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ABSTRACT

Five symmetrical wye branches of conventional and
spherical types were tested for hydraulic losses under
symmetrical and unsymmetrical flow conditions. Results are
presented graphically. A wide variation in loss factor was
observed'depending on the type of‘wye and on flow conditione.
For a given wye the minimum wye loss coefficient does not |

necessarily occur under conditions of symmetrical flow.
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INTRODUCTION

| in several recent hydro—electric power plants
units of capacity up to 300,000 HP have been installed.
Still larger units are prbposed for future projects. In
the penstocks which serve these plants both the diameter
and water velocity have been increased beyond préviods limits
to match the increase in turbine discharge capacitye

A major portion of the total friction loss in
penstocks of large diameter carrying water at high velocity
is due to bends, outlets, wyes and valves. An accurate
determination of hydraulic losses in these devices is necessary
for an economical design of the penstocko‘

This thesis describes a model test program to
determine hydraulic losses in large symmetrical wye branches.
In three con&entional typelof wyes tested the influence of
the magnitude of the angle between the branches of the wye
was investigated. In two spherical wyes teéted, the influences
of the size of the sphere and the rounded pipe intersectiohs‘
were studied.

The investigation was primarily concerned with the
hydraulic losses resulting from wyese. .Theréfore-friction
losses in the individual pipes were deducted from ;he total

loss to obtain the form loss of the wye.



_ The flow in generél was well within the turbulent
fange, the Reynolds number varying from SO;OOO to 375,000,
When the results of the experiments are applied to estimate
the losses in a geometrically similar prototype, the'Froude-
number is used as the criterion for dynamical similarity.
Fdr convenience thne wye loss coefficients K are related to

the velocity head in the main pipe.



PREVIOUS RESEARCH

Considerable research has been undertaken for the
computation of hydraulic loss in bends, elbows, tees, branch
outlets and symmetrical bifurcations, but most of it is
confined to small pipes as part of losses in pipe fittings.
Hinds, Thoma, Shoder, Weisbach and oﬁhers(l) have shown in
graphical form head loss in bends for various radius-diameter
ratios. Model tests have been made on small tees and branch |
outlets at the Munich Hydraulic Institutee(z) Gardel(3)
describes tests on water flow through eight tees with main
pipe diameter of 150 mm joined by pipes ranging from 60 to
150 mm at angles ranging from 45° to 135°..

The theoretical basis has been developed by Favre(h)
and McNown(5) for lateral bifurcations only. The character-
istics of flow and pressure pulsations in lateral bifurcations
have also been a subject of study at the University of Kansas
(6), (7), (8). o

’ - Marchetti and Ndseda(9) have made experiments on
five bifurcations constructed by welding 70 mm diameter pipes
with included angles between the downstream brahches varying
from 60° to 180°. The laboratory results were presented for
different conditions of flow in graphical form ehab}ing deter-
mination of hydraulic losses. For symmetrical bifurcations,
the value of wye loss coefficient K varied from 0027 for a 60°

3]
bifurcation to 0.96 for a 180 bifurcation. The Reynolds



~ numbers varied from 97000 to 322000 for these experimentse.

| ‘Gladwell and Tinney(10) conducted investigations
on a trifurcation, the tests including'measurement'of head 
loss for different conditions of flow. With the centre pipe
.closed and flow equally divided, ﬁhe value of K for a given
diécharge was 0.73 and 0.94 for right and left leg respect-
ively. The large difference appears to be due to the bend

upstream of the trifurcation.



CHAPTER I.
INSTRUMENTATION AND APPARATUS

l.;, 'LAYOUT: The research project was conducted in the
Hydraulic Laboratory as shown in Figure 1 and Plate 3. The
supply is from an overhead tank and hence no dynamic pressure
fluctuations are introduced into the feeding system.

During the period in which the experiments were
under way care was taken to ensure that there were no with-
\drawals atlany other point in the laboratory and, thus, for
each experiment a stable flow condition under constant head
was est%blished.

The general arrangement of the modei is shown in
Figures 2 and 3 and Plate 3. The supply to the model could
be diverted to one or both of the branch pipes leading to
left and right flumes (Figure 1) according to the requirements
of the experiment. |

. | The turbulence induced pressure fluctuations, intro-
duced into the system due to the many elbows and tees between
the overhead tank and the valve controlling flow to the wye,

" were dampened by providing two flow straightehers each 2 ft.
long as shown in Figure 2. The firsg one was located down-
stream from the bend below the control vaive, and  the other
downstream from the reducer.near the first straightener. The

straighteners consisted of thin aluminium tubing varying in



diameter from one to two inches.

The length of the main pipe on the upstream side of
the wye, comprised of steel and lucite sections, was 33 ft.,
the,length—diameter»ratio being 75« The length-diameter ratio
equalled 30 for the branch pipes, which was considered adequate
to eliminate flow disturbances caused by passage of water
through the wye and thus assure observationlof correct pressure

heads at piezometric points on the branch pipes.

l.2.  APPARATUS: Lucite was used‘throughout'for all the wyes,
a portion of the main pipe and the branch pipes. This set up
allowed: |

v(i) to replace the different parts

(ii) ﬁo observe visually the portion in which hydraulic
loeses occurred, and

(iii) to see that there was no entrapment of air in any

. part which might affect the piezometric heads.

