COMPRESSION OF FIBROUS PEAT.

By

Donald Graeme Gordon Macleod
B.Sc., University of Cape Town, South africa. 1953

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
M.A.: Sc.
in the Department
of
civil engineering

We accept this thesis as conforming to the
REQUIRED STANDARD

The University of British Columbia
 April 1963

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of CIVIL ENGIMEIERING
The University of British Columbia, Vancouver 8, Canada.

Date \qquad 1963

ABSTRACT

PEAT IS WELL KNOWN FOR THE ENGINEERING PROBLEMS IT PDSES ESPEGIALLY IN THE FIELD OF SETTLEMENT ANALYSIS. THIS IS MAINLY BECAUSE THE PROCESS AND THEREFORE THE FAGTORS AFFEGTING SECONDARY SETTLEMENT ARE AS YET LITTLE UNDERSTOOD:

A PRELIMINARY LABORATORY INVESTIGATION WAS CARRIED OUT TO EXAMINE THE RELATIONSHIP BETWEEN SETTLEMENT AND LOAD FOR FIBROUS PEAT USING DIFFERENT LOAD INCREMENT RATIOS ANO LOAD DURATIONS. THREE LOAD INCREMENT RATIOS WERE USED ($3.0 ; 1.0 ; 0.33$) AND TWO DURATIONS OF LOAD (15 MIAS AND 24 HOURS).

THE TESTS WERE PERFORMED IN A CONSQLIDATION APPARATUS USING FIXED RINGS 2. 50 :INS INSIDE DIAMETER AND 0.750 INS IN HEIGHT UNDISTURBED SPECIMENS WERE CUT FROM ONE HORIZONTAL LAYER OF A LUMP SAMPLE OF. FIBROUS PEAT HAVING A WATER CONTENT OF 1100%

WITHIN THE LIMITS OF THIS PRELIMINARY INVESTIGATION THE MAIN CONCLUSIONS WERE 8-
(1) ALL LOAD INGREMENT RATIOS ANO LOAD DURATIONS GAVE VERY SIMILAR SETTLEMENT - LOG P OR E-LOG P CURVES PROVIDING SETTLEMENT WAS MEASURED. AT THE 100\% PRIMARY CONSOLIDATION POINT.
(2) THE RATE OF.SECONDARY SETTLEMENT WAS INDEPENDENT OF LOAD INCREMENT RATIO AND LOAD DURATION EXGEPT FOR THE TYPE II CURVE WHIGH APPEARED TO BE AFFECTED BY THE DURATION OF THE PREVIOUS LOAO I NGREMENT.
(3) Only one test (\#2, L.I.R. 0.33, L.D. 24 hours) gave a Type 11 settlement-log time curve. Curve type appeared to depeno on both load increment ratio and load duration or rate of loading. This test also took about 10 times as long to reach the 100\% primary CONSOLIDATION POINT.
(4) The hypothesis of a unique settlement-log p curve at 100% primary consolidation for the load cycle regardless of previous loading history appeared to offer a aplausible general interpretation of the results of the test series.

ACKNOWLEDGEMENT

THE WRITER WISHES TO AGKNOWLEDGE THE ENGOURAGEMENT RECEIVED FROM Mr. R.A. Spenceg. CONSULTING ENGINEER, VANCOUVER, WHO HAS ALWAYS. BEEN READY TO PROMOTE RESEARCH AND DEVELOPMENT IN SOIE MECHANICS AND ALLIED SCIENCES.
1.0 INTRODUCTION
1.1 General Page 1
1.2. Purpose 2
1.3 Program 2
1.4 Definitions 3
2.0 EXPERIMENTAL WORK
2.1 Apparatus 5
2.2 Sample Preparation 6
2.3 Procedure 7
2.4 Material Description \& Classification Tests 9
2.5. Precautions 11
2.6 ACCURACY 13
3.0 EXPERIMENTAL RESULTS
3.1 Test Data Summary 17
3.2 Results of Consolidation tests 17
3.3 Preconsolidation Pressure and Compression Index 18
3.4 Discussion 18
4.0 COMPARISONS
4.1 Comparison of L.I.R. for 24 hr load Duration 21
4.2 Comparison of L.l.r. for 15 min load Duration 22
4.3 Comparison of 24 hour \& 15 min Tests for olfferent L.I.R. 24.
4.4 Comparison of Curve Shapes \& Time Required to. Reach 26
4.5 Comparison of rates of Secondary Settlement 30
4.6 Comparison of amounts of Primary \& Secondary Settlement 34
4.7. Summary of Observed Results 35
5.0. ANALYSIS
5.1 Interpretation of Results based on a Unique Relationship between Applied Pressure \& Settlement at 100\% Primary Consolidation 36
5.2 Difference in Curve Types between Test \#2 \&Test \#4 38
6.0 CONCLUSIONS
6.1 Practical 39
6.2 Theoretical 40
6.3 General 41
REFERENCES 42

ILLUSTRATIONS

Fig. 2-1 Calibration Graph for Plastic Consolidometers \#1 and \#2 Fig. 3-2 to 3-7.(incl) Dial Reading vs log time Graphs tests \#2 \& \#4
Fig. 3-8 то 3-14 (") " " " " " " " " \#1,\#5 \&\#8
Fig. 3-15 то 3-18(") " " " " " " " " \# \#3A \& \#3B
Fig. 3-19 tо 3-24(") " " " " " " " " \#6 \& \#7.
figs. a1-a5 (ingl.) dial réading vs log time Graphs Test \#pi

```
Peat is well known for the engineering problems it poses especially IN THE FIELD OF SETTLEMENT ANALYSIS. WHILE MUCH EMPIRICAL INFORMATION has been accumulated, the prediction of settlement, particularly the rate OF SETTLEMENT, IS STILL UNCERTAIN. THIS IS MAINLY BECAUSE THE PROCESS OF SECONDARY SETTLEMENT, WHICH FREQUENTLY ACCOUNTS FOR A LARGE PROPORTIOA OF THE TOTAL SETTLEMENT, IS LITTLE UNDERSTOOD. ALTHOUGN PEAT CONSISTS
``` LARGELY OR WHOLLY OF THE PARTLY DECOMPOSED REMAINS OF PLANTS AND MOSSES, NEVERTHELESS IT DOES APPEAR TO BE SUSCEPTIBLE TO SETTLEMENT ANALYSIS BASED ON STANDARO ONE DIMENSIONAL CONSOLIDATION TESTS OF REPRESENTATIVE SAMPLES.

IN CLAY CONSOLIDATION THE CLASSICAL TERZAGHI HYDRODYNAMIC THEORY I GNORES THE SECONDARY EFFECT AND IN PRACTICE IT MAY OFTEN BE NEGLECTED WITHOUT SERIOUS ERROR. HOWEVER WITH SOME CLAYS, MOST HIGHLY ORGAMIC SOILS, AND PEAT, THE SECONDARY SETTLEMENT CANNOT BE IGNORED EITHER IN THEORETICAL INTERPRETATION OR IN PRAGTICAL FIELD PROBLEMS. THE CURRENT POSITION IS Well Summarized in "Study of deep Soil Stabilizationg by Vertical Sand Drains" by Moran, Progtor, mueser and Rutledge (3).

HOWEVER, NO COMPREHENSIVE INVESTIGATION OF THE PEAT CONSOLIDATION test, on the lines of Taylor's " Research on Consolidation of Clays" (2), HAS BEEN REPORTED IN THE LITERATURE. OF MAJOR IMPORTANCE IN THIS RESPECT IS THE CORRELATION BETWEEN SETTLEMENTS AND RATES OF SETTLEMENT OBTAINED IN

THE LABORATORY USING THE.STANDARD LOAD INCREMENT RATIO OF 1.O AND THE. NORMAL LOAD DURATION OF 24 HOURS WITH THOSE OBTAINED IN:THE FIELD WITH DIFFERENT LOAD INGREMENT RATIOS, LOAD DURATIONS AND TIMES TO REACH \(100 \%\) PRIMARY CONSOLIDATION.

THIS INVESTIGATION REPRESENTS A LABORATORY INVESTIGATION INTO SOME ASPECTS OF THE SETTLEMENT CHARACTERISTICS OF PEAT.
1.2 PURPOSE

THE PURPOSE OF THIS INVESTIGATION WAS TO EXAMINE THE RELATIONSHIP BETWEEN SETTLEMENT AND LOAD FOR FIBROUS PEAT IN A STANDARD CONSOLIDATION APPARATUS.USING DIFFERENT LOAD.INCREMENT RATIOS ANO.LOAD DURATIONS. IT WAS ALSO INTENDED TO OBTAIN SOME INDICATION AS TO HOW THESE FACTORS AFFECTED. SECONDARY SETTLEMENT IN THIS MATERIAL.

\subsection*{1.3 PROGRAM}

THE ORIGINAL PROGRAM WAS TO USE THREE LOAD INGREMENT RATIOS I.E. 0. 33 ; 1.0; 3.O, AND TO RUN TWO CONSOLIDATION TESTS AT EACH RATIO ONE USING THE STANDARD 24 HOUR LOAD DURATION AND ONE USING A 15 MINUTE LOAD DURATION. THE INTENT IN THESE RAPID TESTS WAS TO RELOAD AS SOON AS PRIMARY SETTLEMENT WAS COMPLETED, WHICH WAS KNOWN TO BE IN THE ORDER OF 15 MINUTES. THIS PROVED UNSATISFACTORY FOR THEL:I.R. OF 3.0 AND A FURTHER RAPID TEST WAS RUN WITH A 25 MINUTE LOAD DURATION. IT WAS ALSO FOUND POSSIBLE TO PERFORM A CONSOLIDATION TEST ON THIS MATERIAL WITHOUT A CONSOLIDATION RING. THIS WAS DONE PRIMARILY AS A CHECK ON THE POSSIBLE EFFECTS OF SIDE FRICTION. A FINAL SHORT TEST WAS RUN USING VARYING L.I.R. AND LOAD DURATIONS DURING THE SAME TEST IN ORDER TO INVESTIGATE
```

WHAT EFFECT THIS WOULD HAVE. . A TOTAL OF NINE CONSOLIDATION TESTS WERE RUN.

```

ALL SAMPLES WERE CUT FROM A SINGLE HORIZONTAL LAYER IN A BLOCK OF UNDISTURBEO NATURAL FIBROUS PEAT.

