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SOME INVESTIGATIONS INTO THE FINITE ELEMENT METHOD
WITH SPECIAL. REFERENCE TO PLANE STRESS

ABSTRACT

Plane stress stiffness matrices are derived explicitly
for square isotropic elements under different assumptions on
the stress distribution. An explicit {8 x 8) matrix is ob~-
tained under the assumption of uniform o_, ¢_, linear Tt
and thus it is shown that the Gallagher Batrix belongs £ the.
class of parametric matrices. Two (10 x 10) matrices are
obtained under the assumption of linear oy, Tys Ty using
interior nodal translations and corner edge rotations res-
pectively as additional generalized displacements. These two
matrices do not appear suitable for general usage but will
perform as well as the Turner matrix under the same nodal
loads. A (12 x 12) matrix is derived under the assumption of
hyperbolic oy, Oy s and parabolic 7, ., again exemplifying the
use of cormer edge rotations as additional generalized dis-
placements, This matrix behaves unexpectedly with varying
Boisson's ratio. ‘

A method of evaluating stiffness matrices, which re-
duces the necessity of comparing finite element solutions
with analytical ones, is formulated. In this method a com-
parison is made of the strain energy of deformation produced -
within a finite element by the different matrices under the
same nodal loads. It is shown that such comparisons require
the study of special matrices i.e., the stiffness difference
matrix and the inverse difference matrix which are obtained
from the matrices under comparison. It is proved that the
results of the element matrix comparisons apply to the struc-
ture. It is shown that the strain enmergy of a finite element
under normalised loads is bounded between the maximum and
minimum eigenvalues of the inverse matrix.

" The strain energy comparison criterion is used in the
study of parametric matrices., An?explicit parametric in-
verse is obtained. Explicit parametric eigenvalues are
obtained for the inverse difference matrix and the stiff-
ness difference matrix, and it is verified that they give
identical results for the matrix comparisons., It is proved
that the parametric matrices produce the exact strain energy
under uniform nodal loads. It is shown that the stiffness
metrix parameter and the inverse matrix parameter represent
& measure of the strain energy under non-uniform nodal
loads so that the strain energy can always be bounded by
varying the parameter. It is proved that if strain energy
curves are drawn with respect to structure sub-division
then no two curves will Intersect. It 1s proved that all



parametric strain energy curves will converge towards the
true solution with progressive structure subdivision. A
strain energy ordering 1s obtained for the parametric
matrices and the following conclusions are drawn. The Pian
matrix is the best displacement matrix. The Gallagher-
matrix is inferior to the Turner, Pian, and Argyris-Melosh
matrices. Constant stress tri-nodal triangles are generally
inferior to the use of square elements, Matrices satisfying
microscopic equilibrium or capable of representing uniform
stresses will not necessarily yield good results,

A method is proposed for obtaining upper bounds on the
strain energy of a region under plane stress by replacing th
continuum with a psuedo-truss system, the bar forces of
which provide the equilibrium and self-straining solutiomns.
Two examples of its application are presented, and an indi-
cation is obtained that upper bounding by varying the
matrix parameter will give better results for the same .
structure subdivision, "
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SOME _INVESTIGATIONS INTO THE FINITE ELEMENT METHOD

WITH SPECIAL REFERENCE TO PLANE STRESS.-

ABSTRACT

This study of the Finite Element Method is limited to static
linear structural behavior under small displacements and involving strains
small as compared to unity.

| The first part of this study deals with the derivation of
stiffness matrices for square isotropic elements under different assump-
tions on the stress distribution. An explicit (8 x 8) matrix is obtained
under the assumption used by Gallagher of uniform O xs Oy , linear Txy.
Two (10 x 10) matrices are obtained under the assumption of linear

Og» Tgs T using interior nodal translations and corner edge rotations

y o Xy
respectively as additional generalized displacements. These two matrices
do not appear suitable for general use but will perform as well as the
Turner matrix under the same nodal loads. A (12 x 12) matrix is derived
under the assumption of hyperbolic ox,voy and parabolic Txys again
exemplifying the use of edge rotations at corners as additional
generalized displacemeﬁts. This matrix behaves unexpectedly with varying
~Peisson's ratio.

Since, in general, there may be a number of stiffness matrices
available for different classes of finite elements (i.e., elements for
plane stress, plate-bending, shells, etc.,) the second part proposes a
method for choosing the best matrix from an available set. This 'best"
matrix is defined as the one which will yield fhe closest approximation

to the true strain energy of deformation. In order to make this choice

a comparison is made of the strain energy produced within a finite
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element by the diffefent matrices under the same nodal loads. It is

shown that such comparisons require the study of special matrices, i.e.,
the stiffness difference matrix‘and the inverse difference matrix which

are obtained from the matrices under comparison. It is proved that the
\résults of the element matrix comparisons generally apply to the structure.
It is shown that the strain energy of a finite element under normalized
loads is bounded between the maximum and minimum eigenvalues of the inverse
matrix.

Next, the proposed method for choosing stiffness matrices on
the basis of strain energy comparisons is verified by a study of ten plane
stress matrices for square isotropic elements, which conform to the para-
metric representation shown to apply to some plane stress"matrices for
square isotropic elements by Hooley and Hibbert. An explicit parametric
inverse is' obtained. Explicit parametric eigenvalues are obtained for the
inverse difference matrix and the stiffness difference matrix, and it is
verified that they give.identical results for the matrix comparisons. It
is proved that the parametric matrices produce the exact strain energy
under uniform nodal loads. It is shown that the stiffness matrix para-
meter and the inverse matrix parameter represent a measure of the strain
energy under non-uniform nodal loads. It is proved that if strain energy
curves are drawn with respect to structure subdivision then no two curves
will intersect. It is proved that all parametric strain energy curves
will converge towards the true solutipn with progressive structure sub-
division. In a specific problem, where the sfrain enefgy curves areébserved
to converge monotonically,it is shown that it is reasonable to expect

bounding of the solution strain energy by varying the parameter according
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to the procedure suggested by Hooley and Hibbert. A strain energy
ordering is obtained for the parametric matrices and the following con-
clusions are drawn., Thé.Pian matrix is the best displaceﬁgﬁt.matrix.
The Gallagher matrix is inferior to the Turner, Pian, and Argyris-
Melosh matrices. Cohstant stress tri-nodal triangles are generally
infefior to the use of square elements. Matrices satisfying microscopic
équilibrium or capabie 6f representing uniform stresses will not neces-
sarily yield good reéults.

- Finally, a method is proposed for obtaining upper bounds on
the strain energy of a region under plane stres; by replacing the
continuum with a psuedo-truss systém9 the bar forces‘of which provide
the equilibrium and self-straining solutions. Two examples of its
application are presented, and in a specific proslem where bounding
by variation of the Hooley-Hibbert parameter appears possible an
indication is obtained that upper bounding by this latter method will

give better results for the same structure ~subdivision.
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SOME INVESTIGATIONS INTO THE FINITE ELEMENT METHOD

WITH SPECIAL REFERENCE TO PLANE STRESS

CHAPTER I

INTRODUCTION

1.1 Description of the Finite Element Method

During the last decade, the discrete or finite element .
method has been established as an efficient and powerful tool for
obtaining digitai computer solutions to problemsbof the continuum.

This method requires the fictitious division of the
continuum into contiguous finite elements, which are joined together
at discrete points called Nodes.

Each element has a stiffness matrix which gives the
relationship between the generalized forces and displacements of
the element., The element stiffness matrices are summea to give the
structure stiffness matrix: |

Many stiffness matrices can be developed for a finite

element depending upon the assumptions made on the variation of



stresses or displacements over the element. Therefore the real

problem lies in developing stiffness matrices with predictable solution

behavior and in choosing the best stiffness matrix from an available set.

1.2 Some Problems of the Finite Element Method

1.

Bases have beep definedlfor obtaining stiffness matrices which
will provide bounds on elastic behavior (Melosh, 1962, pp.l4-17)
but no theoretical criterion has been proposed for choosing the
best matrix from an available set of bounding matrices.
Stiffness matrices have béen‘generally evaluated by comparing
finite element soiutions to analytical ones, but difficulties
arise in extrapolating the results to the infinity of‘problems
that may be formulafed° |

A criterion has been developed for monotonic convergence (Melosh,
1962, pp. 20-23) but there is no guarantee that convergence will
be to the solution. Another criterion has been proposed for
convergence to the solution (Bazely et al, 1965, pp. 2-3) but
its validity has not been rigorously established.

Success in obtaining bounding matrices has been limited. Also
sometimes non-bounding matrices give better solutions than
bounding matrices (Bazely et al, 1965, pp. 21-23; Hooley and

Hibbert, 1966, pp. 46-47).

1.3 Scope of the Present-Study

This study is limited to static structural behavior under

small displacements and involving strains small as compared to unity.



A strain energy formulation is utilized to derive some
new stiffness matrices for square isotropic elements under plane stress.

A strain energy criterion is developed to compare stiff-
ness matrices. It is usgd in the study of plane stress matrices for
square isotropic elements which conform to the parametric representation
shown to apply to some plane stress matrices for square isotropic
elements by Hooley and Hibbert.

A square element with special stress transmission prop-
erties is conceived to provide an upper bound on the strain energy.

1.4 Definition of terms

A stiffness matrix satisfying compiete displacement'
compatibility within and across the boundaries of an element is termed
a displacement stiffness matrix.

A stiffness matrix satisfying the differential equations
of equilibrium within the element and complete stress -continuity
within and across the boundaries of an element is ;ermed an equilibrium
stiffness matrix.

A stiffness matrix which satisfies displacement compatibility
and equilibrium only'at the nodes but allows discontinuities in both
stresses and displacements at the boundaries is termed a hybrid stiff-
ness matrix.

A stiffness matrix from which rigid body modes have been

eliminated is termed a natural stiffness matrix.



CHAPTER 11

REVIEW OF PREVIOUS WORK

The Finite Element Method is a generalization of
matrix structural analysis procedures, described comprehensively by
Argyris (1954, 1955) so as to include the use of two- and' three-
-dimensional elementé;

Levy (1953, pb. 449-454) and Argyris (1955, pp. 125-126)
developed stiffness matrices for specific two-dimensional structural
components: an idealized quadilateral torsion box and a rectangular
flanged panel under direct stress respectively.