DESCRIPTION OF WYES: A total of five wyes, all of them

f

symmetrical, were used fbr conducting the experimentse. Three"
were 90° wyes and the remaining two'were_éoo wyes. The 90°

" wyes have been designated as (i) Large Spherical Wye, (ii) Small
' Spherical Wye and (iii) Tapered Wye; the 60° Wyes as (i)

Tapered Wye (A) and (ii) Tapered Wye (B). For all wyes, the
connecting méin pipe and branch pipes had diameters of 5;25

and 3.75 inches respectively. The different wyes are shown



~in Figure 4 and Plates 6, 7 and 8. Although dimensions of
the wyes were chosen arbitrarily, the shapes follow a certain
geometrical pattern as indicated in Figure 5.

90° Large Spherical Wye: As shown in Figure 4.(a),

the sphere had a diameter of 7.5 inches equivalent to twice
the diameter of the branch pipes. On the outlet side the
intersection of sphere and pipe was rounded at a radius of
3/3 inch. '

90° Small Spherical Wye: ‘As shown in Figure L4.(b),

‘the sphere had a diameter of 5.85 inches. The intersections

were sharp.

90° Tapered Wye: As shown in Figures 4 and 5 the

cone angle for the tapered wye was kept at 200°.

60° Tapered Wye (A): As shown in Figure Le{(d),

the tapering was done at an angle of 10°.

N 60° Tapered Wye (B): As shown in Figure L.(e),

this wye contained a 3 inch long tapered portion. Otherwise

it is similar to the 60°,tapered wye (A) in all respects.
! .

The theoretical centres of the wyes are shown in
figure 4. Distances from the theoretical centres to the
points of inlet and outlet of the wyes are given in Table 2.

Preparation of Wyes: In order to obtain dependable

and accurate results, great care was taken in preparation of
the models. Accuracy was carried to one-thousandth of an inch

and internal surface of the wyes was made as smooth as possible.



During prepafation of a wye, the faces were machined
and the theoretical centre, angle of symmetrical bifurcation,
length from the theoretical centre: to points of inlet and
outlet, and position of holes for connection with main and
branch pipes were laid out. After tﬁrning the conical and
cylindrical water passages on a milling machine, pélishing
\bf inner surface of wyes was done by emery paper first and
thén by crocus paper. Final polishing was done by polishing
liquid. Two locating pins were installed on the main pipe

to eliminate any offset between the wye and the main pipe.

Main and Branch Pipes: As shown in Figure 3, the
Lucite séction of the main pipe, approximately 13 ft. long,
comprised of three sections. Flanges made from Lucite were
fitted on both ends of each section of the main and branch
pipeé to connect the different sections of the main and branch
pipes or the pipes with the wye. Each flange, with the end
face machined and smoothened was then glued. to the pipe with
tﬁe face perpendicular to centre line of pipe. To stop
- leakage, annular rings 1/8 inch wide were machined on the
- connecting faces in which rubber rings 1/8 inch diameter

were placed.

Setting up of Apparatus: For the fingl test setup
the main pipe was aligned by means of a theodolite.’ The main
.pipe, branches and wye were levelled accurately with a

carpenter's level. Measures were also adopted to eliminate



discontinuity at all joints on the main and branch pipes,

and particularly at'joints with the wye.

l.30 INSTRUMENTATION: Primarily it consisted of means to

measure pressure, discharge, temperature, and time.

Pressure Taps: The standard requirement for pressure

taps is that the openings should be flush with the conduit
wall and free from burrs, while the axis of the piezometric
tube should be perpéndicular to the centre line of pipe.
,yhe tap should be free from leakage.

The pressure tap used in these experiments is shown
in Figure 6. The piezomégér had an opening of 1/8 inch. The
" brass tube was held in position by a 1/8 inch NTP threaded
screw in a 7/8 inch Lucite cube. The NTP in turn was connected
to a 3/16 imperial threaded nut, with rubber ring at the
junction to eliminate possibiiity of any leakage.

Piegzometric Connections: Piezometers were installed

in groups (Figure 3 and Plates 1 and 2) and connected to gage
tanks. This arrangement was suitable because'the water level
in the manometric tubes could be observed simultaneously and
any single pressure reading which appeared 6ut of line could
be checked immediately. The pressure taps were connected to
manometers by flexible tubing with provision for removal of
air bubbles trapped in the systeme. Numbers in Figure 3

indicate these connections on the piezometric rings, manometer.
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tubes and gage tanks to main, left and right branch pipes
respectively. The gage tanks 55 inches in diameter were
‘fitted with hook gage rods and verniers to obtain reading of
 water surfacess There were three gage tanks, (i) the upstream
' taﬁk connected to the four preésure taps forming the piez-
ometric ring and the correspdnding manometers on the main pipe,
(ii) the central tank connected to corresponding manometers
and piezometfic ring on the left branch pipe and (iii) the
downstream gage tank connected to the manometers and piez-
ometric ring on the right branch pipe. The board containing
the manometer tubes along with the different gage tanks is -
shown in Plates 1 and 2.

"The gage vernier in the upstream tank was set
0.210 ft. higher than thg/gage verniers in the centre and
downstream tanks. —

- The range of pressure heads that could normally be
observed by the gage rods was only 2 ft. and height of gagé
tanks was also about the same. With the aid of extension
rods to the gage points it was possible to measure pressure
head differences up to 3 ft. of water,

Orifices for variation of discharge through Main

and Branch Pipes: The experiments wére conducted for different

conditions of flow; symmetrical, unsymmetrical and - one leg,
as explained subsequently in more detail. For symmetrical

flow the total discharges used varied from 0.32 to l.5 cfs;
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for unsymmetrical flow, the total discharge was 0.75 and
0.92 cfs, whereas the discharge ratio in the two branches
varied from zero to 1.0. For one leg flow the discharge
~ variation was from 0.32 to O.92_cfs.