\subsection*{1.4 DEFINITIONS}

COMPRESSION OF PEÀ UNDER AN APPLIED LOAD CAN BE DIVIDED INTO THREE PARTS, DEFINED AS FOLLOWS: initial Settlement - settlement due to the compression of gas bubbles in the material (this would occur almost InStantaneously)

Primary Settlement - hydrodynamic settlement occurring under conditions OF SIGNIFICANT EXCESS PORE WATER PRESSURE (THIS IS THE SETTLEMENT PROCESS ANALYSED BY THE TERZAGHI CONSOLIDATION THEORY)

Segondary Settlement - remaining settlement occurring without SIGNIFICANT EXCESS PORE WATER PRESSURE (TYPICALLY THIS SETTLEMENT IS THE STRAIGHT Line portion of the settlement-log time GRAPH COMING AFTER COMPLETION OF THE PRIMARY SETTLEMENT).
```

The rate of primary settlement is governed by the rate at which water. IS EXPELLED UNDER PRESSURE FROM THE VOIDS IN THE MATERIAL AND IS Theoretically dependent on the average permeability and compressibility of the soil structure as well as the square of the drainage path

```


The rate of secondary settlement is governed by the intrinsic RESISTANCE OF THE MATERIAL TO DEFORMATION. IT IS APPARENTLY INDEPENDENT OF THE COEFFICIENTS OF PERMEABILITY (K.) AND CONSOLIDATION (CV) BUT THE factors affecting this rate are still being investigated.
\begin{tabular}{rl}
\(C_{S}\) & \(=\frac{\text { COEFFICIENT OF SEGONDARY SETTLEMENT }}{\text { INCREMENT OF SETTLEMENT PER LOG CYCLE OF TIME }}\) \\
& \(=\frac{\text { INITIAL HEIGHT OF THE SAMPLE }}{}\)
\end{tabular}
 SEE SECTION \(4-5\)
 L.1.R. \(\because\) LOAD INCREMENT RATIO \(=\frac{\text { INCREMENT OF LOAD }}{\text { PREVIOUS TOTAL LOAD }}=\frac{\Delta P}{P}\)
 L.D. \(=\) LOAD DURATION I.E. PERIOD FOR WHICH LOAD IS KEPT
 unchanged at a given value
 Other nomenclature used follows standaro practice in recent soil
MECHANICS LITERATURE.

2.0

\subsection*{2.1 Apparatus}

See Plate I Section of Consolidometer
plate II photographs of Equipment

All tests were carried out on a standard two-sided consolidation frame. load was applied by weights acting through a lever system (leyer arm ratio 7.5 to 1). The system was balanced with counterweights ano the lever arm could be levelled and adjusted by means of turnbuckles.

Two identical fixed ring consolidometers were used. Each one consisted of a stainless steel consolidation ring between top and bottom porous plastic plates and was contained within a lugite dish and cover. Moisture loss from the sample was prevented by a water seal between the dish and the cover. a small adjustable vent ensured no alr pressure buildoup inside the cover especially during rapid consolidation. Both top and bottom porous plastic plates were made of lucite heavily drilled and grooved and faced with fibreglass screening. Attached inside the top cover was a nylon spacer block.
the stainless steel consolidation rings were 2.50 ins I.D. and 0.750 INS HEIGHT (RATIO \(\frac{1.0}{H}=3.33:\) AREA \(=31.60 \mathrm{sq} . \mathrm{CMS}\)). THEY WERE LIGHTLY COATED before each test with a ring lubricant composed of Lubriplate No. 1 mixed with molykote type \(Z\) (chief ingredient molybdenum oIsulphide - no graphite).

Changes in sample thickness were measureo with an ames oial gage extensometer (1 " travel)) reading to 0.001 ins.

DURING THE FIRST HOUR OR SO READINGS WERE TIMED BY STOPWATCH. FOR SUBSEQUENT READINGS THE LABORATORY CLOCK WAS USED.

THE TESTS WERE PERFORMED IN A BASEMENT ROOM WITH NO TEMPERATURE CONTROL. HOWEVER THE TEMPERATURE VARIATION OVER a 24 hOUR PERIOD WAS FOUND to 8 e small. The average variation was about \(3^{\circ}\) F and the largest recorded variation \(8^{\circ}\). Temperatures were recorded on a maximumMINIMUM THERMOMETER GENERALLY RESÉt EVERY 24 HOURS THROUGHOUT THE TEST SERIES.

Standard soils laboratory equipment was used for weighings, water CONTENT DETERMINATIONS AND CLASSIFIGATION TESTS.

\subsection*{2.2 SAMPLE PREPARATION}

FOR THIS TEST SERIES ALL SAMPLES WERE CUT FROM THE TOP \(\mathbf{2}^{\prime \prime \prime}\) OF AN UNDI STURBED block of PEAT MEASURING \(12^{\prime \prime} \times 10^{\prime \prime} \times 4^{\prime \prime}\). TO MINIMIZE : : : MATERIAL CHANGE DUE TO BACTERIAL AND CHEMICAL ACTION AND LOSS OF WATERI THE BLOCK WAS SPRINKLED WITH A \(50 \%\) SOLUTION OF CARBOLIC ACID, COVERED WITH PLIOFILM AND KEPT SUBMERGED IN A.PLASTIC DISH IN THE HUMID ROOM. ALL SAMPLE PREPARATION WAS DONE IN THE HUMID ROOM.

The samples were carefully cut from the block and trimmed in a clamptype soil lathe. Trimming was done with a scalpelg any minor roots being CUT WITH SCISSORS. ROOTS LARGER THAN ABOUT \(1 / 8^{\prime \prime}\) DIAMETER WERE AVOIDED. WATER CONTENTS WERE DETERMINED ON THE CUTTINGS.

In order to obtain similar material, the samples were taken as nearly as possible from the same horizontal layer in the peat.
```

SPECIFIG GRAVITY AND ASH CONTENT DETERMINATIONS WERE MADE ON REPRESENTATIVE PIECES AND CUTTINGS ADJACENT TO THE CONSOLIDATION SAMPLES.

```

TWO PROCEDURES WERE ADOPTED TO REOUCE SIDE FRICTION:
(A) THE PEAT WAS CUT TO AN EASY SLIP FIT IN THE RING
(B) THE INSIDE OF THE RING WAS LIGHTLY COATED WITH RING LUBRICANT.

AFTER THE SAMPLE HAD BEEN CUT AND TRIMMED INTO THE RING IT WAS BRIEFLY REMOVED, THE RING LIGHTLY GREASED AND THE SAMPLE THEN REPLACED FOR FINAL TRIMMING. THE CONSOLIDOMETER DISN WAS FILLED TO THE BASE OF THE RING WITH PEAT JUICE, CARE BEING TAKEN NOT TO TRAPH AIR BUBBLES IN THE BOTTOM POROUS PLASTIC PLATE. A DROP OF CARBOLIG WAS ADDED TO INHIGIT BACTERIA AND FUNGUS GROWTH DURING THE LONG TERM TESTS. .

\subsection*{2.3 Proceoure}
(1) A SAMPLE WAS CUT FROM THE BLOCK, TRIMMED INTO A CONSOLIDATION RING AND ASSEMBLED IN THE CONSOLIDOMETER AS PREVIOUSLY DESCRIBED. ONE WATER CONTENT WAS TAKEN FROM SAMPLE CUTTINGS.
(2). THE ASSEMBLED CONSOLIDOMETER WAS PLACED IN THE CONSOLIDATION FRAME. THE DIAL GAGE PLUNGER WAS SET ON TOP OF THE LOAD BAR DIRECTLY OVER THE CENTRE OF THE CONSOLIDOMETER AND THE MACHINE COUNTERWEIGHT WAS ADJUSTED TO BALANCE THE FORCE OF THE SPRING LOADED PLUNGER. THE ONLY INITIAL LOAD ON THE SAMPLE AT THIS POINT WAS THE WEIGHT OF THE POROUS PLASTIC PLATE AND THE PLASTIC COVER (APPROXIMATELY 200 GMS). THE LEVER ARM ON THE CONSOLIDATION FRAME WAS ADJUSTED AND LEVELLED. PERIODICALLY
```

    DURING THE TEST, JUST BEFORE APPLYING A NEW LOAD INCREMENT,
    THE LEVER ARM WAS RE-LEVELLED.

```
(3) THE SAMPLE WAS THEN LOADED BY MEANS OF WEIGHTS ON THE END OF THE LEVER ARM ACCORDIHG TO THE PARTICULAR TEST SCHEDULE FOR EACH LOADING DIAL GAGE READINGS WERE TAKEN, GENERALLY AT STANDARD TIME INTERVALS OF. 6 SECS, 15 SECS, 30 SECS, 1 MIN, 2 MINS, 4 MINS, 8 MINS, 15 MINS, 30 MINS, 1 HR, 2 HRS, ETC, BUT OFTEN SUPPLEMENTED BY ADDITIONAL READINGS ESPECIALLY DURING THE RAPID TESTS.
(4) A MAXIMUM-MINIMUM THERMOMETER WAS READ AND RESET GENERALLY EVERY 24 HOURS. ADOITIONAL READINGS WERE FREQUENTLY TAKEN AT CRITICAL PERIODS AND DURING THE ONE DAY RAPID TESTS.
(5) AFTER THE FINAL LOAD WAS REACHED THE SAMPLES WERE UNLOADED IN STAGES USING A PROCEDURE SIMILAR TO THE LOADING CYCLE NOTEO ABOVE.
(6) AFTER A LOAD-OFF PERIOD OF APPROXIMATELY 1 HOUR, THE SAMPLE IN ITS CONSOLIDATION RING WAS REMOVED, THE FREE WATER DRIED. OFF, AND WEIGHED. THE SAMPLE WAS THEN TAKEN FROM THE RING, MEASURED, WEIGHED AND THEN CAREFULLY BROKEN IN TWO TO CHECK FOR ANY LARGE ROOTS, ETC, BEFORE BEING PLACED IN THE DRYING OVEN. THE SAMPLE WAS RE-WEIGHEO AFTER OVEN DRYING FOR AT LEAST 24 HOURS AT \(105^{\circ} \mathrm{C}\). FINAL MEASUREMENTS WERE TAKEN OF THE DRY SAMPLE and THE AMOUNT OF. WARPING AND SHRINKAGE WAS NOTED.
(7) DIAL READINGS WERE PLOTTED ON SETTLEMENT-LOG TIME AND SETTLEMENTLOG APPLIED PRESSURE GRAPHS AS BASIC DATA FOR FURTHERICOMPUTATION.