Turner, Clough, Martin and Topp (1956, pp. 805-823)
considered the use of more fundamental elements whose behavior would
approach that of the continuous sgructure in the limit. They applied
the idea to plane stress problems. Stiffness matrices for rectangular
and triangular elements were obtained. on the Baéis of assumed stress
distributions. The number of modes in the chosen stress distribution
was equal to the number of nodal displacements of the supported
element (i.e. with rigid body motions prevented). Clough (1960, pp. 345-
378) provided further applications to plane stress problems and noted

an improvement in answers with increased subdivision.



Melosh (1962, pp. 14-17) showed that if stiffness
matrices were developed so as to conform to the minimum potential
energy and minimum complementary energy formulations, then the
strain energy of the solution (as affected by the discretization
errors) would.be bounded. He indicated continuity requirements
for displacement functions satisfying the minimum potential energy
theorem, (1963, pp. 1632-1633). These requirements should be made
more restrictive by stating that they must conform to those for
admissible functions of the potential energy functional being con-
sidered. This statement would automatically include continuity of
displacement as well as slope for the Kirchhoff plate element
(Weihstock, 1962, p. 239), the lack of which produced a nullification
of the lower bound character (Tocher and Kapur, 1965) of the
rectangular plate matrix developed by Melosh (1963, p. 1634)°

Melosﬁ (19629 pp. 20-23) also developed a'suffiéient
criterion for monotonic convergence but noted that convergence to .
the true solution can only be guaranteed if the displacement functions
are cdmplete° This requirement of completeness of displacement functions
is extremely difficult to satisfy.

Usingla suitable displacement function with modes
equal in number to the nodal displacements Melosh (19629 PP. 31432)‘
developed a plane stress stiffness matrix for a rectangular element
insuring monotonic convergence. This matrix is evaluated in'Chapter VI,

Melésh (1962, pp. 68-72) also proposed an hypothesis,
based on a.study 6f prism stiffness matriceé, fbr choosing the best

matrix by comparing stiffness matrix invariants. A theoretical



‘basis is provided for this‘hypothesis and its usefulness examined in
Chapter IV, |

De Veubeke (1965, pp. 145-~197) has presentgd comprehensive
theoretical procedures for the developmént‘of equilibrium and displace-
ment matrices, and used them to develop such matrices for plane stress
elements, He has also.shown (1962, pp. 185-188) that the dual minimal
analysis enables influence coefficients to be bounded.

In the case of.equilibrium matrices, De Veubeke has shown
(1965, pp. 183-188) that artificial kinematic modes may be introduced,

'so that special care is necessary in using them. Also the‘generalized
displacements associated with equilibrium matrices are‘weighted averages
taken over the element edges. Therefore, it seems to this author that
the results obtained by their use would not easily give a clear picture
of the physical behavior.

- De Veubeke (1965, pp. 191-193) has shown how an upper bounding
solution may be obtained in terms of equilibrium and self-straining
stresses. In Chapter V, a special square element is proposed by means
of which the equilibrium and self—straining force systems may be obtained
as bar forces of a bsuedo«ﬁfuss system.

In Chapter VI, a method is discussed for obtainiﬁg upper bounds
on the strain emnergy by varying a ﬁatrix parameter. This method can be
expected to apply to those spécific problems where the strain energy
curves are observed egperimentaiiy to be convergent monotonically. . In
this method no artificial kinematic modes-are created, and the generalized
displacemeqts refer to discfete points so‘thaf there is a betten.appref
ciation of physical behavior than*with the De.Veubeke equilibrium trian-

gular element matrix. .



Pian (1964, pp. 576-577) has shown that the number of
modes of thé assumedvdisplacement function. can be more than the
number of nodal displacements of an element. Then the principle of
minimum potential energy enables the derivation of the stiffness matrix.
He has suggested that solutions obtained by taking more terms in the
displacement function will represent an improvement in equilibrium
conditions., Clough (1965, p. 91) has»obsérved that this does not
generally lead to an improvement in element stiffnéss matrices. In
Chapter VI, an examplevwill bg shown for plane stress matrices where
an -improvement is noted,

Pian (1964, pp. 1333-1336) haé also shown that the number of
modes in the assumed stress distribution may exceed the number of nodal
displacements of the suppdrted element, Then the principle of minimum
complementary energy enables the derivation of the stiffness matrix
under prescribed boundary displacements for the element. It is suggested
that this procedure wiil allow an improvement in displacement compatibi-
lity while ensuring sﬁress equilibrium within the element. Plane
stress stiffness matrices having either more displacement modes or
more stress modes are‘presented by Pian for square isotropic elements. .
These are compared in Chapter VI.
| Hooley and Hibbert (1966) have observed that, for équare

"isotropic elements under plane stress, stiffness matrices.may be
generated by discrete values of a continuous stiffness matrix para-
meter. This allows a very simple represeﬁtation of many plane stress

stiffness matrices for square isotropic elements. It is shown in



Chapter VI that these parameters correspond to different strain energy
levels.

Hooley and Hibbert have noted that amongst thé plane stress
matrices for square isotropic elements tested by them (Turner, Melosh,
Hrennikoff, McCormick), the Turner matrix, which is hybrid (i.e,, non-
bounding), gives the best results. Bazely et al (1965, pp. 21-23)
have also presented some results for triangular plate matrices, where
similar behaviof is observed. In Chapter VI, an explanation is provided
for this behavior. Also additional hybrid plane stress matrices are
developed in Chapter III.

Irons and Draper (1964) and Bazely et.al (1965, pp. 2-3)
have proposed that for converéence to the true solution, it should be
possible to represent a constant state of stress within an element.
Hrennikoff (194i, pp, Al69-A170) originally used this basis to justify
framework representation of continua, In Chapter VI, if is shown that
parametric matrices, which are capable 6f representing constant
stresses within the element, do provide convergence to the true solution

with sufficient network refinement.



CHAPTER 3

DERIVATION OF -PLANE STRESS STIFFNESS MATRICES

3.1 Common Basis for Derivation

For linearly elastic structures (under small displace-

ments), the strain energy is given by

U - 1 [a] [K] {q}
2

where K is the stiffness matrix and q the vector of generalized
displacements (Bisplinghoff et al (1955), p. 23).
Therefore the stiffness influence coefficients may be

expressed as

2
K. . = 92U i,j = 1,n
1] aqiaqj .

This formulation has been used previously by Green,
Strome and Weikel (1961, pp. 1-9) to obtain a stiffness matrix for
a triangular plate element used in approximating arbitrary shell

shapes.
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The stfain energy may be expressed as a homogeneous
quédrétic in the generalized displacements by either assuming a displace—'
mént functién or by assuming stress distributions satisfying the differ-
ential equations of equilibrium as well as compatibility.

In the derivations made in this chapter, stress aistributions'
';are assumed. A matrix formulation for obtaining the stiffness matrix
on the basis of éhese stress assumptions is éet out as foliows.

For this matrix férmulation it is assumed that the stresses
over the element are described by means of a local co-ordinate system
for the element (i.eoyin Fig, 3.2.1, if the axes are translated so ;hat'
-the origin coincides with cornef 1 of the element, then a local co- -
ordinate éystem for the element is defined).

Let the assumed stress distribution over an element be
given by

| | {o} = [A] {a¥}
“wheré 'd is the stress vector, A, the»transformatibn matrix, and
a*; é vector.of constants. |
| Then, the strains are given by
{e} = [D] Ao}

where D is a matrix of elastic constants and €  is the strain vector,

On integration of strains,'the nodal displacements may
bg expresseé as

{q} = [B] {al}

where q iis the displacement vector, and a, , the augmented vector of

constants,(i;e;,constants a* plus the constants associated with



rigid body motions). Note that the constants a, are equal in number
to the element nodal displacements.

Now, the strain energy of the elementmay be expressed as

s = L1 f  lo) {eyav
2 \Y
= 1 /el D71 (e} av
2 v '
Now {a;} = [B7!] {q}

Also the matrix A is augmented with null columns to accom-

modate coefficients a; and is redesignated A;, so that -
{o} = [a1 ({a}

1

Therefore {e} = [D] [Al] {al}

= b1 (a1 (871 {q}

Substitutiﬁg in the expression for strain energy

v =1 7 lad - 517 (o 1T 0] [a] 871 {¢ av
Therefore
. _ 3% O
(K] 'aqiaqj i5] 1,n

o1 T oa”

] (a1 B av
2 V. -

11



This matrix formulatibn is best suited for evaluation by
the computér for arbitfary_shapes of the eiément and different
assumptions on:thé'stress dist:ibution.

However,'iﬁ the;éxplicit derivations presented here, for
équarev isotropic eleﬁents; it was féund more convenient to use a
simplified procedure wherein the stresses over the element were
'sdefined'in terms of a global co-ordinate system{ This artifice
reduced the number of unkn&wn coefficients which- defined the stress

distributions.

3.2 .Stiffness Matrices and their.assumptions-
. A constant-thickness, square isotropic élement is con-
Sidéred. The element 1s assumed embeddgd in the region shown.in
Fig. 3.2.1 for which the stress distribution is assumed.
| The positive directions of the displacements and nodal
forces and their ordering are indiéatea in Fig. 3.2.2, for matrices
developed in sections 3.2.1, 3.2.2, -and 3.2.3.

3.2.1 Uniform 9ys Tys Tyy

These assumed stresses do not constitute enough indepen-

dent modes for a square element with freedom of corner translations.

“Therefore the natural stiffness matrix obtained is singular.
However the derivation is c¢mp1e;ed bécause the stiff-

néss matrix pafameter obtained for this case is of interest in sub-

sequeht discussion (Chapter Vi),:‘Als6,the proéedure for the other

cases.is illustrated.