The variation of discharge through the main pipe
was accomplished partly‘by operating the control vélve shown *
‘in Figure l. For a particular experiment it was, at the
same time, necessary to create conditions so that pressure
differences could be obtained by observation of water levels
in all the three gage tanks simultaneously. For phis purpose
orifices of different sizes,‘which are shown in Figure 7 ahd
Pléte 9, were placed in end'pieces attached to the branch
pipese. -Theée orifices had different diameters and, depending
on the desired particular discharge_in each branch, orifices
of certain'diameters were placed in the end pieces attached
to the branch~pipes; If for a particular wye and a particular
flow condition,vWater level in the gage-tanks cbuld not be
6bser§ed éimultaneously due to manomotric levels being lower
or higher than the limits of observation imposed by the hook
gages; diamétér of the orifices in one or both the branches
was changed until the desired resﬁlt was achieved. These
;orifices were machined from one side to obtain a clean and
_sharp édge free from any burrs; In all experiments the
‘orifices were placed in such a way that the sharp, undamaged

édges of the orifices were facing the flow.
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Measurement of Time: A degree of accuracy up to

0.1 second was obtained for determining time intervals in
which a particular weight of water was collected in the
weighing tanke. For this purpose an electric clock feading

directly up to 0.1 second was used.

Measurement of Temperature: To determine Reynolds"

numbers for the corresponding friction loss coefficients in
the main and branch pipes, temperatures were recorded by
using a thermometer, and readings obtained to the nearest
half degree of Fahrenheit. |

Measurement of Weight of Water: This was done by

means of a weighing tank having a maximum capacity of 20,000
lbs., the scales of which were tested and found correct
before starting the experiments.

Pressure Measurements: In spite of the fact that

supply was from an overhead tank under constant head conditions
in which no dynamic pressure fluctuations could have been
possible, and that two sets of straighteners were provided at .
'the'upstream end of a long straight main pipe, some pressure
fluctuations were observed in the manometric tubes connected

to the different piezometric rings.: It could be definitely
established by process of eliminétion that.these were turbulence
v'induced preséure’fluctuations. It was observed that maximum

'fluctuation in water level was of the order.of 0.05 fte The
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pressure fluctuations, as observed visually, were in the
neighbourhood of 30 cycles per minute. The corrective measure
adopted for obtaining preséure differences to the required

" degree of accuracy was to adjust’ethe water levels in the
different gage tanks corresponding to average levels in the
manometric tubes, the area ratio of the tube (diameter, % inch)_
to the gage tank (diameter, 53 inches) being approximately
1:480 and then allow 2 to 3 hours to elapsee. By this procedure
it was observed that water surfaces in the tanks assumed
constant levels, automatically averaging out pressure
fluctuations in the manometric tubes.

Discharge Measurements: As the degree of accuracy

in obtaining velocity heads at points of piezometric rings
ﬁas directly related to discharge, it was necessary to measure
the different discharges accuratelye.

Combined discharge through the main pipe was obtaihed
by allowiﬁg both the branch pipes to discharge into the
weighing tank simultaneously. The discharge ffom each of the.
branch pipes was then obtained separately. It was observed
that discrepancies occurred in measurement of discharges unless

a sufficiently long time interval was provided. For combined

% Note: This measure was adopted to reduce the period required
for the water levels to become steady in the gage tankse. Water
" was either poured into or taken out from the tank until its
level approximated the average water level indicated in the
manometric tubes.
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~discharge and for the discharge from the right brahch pipe thé
necessary time interval was found to be about 300 seconds,
whereas for the left branch pipe the required time interval
was. 500 seconds. For all the experiments conducted, the time
intervals mentioned above were adhered to, and Column 3 of
Tables 10 to 14 show that the maximum difference in time
intervals for weighing a particular quantity of water from
the main, right, or left branch pipe did not exceed about
0.1%. The velocity head calculated on the basis of discharge
so obtained was thus correct up to a thousandth of a foot,

the degree of accuracy required.
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CHAPTER 1I.
BASIC CONCEPTS RELATING TO HYDRAULIC LOSSES IN WYE

2.17‘ THEORY: It is assumed that the measurement of piez-
omefric heads has been made afﬁer stable flow conditions have
been established and after the water levels in the different -
gage tanks were steadye.

For a horizontal piping, the energy losses can‘be.
exbressed from the energy equation of Bernoulli as follows:

h = h +hvr* Ah ﬂ'hfm +hfr seseeo (l) A

pTr

hpm+hvm hpl‘fhvl"‘bh +hfm+hfl eeecso (1) B

(See Page 16).

pm * Rym

[ 3]

Defining Q as discharge; A, area; hp, pressure head; hy,
velocity head; hg, loss of head due to friction; Vi, mean
velocity in the pipe; Vp, velocity at piezometric ring and
' deéignating subscripts m, r and 1 to main pipe, right and left
branch respectively the following equations can be obtained.
Coptinuity is given by: .

| Qn = Qr + Q]  eeoee (2)

Average velocity in the main pipe is given by:

- Q
le - .A:—;n;i- Ceeeve (3)

Similar ekpressions are valid for avefage velocity in the
right or left branch; Qp, Q1, Arl, A1) being known. Velocity

at the piezometric ring S on the main pipe is given by:
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- Om
Vm2 = 1;1-2- ecece . (lp)

Similar expressions for velocity at the piezometric rings D3
or Dp on the right or left branch can be obtained in terms of
" Qrs-Q1, Ar2 and Aj2. Equations (3) and (4) are required to
distinguish the avefage felocity related to friction losses,
and the average velocity at the piezometric rings which are
related to velocity heéds at these rings.
Velocity heads hyp, hyr, hyl in the main, right and
left branch pipes can be determined once velocities are obtained
from equation (4).

