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SOME INVESTIGATIONS INTO THE FINITE ELEMENT METHOD  
WITH SPECIAL REFERENCE TO PLANE STRESS 

ABSTRACT 

Plane stress st iffness matrices are derived e x p l i c i t l y 
for square Isotropic elements under different assumptions on 
the stress d is t r ibut ion . An expl ic i t (8 x 8) matrix i s ob
tained under the assumption of uniform a , a „ l inear T 
and thus i t i s shown that the Gallagher matrix belongs t 2 the 
c l a s s of parametric matrices. Two (10 x 10) matrices are 
obtained under the assumption of l inear a x , 0yS T x v using 
inter ior nodal translations and corner edge rotations res
pectively as additional generalized displacements. These two 
matrices do not appear suitable for general usage but w i l l 
perform as well as the Turner matrix under the same nodal 
loads. A (12 x 12) matrix i s derived under the assumption of 
hyperbolic c x , a v , and parabolic T x v , again exemplifying the 
use of corner edge rotations as additional generalized d i s 
placements. This matrix behaves unexpectedly with varying 
Boisson's r a t i o . 

A method of evaluating st iffness matrices, which re 
duces the necessity of comparing f i n i t e element solutions 
w i t h analytical ones, i s formulated. In this method a com
parison is made of the strain energy of deformation produced ' 
within a f i n i t e element by the different matrices under the 
same nodal loads. It i s shown that such comparisons require 
the study of special matrices i . e . the st iffness difference 
matrix and the Inverse difference matrix which are obtained 
from the matrices under comparison. It is proved that the 
results of the element matrix comparisons apply to the struc
t u r e . It i s shown that the strain energy of a f i n i t e element 
under normalised loads is bounded between the maximum and 
minimum eigenvalues of the inverse matrix. 

The strain energy comparison cr i ter ion i s used i n the 
study of parametric matrices. An 3 expl ic i t parametric i n 
verse i s obtained. Expl ic i t parametric eigenvalues are 
obtained for the inverse difference matrix and the s t i f f 
ness difference matrix, and i t i s v e r i f i e d that they give 
identical results for the matrix comparisons. It i s proved 
that the parametric matrices produce the exact s train energy 
under uniform nodal loads. It i s shown that the st iffness 
matrix parameter and the inverse matrix parameter represent 
a measure of the strain energy under non-uniform nodal 
loads so that the strain energy can always be bounded by 
varying the parameter. It is proved that i f s train energy 
curves are drawn with respect to structure sub-division 
then no two curves w i l l intersect . It i s proved that a l l 



parametric s train energy curves w i l l converge towards the 
true solution with progressive structure subdivision. A 
strain energy ordering is obtained for the parametric 
matrices and the following conclusions are drawn. The Plan 
matrix i s the best displacement matrix. The Gallagher 
matrix i s infer ior to the Turner, Plan, and Argyria-Melosh 
matrices. Constant stress t r i -nodal triangles are generally 
i n f e r i o r to the use of square elements. Matrices sat isfying 
microscopic equilibrium or capable of representing uniform 
stresses w i l l not necessarily yield good results . 

A method is proposed for obtaining upper bounds on the 
strain energy of a region under plane stress by replacing th 
continuum with a psuedo-truss system, the bar forces of 
which provide the equilibrium and se l f - s t ra ining solutions. 
Two examples of i t s application are presented, and an i n d i 
cation i s obtained that upper bounding by varying the 
matrix parameter w i l l give better results for the same 
structure subdivision. 
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SOME INVESTIGATIONS INTO THE FINITE ELEMENT METHOD  

WITH SPECIAL REFERENCE TO PLANE STRESS-

ABSTRACT 

This study of the F i n i t e Element Method i s limited to s t a t i c 

linear s t r u c t u r al behavior under small displacements and involving strains 

small as compared to unity. 

The f i r s t part of th i s study deals with the derivation of 

sti f f n e s s matrices for square is o t r o p i c elements under different assump

tions on the stress d i s t r i b u t i o n . An e x p l i c i t (8 x 8) matrix i s obtained 

under the assumption used by Gallagher of uniform a x, , l i n e a r T
x v -

Two (10 x 10) matrices are obtained under the assumption of lin e a r 

a , a , x using i n t e r i o r nodal translations and corner edge rotations x y xy 6 

respectively as additional generalized displacements. These two matrices 

do not appear suitable for general use but w i l l perform as well as the 

Turner matrix under the same nodal loads. A (12 x 12) matrix i s derived 

under the assumption of hyperbolic a x , a v and parabolic x x v , again 

exemplifying the use of edge rotations at corners as additional 

generalized displacements. This matrix behaves unexpectedly with varying 

Poisson's r a t i o . 

Since, i n general, there may be a number of st i f f n e s s matrices 

available for different classes of f i n i t e elements ( i . e . , elements for 

plane stress, plate-bending, s h e l l s , etc.,) the second part proposes a 

method for choosing the best matrix from an available set. This "best" 

matrix i s defined as the one which w i l l y i e l d the closest approximation 

to the true s t r a i n energy of deformation. In order to make t h i s choice 

a comparison i s made of the s t r a i n energy produced within a f i n i t e 



i i 

element by the di f f e r e n t matrices under the same nodal loads. It i s 

shown that such comparisons require the study of special matrices s i . e . , 

the s t i f f n e s s difference matrix and the inverse difference matrix which 

are obtained from the matrices under comparison. I t i s proved that the 

results of the element matrix comparisons generally apply to the structure. 

I t i s shown that the s t r a i n energy of a f i n i t e element under normalized 

loads i s bounded between the maximum and minimum eigenvalues of the inverse 

matrix. 

Next, the proposed method for choosing s t i f f n e s s matrices on 

the basis of s t r a i n energy comparisons i s v e r i f i e d by a study of ten plane 

stress matrices for square is o t r o p i c elements, which conform to the para

metric representation shown to apply to some plane stress matrices for 

square is o t r o p i c elements by Hooley and Hibbert. An e x p l i c i t parametric 

inverse i s obtained„ E x p l i c i t parametric eigenvalues are obtained for the 

inverse difference matrix and the s t i f f n e s s difference matrix^ and i t i s 

v e r i f i e d that they give i d e n t i c a l results for the matrix comparisons. I t 

i s proved that the parametric matrices produce the exact s t r a i n energy 

under uniform nodal loads. I t i s shown that the s t i f f n e s s matrix para

meter and the inverse matrix parameter represent a measure of the s t r a i n 

energy under non-uniform nodal loads,, I t i s proved that i f s t r a i n energy 

curves are drawn with respect to structure subdivision then no two curves 

w i l l intersect. I t i s proved that a l l parametric s t r a i n energy curves 

w i l l converge towards the true solution with progressive structure sub

d i v i s i o n . In a s p e c i f i c problem, where the s t r a i n energy curves are observed 

to converge monotonicallyj i t i s shown that i t i s reasonable to expect 

bounding of the solution s t r a i n energy by varying the parameter according 



to the procedure suggested by Hooley and Hibbert. A s t r a i n energy 

ordering i s obtained for the parametric matrices and the following con

clusions are drawn. The Pian matrix i s the best displacement matrix. 

The Gallagher matrix i s i n f e r i o r to the Turner, Pian s and Argyris-

Melosh matrices. Constant stress tri-nodal triangles are generally 

i n f e r i o r to the use of square elements. Matrices s a t i s f y i n g microscopic 

equilibrium or capable of representing uniform stresses w i l l not neces

s a r i l y y i e l d good re s u l t s . 

F i n a l l y , a method i s proposed for obtaining upper bounds on 

the s t r a i n energy of a region under plane stress by replacing the 

continuum with a psuedo-truss system s the bar forces of which provide 

the equilibrium and s e l f - s t r a i n i n g solutions. Two examples of i t s 

application are presented, and i n a s p e c i f i c problem where bounding 

by v a r i a t i o n of the Hooley-Hibbert parameter appears possible an 

indication i s obtained that upper bounding by this l a t t e r method w i l l 

give better results for the same structure subdivision. 
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SOME INVESTIGATIONS INTO THE FINITE ELEMENT METHOD 

WITH SPECIAL REFERENCE TO PLANE STRESS 

CHAPTER I  

INTRODUCTION 

1.1 D e s c r i p t i o n of the F i n i t e Element Method 

During the l a s t decade, the d i s c r e t e or f i n i t e element 

method has been e s t a b l i s h e d as an e f f i c i e n t and powerful t o o l f o r 

o b t a i n i n g d i g i t a l computer s o l u t i o n s to problems of the continuum. 

This method r e q u i r e s the f i c t i t i o u s d i v i s i o n of the 

continuum i n t o contiguous f i n i t e elements, which are j o i n e d together 

at d i s c r e t e p o i n t s c a l l e d Nodes. 

Each element has a s t i f f n e s s matrix which gives the 

r e l a t i o n s h i p between the g e n e r a l i z e d fbrces and displacements of 

the element. The element s t i f f n e s s matrices are summed to give the 

s t r u c t u r e s t i f f n e s s m a t r i x ; 

Many s t i f f n e s s matrices can be developed f o r a f i n i t e 

element depending upon the assumptions made on the v a r i a t i o n of 
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stresses or displacements over the element. Therefore the real 

problem l i e s i n developing s t i f f n e s s matrices with predictable solution 

behavior and i n choosing the best s t i f f n e s s matrix from an available set. 

1.2 Some Problems of the F i n i t e Element Method 

1. Bases have been defined for obtaining s t i f f n e s s matrices which 

w i l l provide bounds on e l a s t i c behavior (Melosh, 1962, pp.14-17) 

but no theoretical c r i t e r i o n has been proposed for choosing the 

best matrix from an available set of bounding matrices. 

2. Stiffness matrices have been generally evaluated by comparing 

f i n i t e element solutions to a n a l y t i c a l ones, but d i f f i c u l t i e s 

arise i n extrapolating the results to the i n f i n i t y of problems 

that may be formulated. 

3. A c r i t e r i o n has been developed for monotonic convergence (Melosh, 

1962, pp. 20-23) but there i s no guarantee that convergence w i l l 

be to the solution. Another c r i t e r i o n has been proposed for 

convergence to the solution (Bazely et a l , 1965, pp. 2-3) but 

i t s v a l i d i t y has not been rigorously established. 

4. Success i n obtaining bounding matrices has been li m i t e d . Also 

sometimes non-bounding matrices give better solutions than 

bounding matrices (Bazely et a l , 1965, pp. 21-23; Hooley and 

Hibbert, 1966, pp. 46-47). 

1.3 Scope of the Present Study 

This study i s limited to s t a t i c s t r u c t u r a l behavior under 

small displacements and involving strains small as compared to unity. 
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A s t r a i n energy formulation i s u t i l i z e d to derive some 

new s t i f f n e s s matrices f o r square i s o t r o p i c elements under plane s t r e s s . 

A s t r a i n energy c r i t e r i o n i s developed to compare s t i f f 

ness matrices. It i s used i n the study of plane stress matrices f o r 

square i s o t r o p i c elements which conform to the parametric representation 

shown to apply to some plane stress matrices for square i s o t r o p i c 

elements by Hooley and Hibbert. 

A square element with s p e c i a l stress transmission prop

e r t i e s i s conceived to provide an upper bound on the s t r a i n energy. 

1.4 D e f i n i t i o n of terms 

A s t i f f n e s s matrix s a t i s f y i n g complete displacement' 

compatibility within and across the boundaries of an element i s termed 

a displacement s t i f f n e s s matrix. 

A s t i f f n e s s matrix s a t i s f y i n g the d i f f e r e n t i a l equations 

of equilibrium within the element and complete stress continuity 

within and across the boundaries of an element i s termed an equilibrium 

s t i f f n e s s matrix. 

A s t i f f n e s s matrix which s a t i s f i e s displacement compatibility 

and equilibrium only at the nodes but allows d i s c o n t i n u i t i e s i n both 

stresses and displacements at the boundaries i s termed a hybrid s t i f f 

ness matrix. 

A s t i f f n e s s matrix from which r i g i d body modes have been 

eliminated i s termed a natural s t i f f n e s s matrix. 
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CHAPTER I I 

REVIEW OF PREVIOUS WORK 

The F i n i t e Element Method i s a generalization of 

matrix s t r u c t u r a l analysis procedures, described comprehensively by 

Argyris (1954, 1955) so as to include the use of two- and three-

dimensional elements. 

Levy (1953, pp. 449-454) and Argyris (1955, pp. 125-126) 

developed s t i f f n e s s matrices for s p e c i f i c two-dimensional s t r u c t u r a l 

components: an idealized quadilateral torsion box and a rectangular 

flanged panel under direct stress respectively. 

Turner, Clough, Martin and Topp (1956, pp, 805-823) 

considered the use of more fundamental elements whose behavior would 

approach that of the continuous structure i n the limit., They applied 

the idea to plane stress problems. Stiffness matrices for rectangular 

and triangular elements were obtained on the basis of assumed stress 

d i s t r i b u t i o n s . The number of modes i n the chosen stress d i s t r i b u t i o n 

was equal to the number of nodal displacements of the supported 

element ( i 0 e . with r i g i d body motions prevented). Clough (1960, pp. 345-

378) provided further applications to plane stress problems and noted 

an improvement i n answers with increased subdivision» 
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Melosh (1962j, pp. 14-17) showed that i f s t i f f n e s s 

matrices were developed so as to conform to the minimum potential 

energy and minimum complementary energy formulations, then the 

s t r a i n energy of the solution (as affected by the d i s c r e t i z a t i o n 

errors) would be bounded„ He indicated continuity requirements 

for displacement functions s a t i s f y i n g the minimum potential energy 

theorem,, (1963, pp. 1632-1633)= These requirements should be made 

more r e s t r i c t i v e by stating that they must conform to those for 

admissible functions of the potential energy functional being con

sidered. This statement would automatically include continuity of 

displacement as well as slope for the Kirchhoff plate element 

(Weinstock, 1962, p. 239), the lack of which produced a n u l l i f i c a t i o n 

of the lower bound character (Tocher and Kapur, 1965) of the 

rectangular plate matrix developed by Melosh (1963, p. 1634). 

Melosh (1962, pp. 20-23) also developed a s u f f i c i e n t 

c r i t e r i o n for monotonic convergence but noted that convergence to 

the true solution can only be guaranteed i f the displacement functions 

are complete. This requirement of completeness of displacement functions 

i s extremely d i f f i c u l t to s a t i s f y . 

Using a suitable displacement function with modes 

equal i n number to the nodal displacements Melosh (1962, pp. 31-32) 

developed a plane stress s t i f f n e s s matrix for a rectangular element 

insuring monotonic convergence. This matrix i s evaluated i n Chapter VI. 

Melosh (1962 s pp. 68-72) also proposed an hypothesis, 

based on a study of prism s t i f f n e s s matrices, for choosing the best 

matrix by comparing s t i f f n e s s matrix invariants. A the o r e t i c a l 
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basis i s provided for this hypothesis and i t s usefulness examined i n 

Chapter IV. 

De Veubeke (1965, pp. 145-197) has presented comprehensive 

theoretical procedures for the development of equilibrium and displace

ment matrices, and used them to develop such matrices for plane stress 

elements. He has also shown (1962, pp. 185-188) that the dual minimal 

analysis enables influence coe f f i c i e n t s to be bounded. 

In the case of equilibrium matrices, De Veubeke has shown 

(1965, pp. 183-188) that a r t i f i c i a l kinematic modes may be introduced, 

so that special care i s necessary i n using them. Also the generalized 

displacements associated with equilibrium matrices are weighted averages 

taken over the element edges. Therefore, i t seems to th i s author that 

the results obtained by thei r use would not ea s i l y give a clear picture 

of the physical behavior. 

. De Veubeke (1965, pp. 191-193) has shown how an upper bounding 

solution may be obtained i n terms of equilibrium and s e l f - s t r a i n i n g 

stresses. In Chapter V s a special square element i s proposed by means 

of which the.equilibrium and s e l f - s t r a i n i n g force systems may be obtained 

as bar forces of a psuedo-truss system. 

In Chapter V I 9 a method i s discussed for obtaining upper bounds 

on the s t r a i n energy by varying a matrix parameter. This method can be 

expected to apply to those s p e c i f i c problems where the s t r a i n energy 

curves are observed experimentally to be convergent monotonically. , In 

this method no a r t i f i c i a l kinematic modes.are created, and the generalized 

displacements refer to discrete points so that there i s a better appre

c i a t i o n of physical behavior thanf-w-ith the De Veubeke equilibrium t r i a n 

gular element matrix. 
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Pian (1964, pp. 576-577) has shown that the number of 

modes of the assumed displacement function can be more than the 

number of nodal displacements of an element. Then the p r i n c i p l e of 

minimum potential energy enables the derivation of the s t i f f n e s s matrix. 

He has suggested that solutions obtained by taking more terms i n the 

displacement function w i l l represent an improvement i n equilibrium 

conditions, Clough (1965, p. 91) has observed that t h i s does not 

generally lead to an improvement i n element s t i f f n e s s matrices. In 

Chapter VI, an example w i l l be shown for plane stress matrices where 

an improvement i s noted. 

Pian (1964, pp. 1333-1336) has also shown that the number of 

modes i n the assumed stress d i s t r i b u t i o n may exceed the number of nodal 

displacements of the supported element. Then the p r i n c i p l e of minimum 

complementary energy enables the derivation of the s t i f f n e s s matrix 

under prescribed boundary displacements for the element. I t i s suggested 

that t h i s procedure w i l l allow an improvement i n displacement compatibi

l i t y while ensuring stress equilibrium within the element. Plane 

stress s t i f f n e s s matrices having either more displacement modes or 

more stress modes are presented by Pian for square i s o t r o p i c elements. 

These are compared i n Chapter VI, 

Hooley and Hibbert (1966) have observed that, for square 

i s o t r o p i c elements under plane stress, s t i f f n e s s matrices may be 

generated by discrete values of a continuous s t i f f n e s s matrix para

meter. This allows a very simple representation of many plane stress 

s t i f f n e s s matrices for square i s o t r o p i c elements. I t i s shown i n 
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Chapter VI that these parameters correspond to different s t r a i n energy 

le v e l s . 

Hooley and Hibbert have noted that amongst the plane stress 

matrices for square isotro p i c elements tested by them (Turner, Melosh, 

Hrennikoff, McCormick), the Turner matrix, which i s hybrid ( i . e . , non-

bounding), gives the best r e s u l t s . Bazely et a l (1965, pp. 21-23) 

have also presented some results for triangular plate matrices, where 

simi l a r behavior i s observed. In Chapter VI, an explanation i s provided 

for this behavior. Also additional hybrid plane stress matrices are 

developed i n Chapter I I I . 

Irons and Draper (1964) and Bazely et a l (1965, pp. 2-3) 

have proposed that for convergence to the true solution, i t should be 

possible to represent a constant state of stress within an element. 

Hrennikoff (1941, pp„ A169-A170) o r i g i n a l l y used t h i s basis to j u s t i f y 

framework representation of continua t In Chapter VI, i t i s shown that 

parametric matrices, which are capable of representing constant 

stresses within the element, do provide convergence to the true solution 

with s u f f i c i e n t network refinement. 