12
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The stresses are obtained from an Airy's stress

function satisfying the Biharmonic equation:

Thus
2 2 -
Airy's stress function ¢ = ajy + a,x - ayxy
' 2 2
Therefore
ox = -dyy = aj
Oy = Pxx = a2
= - =
Txy xy 83
e = L (o - ucy)‘
E
= La -uap) =y
E
€ = 1l (0. - uo
y o ( y ¥ x)
= __l_ (37_ - Ual) = Vy
E .
,k.ny = sz
G
= 2(1 + 30 a3 = uy + vy

14
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whence on integrating

u = 1l(a -ua)x + 2 +tyu)ay +tky+ec
= 1 2 3 1
E E

v = L(a2 - uél) y - kx+cy
5 :

Hence, the nodal displacements may be expressed in

terms of the arbitrary constants by inserting the nodal co-ordinates.

Then
u = (a =-wa ) x5 +2(1 +yp) ay, +ky, +c
1 1 27 = 3 1
E - E
v1 = (a2 -‘ual) Yo = kxy + c2
E
u, = (a1 ~ uaz) (xo +a) + 21 + w) agy, + kyo + ¢y
E E
v2 = (a2 - ual) ZQ.— k (xO + a) + c,
E
u, = (.':11—~1‘l€:12)(x,0 + a) + 2(1 + u) as (y0+ a) + k (y0 + a) + ¢y
E E i
vy = (a2 - ual)(yo +a) -k (x, +a)+ c,
E

uy = (ap - Hay) 3, + 20+ W) ag (yta) vk (yta) +e
E E

v, = (ap; = uay) (y0 + a) - kx
E

o +C2
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Now relations are derived between the arbitrary constants
»and_thé nodal displécemgnts §0 thaﬁ_the4stfain energy may be expressed

: ekplicitly;in :étms_of the nodal_displacements.

AL May Uy mup T Uy = Uy U= Ut Ugm g Ex
' E S . a o a S S 28 E
a, - “a1; o v, "Vl. ; va»_ v, ; v,© v1+ YS—‘YQ - FY
E : a a ‘ 2a
; 2 (1 +p):§3 ) U s ug = Vot v, oyt U= Vot Vo
E C a . a ‘
1; u“- u1+ ua" UZ"' V1+ V2- vq+ v3 ‘- :ny
2a . : .

'Then the strain energy in theleleﬁent~is,given by

. tt.y’+aA X.+a o e

T A A A E  (ex? +ey? +2uegey), E L yyy2 { dxdydz

U - o <YO xo ——————— }’ . y [, . y . T
e e e R 20 2

2(1-p2)

t E : : :
w 4 —— (Ex + eY + Zuéx + ;y?+——-EL- YXY }
A 2(1-p2) - S N

.,'Sub?tituting for ex, ey,' ny oné'obtains

o pe Bt (up- “1+u3f'“u)2.+(vuf.V1TV3'92>2+'2“<“i'“1+“3’“u)(VH'Y1+V3'V2y]
8 (1-u?) I R : : '
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We know that the stiffness influence coefficients are
given by
32U |
K = Py i,j = 1
9q., 0 J n
ij qi qj > >
where qq are the generalized displacements.
Here the generalized displacements are the nodal displace-

ments. Hence we obtain

K _ 92y - A (18-61) where A _ Et
11 bu; 2 24 2(1-u2)
K - 3%y = A (6 + 6
21 duj dvy 24
K - R LA (-6 + 18w
31 du,9v, 24
4 N i A SO €D
T4l du,du, .24
K 3%y _ A (-18 + 6u)
51 Bu)duy 24
K . _P%u L A (-6 - 6w
61 3u18v3 24
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< ) 32y _ S A (6 - 18w)
71 aulayL+ : 24 -
K o % A (6 + 6u)
81 . Bujeu, | 2% »

The remaining columns may be obtained by permutations of
the elements of the first column, and the stiffness matrix is given

in Table 3.2.1.1

Table 3.2.1.1 - Stiffness Coefficients for (8 x 8) Matrices

_ - 7 6 -
41 L%y o
b2 > - frs
Vi 2 Kor o Ky
| > 4
AP 3 Ky Kgp Ky —_7T N
o, s
U, 4 Kigp Koy Ky Ky SYM.
Uy 5 1Xs1 Ky Ky Ky Ky o
Vs 6 Ker KSL Ky Koy Ky Ky
v, 7 Koy Ky Ky Ky Ky Ky Ky
Uy 8 Kg1 Ky Ry Koy Ry K?; K1 Kl{J

If rigid body modes are eliminated from this matrix by
removing the appropriate three rows and columns, the above matrix

is still singular.
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3.2,2 Linear o_,,0_ ‘and Uniform T
L X Y. Xy

Airy's stress .function

o - a1x3 N a,+y3 .
6 -6 3xy
Oy = ¢yy = ay
Gy = 4)xx = ax
Txy = f¢xy = ¢3

Proceeding, as before, obtaining and integrating the strainms,

2 : ’
o = THa X + a,xy kv + 2(1+w) _ a)y +
‘ 2E E Y €Yy = TE T4
axy pa,y? a,x?
v o= - - + kx +
E 2E 2E % 2

Again, on expressing the nodal displacements in terms of the
constants and Xx,,, Y5,. and subsequently performing algebraic manipula-

‘tions, one obtains

il ~ Vy -V, —V, + v,
E a2
ii - v3 -u, -y, + u1
E a?
2(l+u)c37 _ouy, Uy +u; - u, + v, =V, + v, =V,

E 2a
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Xy u N u ug—u,tu,-uy N ' SV, =V

a 2(1-u2) 2(1-u2)  vg-v,-vytvy (1-12) (vg=v,=vy+vy)
y u2 uz v. +v, =V, =YV u, — u

a 2(1-u?) 2(1-p2) ug - uy, - U, +u, (1_u?)(u3—u4f92+u1)

Now the strain energy may be expressed as

. yo+aA.xo+a ‘ )
U == - (r 2 2_ 9, 2
2B i) / (oX + Gy ,2uoxoy + 2(1+u)TXy ) dxdy
Yo *o
4 3 2
a't ax a a.x a, a a
- e e R era B
2E a a 3
2y a x a a,y a 2(14+u) ¢
&, Oy 2 e 7
a 2 a a

Substituting for the arbitrary constants and simplifying

one obtains

y . —Et I (Uz‘ul*‘ua‘uu)%,.(Vu“’i*"s"’z)izu(uz‘u1+ué’“4)(Vu""l"‘Va'Vz) ]
8(1-u?)
+ _Et [uy = uy +ug —up + vy = V] + vy - V,+]2
16 (1+y)

‘ 2 2
| Et [ (u3 - uu - u2 + ul) | (v3 - v2 - vI+ +‘V1) 1

24



Again using the formulation

i3

aq dq
i

32y

J

The stiffness matrix is of form given in Table 3.2.1.1

with

K
11

81

N> N | > N>
-~ I~ £~

N>
B~

(22 - 6u - 4u?) where A _ Et
2(1-p2)

(6 + 6u)

(-6 + 18u)

(=10 ~ 6u + &4u?)
(—l4+i6u - 4u?)
(-6 -6u)

(6 - 18u )

(2 + 6u + 4u2)

21
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This matrix is identical to thaf derived by Turner et al
(1956, p. 823) because the same assumptions have been made on the
stress‘distribution.

Although the derivation given here has been found convenient
for obtaining explicit results, if it is desired to conform to the
matrix formulation of section 3.1, then the basic matrices and vectors
to obtain the stiffness matrix will be given as follows.

In this case a local co-ordinate system is assumed for the
element, in which corner 1 of the element (see Fig; 3.2.1) is taken
to coincide with the origin.

Then the stress assumptions are written as

Oy = ag + a,y
Gy = a, + a x
Txy = cy

The corresponding displacements over the element are

2 2
u=2L(ag-may) x _HHX o B E?. + ___2(1,+,u)c3y S LA |
E 2E E E E 2E E
2 2
vl (a2 = “33) Yy 4+ a,xy - Hany - ayx + E-x + f.g.
E E 2E 2E E E
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Then, in accordance with the previous formulation

I.qJ = ]-u'l’ V1’ V2! uz! u3, Vv3’ ‘VL+9 ulil
a a a a c c c k
1 2 3 4 3 2 1 ,
- | —
0 0 1 oy 0] 0 0 0
(a1 = .
X 1 0 0 .0 0 0 0
L 0 0 0. 0 1 0 0 Of
rl -u 0
[D] = L L 1 0
E .
0 0 2(1+
u (1)
a, a, a, a, cy c, c1 k;
—
0 0 0 0 0 0 1 0]
0 0 0 0 0 1 0 0
0 0 0 -a?2 0 1 0 a
2
(B] =1 | -ua® -pa a 0 0 0 1 0
' E 2
-a?(1+u) -ua a a? 2(1+1)a 0 1 -a
2 :
a? a -ua -aZ(14+n) o - .1 0 a
: 2
0] a ~-ua —-pa? 0 1 0 0
2
-a? 0 0 0 2(1+u)a 0 1 -a
L 2 B




3.2:3 Uniform oy, ©

v Linear Txy .

Airy's stress function.

Xy

Obtaining

a§x2 _
2E

azy
2

Again, on
constants and Xxg,

tions, one obtains

-uaz
E
_uas
=
a2
2ax0+ a _
E
2ayo+a2
E

- ;& x2y s ;_3. xy?2
T byy 7oA
= bxx = a5y

¢xy = -ax -a,y

and integrating the strains one gets

uap Xy (2+u)a3y2 ky + cy
E 2E '
uasxy (2+u)a2x2' kx ¢y
- + +
E ‘ 2E

24

expressing the nodal displacements in terms of the

Yos and subsequently performing algebraic manipula-~

a2
_ Vg =V, =V, + vy
; 2
32(X+“Y) where X = u,
K
Y = Vq
a (pX+Y)
3 K =
K



1 2 2 1
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. , , i _ i ~
a, (2ax ta )+.31 (2ay,+a®) _ (uu u +u, -u, +v v, + v, AX&)

E E =2(1 + u)

Proceeding as before, the element strain energy may be

expressed as

: 2
a“tﬁ'g (a22+a32)(3+2u§.+ Et(l+u)%;a2 (Zaxo+a2) N a, (Zayo+a2?}
E

U =
' 24E 4 E
Et (%% + Y% + 2uxY)
+ —=— |
8(1-u4)
Substituting for arbitrary constants and simplifying
- - 2 - -« Y2
U = Et [ (u2 u, + u, uq) + (vu vy + vy v2) +
8 (1-u?)
2u'(u2 -u; +uy - uy) (v = vy +v3-v,) ]
Et [u -u, +u, —u, +v, - v, +v, - v ]2
+ ——— 4 1 3 2 2 1 3 4
16 (l+p) )

+ _g% g3+§E) [ (ga -u, - u, + ul)z + (v3 - v, —‘§“ + Vl)z]
u

whence the stiffness matrix is of form given in Table 3.2.1.1 with

R, = A (18-6s +4 (3+20Q —12)) where A = __ Et

11 _ ) ' 2
24 U 2(1-u%)
= A (6 + 6u)

K
2 ——
. 2%

K = L (—6 + 181»\) -
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K = A_ (=6 -6u -~ 4 (3 +20)( -u?))
41 ’
24 n?
ko= A (ls+en+ 4 GFanQ ~u?))
24 u?