The localized loss of wye can be expressed as:

Ahy, = (hlf)‘m - hpr) - (hey + hfr)' + (hym - hvr)
Ahr = Apr - (hfm + hfr) + (hvm - hvr) ) 00000“1(5)
Similarly ' — |

ahy = (hpy = hp1) - (hpy + hey) + (hypy - hvl)’

ahy = 4py - (hgy + hey) + (hyy - hyl) Ceeees (6)
Finally wye loss coefficient 'K' for the right or left branch
pipe is given bys | -

- Ah '
K= —F/5F
Vm2
2g

Equations (5) and (6) have been used to determine

ceces (7)

localized‘wye loss at T, the theorétiéal centre of wye, and
equation (7) for determination of K for the followiﬁg flow -

conditions:
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(a) Symmetrical Flow: The discharge in the main
pipe is divided equélly between the right and left branch
pipes.

(b) Unsymmetrical flow: The discharge is divided
unequally in the two branches with the discharge ratio )
ranging from O to 1l. |

(c) One Leg Flow: The discharge is wholly diverted
to the right or left branchs

In the figure the hydraulic grade lines and the total
energy grade lines have been shown from S to D3, Dp, assuming
that all wye losses are localized at the theoretical centre T.
In addition to these localized wye losses, piezometric and |
velocity heads and loss of head due to friétion at locations

-

S; T, D1, D2 are also indiéated. i
‘ | The discharge passing from the main pipe through the
wye into the branch pipes causes formation of vortices and
turbulence'in the wye. Mixing is carried a considerable
'distance and extinguished slowly while proceeding in the
branch pipes. The effect of vortices and turbulence in the
wye is extended into the main pipe for a very short disﬁance

‘only. The distance of S from T,has,itherefore, been kept

much shorter than the distanée of Dy and Dy from T.



19
CHAPTER III.
PRELIMINARY INVESTIGATICNS

3.1. PRELIMINARY EXPERIMENTS AND RESULTS: A complete set of

experiments for symmetrical, unsymmetrical and one leg flow
was condﬁcted for the 90° small spherical wye and the results
tabulated in the way as shown in Tables 10 to 1l4es On exam-
ination of the results so obtained, it was found that (i) the‘
head loss in the wye was © . different for the two branches,
{ii) the piezometric readings of the central and downstream
gage tanks differed considerably, (iii) there was variation
in consecutive tiﬁe intervals when a particular discharge

was measured, (iv) discharge from the left Branch pipe was
consistently larger than that from the right branch pipe and
(v) there was considerable turbulence induced pressure

fluctuation (about 0.100 ft.) in the manometric tubes.

3.2.. INVESTIGATIONS: These were undertaken with a view to

determine the causes and to effect changes in the apparatus
until the discrepancies were removed. A nuﬁber of test runs
-were conducted to find factors responsible for the‘discrep-
‘ancies observed. |

While a particular experiment was in progress, it

was found that air was trapped in the flexible tubing connected
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.to the uppermost piezometric points on the different pipes
and hence the top piezometric connections were pinched off
to eliminate the source of this error.

By observation it was foundvthat a relatively large’
quantity of air was necesSar& to obtain the condition "discharge B
into free atmosphere"™ and, hence, large wooden troughs.were
provided for both branch pipes. It was also noticed that the
maximum variation occurred in measurement of ‘discharge from
the right branch pipe due to surge waves in the collecting
systema When the wooden trough carrying water from the right
brénch pipe wés éxtended so ‘as to discharge in the right hand
flume (Figure 1) an immediate improvement was found.

Velocity traverse: An unsymmetrical velocity

distribution was found when a velocity traverse was made
across the main pipe about 6 inches from the wye, the traverse
station being shown in Figure 3. The resulting flow distrib-
ution is shown in Figure §/based on observations recorded in
Table 3 which conclusively proved that the velocity distrib-

ution was not symmetrical about the axis of the main pipe.

1

3¢3. MODIFICATIONS: To improve the pattern of flow the

following modifications were carried out in the main pipe .

section:

(i} The 4 inch standard steel pipe was replaced by a new

section of 5 inch standard steel pipe (Figure 2).
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(ii) Two sets of flow straighteners each 2 ft. long were
prqvided in positions shown in Figure 2,
(iii) The controlling valve was rotated and made symmetrical
'with the direction of flowe
These modifications wére proposed not only to improve
therflow conditions in order to eliminate the discrepancy in
discharge in the two branches but also to provide the maximunm
straight portion of the main pipe with a larger length-
diameter ratio of approximately 75 to dampen turbulence induced
pressure fluctuations.
After incorporating the changes in the main pipe
section, the results of the velocity traverse, made at the
same point at which the previous traverse was made, and shown
'in Table 4 and Figure 9, indicated an entirely symmetrical
velocity distribution about the axis of the main pipe with the
maximum velocity occurring at the centree.

Branch Pipes: Because the length of the branch

pipes was only about 3.75 ft., givingla length-diameter ratio
of about 12, it was considered necesSary to increase the
length so that most of the vortices and turbulence created

in the wye would be extinguished by the time water reached
the piezometric rings on the branch pipes. At the same time
too 1argé an increase in length of branch pipes would have

resulted in magnifying the effect of friction losses, and
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thus would have reduced the degree of accuracy in obtaining
the wye losses. The branch pipes were consequently replaced
by two sections of pipe'as shown in Figure 3. The length-
diameter ratio was thus increased from 12 to approximately 30.

