 | 1512 | 1552 | 1378 | 1368 | 1358 | 1348 | I336
Bl 1659 | 1717 | 1778 | 1839 | 1900 | 1178 | 1221 | IR67 | (3]] /360
Rl 1eio | 1c21 | 1633 | 1645 | 1657 | 1634 | 1592 | 1549 1503 | 1458
"18lw | 1270 | 1299 | 18329 | I357 | 1388 | 1559 | 1553 | 1550 | 1545 | |1540
B | 1589 | le48 | 1709 | 1770 | 1831 | 1449 | 1488 | 1530 | 1571 | 1612
R| tuv {3 1145 | 1158 | 1170 | 1532} 1478 | 14|16 | 1358 | 1299
19\ w1775 | 1797 | 1819 | 1839 | i1860 | 1295 | 1287 | 1278 | 1269 | |260
B{ 332 | 399 | 466 53 6oo | 1729 1764 | 1802| 1840 | 1878
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The slope qf the line was determmined from the graph and the_n: corrected for the
. Gage Factor by Equation 4 - 1. Mohr's circleg of strain were then plotted for a total
load on the shell of 100 pounds. Strains were converted to stresses by superimposing
Mohr's c:lr‘cle of stress over that for strain, The results for & typical rosette are

shown in Figure 4 - 3. Since the superposition of Mohr's circle of stress over the

circle of strain is not too common, a brief discussion is included here,
Normal strains, denoted by &€, are poasitive when 'they are elongations. Shearing
strains, denoted by ¥, arc positive when the eriginally rectangular element is distort-

ed with respect to the co-~ordinate axes as shown in Flgure 4 - 4, Then the strain on

Fig 4 - 4
a plane vhose outward normal is at a counter clockwiase angle Bto the I axis is
€o = é-——f-"xg + 6.5-——*"'2'6 + ——-ﬂxz - sin 26 )
. ' (4 - 2)
Yo = (€y ~€x) ein 20 + ¥xy cos 26 5

Referring to the principal axes of strain rather than the X and Y axes, Equations (4-2)

become ;
) €d=émax;én_x_m + émm:;émin cos 2d 2 .
(4 -3)
Y+ = (€nin -€max) sin 2d ( _

where  is the counterclockwise angle from the positive principal strain sxis to the

outward normal of the plane under consideration.
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Strain Scale :
1* = 20x107¢ infin.

<%

Fig. 4 -3.
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Let

i1
>

€Emax _+ € min
: 2

and | \ (4 - 4)
€mex - € min

then Equations (4 - 3) reduce to

€a=A +Bcog 24
! 4-9)

Ya=~2Bsgin 24

Mohr's circle of strain is a plot of € as abscissa, positive to tue right,

14

and 5 @s ordinate, positive dovn. From equations (4 - 5), it can be seexjx
that A is the distance from the origin to the centre of Mohr's circle of
strain and B-is the radius of the circle.

Considering stresses as positive when producing positive strain, the

stress equations are very similar to the strain equations: Heferring the

stress or any plane to the principal stress axes, the stress equations are

Ga = O max +0min + G-ma.xz—G-mm cos 24
2

T, = Gmin = Tmax  SiN 2 & 2 (4 - 6)
& 2, . s

But _
Odnfax=E_ € max +/U-€min:l

(4=
S

Gmin = _E émin + M é-ma..x} e



Substituting Equations (4 -~ 7) and (4 - 4) into Equations (4 - 6), the stress

equations becoms

N ]
0a =_ET_ :A + (:Tﬁ) B cos 20(] 2 ‘o
- [)8 on 2] o

Comparing Equatibns (4 - 8) with Equations (4 - 5) show that if the stress
scale is '—F::.-;L times the strain scale, Mohr's circles of streas and strain

are concentric. Furthermore the radius of the stress circle is : ;f_

times the radius of the strain circle.

A piece of Perspex approximately 1/8" thick, 2}" wide and 17" long
was cut from the same material as was used for the model. Two strain rosettes
were attached, one on each side. The specimen was submitted to a tensile test
in the Baldwin-Southwark Testing Machine. From the readings recorded, graphs
were plotted an.gl the elastic properties calculated. The results of the tests

are

5

E = 4.64 x 10 11:/1:12

1
n = .337 5

Referring to Equations (4 - 8) and using the determined elastic

1
1 ~ =

properties show that the radius of Mohrs circle of stress is = }2-
l+=

3
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the radius of Mohr's circle of strain. The co-ordinates of any point on the

stress circle are measured using the strain circle scale and then multiplied

. 5 :
by 4—'-5-1—" 10°. 695 x 10°
1-

3 While part of the quantitative experimental results are disappointing,

the overall results are reasonable. The application of smooth shell theory to

this type of folded plate shell does seem justified. Any slight discrepancy

between theory and experiment in the model is greater than the corresponding dis-
crepancy in a shell composed of more triangles because the latter is a closer
approximation of a smooth shell. Therefore, to obtain the maximum membrane stress

in a folded plate shell, the smooth shell membrene stress is multiplied by the
eppropriate streas riser from Graph 4 - 1.