CHAPTER 3 

DERIVATION OF PLANE STRESS STIFFNESS MATRICES 

3.1 Common Basis f or Derivation 

For l i n e a r l y e l a s t i c structures (under small displace

ments), the s t r a i n energy i s given by 

u I [ q j [K] <q> 
2 

where K i s the s t i f f n e s s matrix and q the vector of generalized 

displacements (Bisplinghoff et a l (1955), p. 23). 

Therefore the s t i f f n e s s influence c o e f f i c i e n t s may be 

expressed as 

K = - J i L i , j = l , n 
1 J 3q±sqj 

This formulation has been used previously by Green, 

Strome and Weikel (1961, pp. 1-9) to obtain a s t i f f n e s s matrix fo 

a t r i a n g u l a r plate element used i n approximating a r b i t r a r y s h e l l 

shapes. 
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The strain energy may be expressed as a homogeneous 

quadratic in the generalized displacements by either assuming a d i s p l a c e 

ment function or by assuming stress distributions satisfying the d i f f e r 

ential equations of equilibrium as well as compatibility. 

In the derivations made in this chapter, stress distributions 

are assumed. A matrix formulation for obtaining the stiffness matrix 

on the basis of these stress assumptions is set out as follows. 

For this matrix formulation i t is assumed that the stresses 

over the element are described by means of a local co-ordinate system 

for the element (i.e., in Fig. 3.2.1, if the axes are translated so that 

the origin coincides with corner 1 of the element, then a local co

ordinate system for the element is defined). 

Let the assumed stress distribution over an element be 

given by 

{a} = [A] {a*} 

where a is the stress vector, A, the transformation matrix, and 

a*, a vector of constants. 

Then, the strains are given by 

{c} = [D] {a} 

where D is a matrix of elastic constants and e . is the strain vector. 

On integration of strains, the nodal displacements may 

be expressed as 
{q} - [B] {a } 

where q is the displacement vector, and â  , the augmented vector of 

constants (i.e., constants a* plus the constants associated with 



r i g i d body motions). Note that the constants are equal i n numbe 

to the element nodal displacements. 

Now, the s t r a i n energy of the element may be expressed as 

u = I • f L°J <£> d V 

2 V 

1 / L^J [D - 1] {e} dV 
2 V 

Now { a i} = [ B - 1 ] {q} 

Also the matrix A i s augmented with n u l l columns to accom

modate c o e f f i c i e n t s a^ and i s redesignated A^, so that 

{o} = [A x] { a ^ 

Therefore {e} = [D] [A^ {a } ' 

[D] [A x] [B~ 1] {q} 

S u b s t i t u t i n g i n the expression f o r s t r a i n energy 

U - I " ' L q - I [ B - 1 ] T [A ] T [D] [ A l [ B _ 1 ] {q> dV 
2 V 1 1 

Therefore 

[K] = T—T 1- i ' . J = l . n 

1 / [ B * 1 ] 1 [ A X ] T [D] [A^] [ B - 1 ] dV 



This matrix formulation i s best suited for evaluation by 

the computer for arbitrary shapes of the element and different 

assumptions on the stress d i s t r i b u t i o n . 

However, i n the e x p l i c i t derivations presented here, for 

square i s o t r o p i c elements, i t was found more convenient to use a 

si m p l i f i e d procedure wherein the stresses over the element were 

defined i n terms of a global co-ordinate system. This a r t i f i c e 

reduced the number of unknown coe f f i c i e n t s which defined the stress 

d i s t r i b u t i o n s . 

3.2 Stiffness Matrices and t h e i r assumptions 

A constant-thickness, square i s o t r o p i c element i s con

sidered. The element i s assumed embedded i n the region shown i n 

Fig. 3.2.1 for which the stress d i s t r i b u t i o n i s assumed. 

The positive directions of the displacements and nodal 

forces and t h e i r ordering are indicated i n F i g . 3.2.2, for matrices 

developed i n sections 3.2.1, 3.2.2, and 3.2.3. 

3.2.1 Uniform a , a , x 

. x' y' xy 

These assumed stresses do not constitute enough indepen

dent modes for a square element with freedom of corner translations. 

Therefore the natural s t i f f n e s s matrix obtained i s singular. 

However the derivation i s completed because the s t i f f 

ness matrix parameter obtained for t h i s case i s of interest i n sub

sequent discussion (Chapter VI). Also the procedure f o r the other 

cases.is i l l u s t r a t e d . 
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The stresses are obtained from an Airy's stress 

function s a t i s f y i n g the Biharmonic equation. 

Thus 
2 2 

Airy's stress function $ = a| y + a
2
 x - a3 x y 

2 2 

Therefore 

a x = • $ y y = a i 

t> = a 

xy xy * 3 

e = 1 (o - ycr ) 
x i " y 

1 ( a : - ua 2) = u x 

E 

e = 1 (a - ua ) 
y E Y X 

1 ( a 2 - u a : ) = v 
E Y 

•Yxy ~ r x y 

E 1 



whence on integrating 

u = 1. (a - ya ) x + 2(1 + y) a y + ky + c 
E 1 2 E 3 1 

v = _1 ( a 2 - uaj) y - kx + c 2 

E 

Hence, the nodal displacements may be expressed i n 

terms of the arbitrary constants by inserting the nodal co-ordinates. 

Then 

u = (a - ya ) x 0 + 2(1 + y) a y 0 + ky 0 + c 
l E ~ E 

v i = (a2 - ua^ yo - kx D + c 
2 

u 2 = (a x - ya 2) (x Q + a) + 2(1 + y) a 3 y Q + ky Q + c1 

v = ( a 2 - ya x) y Q - k (x Q + a) + c 2 

u 3 = ( a j - y a 2 ) ( x p + a) + 2(1 + y) a 3 (y 0+ a) + k (y Q + a) + C j 

E E 

v 3 = ( a 2 - y a x ) ( y p + a) - k (x Q + a) + c 2 

E 

= (a, - Va2) + 2(1 + y) a 3 (y + a) + k (y + a) + 
E~~ E 

vi+ = ( a 2 — ya x) (y + a) - kx + c 2 

1 
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Now relations are derived between the arbitrary constants 

and the nodal displacements so that the strain energy may be expressed 

expli c i t l y in terms of the nodal displacements. 

a 1 - ya 2 u 2 - u x u 3 - u 4 ; u 2- U j + u 3- u 4 e x 

E a a 2a 

a 2 - p a l •• D % " v l „ v3 " v 2 _ v,- v 3 - v 2 e 
E a a 2a 

2 ( 1 a3 _ . V - - U i - V v 2 _ u 3- u 2- v,+ v 3 

E a a 

U ^ - U 3 - U g - V t + V 2 ~ V 1 | + V 3 _ ^ Xy 
2a 

Then the strain energy in the element i s given by 

t .y0+a xn+a 
U f f 0 f 0 C E ( e x

2 +e y
2 +2ye xe y) + E 1 Y x y

2 ( dxdydz 
0 y° X° l2(l-y2) 2(l+y) 2 

a 2t f E (e 2 e 2 2ye e ) E Y 2 

) ; x + y + M x + y' + _ 'xy 

|_2(1-U2) 4(l+y) 

Substituting for e x, e y, Y x y one obtains 

U-' — — [ ( u2" u l 4 u3-' u« t> 2 + K " irl*v3"^,2>2
+ 2u(u 2-u 1 +U3-u l +)(v^-v 1+v 3-v 2 

8(l-u 2) , 

Et [ u^- u i + u3~ u2~ v l + v2~ vk+ v 3 ] 2  

+ 16(l+y) 
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We know that the s t i f f n e s s influence c o e f f i c i e n t s are 

given by 

32U 
K i j = ss  1 , 3  =  n  

where are the generalized displacements. 

Here the generalized displacements are the nodal displace

ments. Hence we obtain 

K 
8 2U _ (18-6ii) where X _ Et 

11 8 U l
2 24 2 ( l - y 2 ) 

K 2 1 
92U. = (6 + 6y) 

^u^Svi 24 

K 3 1 8 U l8vo 24 
9ZU = (-6 + 18y) 
l 8 v 2 

K = 3 u = x (-6 - 6y) 
" t l 9 V U 2 24 

K 
S 2U _ X (-13 4- 6u) 

5 1 duxdu3 24 

K 
92U = \_ (-6 - 6y) 

6 1 8 u i 8 v 3 2 4 



K 
71 

X_ (6 - 18v) 
24 

K 
9 Z U 

81 9.u, 3 u , • 1 k 

X_ (6 + 6y) 
24 

The remaining columns may be obtained by permutations of 

the elements of the f i r s t column, and the st i f f n e s s matrix i s given 

i n Table 3.2.1.1 

Table 3.,2.1.1 - Stiffness Coefficients for (8 x 8) Matrices 

u l 1 

v l 2 

v 2 3 

u 2 4 

u 3 5 

v 3 6 

% 7 

K 11 

K 2 1 K l l 

K 3 1 K 8 1 K l l 

K m K 7 i ~ K 2 i K n S Y M * 

K 5 1 K 6 1 " K 3 1 K 8 1 K l l 

K 6 1 K 5 1 \ l ~ K 7 1 K 2 1 . K l l 

K 7 1 \ l K 5 1 " K 6 1 K 3 1 K 8 1 K l l 

K 8 1 K 3 1 " K 6 1 K 5 1 \ l K 7 1 ~ K 2 1 K l l 

If r i g i d body modes are eliminated from this matrix by 

removing the appropriate three rows and columns, the above matrix 

i s s t i l l singular. 



19 

3.2,2 Linear a ,',a and Uniform x ... * y SL 
Airy's stress function 

3 3 a j X ° a^y 3 

$ = — g ~ - c 3xy 

a '_ • cb _ a, y 
X - T y y - kJ 

o - cb _ a, x y - rxx - 1 

xy = •xy - . 3 

Proceeding, as before, obtaining and integrating the s t r a i n s , 

-ya xx 2 a,xy 2(l+y) a ^ 2 

u = r _ l — + — t y _ _ k y + C o y - . —~• - + c, 
2E E E 3 2E ] 

aixy y a 4y / a ux^ v = -L-L - ~±— - - i i — + kx + c E 2E 2E 2 

Again, on expressing the nodal displacements i n terms of the 

constants and x Q,, y c,, and subsequently performing algebraic manipula

tions, one obtains 

»1 v 3 _ v ^ " v 2 + v l 
a 2 

f i t = V 3 ~ " U 2 + U l 
E a 2 

2(l+y)c 3 = u^ - ul + u 3 - u 2 + v 2 - v 1 + -
E 2a 
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x y 2 y u3-u^+u2-u1 • v<+ " v l  o = __ + ______ • + •— 
a 2 ( l - y 2 ) 2 ( l - y 2 ) v 3-v^-v 2+v 1 (1-y 2) ( v ^ - v ^ ) 

To = y 2 , v 0 + - v 2 - vl , u 2 , ~ u l 
a 2 ( l - y 2 ) 2 ( l - y 2 ) u 3 - u^ - u 2 + u x ( i - y 2 ) ( u ^ - u ^ ) 

Now the s t r a i n energy may be expressed as 

U. = | - /° + a A""3 ( a x 2 + 0 y 2 _ 2 y a x G y + 2 ( l + y ) T x y
2 ) dxdy 

v x 

•'o o 

il f ,_o, 2
 +

 a i (ife, + _ 1 + c-*V+
 a" (i^) + ^ 

21 1 • a 3 a a 3 

2y a-x- a, a^y 0 a^ 2(l+y) c 3 

a 2 a - a 

Substituting for the arbitrary constants and simplifying 

one obtains 

U. = 
Et , [ (u 2-u 1^ 3-u^ 2

f(v 4-v 1 4^3-v 2) 2
f2y(u 2-u 1-+ni 3-u [ +)(v l t-v 1+v 3-v 2) ] 

8( l - y 2 ) 

+ Et [u 4 - ui + U3 - U 2 + v 2 - v i + V3 - v 4 ] 2 

16(l+y) 

+ E t [ ( u - u - u + u ) 2
 + (v 3 - v 2 - + v x) ] 

.24 



Again using the formulation 

8 2 U 
K i j = 8 q - 3 q - i > j = X ' n 

The s t i f f n e s s matrix i s of form given i n Table 3o2„l„l 

K = \_ (22 - 6v - 4 y 2 ) where A = Et  
1 1 2 4 2 ( l - y z ) 

K - * ( 6 + 6 y ) 

2 1 " 2 4 

K,, = 2L_ (-6 + isy) 
3 1 2 4 

K A ( - 1 0 - 6 y + 4 y 2 ) 

4 1 2 4 

K 5 1 " 2 4 

A ( - 1 4 + 6U - 4 y z ) 

6 1 " 2 4 

K = 1_ ( 6 - 1 8 y ) 
7 1 24 

K = X_ (2 + 6v + 4 y 2 ) 

8 1 2 4 
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This matrix i s i d e n t i c a l to that derived by Turner et a l 

(1956, p. 823) because the same assumptions have been made on the 

stress d i s t r i b u t i o n . 

Although the derivation given here has been found convenient 

for obtaining e x p l i c i t r e s u l t s , i f i t i s desired to conform to the 

matrix formulation of section 3.1, then the basic matrices and vectors 

to obtain the s t i f f n e s s matrix w i l l be given as follows. 

In t h i s case a l o c a l co-ordinate system i s assumed for the 

element, i n which corner 1 of the element (see Fig; 3.2.1) i s taken 

to coincide with the origin,, 

Then the stress assumptions are written as 

. °x = a3 + V 

°y = a2 + a l X  

Txy = c3 

The corresponding displacements over the element are 

u = I (a 3- - Ua2) x _ ^ x 2
 + a ^ ky + 2(l+y)c 3y _ a^y 2

 + 

E 2E E E E" 2E E 

v „ 1 (a - ya 3) y + f l * y _ _ kx 
E E 2E 2E E E 
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Then, i n accordance with the previous formulation 

LqJ L V V V2> U 2 ' V V 3 ' V \j 

[A x] = 

a i a 2 . . a 3 . a u C 3 C 2 C l k 

[D] 1_ 
E 

-y 

-y 

0 2(l+y) 

[ B ] = 1 
E 

-ya^ -ya 

2 

0 

^ i ( i - h i ) 2 
-ya i 2 2(l+y)a 0 -a 

-ya -a 2(l+y) 0 
2 

-ya -ya^ 0 

0 2(l+y)a 0 
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3.2.3 Uniform o x, a y > Linear x x y 

Airy's stress function 

4, i f i x 2 y + | i x y 2 

a x - * y y = a 3x 

a y = *xx = A2? 

Txy = -*xy = ~ a
2

x _ a 3 y 

Obtaining and integrating the strains one gets 

a 3 x 2 _ ya 2xy _ (2+y)a 3y 2 _ ky c x  
U 2E " E 2E 

a 2 y 2 y a3xy (2+y)a ?x 2 kx c 2 

v = - - — — + + 
2E E 2E 

Again, on expressing the nodal displacements i n terms of the 

constants and x c, y O J and subsequently performing algebraic manipula

tions, one obtains 

-ya 2 _ u 3 - u 4 - u 2 + U j 

E a 2 

~^a3 =
 V3 - V2 ~ V^ + Vl 

-E a 2 

2axQ+ a 2 _ a2 ( X +M v) where X = u 2 - U j + u 3 - u^ 
E K 

Y = - v x + v 3 - v 2 

2ay D+a 2
 = a (uX+Y) 

•~ j v = a a (1-u ) 
E K *• 3 2 



a 2 ( 2 a x 0 + a 2 ) + ( 2 a y 0+a 2) = (u u - u, + u 3 - u ? + v ? - v ] + v 3 - v u) 
E E - 2 ( 1 + y) 

Proceeding as before, the element s t r a i n energy may be 

expressed as 

2 

U - __1 ( ( a 2
2 + a 3

2 ) ( 3 + 2 M ) j + EtO+w) j a 2 ( 2 a x p+a 2) + a 3 ( 2 a y 0+a 2)? 24E i J + 4 1 E + E J 

+ Et (X 2 + Y 2 + 2uXY) 
8(1-y 2) 

Substituting for arbitrary constants and simplifying 

U = E t t ( u
2 " u i + u

3 " u ^ 2 + K " v i + v 3 " v 2 ) 2 + 

8 (1-y 2) 

2y (u 2 - u x + u 3 - uh) (v H - v : + v 3 - v 2) ] 

+ —E£ [ ̂  " + " 3 - " 2 + v - v + v 3 - v )' 
16 (1+y) 

+ (3+2u) [ (u 3 - U l + - u 2 + U l ) 2
 + (v 3 - v 2 - V l t + v x ) 2 ] 

24 y 2 

whence the s t i f f n e s s matrix i s of form given i n Table 3.2,1,1 with 

K n = __ ( 1 8 _ 6V + 4 (3 + 2u) (1 -u^)j where A = Et  
1 1 24 y 2 2 (1-y 2) 

K = A (6 + 6y) 
2 1 2T 

K = A (-6 + 18y) 
31 24 
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K 
41 

A _ (-6 -6u - 4 (3 + 2u)(1 -V2)) 
24 y 2 

K = A_ ( ~ 1 8 + 6y + 4 (3 + 2u ) ( l -y2)) 
5 1 24 . y 2 

K A (-6 -6y) 

K A (6 -18y) 
U 

K 
81 

A_ (6 + 6y - 4 (3 + 2y) (1 -yQ) 
24 y2 

G a l l a g h e r e t a l (1962, p p , 27-29) have d i s c u s s e d t h e d e r i v a t i o n 

o f a s t i f f n e s s m a t r i x on t h e same b a s i s , H c w e v e r , t h e y l e f t t h e r e s u l t s 

i n t h e f o r m o f a m a t r i x e x p r e s s i o n t o be e v a l u a t e d by t h e computer= 

H e r e t h e m a t r i x i s g i v e n e x p l i c i t l y . 

3t2.4 L i n e a r o x > o y , f x y 

A i r y ' s s t r e s s f u n c t i o n 

$ = a i x B + a 2 x 2 y + a 3 x y 2 + f i t l i 

6 2 2 6 

° x = * y y = a 3 x + a 4 y 

a y = 4 > x x = a x x + a ? y 

T x y = " * x y = " < a
2

x + a 3 y ) 



Obtaining and integrating s t r a i n s , 

u = 
(a 3 - ya }) x 2 (a^ - ya 2) xy {&l +(2+y) a 3}y 2 ky ^ 

2E 2E 

(a - ya ) y 2 (a - ya ) xy {a +(2+y) a }x 2 kx c 
2 h V = 2E 

1 3 h i 2 

from which 

(ak - ya 2) x {a : + (2 +y) a 3} y k 
I 

(a1 - ya 3) y 
E 

{a^ + (2 +u) a 2 l x 

i + 

U y and v x represent rotations of lines p a r a l l e l to the co

ordinate axes. They may be used as additional generalized displacements 

and w i l l describe the rotations o f the element edges. 