Location of Piezometric Ring on the Main Pipe:

Some doubt was felt about the proximity and influence of thé
wye on the readings of the piezometers on the main pipe
because of turbulence and formation of vortices in the wye.
In order to check this situation, a velocity traverse was made
under extreme conditions of maximum discharge of 0.92 cfs in
the right branch with the left branch completely shut-off.
Thé velocity profile so obtained, shown in Table 5 and Figure
10, indicates practically symmetrical flow about the axis of
the main pipe, proving that the 1ocati§n point of the piezo-
métric ring on the main pipe was outside the influence of the
wyee

Friction Losses in Branch Pipes: As a result of

p;eliminary investigations, it was also,decided to measure
friction losses at more or less a constant temperature which,

in the present case, was 65° F and to keep the water temperature
during the subsequent schedule of experiments on all the wyes
close to this temperaturee. vBy adopting this procedure,

friction losses in the branch pipes could be deternined with

a greater degree of accuracye
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CHAPTER IV.
EXPERIMENTAL PROCEDURE

The preliminary investigations having deterhined
theﬁpattern'on which the experimental work was to be carried
out, the procedure as described below was adopted with a view
to obtain graphicai representation of wye loss coefficients K
for each of the five wyes for the cases of symmetrical,

unsymmetrical and one leg flow.

Lelo FRICTION LOSSES: To obtain the different wye losses as

per equations (5) and (6), it was first necessary to determine
friction losses in the main pipe for the length S to T
(Figure 3) and from T to Dy and D, in the branch pipes.

Friction Losses in the Main Pipe: To obtain

friction losses in the main pipe, two of the gage tanks were
connected to piezometric rings at S and Sj as shown in Figure 3.
Friction losses were determined for different discharges
ranging‘from 0e32 to 1le5 cfs and results thus obtained

(Table 6) were plotted on log-log séale as shown in Figure 11,
These friction losses are for tﬁe length SS3; (Figure 3) which
was 34375 fto For the length ST the.friction loss that
corresponded to any parﬁicular discharge was determined from
the graph in Figure 1l. The lengths SS), and ST for the

different wyes are shown in Table 2.
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Friction Losses in the Branch Pipes: The

experimental set up for &giermination of friction losses in
the branch pipes is shown in Figure 12. Four sections of
pipes, designated with A, B, C, D, each having 3.75 inches’
nominal ID and 4.5 ft. long, were duly fitted with flanges
and piezometric fings to form the right and left branches.
Different combinations were tried so that friction losses for
all discharges for these two legs would be equal. It was
found that the two branch pipes could be formed by putting
Sections A, C and B, D together which then would have almost
identical friction losses. For the 90° wyes sections A and C
formed the right branch pipe and B, D the left branch pipe.
For 60° wyes it was found that more symmetrical discharges
and pressure elevations were obtained by having Sections A, C
as'the left branch pipe and B, D as the right branch pipe.
Friction losses were determined for length B1B2
(= 9 ft.) for Sections A, C and B, D (Figure 12) as in the
case of the main pipe for different discharges ranging from
0e32 to 0.75 cfs., and the results thus obtained (Tables 7
& 8) were plotted on log-log scale as shown in Figures 13 and
14« It may be seen from the two graphs that for high dis-
chérges, friction losses are almost the same; but for low
" discharges, the branch pipe formed by Sections A, C had
somewhat less friction losses than the branch pipe formed

by Sections B, D.
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Friction losses from T to Dy, Dp (Figure 3) for
the two branch pipes were obtained in a similar way to that
of the main pipe. The lengths SpDp, S3Dj, TDy and TDp
(Figure 3) for the different wyes being the same for the

two branch pipes, are shown in Table 2.

Reynolds Numbers and Friction Factors for Main &

Branch Pipes: For the different discharges for which friction

losses were determined for the main and branch pipes, Reynold's
numbers and the corresponding friétion factors were determined
(Table 9) and plotted on Méody's diagram in Figure 15. It may
be observed that the points thus obtained for the branch pibes
adhere very closely to the curve for smooth pipes. Some of

the points on the main pipe are slightly shiftede.

LaeZ2e DETERMINATION OF AREAS OF MAIN AND BRANCH PIPES: Both

for the main and branch pipes the following data were deter-
mined separately: |

(a) Mean area of the pipe for correlation of friction loss

tb the mean velocity in the pipe,

(b) Area at piezometric rings to calculate' the velocity heads
used in equations (5) and (6). |

For the main pipe the area was detefmined by measuring the
diaﬁeter near the centre and at each end in four different
positions and then taking the average of the 12vvalues. The

nominal ID of the pipe was 5.25 inches but the mean diameter
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was found to be 5.252 inches. 'The same value of the diameter
was also found at the piezometric ringe.

For the branch pipes, the required areas were found
by measuring diameters at both ends of each section in four
" different positions and taking ﬁhe mean of the 16 valﬁes thus
' obtaﬁhed. Tabie 1 indicates the mean diameters and mean areas

and areas at piezometric rings for the main and branch pipese.

Le3e DISCHARGE AND PRESSURE MEASUREMENTS: Discharge was

.determined by measuring the time and weight of water. Care
lwas taken to ensure that a steady condition was reached after'
any changexin control valve position.

The extent of pressure fluctuations in the mano-_
metric tubes connected to the main and branch pipes was
observed closely and water ievels in respective gage tanks
"were adjusted to represent average pressure at each of the 3
piezometric rings. A period of not less than 2 hours was
cdﬁsidered sufficient for thé water level in the gage ténks
to assume positions representing the actual pressures and only

‘thengage readings were taken.