K6 = A (-6 -6u)
: 24
K = X (6 -18y)
71 24 -
K = A (6+6u - 4G+ )
81
24 _ u?

Gallagher et al (1962, pp. 27-29) havevdiscussed the derivation
of a stiffness matrix on the same basis. Hcwever, they left the results
in the form of a matrix expression to be evaluated by the computer.

Here the matrix is given explicitly,

3.2.4 Linear Oys Jy» fxz

Airy's stress function

o - alx3 + azxzy + a3xy2 + a,y?3
6 2 2 6
Ox = Syy T a3x + a,y

cy = ¢xx = a;x + a,y
Txy = _¢’Xy = _(aZX -+ 33)7)
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Obtaining and integrating strains,

- 2 - 2
L. (a3. ual) f;_ .\ (aL+ uaz) fz_ ) {a1 +(2+y) a3yz_ _ ky . ¢,
2E E 2E
d 2 o 2
- - +(2+
i (a2 uaq) z_ . (a1 uas) fz {aL+ (241 azxf_ kx . c,
v.T | 2E E 2 t
from which
o = (a‘+ - uaz) x _ {a1 + (2 +w) a3} Z. _ k
y E ' E
(a1 - uaa) y {aL+ + (2 +w) az} x k
vy = T - E +
uy and v, represent rotations of lines parallel to the co-

ordinate axes. They may be used as additional generalized displacements

and will describe the rotations of the element edges.

Proceeding with the matrix derivation, the following results
are obtained on expressing the translational nodal displacements in

terms of the constants, and by performing algebraic manipulations.

a|+ - uaz _ U3 - uL+ - u2 + ul
E . : a?
- V =V -

a) T Hay 3 2 TVt Yy
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2 - - -
2ax, + a _ X(a2 uaq) Y (aL+ uaz) where
E = -
2ay, + a? X(al -_ué3) - Y (a3 - ual) Y=v, -V tVvy -V,
E - -K

- A
]

_, 2
(a3a2 alau)(l ue)

2 2 ; - - - -
a, (2axgy + a%) N a, (2ay, + a )= (uL+ u, + u, u, + v, =V, +.v3 vq)

E E =2(1 + )
Again the element strain energy may be expressed as

L - 2 ._ 2 2 2 —_—2
aat {(al ua3) + (aq uaz) + (a2 +a, )(3 + 2u-u ) 1
24E

: 2 2 2
Et(l +u) | a, (2axy + a“) N a, (2ay, + a%) }

4 E E
+ Et (X2 + Y? 4 2uXxY)
8 (1-p?)
Substituting for arbitrary constants and simplifying
- Et [ (up —uy + uz - uu)2 + (vy - vy t vy - v2)2 f
8(1-u?) |
2u (u2 -u, tu, - uu{)(v‘+ - vtV Vz) ]
+ Et [ u, u, + u, u, + v, v, + v, vu]
16 (1+u)
-y - 2 v - 2
+ Et [ ( u, uq‘ u, + ul) + (v3 v, =V, + vl) ]
24
L 2 2
;2 t (3 -w) 1+ [ay,® + az”]

24E
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Note that it is not possiblé to evaluate the last term of the
strain energy expressions in terms of the eight nodal translations.

Two additional genéralized displacements are required. These
bmay be supplied to the elément in a variety of ways.

The translations of the point of intersegtion of the diagonals
may be used, as in Fig. 3.2.4.1.

The values of ug and vy are obtained by inserting the co-
ordinates of the nodal point 5 in the expréssions for the displacements
u. and v, obtained byvintegrating the strains.

' Then, by performing algebraic manipulations, the value of
a't 3 -wa ) [a,% + a,?]
24T is obtained in terms of the ten

nodal displacements, and the value of the element strain energy is given

by . :
. Et [ (u2— ui+ u,- gu)z +(v
- 8(1-u?) V

4 1 3

- .+ - 2
y v V2)

4+ 2 (uze uy+ uz- u,) (vy- v+ v3- vy) ]

4+ —_—
16 (1+u)
- - 2 . - _ 2
+ %% [ ( u- u, u2+ ul) + (v3 v, vq+ vl) ]
. EE (3-u) {8v5—2(v1+v2+v3+v4)}2_2{8v5—2(v1+vz+v3+vu)}(u3—u2—uq+u1)
S 24 (1Hw) (1 + w? (1 +u)
+ {8u5 - 2(u1+u2+u3+u4)}2_2 {8u5— 2(u1+u2+u3+u4)}(va—vz—vu+v1)

(1 +u)? 1+ w

+ (ug - uy, - u, + oy )2 + (vg = vy, = v, + vy )? ]
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On using the formulae

Ry = _3%u_ i,j = 1,n

a stiffness matrix of form given in Table 3.2.4.1 is obtained,

Table 3.,2.4.1 - Stiffness Coefficients for (10 x 10) Matrix using

Interior Nodal Translations

. . .
uy 1 K11 Iy A
8 5

vi 2 K1 K o
v, 3 a0 % K - P >4

4 K K K. K 2 8
%2 | v1 0 71 21 1l SYM.
Y3 > Koy Koy Ky Ky Ky
V3 6 Koy Koy Ky Ky Ky Ky
vy 7 Koy Ky Ko Keyp Ky Ky Ky
u, 8 Kor Xa1 Ker Koy Ky Ky Ky Ky
’ ' - - K
Us ? Koy Kig,17%i0,1 a1 %a1 Ko, 17%10,1 Kot Koo
vs 10 Kig,1 Koy Kgp Kyg,1 Kyo,1 Koy Koy Kyg,1 Ko, 9 Kog
with the coefficients given by
Ky= A [ 34 -22u+16Q3 = 4y +u®) ] where A _ _Et

24 1+ w2 o - 2Q1-u®)
K,, [ 6+6u +16 (3 - 4p#u?) ]

;Z . : (1 + )



‘ = -6 +
K3; = 3 [ -6+ 18u ]
K, _ A [ - 224 10p+16 (3 - 4y ) ]
: 24 , (1 + p)?
K, = A [-2-10u+ 16 (3 - 4y +i?) ]
' 24 (1 + w)?
Rg, = = [ -6 -6u+ 16 (3 - 4u +u?) ]
24 1+ w)
A [ 6 -18y]
K21 = 23
Kyy = 2 [-10 + 22u + 16°(3 = 4y +p?) ]
24 | 1+ w?
-64 (3. - 4y +u?
Kg = 2 [ ( p tus) ]
26 1+ w2
C o A (=323 = 4w w?) ]
10,1 4 (1 + 1)
- A [ 256 (3 - 4y +u?) ]
?° 24 1+ w2
Kyp,9=

Another stiffness matrix may be obtained by choosing the

additional generalized displacements as edge rotations at nodal

point 1 as shown in Fig. 3.2.4.2.

given by

The strain energy expression obtained, in this case, is

31



- - - 2 - - 2
u = Et [ (u2 u, +u uu) + (vI+ v, + v v2) +

1 3 1 3
8(1-u?)
2u (u2 - u + ug - uu) (Vq -V, + v, - vz) ]
+ Et [u - u, + u, -y, + v2 - v, + vy TV, 12
16 (14+u) ' .

Et [ (U ~u -u +u Y2 4+ (v -v =v +v )2 ]
+ 3 4 2 1 3 2k 1

Eta (3=-n) [ { VX, (vz— Vl) (u3— u,- u,t ulj }2
— - = ‘ +

24 (1+y) a 2a

{uyy  (uymuy)  (V3=vy=vytv,y) 12 ]

a 2a

On using the formulae

2 P
e R
quaqj

the stiffness matrix obtained is of form given in Table 3.2.4.2 with

K _ A [37 - 26u+ w?]  where A Et
11 2 2(1-u?)
K _ A [ -6+ 22u - 4u?]
21 24
K _ A [6t+ 2+t 4u?]
31 24
A [-13 - 2u + 3p?)
Kuy = 7 |

A [-11 + 2y - 3u2]



K .
61

K
81
K
91
10,1

K
99

Kio,9

Aa
24

Aa
24

Aa?
24

[-12 + 2u - 2u2 ]
(12 - 26u + 212]
[-13 + 261 - p2]
[12 - 161 + 4u2 ]
[-6 + 8u - 2u2 ]

[12 - 16u + 4u? ]

33



Table 3.2.4.2 — Stiffness Coefficients for (10 x 10) Matrix Using

Corner Edge Rotations

u 1 K
1 11
v 2 K K
1 21 11
K K
Vo 3 Kay 81 11
U, 4 Kyp Koy Ky Ky
U 5 Kgy Koy Koy Koo Ky
V3 6 Key Koy Ky Kgy Koy
Vi 7 Koy Ky Koy Ky Ky
Yy 8 Key K3y Ky K Ky
ugy 9 Kg1  Xi0,17%10,1 Ko Koy
v. .. 10 -K -K K -
%1 10,1 91 91 10,1 10,1
K _ A [25 - 10u - 3u% ]
ik 24
K _ A [-1+ 10um + 3u? ]
Sh 24
K - A [-6 + 18u ]
6L v 24
A 6.+ 6
K - [ u]

74 -2—4

94

34.