\subsection*{2.4 Material Description and Classification tests}

1. Classification
(A) DESCRIPTION: BROWN, FINE, FIBROUS PEAT, OCGASIONAL TWIGS OR ROOTS APPROXIMATELY \(\frac{1}{4}\) DIAMETER; NOTICEABLE HORIZONTAL LAYERING OR LAMINATION (NOT SEDIMENTARY), FAINT ODOUR \(H_{2}\) S, VERY COMPRESSIBLE, CONSIDERABLE TENSILE STRENGTH IN HORIZONTAL DIRECTION.
(b) Unified Soil Classification: Pt
(c) RadForth Classification:
(o) Van der Post Classification: 1 to 2 (Squeeze Test)
(e) Botanical Classification:
2. PHYSICAL TESTS
(a) Natural Water Content: range \(1000 \%\) to \(1260 \%\) - average \(1110 \%\)
(b) Specific Gravity: using peat oven dried aefore determination - 1.51
(c) Ash Content
(D) Bulk Density:
(e) Calculated Gas Content: From consolidationtests average \(6 \%\) by volume (using S.G. 1.5)
(f) Calculated void ratio: from consolidatió tests Range 16.0 to 18.6 average 17.3 (using S.G. 1.5)
3. Chemical Tests
(a) ph: average value for pore water
(b) Conductivity: average value for pore wateri
(c) Cation Exchange capacity:
4. NOTES ON TESTS
(a) for all tests where it was required the weight of dry solids was determined after oven drying at \(100-105^{\circ} \mathrm{C}\) for at least 24 hours.
(b) Chemical tests (a) and (b) were carried out using standard equipment in the U.b.c. Soil Science Laboratory.

\subsection*{2.5 PrECAUTIONS}

Since this test series was of an experimental nature, procedures were OEVISED AND PRECAUTIONS TAKEN TO ELIMINATE OR REDUCE THE INFLUENCE OF AS MANY UNKNOWN FACTORS AS POSSIBLE. THUS SOME PRECAUTIONS MIGHT BE IN FACT UNNECESSARY, AND OTHERSIWOULD NOT NORMALLY BE FOLLOWED IN ROUTINE CONSOLIDATIQN TESTS.

OF PRIMARY CONGERN WHEN RUNNING COMPARATIVE TESTS ON UNDISTURBED SOIL, WHETHER MINERAL OR ORGANIC IN COMPOSITION, IS THE SECURING OF IDENTICAL INITIAL. CONDITIONS FOR EACH TEST. THE NATURE OF THE FIBROUS PEAT USED IN THIS SERIES WAS SUCH THAT ALTHOUGH NOT EASILY " OISTURBED" OR REMOLDED, IT DID HAVE A PRONOUNCED LAYERING OR LAMINATION. DUE TO ITS HIGH WATER CONTENT (APPROXIMATELY \(1100 \%\)) AND HIGH ORGANIC CONTENT (ONLY 5\% ASH) IT WAS ALSO SUSCEPTIBLE TO LOSS OF MOISTURE ANO TO BACTERIAL. DECOMPOSITION.

THE BLOCK OF PEAT USED.FOR THIS TEST SERIES WAS OBTAINED FROM A TEST PIT AT A DEPTH OF ABOUT 2 FT. IT WAS PLACED IN A PLASTIC DISH, SPRINKLED WITH CARBOLIC, COVERED WITH PLIOFILM AND KEPT IN THE HUMID ROOMg BEFORE AND DURING THE TEST SERIES. APPROXIMATELY ONE MONTH ELAPSED BETWEEN SAMPLING AND TESTING. PRECAUTIONS TAKEN DURING SAMPLE PREPARATION ARE NOTED IN SECTION 2.2. FOLLOWING THE PRACTICE RECOMMENDED bY DR. ROUSE, Department of botany, u.b.C., a \(50 \%\) solution of phenol (Carbolic acio) WAS USED TO INHIBIT BACTERIAL. ACTION IN THE PEAT.

SINCE THE PEAT WAS VERY CORROSIVE (\(P\) H. APPROX. 4.0) , THE ONLY METAL USED WAS THE STAINLESS. STEEL CONSOLIDATION RING. ALL OTHER PARTS OF THE CONSOLIDATION APPARATUS WERE PLASTIC (LUCITE, NYLON AND FIBREGLASS) TO

AVOID BOTH CORROSION AND CHEMICAL CONTAMINATION.

The high water content and high permeability of the peat together WITH THE HIGH LOAD INCREMENT RATIOS (3.0) OF SOME OF THE TESTS REQUIRED TOP AND BOTTOM POROUS STONES OR PLATES OF THE HIGHEST POSSIBLE PERMEABILITY CONSISTENT WITH THE RETENTION OF FINE MATERIAL IN THE SAMPLE DRILLED PLASTIC PLATED WERE ADOPTED IN THIS CASE FOR THE FOLLOWING REASONS:
(1) HIGH PERMEABILITY AND ABILITY TO HANOLE LARGE VOLUMES OF PORE WATER
(2) MINIMUM CONTAMINATION PLUS EASY CLEANING
(3) LIGHT WEIGHT COMBINED WITH ADEQUATE RIGIDITY. VERY OPEN POROUS STONES COULD HAVE BEEN USED ALTHOUGH ITEM (2) ABOVE FAVOURED POROUS PLASTIC PLATES. IN ANY CASE THE VERY FIBROUS NATURE OF THE PEAT TESTED SEEMED TO PREVENT ANY SIGNIFICANT LOSS OF MATERIAL INTO THE DRILLED PLASTIC PLATES OURING THIS TEST SERIES. A DRAWBACK TO. THE USE OF PLASTIC MATERIALS FOR LOAD EEARING EQUIPMENT IS ITS DEFINITE GREEP CHARACTERISTICS. ALTHOUGH THE COMPLETE CONSOLIDOMETER ASSEMBLY WAS CALIBRATED O'VER THE WHOLE LOADING RANGE, FURTHER CONSIDERATION HAD TO BE GIVEN TO CREEP CORRECTIONS FOR LONG TERM TESTS.

See Fig. 2-1; Calibration Graph for plastic Consolidometers \#f ano \#2.

IT WAS DECIDED NOT TO.FLOOD:THE DISH I.E SUBMERGE THE CONSOLIDATION RING, DURING THIS SERIES IN ORDER TO AVOID THE POSSIBLE EFFECTS OF ANY VARIATION BETWEEN INTERNAL PORE WATER AND THE EXTERNAL DISH WATER, AS WELL AS TO GIVE MORE CHANGE FOR ESCAPE OF ANY GAS. DESSICATION WAS PREVENTED BY THE PLASTIC COVER AND WATER SEAL AS NOTED IN SECTION 2-1. ONLY ENOUGH PEAT JUICE. WAS ADDED TO COVER THE BASE OF THE CONSOLIDATION

RING AT THE BEGINNING OF THE TEST THUS CONTACT WITH ALL BUT TWO POSSIBLE CONTAMINENTS WAS AVOIDED. IN THE CASE OF THE CARBOLIC AND THE RING LUBRICANT IT WAS CONSIDERED THAT THE ADVANTAGES OUTWEIGHED THE DISADVANTAGES. AT PRESENT THE EFFECTS IF ANY OF CHEMICAL OR BACTERIAL ACTION ARE UNKNOWN.

\subsection*{2.6 Accuracy}

\section*{BASIC MEASUREMENTS}
(1) Settlement

(2) Applied Pressure,

WEIGHTS

AT LOAD BAR (CALIBRATED)
(FRICTION OF KNIFE EDGE)

WEIGHT OF TOP PLATE \& COVER
SPRING-LOADED DIAL GAGE (\(+150 \mathrm{GM})\)

SIDE FRICTION

LOAD APPLICATION
(3) INITIAL HEIGHT OF SAMPLE HEIGHT OF RING TRIMMED HEIGHT OF SAMPLE (EST.).
(4) Final OVEN Dry Weight of Sample WEIGHING READING
TEMPERATURE VARIATION OF OVEN NOMINAL MIN 24 HRS AT \(105^{\circ} \mathrm{C}\) DISSOLVED MATERIAL IN CONSOLIDATION SAMPLE RECORDED AS DRY WT OF SOLIDS
(5) SPECIFIC Gravity of Solid Material MAX VARIATION IN TEST PROCEDURE DISSOLVED SOLIDS
\(\pm 5 \mathrm{Gm} \frac{\times 7.5}{31.6}=.001 \mathrm{KG} / \mathrm{cm}^{2}\)
\(\pm 100 \mathrm{GM} \times \frac{1}{31.6}= \pm .003 \mathrm{KG} / \mathrm{cm}^{2}\)
\(+200 \mathrm{GM} \times \frac{1}{31.6}=.006 \mathrm{KG} / \mathrm{cm}^{2}\)
BAL ANCED AGAINST COUNTER-: WEIGHT
NEGLIGIBLE EXGEPT FOR SLIGHT EFFECT AT HIGHER LOADS GENTLY BY HAND
\[
.750^{\prime \prime} \underset{ \pm .0005^{11}: 1.905 \mathrm{~cm} \pm .001}{ \pm .001^{\prime \prime}} \quad \begin{aligned}
& \pm .002^{\prime \prime}
\end{aligned}
\]
\(0.1 \mathrm{Gm} \pm .05\)

UNKNOWN VARIATION
EFFECT: APPARENT INCREASE IN DRY WEIGHT OF SOLIDS
\(\pm 0.1\)
UNKNOWN VARIATION

CONSIDER VARIATIONS IN INITIAL VOID RATIO.
ASSUMING AS A WORST CASE THAT THE VARIATION IN COMPUTED VALUES OF VOID RATIO WERE DUE TO EACH OF THE FOLLOWING FACTORS ACTING ALONE, THEN THE MAXIMUM INDIVIDUAL VARIATIONS BETWEEN SAMPLES SHOWN BELOW WOULD BE REQUIRED USING MEAN VALUES AS THE BASIS IN EACH CASE.
(1) VARIATION IN DETERMINATION OF OVEN DRY WEIGHT OF SDLIDS - AVE.WS \(=4.97\) GM \(W_{S}= \pm 0.30 \mathrm{GM}\) ON 4.97 GM (\(\pm 6 \%\) VARIATION REQUIRED)
(2) VARIATION IN ACTUAL AVE. SPECIFIC GRAVITY OF SOLIDS - AVE. GS \(=1.4\) TO 1.5
\[
G_{S}=(1.40 \text { TO } 1.50) \pm 0.07(\pm 5 \% \text { VARIATION REQUIIRED })
\]
(3) VARIATION IN INITIAL TRIMMED HEIGHT OF SAMPLE
\[
H_{1}= \pm 0.055 \text { INS ON } 0.750 \text { INS (HEIGHT OF RING) (} \pm 7 \% \text { VARIATION REQ.) }
\]

CONSIDER POSSIBLE ERROR DUE TO VARIATION IN SEATING AND ZERO SETTING OF DIAL GAGE.