Lelo EXPERIMENTAL PROCEDURE: For each of the five wyes tested,

hydraulic losses had to be obtained for three different
conditions of flow, (i) symmétrical flow, (ii) unsymmetrical

flow and (iii) one leg flow. For each wye, therefore, there
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“were three series with a total number of twelve experiments

to be performed. Again, for'each condition of flow, losses
had to be evaluated for specific discharges for comparison

of results. For symmetrical flow, discharges for which
observations were taken were 0.32, 0.5, 0.75, 0.92, 1.1 and
l.5 cfs: for one leg flow these discharges were 0.32, 005;
0.75 and 0.92 c¢fs. In the case of unsymmetrical flow, as
already explained, with combined discharge maintained at

0.75 cfs for 90° wyes and 0.92 cfs for 60° wyes, the discharge
ratio between the branch pipes was varied from 0 to 100% by

placing orifices of different sizes into the two branch pipes.

belie EXPERIMENTAL PROCEDURE: The sequence of experiments

with a particular wye was as follows:

(i) The wye was first bolted to the branch pipes.
- Connection between the wye and the branch pipes were checked
by hand so that the joints were without offsets as far aé
possibles. The connection of the wye was then made to the
main pipe with the help of the locating pins.

(ii) Starting with symmetrical fléw conditions, after
placing orifice No. 1 in both the branches, the opening of
the control valve was adjusted by trial and error so that
the discharge was as near l.5 cfs as possible. After observing
each piezometric tube, water levels in the gage tanks were

adjusted and the necessary time allowed for the water levels
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,becohe'constant. Observations were then made separately
for combined discharge, discharge from right and left branch
}'vand for gage readings of water levels in tanks connected to
the,ﬁain and branch pipes.. | |

The control valve waé then closed and No. 1 orifices
in the branch pipes were replaced by Noe. 2 orifices and the
whole procedure repeated forldischarge of l.1 cfs. This
précedure was continued until all the experiments under this
flow condition were compléted for the discharges 1.5, 1.1,
0.92, 0.75, 0.5 and 0.32 cfs,

(iii) The éxperiment for unsymmetrical flow condition was
carried out next, after placing different orifices.in the
branch pipes and repeating the procedure,‘the series was
completed for a variation of discharge ratio from O to 100%.

‘(iv) For one leg flow, one branch pipe was completely
‘blocked and orifice numbers 1, 2 and 3 were placed one after
the other to obtain’discggrges of 0.92, 0.75, 0.5 and 0.32 cfs.

Similar observations as in the previous flow conditions were

s

then made.
(v) After completing experiments on oné wye another wye
- was tested and a similar procedure adopted to carry out the
experimentse. , |
The tabulation of results and graphical represent-

ation of points, details of which have been given in the
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Afollowing chapter, were proceeded with simultaneously. Any
discrepancy in wye ioss coefficient or discontinuity of curve
joining the points on the graph was corrected immediately by
repqating the-experimeﬂt or by applying other remedial
measures if required. ‘

In particular, when it was found that for un-
symmetrical flow, the curve was not well-defined for discharge
ratio around zero, additional points were obtained in the

vicinity by using orifices 7 and 8 in the branch pipe.
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CHAPTER V.

RESULTS AND CONCLUSIONS

-5.13"RESULTS OF EXPERIMENTS: The wye losses and wye loss
coefficients have been obtained for all experiments on each
of the five wyes. These have been shown from Tables 10 to li.

Results of experiments conducted on the different
wyeé are shown graphically on Figures 16 to 29.

Two graphs have been drawn for each of the wye
models. The first graph shows wye loss coefficient K against
discharge in the main pipe. The second graph shows the wye
loss coefficient X versus discharge ratio ~ between the
branch pipe and the main pipe. Again, thédfirst graph com-
prises 3 curves for (i) syﬁmetrical flow, (ii) open branch

pipe and (iii) closed branch pipe.

5.2. CONCLUSIONS AND DISCUSSION:

Symmétrical Flow: For symmetrical flow (Figure 26),

. the wye .loss coefficients for all the wyes show slightly
larger values for low discharges. For high discharges the

value becomes more or less constant as given below:

1
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Particulars of Wye Value of K
90© large spherical Oulity
900 small spherical 0.30

) 900 tapered | 0.16
600 tapered wye (A) 0.088
600 tapered wye (B) 0.080

The considerable variation in the value of K between the

different wyes may be observed.

K. for Open Branch: In the case of 90° wyes the

value of K falls with increése in discharge as shown in
Figure 27, whereas for 60°‘wyes the value increases with
'increase in discharge, but fér all wyes the values seem to
become constant for high dischafgeso The Qalue of X for

large discharges for the different .wyes is given below:

Particulars of wye v ' - Value of K
90° large spherical 0.92
90° small spherical’ 0.86

; 90° tapered : : : OeL7
60° tapered (A) S 0.4l
60° tapered (B) | 0.41

For this condition of flow also there is a large variation
in value of K for the different types of wyes.

K for Closed Branch: For the closed branéh there

is little change in the value of K for all wyes as seen from
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 Figure 28, the smallest value of K being O.L5 and the largest

value, 0.60.