. 6
8 >3
9—1
| ), 10 4
SYM. 4 3
Kiy
Koy Ky
K1 K Ky
K10,17%10,17 %01 Kgg
K K
g4 9 10,1 10,9 99
K = 0



32,5 Hyperbolic oy,

Oy Parabolic 1

Airy's stress

Txy

Obtaining and

- 2
“ (d, - wb) x%y
2E
v = (b, - nd,) xy?

2E

From which

(dq = ]qu) X~

Xy
function
bly L dyxy®
6 6
byy T duxy
Sx = b,xy
- - byx?
¢xy = .
integrating strains
3
{ b, + (2 + w dq} vy
6E
fd+ @+ w b} fi
6E

by + (@ + w4y

{du+(2+u)bu}

35

d,y

Apart from the eight translational nodal displacements, four

Yy 2E
(b, - ud,)
v = 4 oY
x 2E
rotations Ugys Vgos Ugg

ments of the element.

and Vy

4

are chosen as the generalized displace-

(Here also a choice is available).

As before, the displacements are expressed in terms of the
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arbitrary constants, and algebraic manipulations give the‘following

relations.

(d, - iib,) (2axg + a?) a_ -

' Uy T U, T Uyt
(b, - ud ) (2ay. + a?) a_ = - -
4 i ° 2E V3 TV, TV, Y
(dy - wby) (2ax, + a?)(2ay, + a%)
‘ - : = u - u +u - u
2Ea. o 3 ) 2 :
(b, - ud,) (2ax, +ah)CQay, +aB
2Ea V3 T "2 v "N

2(1+0) {bu(ax02+ a2xo + a3) +du(ay02+-a2yo + a3); ;a(uy1+uy3+vx2+vxu)

E 2
4 6E [(2+u)  {u,-u +uy-u, Euy1+uy3)}_ {v,~v +v,-v, va2+vxq)} ]
Y oa2(3+u) (1+) a - a
. ) ) ) ) _ _
(1+1) dq (2ayo + a%) _ uyl uy3 _(uq u, u3+ uz) _(va v, vq+ Vl)
'E a - a
(1+p) bq (2axo + a?) _ (sz— qu) (u3— u, - u2+ ul) . (VZ—'vl—-v3+ Vu)
E ‘ a a
. (39"F35 _ Eu [ ) (vxz— vxu) _ (u3—uq—u2+u1) N (vz—vl-v3+vu) ]
g 2 2a2 (1+u) : a a
N .E; (u3— u,- u2+ ul)
a3
6E [ (24+1) {v2—v1+v3—vk ;(VX2+VXM} {uh—u1+u3—u2 _(uY1+uY3)} ]

bu = azf3+u52|+u) a - a
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v b; (ZE.+ E»» Eu [uy1— uya_(uq—’ul— u3+432) (Va— v, v+ Vl) ]
2a2 (14yu) a a

E (v,- v
+ _ 3

- vq+ vl)
a3

2

Now the strain energy in thé element is 'given by

| Yota xo+a ‘
, v _
t S J (OXZ + qu - zugxoy + 2(1+u) Txy ) dxdy

U = e
2E Yo %o

'.which on substitution and integration yields

: 6 ‘ - 2 - 2 - -
U= ta [ (b, ud) N (d,= ub,) N 2u (b~ ud )(d - ub,) ]x

2(1-u2)E
(Xo 1>2 /Yo + 1)?
2 T2/ \a "2
R tab (b2 + 4,2) { (%o + D , Go+ D2
24E a 2 a 2
_ o ta® (142w budy { (kg + 1 )2 L, Uot E_)2 }
' 12E ~ a 2 a 2
tab (1+) [b, {[x,)% (%) 1} dq{(yo\? (yo) 1117
+ 4E ' ‘a / + a t 32 + \a / a 2
. tab  (-13-18y) (b,2+ d,2)
2E 720 '

2E 72



" 8(1-ud)

{
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Substituting for the arbitrary constants and simplifying,

Et | (u3— u4+ u

2

- 2 .
ul) + 3

Et - u - - + u
[ ( 3 u'-+ u2 1)

(v,-v.+v

- 2 - -
4 Vl) N 2u (u3 u+u, ul)x

(ya— v2+ vh_ vl) ]

N2
v-v-v+t+yv i
( 3 2 Y4 1) ]

— +
24
- v, —u - u+ - v - v+ 2 Era?(1-3i
_(sz vxq) _(us u-u, u1)+.(v2 V.=V, v&)} Eta4( )
' a a 96 (1+w)
{ (uy1— uya) _(uu— u;- u.+ uz)_ (v3— v,- v, + V_J_)}2 Eta? (1-31)
a a 96 (1+W)
{_(vxz— qu)_ (u3— u,~ u,+ ul) - v, vt vq)} (u3— u,- u,t ul)x
a a '
[ -Eta ]
24

2

2 2
Eta (uy1+ uy3+ Vx2+ vxq)

16 (1+y)

{ (Vz_ v1+ v,

a

U (uy= ugt ug=uy)

a

-v_ - vq+ vl)} (V3— v, - vq+ vl)x

[ -Eta ]
24

_ 12 2 C9n_aE2_ 183
V&) - (VX2+ qu)} .[Eta (15=2p-35pc-18u°) ]

40 (3+1) 2 (1) 2

(ugy# uyg)}2 [ Bta®  (15-2-35u%-18y°) ]

40 (3+u) 2 (1+u) 2



+

a stiffness matrix of form given in Table 3.2.5.1 is obtainéd;

{ (V- v +v = v + v, -u+u - -+ X
(v2 v1 v3 vq) (vX2 vxq)} {(ul+ u u, u2) (uyl uy3)}

[-96-214u-168u2-50u3] Eta?
40(3+u) 2 (1+n) 2

On_applying‘the formulae

32y

Ky = _W' i, = l’n_

J

39
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Table 3.,2.5,1 - Stiffness Coefficients for (12 x 12) Matrix

)

Vi

V2,

yi

~Vy )

with

7 &
\ A
2 Aye A
K21 K11 R . -
3 K31 Kgy Ky .
A p
1 - = :, 4
4 Koy Ry Ky Ky 3 i
3 Kgp  Kgy Ky Ry Ky SYM.
6 Ker Koy Ky Ky Ky Ky
7 Koy Ky Ko Ky Ky Ry Ky
8 Kg1 K3y Koy Koy Ky Ky =Ky Ky
2 Kor  Ki2,i7%12,1 Kii7®,17%0,1 Kio,1®q1 Koo
10 1-Kyg,07Kgy Koy Kypy Ko KK, %o, 17800, 9 Koo
11 Ki1,1 Kig,17K10,1 Ko1 Koy —Kyp,) Kyp,17Ky1,1 Ki1,97K10,9 Kog
12 ) =Ky, 17Kia,1 Kip,17Kr0,1 Kio,r Ko Koy Ky 17Ky, 9 Ky 97Kig, 9 K9%

_ A [22-8u-2u?+ A}

24
_ A [12u- B]
24
A
A [12u + B]

24

Et
2(1-u?)

where A -

48(1-p) (15-2u-35p2-18u3)
20 (3+u) 2 (1+1)




K, . = A [=2248p+2u2+ A)
41 = o—
24
K. =) [-2-8u-2u2-a ]
AR YA
24
A [-12u- B ]
K51 = 7%
K = A [2+8u+2u2— A ]

Aa  [1-4u+3p%+ A ]

Ko1 = o4
k. Aa [3-4utu®- B ]
1051 24

K =la (-1+4u-3u%+ A ]
11,17 24

_ Aa  [-3+4p~-p?- B ]
K12,1% 25

41

48(1-y) (48+107u+84u2+25u3)

11,9

12,9

20 (3+1) 2 (1+1)

ra® [7-10u+3p?+ A ]

_ Aa® [6-6u- B ]

Aa? [5-2p-3p2+ A ]

ra? [6=6u- B ]

This matrix, along with the other matrices which have been

developed, will be examined and evaluated in Chapter 6.

In addition a stiffness matrix based on linear edge displace-

ments is derived in Appendix B, as this matrix is of interest in the dis-

cussions of Chapter VI.
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CHAPTER IV

COMPARISON AND EVALUATION OF STIFFNESS MATRICES

4ni Strain Energy Cgiterion for Element Matrix Comparisons
A theoretical basis for comparing stiffness matrices for all
classes of finite elemenﬁs (ioeo,elements for plane stress, plate-
behding;.shells, etc,) is the strain energy within a finite element under
\the same nodal ioads; This basis is compatible with the recent develop-
ﬁent of the étiffhess méthod for bounding elastic behavior wherein the
minimal energy theorems have been applied to provide bounds on the
strain energy. On this basis of strain energy, the "best" stiffness
-ﬁat;ix ffom an available set is defined as the one which will yield the
closest abproximation ﬁo the stréin energy 6f deformation; ‘The results
6f such a choice wili be of general validity.
Bases other than the sﬁrain energy of deformatiom, such as
. the maximum stress.or‘the maximum displacement, may be more desirable
Tfrom‘avpractical viewpoint, but no results of general validity are
available for bases other than stfain energy.
The strain energy comparisons will be madevby examination of
vone.of two special difference;matrices, as described below,

Inverse Difference Matrix

The strain energy of an element can be expressed as

lad w e

c
]
N
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Now the quations of equilibrium can be written as
(K] {q} = {p}
where { p } is a nodal load vector. Therefore
{q} = 1x11 {p}
and- hence

'y o= 1 [p) [K {op 3
2

Therefore, if two natural stiffness matrices K, and K2

are available, then the difference in strain energy is

u, - U, = L opJ[x,7M {p b1 el [K,7'] {p}
3 5
1 Lp)ix, ™! K, 7] {p}
= 5 -
_ lLpy ID] {p}
5
where [ D ] = [Ki’l—‘K2“1] may be called the

InversevDifference Matrix.