ESTIMATED MAXIMUM VARIATION \(\triangle E=\frac{\Delta D I A L}{H T . S O L I O S}=\frac{0.010}{0.041^{*}}=0.25\)
EXAMPLE FROM TEST 井 1
AT APPLIED PRESSURE \(=0.119 \mathrm{KG} / \mathrm{CM}^{2}\) (APPROXIMATE PRECONSOLIDATION LOAD)
DIFFERENCE BETWEEN INITIALE AND E AT \(0.119 \mathrm{KG} / \mathrm{CM}^{2}=2.80\)
THUS \(\Delta e=2.80 \pm\) ERROR \(=2.80 \pm 0.25\) (SEE ABOVE)
HENCE VARIATION \(=\frac{ \pm 0.25}{2.80} \times 100= \pm 9 \%\)

IT CAN BE SEEN THAT THIS VARIATION BECOMES NEGLIGIBLE FAIRLY SOON -
E.G. AT APPLIED PRESSURE \(=0.476 \mathrm{KG} / \mathrm{CM}^{2}\)
eINITIAL-E AT \(0.476 \mathrm{KG} / \mathrm{CM}^{2}=8.85\)
THUS \(\Delta e=8.85 \pm 0.25\)
HENCE VARIATION \(=\frac{ \pm 0.25}{8.85} \times 100= \pm 3 \%\)

\begin{abstract}
Many investigators have founo side frigtion to be signifigant in LABORATORY CONSOLIDATION TESTS ON CLAY EVEN WHEN USING STANDARD HEIGHT to diameter ratios (2,5). Recent work has indicated side friction VALUES AS HIGH AS \(12 \%\) OF THE APPLIED LOAD FOR FIBROUS-AMORPHOUS PEAT in ungreased rings (6). Following recommended current practice; all TESTS IN THIS SERIES WERE RUN IN CONSOLIDATION RINGS (\(\frac{D}{H}=3.33\)) LIGHTLY COATED INSIDE WITH A MOLYBDENUM DISULPHIDE GREASE.
\end{abstract}
```

however due to the very fibrous nature of the peat being tested and ItS RELATIVELY HIGH LATERAL TENSILE STRENGTH, IT WAS POSSIBLE TO OBTAIN A direct chegk on the actual effect of. side friction. in test \#8 the peat was cut, trimmed into the ring and weighed. Then the sample was Carefully pushed out and:the consolidation test performed without the RING - SEEFIG. 3-25. NO SUBSTANTIAL DIfFERENGE WAS NOTED IN THE E-LOG P OR S-LOG P GRAPHS BETWEEN THIS TEST AND THE OTHER EIGHT, EXCEPT FOR:THE FINAL LOADS OF TEST \#2. (L.I.R. 0.33 L.D. 24 HOURS) AFTER this latter test had been running for about 4 weeks. there was a slight bulging in the sample beyond the preconsolidation load which increased its aVERAGE DIAMETER FROM 2.50 INS TO APPROXIMATELY 2.6 INS AT THE HIGHEST LOAD, WITHOUT HOWEVER ANY APPARENT DISTRESS IN THE SAMPLE.

```

HENCE IT WAS CONCLUDED THAT SIDE FRICTION WAS NOT A FACTOR DURING the load cycle of the test series. There did appear to be some effect on the unload cycle but it was not possible to make any quantitative estimates.

The possibility remains that side friction may have had some effect on the rate vs settlement especially as between fast and slow tests and high and Low L.l.R. In view of the negligible effect on the total AMOUNT OF SETTLEMENT, HOWEVER, IT APPEARED UNLIKELY THAT SIDE FRICTION WOULD Have had an appreciable effect on rates of settlement.

3.0 EXPERIMENTAL RESULTS
3.1. TEST Data Summary
```

INFORMATION ON THE TYPE OF TEST, SAMPLE MEASUREMENTS AND WEIGHTS AND COMPUTED VALUES OF VOID RATIO, ETC; FOR ALL CONSOLIDATION SAMPLES IN the test series are summarized on fig. 3-1 Test data Summary.

```

\subsection*{3.2 RESULTS OF CONSOLIDATION TESTS}

All readings taken were plotted on graphs of dial readings vs lóg time. AS NOTED BELOW.

Fig. 3-2 то \(3-7(\) INCL \()\) - TESTS \#2 \& \#4
L.I.R. 0.33

Fig. 3-8 to 3-14(INCL) - TESTS \#1, \#5 \& \#8
L.I.R. 1.0

FIG. 3 - 15 TO 3 - 18(INCL) - TESTS \#3A \& \#3B
L.I.R. 3.0

FIG. 3-19 TO 3-24(INCL) - TESTS \#6 \& \#7
L.I.R. 3.0
L.I.R. \(1.0 \& 3.0\)

The final dial reading of settlement for each increment of load WAS ALSO PLOTTED ON A GRAPH OF OIAL READING VS LOG APPLIED PRESSURE for all tests in this series on fig. 3-25- Dial Reading vs log p.

ALl the graphs up to this point - Figs. 3-2 to 3-25- used UNCORREGTED SETTLEMENT DIAL READINGS. SUBSEQUENT GRAPHS HAD SETTLEMENTS CORRECTED EY REFERENCE TO THE CALIBRATION CHART ON FIG 2-1.

USing a common value of S.G. \(=1.5\) for the solids, void ratios were computed and all tests were plotted on a standaro graph of (corrected) FINAL VOID RATIO FOR EACH INGREMENT OF LOAD AGAINST LOG APPLIED PRESSURE see fig. 3-26 Finale vS LOG p.

\subsection*{3.3 Preconsolidation Pressure and Compression index}

The preconsolidation pressure and compression index were determined from the final e-log p curves (fig. 3-26). The peat shows a similar PRECONSOLIDATION PRESSURE FOR ALL TESTS. USING THE CASAGRANDE CONSTRUCTION THE VALUE OBTAINED FROM S-LOG P AND E-LOG P CURVES RANGES FROM O. 120 TO \(0.130 \mathrm{KG} / \mathrm{CM}^{2}\) (250 P.S.F.). SINCE THE PEAT SAMPLE CAME FROM APPROXIMATELY 2. FT BELOW THE SURFACE IN AN AREA WHERE SEASONAL GROUND WATER LEVEL VARIES FROM NEAR SURFACE TO ABOUT 4 FT BELOW GRADE, IT COULD ONLY HAVE HAD AN OVERBURDEN PRESSURE OF ABOUT \(2 \times 65\) P.C.F. \(=130\) P.S.F. THEREFORE THE PRECONSOLIDATION PRESSURE REFLECTS A CERTAIN AMOUNT OF DRYING, ASSUMING THE PEAT BEHAVES SIMILARLY TO COLLOIDAL INORGANIC SOIL. USING THE CRITERION OF PEAK RATE OF SECONDARY SETTLEMENT - SEE FIG. 4-5 - THE PRECONSOLIDATION PRESSURE WOULD APPEAR TO BE EVEN HIGHER AROUND O. 20 то \(0.24 \mathrm{Kg} / \mathrm{cm}^{2}\).

The compression index was taken from the slope of that part of the curve between \(0.15 \mathrm{Kg} / \mathrm{cm}^{2}\) and \(0.50 \mathrm{Kg} / \mathrm{cm}^{2}\).
```

AVE. $C_{C}=9.8 \pm 0.6-$ FOR ALL NINE TESTS

```
3.4 Discussion

It can be seen that all the e vs log p or S vs'log p curves have a VERY SIMILAR SHAPE AND COULD PROBABLY BE BROUGHT INTO FAIRLY CLOSE agreement by vertical aduustment. all the tests were arranged to have two common applied pressures despite varying L.l.R. These were an initial seating load \(=0.024 \mathrm{Kg} / \mathrm{cm}^{2}\) and a load close to the preconsolidation load - in this case \(0.119 \mathrm{Kg} / \mathrm{cm}^{2}\). No correlation was found between.

SETTLEMENTS AND VOID RATIO, DRY WEIGHT SOLIDS, INITIAL WET DENSITY OR SATURATION AT EITHER OF THE TWO COMMON APPLIED PRESSURES DESCRIBED ABOVE 1.E. \(0.024 \mathrm{KG} / \mathrm{CM}^{2}\) AND \(0.119 \mathrm{KG} / \mathrm{CM}^{2}\).

THREE FACTORS ARE INVOLVED IN THE VARIATIDN BETWEEN THE CURVES AS SHOWN ON EITHER FIG. 3-25 OR FIG. 3-26.
(1) UNINTENDED DIFFERENCES IN TEST CONDITIONS B- ASIDE FROM SMALL TEMPERATURE VARIATIONS (WHICH WERE MEASURED), IT WAS CONSIDERED THAT IN FACT ALL TESTS WERE PERFORMED UNDER IDENTICAL CIRCUMSTANCES.
(2) VARIATION IN MATERIAL TESTED :- THIS IS ALWAYS A PROBLEM WHEN USING NATURAL UNDISTURBED MATERIAL. - MAGNIFIED IN THIS CASE SINGE THE MATERIAL IS A FIBROUS PEAT OF SUCH HIGH WATER CONTENT. IN ADDITION THE SMALL SIZE OF SAMPLES (\(\pm 5\) GMS DRY WEIGHT OF SOLIDS) USED TENDED TO EXAGGERATE ANY VARIATION IN MATERIAL COMPOSITIONE IT WAS CONSIDERED THAT IN GENERAL THE VARIATION BETWEEN THE CRITICAL TESTS IN THIS SERIES WAS NOT ENOUGH TO INVALIDATE COMPARISONS OF TESTS ALTHOUGH IN SOME GASES IT DID PREVENT MORE THAN GENERAL CONGLUSIONS BEING DRAWN.
(3) CONTROLLED DIFFERENCES IN TEST PROGRAM :- THE OBJECT OF THE INVESTIGATION WAS TO DETERMINE WHAT DIFFERENCES IF ANY EXISTEO BETWEEN TESTS, AND, IF POSSIBLE, TO DEDUGE WHICH VARIABLE MAD CAUSED THEM. OBVIOUSLY SIGNIFICANT DIfFERENGES WOULD ONLY be OBSERVED IF VARIATIONS IN (1) AND (2). ABOVE WERE NEGLIGIBLE IN RELATION TO THE CONTROLLED VARIABLES IN (3), OR, IF NOT NEGLIGIBLE, AT LEAST OF KNOWN EFFECT. ON THE OTHER HAND WHERE IDENTITIES WERE BEING CONSIDERED THE PROBLEM WAS TO ASSESS WHETHER THE VARIATIONS IN (1) AND (2) ABOVE. WERE SUFFICIENT TO MASK AN AGTUAL SIGNIFICANT DIFFERENCE IN (3).