Proceeding with the matrix derivation, the following results 

are obtained on expressing the t r a n s l a t i o n a l nodal displacements i n 

terms of the constants, and by performing algebraic manipulations. 

ak -• y a 2 
u 3 - u^ - u 2 + u 1 

a i " y a 3 V 3 " V 2 " \ +
 V l 
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2ax Q + a 2 X(a 2 - ya^) - Y (a^ - ya£) where 
E K x = u 2 - u.x + u 3 -

2ay 0 + a 2 X ^ - ya3) - Y (a 3 - ya,) Y = v 4 - v x + v 3-- v 2 

E -K 
K = ( a ^ - a ^ M l - y 2 ) 

a (2ax 0 + a 2) a (2ay Q + a 2) ( U [ + - ^ + u 3 - u 2 + v g - vx + v 3 
+ v - v„) 

2 " + 3 

E -2(1 + y) 

Again the element s t r a i n energy may be expressed as 

a 4 t {(a-yaJ 2 + (a - y a ) 2 + (a 2 + a 2) (3 + 2y-y 2) } 
TT _ 1 3 4 Z i- 3 
U " 24E 

E t ( l +y) ( a 2 (2ax 0 + a 2) a g (2ay Q + a 2) } 2  

+ I E E 

Et (X 2 + Y 2 + 2yXY) 
8 ( l - y 2 ) 

Substituting for arbitrary constants and simplifying 

TJ = Et [ ( u 2 - u1 + u 3 - u ^ ) 2 + ( v 4 - Vj_ + v 3 - v2)z + 

8 ( l - y 2 ) 
2y (u 2 - u, + u 3 - u^Xv^ - v, + v 3 - ] 

+ Et [ u^ - u x + u 3 - u 2 + v 2 - v x + v 3 - v 4 ] : 

16(l+y) 

Et [ ( u 3 - U ( + - u 2 + u , ) 2 + (v 3 - v 2 - V l t + v x) ] 
24 

a^t (3 -y) (1 + y) [ a 2
2 + a 3

2 ] 
24E 
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Note that i t i s not possible to evaluate the l a s t term of the 

s t r a i n energy expressions i n terms of the eight nodal translations. 

Two additional generalized displacements are required. These 

may be supplied to the element i n a variety of ways. 

The translations of the point of intersection of the diagonals 

may be used, as i n Fig. 3.2.4.1. 

The values of u^ and v are obtained by inserting the co

ordinates of the nodal point 5 i n the expressions for the displacements 

u and v, obtained by integrating the strains . 

Then, by performing algebraic manipulations, the value of 

a_r (3 - y ) ( l + y) [ a 2
2 + a^] 

24E i s obtained i n terms of the ten 

nodal displacements, and the value of the element s t r a i n energy i s given 

by 
u !!_ - ( U 2 " U l + U 3 " V 2

 +
( V V V 3 " V 2 ) 2 

8 ( l - y 2 ) 
+ 2y (u 2- uj+ u 3- u 1 +)(v 1 +- v x+ v 3 - v 2) ] 

Et [ u u - u,+ u , - uP+ v,- V i + V o - v j 2 

16(l+y) 

+ I f I ( V % - u 2 + u ^ + (v 3- v 2- V v ^ ] 
24 

Et (3-y) {8v 5-2( V l+v 2+v 3+v 4)} 2 2{8v5-2 (v 1+v 2+v 3+v 1 +) } (u 3-u 2-u [ ++u 1) 
+ 24 (1+yV (1 + y) 2 " (1 +y) 

(8u 5 - 2 (u1+u2+u3+utt) } 2 2 {8u 5- 2 (u1+u2+u3+u[+) } (v 3-v 2-v l t+v 1) 
(1 +y)2 (1 + y) 

+ (u 3 - u 2 - uk + ul ) 2 + (v 3 - v 2 - v^ + vl )2 ] 



On using the formulae 

K 3 2 U 

a s t i f f n e s s matrix of form given i n Table 3,2.4.1 i s obtained, 

Table 3,2.4.1 - Stiffness Coefficients for (10 x 10) Matrix using 

Inter i o r Nodal Translations 

u l 1 

V l 2 

V 2 3 

u 2 4 

U3 5 

v 3 6 

\ 7 

u 5 9 

v 5 10 

K 
11 

K 2 1 K l l 

K 3 1 K 8 1 K l l 

> S 

> 4 

\l K 7 1 - K 2 . 1 K l l S Y M -

K 5 1 K 6 1 " K 3 1 K 8 1 K l l 

K 6 1 K 5 1 K 4 1 " K 7 1 K 2 1 K l l 

K 7 1 Khl K 5 1 " K 6 1 K 3 1 K 8 1 K l l 

K 8 1 K 3 1 " K 6 1 K 5 1 K 4 1 K 7 1 ~ K 2 1 K l 1 

S i K 1 0 , l - K 1 0 , l K 9 1 K 9 1 K 1 0 , r K 1 0 , l K 9 1 K 9 9 

K 1 0 , l K 9 l K 9 1 ~ K 1 0 , 1 K 1 0 , l K 9 1 K 9 1 ~ K 1 0 , 1 K 1 0 , 9 K 

with the coefficients given by 

K A _ [ 34 - 22y + 16(3 - 4y + u 2 ) ] where X = Et 
24 (1 + M) 2 2(l-u 2) 

v _ A [ 6 + 6p + 16 (3 - 4u +y2) ] 
^ 2 1 " — 24 (1 + y) 



K,. = 1- [ - 6 + 18y ] 
6 1 24 

1_ [ - 22 + lOy + 16 (3 - 4y +y2) ] 
24 (1 + y ) 2 

K = A _ [ - 2 - lOy + 16 (3 - 4y +y2) ] 
5 1 24 (1 + y ) 2 

K = [ - 6 - 6y + 16 (3 - 4y +yz) ] 
6 1 24 (1 + y) 

_ X_ [ 6 - 1 8 y] 
*-7l - 24 

24 (1 + y ) 2 

K = 2L_ + 22y + 16 (3 - 4y +yz) ] 
8 1 

K _ A f-64 (3. - 4y +yz) ] 
24 (1 + y ) 2 

K = f-32 (3 - 4y +yz) ] 
1 0 , 1 24 (1 + y) 

K = [ 256 (3 - 4y +yz) ] 
9 9 24 (1 + y ) 2 

K 1 0 , 9 = 0 

Another s t i f f n e s s matrix may be obtained by choosing the 

additional generalized displacements as edge rotations at nodal 

point 1 as shown i n Fig. 3,2=4,2. 

The s t r a i n energy expression obtained, i n t h i s case, i s 

given by 



U = Et [ (u 2 - u x + u 3 - uk)2 + (v^ - V j + v 3 - v 2 ) z + 
8( l - y 2 ) 

2y (u 2 - u1 4- u 3 - u^) (Vlt - v x + v - v j ] 
3 2 

+ — t U , " U ! + U
3 " U 2 + V 2 " V l + V 3 " \ ^ 

16(l+ii) 

+ 24 
Et [ (u - u - u + u ) 2 + ( v - v - v + v ) 2 ] 
TT 3 h 2 1 ? 2 . 4 1 

Eta (3-u) [ { vx : ( v 2 - v L) ( u 3 - u^- u g+ } 2 

+ — , — , - - + 

24(l+y) a 2a 

{ uyl (u^-u^ (v 3-v 2-v t t+v 1) } 2 ] 
a 2a 

On using the formulae 

K.. = i , j = l,n 
1 J sq^q-j 

the s t i f f n e s s matrix obtained i s of form given i n Table 3.2.4.2 with 

2 _ t 3 7 _ 26y + y 2] where X = Et 
11 24 2 ( l - y 2 ) 

_ X [ -6 + 22y - 4y 2] 
K 2 1 " 24 

X_ [6 + 2y + 4y 2] 
K 3 1 ' 24 

A [-13 - 2y + 3y 2] 
K l + 1 = 24 

A_ [-11 + 2y - 3y 2] 
K 5 1

 = 24 



K = t " 1 2 •+ 2M - 2M2 

61 24 

K 71 
= A_ [12 - 26M + 2y 2] 

24 

K = i - t-13 + 26u - M2] 
81 24 

K = [12 - 16M + 4M 2 ] 
91 24 

K. 
1 0 , 1 

Aa [-6 + 8M - 2M 2 ] 
24 

K = ha~. [12 - 16M T 4M 2 

99 24 

K 1 0 , 9 = 0 
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Table 3.2.4.2 - Stiffness Coefficients for (10 x 10) Matrix Using  

Corner Edge Rotations 

u 1 
1 

v 2 
1 

V 2 3 

u 2 4 

U 3 5 

v 3 6 

V 4 7 

u, 8 

u , 9 
y i 

v. 10 

K 

> s 

11 

K K 
21 11 

K 3 1 K 8 1 K l l 

K 4 1 K 7 1 K 6 1 K 4 4 S Y M ' 

K 5 1 K 6 1 K 7 1 K 5 4 K 4 4 

K 6 1 K 5 1 K 4 1 K 6 4 K 7 4 K 4 4 

K 7 1 K 4 1 K 5 1 K 7 4 K 6 4 K 5 4 K 4 4 

K 8 1 K 3 1 K21 K 5 1 K 4 1 K 7 1 K61 K i : 

K91 K 1 0 , r K 1 0 , l V V K 1 0 , l - K 1 0 , r K 9 1 K 9 9 

-K -K K K -K K K K K K 
10,1 91 91 10,1 10,1 94 • 94 10,1 10,9 99 

K 44 
X_ [25 - lOy - 3y 2 ] 
24 

K 54 
A__ [-1 + lOy + 3y 2 ] 
24 

K 64 
X_ [-6 + 18y ] 
24 

K 74 
X_ [ 6 + 6y ] 
24 K 94 
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3c2 05 H y p e r b o l i c o x , a„, P a r a b o l i c x xy. 
A i r y ' s s t r e s s f u n c t i o n 

b u x 3 y l i _ _ _ 3 

° x = * y y = 

0 = 6 = b , ,xy y y x x h J 

b ^ x 2 _ d^y' 
x = -cb 

x y T x y 

O b t a i n i n g and i n t e g r a t i n g s t r a i n s 

(d l f - yb^) x^y _ { bk+ (2 + y) d^} y ^ k y C j 

2E 6E ~ + 

v = 0\ ~ V><V - { V ( 2 + V) b^l x3_ + kx + c 2 

2E 6E 

F r o m w h i c h 

( d 4 - yb^) x ^ { b 4 + (2 + y) d^} y ^ k 
y 2E 2E 

(b 4 - yd^) y 2 { d^ + (2 + y) b^} x 2 

x 2E 2E 

A p a r t f r o m t h e e i g h t t r a n s l a t i o n a l n o d a l d i s p l a c e m e n t s , f o u r 

r o t a t i o n s u , v , u . and v „ a r e c h o s e n as t h e g e n e r a l i z e d d i s p l a c e -

ments o f t h e e l e m e n t , ( H e r e a l s o a c h o i c e i s a v a i l a b l e ) . 

As b e f o r e , t h e d i s p l a c e m e n t s a r e e x p r e s s e d i n t e r m s o f t h e 
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arbitrary constants, and algebraic manipulations give the following 

r e l a t i o n s . 

(dk - (2ax Q + a 2) a__ = u - u - u + u 
2E 3 4 2 1 

(b - yd ) (2ay 0 + a 2) a_ = v . „ 
H 4 2E 3 2 4 1 

(d 4 - yb^) (2ax_ + a 2)(2ay 0 + a 2) 
1 : = U - U , + U „ -• U , 2Ea. 3 4 2 1 

( b - yd^) (2ax + a 2)(2ay + a 2) 
r
 ; = V - V + V - V 

2Ea 3 . V 2 v 4 v l 

2(l+y) {b 4(ax D
2+ a 2 x 0 + a 3) di+(ayc

2+- a 2 y D + a 3)} _^a(u y l+u y 3+v x 2+v x l t) 
E ~ ' 2~ 2~~ 

d. '= 
4 -,2 

^ 2 + ^ > { u 4 - u l + U 3 - U 2 ( y y l + U y 3 > } { v 2 ^ l + V 3 ~ V k ^ x z ^ x ^ -
a^(3+u)(l+u) 

(1+y) d^ (2ay o + a 2) = u y l - u y 3 (u^- u f u3+ u 2) ( v 3 - . v 2 -

(1+y) b^ (2ax Q + a 2) = _ ( v „ 2 - v ^ ) _ ( u 3 - u^- u 2 + u ^ + ( v g - T f v 3 + v^) 
E a a 

- E Y [ _ ( V X 2 " V X 4 } _ ^ U 3 - U 4 - U 2 + U l ) ( V 2 - V 1 - V 3 + V , ) 1 

4 a T 2a2(1+y) a a 

E_ ( u 3 - U [ +- u 2+ u x) 
a 3 

, 6 E ^ 2 + ^ { V 2 - V 1 + V 3 ~ V 4 ' ( V X 2 + V x t t
} (u l t-u 1+u 3-u 2 (u y i+u y 3)} 

b 4 " a 2(3+y)(l+y) a ~ 
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v a 2 

Ey [ u y l - u y 3 (Ul+- u x- u3+ u 2) ^ ( v 3 - v 2 - v,) ] 
2a 2(l+y) a a 

E ( v 3 - v 2 - v.+ v x) 

Now the strain energy in the element is given by 

y0+a x +a 
= _t f / ° ( a x

2 + a 2 - 2ya xa y + 2(l+y) x x y
2 ) dxdy 

2E Ye xo 

which on substitution and integration yields 

t a 6 [ (b,- yd.) 2 (d - yb ) 2 2y (b - yd )(d - yb ) ] X 
U = H •+ + H H + 

2 ( l - y 2 ) E 

* 0 i ) 2 / y 0 . 1 

t a 6 ( b 4
2 + d^2) { (xo + l ) 2 . + (yo + l ) 2 > 

24E a 2 a 2 

t a 6 (l+2y) b ^ { (x Q + 1 ) 2 (y^ + 1 ) 2 } 
I2E a" 2 a~~ 2 

ta6 (1+y) [b, ( f x 0 ) 2 (x Q) 1 } V M 2 (yo> ± I } ^ 
A T ^ r y + + 2 + ' r/ + 7 + 2 

t a 6 (-13-18y) ( b ^ f d l f
2) 

2lT 720 

t a 6 (-4-5y) bkdk 

2E~ 72~ 
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U = 

Substituting for the arbitrary constants and simplifying, 

Et [ ( u 3 - U[++ u 2 - u , ) 2
 + ( v 3 - v 2+ V l ) z 2y ( u 3 ~ u^+ u 2~ u^x 

8 ( l - y 2 ) 
( V r V 2 + Vit_ V i) ] 

Et [ ( u - u - u + u ) 2 ( v - v - v + v ) z ] 
3 h 2 1 + 3 2 4 1 

24 

{ (v - v ) (u - u - u + u ) (v - v - v + v ) } 2 Eta 2(l-3y) 
+ _ x 2 W 3 k 2 L+. _2 1 3 i l 

a a 96 (1+y) 

{ ( u y l - u y 3) ( u u - U ] - u 3+ u ?) ( v 3 - v ? - v u+ v ^ ) 2 Eta 2(l-3y) 
a ~ a 96 .(1+y) 

+
 { _ ( v x 2 " vx-*>_ ( u 3 - l y u 2+ u.) | ( v 2 - v,- v 3+ v^)} ( u 3 - U l +- u2+ u,) 

a a 
[ -Eta ] 

24 

{ S i " U y 3 } _ K - u r u 3+ u 2) ( v 3 - v2-_v1++ v ±)} ( v 3 - v 2 - v,+ V X ) . X 

+ 

[ -Eta ] 
24 

Et a 2 (u y l+ u y 3+ v x 2+ v x l + ) 2 

16(1+y) 

{ ( v ? - v,+ v 3 - v^) ( v X 2 + v x l + ) } 2 [Eta 2 (15-2y-35y 2-18y 3) ] 
40(3+y) 2(l+y) 2 

{ (Ulf- u,+ u 3- u 2) (u y l+ u y 3 ) } 2 [ E t a 2 (15-2y-35y 2-18y 3) ] 
+ _ _ 40(3+y) 2(l+y) 2 



{ ( v r v i + v r v^) ( v x z + v x i f ) } U y u i + u 3 - u 2) ( u y i + u 

[-96-214y-168y2-50y3] E t a 2 

40(3+y) 2(l+y) 2 

On applying the formulae 

K. , = -irj— i,j - i.n 

s t i f f n e s s matrix of form given i n Table 3.2.5.1 i s obtained. 
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Table 3 c 2 o 5 0l - Stiffness Coefficients for (12 x 12) Matrix 

with 

SYMc 

^11 

K 2 1 K l l 

K 3 1 K 8 1
 K l l 

\l K 7 1 " K 2 1
 K l l 

K 5 1 K 6 1 " K 3 1 K 8 1
 K l l 

K 6 1 K 5 1 \l " K 7 1 K 2 1
 K l l 

K 7 1 Kkl K 5 1 ~ K 6 1 K 3 1 K 8 1
 K l l 

K 8 1 K 3 1 ~ K 6 1 K 5 1 *M K 7 1 " K 2 1
 K l l 

K 9 1 K 1 2 9 i ~ K 1 2 , l
 K U , r K l l , l K 1 0 , l K 1 0 , l K 9 1 K 9 9 

~ K 1 0 , l " K 9 1 K 9 1 ~ K 1 2 , 1 K 1 2 , l K l l , l " K l l , l K 1 0 , 1 ~ K 1 0 , 9 K 9 9 

K l l , l K l 0 , 1 _ K 1 0 , 1 K 9 1 " K 9 1 ~ K 1 2 , 1 K 1 2 , 1 ~ K 1 1 , 1 K 1 1 , 9 " K 1 0 , 9 K 9 9 

~ K 1 2 , l " K l l , l K 1 1 , 1 ~ K 1 0 , 1
 K 1 0 , l K 9 1 ~ K 9 1 K 1 2 , 1 " K 1 2 , 9 K 1 1 , 9 ~ K 1 0 , 9 K 

K 11 
_ A _ [22-8y-2y 2 + A] 
~ 24 

K _ ^ [12P- B] 
K 2 l - 24 

K _ \_ [UU + B] 
31 24 

where Et 
2(1 -y 2 ) 

A = 4 8(l - y ) ( 1 5 - 2 y - 3 5 y z - 1 8 y ^ 

20(3+y) 2(l+y) 
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K U 1 = A_ [-22+8u+2u2+ A ] 
24 

K = A [-2-8y-2y2-A ] 
^51 24 

48(l-y)(48+107y+84y2+25y3) 
20(3+y ) 2 ( l+y) 

K, 61 
= A__ [-12y+ B ] 
24 

v = A_ [ - 1 2 V - B ] 
K7i 24 

K A _ [2+8y+2y2- A ] 
81 24 

„ A a [ l-4y+3y^+ A ] 
K 9 1 " 24 

Y = A__ [7-10y+3yz+ A ] 
9,9 24" 

K = A_. [3-4y+y2- B ] 
1 0 , 1 24 

K = 2__ [6-6y- B ] 
1 0 , 9 24 

K _ Aa_ [- l+4y-3y 2+ A ] 
1 1 , 1 24 K A a 2 [5-2y-3y2+ A ] 

1119 24 

K A a [-3+4y-y2- B ] 
1 2 , 1 " 24 K A a 2 [6-6y- B ] 

1 2 , 9 24 

T h i s m a t r i x , a l o n g w i t h t h e o t h e r m a t r i c e s w h i c h h a v e b e e n 

d e v e l o p e d , w i l l . b e e x a m i n e d a n d e v a l u a t e d i n C h a p t e r 6. 