D. RESULTS
From Mohr's circle, the normal and shear stresses were determined on the
planes parallel to the edges of the friangle. The resulting stress distribution

curves are shown in Figures (4 -5and @ - 6). These curves prove that the stresa

distribution is not linear as in smooth shells but rather a parabolic shaps. There
is an unsymmetrical normal stress reversal near the upper vertex on the side of the

triangle lying in the meridian. This peculiarity may perhaps be explained by the
fact thet part of the load was applied at the vertex of the triangle. The prozimity

of the concentrated load mey result in secomiary effects at this point. Except for

this one point the reat of the points appear to plot as relatively smooth curves,
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Scale : 1" =10 psi.
() -
Gg=-123
=+10-85
®
©
g=-925
0=+188
©
=-2{.0
Mgd4~5 Distribution of Normal Stress

in p.s.i. on the Gage Line Triangle



e ..:'To follow ©9

T =-1.35

T=+382 Scale : 1"= 10 psi

T=-905

T=+68.

T=+8-54

Fig 4 - 6 Distribution of Shear Stress
in the RB plane of the Gage Line Triangle



In order to check the accuracy of the experimental work, the curves
of Figures (4 - 5) and (4 - 6) were plotted to a much larger scale on graph
‘paper. The area under the curves was determined and then replaced by concen-
trated forces end moments as shown in Figure (4 - 7). The forces shown are
8ll in the same plane sp there are ’three equations of equilibrium. Taking an

arbitrary set of axes as shown and writing the three equations gives

EX = +4.21 =5.16 = = 0.95 1b
EN = + 71.49 - 64.95 = + 6.54 in.1b

The additional force required for equilibrium ac;.ts as shown in the ‘Figure.
The results of the sum of the forces in the X direction is not particularly
good. However the results of the £ Y and the £M are fairly good with an
error of 4%% and 9% rvespectively.

To compare the experim_ental forces to the theoretical forces, the gage
lines must be produced to the ;ciuqi boundary of the triangle. This results
from the fact .that the membrene force distribution in the folded plate _shsll
'is not linear, the majority of the force being near the edge of the triangle.
In computing the theoretical foreces, Equation (1 - 2) waz used. It was IO
fined sli'gxfly by using for §,” the actual slope of the particular plane tri-
angle and not the Pfor the spherical triangle. This procedure is justified in
this case because the model is a much poorer approximation of a sphei‘e than
one formed of more triangles. The results are shown in Fig 4 - 8. Though .
there ig e slight displacement of the normal forces, numerically, they agree

very well,
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0-17 b
25.41 in-lb.

14.62 in-lb, || Fauiliorating Force
) 4-27 1b.

3.60 |b.

1-30 Ib.

4.08 Ib.

Fig4 -7 Resultant Forces on Gege Line Triangle
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Experimenfcl.

Theoretical.

12.2 |b.

Fig 4 - 8 Comparison of Experimental
and Theoretical Results.



That the loads on the shell ane. supported by membrane action and not
bending action may be demonstrated in yet another way., 4 tranhsit set up
thirteen feef; from the model was sighted on the crown where part of the load
was applied as a concentrated force. Vhen the full load of 400 pounds was
applied to the shell, this noint deflected only two hﬁndredths of en inch.
This deflection was verified more accurately using a dial gage. Similarly,
the transit was sighted on a point of the model where P= 60°. Under full
load, no vertical or radial deflection was observed since any deflection that
did occur was so slight that it was obscured by the transit cross hairs. These
deflections show that the loads are carried predominantly by membrane action
because bending would produce larger deflections. There may be some bending
action however, benecath the concentrat_ed loads,

The stress riger was determined from large scale curves of Figure 4 -~ 5.
These curves were produced to the boundary of the actual triangle. The area
under approximately one half the curve w'as determined and converted to an

average stress. Then the atress riser is .