In ordinary consolidation theory the plotting of results on an e-LOG P GRAPH IS EQUIVALENT TO PLOTTING THEM ON A \%S-LOG P OR S-LOG P graph, in the sense that two curves in close agreement on one plot must give close agreement on the other. In this case it was considered that LITTLE WOULD BE GAINED BY COMPARING RESULTS ON A VOID RATIO BASIS SINCE THE VARIATION IN OETERMINATION OF INITIAL VOID RATIO WOULD BE OF. THE SAME ORDER AS THE APPARENT VARIATION IN SAMPLES. BECAUSE THIS TEST SERIES Was essentially one of comparison between samples as nearly identical AS POSSIBLE, IT WAS DECIDED TO RELY ON MEASURED SETTLEMENTS FOR COMPARATIVE GRAPHS AND COMPUTATIONS.

The possibility remalns, however, that two samples of identical VOIO RATIO COULD HAVE DIFFERENT SETTLEMENT-LOAD GURVES DUE TO DIFFERENT fibre strengths within the peat. This would imply a difference in MATERIAL COMPOSITION OR SOIL STRUCTURE.

4.1 COMPARISON OF L.I.R. FOR 24 HOUR LOAD DURATION

Consider Fig. 4-1 showing Settlement at 1440 mins vs log p
tests \#1 (L.l.R. 1.0) and \#6 (L.l.R. 3.0) showed good agreement but test \#2 (L.l.r. 0.33) lay somewhat above the other two. the significant differences between the curves can best be seen by noting the differences in their settlement at various applied pressures. These differences are tabulated below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(p\left(\mathrm{Kc} / \mathrm{cm}^{2}\right)\) & \multicolumn{2}{|r|}{. 024} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& -119 \\
& \text { PRECON. PRESSURE }
\end{aligned}
\]} & \multicolumn{2}{|r|}{\[
.476
\]} & \multicolumn{2}{|r|}{7.58} \\
\hline test nes & \({ }^{*} 6-{ }^{*}\) & \({ }^{*} 6-{ }^{*} 2\) & "6-*1 & -6-*2 & \({ }_{6} 6-{ }_{\text {- }}\) & \({ }^{4} 6-{ }_{2}\) & 6-*1 & \#6-*2 \\
\hline DIFF. in 5 (us) & -001 & . 005 & . 008 & . 033 & . 006 & . 032 & .009 & .018 \\
\hline & \multicolumn{2}{|r|}{. 004} & \multicolumn{2}{|c|}{. 018} & \multicolumn{2}{|r|}{-018} & \multicolumn{2}{|r|}{. 005} \\
\hline
\end{tabular}

It can be concluded from these figures that tests \#1 and \#6 have COMPARABLE SETTLEMENTS FOR THE SAME APPLIED PRESSURE SINCE THEY HAVE SMALL AND NEARLY CONSTANT DIFFERENCES BEYOND THE PRECONSOLIDATION'PRESSURE; BUT THAT TEST \#2 IS ONLY APPROXIMATELY COMPARABLE, IF AT ALL.

IN ANTICIPATION OF LATER DISCUSSION OF RATES OF SECONDARY SETTLEMENT, THE AVERAGE AMOUNTS OF SECONDARY SETTLEMENT PER LOG CYCLE EXHIBITEO BY the three tests are included in the above table.

\subsection*{4.2 COMPARISON OF L.I.R. FOR 15 MIN LOAD DURATION}

Consider fig. 4-2 showing Settlement at 15 mins vs log p.

Five tests were plotted on this graph -

since all were in the category of rapid tests.

It can be seen that there was close agreement throughout between Test \#4 (L.I.R. 0.33) and \$5 (L.I.R. 1.0) while Test \#8 (.L.I.R. 1.0 no ring) showed some variation between applied pressures of 0.1 and \(0.5 \mathrm{~kg} / \mathrm{cm}^{2}\) only. Both tests \#3A and \#3b (L.l.R. 3.0) plot considerably above the other curves. The settlement-log time graphs of these rapid tests show that approximately \(100 \%\) primary consolidation had taken place under the previous load increment before the next load increment was applied in the case of tests \#4, \#5 and \#8, except for the last few increments for \#5 and \#8, but not in the case of tests \#3a and 3b. hence the reason for the variation in the latter tests was that they were reloaded before primary set,tlement had been completed. This explanation is supported in test \#3A by the settlement under the final applied pressure of \(7.58 \mathrm{Kg} / \mathrm{cm}^{2}\) which was allowed to. remain for 2 days, well past the \(100 \%\) primary consolioation point. The 100\% primary settlement point for test \#ja then plots in good agreement with test \#5. the last two load increments for tests \#5 and \#8 did not quite reach 100\% primary consolidation either, except for the last load on test \#8 which then - plots in close agreement with test \#4.

Comparing the curves for tests \#4, \#5 and \#8 :-

This table shows the good agreement between tests \#4 and \#f and the
 3.0) are not very comparable, the indications are that they woulo also be in. generally good agreement if their load ourations were extended TO PERMIT 100\% PRIMARY CONSOLIDATION TO BE COMPLETED. HOWEVER IT SHOULD be noted that the curves for tests \#3A and \#3b agree fairly well with EACH OTHER (EXCEPT FOR THE LAST LOAD) DESPITE THE DIFFERENT LOAD durations of 15 minutes and 25 minutes respectively.

\subsection*{4.3 COMPARISON OF 24 HOUR AND 15 MIN TESTS FOR DIFFERENT L.I.R.} Consicer fig. 4-3 showing Settlement at 100\% primary vs log p

Three tests run with nominal load durations of 24 hours have been plotted (\#2, \#1 and \#6 with respective L.l.r. of 0.33, 1.0 and 3.0) together with two tests with load durations of 15 minutes (\#4 and \#5 with respective L.l.R. of 0.33 and 1.0). tesys \#3a and \#3b were omitted since.they did not reach \(100 \%\) primary consolidation - see discussion in section 4-2.

The \(100 \%\) primary consolidation point was determineo from the dial reading-log time graphs as follows :
(i) For curves concave upwards in the \(100 \%\) primary consolidation region the standard tangent intercept method was useo. (A. Casagrande construction, Ref.1, p.241)
(11) FOR CURVES CONVEX uPWARDS IN THE \(100 \%\) PRIMARY CONSOLIDATION region the tangent point method was used. According to Leonards \& Girault (5) this point is approximately the point Where pore pressure readings became essentially zero.

Method (11) was mainly applicable to test \#2 with a L.!. . of o. 33 and a nominal load ouration of 24 hours. The \(100 \%\) primary points used are marked on the curves in the dial reading vs log time graphs. the two curve shapes involved are shown in sketches in section 4.4 .
as in the previous graphs on Fig. 4-2, tests \#4 and \#5 can be represented quite closely by a single line except for the last few load increments. However when plotted together the 15 minute tests fall consistently below the 24 hour tests - the difference in settlement
\begin{tabular}{|c|}
\hline & 0 & & & & & & & & & 0.4 & & ハー & & & & & & & 0 & & & & & & & & \\
\hline & T \\
\hline & & ＋1－ & 4 & － & \(\cdots\) & & & & & & \(\cdots\) & & \(\square\) & H & U & T－ & & & & & T & & & & & & \\
\hline & & \％ & ＋ & & & & & & & & & & & \(\square\) & － & \(\square\) & & & & & H & & & & & & \\
\hline & & ＋ 7 & \\
\hline & & ＋\({ }^{2}\) & & & & & & & & & H & & & 4 & & & & & & & \＃ & & ＋ & & & & \\
\hline & & 14 & & H & & & & & & & & & & & & & & & & & H & 4 & & ＋ & & & \\
\hline & & & & & & & & & & & T & & & \＃+ & & & & & & & & & & & & & \\
\hline تِ & & & & & ．i． & & & & & & ＋ & & ＋ & 4 & & & & － & & & & & & & & & \\
\hline & & & & \(\square\) & ＋+ & & & & & & H & & \(\pm\) & \(\square\) & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & \(\cdots\) & & & & & & & － & & ： & & & II & & & & － \\
\hline & & － & & 0 & So & & TI & & & & & & & \(\square\) & & & & & & & \(\square\) & & \(\square\) & & & & \\
\hline & & & & & to． & P 2 & ， & & & & 4 & & ＋1\％ & \(\square\) & \(\square\) & & & & & \(4+4\) & ＋+1 & ＋+ & & & & & \\
\hline & \({ }^{+}\) \\
\hline & & & & & & & & & & & \(\cdots\) & & T？ & 4 & \(\square\) & \(\square\) & & & & \(\cdots\) & － & & 4 & \(\square\) & & & 1 \\
\hline & & & & & & & & & & & ＋ & & \(\pm\) & \％－ & \(\square\) & & T－ & － & & －+ & & ＋+ & & ＋ & & & \\
\hline & & & & & & & & & & & \(\bigcirc\) & & & & & & & & & & & & \(\square\) & & & & －9 \\
\hline & & & H． & － & & & & & & & ＋ & & \(\square\) & 44 & \(\square+\) & & & － & & & ＋ & \(\pm\) & & & & & \\
\hline & & & \％ & TH & & 4 & 7 & & & & & & 1 & W & 4 & & & ＋rim & & ： & T & & I & T & & & 0 \\
\hline & \\
\hline & & \[
1+1
\] & & \(t-t \cdot\) & 9915 & 7\％ & & & & & & \(\cdots\) & \(\bigcirc\) & － & \＃， & & & －1－1 & & \＃ & －17 & & & & & & 0 \\
\hline & & \[
4
\] & & － & ， & 14 & & & & & & & ， & C & & & & & & & T & & & \(\square\) & & & \\
\hline & & & & & & & & & & & & & & N & & & & & & & II & & & & & & \\
\hline & & d & 307 & \(7 \mathrm{~m}^{\text {atm}}\) & \(\stackrel{\text { rawnira }}{ }\) & yd\％ool （1） & & & & & & & & ＋ 7 & \(x+\) & to & & & & ＂ & T & & － & & & & \\
\hline & & & & － & \(\bigcirc\) & ！ & \(\square\) & & & & & & & & & & & & & & TH & 1 & \(\cdots\) & & H & & \\
\hline & \\
\hline & & & & ！ & & 4 & & & & & & & H1 & \(\square\) & & & & & & & \(\square\) & ！ & 4 & & & & \\
\hline & & & & \(\square\) & & 0 & & & & & ＋ & & 1 & H－1 & & & & & & － & ＋ & & \＃： & ＋ & T & & \\
\hline & & & & 4 & & & & & & & & & ＋ & \(\cdots\) & － & & & & c & 5 & & 4 & \(\square\) & & & & \\
\hline & & 4 & 11 & & & & & & & & & & & & & & & & － & － & & & & & & & \\
\hline & & & \(\cdots\) & － & \(\bigcirc\) & G．on & & & & & ＋ & P & & & \(\square\) & & & & & & & & \(\cdots\) & \(\cdots\) & & & \\
\hline & & & －1ग & U1！ & \[
10
\] & ton & & & & & & & \[
17
\] & & & & & & & & & & & & \(\underline{+}\) & & \\
\hline & & & ！14 & In： & － & \(9_{5} \mathrm{~N}^{\prime}\) & & & & & & & ＋17 & － 4 & & & & & & & & & & － & IT & & \\
\hline & & & 年 & inil & 1 10 & 81. \\
\hline & & \[
2 \boldsymbol{n}
\] & 414 & ！nin！ & ¢ \(¢\) & \(z_{\text {ONI }}\) IS3I & & & & & & & & & & & & & & & & & & & orve & & \\
\hline & & 2 & 号 & 何 & 1. & \(\cdots\) & & & & & ， & & － & & & & & & & ＋+1 & & & & & － & & \\
\hline & & & & ＋ & & & & & & & & & & & & & & & & & & ＋6， & & & & & \\
\hline & & & & ＋ & ＋ & \\
\hline & & & & \％ & mim & － 7 & & & & & & & & & & & & & & \(\cdots\) & & & & & & & \\
\hline & & \[
4
\] & \\
\hline & & & & & T＋ & H & & & & & & & & & & & & & W + & ＋ & & & & & & & \(\theta\) \\
\hline & & T & 1 & 01 & 1 & \(\ldots\) & & & & 1. & T 1 & ¢ & I & \(\cdots\) & － & & \(\square\) & I & －\％ & 11. & － & ＊ & \％ & \(\cdots\) & & & \\
\hline
\end{tabular}
beINg approximately 0.015 ins to . 020 ins. This is exactly opposite to the treno that might be expegted if the 15 minute tests were being RELOADEO BEFORE REACHING \(100 \%\) PRIMARY CONSOLIDATION.