” Therefore, on examining the quadratic form of D, it may be
~ ascertained whether the stiffness matrix K1 will provide greater,
equal or lesser strain energy in the element than Kz’ under arbitrary
loading p. The properties of D may be obtained by finding out its

eigenvalues. The results of such a study are indicated in Table 4.1.1
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Table 4.1.1 - Examination of the Inverse Difference Matrix D

v J : . _ Strain Energy
Quadratic form_of‘D Eigenvalues of D Comparison
positive definite ' all positive U,"3 U,
positive semi~definite | some positive, others
' Zero U ; U
1 2
negative-definite all negative U, <0,
negafive semi-definite ‘some negative, others -«
' zZero U, =1U,
indefinite ' some positive, others
negative U, p u,

va D is‘semi—definite, its vectors may be examined for linear
dependence aﬁd,ﬁenée the nodal loadé causing equality of strain energy
determined. An example of this is given in Chapter VI.

If D is indefinite, the loads making D positivevor negative
Coffespbndﬂpo theieigénvectors related to these positive and negative
eigenvalueg; .it may be ﬁossiblé in this case to choose a matrix on the
basis of éhe:fapk aﬁd index ofAD from a probabﬂistidviewpdint. This
aspect requirés-ﬁumerical experimentatidn to show the,quantitative
effects of the different sizes of positive and negative eigenvalues, and
the loads defined by the corresponding eigenvectors.,

Stiffness Differencé Matrix

Now it will be shown with the help of a theorem which is
enunciated and proved below, that the properties of the Inverse Difference

Matrix, D = [Kl"1 - Kz_l ] may be obtained from a study of the
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properties of [ S ] = [ Ky - K, ] where S may be calied the
Stiffness Difference Matrix. This procedure affords a simplification
by eliminating thé extra computational work and numerical error in the
inversion of matrices.
Tﬁeorem

If [K ] and [K, ] are real symmetriC‘posifive definite
matrices, and if [K; - K,] is positive definite then [Kl"1 - KZ‘1 ]
is negative definite.
Proof

Appeal is first made to a theorem of matrix algebra
(Hohn (1958), p. 266) which states that

"If [A] and [B] are real matrices of order n, and if [A] is
symmetric and [B] is positive definite, then there exists a real non-
singular matrix [V] such that [VT]' [A] [V] is diagonal and [VT] [B] [v]
is the identity matrix",

Therefore, we know from the assumptions of the theorem

-enunciated above that there exists a non-singular matrix [V] such that
[vi] (k1 (vl =1(d] (D

where [d]

= a diagonal matrix
and (V] [K,] V] =(1]1  (2)
where [I] = the identity matrix
Now [Kl_ Kz] is positive definite by assumption. Therefore [VT][KI— Kz][V]

is also positive definite, because a corgruent transformation maintains



the form of [K, - K_].

1 2

That is
(Vi1 (K1 [VI - (V'] [K,] [V] is pos. def.
whence on substituting from (1) and (2)

[d] - [I] 1is pos. def.

AY

\%

Therefore, d, 1 for all i (3)

ii
Also from (1)

-1
(v 1 4] (v

It

[K, ]

hence  [k,71]" = [V] [a™1] (vl (4)

Similarly from (2)

[k,71] = [v] [171] [v%)

Hence

(K, 7-k 7V = V][] (vIp - (vl (11 (vh)

(vl [a7! - 11 [vT]

Now [d”™! - I) is negative definite since from (3) 1 < 1

dji

Therefore, [V] [d71- 1] [VT] is negative definite since a congruent

transformation maintains the form.

46
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whence on substituting from .(4) and..(5)
[Kl_l - Kz‘l ] 'is negative definite

QED.
Corollari-l‘“
’ If[Ky] and [K,] are real symmetric positive definite matriceé,
and if [K1 - K2 ] is positive semi—def%nite, then [Kl+1 -~ KZ_1 ] is negative
semi-definite.

Corollarx 2

If [K1]~and [K,] are real symmetric positive definite matrices,
and if -[K; - K,] is indefinite, then [K, ' - K, ' ] is indefinite.
Corollary 3

The converse of the Theorem and the‘corollaries is true.

The proof of the corollaries is analogous to the proofs of the
theoremn.

Therefore, analogous to the study of the Inverse Difference

Matrix, the Stiffness Difference Matrix may be examined as shown in

Table 4.1.2.

Table 4.1.2 - Examination of the Stiffness Difference Matrix S

N Strain Energy
Quadratic form of ‘S Eigenvalues of S Comparison

negative-definite all negative U, > U,

negative semi-definite some negative, others

zZero U, U2_
positive-definite all pqsitive u, <1,
positive semi-definite some positive, others <
zero U1 #=U2
indefinite some positivé, others

>
negative U, <0,




48

In a set of displacement matrices, the 'best" matrix will be
the one providing the highest lower bound and hence the greatest strain
energy. Now it is possible for the nodal loads consistent with a potential
energy formulation, to be different for different displacement matrices.
This can occur for distributed loading, body forces, and concentrated
loads not at the nodes. However, it is felt that the differences in nodal
loading will decrease with reduction in element size. Moreover, for loads
applied directly to the nodes, the consistent nodal loading will be the
same in each case. This also occurs for loads applied to the element
boundaries, if the boundary displacements between nodes are the same in
eaéh case., Therefore, it is felt that the stiffness matrix selected as
described earlier will be the "best".

In a set of equilibrium matrices, if available, the best matrix
will provide the lowest upper bound and hence the least strain energy.

When hybrid matrices (i.e. those violating the requirements of
both the‘poténtial and qomplementary energy formulations) are availabie,
they can be evaluated with respect to a reference provided by a bounding
matrix (displacement or equilibrium). An approximate reference may also
be provided by a hybrid matrix for which some numerical comparisons with
analytical solutions are availaBle.

4,2 Application of Element Comparison Results to Structure

So far the strain energy comparisons have -been made between
single elements., It will now be shown that the results of the single
element comparison can be applied to the structure stiffness matrix.

We know that the natural structure stiffness matrix is given

by
(K,1 = [af] [k;] [a]



L]

where [a]

and [kl]

Using a different set of element stiffness matrices, the gtructure

stiffness matrix would be given by

where [kz] =

[K,] = [a®] [k,] [a]

displacement transformation matrix .

, a quasi-~diagonal matrix of

matrices.

s a8 quasi-diagonal matrix with

ks Ky
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individual element natural stiffness

- - = k_, another set of

element natural stiffnes$ matrices.

Therefore, the stiffness difference matrix for the structure is given by

[S] 1= [Kl - Kz]

[k, - k,] [a]
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kA - ka
kB - kb
kC " kc
: AN
[s] = [a] N [a]
‘ ' AN
AN
N
AN
N
kN - kn
51
52
S
3
= [aT] N [a]
AN
N
AN
AN
Sn
L -
(m x n) (n x n) (n x m)
where Sl’ Sz’ S3, - - - = S, are the element stiffness difference

matrices.

It may be noted that a displacement transformation is applied
to the quasi-diagonal matrix containing the element stiffness matrices.
The order of the matrices are shown above. The rank of matrix [a] is m
since the triple product [aT] [Kl] [a] yields the non—singular (m x m)
natural structure stiffness matrix. Also from physical consideration we
‘know that m < n.

It will now be shown that the quadratic form of [S] will be
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governed by the quadratic form of [kl_ k2]: 1

Consider first the case when [k - k,] is positive definite.
Then a non-singular matrix Q exists (Parker and Eaves, p.94)
such that

[k~ k,] = [Q'] [q]
Therefore, the stiffness difference matrix S may be written as

[aT] [QT] [Q] [a]

[s]

(eT1 [P]

where [P] [Q] [a]

Note that [P] is of order (n x m) n > m and the rank of [P] is m.
Therefore [PT] [P] is a positive definite matrix. (Parker and Eaves, p.98)
Hence [S] is positive definite if [k; - k,] is positive definite.

Congsider next the case when [ki—.kz] is positive semi-definite
of rank r.

Then a rectangular matrix F of order (r x n) exists (Parker and

Eaves, p.98) such that
_ T
[ki- kp] = [F'] [F]
Therefore S may be written .as

[a']1 [F'] [F] [a]

[s]

a'] [H]

It

where [H]

[F] [a], a (r x m) matrix.
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Then if the rank of [H] is t, [S] is of positive semi-
definite form of rank t. (Stoll, 1958, p. 124).
| Therefore [S] is positive semi-definite if [k1 - kz] is
positive semi-definite,
The arguments used in these two cases apply analogously when
[kl - k2] is negative definife and negative semi-definite respectively.

Finally, consider the case when [k, - kz] is indefinite. This

1
may occur if different element matrices are used in different parts of the
structure, or if individual element stiffness difference matrices are
indefinite. Then, it will be shown that, in general, [S] will also be

indefinite.

Let the matrices [a] and [k, - k

) 2] be partitioned and some

rows and columns interchanged so that the first (m x m) submatrix of [a]

is non-singular. This is possible because the rank of the (n x m)f%gkrix

[a] is m.
Then S may be expressed as
- L
[s1 = [ |¢"1 |p_| = b
T

r I q c

where [a] = (g ; [b] is non-singular of rank m and [c] is of order

_.C'_J

(n-m x m).
Similarly [kl— kz] is now partitioned into the (m x m) matrix
-[p], the (n-m x n-m) matrix ¢ and the rectangular (m x n-m) matrix r.
On carrying out the multiplication of the partitioned matrices
we get
(51 = 71 el 1+ (F) fal fed + {171 (2T (o] + BTIIrlle])

rank m rank < n-m ’ rank < n-m
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-

Note that the triple product [bT] [p] [b] has rank m, the
remaining terms have rank<(n-m). In a practical problem m>> n-m.
Therefore, the quadratic form of [S] will be governed mainly by the
quadratic form of [p]l. - If [p] is indefinite, then in all probability .
so will be [S].
B Note however the possibility that [p] is poéitive—definite,
but [q] is indefinite, so that [k; - k,] is indefinite. This can happen
if only a few element matrices are taken differently. Then it is con-
ceivable that [S] may take on the form of [p]. | |

In other words, the structure will portray the Behavior of the
vast majority of the element matrices. Note that if one element matrix is
being used for all the elements of the structure, then the results of the
element matrix comparisons will apply completely to the structure.-

Thus it is seen that the results of the element matrix com-
parisons may, in geheral, be apﬁlied to the structure.