’

= ([ max.
Kse Care,

.The results are plotted in Graph 4 - 1. There are only five points plotted |
instead of six because of the unsymmetrical stres;a reversal discussed previously.
When the deflection angle is 1800, the stress riser is equal to one as in a
smooth shell. This ensbles a fairly good curve to be drawn despite the fact

most of the experimentel points plotted zre for relatively small dihedral angles.
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CHAPTER V

DESIGN OF A PLYWOCD, GEODESIC SHELL

A, INTRODUCTION

After ths size and shape of the spherical shell have been determined,
the géodesic geometry may be selected with the aid of Figure 2 - 8, As this
Figure gives only average values, the triangles should be laid out accurately
and the altitudes scaled as a check that the iriangles can be cut from a four
foot wide panﬁl.' Less ﬁaterial is wasted if the triangles are cut from panels
longer than the standard eight feet. Since lopg'panels are more expensive per
square foot, the economy between the two alternatives should be investigated.

When the dead load has been estimated and the live loads determined,
the membrane forces from each load are computed individually using smooth shell
theory. Graphs 1 - 1 and 1 - 2 may 1o of use for this determination. The mem~—

brene forces from the various loads are then combined to give the lergest

T2



numerical membrane force for a given angle g) Since the largest membrane
stress occurs at the vertices of the triangle, the smooth shell stress at this®
point must be multiplied by the appropriate stress riser from Graph 4 .— 1.

At interior ;;oints in the triangle, the membrane siresses-are
combined with the stresses arising from lateral loads on the triangle. ~Since
these points are remote from the vei'tices, the membrane stresses are not
multiplied by a stress riser. -

The forces required for buckling of the triangle and the doms must
also be computed and compared to the actual membrane forces. Buckling is
caused by an average force on the t;rlangle 80 that no stress riser is used.

_ Buckling probably will occur within the elastic range and may govern the

design. The factor of safety against buckling should not be less than four.
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DESIGN NOTES
for
PLYWOUD FOLVED PLATE HEMISPIERE

WITH A 28' RADIUS.

The hemigphere may be formed from 640 triangles of ten kinds using
the goometry from Table 2 - 4, An accurate check of the geometry‘ shows that
the equilateral triangle has the largest altitude. For a 28 foot radius, this
altitude is fou? feet and the triangles may be cut from the standard four foot

width panel.

Dead Load:
Plywood

Battens, waterproofing
interior facing and lighting

wn N
B B
H H

Live Load:
The National Building Code for the Vancouver prea gives:
(a) Snow Load - 40 psf of horizontal area
(b) Wind - 90 mph gust velocity
At a height of 20 feet above the ground, the Code gives a wind force
of 18.5= 20 paf. of which approximately half is distributed on each side of the
structure, Therefore for External wind use p = 10 paf. V¥ind action may also

produce a uniform internal radial force, either in or out, of .2(20) = 4 psf.



Membrane Forces in  Ibs/ ft ( Forces marked # do not occur simultaneously.)
. . Abs. Max. Abs. Max. :
0 Dead Load || Snow Load Ext. Wind. JI Int. Wind (ho wind) " (wind ) 8 = 0° Vg/;n;o.
Ne | No | No | Ne | Nog | Ne | No | Ne || Ng | Ne || No | Ne | Noo
O°.}f -70 | -70 [-600 |-600 0 0 t56 | £56 || -e70 |-e70 {|-72¢ |-726 O
10° =71 -7 || -600 |-564 | =12 t 37 " 67l | -&3! || =739 | -724 2
20° ~73 59 || -600 |-460 | 24 | *72 . " -673 | =519 ||-753 |-e647 | t25
30° | -15 |-46 || -576 |-198 | £33 | 107 -« -651° | -244 || -740 {-407 | 38
40° | -79 -28 | -528 | +60 | =4l *|39 i " -607 | +60 |-704 }+255 | +53
r [ ¢
50" } -86 -4 ~468 | +264 | £ 45 {70 " " -554 |+264 ||-655 |+490] 70
: g
60° | -94 +23 1 -408 |+360 j*44 | £]98 | =502 |+383 |-602 |+637 |+ 90
: : ¢
70° 1 ~104 | +56 || -354 | +354 | t39 |+224 ~458 | +410 | -553 |+690 ] t1i4
*
80 | -119 | +95 || -318 |+3I18 | £25 | £25| d " -437 | +413 [[-518 |+720 | xl145
- \ . .
S0° § -140 |+140 | -295 | +295 O +280"1 =435 |+435 }{-491 |+77I g7

sl



Assume 5/8" Sanded, Douglas Fir Plywood, G_ood.l Side

This size plywood has five veneers; two faces each 1/10" thick, two
cores perpendicular to the face each 1/6" thick, snd one centre core parallel
to the face 1/6" thick. The properties for a 12 inch width, where n and t are

the axes parallel and perpendicular to the face grain respectively, are:

An = 3.47 in° At = 4.03 in°
Zn = 0.388 in | Zt = 0.488 in’
In = 4 = 0.123 in?