As a check on the rapid tests \#4 and \#5, the. \(100 \%\) primary point was estimated for these two tests using the previous two methods (1) and (11) ASSISTED WHERE POSSible by the square root fitting method. Although these WERE ONLY APPROXIMATE DETERMINATIONS THEY DID INDICATE THAT TEST \# (L.l.R. 1.0) had COMPLeted its primary settlement by 15 minutes whereas TEST \#4 (L.I.R. 0.33) ONLY COMPLETED ITS PRIMARY SETTLEMENT WITHIN THE 15 MINUTE LOAD DURATION UP TO AN APPLIED PRESSURE OF ABOUT \(0.5 \mathrm{Kg} / \mathrm{cm}^{2}\). In NeIther case did these considerations make any significant improvement in agreement between tests \#4 and \#5 and tests \#1, \#2 and \#6. the range ÓF TIMES TAKEN TO REACH \(100 \%\) PRIMARY CONSOLIDATION FOR. THE LATTER TESTS IS SHOWN IN SECTION 4.4.

A FURTHER COMPARISON WAS MADE bY PLOTTING THE SAME TESTS ON A VOID RATIO BASIS. FROM THE GRAPH OF E AT \(100 \%\) PRIMARY VS LOG P - FIG. 4-4it can be seen that there was no better agreement than previously.

TWO DIFFERENT CONCLUSIONS COULD BE DRAWN FROM THESE RESULITS.
(A) Since the curves are very similar with a fairly consistent settlement difference between. the 24 hour and 15 minute tests, it may be assumed that their differences are not due to random causes, thus IMPLYING A VARIATION IN THE SAMPLES OR THE TESTS.
(B) ASSUMING similar material, then there appeared to be a definite trend to Increased settlement where tests were run with short load
```

DURATIONS I.E. RELOADED AT OR CLOSE TO THE 100% PRIMARY
CONSOLIDATION POINT - THIS TREND SHOWEO FOR AT LEAST TWO
LOAD INGREMENT RATIOS - 0.33 AND 1.0.

```

\section*{4. 4 COMPARISON of CURVE Shapes and TIME REquired to Reach \(100 \%\) Primary CONSOLIDATION}

The shape of a compression curve when plotted on a graph of settlement vS log time generally falls into one of two distinct categories. They have been so classified by several investigators (\(4,5,7\)) into Type I and Type I gurves as shown in the sketch below. In some cases a transition curve between these two types has been recognised.

Since these curve types have been observeo for both laboratory and FIELD CONSOLIDATION SETTLEMENTS IN:PEAT..AS WELL AS IN CLAY, THEY AFFORD A CONVENIENT CLASSIFICATION SYSTEM. GENERALLY. A SHALLOW FORM OF EITHER TYpe I or Type II or possibly a transition type curve coulo be considered to prevall below the preconsolidation pressure for all L.I.r!s'ano load DURATIONS USED IN THIS TEST SERIES.

DUE TO THE HIGH INITIAL WATER CONTENT AND RELATIVELY HIGH INITIAL PERMEABILITY OF THE PEAT, APPROXIMATELY \(50 \%\) OF THE PRIMARY SETTLEMENT HAD OCCURRED BY THE TIME THE FIRST READING COUHD BE OBTAINED (AT 6 SECS), SO THE FIRST PART OF THE TYPE I CURVE WAS NEVER REALLY OBSERVED. A GENERAL COMPARISON OF CURVE TYPES AND TIME TO \(100 \%\) PRIMARY CONSOLIDATION (DETERMINED AS DESCRIBED IN SECTION 4.3) FOR APPLIED PRESSURES BEYOND THE PRECONSOLIDATION LOAD IS SHOWN IN FOLLOWING TABLE.
\begin{tabular}{|c|c|c|c|c|}
\hline Test \# & L.I.R. & Load Duration & Curve Type & Range of TIMES TO REACH \(100 \%\) PRIMARY (MINS) \\
\hline 2 & 0.33 & 24 HRS NOMINAL & 파 & 150-300-90 \\
\hline 1 & 1.0 & 1 & I & 3-35 \\
\hline 6 & 3.0 & " & I & 5-40 \\
\hline 4 & 0.33 & 15 MINS & I & 5-20+ \\
\hline 5 & 1.0 & 1 & I & 2-20 \\
\hline 3A & 3.0 & 11 & I & - - \\
\hline 3 B & 3.0 & 25 MINS & I & 4 and 40 \\
\hline 8 & 1.0 & 12 MINS & I & 2-35 (no ring) \\
\hline 7 & 1.0 & 15 MINS & I & 2-4 \\
\hline & 3.0 & 24 hrs & I & 10 \\
\hline
\end{tabular}

SEVERAL CONSIDERATIONS ARISE FROM THE ABOVE COMPARISON AS WELL AS FROM THE SETTLEMENT-LOG TIME GRAPHS FIGS. 3-2 TO 3-24.
(A) ALL THE TESTS EXCEPT \#2 HAD THE SAME CURVE TYPE AND APPROXIMATELY THE SAME RANGE OF TIME TO REACH \(100 \%\) PRIMARY CONSOLIDATION. IN OTHER WORDS VARYING THE L.I.R. AND THE LOAD DURATION DID NOT MAKE A PRONOUNCED DIFFERENGE TO THE 100\% PRIMARY TIME PROVIDED THE CURVE TYPE DIO NOT CHANGE (AS DISCUSSEQ EARLIER TESTS \#FA. ANDA3B DID NOT

PROPERLY REACH \(100 \%\) PRIMARY SETTLEMENT).
(E) IN TEST \#\#2 THE TIMES TO \(100 \%\) PRIMARY SHOWED A DEFINITE TREND TO SHORTER VALUES AT HIGHER APPLIED PRESSURES I.E. AT LOWER VOID RATIOS, WHEREAS ALL THE OTHER TESTS SHOWED A SLOW TREND TO LONGER TIMES AT HIGHER APPLIED PRESSURES.
(c) VARIATIONS OF THE L.I.R. DURING TEST \#2 CAUSEO SIGNIFICANT.VARIATIONS IN THE TIME TO \(100 \%\) PRIMARY SETTLEMENT ALTHOUGH APPARENTLY NOT IN OTHER TESTS WITH TYPE I CURVES. CONSIDER THE FOLLOWING EXAMPLES FROM TESTS \#2 AND \#7:-
\begin{tabular}{|c|c|c|c|}
\hline Test \# & Load Increment (KG. \(\mathrm{Cm}^{2}\)) & Change in L.I.R. & Change in time to 100\% PRIMARY (MINS) \\
\hline \multirow[t]{4}{*}{2} & 2.76 то 3.19 & Decreaseo from & INCREASED FROM \\
\hline & & 0.33 то 0.16 & 90 ro 300 \\
\hline & 5.98 то 8.58 & Ingreased from & DECREASED FROM \\
\hline & & 0.37 TO 0.44 & 150 TO 90 \\
\hline \multirow[t]{3}{*}{7} & 0.476 то 1.90 & INCREASED FROM & INCREASED FROM \\
\hline & & 1.0 TO 3.0 & 4 TO 10 \\
\hline & & & (EXPECTED NORMAL INCR.) \\
\hline
\end{tabular}
(D) FOR tests at L.I.R. OF 1.0 and 3.0 there appeared to be a slight TENDENCY FOR THE \(100 \%\) PRIMARY TIME TO BE LONGER FOR THE RAPID 15 minute L.D. tests than for the 24 hour tests at the same l.l.R. ESPECIALLY AT HIGHER APPLIED PRESSURES (I.E. LOWER VOID RATIOS). The reverse was the case for tests at the L.l. \(\mathrm{R}_{0}\) of 0.33.
(e) The time taken to reagh \(100 \%\) primary settlement in test \#̈2 (L.I.R. 0.33) WAS ROUGHLY ONE LOG CYCLE OF TIME IN MINUTES LONGER than in the other tests.

It was concluded that the curve type was dependent on both load Increment ratio and load duration or rate of coading.

Support for this conclusion is given by a very similar consolidation test carried out recently by the writer in the laboratory of r.a. Spence Lto., Vancouver. The test was performed under nearly identical conditions on fibrous peat approximately 6 ins deeper from an adjacént test pit at the same site. in this case a L.l.r. of 0.30 and a very consistent load duration of 24 hours also gave a type II curve.

Settlement vs log time graphs (figs. A-1 to a-5 inclusive) for this test No.p1 are included in the appendix.
\begin{tabular}{ll}
\\
\hline
\end{tabular}

\section*{4. 5 Comparison of Rate of Secondary Settlement}

Consider fig. 4-5 showing Rate of Secondary Settlement vs Applied pressure CONSIDER fig. 4-6 " " " " " vs LOG p

Plotted on the above graphs are the rates of seconoary settlement at each load for the 24 hour tests \#6, \#1 and \#2 plus single determinations from tests \#8, \#7 and \#3A where the load increment remained on for at least 24 hours.