4.3 Comparison of MMatrices of Different Orders

The order of the stiffness matrix of a finite element is equal
to the number of nodal displacements allowed.in the element, which generally
varies with the shape of the element. Thus a plane stress rectangular
element with corner nodes has an (8 x 8) matrix, and.triangular element
has a (6 x 6). If additional nodal displacements are specified, say by
choosing extra_nodes in the element or specifying edge rotations as shown
in sections 3.2.4 and 3.2.5, then alsd ghe order of the matrices is
inéreaséd.

Now the strain energy comparisons between matrices are made

for equal volumes of the element (structure) and for the same set of nodal
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loads. This suggests the possibility of using the different shaped
elements or elements with varying number of nodal displacements to fill
the same volume, and then eliminating the extra nodes, if any, under the
assumption of zero loads at those nodes.

In some cases this assumpéion of zero nodal loads may be unsatis~
factory,'if the consistent nodal loading requires loads at those nodes.
However, the same nodal loads can always be one of the types of loading
to which all matrices may be subjected, and it is felt that comparisons
under these conditions will be useful in evaluating the matrices.

4.4 Maximum and Minimum Eigenvalues as Bounds on Strain Energy

Melosh (i963, pPp. 222-223) has presented a hypothesis for
choosing the best matrix from an available set. According to this hypo-
thesis, the best stiffness matrix will have the smallest eigenvalues and
the smallest trace.

This hypothesis will be examined on the basis of some theoretical
results from matrix algebra and a strain energy connotation given to it.

The strain energy of an element (or structure) is given by the

quadratic form

v = %LpJ[K“ll{p}

where K is the natural stiffness matrix, and p the nodal load vector.
Now it is known from matrix algebra (Bodewig”(l959),'p.65) that

for a normalised load vector

i.e. lpl {p} =1
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-1
the maximum of the quadratic form |[p] [K '] {p} is given by M nax? the

1
largest eigenvalue of [K ], and its minimum is given by A the smal-

mnin?

lest eigenvalue,

fin

. AV
min max

The load vectors giving these bounds are the eigenvectors
corresponding to the maximum and minimum eigenvalues.

Similarly, the intermediate eigénvalues give the value of 2U,
for load vectors defined by the corresponding eigenvectors.

. . -1 .
It may be noted that the eigenvalues of [K ] are reciprocals

of the eigenvalues of [K]. Therefore, Melosh's hypothesis compares the
maximum, minimum and other values of the strain energy for load vectors
defined by the eigenvectors of each matrix; and selects the matrix giving
the greétest strain energy.

Two characteristics of Melosh's hypothesis may be noted, on

the strain energy basis.

1. The eigenvectors will be different for each matrix..
Therefofe, the strain energy comparisons are being made on
the basis of different load vectors for each matrix.

2. The maximum strain energy criterion is being applied to
all matrices without~differentiating between displacement,
equilibrium and hybrid matrices.

In Chapter 6, Melosh's hypéthesis is compared with the theory

developed in section 4.1 with respect to parametric plane stress matrices.
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CHAPTER V

AN UPPER BOUND ON STRAIN ENERGY UNDER PLANE STRESS

5.1 Special Element for Constructing Equilibrium Field

By the theorem of Minimum Complementary Energy (Appendix A)
it is known that any stress state satisfying the differential equations
of equilibrium and the stress boundary conditions will provide an upper
bound on the strain energy. Therefore, a finite element conforming to
this theorem must provide a stress state in equilibrium within the element
as well as continuity of shearing stresses and stresses normal to the
boundary between adjacent elements.

De Veubeke (1962, pp. 170-171) has shown that a plane stress
eauilibrium field may be built up of triangular elements interconnected
at the mid-point of the edges, and used in displacement analysis to obtain
‘an upper bound. However in such an analysis the displacements are defined
aé weighted avérages over the elément edges, and additional kinematic
modes may be introduced, so that it is not easy to get a clear picture
of the displacement behavior. |

De Veubeke (1965, pp. 191-193) has also noted that an equili-
brium field may be obtained from equilibrium and self-straining stresses.
In this chapter a square element 1is visualised by means of which the

equilibrium and self-straining stresses may be obtained as bar forces of
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a psuedo-truss system, in which the bars correspond to the lines of
stress transmission. Itvis not necessary to determine the elastic
properties of the bars in order to find the equilibr;um and self-
straining solutions.

Consider a square element under the action of constant and
equal normal and shear stresses along two of its adjacent edges as shown
in Fig. 5.1.1.

Such a system of applied stresses is in equilibrium as indicated
in Fig. 5.1.2.

Therefore an -elasticity solution exists for the stresses and
deformations within the élement.

Note also that the applied stresses are such as to portray a
transference of stresses from one edge to the other. Similar self-equili-
brating stresses may be applied to other adjacent and opposite edges.
Therefore, if such elements are interconnected at the mid-point of the
edges,_and equilibriﬁm ensured at these nodes, then stress continuity will
be established in the region.

| Replaéing the uniform stresses along the edges by theif resuit—
ants acting at the nodes, it is seen that the transference of stresses
across the element may be depicted by a psuedo-truss system wﬁich carries
the resultant forces from one edge to the éther. This transference is
shown in Fig. 5.1.3., where the respective resultants are denoted by
P;, 0y, Ry, Sy, Ty. All other constant self-equilibrating stresses may
be represented by a superposition of these five resultants. Therefore,

the transmission of stresses in a structure may be visualized as a trans-

ference through a psuedo-truss system superimposed on it.



A A A A
FIG. 511 BOUNDARY LOADING
ON ELEMENT

FIG. 5.1.3 TRANSMISSION OF
GENERALIZED ELEMENT

FORCES THROUGH PSUEDO-"

TRUSS SYSTEM
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AN

S

FIG. 5.1.2 EQUIVALENT BOUNDARY
LOADING ON ELEMENT

FIG. 5.2.1 SUBDIVISION OF
SQUARE ELEMENT INTO
FOUR EQUILIBRIUM
TRIANGLES
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5.2 Upper Bound on Strain Energy of Element

The deformation of the square element under the action of the
equivalent nodal forces, and the strain energy of deformation could b;
ascertained exactly through an elasticity solution of the pfoblem shown
in Fig. 5.1.2. However on account of the singularities produced by the
discontinuities in the applied shear stress distribution no closed form
solution seeﬁs to be available. Therefore an upper bound on the strain
energy of the element is.obtained by considering the square as a combina-
tion of De Veubeke triangles, as shown in Fig. 5.2.1.

The transmission of conétant stresses through the square

produces four constant-stress triangles. The strain energy of each

triangle is then evaluated by integrating the expression

> 2
t_ fJ (o _ 2uou0

L % +0y2 2(1 +u) Txyz) dxdy

y +

which gives the strain energy for an isotropic constant-thickness region.
On performing the evaluation for the four triangles and
summing, an upper bound on the strain energy of the square element is

given by

2 2am i 2eq 2am 24 o . . N e (O R AR T
g = L1 [ Pyo40; T4R S48, 54T,y +(l§%}PikQ1+R1+Sl+11)—u(Q1R1+R111+81T1+Q151)]

2Et
in terms of the psuedo-truss forces.
This strain energy bound for the element can be utilized to
obtain an upper bound for a structure éomposed of these elements. For
this purpose the external nodal loads are transmitted to the supports

‘through the psuedo-truss system., This gives an equilibrium solution.
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Then self-straining solutions are obtained corresponding to the
redundancies of the truss system in terms of arbitrary bar forces in
the redundancies. The elementAstrain energy is evaluated in terms of
the psuedo-truss bar forces which are the sum of the bar forces of an
equilibrium solution and the self-straining solutions. Then the element
strain energies are summed to give the structure strain energy which
represents én upper bound. The self—straining solutions are thén
evaluated so as to minimize the structure strain energya ‘Upper Bquhds
obtainedvin this manner are showﬁ in Chapter VI. |

Note that the external loads are assumed to apply at the nodes,
Now the stress-continuity will be ensured only if fhe external load pos-
sesses.uniform distribution along aﬁ element edge., Otherwise an idealiza-
tion error is introduced in the analysis. So in the case of non-uniform
loading, the loading is approximated by a step-wise uniform distributio;,
the steps corresponding to the width_éf the elements.

This technique of obtaining ﬁppef bounds on the structure
straipfenergy méy be utilized to provide Gpper bounds on the‘fléXibility
influence coefficients as shown by De Veubeke (1962, pp. 185-188).

Details of De Veﬁbeke's development are given in Appendix C.
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CHAPTER -VI

APPLICATIONS TO PARAMETRIC PLANE STRESS STIFFNESS MATRICES

6.1 Comparison of Available Parametric StiffneSS'Mapricéé
Plane stress stiffﬁess matriceS‘of'order;(é‘é'S);
evaluated for a square isotropic‘constant—thickness element with
corner nodes, are compared. The ordering and nomenclature of the
nodal displacements is as shown in Fig. 3.2.2. A (6'X’6)]triangular.
element stiffness matrix is included'by‘forming‘a'square”element out
of four triéngulaf elements.and reducing to (8 x 8) under  assumption
of zero loads at the extra node. The (10 x 10) and (12 x 12) matrices
developed in section 3.2.4 and 3.2.5 are reduced likewise to (8 x 8).
Except for the reduced (12 x 12) matrix, the other matrices
can be represented by discrete values of a continuous.stiffnes;'métrix
parameter as observed by Hooley and Hibbert. 1In this representation

the elements of the stiffness matrix .marked K L K ,

s K K
31 61 71

(Table 3.2.1.,1) are invariants and qu, KSI’ K81 and Kil are lineér

functions of the parameter.
For those matrices conforming to the representation by the

parameter taken as 'a', the elements of the matrices are given by
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K = Et {al}
11

= Et {_1_ 1}
K 8(1-n)
K . Et  { _-1#3u }
31 8(1_u2)

X = Et {- a+ 1 1
4l ZaHD
X _ Et {a- _3-u 1}
51 ‘ 4(1"\12)

L= Et  { - 1 }
Kel ' 8(1-w)
X - Et { _1-3p 1}
71 8(l-u2)
K - Et { - a + 1‘ | }
81 ] 2(1'U2)

1

The values taken by 'a' for the different matrices are

shown in Table 6.1.1.