0.121 in . It
The allowable working stresses in psi for dry location are:

Tension ' On = Ot

= 1875

Compression (h=0t = 1360
Shear through : Tat =Ttn= 192 =
the thickness ' ;

Rolling Shear zn=Llzt= T2
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No W:'!_.I?__l_(l

The maximun stresses ih a triangle from a lateral snow load occurs
when §2 20°.  One severe combination of membrane forces act at P= 0°. |
Therefore, the triangle adjacent to the crown must be analysed. The
average membrane forces are Np = Ne = - 670 1bs/ft and Nge = 0O and the

lateral snow load is 40 lb/ftz. The points to be analysed are shown in the

Figure.

'/‘ Crown

g>-__-_‘_>é_3+_‘ ¢

Axis of Symmetry

Membrane force Ng radiates

y out from the crown.
} .

/

/
Axis of Sym metr:y



Point 1
The combination of membrone stresses is a meximm at this point.
Mohr's circle is a point., From Figure 4 = 9, Ksp= 1.7. Therefore the

stresses are

On=-670 (1.7) =- 328 psi
3.47
' Tt=~670 (1.7) = - 283 psi
4-03
fnt = 0

Substituting into Equation 3 - 30 gives

2 2 : 2
F-JIRNE SRS SRR TIPS

Point 2

]

At the centroid of the triangle Mx =My = 14.8 1bs.

Mohr's circle of moments is a point and Mohr's circle of membrane stress is

also a point so that the same stresses occur on all planes considered. From .

Equations 3 - 31 the stresses are

Cn=- 610 + 14.8 (12) = - 193 ¥ 457 = - 650 psi.
3-47 -388 :

Tt ==~ 670 + 14.8 (12) = - 166 + 364 = - 530 psi
4.03 .438
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(<22 ) + ) 228 + .152 = 380 < 1

1360 1360

At this poiht My is a maximum but Mx = O The severe orientation

of the plywood is when the n axis is coincident with the.y axis. Then

Mn = 16 1lb and Nn = = = 670 lb/ft The stresses are
(n=-5670 + 16(12) = -193 + 495 = - 688 psi
3.47 .88
(t=-670 + O = - 166 psi
4.03
Lnt= O
Then
(588)2 +(l65) = 257 + ..,015 = .272<1
1360 1360 .
Point 4

At this point Mnt is a maximum when the n ai;s is 450 to the x axis.
Mohr's circle of membrsne stress is a point so Nn and Nt act also. The values

of the moments and forces are

Mng‘_ s =+ 2348  (1-u)= 9.351bs
- 16
¥nju= 45° =  .059a° = 4 1bs
8
Nn = Nt = - 670 1b/gy,
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The stresses are

fn=-_670 + 4(12) = ~ 193 ~ 124 = - 317 psi
3.47 ~ .38

(t=-_670 + 4(12) = - 166 - 98 = ~ 254 psi

40 488
Tnt =+ 9.35 '§2 = 9, 6) 64 = 144 psi
) 25 |
Then
2 2 2
(2LL) + (234) + (44) = .054 + .038 + .563 = .655<1
1360 1360 192
Point S

By symmetry, Mnt is also a maximum here. However, since Mohr's
circle of normal stress is a point, the combined stress is the sams as at

Point 4.

Point 6

At this point Q is a maximum giving the largest rolling shear.

The value of Qmax is 2 a . Before determining the rolling shear stress,

.4
the first moment of area at the innermost glue line must be computed.
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Reviewing the points Just anelysed, it is noted that the shear stress
from twisting moments is largely responsible for producing the most severe
combination of stress. Therefore if the twisting moment remains constant and
additional membrane shear stresses occur, a more severe stress condition mey
result. Such a condition may occur at Point 4 when the triangle is at @= 20°.
In this position the lateral load is still 40 psf but Mohr's circle is no longer

a point and is as shown in the Figure. On the plane with maximum shear, the

N shear

/_\ [ » N normal

ZAUAN ‘

Ny=-67 Ne = - 519

shear force is Ng - N6 =-T7 lb/ ft. and the normal force is

2
Ng + Ne = - 596 10/,
2

Point 4 @ =20°

The most savere stresses occur when maximum membrane shear and
maximum twvisting moment occur on the same plane. The moments are the same as
before so the forces and moments ares

Nn = Nt = =~ 596 lb/ft

lb/f t.