I n a d d i t i o n a s t i f f n e s s m a t r i x b a s e d o n l i n e a r e d g e d i s p l a c e 

m e n t s i s d e r i v e d i n A p p e n d i x B , a s t h i s m a t r i x i s o f i n t e r e s t i n t h e d i s 

c u s s i o n s o f C h a p t e r V I , 

http://will.be
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CHAPTER IV 

COMPARISON AND EVALUATION OF STIFFNESS MATRICES 

4 . 1 Strain Energy C r i t e r i o n for Element Matrix Comparisons 

A theoretical basis for comparing s t i f f n e s s matrices for a l l 

classes of f i n i t e elements ( i . e . , elements for plane stress, plate-

bending, s h e l l s , etc.,) i s the s t r a i n energy within a f i n i t e element under 

the same nodal loads. This basis i s compatible with the recent develop

ment of the s t i f f n e s s method for bounding e l a s t i c behavior wherein the 

minimal energy theorems have been applied to provide bounds on the 

s t r a i n energy. On this basis of s t r a i n energy, the "best" s t i f f n e s s 

matrix from an available set i s defined as the one which w i l l y i e l d the 

closest approximation to the s t r a i n energy of deformation. The results 

of such a choice w i l l be of general v a l i d i t y . 

Bases other than the s t r a i n energy of deformation, such as 

the maximum stress or the maximum displacement, may be more desirable 

from a p r a c t i c a l viewpoint, but no results of general v a l i d i t y are 

available for bases other than s t r a i n energy-

The s t r a i n energy comparisons w i l l be made by examination of 

one of two special difference matrices, as described below. 

Inverse Difference Matrix 

The s t r a i n energy of an element can be expressed as 

u A : L i J M { q } 

•2 . . . . 
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Now the equations of equilibrium can be written as 

[ K ] { q } = { p } 

where { p } i s a nodal load vector. Therefore 

{ q } = [ K"1] { p. } 

and hence 

1 (_pj [ K - 1 ] { p } 
2 

Therefore, i f two natural s t i f f n e s s matrices K, and K,. 

are available, then the difference i n s t r a i n energy i s 

U l - U2 
1. |pj [Kl"' 1] t P )_ 1 [Pj [ K ^ 1 ] { p } 
2 2 

i [ p j ^ r 1 _ K
2" 1 ] { P } 

2 

1 (_pj [ D ] { p } 
. 2 

where [ D ] = • [K " 1- K - 1 ] may be called the 

Inverse Difference Matrix. 

Therefore, on examining the quadratic form of D, i t may be 

ascertained whether the s t i f f n e s s matrix K w i l l provide greater, 

equal or lesser s t r a i n energy i n the element than K 2, under arbitrary 

loading p. The properties of D may be obtained by finding out i t s 

eigenvalues. The results of such a study are indicated i n Table 4.1.1 
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Table 4.1.1 - Examination of the Inverse Difference Matrix D 

Quadratic form of D Eigenvalues of D 
Strain Energy 
Comparison 

positive d e f i n i t e a l l positive > U 2 

positive semi-definite some po s i t i v e , others 
zero U i U 

1 * 2 

negative-definite a l l negative U l * U 2 

negative semi-definite some negative, others 
zero U l = U 2 

indefinite some po s i t i v e , others 
negative U l * U 2 

I f D i s semi-definite, i t s vectors may be examined for lin e a r 

dependence and hence the nodal loads causing equality of s t r a i n energy 

determined. An example of this i s given i n Chapter VI. 

If D i s i n d e f i n i t e , the loads making D positive or negative 

correspond to the eigenvectors related to these positive and negative 

eigenvalues. I t may be possible i n this case to choose a matrix on the 

basis of the rank and index of D from a probabilistic viewpoint. This 

aspect requires numerical experimentation to show the,quantitative 

effects of the different sizes of positive and negative eigenvalues, and 

the loads defined by the corresponding eigenvectors. 

Stiffness Difference Matrix 

Now i t w i l l be shown with the help of a theorem which i s 

enunciated and proved below, that the properties of the Inverse Difference 

Matrix, D = [K _ 1 - K - 1 ] may be obtained from a study of the 
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properties of [ S ] = [ - K 2 ] where S may be c a l l e d the 

St i f f n e s s Difference Matrix. This procedure affords a s i m p l i f i c a t i o n 

by eliminating the extra computational work and numerical error i n the 

inversion of matrices. 

Theorem 

I f [K 1 ] and [K 2 ] are r e a l symmetric p o s i t i v e d e f i n i t e 

matrices, and i f [Kj_ - K 2] i s p o s i t i v e d e f i n i t e then [K^ - 1 - K 2
- 1 ] 

i s negative d e f i n i t e . 

Proof 

Appeal i s f i r s t made to a theorem of matrix algebra 

(Hohn (1958), p. 266) which states that 

" I f [A] and [B] are r e a l matrices of order n, and i f [A] i s 

symmetric and [B] i s p o s i t i v e d e f i n i t e , then there e x i s t s a r e a l non-

singular matrix [V] such that [ V T ] • [A] [V] i s diagonal and [V T] [B] [V] 

i s the i d e n t i t y matrix". 

Therefore, we know from the assumptions of the theorem 

enunciated above that there e x i s t s a non-singular matrix [V] such that 

[V T] [K :] [V] = [d] (1) 

where [d] = a diagonal matrix 

and [V T] [K 2] [V] = [I] (2) 

where [I] = the i d e n t i t y matrix 

Now [K - K ] i s p o s i t i v e d e f i n i t e by assumption. Therefore [V^][K 1~ K 2][V] 

i s also p o s i t i v e d e f i n i t e , because a congruent transformation maintains 
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the form of [K - K ]. 

That i s 

[V T] [K,] [V] - [V T] [K 2] [V] i s pos. def, 

whence on substituting from (1) and (2) 

[d] - [I] i s pos. def. 

Therefore, d.. > 1 for a l l i (3) 

Also from (1) 

[K,] = [ V T 1 ] [d] [ V 1 ] 

hence [K^ - 1] = [V] [ d _ 1 ] [V T] (4) 

S i m i l a r l y from (2) 

[ K 2
_ 1 ] = [V] [ I " 1 ] [V T] 

Hence 

[K - 1- K "I ] = [V] [d" 1] [V T] - [V] [I] [V T] 
1 2 

= [V] [d" 1 - I] [V T] 

Now [ d - 1 - I] i s negative d e f i n i t e since from (3) 1 < 1 
d i i 

Therefore, [V] [d l- I] [V T] i s negative d e f i n i t e since a congruent 

transformation maintains the form. 
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whence on substituting- from. .(4). and. (5) 

[K^ - 1 - K^"1 ] is negative definite 

QED. 

Corollary 1' 

If [Kj] and [K 2] are real symmetric positive definite matrices, 

and i f [K^ - ] is positive semi-definite, then [K^"1 - K
2

_ 1 ] i s negative 

semi-definite. 

Corollary 2 

If [Kj] and [K 2] are real symmetric positive definite matrices, 

and i f [Kj - K 2] is indefinite, then [Kj 1 - K 2
 1 ] is indefinite. 

Corollary 3 

The converse of the Theorem and the corollaries is true. 

The proof of the corollaries is analogous to the proofs of the 

theorem. 

Therefore, analogous to the study of the Inverse Difference 

Matrix, the Stiffness Difference Matrix may be examined as shown in 

Table 4.1.2. 

Table 4.1.2 - Examination of .the Stiffness Difference Matrix S 

Quadratic form of S Eigenvalues of S 
Strain Energy 
Comparison 

negative-definite a l l negative Uj > U 2 

negative semi-definite some negative, others 
zero Uj i U, 

positive-definite a l l positive Uj < u 2 

positive semi-definite some positive, others 
zero Uj ^ u 2 

indefinite some positive, others 
negative Uj ^ u 2 
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In a set of displacement matrices, the "best" matrix w i l l be 

the one providing the highest lower bound and hence the greatest s t r a i n 

energy. Now i t i s possible for the nodal loads consistent with a potential 

energy formulation, to be different for different displacement matrices. 

This can occur for distributed loading, body forces, and concentrated 

loads not at the nodes. However, i t i s f e l t that the differences i n nodal 

loading w i l l decrease with reduction i n element siz e . Moreover, for loads 

applied d i r e c t l y to the nodes, the consistent nodal loading w i l l be the 

same i n each case. This also occurs for loads applied to the element 

boundaries, i f the boundary displacements between nodes are the same i n 

each case. Therefore, i t i s f e l t that the st i f f n e s s matrix selected as 

described e a r l i e r w i l l be the "best". 

In a set of equilibrium matrices, i f available, the best matrix 

w i l l provide the lowest upper bound and hence the least s t r a i n energy. 

When hybrid matrices ( i . e . those v i o l a t i n g the requirements of 

both the potential and complementary energy formulations) are available, 

they can be evaluated with respect to a reference provided by a bounding 

matrix (displacement or equilibrium). An approximate reference may also 

be provided by a hybrid matrix for which some numerical comparisons with 

a n a l y t i c a l solutions are available. 

4.2 Application of Element Comparison Results to Structure 

So far the s t r a i n energy comparisons have been made between 

single elements. I t w i l l now be shown that the results of the single 

element comparison can be applied to the structure s t i f f n e s s matrix. 

We know that the natural structure s t i f f n e s s matrix i s given 

by 
[K,] = [a T] [k x] [a] 
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where [a] = displacement transformation matrix 

and [k ] 

, a quasi-diagonal matrix of 

individual element natural s t i f f n e s s 

matrices. 

Using a different set of element s t i f f n e s s matrices, the structure 

s t i f f n e s s matrix would be given by 

[K 2] = [aM [k 2] [a] 

where [k2] 

, a quasi-diagonal matrix with 

k , k, , - - - k , another set of a' b' n' 
element natural s t i f f n e s s matrices. 

Therefore, the s t i f f n e s s difference matrix for the structure i s given by 

[ S ] ,= [K , - K 2 ] 

[a1] [ki " k 2] [a] 



5 0 

[S] = [a 1] 

k. - k 
A a 

k„ - k, 

k„ - k c 
\ 

\ 

[a T] \ 
\ 

\ 
\ 

\ 

n 

\ 

k N " 

[a] 

[a] 

(m x n) (n x n) (n x m) 

where , S , S 3, - - - - S n are the element s t i f f n e s s d i f f e r e n c e 

matrices. 

It may be noted that a displacement transformation i s applied 

to the quasi-diagonal matrix containing the element s t i f f n e s s matrices. 

The order of the matrices are shown above. The rank of matrix [a] i s m 

since the t r i p l e product [a ] [K^] [a] y i e l d s the non-singular (m x m) 

natural structure s t i f f n e s s matrix. Also from p h y s i c a l consideration we 

know that m < n. 

It w i l l now be shown that the quadratic form of [S] w i l l be 
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governed by the quadratic form of [ k j - ~k^] = 

\ 
n 

such that 

Consider f i r s t the case when [k^- k 2] i s positive d e f i n i t e . 

Then a non-singular matrix Q exists (Parker and Eaves, p.94) 

k 2] = [QT] [Q] 

Therefore, the s t i f f n e s s difference matrix S may be written as 

[S] = [a T] [QT] [Q] [a] 

= [P T] [P] 

where [P] = [Q] [a] 

Note that [P] i s of order (n x m) n > m and the rank of [P] i s m. 

Therefore [P T] [P] i s a positive d e f i n i t e matrix. (Parker and Eaves, P-98) 

Hence [S] i s positive d e f i n i t e i f [kj - k 2] i s positive d e f i n i t e . 

Consider next the case when [ k j - k 2] i s positive semi-definite 

of rank r. 

Then a rectangular matrix F of order (r x n) exists (Parker and 

Eaves, p.98) such that 

[k x- k 2] = [F T] [F] 

Therefore S may be written as 

where 

[S] = [a T] [F T] [F] [a] 

= [H 1 tH] 

[H] = [F] [a], a (r x m) matrix. 
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Then i f the rank of [H] i s t , [S] i s of positive semi-

d e f i n i t e form of rank t„ ( S t o l l , 1958, p„ 124). 

Therefore [S] i s positive semi-definite i f [k^ - k^] i s 
positive semi-definite, 

The arguments used i n these two cases apply analogously when 

[kj - k 2] i s negative d e f i n i t e and negative semi-definite respectively. 

F i n a l l y , consider .the case when [kj - k^] i s i n d e f i n i t e . This 

may occur i f different element matrices are used i n different parts of the 

structure, or i f i n d i v i d u a l element s t i f f n e s s difference matrices are 

i n d e f i n i t e . Then, i t w i l l be shown that, i n general, [S] w i l l also be 

in d e f i n i t e . 

Let the matrices [a] and [k^ - k^] be partitioned and some 

rows and columns interchanged so that the f i r s t (m x m) submatrix of [a] 

i s non-singular. This i s possible because the rank of the (n x m) tfe&rix 

[a] i s m. 

Then S may be expressed as 

[S] 
r, T I T , 
[b c J 

[b] i s non-singular of rank m and [c] i s of order where [a] = 

(n-m x m). 

Sim i l a r l y [k^- k 2] i s now partitioned into the (m x m) matrix 
[p], the (n-m x n-m) matrix q and the rectangular (m x n-m) matrix r. 

On carrying out the m u l t i p l i c a t i o n of the partitioned matrices 

we get 

[S] = [b T] [p] [b] + [c T] [q] [c] + {[c T] [ r T ] [b] + [b T ] [ r ] [ c ] } 

rank m rank < n-m rank < n-m 
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Note that the t r i p l e product [b^] [p] [b] has rank m, the 

remaining terms have rank^(n-m). In a p r a c t i c a l problem m>> n-m. 

Therefore, the quadratic form of [S] w i l l be governed mainly by the 

quadratic form of [p]. I f [p] i s i n d e f i n i t e , then i n a l l probability 

so w i l l be [S]. 

Note however the p o s s i b i l i t y that [p] i s p o s i t i v e - d e f i n i t e , 

but [q] i s i n d e f i n i t e , so that [kj - k 2] i s i n d e f i n i t e . This can happen 

i f only a few element matrices are taken d i f f e r e n t l y . Then i t i s con

ceivable that [S] may take on the form of [p]. 

In other words, the structure w i l l portray the behavior of the 

vast majority of the element matrices. Note that i f one element matrix i s 

being used for a l l the elements of the structure, then the results of the 

element matrix comparisons w i l l apply completely to the structure. 

Thus i t i s seen that the results of the element matrix com

parisons may, i n general, be applied to the structure. ; 

4.3 Comparison of Matrices of Different Orders 

The order of the s t i f f n e s s matrix of a f i n i t e element i s equal 

to the number of nodal displacements allowed i n the element, which generally 

varies with the shape of the element. Thus a plane stress rectangular 

element with corner nodes has an (8 x 8) matrix, and triangular element 

has a (6 x 6). If additional nodal displacements are specified, say by 

choosing extra nodes i n the element or specifying edge rotations as shown 

in sections 3.2.4 and 3.2.5, then also the order of the matrices i s 

increased. 

Now the s t r a i n energy comparisons between matrices are made 

for equal volumes of the element (structure) and for the same set of nodal 
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loads. This suggests the p o s s i b i l i t y of using the different shaped 

elements or elements with varying number of nodal displacements to f i l l 

the same volume, and then eliminating the extra nodes, i f any, under the 

assumption of zero loads at those nodes. 

In some cases this assumption of zero nodal loads may be unsatis

factory, i f the consistent nodal loading requires loads at those nodes. 

However, the same nodal loads can always be one of the types of loading 

to which a l l matrices may be subjected, and i t i s f e l t that comparisons 

under these conditions wil l . b e useful i n evaluating the matrices. 

4.4 Maximum and Minimum Eigenvalues as Bounds on Strain Energy 

Melosh (1963, pp. 222-223) has presented a hypothesis for 

choosing the best matrix from an available set. According to this hypo

thesis, the best s t i f f n e s s matrix w i l l have the smallest eigenvalues and 

the smallest trace. 

This hypothesis w i l l be examined on the basis of some theoretical 

results from matrix algebra and a s t r a i n energy connotation given to i t . 

The s t r a i n energy of an element (or structure) i s given by the 

quadratic form 

u = I LPJ [ K " 1 ] < P > 
2 

where K i s the natural s t i f f n e s s matrix, and p the nodal load vector. 

Now i t i s known from matrix algebra (Bodewig (1959), p.65) that 

for a normalised load vector 

i.e . [_pj {p} = 1 

http://will.be
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the maximum of the quadratic form (_pJ [K {p} i s given by X , the 

largest eigenvalue of [K ], and i t s minimum i s given by A m^ n, the smal

l e s t eigenvalue. 

i. e . X . = 2U = X 
mxn max 

The load vectors giving these bounds are the eigenvectors 

corresponding to the maximum and minimum eigenvalues. 

S i m i l a r l y , the intermediate eigenvalues give the value of 2U, 

for load vectors defined by the corresponding eigenvectors. 
-1 

I t may be noted that the eigenvalues of [K ] are reciprocals 

of the eigenvalues of [K]. Therefore, Melosh's hypothesis compares the 

maximum, minimum and other values of the s t r a i n energy for load vectors 

defined by the eigenvectors of each matrix, and selects the matrix giving 

the greatest s t r a i n energy. 

Two characteristics of Melosh's hypothesis may be noted, on 

the s t r a i n energy basis. 

1. The eigenvectors w i l l be different for each matrix. 

Therefore, the s t r a i n energy comparisons are being made on 

the basis of different load vectors for each matrix. 

2. The maximum s t r a i n energy c r i t e r i o n i s being applied to 

a l l matrices without d i f f e r e n t i a t i n g between displacement, 

equilibrium and hybrid matrices. 

In Chapter 6, Melosh's hypothesis i s compared with the theory 

developed i n section 4.1 with respect to parametric plane stress matrices. 
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CHAPTER V 

AN UPPER BOUND ON STRAIN ENERGY UNDER PLANE STRESS 

5.1 Special E l e m e n t for Constructing Equilibrium F i e l d 

By the theorem of Minimum Complementary Energy (Appendix A) 

i t i s known that any stress state s a t i s f y i n g the d i f f e r e n t i a l equations 

of equilibrium and the stress boundary conditions w i l l provide an upper 

bound on the s t r a i n energy. Therefore, a f i n i t e element conforming to 

t h i s theorem must provide a stress state i n equilibrium within the element 

as well as continuity of shearing stresses and stresses normal to the 

boundary between adjacent elements. 

De Veubeke (1962, pp. 170-171) has shown that a plane stress 

equilibrium f i e l d may be b u i l t up of triangular elements interconnected 

at the mid-point of the edges, and used i n displacement analysis to obtain 

an upper bound. However i n such an analysis the displacements are defined 

as weighted averages over the element edges, and additional kinematic 

modes may be introduced, so that i t i s not easy to get a clear picture 

of the displacement behavior. 

De Veubeke (1965, pp. 191-193) has also noted that an e q u i l i 

brium f i e l d may be obtained from equilibrium and s e l f - s t r a i n i n g stresses. 