Unsymmetrical Flow: Figure 29 gives corresponding'

valﬁes of K for different discharge ratios for each of the
five wyese. |

A signifiCant»féct that emerges for unsymmetrical
flow is that the minimum value of K need'not necessarily
occur for § = 0.5, ie.es, when flow is equally divided between
the two branches. The minimum value of K and the correspond-

'ing discharge ratio for each wye is given below:

Y
~

Particulars of Wye ~  Minimum value Corresponding

of K discharge ratio
90° large spherical 0.41 g 0.14
90° small spherical 0.26 0.38
90° tapered C 0.17 , 0.50
60° tapered (A) | 0.085 | - 0.54

60° tapered (B) 0.080 . 0.50
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Notation:

Appendix

internal average cross-sectional
area of the main pipe in sq. ft.;

internal average cross-sectional
area of the right branch in sqe. fte;

internal average cross-sectional
area of the left branch pipe in sq. fte.;

internal area of the main pipe at
piezometric ring in sqe. fte;

internal area of the right branch pipe
at piezometric ring in sq. fte;

internal area of the left branch pipe
at piezometric ring in sq. ft.;

length of the main pipe in ft., from
S to T, the theoretical centre of

Wye, (Fig. 3);

length of the right branch pipe in
ft. from T to Dy, (Fige 3):

length of the left branch pipe in
fte from T to D , (Fige. 3);

discharge in the main pipe in cfs;
discharge in the right branch pipe in cf's;
discharge in the left branch pipe in cfs;

ratio of discharge in the right or left
branch pipe to discharge in the main pipe;

average velocity in the main pipe in fps;

average velocity in the right branch pipe
in fps; , : , _

The following symbols have been used:

35
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. average velocity in the left branch pipe

in fps;

velocity in the main pipe in fps at the
piezometric ring S, (Fig. 3);

velocity in the right branch pipe in
fps at the piezometric ring D3, (Fig. 3);

velocity in the left branch pipe in
fps at the piezometric ring Dy, (Fig. 3);

piezometric head in the maln pipe in ft.

‘at S, (Flg.,B)

plezometrlc head in the right branch pipe
in fte. at Dy, (Fige. 3);

piezometric head in the left branch pipe
in ft. at Dy, (Fig. 3);

velocity head in the main pipe in ft.
at S, (Fig. 3);

velocity head in the right branch pipe
in ft. at Dj, (Fige. 3);

ve1001ty head in the left branch pipe
in ft. at Dp, (Fig. 3);

friction losses in the main pipe in ft.
from S to T, (Fig. 3);

friction losses in the right branch pipe
in fte from T to D3, (Fige 3);

friction losses in the left branch pipe
in ft. from T to Dy, (Fig. 3);

difference of piezometric heads in ft. at
S and Dy, (Fig. 3);

difference of plezometrlc heads in ft. at
S and Dz, (Fige 3);

36



‘between S and Dy, (Fige. 3);

37

locallzed loss of head of wye at T
between S and Dj, (Fige 3);

localized loss of head of wye at T

Wye loss coefficiente.
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‘Table 1 Areas,
Main and Branch Pipes.

Description - Mean Mean area  Diameter at Area at
diameter (sqesfte.) Piezometric Piezometric
(inches) ring (inches) rings (sq.ft.)
Main pipe 5.252 0.1503 2.251 0.1503
Branch pipe 3.74L6 0.0764 3.750 0.0766
(Sections A,C) - A ,
.Branch pipe 3.750 0.0766 3.748 0.0766

(Sections B,D

Table 2 - Distance from Theoretical Centre of Wye
to Piezometric Ring*
Main and Branch Pipes

Particulars Distance Distance Distance Distance Distance Distance

of Wye from S from ST from T from TDy,TDy

.to point point of (ft.) to point point of (ft.)

of inlet inlet of (82,55 = outlet$:,S;

S(fte) to T outlet to D3,Dp .

. (ft.) (ft.) (£t.)

90° large 0.500 00243 00743 0.355 8,833 9.188
spherical ' ' A o
90° small 0.500 0.240 0,740 0.360 8.833 9.193 .
spherical ' ' '

90° tapered  0.500 0.125 0.625  0.374  8.833 - 9.207"
?g; tapered 0,500 - 0.083 ' 0.583 00497 8.833 - 9.330

?Oo'tapered 0.500.  0.318  0.818  0.497  8.833  9.330
B) | S o o

A

% See Fige 3



Table 3 - Velocity Traverse,

Symmetrical Flow, Preliminary Investlgatlonso

Discharge

Temperature

Station
NOo

No o 0 N SCU-IWE Y o

10107 cfs
70° F
Calliper

reading
(inches)

0,407

0.657
1,157

1.657
24157
2,657

3.157

Distance .

from

Station 1
(inches

0
0.250
0.750
1.250
1,750
20250

- 2,750

34250
3.750
L2250
Lo 750
4o973

50223

Table 4 Velocity Traverse,
Symmetrlcal flow, Flnal Test Set

Discharge -

Temperature

Station
Noo

O 00~ O\ W

lolo Cfs
65° F
Calliper

reading
(inches)

oMK
e

61
61

© & 0 0 0 © o 0 o

Distance

from

Station 1
(inches)

0,00

0,250
0,750

1,250 -

1.750
2.250
2,750
3.250
3,750

L2250

o750

5,000
50191

Manometer
readings
(inches)

5,00

8,90
11.30
12.60
13,40
13.75
13,50
12.75
11,80

10.60°

8.80
7.70
Iy 60

B I S I R

HERFDNDNDMDWND
© 06000 0 0 0 o
O O\NE ONO N
COO0OO0OOOWNO

Upo

Manometer
readings
(inches)

470
7.80
10,00

11035

12.40
13020
13.70
13.65

. 13.05

11.95

10,15

8,80
5.10

+ 4+
HEHEDNDMDWWDNDND O

¢ 06 0 © 0o ©0 © e @& ©0 O ©
O WH W N N0
_OOOngO\nOO\n\no\n

-]
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Velocity
head
(inches)

6,06
10.65
1345
15.15
16,30
17.00
16,40
15.35

- 14420

12.80

10.40.