Nnt = T
Mn = 4 1o

Iint

93.5 1b
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Therefors the stresses are

0n=-_596 + 4(12) = - 172 - 124 =-296 psi
3047 «388 '
0t =~ _596 + 4(12) =- 148 - 98 =-245 psi
4.03 .488
lat= T + 95.5 (6)(§§ = 10 + 144 = 154 psi
7.5 .5
Then

(_2,9_6_:)e + (_24_6_2) + (;2_? = ,048 + .033 + .642
1360 1360 192

= 23 <1
For § greater than 200, the membrane shear force becomes larger

but the twisting moment becomes smaller. . The net effect produces a less
severe stress condition. While the worst stress combination may not bave been
evaluated, its valus will vary only a little from point 4. Since the allowable
1n'crease is comparatively large before the left hand side of Equation 3 - 30 ié

greater than unity, it is not necessary to carry the investigation further for

the case when no wind is acting.
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WIND

84

ACTING

In practise, an increase in the allowable stress may be pemitted for

wind action. Even if no increase in stress is permitted, it does not appear

necegsary to inveatigate Points 1, 2, 3 and 6 since the factor of safety is so

large.

Point4  @P=20° &

=00

To illustrate the analysis for wind, only ome point will be investigated.

The lateral loads on the triangle are caused not only by snow loads

but also by internal and external wind pressure.

The membrane forces are

The lateral loads are

Dead Load = 5
Snow = : 40
Int. Wind = .2 (20) = . o 4
Extermal = p sin@ =10 s8in 200 =_3.5

q. = 52.5 psf
No= - 753 lb/ft
Ne = - 647 1b/ft

Taking as before the most severe stress condition when meximum membrane shear

and maximum twisting moment occur on the seme plane, the forces and moments are :

Fn = Nt = -~ 753 - 647
2
Fnt = - 753 + 647
2
nt = + 234_7_:_5_1_2
- 16
Mn =

- 1400
2

- 106
2

{1 = = ' y 16
1 -u) = 234 (52.5) ¢

= .05 (52.

- 700 g,
53 10/¢y.
= 12.3 1bs.
16 = 5.25 lba.
5) 5
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The stresses are:

Gn=- _700 + _5.25(12) = - 202 + 157 = - 359
3.47 .588
0t =- 1 yJ;xgl=-1mi1w=~3w
Tnt=- _53 + m)wx% ==-7 + 188 = - 195
7.5 M
Then > o
1360 1360 192 -

= 1.13>1

A 13% increase in stress is not unreasonsble for such short term loading.

Buckling of Triangle (Bquilateral triangle is critical)

" D=EI=1.8 (106)(.121> = 1.815 (104) 1b - in
12

From Fig 3 - 11, K = 4.75

b=48%)_ = 55.4 in

(Nz)er = K II D

b2
= - 45 T2 0 h o= o
(55.4) '
1b
=3)20 £t

Factor of safety is 3%% = 4.5

vwhich is satisfactory.

Buckling of Dome

P
Eh

= L.183

2
.« Ner = .185 E heff
P

- 0 (1.8)a0%)(406)° = 200 %R
>8 . 't

Factor of safety is —2—% = 4,0

which is satisfactory.



So

Design of Marginal Beams

If the beams are nail glued to the triangles, the membrane force is

tranamitted to the beam by rolling shear. This governs the width of the beam,
The membrane force is transmitted to the next triangle in the beanm by tension or
compression perpendicular to its length. This governs the depth. Since wood

is weak in tension perpendicular to the grain, plywood should be used since some

laminse will have their grain parallel to the sti:'erss° Some bending of the beam

may also occur but this is small and may be neglected.

Mex membrane force is + T71 1b/ft.

Ks = 1.7

Max force is 1.7(771) = 1310 1b/ft.
Allowadble stms.s in rolling shear is T2 xisi
Total width of beanm is

2 1310 = 3,04 in
72(12)

Use minimum width of 4 inches to facilitate nailing.

Assume 5/8 S Plywood with face grain parallel to the joint .

Area perpendicular to face grain is 4.03. in2
Therefore tension stress is

1310 =325 < 1875 0.K.
4.03

Figb - 2 Cross Section of Typical Beam.
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