In this chapter a square element i s visualised by means of which the 

equilibrium and s e l f - s t r a i n i n g stresses may be obtained as bar forces of 



a psuedo-truss system, i n which the bars correspond to the l i n e s of 

stress transmission. I t i s not necessary to determine the e l a s t i c 

properties of the bars i n order to find the equilibrium and s e l f -

straining solutions. 

Consider a square element under the action of constant and 

equal normal and shear stresses along two of i t s adjacent edges as shown 

i n Fig. 5.1.1. 

Such a system of applied stresses i s i n equilibrium as indicated 

i n F ig. 5.1.2. 

Therefore an e l a s t i c i t y solution exists for the stresses and 

deformations within the element. 

Note also that the applied stresses are such as to portray a 

transference of stresses from one edge to the other. Similar s e l f - e q u i l i 

brating stresses may be applied to other adjacent and opposite edges. 

Therefore, i f such elements are interconnected at the mid-point of the 

edges, and equilibrium ensured at these nodes, then stress continuity w i l l 

be established i n the region. 

Replacing the uniform stresses along the edges by the i r r e s u l t 

ants acting at the nodes, i t i s seen that the transference of stresses 

across the element may be depicted by a psuedo-truss system which carries 

the resultant forces from one edge to the other. This transference i s 

shown i n Fig. 5.1.3., where the respective resultants are denoted by 

Pj, Oj, Rj, S j , T j . A l l other constant s e l f - e q u i l i b r a t i n g stresses may 

be represented by a superposition of these f i v e resultants. Therefore, 

the transmission of stresses i n a structure may be v i s u a l i z e d as a trans

ference through a psuedo-truss system superimposed on i t . 
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FIG. 5.1.1 BOUNDARY LOADING 
ON E L E M E N T 

FIG. 5.1.2 E Q U I V A L E N T BOUNDARY 
LOADING ON E L E M E N T 

FIG. 5.1.3 TRANSMISSION OF 
G E N E R A L I Z E D E L E M E N T 
FORCES T H R O U G H P S U E D O -
T R U S S S Y S T E M 

FIG. 5.2.1 SUBDIVISION OF 
SQUARE E L E M E N T INTO 
FOUR EQUILIBRIUM 
T R I A N G L E S 
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5.2 Upper Bound on Strain Energy of Element 

The deformation of the square element under the action of the 

equivalent nodal forces, and the s t r a i n energy of deformation could be 

ascertained exactly through an e l a s t i c i t y solution of the problem shown 

i n F i g , 5.1.2, However on account of the s i n g u l a r i t i e s produced by the 

disc o n t i n u i t i e s i n the applied shear stress d i s t r i b u t i o n no closed form 

solution seems to be available. Therefore an upper bound on the s t r a i n 

energy of the element i s obtained by considering the square as a combina

tion of De Veubeke tr i a n g l e s , as shown i n Fig, 5,2.1, 

The transmission of constant stresses through the square 

produces four constant-stress tr i a n g l e s . The s t r a i n energy of each 

triangle i s then evaluated by integrating the expression 

U = t _ // ( a x
2
 + a 2 _ 2ya xa y + 2(1 +y) t x y

2 ) dxdy 
2E 

which gives the s t r a i n energy for an iso t r o p i c constant-thickness region. 

On performing the evaluation for the four triangles and 

summing, an upper bound on the s t r a i n energy of the square element i s 

given by 

u = J__ I P ^ + Q ^ + R ^ + S ^ + T ^ + C ^ 
2Et /2 

in terms of the psuedo-truss forces. 

This s t r a i n energy bound for the element can be u t i l i z e d to 

obtain an upper bound for a structure composed of these elements. For 

th i s purpose the external nodal loads are transmitted to the supports 

through the psuedo-truss system. This gives an equilibrium solution. 
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Then s e l f - s t r a i n i n g solutions are obtained corresponding to the 

redundancies of the truss system i n terms of arbitrary bar forces i n 

the redundancieso The element s t r a i n energy i s evaluated i n terms of 

the psuedo-truss bar forces which are the sum of the bar forces of an 

equilibrium solution and the s e l f - s t r a i n i n g solutions„• Then the element 

s t r a i n energies are summed to give the structure s t r a i n energy which 

represents an upper bound. The s e l f - s t r a i n i n g solutions are then 

evaluated so as to minimize the structure s t r a i n energy. Upper bounds 

obtained i n t h i s manner are shown i n Chapter VI. 

Note that the external loads are assumed to apply at the nodes. 

Now the stress-continuity w i l l be ensured only i f the external load pos

sesses uniform d i s t r i b u t i o n along an element edge0 Otherwise an i d e a l i z a 

t i o n error i s introduced i n the analysis. So i n the case of non-uniform 

loading, the loading i s approximated by a step-wise uniform d i s t r i b u t i o n , 

the steps corresponding to the width of the elements. 

This technique of obtaining upper bounds on the structure 

s t r a i n energy may be u t i l i z e d to provide upper bounds on the f l e x i b i l i t y 

influence c o e f f i c i e n t s as shown by De Veubeke (1962, pp. 185-188). 

Details of De Veubeke's development are given i n Appendix C. 
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CHAPTER-VI 

APPLICATIONS TO PARAMETRIC PLANE STRESS STIFFNESS MATRICES 

6.1 Comparison of Available Parametric Stiffness Matrices 

Plane stress s t i f f n e s s matrices of order (8 x 8), 

evaluated for a square i s o t r o p i c constant-thickness element with 

corner nodes, are compared. The ordering and nomenclature of the 

nodal displacements i s as shown i n Fig, 3.2,2. A (6 x 6) triangular 

element s t i f f n e s s matrix i s included by forming a square element out 

of four triangular elements and reducing to (8 x 8) under'assumption 

of zero loads at the extra node. The (10 x 10) and (12 x 12) matrices 

developed i n section 3,2.4 and 3,2.5 are reduced likewise to (8 x 8), 

Except for the reduced (12 x 12) matrix., the other matrices 

can be represented by discrete values of a continuous stiffness- matrix 

parameter as observed by Hooley and Hibbert, In th i s representation 

the elements of the s t i f f n e s s matrix marked K , K , K , K 
21 31 61 71 

(Table 3„2„lol) are invariants and K^, K g l , K Q 1 and are l i n e a r 

functions of the parameter, 

For those matrices conforming to the representation by the 

parameter taken as 'a', the elements of the matrices are given by 



K 
11 

Et { a } 

K 21 
Et 

8 

Et { -l+3u } 
31 8(1-y 7) 

K = Et {- a + 1 ) 
4 1 4(l+y) 

K = Et {a - 3-y } 
51 4 ( 1 - U 2 ) 

K . _ Et { - ______ } 
61 8(1-y) 

Et { l-3y } 
7 1 8 ( l - y 2 ) 

Et { - a + 1 > 
8 1 2(l-y2) 

The values taken by 'a' for the different matrices 

shown i n Table 6.1.1. 



Table 6.1.1 - Parameters for Plane Stress Matrices under Comparison 

No. Matrix Assumption 
C l a s s i 
f icat ion 

Parameter 
•a' 

»a ' 
for Poisson's 
ratio = 1/3 No. 

1 Section 3.2.1 Uniform o x , c Y , T X Y — 3-y 
8 ( l -y 2 ) 

0.375000 

2 Turner et al 
P - 823, 

Section 3.2.2 

Linear a x , O y , 

uniform T V V 

hybrid l l - 3 y - 2y 2 

24(l-y 2 ) 
0.458333 

3 Reduced (10 x 10) 
Section 3.2.4 

Linear < 7 x , O y , i x y hybrid l l - 3 y - 2y 2 

24(l-y 2 ) 
0.458333 

4 Plan (1) p.1335 quadratic o x , O y , T x v hybrid - 0,468750 

5 Plan (2) p.1336 Linear edge displace
ments, quart ic in 
interior 

displace
ment 

— 0.473960 

6 Argyris(1955,p.l26) 
Melosh (1962,p.32), 

Appendix B 

Linear edge displace
ments, quadratic in 
interior 

displace
ment 

3-y 
6 ( l -y 2 ) 

0.500000 

7 amplified (6x6) 
Turner et al 

p. 816 

composed of four con
stant stress 
triangles abutting 
along diagonals 

displace
ment 

- 0,515625 

8 Hrennikoff 
as per Hooley 
and Hibbert 

Lattice model hybrid 5-3y 

SU-u 2) 
0.562500 



(Cont'd) Table 6.1.1 - Parameters for Plane Stress Matrices under Comparison 

No. Matrix Assumption 
C l a s s i 
f i c a t i o n 

Parameter 
'a' 

*a* 
for Poisson's 
r a t i o = 1/3 No. 

9 McCormick as 
per Hooley arid 

Hibbert 

L a t t i c e model hybrid l l - 9 y 
16(1-y 2) 

0.562500 

10 Gallagher et a l 
p.27-29, 

Section 3.2.3 

Uniform a x , O y 

Linear x Xy 
hybrid 3-y , 3+2y 

8 ( l - y 2 ) 12y 2 

3.125000 

11 Reduced (12x12) 
Section 3.2.5 

hyperbolic a x, ay 
parabolic T X y 

hybrid does not conform to 
representation by 
parameter 
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While the comparisons w i l l be made on the basis of 

reduced matrices, i t should be noted that the (10 x 10) matrices 

developed i n section 3.2.4 are capable of being used as such because 

the corresponding natural s t i f f n e s s matrix i s positive d e f i n i t e . How

ever, the corresponding reduced matrix i s i d e n t i c a l to the (8 x 8) 

Turner matrix so that i f the loads at the extra nodes of the (10 x 10) 

element are zero, the results obtained by using the (10 x 10) matrix 

w i l l be i d e n t i c a l to that obtained by using the Turner matrix. 

The (12 x 12) matrix developed i n section 3.2.5 behaves 

unexpectedly. For Poisson 8s r a t i o = 1/3, the natural s t i f f n e s s matrix 

turns out to be singular on account of a si n g u l a r i t y i n the l a s t (4 x 4) 

pr i n c i p a l minor. The elements of th i s p r i n c i p a l minor give the"stiffness 

c o e f f i c i e n t s corresponding to edge rotations'at the nodes. For other 

values of Poisson°s r a t i o , the matrix Is'non-singular but i n d e f i n i t e . 

The reduced (8 x 8) matrix i s also singular for Poisson's r a t i o =1/3. 

But i t i s i n d e f i n i t e for Poisson's r a t i o less than 1/3, and positive 

d e f i n i t e for Poisson's r a t i o = 0„4. These reduced matrices do not con

form to the parametric representation. The author can ascribe the 

unexpected behavior only to the,assumption of hyperbolic normal stress 

distributiono Because of the i n d e f i n i t e quadratic form of th i s matrix, 

i t i s not considered any further. 

Now the (8 x 8) s t i f f n e s s matrices w i l l be compared by forming 

the inverse difference matrices, and the s t i f f n e s s difference matrices. 

I t w i l l be shown that comparison results are the same i n either case as 

predicted by the theory developed i n section 4.1. 
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For making the s t r a i n energy comparisons i t i s only 

necessary to compare the natural stiffness-matrices since the r i g i d 

body modes do not produce any s t r a i n energy. 

The natural s t i f f n e s s matrix corresponding to the supported 

element can be obtained i n two d i s t i n c t l y separate ways as shown i n 

Fig.) 6.1.1. 

I t w i l l now be shown that either manner of"obtaining the 

natural s t i f f n e s s matrices yields-the same comparison re s u l t s . 

Support Case A 

The natural s t i f f n e s s matrix-is given by 

[K] = 
v„ 

Et 
v., 

u 

8(i-y) 

-l+3y 
8 ( i - y 2 ) 

i-3y 
8 ( l - y 2 ) 

-a+ 
2 ( l - y 2 ) 

-a+ 

-a+ 

2 ( l - y z ) 
1 

4 (1+y) 

-l+3u 
8 ( l - y 2 ) 

SYMMETRIC 

a- (3-y) 
4 ( l - y 2 ) 

8(l-y) 8(l-y) 

The inverse of the natural s t i f f n e s s matrix i s given by 

[IC 1] = 1_ 
Et 

-b+(i-y) 

-y 

-b+l 

-b+2 

b+2(l+y) 

1 

b+l+2y 

b-(l+y) 

b 

b-1 

-y 

SYMMETRIC 

2(b+y) 

b - l 



v l v 2 

* v4 

77A 

SUPPORT CASE A SUPPORT CASE B 

FIG. 6.1.1 SUPPORTED FINITE E L E M E N T 

t P 

^ P 

LOADING I LOADING 2 LOADING 3 

FIG. 6.1.2 I N D E P E N D E N T LOADINGS PRODUCING 
E Q U A L S T R A I N E N E R G Y 
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where b = < + 2V2 - a > 
8(l-u 2) 

{ 3-u 
8 ( l - y 2 ) 

a } 

may be considered the inverse matrix parameter. 

The advantage of having the s t i f f n e s s matrices and the i r 

inverses i n parametric form i s that the inverse difference matrix and 

the s t i f f n e s s difference matrix may be formed in-terms of these"para

meters, and results of general v a l i d i t y obtained for a l l plane stress 

matrices capable of being represented i n this manner, some*of' which are 

shown i n Table 6.1.1. 

Inverse Difference Matrix 

F i r s t the inverse difference matrix for these matrices i s 

investigated. 

Thus, two s t i f f n e s s matrices with parameters•a- a n d ' w i l l 

have inverse matrix parameters of•b l and b 2 where the 'b's and 'a's are 

related as shown above. 

Therefore the-inverse difference matrix i s given by 

1 

-1 1 SYMMETRIC 

0 0 1 

-1 1 1 2 

-1 1 0 1 1 

[D] = b i - b 2 

Et 

This i s of form c 2[B] where c 2 i s a constant and [B] a matrix. 

[B] has rank 2 and index 2, and the non zero eigenvalues of 

[D] are given by 



hi- b 2 (3 + /2) Eiv. no, 1 = . 
Et 

Eiv, no. 2 = _____ ( 3 " / 2 ) 

Et 

Therefore, for b > b , [D] i s positive semi-definite. Con

sequently, the s t i f f n e s s matrix with inverse parameter b^ w i l l have greater 

or equal s t r a i n energy than the matrix with inverse parameter b^ . 

The equality of s t r a i n energy corresponds to the three zero 

eigenvalues which result from the s i n g u l a r i t i e s of [D] produced by 

l i n e a r l y dependent vectors. Each column of [D] represents the difference 

i n the displacements produced by using the two matrices under comparison, 

under unit nodal loads. Therefore, i f a l i n e a r combination of some 

column vectors becomes the n u l l vector, then the corresponding l i n e a r 

combinations of nodal loads w i l l produce no difference i n displacements 

when the two matrices are used. Whence by Clapeyron's Theorem, the s t r a i n 

energies w i l l be equal. 

The three independent load combinations producing equal s t r a i n 

energies i n the element are given i n Fig. 6.1.2. 

Therefore, when b > b the arbitrary non-uniform loads w i l l 
1 2 

produce greater s t r a i n energy with the use of the corresponding matrices. 

The r e l a t i o n between "a" and 'b'-is plotted i n Fig. 6.1„3„ 

Note that for a = 3-y = a the natural s t i f f n e s s matrix i s ___ • c r 
8 ( l - y 2 ) 

singular, 
for o = a < ac„ the natural s t i f f n e s s i s non-singular but i n d e f i n i t e , 

and for a > a the natural s t i f f n e s s matrix i s positive d e f i n i t e . For cr r 

s t r u c t u r a l analysis only positive d e f i n i t e matrices are of in t e r e s t , and 

hereafter i n a l l references to parametric matrices i t w i l l be assumed that 



6.1.3 R E L A T I O N B E T W E E N S T I F F N E S S M A T R I X P A R A M E T E R V 
AND I N V E R S E MATRIX P A R A M E T E R V P L O T T E D 
FOR POISSON'S RATIO = 1 / 3 
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Note that a = 

(Table 6.1=1). 

Note also that for 

the following holds 

8(l-y 2) 

.8(1-7) 

corresponds to Matrix No. 1 

4 a l < a 2 

Thus i t i s seen that the s t i f f n e s s matrix parameter and the 

inverse matrix parameter provide an index of the s t r a i n energy l e v e l 

under non-uniform loading. 

Hence the s t i f f n e s s matrices are ordered by s t r a i n energy 

i n decreasing order of magnitude as shown i n Table 6.1.1. 

Stiffness Difference Matrix 

Any two matrices under comparison d i f f e r only by the 

parameter 'a', Therefore the s t i f f n e s s difference matrix i s given by 

[S] - E t ( a i - a 2 ) 

SYMMETRIC 

0 -1 

-1 

-1 

This i s of form Cl [A] where Cj, i s a constant and [A], a matrix. 
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[A] has rank 2 and index 2 and the non-zero eigenvalues 

of [S] are given by 

Eiv. no. 1 = Et ( a ^ a 2) (3) 

Eiv. no. 2 Et ( a r a 2) (2) 

Therefore we see that for a^ < a^ the s t i f f n e s s 

d i f f e r e n c e matrix i s negative semi-definite. Consequently according to 

Table 4.1.2, the matrix with parameter a± w i l l have greater or equal 

s t r a i n energy than the matrix with parameter a 2 . By examining the 

l i n e a r l y dependent vectors producing the s i n g u l a r i t i e s i n [S], i t i s 

found that they occur under displacements of the element produced by 

uniform loading.* Consequently under non-uniform loading, the matrix 

with parameter a^ w i l l provide greater s t r a i n energy than the matrix 

with parameter a 2 , i f a^ < a 2-

The same conclusions were drawn by examining the inverse 

d i f f e r e n c e matrix. 

Support Case B 

• The natural s t i f f n e s s matrix i s given by 

[ K ] = Et 

-l+3u 
8 ( l - y 2 ) SYMMETRIC 

-a+ -1 
4(1+y) 8(1-y) 

l-3y 
8(l-y 2) 

a- (3-y) 
4(1-y 2) 

-a+ 

8(l-y) 

a- (3-y) '1 
2(l-yO 8 (1-y) 4(l-y 2) 8 (1-y). 

* Uniform loads on the element implies that the element i s stressed 
by constant normal and shear stresses. 
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The inverse of the natural stiffness matrix i s given by 

i_ 
Et 

1 b+2(l+u) 

b-2 -1 

1-u 

3+y 

-1+y 

1-y -y b-(l+y) y 

where, as insupport Case A, 

b = { 1 + 2y 2 _ a } 

8 ( l - y 2 ) 

SYMMETRIC 

8(l-y z) 

Inverse Difference Matrix 

Therefore the inverse difference matrix for any two matrices 

with inverse parameters bj and b 2 is given by 

[D] 
b l ~ b 2 
Et 

0 

0 1 SYMMETRIC 

0 0 1 

0 1 0 1 

0 0 1 0 1 

given by 

This matrix has rank 2, and i t s non-zero eigenvalues are 

b i - b 2 (2) EiVo no. 1 = -± 2. x E t 

b,- b 2 (2) 
Eiv. no. 2 = — x 

Et 



Therefore, as for Support Case A; for bj > b 2 [D] 

i s positive semi-definite* Again i t may-be shown that the equality 

of s t r a i n energy occurs under the uniform-nodal loading shown i n 

Fig. 6.1.2., so that under non-uniform loading the matrix with inverse 

parameter bj provides greater s t r a i n energy than the matrix with 

inverse parameter b 2 i f bj > b 2. 