Four methods of computing this rate were attempted since there appeàrs to be no general agreement on the most significant manner of presentation.
(1) \(C_{S}=\frac{\triangle D_{I A L} \text { RDG. PER LOG CYCLE OF TIME }}{H 1(\text { INITIAL HEIGHT OF SAMPLE })}\)
\((11) C^{\prime} \mathrm{s}=\frac{\triangle \text { DIAL RDG. PER LQG GYGLE }}{H_{P}(H T . O F \text { SAMPLE AT PRECONSOLIDATION PRESSURE }}\)
- \(100 \%\) primary point)
(111) \(D_{S}=\frac{\triangle D I A L ~ R D G . ~ P E R ~ L O G \text { CYGLE }}{H_{F}(\text { PREVIOUS FINAL HT.OF SAMPLE })}\)
(IV) \(D^{\prime} s^{\prime}=\frac{\triangle \text { DIAL RDG. PER LOG GYCLE }}{\text { HiOO\% (PREVIOUS HT.OF. SAMPLE AT } 100 \% \text { PRIMARY POINT) }}\)

In this test series \(H_{1} \neq 0.750^{\prime \prime}\) and \(H_{p}=0.630^{\prime \prime} \pm 0.010^{\prime \prime}\) for all tests, consequently \(C^{\prime}\) s was not graphed since it was similar to \(C_{s}\) - both \(D_{s}\) and D' \({ }^{\prime}\) Were plotited so as to indicate any possible trends between the various L.I.R.

The curves of Cs showed the typical shape of peat secondary rates with a peak value at the preconsolidation pressure then decreasing with ingreased pressure (: e.g. plate 41 in reference 3).

tests \#1 and \#6 (L.l.R. 1.0 and 3.0) give reasonably smooth and consistent curves but test \#2 (L.l.R. 0.33 Curve Type II) is very ERRATIC ESPECIALLY WHEN PLOTTED ON CURVES OF DS AND D' \(\mathrm{S}^{*}\) OTHER WORK has demonstrated that temperature does have an appregiable effect on the rate of secondary settlement but in the case of test \#t2 there did NOT APPEAR TO BE ANY TEMPERATURE CORRELATION.

The significant factor, in test \#2 appeareo to be the ouration of the Previous load increment, since the rate of secondary settlement decreased APPRECIABLY AFTER A LONGER THAN USUAL PREVIOUS LOAD DURATION E.G. TWO OR three day L.D. during a nominal 24 hour l.d. test. It might be thought that the duration of the previous load increment woulo influence the rate of secondary settlement by its effect on the voio ratio. indeed The definitions of \(D_{S}\) and \(D^{\prime}\).s are used for the very purpose of eliminating the void ratio at the start of a given load increment as a variable. in this case however, the curves of \(D_{S}\) and d's serve to show that this VARIATION WAS NOT RELATED TO DECREASED VOID RATIO.
\(\therefore\) On the other hand test \#1 (L.l.R. 1.0-24 hour L.D.) also had several longer than usual load durations but these had no apparent effect on the rate of secondary settlement - see fig. 4-5 between \(0.476 \mathrm{Kg} / \mathrm{cm}^{2}\) and \(7.58 \mathrm{Kg} / \mathrm{cm}^{2}\). The rate of secondary settlement fór the \(1.90 \mathrm{Kg} / \mathrm{cm}^{2}\) LOADING in test \#6 dio appear to be a low value, again possibly DUE TO THE THREE DAY LOAD DURATION UNDER THE PREVIOUS LOAD INGREMENT. However this may have been a temperature effect since at that particular load increment test \#6 was at an average temperature of \(72^{\circ} \mathrm{F}\) compared

WIth test \#1 which was at an average temperature of \(74^{\circ} \mathrm{F}\).

A Superficial comparison of the peak values of, \(C_{S}\) and C's in the region of the preconsolidation pressure for tests \#6, \#1 ano \#2 woulo indicate that test \#2 had much higher values than \#\# and \#6. MAX. C's \(=.041:\) MAX. \(_{S}=.035:\) TEST \#2 (L.I.R. O.33-24 HR L.D.) Max. C's \(=.032:\) MaX. \(C_{S}=.027:\) TEST.\#1\& \#6 (L.I.R. \(1.0 \& 3.0-\) 24 HR L.D.)

But ifg, beyond the maximum past pressure, \(C_{S}\) is inversely proportional to the applied pressure then possibly tests \#1 and \#6 woulo also give a maximum value of \(C_{S}=.035\) IF Their load increments were arranged to Land on the critical value of applied: pressure. Alternatively the VARIATION OF MAXIMUM \(C_{\text {S M M }}\) me sensitive to the L.I.R. (magnitude of LOAD (NCREMENT), OR RATE OF, LOAD APPLICATION, ANALOGOUS TO THE CONDITION of a sensitive clay where the preconsolidation pressure is determined by the use of small load increments.

Of particular interest were the single determinations from tests \# (L.I.R. 1.0-12 MINSL.O. - NO RING), \#3B (L.I.R. 3.0-25MINL.D.) and \#7 (L.I.R. 1.0 to \(3.0-20 \mathrm{~min}\) LOAD DURATION). DESPItE their Variéo LOADING HISTORY THEY PLOT IN CLOSE AGREEMENT WITH THE CS CURVE FOR TESTS \#1, \#2. and \#6.

It was concluded that the rate of secondary settlement for all tests in this series was inversely relateo to the applieo pressure. This rate WAS NOT a function of the L.l.R. or of the height of sample (I.E. VOID ratio) at the time the load increment was applied. The duration of the previous load period appeared to affect only test \#2 which was the only
test with a Type II settlement-time curve.

In comparisons of rates of settlement perhaps more than in other comparisons, it is felt that duplicate samples are particularly negessary in order to estimate how much scatter due to experimental procedure, temperature differences, and sample variability can be expected espegially where type II curves are involved. the only mitigating factor appears to be that small variations in initial trimmed sample height (or presumably voio ratio) should have negligible effect on the computed values of \(C_{s}\) and \(D_{S}\). For general comparison purposes a graph showing rate of secondary settlement vs applied pressure for test \#2 and test \#p1 (see section 4.4 and appendix) was plotted - fig. 4-7. It can be seen that there was far less scatter of values for what were in fact nearly identical tests. The only apparent. reason for the difference was the much more consistent actual load durations in the case of test \#P1.

4.6 Comparison of amounts of Primary and Secondary Settlement Consider fig. 4-8 showing total and \(\sum\) Primary Settlement vs log p
```

    Tests #б, #1 and #2 were:plotted on the above graph; first the total
    SETTLEMENT FOR 24 HOURS THEN THE CORRESPONDING CUMULATIVE PRIMARY
settlement in the same period for each test.

```
The main purpose of this graph was to investigate whether primary and
SECONDARY SETTLEMENT AS DEFINED IN SECTION 1.4 COULO BE REGARDED AS
SEPARATE PROCESSES OR WHETHER ANY RELATIONSHIP COULO BE DISCERNED.

It CAN be seen quite conclusively that primary ano segonoary SETTLEMENT ARE INTER-RELATED AND CANNOT bE SEPARATED. IN OTHER WORDS although the final settlements are nearly identical the proportions of PRIMARY AND SECONDARY ARE VERY DIFFERENT FOR DIFFERENT LOAD INCREMENT RATIOS.

A further aspect of this inter-relation was shown by the total settlement under \(0.119 \mathrm{Kg} / \mathrm{cm}^{2}\) in test \#2 and under \(0.96 \mathrm{Kg} / \mathrm{cm}^{2}\) in test \#1. In both cases the load duration was five days instead of the nominal one day so that the final settlement plotted well below the best-fitting settlement-log p curve. More important was the fact that this adoitional SETTLEMENT DID NOT appear to affect the 24 hour settlement reading of the next load increment.

\section*{4. 7 SUMMARY OF OBSERVED RESULTS}
4.1 S 1440 vS LOG p for 24 hour L.D. - Fig.4-1 L.I.R. \(1.0=\) L.I.R. 3.0 BUT L.I.R. 0.33 HIGH .
4.2 S 15 VS: LOG P FOR 15. MIN. L.D. - FIG. 4-2
(1) L.I.R. \(1.0=\) L.l.R. 0.33 but L.I.R. 3.0 had not reached \(100 \%\) primary consolidation.
(11) Test \#8 no ring (L.l.R. 1.0) in good agreement.
\(4.3 \mathrm{~S}_{100 \%}\) vs log p for all L.I.R. and L.D. - Fig.4-3
(1) 15 min L.D. tests settled more than 24 hour tests.
(11) All L.l.r. agreed up to load of \(1.0 \mathrm{Kg} / \mathrm{cm}^{2}\) when plotted \(100 \%\) primary consolidation.
4.4 Curve shapes and time to \(100 \%\) primary consolidation
(i) All tests except \#? had Type I curve and a longer time to \(100 \%\) primary as void ratio decreaseo.
(11) Test \#2 (L.l.r. 0.33, L.D. 24 hours) had Type II curve and shorter times to \(100 \%\) primary as void ratio decreased.
(ili) Variations in l. D. during test causec variations in time to \(100 \%\) primary in test \#2 only.
(IV) Test \#z (Type II curve) took ten times as long to reach \(100 \%\) primary as other tests.
4.5 Rate of secondary settlement vs p Fig. 4-5,4-6, 4-7
(i) Rate of isecondary independent of L.l.R. and L.d. except test \#2.
(11) Test \#2 type if curve was affected by duration of previous load.
4.6 Total and cumulative primary settlement Fig. 4-8
total settlement not a function of loading procedure but ratio of primary to secondary was.

\subsection*{5.0 ANALYSIS}
5.1 Interpretation of Results based on a Unique relationship between

Applied Pressure and Settlement at \(100 \%\) Primary Consolidation
Consider Fig. 5-1 showing Settlement at 100\% Primary vs. log p

The "Primary" line on the above graph was plotted using the \(100 \%\) primary settlements of.tests \#6, \#1 and \#2 (L.l.r. 3.0, 1.0, 0.33, L.D. 24 hours), the \(100 \%\) point being determined from the dial reading log time graphs by the methods discussed in section 4.3. The one day, 100 day, 10,000 day lines were drawn by extrapolating from the observed values of the amount of. secondary settlement per two log cycles of time for each individual test. Thus small differences in values of Cs were MAGNIFIED FOR EACH SUCCESSIVE CURVE.