8.80
50,60

Velocity
head
(inches)

5065

9.00
11.85
13,60

- 14.90

16,00

16,85

16.95
15.90
14635
12.25
10,60

6,10



4O

Table 5 Velocity Traverse,
T One Leg Flow, Final Test Set Up.

Discharge 0.917 cfs

Temperature 65° F

Station Calliper Distance Manometer Velocity
Noe. reading from readings head

(inches) Station 1 (inches) (inches)

(inches)

l 0. 10 ’ Oooo 5.1+5 - 1025 14'.20

2. 0,660 0.25 7.75 - 0.85 6.90 -
3 1.160 0.75 9,25 - 0.55 8.70
L 1,660 1.25 10,30 - 0o45 9.85
5 2.160 l1.75 10,95 - 0625 10.70
6 2,660 - 2025 11,30 - 0,12 11.18
7 3.160 275 11,30 - 0.10 11.20
8 30660 3025 ‘ 10095 - 0.10 10085
9 Lpoléo 3075 10035 - 0020 » 10015
10 ‘ L o660 Le25 9,45 - 0.25 9.20
l‘l 5 160 14-075 8015 - 0055 7 60
12 50 5.00 720 = 0,90 6.30
13 : 56 5o20 5¢15 =~ 0,95 4,620

. e

Table 6 Friction Losses,
- Main Pipee.

Discharge Temgerature Length Area Friction Loss
(cfs) , (fto) (sqefto) (ft.)
"1o48 65 30375 0.1503 - 0,170

1.11 6Le5 30375: 0,1503 - 0.098
O 748 . 66 3'375 001503 0.048
00498 - 65 36375 0.,1503 0.022
0,322 - 6L 3

2375 0.1503 0.010



Table 7

L1

Friction Losses, -
Branch pipe, Sections A and Ce
- Discharge— Temgerature Length - ‘Area Friction Loss
(cfs) (fte) (sqefte) (fte)
007kl 6lLe5 . 9.00 0.0764 0,604
0.501 6L 9.00 0.0764 0.300
0.321 64 . 9,00 0.0764 0.136
0.200 6445 9.00 0.0764 0.059
Table 8 Friction Losses
Branch pipe, Sections B and D.
Dlscharge Temperature Length - Area Friction Loss
(cfs) (F) (ft ) (sqefte) (ft.) -
0.746 65 9.00 0.0766 ° 0.602
0.321 64 9.00 0.0766 . 0.138
0.198 63.5 9.00 0.0766 0.062
Table 9 Frlctlon Factors and Reynold Number
— Main and Branch Pipes
Particulars Discharge Velocity _Length  Friction Reynold's
: (cfs) head diameter factor Numbg
BranCh Pipe . Oo 7hl+ 1014-73 2807 .011;,2 2e 71
(Sections
A-C) 0.501 0.670 28.7 .0155 1.79
n 0.321 0.275 28.7 0172 l.14
" ‘ 0.200 0,107 28.7 .0193 0.72
Branch Pipe 0.746 1.473 2807 0142 2.72
(Sections :
B-D) 04499 - 04657 28.7 .0156 1.81
n 0.321 0.273 28.7 <0174 lel4k
" , 0.198 0.103 28.7 .0207 0.72
Main Pipe 1.[}80 10508 ) 7.71 00114.6 3078
" 1,110 0.849 771 «0150 . 2.90
" 0.756 0.392 7«71 .0167 1.94
" 0.498 0.170 7671 .0168 - 1427
n 0.324 0,072 771 50180 0.83
" 0.201 0,029 771 »0230 0.50



Table 10.

Wye Loss

Coefficients for 90° Large Spherical Wye (Symmetrical Flow)
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Table 11. Wye Loss Coefficients for 90° Small Spherical Wye (Symmetrical Flow)
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Table 11 (cont'd).

Wye Loss Coefficients for 90 Small Spherical Wye {Unsymmetrical and Cne Leg Flow)
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Table 12. Wye Loss Coefficients for 90° Tapered Wye (Symmetrical Flow)
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Table 12 (cont'd). W¥ye Loss Coefficients for 90° Tapered Wye (Unsymmetrical and One Leg Flow)
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‘Table 13. Wye

Loss Coefficients for 60° Tapered Wye (A), (Symmetrical Flow)
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Table 13 {cont'd)}. Wye Logs Coefficients for 60° Tapered Wye {A), (Unsymmetrical and One Leg Flow)
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Table l4. Wye Loss Coefficients for 60° Tapered Wye (B), (Symmetrical Flow) .
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14 (contfd}. Wye Loss Coefficients for 60 Tapered Wye (B}, (Unsymmetrical and One Leg Flow)
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Fig. 1. General arrangement,
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" 90 Large spherical wye 90°Small spherical wye

Fig. 4. Details of wyes,



 Fig.5. Geometric

details of 90° tapered wye.
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Fig. 7. Orifice arrangement.
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Fig. 8. Velocity traverse across main pipe near wye during
preliminary investigations, .
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Fig., 12, Experimental set up for measurement of friction losses in
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. .
Fig. 16, 90 Large spherical wye,symmetrical & one leg flow.
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Fig. 18. 95 Small spherical wye, symmetricel and one leg flow
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Fig. 27. Wye loss coefficients for all wyes,one leg flow (open branch),
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Plate 1 .

Manometric board with gage tanks
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Plate 4, Main pipe and control valve
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Plate 5. Control valve



Plate 60

Wye in place
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Plate 7. 90 tapered and 90 small spherical wye.



Plate 8. 90° tapered and 90° small spherical wye.
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Plate 9, Orifices and end piece
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