Stiffness^Difference Matrix 

The s t i f f n e s s difference matrix for Support Case B, with 

respect to any two s t i f f n e s s matrices- i s given by 

[S] = E t ( a i - a 2 ) 

1 

0 

-1 

0 

-1 

1 

0 

1 

0 

SYMMETRIC 

1 

0 

1 

1 

0 

It has rank 2j and i t s non-zero eigenvalues are given by 

Eiv. no. 1 Et ( a r a 2) (3) 

Eiv. no. 2 Et ( a x - a 2) (2) 

Therefore, again, i t i s seen that for a^ < a 2 the s t i f f n e s s 

difference matrix i s negative semi-definite. Again i t can be shown 

that equality of s t r a i n energy occurs only under the uniform loadings 

shown i n Fig. 6.1.2. Under non-uniform loading the matrix with 

parameter aj w i l l provide greater s t r a i n energy than the matrix with 

parameter a 2 i f a^ < a^. 
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Thus i t i s v e r i f i e d that the same s t r a i n energy comparison 

results are obtained by using the s t i f f n e s s difference matrix and the 

inverse difference matrix. Also these results are independent of the 

manner i n which the r i g i d body modes are eliminated to obtain the 

natural s t i f f n e s s matrix. 

Now the results obtained by using the special difference 

matrices w i l l be compared with the results obtained by examining the 

element s t r a i n energy bounds provided by the s t i f f n e s s inverse matrix 

eigenvalues. 

F i r s t i t w i l l be shown that the results are independent of 

the manner of obtaining the natural s t i f f n e s s matrices. 

Table 6.1.2 gives the eigenvalues of the inverse matrices 

for support cases A and B . 
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Note that the ordering of the inverse matrix eigenvalues 

i s independent of the support case, and hence independent of the 

manner of obtaining the natural s t i f f n e s s matrix,, 

The maximum and minimum eigenvalues providing the s t r a i n 

energy bounds for support case A i s plotted i n Fig. 6.1.4. Note that 

the ordering of the matrices by s t r a i n energy obtained by comparing the 

bounds i s the same as that obtained by using the special difference 

matrices, This correspondence w i l l not always occur because the 

difference matrix comparisons compare s t r a i n energies under the same 

load vector, whereas the s t r a i n energy bounds are obtained for different 

load vectors (defined by the eigenvectors corresponding to the eigen

values). Here the correspondence occurs fortuitously because the. 

inverse matrix eigenvectors defining the loads are similar for a l l the 

matrices. This i s shown i n Table 6.1.3 for the Turner hybrid, Pian 

displacement, the Argyris-Melosh displacement matrix, Turner (A's). and 

the Hrennikoff matrix. The eigenvectors are normalized to have length 

of unity. A plot of the eigenvector coe f f i c i e n t s i s shown i n Fig. 6.1.5. 



Et X 
Table 6s 1.2 --^Eigenvalues'-ef••- the;: Inverse;Matrices y = 1/3 

Support 
Gase 

^"^^ Matrix 
Eivs o i n a= 
order of' magnitude 

Turner.! .hybrid-
0.45833 -

Pian.-dis
placement 
0.47396 

Argyri s,Melosh-
d-isp. 
0.50000 

Turner disp. 
(from triangles)-

0.51563 

Hrennikoff, 
L a t t i c e Model 

0.56250 

No. 10 
hybrid 
3.12500 

E i w no» 1 17.26 •r 15.26 13.09 12.1-9- - 10.44 6.28 

Eiv. no. 2 5.06 4.33 3.54 3.22 2.67 2.24 

A Eiv-. no. 3 2.26 2.22 2.16 2.13 1.97 1.06 

E i w no. 4 1.79 1.72 1.59 1.52 1.33 0,16 

Eiv-. no. 5 0.966 0.962 0.953 0.946 0.923 0.119 

Eiv-. no. 1 10.28 -9.68 9.11 - 8.89 8.50 7.70 

Eiv. no. 2. 6.00 5.05 4.00 . 3.56 2.67 2.16 

B Eiv- no. 3 3.84 3.54 3.1.6 2.99 2.67 0.87 

Eiv. no. 4 1.70 1.65 1.56 1.51 1.33 0.18 

Eiv". no. 5 0.849 0.848 0.845 0.844 0.837 0.119 



FIG. 6.1.4 STIFFNESS MATRIX INVERSE EIGENVALUES 
SHOWING RELATIVE BOUNDS ON ELEMENT 
STRAIN ENERGY 
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Table 6.1.3 - Eigenvectors of the Inverse Matrices 

Matrix Eiv. 1 Eiv. 2 Eiv.. 3 Eiv. 4 Eiv. 5 

0.3417 -0.3188 0.4825 -0.7092 0.2140 

-0.5581 •0.1991 -0.4318 -0.5198 0.4385 

Turner 
hybrid 

-0.1929 

-0.6627 

-0.7515 

-0.3181 

-0.0338 

0.2951 

0.3747 

-0.1538 

0.5066 

-0.5907 

-0.3089 0.4392 0.7018 0.2505 0.3954 

' 0.3262 -0.3072 0.5557 -0.6680 0.2103 

-0.5747 0.1744 -0.3838 -0.5388 0.4490 

Pian (2) -0.1933 -0.7544 -0.0229 0.3884 0.4920 

-0.6657 -0.2864 0.3244 -0.1116 -0.5975 

-0.2876 0.4733 0.6618 0.3165 0.3938 

0.3027 -0.2659 0.6542 -0.6067 0.2042 

-0.5988 0.1284 -0.3247 -0.5473 0.4690 

Argyris , 
Melosh 

-0.1935 

-0.6688 

-0.7572 

-0.2217 

0.0238 

0.3583 

0.4170 

-0.0555 

0.4634 

-0.6100 

-0.2551 0.5388 , 0.5811 0.3943 0.3893 

0.2900 -0.2228 0.7037 -0.5751 0.2006 

-0.6113 0.0976 -0.2984 -0.5427 0.4827 

Turner (A's) -0.1932 -0.7553 0.0710 0.4367 0.4430 

-0.6697 -0.1742 0.3715 -0.0311 -0.6181 

-0.2373 0.5829 0.5221 0.4276 0.3851 

0.2577 0.0000 0.8042 -Q.5000 0.1919 

-0.6415 0.0000 -0.2325 -0.5000 0.5332 

Hrennikoff -0.1919 -0.7071 0.2858 0.5000 0.3625 

-0.6696 0.0000 0.3684 0.0000 -0.6448 

-0.1919 0.7071 0.2858 0.5000 0.3625 
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Now conclusions will be drawn on the basis of the strain 

energy ordering obtained by using the energy criterion for the s t i f f 

ness matrices,for a square isotropic element,shown in T a b l e 6 . 1 . 1 . 

Note that amongst the displacement matrices, the Pian matrix 

provides the greatest strain energy and hence is the best displacement 

matrix. 

This matrix was obtained by Pian (1964, pp. 1336) by assuming 

more displacement modes than the number of element nodal displacements. 

This improvement in the displacement matrix ,is contrary to general 

experience (Clough, 1965, p. 91).and i t is felt that such improvement 

will occur, in general, only if internal stress equilibrium is improved 

by doing so, as was conjectured by Pian for this case. 

Also the assumption of more stress modes seems to result in 

less element strain energy under equal nodal loads. Thus as Pian 

(1964, pp. 1334-1336) induced more stress modes in the derivation of 

plane stress matrices the parameter 'a' increased from a = 0.45833 to 

a = 0.46875. 

Also note that the use of triangular elements provides the 

least lower bound on the strain energy. Therefore i t may be concluded 

that triangular elements would generally be inferior to the use of square 

elements. 

Note also that the lattice model matrices (nos. 8 and 9) are 

inferior to the displacement matrices, and the Gallagher matrix (no.10) 

seems poor. 

Note also that both the Turner Matrix (section 3.2.2) and 

Matrix No. 10 (section 3.2.3) satisfy microscopic equilibrium 
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equations within the element. But Turner matrix i s very good while 

Matrix No. 10 i s poor. This shows that s a t i s f a c t i o n of equilibrium 

within the element w i l l not necessarily lead to a good s t i f f n e s s 

matrix, as noted by Melosh (1962, p. 79) for elements for s o l i d s . 

However, note that the hybrid Turner Matrix provides 

greater s t r a i n energy than the best displacement matrix. Therefore 

i t w i l l provide a higher lower bound on the s t r a i n energy than a 

displacement matrix or an upper bound. In the next section i t w i l l 

be shown that a l l these matrices w i l l tend to converge towards the 

solution. In that case the Turner hybrid matrix may be considered 

the best parametric matrix. Note also that the (10 x 10) matrix 

(no. 3) on being reduced provides equal s t r a i n energy to the Turner 

hybrid matrix. 

F i n a l l y , note that a l l parametric matrices are capable of 

representing constant stresses but not a l l of them y i e l d good results. 

6.2 Providing Bounds on Strain Energy by varying the Matrix Parameter 

I t has been shown that the s t i f f n e s s matrix parameter 'a' 

provides an index of the s t r a i n energy l e v e l under non-uniform 

loading. Under uniform loading a l l the matrices provide equal s t r a i n 

energy. 

An indication of t h i s behavior can also be obtained by 

looking at the s t r a i n energy expressions for the (8 x 8) matrices 

derived i n Chapter 3, and Appendix B. These are shown i n Table 6.2.1. 
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Table 6.2.1 - Element Strain Energy Expressions'for Different 

Matrices 

Matrix 
Element Strain Energy Expression i n terms of nodal 

displacements 

No. 1 

Uniform 
x' y' xy 

Section 3.2.1 

U _ Et [ ( u 2 - U ] + u 3- u ^ ) 2 (Vlf- v x+ v 3 - v 2 ) 2 

8 ( l - u 2 ) 

, + 2u ( u 2 - Uj+.Ug- u^) (v^- v :+ v 3 - v 2) ] 

• + gt- [ u 4- u 1 + u --u - v + v 2 - v 3 ] 2 

16(1+P) 

Turner 

Linear a ,a x' y 
and Uniform 

T 
xy 

Section 3.2.2 

U = u + | f [ ( u 3 - u - u + U l ) 2
+ (v - v - v + v,) 2] 

2 1 24 

Argyris,Melosh 

Linear edge 
displacements, 
quadratic i n 
i n t e r i o r 
Appendix B 

TT , Et(3 -p) [ ( u - u - u + u ) 2 _ , _ ( v - v - v + v ) 2 ] 
3" 1 48(l-u 2) 3 " 2 1 3 2 * 1 

No. 10 

Uniform a ,o x' y 
Linear x x y 

Section 3.2.3 

U = u + Et (3+2u)[(u 3- u2+ u , ) 2 . ^ - v2~ V [ + v , ) 2 ] 
1 24 y 2 
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Note that the s t r a i n energy expressions for the.Turner, 

Argyris-Melosh, and No. 10 Matrices contain the s t r a i n energy 

produced under uniform normal and shear stresses plus an additional 

s t r a i n energy term. This additional term 

Et [ (u 3 - U ) + - u 2 + U l ) 2 + (v 3 - v 2 - v 4 + v ^ 2 ] 

i s only altered by the value of i t s c o e f f i c i e n t , say 'c', for each of 

these matrices. As 'c' increases from zero (for the uniform stress 

case), the element s t r a i n energy under arbitrary displacement vector 

increases, unless the displacement vector i s such as to make the 

expression within brackets zero i n which case no increase w i l l take 

place. I t can be shown that a displacement vector making the term 

zero corresponds to displacements under constant stresses. 

Since the element s t r a i n energy increases, as 'c' 

increases, for non-uniform displacements, the element s t r a i n energy 

w i l l decrease under non-uniform loading. This follows from the 

theory for the s t i f f n e s s difference matrix developed i n section 4.1. 

Therefore, i t i s concluded that 'c' gives an indication of 

the element s t r a i n energy l e v e l . 

Now i t i s found that the s t i f f n e s s matrix parameter of 

Hooley and Hibbert i s a li n e a r function of 'c'. 

Thus 3-y , 2c 
a = r•) + 

8(1-y 2) 
where''a' = s t i f f n e s s matrix parameter 
and 'c' = co e f f i c i e n t of the s t r a i n energy term 

Et [ ( u 3 - u,- u2+ u x ) 2 +(v 3- v 2 - V [ + v : ) 2 ] 
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Hence 'a 8 also gives an indication of the s t r a i n energy l e v e l . 

This corroborates the same conclusion drawn i n the l a s t section. 

Also note from Fig. 6.1.3 that for 3-y <_ a <_ 00 

8 ( l - y 2 ) 

we have °° <_ b <_ 1 

where 'b' i s the inverse matrix parameter. 

Therefore as 'a' varies from 3-y to °° , the s t r a i n 
8(i-y*)" 

energy under non-uniform load varies from i n f i n i t y to a small magnitude 

represented by 'b' = 1, which i s much smaller than b = 3 for the Argyris-

Melosh displacement matrix (a = 3-y ) providing a lower bound. 
6 ( l - y 2 ) 

Hence by varying the s t i f f n e s s matrix parameter between 
3-y <_ a <_ 3-y i t i s possible to cover a range of 

8 ( l - y 2 ) 6 ( l - y 2 ) 
element s t r a i n energy levels from °° 

to a lower bound given by a displacement matrix. Since the s t r a i n energy 

i n an element i s f i n i t e i n magnitude, some value of the parameter exists 

which w i l l provide an upper bound on the s t r a i n energy. However, while 

values of the parameter giving a lower bound are defined by displacement 

matrices, i t has not yet been found possible to select a parameter provid

ing an upper bound on the theoretical basis of equilibrium matrices. 

Note that the ordering of element s t r a i n energy obtained by 

using different parameters i s independent of element siz e . I f the 

loading on the element i s non-uniform, the s t r a i n energy w i l l be ordered 

by parameter. If the loading i s uniform the s t r a i n energy of the element 

w i l l be independent of the parameter and equal to the exact s t r a i n energy. 

Now i t has been shown i n section 4.2 that the results of the 

element matrix comparisons apply to a structure composed of them. This 

result i s independent of the number of elements, t h e i r d i s t r i b u t i o n or 
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their size. 

Therefore the ordering of structure s t r a i n energy depends 

upon the ordering of the element matrix parameters, but i s independent 

of structure subdivision. 

Hence i f curves for the s t r a i n energy of a structure with 

respect to structure subdivision are drawn for different values of the 

matrix parameter, then no two curves w i l l ever intersect. An example 

of t h i s i s shown i n Fig. 6.3.1, where the deflection of a cantilever 

under the load (proportional to the s t r a i n energy) i s plotted against 

structure subdivision. 

It w i l l now be shown that a l l such parametric curves must 

converge towards the solution. 

Synge (1957, pp. 209-212) has proved that a-given function 

and i t s f i r s t derivative can be approximated-as closely as we l i k e by a 

polyhedral function based on a suitable triangulation. This polyhedral 

function i s defined within a triangle as a li n e a r interpolation of the 

values at the vertices. 

Using a li n e a r displacement f i e l d , which corresponds to a 

representation of the interpolation function for a triangular element, 

Turner et a l (1956) obtained the s t i f f n e s s matrix for a constant-stress 

t r i a n g l e . Therefore the s t i f f n e s s matrix for such a triangular element 

w i l l provide convergence to the solution with s u f f i c i e n t network r e f i n e 

ment. This has been noted by Melosh (1962, pp. 81-82). 

Note that this convergence to the solution i s obtained for 

a l l load vectors. 

Let us now divide a region of interest into triangles as 
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follows. We f i r s t divide the region into squares",- and subsequently 

subdivide each square into four triangles by joining the diagonals. 

One such progressive refinement of the region using such triangles 

i s shown i n Fig. 6.2.1. 

Now we apply nodal loads to the subdivided region such 

that only the nodes corresponding to the corners of the squares are 

loaded, no loads being applied to the i n t e r i o r nodes. This represents 

a special load vector, and again convergence to the solution must take 

place. 

But such a subdivision, and manner of loading corresponds 

to the use of the Turner-triangles matrix with parameter a = 0.515625 

(Table 6.1.1). Therefore t h i s s p e c i f i c parametric matrix must converge 

to the solution. 

Now l e t us assume that the same nodal loads are applied to 

the Pian displacement and the Argyris-Melosh displacement matrices. 

Then these two parametric matrices-must converge towards the solution 

defined by the actual s t r a i n energy U, to which the square element 

formed from the Turner-triangles has converged. 

If not, l e t the solution from these two matrices converge to 

different values, Uj and U 2 respectively. 

Then, considering the hierarchy of s t r a i n energy levels 

(Table 6.1.1) 

u > u > u 
1 2 

since parametric s t r a i n energy curves never intersect. 



FIG. 6.2.1 PROGRESSIVE SUBDIVISION OF A REGION 
USING TRIANGULAR ELEMENTS 



But and U 2 are lower bound"solutions' from displacement 

matrices. Therefore 

U = U 

and U 2 = U 

Therefore our assumption i s f a l s e , and 

u, = u 2 = u 

Thus these three matrices must converge towards the solution 

under equal nodal loads. 

Hence, the nodal displacements obtained i n each case must be 

the same. 

That i s , for each i n f i n i t e s i m a l element i n the region, the 

vector of nodal displacements 

K' V l ' V V 2 ' U 3 ' V 3 ' V
 VJ 

must be i d e n t i c a l . 

But the s t r a i n energy of the element in-terms of these d i s 

placements i s given for each of the matrices by 

U~T = U c + C| Ug (Turner-triangles) 

JA-M = U
c
 + c

2
 UB ( A rgy r is-Melosh) 

U = U + c U (Pian displacement) p c 3 B F 
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where U £ and Ug are constant energy components and the e's are linea r 

functions of the parameter. (As example see Table 6 . 2 . 1 ) . 

Now these s t r a i n energies must be equal since each represents 

the solution s t r a i n energy, say U. 

This requires that Ug = 0 so that 

UT " UA-M = Up " U c . = U 

We thus see that when the element size becomes i n f i n i t e s i m a l 

Ug approaches zero. 

This result i s also v e r i f i e d by examining the s t r a i n energy 

expressions for the parametric matrices shown i n Table 6 . 2 . 1 . 

When the element size becomes i n f i n i t e s i m a l the nodal d i s 

placements at nodes 2 , 3 , 4 may be expanded by Taylor's series about 

node 1 . Keeping only the f i r s t order terms of the expansion and sub

s t i t u t i n g i n the energy expression one gets the f i n a l result 

U = U c + cy [ 0 ] 

where the coef f i c i e n t of Cj approaches zero and 

U = Et { ______ ( e x
2 +' e 2 + 2p z e + _____ Y

 2 -, dx^ 
c 1 2 ( i - y z ) y y 4(i+y) 

which corresponds to st r a i n energy i n an i n f i n i t e s i m a l element by linea r 

e l a s t i c i t y theory. 

But the s t r a i n energy of an element under a l l parametric 

matrices i s given by 

U = U + c . U„ s c n B 
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see 91A 

where c n i s a constant varying with the parameter. 