This graph demonstrates first of all a remarkable agreement between the three tests for the primary curve. Referring back to section 4.1 it was noted there that test \#2 was not in good agreement when compared for 24 hour load durations. hence it would appear probable that the true basis of comparison should be the \(100 \%\) primary settlement time. Secondly it can be seen that each set of curves essentially:parallels: the primary curve in the range 0.1 to \(2.0 \mathrm{Kg} / \mathrm{cm}^{2}\) gefore starting to become erratic. The agreement between each set of curves (one day, 100 day, etc) indicates that all three tests had essentially the same rates of secondary settlement at the same applied pressure, as noted in section 4.5, despite their varying load increment ratios. The scatter of values beyond about \(2.0 \mathrm{Kg} / \mathrm{cm}^{2}\) reflects mainly the scatter in the primary settlement curves,

SINCE THE VALUES OF CS BECOME MORE CONSISTENT AT HIGHER APPLIED LOADS SEE FIG. 4-5.

\begin{abstract}
THE HYPOTHESIS FOR THIS INTERPRETATION MAY BE STATED AS FOLLOWS :NO MATtER What the previous loading.history, there is only one value of SETTLEMENT (OR VOID RATIO) AT 100\% PRIMARY CONSOLIDATION CORRESPONDING to: a particular applied pressure. Thus ideally there is a unique s-log p or e-log p law relating total settlement or void ratio to applied pressure at the moment when the pore pressure is effectively dissipated. This HYPOTHESIS HAS BEEN DEVELOPED RECENTLY FOR REMOLDED ORGANIC SILT BY H. E. Wahls (4) but it was also implied in Taylor's work on remolded silty clay (2). Probably there would be a gradual transition between primary AND SECONDARY MEGHANISMS OF SETTLEMENT, BUT THIS DOES NOT SERIOUSLY AFFEGT THE CONGEPT SINCE THE AMOUNT OF SECONDARY SETTLEMENT OCCURRING before the end of primaryi settlement would be small.
\end{abstract}
'TWO qualifications would appear to be necessary - there should be no UNLOAD - RELOAD CYCLE INVOLVED AND ONLY APPLIED PRESSURES GREATER THAN THE PRECONSOLIOATION PRESSURE SHOULD BE CONSIDERED. INSPECTION OF THE GRAPH on Fig. 5-1' inoicates another qualification that: would probably be required - after several cycles of secondary settlement (say to reach the 100 day curve) the addition of a small load increment woulo require the sample to swell to arrive back on the unique S-log p curve. however this suggests that a better basis might be "final. settlement "at say 3000 years or primary plus 8. log cycles of time.

In summary the hypothesis of a unique settlement-log p curve at 100\% PRIMARY CONSOLIDATION APPEARS TO OFFER A PLAUSIBLE GENERAL INTERPRETATION of the results of this test series. However the problem of the mechanism AND FACTORS AFFECTING SECONDARY SETTLEMENT STILL REMAINS.
5.2 Difference in Curve Types between Test \#2 ano test \#4
Consider figs. 3-2 to 3-7 (incl) showing Dial Reading vs log time for tests
: \#2 AND \#4
The reason for the difference in curve type and difference in rate of settlement cannot easily be seen from these two tests. putting the PROBLEM ANTHROPOMORPHOLOGICALLY - HOW DID SAMPLE \#4 KNOW THAT IT HAD ONLY 15 MI at least 200 minutes? All tests conditions were essentially the same Including the L.I.R. (both 0.33), the only difference being the load dURATION: 15 MINUTES VS 24 hOURS. HENCE THE DIfFERENT BEHAVIOUR: COULD only be due to the duration of the previous load, the difference in STRESS CONDITIONS OR THE DIFFERENCE IN FLOW CONDITIONS JUST BEFORE RELOADING.
POSSIbly sOme sOrt of "bonding" or " thi xotropic" action takes place during the secondary settlement analogous to the concept of a flocculated CLAY SOIL OVER A PERIOD OF TIME DEVELOPING MORE INTERPARTICLE CONTACTS under a given effective stress (8). Alternatively it may be a question OF REDUCED PERMEABILITY OR INCREASED VISCOSITY IN THE MICROPORES OF THE MATERIAL. CERTAINLY IT SEEMS WORTH FURTHER INVESTIGATION.

\subsection*{6.0 CONCLUSIONS}

\subsection*{6.1 PRACTICAL.}
(1) The results of standard laboratory consolidation tests on fibrous PEAT SHOULD BE PLOTTED ON A GRAPH OF S - LOGP OR \(E\) - LOG P WHERE the settlement used is that occurring at 100\% primary consolidation.
(2) In general the load increment ratio can be varied between 0.35 and 3.0 and the load duration, or time of reloading, varied between the end of the primary consolidation and about five days without SERIOUSLY affecting the"primary" \(\mathrm{S}_{100 \%}\) - Log p or e100\%-log p curve for fibrous peat. thus accelerated tests of one day (or much less if higher load increment ratios are used) will give all fhe information usually obtained with the standard laboratory consolidation using l.l.r. of 1.0 and 24 hour load durations.
(3) Side friction was negligible during the load cycle in this test Series for fibrous peat of high wiolis content except possibly at higher loads for test \#2 (L.l.r. 0.33 - L.D. 24 hours) after it had been about four weeks in the consolidometer. Stainless steel. CONSOLIDATION RINGS (\(\frac{\text { DIAM. }}{\text { HEIGHT }}=\frac{2.500}{0.750}=3.33\)) LIGHTLY coated with a molybdenum disulphide grease were used, the sample was trimmed to an easy fit in thé ring and the tests were run in FIXED RING CONSOLIDOMETERS WITH TOP aND bottom drainage:

\subsection*{6.2 Theoretigal}
```

    WITHIN THE bOUNDS OF THIS test series, the following relations were
    ESTABLISHED FOR ThE CONSOLIDATION OF PEAT f-
(1) Primary and Secondary Settlement are inter-related and cannot be
SEPARATEO AS TO AMOUNT.
(2) Curve, type dependS NOT ONly on the load increment ratio but also
ON THE LOAD DURATION OR RATE OF LOADING.
(3) Decreasing the load ingrement ratio during a test significantly
INCREASED THE TIME REQUIRED TO REACH 100% PRIMARY CONSOLIDATION
FOR TEST H2, which had a TYPE Il curve.

```
Further conclusions were more tentative since they depended in varying
DEGREE UPON SIMILARITY OF SAMPLES AND PROCEDURE.
(4) TEStS With 24 hour load durations and rapid tests reloaded at about THE 100\% PRIMARY CONSOLIDATION POINT GAVE REASONABLY GOOD AGREEMENT WHEN PLOTTEO ON A GRAPH OF SETTLEMENT at \(100 \%\) PRIMARY VS LOG applied PRESSURE.
(5). THE RATE OF SECONDARY SETTLEMENT \(\left(C_{S}=\frac{S_{2}(\text { LOG CYCLE })}{H_{1}(1 N 1 T I A L H T .)}\right.\) WAS DEPENDENT ON THE APPLIED PRESSURE DR EFFECTIVE PRESSURE DURING THE LOAD CYCLE.

IT DID NOT DEPEND ON THE LOAD INCREMENT RATIO, THE PREVIOUS HEIGHT OF SAMPLE 1.E. MAGNITUDE OF LOAD INCREMENT, OR THE DURATION OF THE PREVIOUS LOAD PERIOD UP TO AT LEAST 5 DAYS, EXCEPT fOR TEST \# 2 WItH a Type I curve.
(6) Based on the above conclusions, there appears to be a unique s-log p or e-log p relation for the load cycle based on the settlement at \(100 \%\) CONSOLIDATION REGARDLESS OF PREVIOUS LOADING HISTORY.
(7) There was a possibility that 24 hour tests underwent slightly less settlement than rapid 15 minute tests at all L.I.R.
(8) For test \#2 - curve type II - there appeared to be a treno to shorter time to reach 100\% primary consolidation with increasing loads; which was opposite to the usual trend shown by the other tests.
 hence either effect may dominate.

\subsection*{6.3 General}

It is appreciated that many of the conclusions drawn from a limited test program of this kind can only be tentative since they are based on single laboratory tests on a natural undisturbed material of considerable variability. however some of the conclusions are in accordance with previous experience , with other work on. peat.and with similar investigations into clay consolidation. This is particularly so with the conclusion in section 5.1 that there appears to be a unique S-log p or e-íog p relationship for fibrous peat baseo on the settlement at \(100 \%\) primary CONSOLIdATION. A SIMILAR RELATIONSHIP for CLAY CONSOLIDATION haS beEn suggested by taylor (2) and others (4).

Being of an exploratory nature, these tests have raised several QUEStions on which further work could be done. Aside from confirming or rejecting. some of the previous conclusions, specific attention could be given to the investigation of the unload cycle and to the factors involved in Type II curves:
(1) D.W.Taylor - fundamentals of Soll Mechanics
Wiley -1948
(2) D.W.Taylor - Research on Consolidation of Clays M.I.T. Publication \#82-1942
(3) Moran, Proctor, Mueser \& Rutledge (Consulting engineers) - Study of deep Soil Stabilization by Vertical Sand Drains U.S.Dept.of Commerce - Office of Technical Services Publ. - 1958
(4) h.E.Wahls - analysis of Primary and Secondary Consolidation A.S.C.E. VOL. 88 S.M. 6. PART 1 - 1962
(5) G.a.leonards \& P.Girault
- A Study of the one Dimensional Consolidation test 5th I.C.S.M. - 1961
(6) R.Doyle - Unpublished Thesis U.b.C. - 1963
(7) K.y.lo - Secondary Compression of Clays A.S.C.E. VOL. 87 S.M. 4 Part 1-1961
(8) R.f.Scott - Principles of Soil Mechanics 1.962

\({ }_{820}{ }_{80}{ }_{80}\) 800

520 \({ }^{\prime}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \％ & ， & & & & & & & & － \\
\hline & & & & & & & & & & \\
\hline & ＋ & ＋ & & & & & & & J & \\
\hline & \(1+\) & & & & & & & ＋ & \({ }^{3}\) & \\
\hline & & & & & & & & & 4 & \\
\hline & & T & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \[
:
\] & & & & & & \(\cdots\) & & & & \\
\hline \[
:-
\] & & & & & & & & & & \\
\hline & ＋ & & & & & & & & & \\
\hline & & & & & & ， & & & & \\
\hline & & & & & & & & & & \\
\hline 速 & － & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \(f\) \\
\hline 辒 & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & － & & & & & & 7 & \\
\hline & － & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & － & & & & & & 7 & & & \\
\hline & & & & \(\cdots\) & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & ＋ & & & & & ＋ & & ， & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & ¢ & \％ & \(\circ\) & \％ & \(\therefore\) & i & 88 & \(\because\) & 8 & ¢ \({ }^{\frac{1}{8}}\) \\
\hline
\end{tabular}

R

(```