As element size becomes i n f i n i t e s i m a l U 0. Therefore 
B 

U = U ' s c 

but U = U, the.1 solution s t r a i n energy. Therefore U = U. c s 
This proves that a l l parametric matrices must converge towards 

the solution with s u f f i c i e n t structure subdivision. 

Therefore the parametric s t r a i n energy curves plotted against 

structure subdivision represent a one-parameter family of non-intersecting 

curves a l l of which approach the solution i n the l i m i t . 

Melosh (1962, pp. 20-21) has shown that a s u f f i c i e n t condition 

for monotonic convergence of displacement matrices i s that under pro

gressive structure subdivision, the displacement f i e l d i n a p a r t i c u l a r 

l e v e l of . subdivision must be capable of representing the displacement 

f i e l d before that l e v e l of subdivision. He has noted (1962, pp. 31-32) 

that the Argyris-Melosh displacement matrix s a t i s f i e s this c r i t e r i o n , 

and i t i s e a s i l y seen that the Turner-triangle matrix does the same. 

Thus, i t has been established that two s t r a i n energy curves 

corresponding to the parameters defined by the Argyris-Melosh and the 

Turner-triangle displacement matrices converge monotonically to the 

true solution. Strain energy curves conforming to other values of the 

parameter also converge to the solution but i t has not been possible to 

prove that they do so monotonically. 

In a s p e c i f i c problem, parametric s t r a i n energy curves may be 

obtained for different values of the parameter by the method suggested 

by Hooley and Hibbert. If these experimental curves appear to converge 
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monotonically to some l i m i t as the structure i s progressively subdivided^ 

i t i s a reasonable inference that the true s t r a i n energy w i l l be between 

curves converging from above and below the supposed l i m i t . The p o s s i b i l i t y 

must be admitted, however, that the apparent l i m i t may not be the true 

solution. In this case the energy w i l l not be bounded. 

Note that the parametric matrices with parameter a > a
c r 

are capable of representing constant stresses within the element, so that 

this capability has been found s u f f i c i e n t for providing convergence to 

the solution. 



Note that the convergence c r i t e r i a : of Bazely et a l (1965, pp..2-3): 

1. the displacement funetionmust~contain~rigid body modes 

2. the displacement function must be capable of expressing 

constant s t r a i n conditions 

does not ensure that a matrix w i l l provide good results with ordinary 

structure subdivision (not too coarse or too f i n e ) . 

For example i f plane stress matrices are chosen using 
3- n_ 

a = 2 and a = 10,000, both s a t i s f y the c r i t e r i a but the f i r s t 
8(1-y 2) 

matrix w i l l give a very high upper bound, and the second 

a very low lower bound, so that both results w i l l be far away from the 

actual solution. 

I f , however, a set of matrices s a t i s f y i n g these c r i t e r i a 

are derived then i t i s possible that one or more of them may be good 

matrices. The choice could be made by s t r a i n energy comparisons and 

comparisons with a n a l y t i c a l solutions. 

Thus amongst the parametrie plane-stress matrices, the 

Turner matrix i s known to give the best results i n s p e c i f i c cases 

(Hooley and Hibbert, pp. 46-47). I t s convergence to the solution has 

been established. Therefore, i t may be considered the best parametric 

plane stress matrix. 

I t should be pointed out that the best matrix 'on the basis 

of s t r a i n energy w i l l not always give the best stresses. This i s 

because the stresses are influenced by the structure subdivision and 

the manner of determining them, i . e . 

1. within an element by l i n e a r transformation of element 

displacements 



93 

or 2 . between nodes by displacement^ d i f f e r e n t i a t i o n 

or 3. at nodes by spreading nodal forces over tributary areas. 

each of which may be most appropriate for a sp e c i f i c element matrix. 

However a correspondence between the best matrix on the 

basis of st r a i n energy and the best stresses i s possible by judicious 

structure subdivision so as to pick up stress gradients and an appro

priate manner of stress determination. Thus Hooley and Hibbert obtained 

the same ordering for extreme f i b r e stress of a cantilever, as i s given 

for s t r a i n energy i n Fig. 6.3.1j - the Turner matrix providing the best 

solution i n both cases. 

Note that the above arguments apply to the use of the same 

type of element matrix for the structure. -If a structure contains 

element matrices with different s t r a i n energy l e v e l s , say a high s t r a i n 

energy matrix i n one part (low value of parameter), and a low s t r a i n 

energy matrix i n another (high value of parameter), then the combination 

may give a good ov e r a l l s t r a i n energy result but poor l o c a l stresses. 

6.3 Upper Bound on Strain Energy by using the Special Element 

The use of the special square element developed i n Chapter V 

for obtaining upper bounds, i s i l l u s t r a t e d by means of two examples, 

one of which has been previously analysed by Hooley and Hibbert. 

Example 1 - Cantilever Beam as per Hooley and Hibbert (1966, pp. 46-47) 

Hooley and Hibbert have compared the end deflection of a 

cantilever composed of a number of f i n i t e elements. The element matrices 

are varied by choosing different parameters. The results are reproduced 

with the nomenclature of thi s thesis i n Fig. 6.3.1. 

Note that the deflection under the load increases as the value 



FIG. 6.3.1 BOUNDING THE C A N T I L E V E R END D E F L E C T I O N 



of the parameter i s reduced. Here the deflection i s d i r e c t l y 

proportional to the s t r a i n energy, so that by varying the parameter 

for the element matrices the structure s t r a i n energy i s varied. 

This behavior conforms to the theory developed i n section 4.2. 

Note also that a l l matrices converge towards the solution 

with increased subdivision as was anticipated by the discussions i n 

section 6.2. Here the convergence i n a l l cases i s monotonic. However 

there i s no guarantee for monotonic convergence i n a l l plane stress 

problems. 

F i n a l l y note than an upper bound subject to the l i m i t a t i o n s 

discussed on page 91 i s obtained by a s t i f f n e s s matrix with parameter 

a = 0.429. 

Now upper bounds on the s t r a i n energy w i l l be obtained by 

using the special element for two degrees of structure subdivision. 

For the coarse subdivision, the psuedo-truss i s s t a t i c a l l y 

determinate so that only the equilibrium solution i s available for 

obtaining the upper bound. 

For the fine subdivision, the psuedo-truss i s s t a t i c a l l y 

indeterminate so that s e l f - s t r a i n i n g i s possible, and an upper bound 

i s obtained incorporating some s e l f - s t r a i n i n g . 

The structure i s divided into 12 square elements, forming 

the psuedo-truss system as shown i n Fig, 6.3.2. This truss has 

no. of j o i n t s , j = 32 

no. of bars, n = 60 

no. of constraints, R = 4 (for attachment to support) 



FIG. 6.3.3 BAR FORCES IN ELEMENT No. I 
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Therefore no. of redundancies, r = n + R - 2j 

= 6 0 + 4 - 6 4 

= 0 

i . e . truss i s s t a t i c a l l y determinate. 

Uniform shear force i s applied to the free end of the 

cantilever as two concentrated loads P at truss-jo i n t s at that end, 

and the bar forces determined. 

Now the s t r a i n energy i n each element i s computed on the 

basis of the forces being transmitted through i t . 

Thus for element No. 1, the forces are transmitted as shown 

i n Fig. 6.3.3. 

From section 5.3, the s t r a i n energy on account of the trans

mission of these forces i s given by 

u v * = - — r V + Q ^ + ' V + V + V 
1 2Et L 

+ l + _ P (Qx+ R:+ Sx+ T,) _ y (0^,+ RXTX+ S^-b QiSj), 
/2 

where P 1 = P 

Qj = -/2P 

S = /2P 

Rx = 0 

T x = 0 

whence 
* = J L [ 5P 2 + 2yP 2] 
1 2Et 

P 2 [ 5 + 2y] 
2Et 
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Obtaining the s t r a i n energy i n the remaining elements 

i n a similar way, the t o t a l s t r a i n energy i n the structure i s given 

by 

Et 

Another equilibrium solution i s obtained for psuedo-truss 

bars oriented as shown i n Fig. 6.3.4. This psuedo-truss i s also 

s t a t i c a l l y determinate, and the bar forces are as shown i n Fig. 6.3.4. 

The s t r a i n energy i s calculated for each individual element 

on the basis of the forces being transmitted through i t , and summed to 

give the structure s t r a i n energy, which i s 

U* = ZP2, (155 + 6li) 
Et' 

This result i s i d e n t i c a l to the previous one. For y = 0.2 

TJ* o IP 2, (156.2) 

For the fine subdivision, the structure i s subdivided into 

48 square elements, forming the psuedo-truss system shown i n Fig. 6.3.6. 

This truss has 

j = 112 . 

n = 240 
R = 8 

Therefore 
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Therefore t h i s truss i s s t a t i c a l l y indeterminate and twenty-

four s e l f - s t r a i n i n g solutions are possible. 

However for the purpose of i l l u s t r a t i n g the procedure for 

incorporating the s e l f - s t r a i n i n g solutions with the equilibrium 

solution, three s e l f - s t r a i n i n g solutions are a r b i t r a r i l y chosen as 

shown i n Fig. 6.3.6. For obtaining the equilibrium solution, a step

wise d i s t r i b u t i o n i s assumed for the edge loading. 

solution shown i n Fig. 6.3.5 and the s e l f - s t r a i n i n g solution given i n 

Fig. 6.3.6. 

The element s t r a i n energies are summed to give the structure 

s t r a i n energy i n terms of the applied load P, and the arbitrary s e l f -

The element bar forces are now the sum of the equilibrium 

straining forces Q, S and T. 

The structure s t r a i n energy i s given by 

* _ _1_ [(2396+108y)P2 , 
9Et 

(69.5-3.5y) PQ 180 Q2 124 PS 

+ 180 S2_(130.5-ia5y)+180 T 2 ] 

Now Q, S, T are evaluated so as to minimize U*, from the 

equations 

8U* 
3Q 0 + ( 6 9 . 5 - 3 . 5 y ) P + 3 6 0 Q 0 

8U 
as 

o -> (-124) P + 360 S = 0 

3U 0 + -(130.5-10.5y) P + 360 T = 0 

http://69.5-3.5y


FIG. 6.3.5 C A N T I L E V E R B E A M FINE SUBDIVISION - EQUILIBRIUM S O L U T I O N 



FIG. 6.3.6 C A N T I L E V E R BEAM F INE SUBDIVISION - T H R E E S E L F - S T R A I N I N G S O L U T I O N S 



103 

From which 

Substituting 

U * 

For y = 0.2 

-(69.5-3.5y) P 
360 

124 P 
360 

(130.5-10.5y) P 
360 

P 2 [ 2344.3 112.5 y _ .17 y 2 ] 
9Et 

U* 2P 2 [ 131.4] 
Et 

The upper bound obtained by Hooley and Hibbert for the 

coarse subdivision i s 

* 2P 2 [ 121 ] 
Et 

Table 6.3.1 shows a comparison of the re s u l t s . 
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Table 6,3.1 - Upper Bound Comparisons for the Cantilever Beam 

Method 
Upper Bound on 
Strain Energy 

% error w.r.t • 
Hooley — j 

Hibbert upper bound \ Remarks 

Special Element-
Coarse sub

d i v i s i o n 
2P 2 (156.2) 
Et 

29.1% 

Special Element-
Fine sub

d i v i s i o n 
2P 2 (131.2) 
Et 

8.4% 
only 3 of 24 pos
s i b l e s e l f - s t r a i n 
ings used 

Hooley-Hibbert-
var i a t i o n of 
parameter 

2P 2 (121) 
Et 

network corres
ponding to coarse 
subdivision 

Note that the special element gives upper bounds which reduce 

with increased structure subdivision and inclusion of s e l f - s t r a i n i n g s . 

However i t seems that for the same subdivision better results may be 

obtained by v a r i a t i o n of the s t i f f n e s s matrix parameter provided bounding 

by v a r i a t i o n of parameter i s v a l i d . 

Example 2 - Plate Under Action of Equal and Opposite End Loads 

by Gallagher et a l (1962, pp. 43-44) which consisted of a plate under plane 

stress acted upon by equal and opposite concentrated loads, as shown i n 

Fig. 6.3.7. Using the Argyris-Melosh displacement s t i f f n e s s matrix, the con

centrated loading i s equivalent to the l i n e a r stress d i s t r i b u t i o n over 

the width of the subdivision, as shown. In order to use the special' 

element for obtaining an upper bound, th i s l i n e a r l y varying stress d i s t r i 

bution would have to be approximated by a step-wise d i s t r i b u t i o n of 

stress. One such step-wise d i s t r i b u t i o n using 1/2 i n . square elements 

i s shown i n Fig,* 6.3,7. The corresponding psuedo-truss problem i s 

large i n magnitude as may be seen by the following data. 

The example chosen i s a simple adaptation of a problem analysed 
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j = 13000 

n = 32000 

R = 4 

r = 32000 + 4 - 26000 

6004 

Therefore for the purpose of i l l u s t r a t i o n of the method 

a plate under distributed end loading as shown i n Fig. 6.3.8 i s solved 

using the Argyris displacement matrix to obtain a lower bound, and the 

special element to obtain an upper bound for the same network sub

d i v i s i o n . 

The displacements under the loads from the displacement 

analysis are respectively 0.0530 i n . and 0.0364 i n . so that a lower 

bound on the s t r a i n energy may be expressed as 

(2P) 2 (1.118) 
Et 

The complete psuedo-truss has 

j = n o 

n = 240 

R = 4 

r = 240 + 4 - 220 

24 

For obtaining the upper bound, two s e l f - s t r a i n i n g 

solutions are a r b i t r a r i l y chosen. These are given by the O's and 

R's bar forces, the equilibrium solution being given by P's. 
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On summing the element strain energies, the structure 

strain energy is given by 

U* = A - t 8 p 2 - 16 PQ + 28 Q 2 - 4 PR + 9 R2 + 16 OR ] 
Et 

Again for minimizing U* 

J H * = 0 •> - 16P + 56Q + 16 R = 0 
8Q 

9U* 
9R 

0 -> - 4P + 16Q + 18 R = 0 

whence 

0.2978 P 

and R = -0.04255 P 

So that the upper bound is 

U* = (2P) 2 (1.425) 
Et 

Therefore the strain energy of the solution is bracketed between 

(2P) 2 (1.118) < U < (2P) 2 (1.425) 
Et Et 

Note that the upper bound would come closer i f more of the 

self-straining solutions were incorporated. Thus this method of 

obtaining upper bounds can be ef f i c i e n t l y u t i l i z e d only when the com

putations are performed with the help of a d i g i t a l computer. 
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CHAPTER VII 

SUMMARY AND RECOMMENDATIONS 

The investigations made i n t h i s thesis are summarized as 

follows. 

1„ Plane stress s t i f f n e s s matrices are derived e x p l i c i t l y for square 

is o t r o p i c elements under different assumptions on the stress 

d i s t r i b u t i o n within the f i n i t e element. 

( i ) An (8 x 8) matrix i s obtained under the assumption o r i g i n a l l y 

used by Gallagher of uniform a . a , l i n e a r x 

( i i ) Two (10 x 10) matrices are obtained under the assumption 

of l i n e a r a . a and x , using i n t e r i o r nodal translations x' y xy' 
and corner edge rotations as additional generalized d i s 

placements. These matrices do not appear suitable for 

general usage but w i l l perform as well as the Turner matrix 

under the same nodal loads. 

( i i i ) A (12 x 12) matrix i s derived under the assumption of 
hyperbolic a , a and parabolic i , again, exemplifying x y xy 
the use of edge rotations at corners as additional general

ized displacements. This matrix i s found unsuitable for 

general usage as i t behaves unexpectedly with varying 

Poisson's r a t i o * 



A method i s proposed for choosing"stiffness matrices for a l l 

classes of f i n i t e elements (i.e„, elements for plane stress, plate-

bending, s h e l l s , etc.,) on the basis of s t r a i n energy. The "best" 

s t i f f n e s s matrix from an available set i s defined as the one 

which yields the closest approximation to the true s t r a i n energy 

of deformation. In order to make th i s choice, a comparison i s 

made of the s t r a i n energy of deformation produced within a f i n i t e 

element by the different matrices under the same nodal loads. I t 

shown that such comparisons require a study of the quadratic form 

of the inverse difference matrix i.e.. (K ~ l - K - 1 ) o 
1 2 

( i ) I t i s proved that the quadratic form of the inverse d i f 

ference matrix may be obtained by a study of the quadratic 

form of the s t i f f n e s s difference matrix (K^ - K 2 ) with 

consequent s i m p l i f i c a t i o n of the process of comparison„ 

( i i ) I t i s proved that the results of the element matrix compar 

sons, generally, apply to a structure composed of them. 

( i i i ) I t i s noted that comparisons under the same nodal loads 

do not always portray the behavior of matrices for which 

the consistent nodal loading may be different or for 

matrices of different orders. However, the same nodal 

loading can always be one of the types of loading to 

which a l l matrices may be subjected, and i t i s hypothe

sized that comparisons under this condition w i l l be useful 

i n evaluating the matrices. 

(iv) I t i s shown that the s t r a i n energy of a f i n i t e element 

under normalized loads i s bounded between the maximum and 



I l l 

minimum eigenvalues of the inv e r s e m a t r i x , and hence 

i t i s shown that Melosh's hypothesis f o r choosing 

matrices corresponds to a comparison of element s t r a i n 

energy. 

3. The t h e o r e t i c a l comparison procedures developed above are 

u t i l i z e d i n a study of parametric matrices for square isotropic elements. 

( i ) I t i s shown that i n a d d i t i o n to the l a t t i c e model and 

other matrices observed by Hooley and Hibbert to belong 

to the c l a s s of parametric m a t r i c e s , other important 

matrices a l s o belong to t h i s c l a s s . These i n c l u d e the 

Pla n displacement m a t r i x , the displacement m a t r i x formed 

by using the Turner t r i a n g l e s and the Gallagher m a t r i x . 

( i i ) An e x p l i c i t parametric i n v e r s e i s obtained f o r the 

parametric s t i f f n e s s m a t r i c e s . 

( i i i ) The quadratic form of the parametric matrices i s studi e d 

and i t i s found that the n a t u r a l s t i f f n e s s m a t r i x i s 

i n d e f i n i t e f o r 0 = a < a , and p o s i t i v e d e f i n i t e f o r 
c r 

a > a d r . 

( i v ) E x p l i c i t parametric eigenvalues are obtained f o r the 

inv e r s e d i f f e r e n c e m a t r i x and the s t i f f n e s s d i f f e r e n c e 

m a t r i x , and i t i s v e r i f i e d that they give i d e n t i c a l 

r e s u l t s f o r the matrix s t r a i n energy comparisons. 

(v) The e x p l i c i t parametric i n v e r s e i s used to prove that 

a l l parametric matrices give the exact s t r a i n energy 

under uniform nodal loads ( i . e . the element deforms 

e x a c t l y under constant a , a , T )• I t i s shown that 
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the s t i f f n e s s matrix parameter represents a measure of the 

s t r a i n energy under non-uniform nodal loads (i.e„, under loads 

tending to bend the element). The c r i t i c a l value of the 

parameter corresponds to an unstable configuration i n which 

the s l i g h t e s t non-uniform load produces i n f i n i t e displacement. 

When the parameter approaches i n f i n i t y , the element becomes 

so s t i f f i n bending that no amount of non-uniform load can 

cause the element to bend. 

(vi) I t i s proved that i f s t r a i n energy curves are drawn with 

respect to structure subdivision, then no two curves w i l l 

intersect. I t i s proved that a l l parametric s t r a i n energy 

curves w i l l approach the true solution with progressive struc-

, ture subdivision. This includes the Turner matrix, the Pian 

matrices, the Argyris-Melosh matrix and the Gallagher matrix. 

Monotonic convergence to the solution i s not t h e o r e t i c a l l y 

established for a l l parametric s t r a i n energy curves. I f , 

however, i n a s p e c i f i c problem, the s t r a i n energy curves are 

observed to converge monotonically, then i t i s a reasonable 

expectation (see page 91) that the s t r a i n energy of the 

solution may be bounded by varying the matrix parameter 

according to the procedure suggested by Hooley and Hibbert. 

( v i i ) A s t r a i n energy ordering i s obtained for the parametric 

matrices, and the following conclusions are drawn with res

pect to matrices for square i s o t r o p i c elements. The 

Pian matrix i s the best displacement matrix. The 

Gallagher matrix i s i n f e r i o r to the Turner, Pian and 

Argyris-Melosh matrices. Constant stress t r i - n o d a l 



triangles are generally i n f e r i o r to the use of . 

square elements. . t, Matrices s a t i s f y i n g microscopic 

equilibrium or capable of representing constant stresses 

w i l l not necessarily yield•good r e s u l t s , 

( v i i i ) The ordering of s t r a i n energy of the parametric matrices 

on the basis of the eigenvalues of the inverse, i s 

examined, and i t i s found to correspond with that obtained 

by a study of the difference matrices. I t i s v e r i f i e d that 

the correspondence occurs because the eigenvectors of the 

Inverse matrices are s i m i l a r . 

A method i s proposed for obtaining upper bounds on the s t r a i n energy 

of a region under plane stress by replacing the continuum with a 

psuedo-truss system, the bar forces of which provide the equilibrium 

and s e l f - s t r a i n i n g solutions. Two examples of i t s application are 

presented and an indication i s obtained i n a s p e c i f i c case where 

bounding by v a r i a t i o n of parameter seems v a l i d that a better upper 

bound may be obtained by varying the matrix parameter for the same 

structure subdivision. 

The following recommendations are made for further study. 

The effect of using equal nodal loads instead of consistent nodal 

lpading i n making s t r a i n energy comparisons should be investigated 

so as to determine whether any q u a l i f i c a t i o n s are necessary i n the 

comparison procedure. 

When comparing matrices of different orders the effect of a r b i t r a 

r i l y assuming some zero nodal loads should be investigated so as 

to improve upon the comparison procedure i n such cases. 



In the case where the special difference matrices are i n d e f i n i t e , 

thei effect of the r e l a t i v e number and magnitude of the positive 

and negative eigenvalues and the load vectors defined by the 

corresponding eigenvectors should be studied numerically. 

Sets of s t i f f n e s s matrices for s o l i d s , plate and s h e l l problems 

incorporating r i g i d body modes and capable of representing 

uniform strains should be developed so as to determine i f 

parameters governing the element s t r a i n energy l e v e l may be 

found for obtaining bounds. 

Available s t i f f n e s s matrices for s o l i d s , plates and shel l s 

should be evaluated on the basis of the s t r a i n energy c r i t e r i o n 

developed i n t h i s thesis. 

A d i g i t a l computer program should be developed for the upper 

bounding procedures using the psuedo-truss system. 

Studies are also desirable to investigate the relationship bet

ween the s e n s i t i v i t y of o v e r a l l s t r a i n energy'bounding and l o c a l 

bounds on stresses and displacements. 



115 

LIST OF REFERENCES 

Argyris, J.H., "Energy Theorems and Structural Analysis, Part 1, 
General Theory", A i r c r a f t Engineering: v.26, n.10 
(pp. 347-356); v.26, n . l l (383-387): v.27, n.2 (42-58), 
v. 27. n. 3 (80-94), v. 27, n. 4 (125-134), v.27, n. 5 
(145-158). 
This c o l l e c t i o n of papers has been published i n "Energy  
Theorems and Structural Analysis", Butterworths S c i e n t i f i c 
Publications, London, 1960. 

Bazely, G.P. , Cheung, Y.K. , Irons, B.M. , Zienkiewicz, O.C, 
"Triangular Elements i n Plate Bending - Conforming and Non-
Conforming Solutions", Conference on Matrix Structural 
Analysis, Wright-Patterson Air-Force Base, Oct. 26-28, 1965. 

Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., A e r o e l a s t i c i t y , 
Addison-Wesley Publishing Company, Inc., Reading, Mass., 
1955, p. 23. 

Bodewig, E., "Matrix Calculus". Interscience Publishers, New York, 
1959, p. 65. 

Clough, R.W., "The F i n i t e Element Method i n Plane Stress Analysis", 
Proc. 2nd Conf. Elec. Comp., A.S.C.E. Struct. Div., Pittsburgh, 
Sept. 1960, pp. 345-378. 

Clough, R.W., "The Fi n i t e Element Method i n Structural Mechanics", 
Chap. 7, Stress Analysis, John Wiley & Sons, New York, 1965, 
pp. 85-119. 

De Veubeke, F r a e i j s , "Upper and Lower Bounds i n Matrix Structural 
Analysis", AGARDOGRAPH 72, The Macmillan Company, New York, 
1964. pp„ 165-201. [originally papers presented to Structures 
and Materials Panel, AGARD, P a r i s , July 1962]. 

De Veubeke, F r a e i j s , "Displacement and Equilibrium Models i n the 
Fi n i t e Element Method", Chap. 9, Stress Analysis, John Wiley 
and Sons, New York, 1965, pp. 145-197. 

Gallagher, R.H., Rattinger, Ivan, and Archer, J.S., "A Correlation  
Study of the Methods of Matrix Structural Analysis", 
AGARDOGRAPH 69, The Macmillan Company, New York, 1964. 
[o r i g i n a l l y Report to Structures and Materials Panel, 
AGARD, Pa r i s , July 1962]. 

Green, B.E. , Strome, D.R. , and Weikel, R.C, "Application of the 
Stiffness Method to the Analysis of Shell Structures", Paper 
No. 61-AV-58, presented at Aviation Conf. of A.S.M.E., 
Los Angeles, March, 1961, pp. 1-9. 



116 

Hohn, Franz E.,• "Elementary Matrix Algebra", The Macmillan Company, 
New York, 1958. 

Hooley, R.F., and Hibbert, P.D., "Bounding Plane Stress Solutions 
by F i n i t e Elements", A.S.C.E., S.T.I, Feb. 1966, p p . 39-48. 

Hrennikoff, A., "Solution of Problems i n E l a s t i c i t y by the Framework 
Method", Jour. App. Mech., A.S.C.E., v. R, 1941, pp. A169-A175. 

Irons, B.M.R., and Draper, K.J., "Inadequacy of Nodal Connections i n a 
Stiffness Solution for Plate Bending", A.I.A.A.J., v. 3, n. 5, 
May, 1965, p. 961. 

Levy, Samuel, "Structural Analysis and Influence Coefficients for 
Delta Wings", Jour. Aero. S c i . , v. 20 (July 1953) pp. 449-454. 

Melosh, R.J., "Development of the Stiffness Method to define Bounds 
on E l a s t i c Behavior of Structures", Ph.D. thesis, Dept. C i v i l 
Engineering, Univ. of Washington, Seattle, June 1962. 

Melosh, R.J., "Basis for Derivation of Matrices for the Direct Stiffness 
Method", A.I.A.A.J., v. 1, n. 7, July 1963, pp. 1631-1637. 

Melosh, R.J., "Structural Analysis of Solids", A.S.C.E., ST4, 39, 
Aug. 1963, pp. 205-223. 

Parker, W.V. and Eaves, J.C, Matrices, The Ronald Press Company, 
New York, 1960. 

Pian, T.H., "Derivation of Element Stiffness Matrices", A.l.A.A. J . , 
v. 2, n.3, March 1964, pp. 576-577. 

Pian, T.H., "Derivation of Element Stiffness Matrices by Assumed Stress 
D i s t r i b u t i o n s " , A.I.A.A. J . , v. 2, n. 7, July 1964, pp. 1333-1336. 

Sokolnikoff, I.S., "Mathematical Theory of Elasticity',' McGraw H i l l Book 
Company, Inc., New York, 1956. 

S t o l l , Robert R., "Linear Algebra and Matrix Theory". McGraw H i l l Book 
Company, Inc., 1952. 

Synge, J.L., The Hypercircle i n Mathematical Physics, Cambridge 
University Press, 1957. 

Tocher, J.L., and Kapur, K.K., "Comment on Basis for Derivation of 
Matrices for the Direct Stiffness Method", A.I.A.A. J . , v. 3, 
n. 6., June 1965, pp. 1215-1216. 

Turner, M.J., Clough, R.W., Martin, H.C., and Topp, L.J., "Stiffness 
and Deflection Analysis of Complex Structures", Jour. Aero. 
S c i . , v. 23, n. 9, Sep. 1956, pp. 805-823, 854. 

Weinstock, R., "Calculus of Variations", McGraw H i l l Book Co. Inc., 
New York, 1952. 



117 

APPENDIX A 

TWO ENERGY THEOREMS 

Theorem of Minimum P o t e n t i a l Energy 

The theorem of minimum p o t e n t i a l energy (Sokolnikoff, 1956, 

pp. 384-385) states that of a l l displacements s a t i s f y i n g the given 

displacement boundary conditions, those that s a t i s f y the equilibrium 

configuration make the p o t e n t i a l energy a minimum, where the p o t e n t i a l 

energy i s given by 

V = .U - / T i u i d r - / F ^ d v 
T v 

where U = s t r a i n energy 

r = the portion of surface where surface forces 

T^ are prescribed, 

v = the portion of the body where the body forces 

F^ are prescribed. 

Note that by Clapeyron's Theorem (Sokolnikoff, 1956, p.86), 

the s t r a i n energy of an equilibrium state i s equal to one-half the 

work of the external forces on the displacements of the s o l u t i o n . 

i . e . 2U = - / T ^ d r - / F ^ d v 
r v 

Therefore the p o t e n t i a l energy 

V = U - 2U 

-U 
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Therefore a minimization of the p o t e n t i a l energy implies 

a maximization of the s t r a i n energy. 

Theorem of Minimum Complementary Energy 

The theorem of minimum complementary energy (Sokolnikoff, 

1956, p. 389) or l e a s t work states that of a l l the stress states 

s a t i s f y i n g the d i f f e r e n t i a l equations of equilibrium i n the i n t e r i o r , 

and the stress boundary conditions, the actual state of stress ( i . e . 

that s a t i s f y i n g compatability) makes the complementary energy a 

minimum where the complementary energy i s given by 

V * = U- /• T i U i d r 
r 

where U = s t r a i n energy 

and r = the portion of the surface where the 

displacements u^ are prescribed. 

Note that under a stress boundary condition ( i . e . no non

zero displacements are prescribed), the complementary energy 

V * = U 

whence a minimization of the complementary energy implies a minimization 

of the s t r a i n energy. 



APPENDIX B 

STIFFNESS MATRIX UNDER ASSUMPTION OF.DISPLACEMENT FUNCTION 

WITH LINEAR EDGE DISPLACEMENTS 

Assumed displacement function 

u = a
3

x y 

v. = a ?xy 

whence nodal displacements are (refer F i g . 3.2.2) 

u i = a
3

x
0 y 0 

u = a (x +a) y 
2 3 o 'o 

u - a (x +a) (y +a) 
3 3V o V J q 

\ " a 3 X o ( y o + ( l ) 

v = a x y 
1 7 o-'o 

v
2
 = a

7
( x o + a > y c 

v = a (x +a) (y +a) 
3 7 0 / w o . 

vi+ = a
7

x o ( y 0
+ a ) 
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Strains from the displacement function are 

£ y = u y = a yx 

Y = u + v = a x + a v 'xy y yx 3 jy 

Hence element s t r a i n energy i s given by 

_ J _ _ // [ e x
2
 + e y

2
 + 2y exey + 1-y Y 2

x y ] d x d y 
2(1-y 2) 2 

x D+a y Q+a 
Et / / ( a 3 y ) 2

 + ( a ? x ) 2
+ 2y (a 3y) (a ?x) 

2 d - y 2 ) x
0 y 0 

1-y (a_x a _ y ) 2 dxdy 

On integr a t i n g one obtains 

Eta a 3
2 ( y Q

2 a + y f a a 2 + a_ a y
2 ( x 0

2 a + x 0 a 2 + a 3) 
2 ( l - y 2 ) 1 3 + 3 

2y a a (2ax Q+a 2)(2ay 0+a 2) 1-y a 2 ( x 2 a + x 0 a 2 + a 3) 

a 7 2 ( y o
2 a + y 0 a 2 + a 3 ) a a (2ax Q+a 2)(2ay Q+a 2) 

+ — + • \ 
3 2a . 
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From nodal displacements the following r e l a t i o n s are 

obtained 

{ a 3 (2y Q+ a)} 
2~ 

{ f3. < 2 xo + a>} 
2 

{ a^ (2y o+ a)} 
2~~ 

{ a ? (2x D+ a )} 

A 7 

u 2 - u 1 + u 3 " 
2a 

u 1 + u 3 " U2. 

2a 

u 3 " u 2+ u l 
a 2 

-

V 2 " V 3 " V ^ 
2a 

V V 3 " V 2 
2a 

V 3 " V V l 
a 2 

On s u b s t i t u t i n g these values for the a r b i t r a r y c o e f f i c i e n t s 

i n the s t r a i n energy expression, one obtains 

E t
 f

 ( U 2 - U 1 + U 3 " U U ) 2
 + K - V 1 + V 3 - V 2 ) 2

+ 2y(u 2-u 1+u 3-u^)(v l t-v 1+v 3 

8 ( l - y 2 ) 

, E t r <V U l + U 3 " U 2 + V 2 ~ V l + V 3 " \ * 
16(1+y) 

Et(3-u) { ( u 3 - uk- u 2+ u x ) 2
+ ( v 3 - v,- v,+ v ^ 2

 } 

48(1-y 2) 



with 

Again using the formulation 

3 2U . . -
K i j - ^ = > n 

The s t i f f n e s s matrix i s of form given i n Table 3.2.1.1 

K X_ (24 - 8y) where X = Et  
1 1 24 2(1-7) 

K 2 1 
^_ (6 + 6u) 
24 

K 3 1 ~ 24 
X (-6 + 18y) 

K M " 2 4 
X (-12 - 4V) 

K 5 1 " 24 
X (-12 + 4y) 

K 6 1 " 24 
A (-6 - 6V) 

K 7 1 " 24 
X (6 - 18y) 

K 8 1 24 
X (8y) 

This s t i f f n e s s matrix i s i d e n t i c a l to that obtained by 

Argyris (1955, pp. 125-126) and Melosh (1962, p. 31-32) as the same 

type of displacement function has been used i n each case. 
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APPENDIX C 

BOUNDING ELASTIC BEHAVIOR 
II. 

Here the basis and procedure for obtaining bounds on the 

nodal displacements and the mean s t r a i n between nodes i s given. 

De Veubeke (1962, pp. 185-186) has shown that bounds on 

f l e x i b i l i t y influence c o e f f i c i e n t s may be obtained from bounds on 

structure s t r a i n energy. 

The bounds on the d i r e c t influence c o e f f i c i e n t s i . e . the 

diagonal elements of the f l e x i b i l i t y matrix C^^ are obtained by 

applying s i n g l e loads corresponding to the generalized displacements. 

Thus under a sin g l e load P^,with corresponding displacement 

<5-£ , the influence c o e f f i c i e n t C ^ i s given by 

5 i = c i i p i 

and the s t r a i n energy can be written 

U = 1 C i i P i 2 (exact solution) 
2 

From a compatible displacement analysis we obtain 

TJ _ — i i P i 2 (lower bound) 

From an equilibrium analysis we obtain 

jj _ .1  c±± p± 2 (upper bound) 
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Therefore 

I C i i p i 2 > I C i i P i 2 > 1 C i i P i 2 

and a f t e r d i v i d i n g by 1_ P 2 

2 

C.. > C.. > C.. 
i i = i i = — i i 

The bounds on the cross-influence c o e f f i c i e n t s ( o f f -

diagonal elements of the f l e x i b i l i t y matrix C\.. i ^ j ) are obtained by 

applying two loads at a time, one corresponding to the displacement i , 

the other corresponding to the displacement j . 

Let S± = C±±?± + C±57i 

be the exact displacements associated with the two loads P. and P.. 
* i J 

If C^£, _C_JT_j , Cjj are approximate influence c o e f f i c i e n t s 

obtained from a compatible approach, and C^, C^j , Cjj those from an 

equilibrium approach, then from previous r e s u l t s we know 

C.. > C.. > C.. and C.. > C.. > C.. 
i i = i i = - i i 23 = JJ = _U. 

Let P. = X P. 

then the exact s t r a i n energy i s given by 

Tj = I V ( C n + 2A C ± J + A 2 C^) 
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Obtaining the upper and lower bounds on the s t r a i n energy as before and 

d i v i d i n g by _ P^ 2 we can write 
2 

C±i + 2A C i j + A 2 C j j ^ C±i + 2X G-jj + X 2 C j j _ C_i + 2\ C_j + ^ 2 _ j j 

Taking the f i r s t i n e q u a l i t y , and solving for C^^ assuming A to be p o s i t i v e , 

we get 

2C. .< 1 (C.. - C..) + 2C.. + A (C.. - C..) 
i j = J i i - i i J JJ 11 

< 1 ( C . . - C . , ) + 2C.. + A ( C . ; - C . . ) 
= j i i - i i i j 11 22. 

The p o s i t i v e A giving the smallest upper bound i s found to be 

A = / { ( q . - C . ^ / C C . j - C . . ) } 

whence C ± j + / { ( C ^ - C^) (Cj - C... )} 

S i m i l a r l y , taking A to be negative we get from the f i r s t i n e q u a l i t y 

C. . > C. . - / {(C. . - C.. )(C.. - C..) } 
i j = i j i i - i i 11 -11 

Treating the second i n e q u a l i t y as for the f i r s t we get new 

bounds 

C.. > c , . - / { ( c . - C.. )(C.. - C..)} i j = - i j i i ~ i i JJ - J J 

Out of the two upper and lower bounds, the clos e s t bounds are chosen. 
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Having obtained bounds on the f l e x i b i l i t y i n f l u e n c e 

c o e f f i c i e n t s , i t i s then p o s s i b l e to o b t a i n bounds on the nodal 

displacements of the s t r u c t u r e f o r any given nodal loads. 

Thus the displacement 6 ^ would'be given by 

h • e q ! , c^) P x + ( c i 2 , C^) P 2 +....+ ( c i n , Ci n ) P N 

The maximum and minimum value f o r each term on the r i g h t 

hand s i d e can then be determined and a p p r o p r i a t e l y summed to give 

bounds f o r 6 ^ . 

Knowing the bounds on the displacements of adjacent nodes, 

bounds may be obtained on the mean s t r a i n between them. 