Table 6.,1,1 - Parameters for Plane Stress Matrices under Comparison

and Hibbert

a
-Classi- Parameter for Poisson's
No. Matrix Assumption fication 'a' ratio = 1/3
— —
1 Section 3,2.1 Uniform %5 9ys Txy - 3—32 0.375000
B8(1-u%) '
2 Turner et8a} Linear °x;°ys hybrid 11-3p- 2u? 0458333
p. 823, uniform Ty, 24 (1-u?)
Section 3.2.2
3 Reduced (10 x 10) | Linear 0y,0y, Tyy hybrid 11-3u- 2u? 0.458333
Section 3.2.4 , 24 (1-u?)
4 Pian (1) p.1335 quadratic Ux30ys Txy hybrid - 0.468750
5 Pian (2) p.1336 Linear edge displace-| displace- - 0.473960
ments,quartic in ment
interior
6 Argyris(1955,p.126)| Linear edge displace-| displace- 3-u 0.500000
Melosh (1962,p.32),| ments,quadratic in ment 6 (1-u?) :
Appendix B interior
7 amplified (6x6) composed of four con-| displace-
Turner et al stant stress ment
p. 816 triangles abutting - ‘0.515625
along diagonals
8 Hrennikoff Lattice model hybrid _5-3u 0.562500
as per Hooley 8(1-u?)

£9



(Cont'd) Table 6.1.1 - Parameters for Plane Stress Matrices under Comparison

t it

Section'3.2.5_

parabolic Txy

a
v o Classi- Parameter for Poisson's

‘No Matrix -Assumption " fication ~'a' ‘ratio '='"1/3
9 McCormick as Lattice model hybrid 11-9y 0.562500

per Hooley-and ' 16(1-u?)

Hibbert
10 ‘Gallagher et al Uniform oy,0y hybrid 3-u . 320 3.125000
p.27-29, Linear Tyxy 8(1-p?) 12u2

Section 3.2.3

11 | Reduced (12x12) hyperbolic oy, ay hybrid does not conform to

representation by

parameter

%9
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While the comparisonélwill be made on the basis of
reduced matrices, it should be noted that the (10 x 10) mafrices
developed in section 3.2.4 are capable of being used as such.because
the corresponding naﬁural stiffness matrix is positive definite. How-
ever, the corresponding reduced matrix is identical to the (8 Q 8)
Turner matrix so that if the loads at the extra nodes of the (ld é 10)
element are zero, the results obtaine&bby using the (ld x 10) matrik
will be identical té'fhat obtained by 'using the Turner matrik. |

The‘(12 X 12) matrix developed in section 3.2.5 behaves
unexpectedly. For Poisson”s_ratio =1/3, the natural stiffness matrik
turns out to be singﬁlar on account of a singularity in the last-(4 x 4)
principal minor. The elements of this principal minor give the  stiffness
“ coefficients corresponding to édgé“rotationS"at the nodes.,  For other
values of Pdissonjs ratid, the matrix is non=singular-but indefinite.
The reduced (8 x/85 matrix is also singular'for"Poisson's ratio = 1/3.
But it is indefinite for Poisson“s‘ratio less than 1/3, and positivé
definite for Poissonfs ratio = 0.4. These reduced matrices do not con-
form to £he pérametric representation. The author can ascribe the
unexpected behavior only‘to the;assumption of hyperbolic normal stress
distribution. Because of the indefinite quadratic form of'this matrix,
it is not considered apy further,

Now the (8 x 8) stiffness matrices will be compared by forming
the inverse difference matrices, and the stiffness difference matrices.,
It will be shown that comparison results are the same iﬁ either case as

predicted by the theory developed in section 4.1.



For making the strain energy comparisons it is only

necessary to compare the natural stiffness-matrices since the rigid

body modes do not produce any strain energy.
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The natural stiffness matrix corresponding to the supported

element can be obtained in two distinctly separate ways as shown in

Fig. 6.1.1.

It will now be shown that either manner of-obtaining the

' natural stiffness matrices yields -the ‘same comparison results.

Support Case A

The natﬁral'stiffness~matrix2i5"given by

[K] = Et.

L

1 _
8(1-u)

=1+3yu
8 (1-u)

1-3y
8(1-u?)

-a+ 1

2(1-u?)

a SYMMETRIC
-a+ 1 a
2(1-12) ‘
-a+ 1 a- _(3-u) a
4(1+y). 4(1-u2)
-1+3y ‘ 1 - 1.
8(1-u?) 8(1-u) 8(1-w)

The inverse of the natural stiffness matrix is given by

[K71] =

mIH
t

-b+1

-b+2

b+2 (1+1) SYMMETRIC

1 b
b-+1+2u b-1 -2 (b+u)
b-(1+1) -H b-1
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where b =1 l:l_;t_gﬂi - a }/////{ _3-u _a}l
- 8(1-u?) 8(1-u?)

may be considered the inverse matrix parameter,

The advantage of having the stiffness matrices and- their
inverses in parametric form is that the'inverse”difference‘matrig gnd
- the stiffness difference matrix may be- formed in"termS“of'these’paka—
meters, and results of general validity obtained for all plane stress
matrices capable of being represented in-this manner; some of which are
shown in Table 6.1.1. |

Inverse Difference Matrix

First the inverse difference matrix for these matrices is
investigated.

Thus, two stiffness matrices -with parameters-a; and’aé will
have inverse matrix pargmeterslof?bi'and'bé'whereffhe“'b's and 'a's are

‘related as shown above.

Therefore the-inverse-difference matrix is given by

r_l
-1 1 SYMMETRIC
by-bo
[D]= 0 0 1
Et
-1 1 1 2
-1 1 0 1 1

This is of form c,[B] where ¢

2ﬁis a .constant and [B] a matrix.

[B] has rank 2 and index 2, and the non zero eigenvalues of

[D] are given by
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bij- by (3 + V2)
Et

Eiv. no. 1

b,- b (3 - V2)
Et

Eiv. no. 2

Therefore, for b1 > bz, [D] is positive semi-definite. Con-~
sequently, the stiffness matrix with inverse parameter b1 will have greater
or equal strain energy than the matrix with inverse parameter b2 .

The équality of strain energy corresponds to the three zero
eigenvalues which result from the singularities of [D] produced by
linearly dependent vectors. Each column of [D] represents the difference
in the displacements produced by using the two matrices under comparison,
under unit nodal loads. Therefore, if a linear combination of some
column vectors becomes the null vector, then the corresponding linear
combinations of nodal loads will produce no difference in displacemengs
when the two matrices are used. Whence by Clapeyron's Theorem, the strain
energies will bé equal.

The three independent load combinations producing equal strain
energies in the element are given in Fig. 6.1.2.

Therefore, when b1 > b2 the arbitrary non-uniform loads will
produce greater strain energy with the use of the corresponding matrices.

The relation between 'a’ and 'b' is plotted in Fig. 6.1.3.

Note that for a = 3“H2 . =a., the natural stiffness matrix is
) 8(1-u%)
singular,
for o< a < a., the natural stiffness is non-singular but indefinite,
and for a > a.r the natural stiffness matrix is positive definite, For

structural analysis only positive definite matrices are of interest, and
hereafter in all references to parametric matrices it will be assumed that

> °
a acr
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In this range natural

10 7 stiffness matrix is
positive definite
gl
|—'u,+2,12
——s—=-a
8(1-p2)
b = 3= 6+
—FE -
8(1-pu)
g
4"0' 8
w| <
ol @ 2|
11} [ ey
2 ° §|c
<+ [ =4 Lo
| 5(8 °
(0 x
[ =4
Om s
; 0 , T ,
0.0 0.5 0.6
«— 9

In this range natural
stiffness matrix is
indefinite '

 FlG. 6.1.3 RELATION BETWEEN STIFFNESS MATRIX PARAMETER ‘a’

AND

FOR POISSON'S RATIO =1/3

INVERSE MATRIX PARAMETER 'b'

PLOTTED



Note that | a = 3-u corresponds to Matrix No. 1

- . 8(1-p?)
(Table 6.1.1). ‘

Note also that for 3—31 o I a; < ap
o ' . 8(1-u%) . :

the following holds

Thus it is‘seen that the stiffness matrix parameter and the
inverse matrix paramefer provide an index of the strain energy level
under ﬁon-uniform loading.

Hence the stiffness matrices are ordered by strain energy
in decreasing order of magnitude as shown in Table 6.1.1.

Stiffness Difference Matrix

Any two matrices under comparison differ only by the

 parameter 'a', Therefore the stiffness difference matrix is given by

1 .
o 1 . SYMMETRIC
0 -1 1

(s] = Et(al—az) ‘ . :

: T .10 -1 1 1
-1 0 0 o 1
"L_-. . . . . .

This is 6f form CI[A] where C, 1s a constant and [A], a matrix.

71
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fA] has rank 2 and index 2 and the non-zero eigenvalues
of [S] are given by

Eiv. no. 1 = Et'(al— a.)) (3)

2

Eiv. no. 2

Et (al— az) (2)

Therefore we see that for a, < a, the stiffness
difference matrix is negative semi-definite.  Consequently according to
Table 4.1.2, the matrix with parameter a; will have greater or equal
strain enérgy than the matrix with parameter:a,. By examining the
linearly dependent vectors»produciné*the singularities-in [S], it is
found that they occur under displacements of the element produced by
uniform loading.* Consequently under non-uniform loading, the matrix

with parameter a, will provide greater strain energy than the matrix

with parameter a,, if a; < a,.
The same conclusions were drawn by examining the inverse

difference matrix.

. Support Case B

The natural stiffness matrix is given by

ul [ a

V2 __L'_"}.H_ a
8(1-u2) ) SYMMETRIC

u, -a+ 1 -1 o - a

[K] = Et 4(1+u) 8(1-u)
vy, 1-3y a-_(3-u) 1 a
‘ 8(1-u?) 4(1-u2)  8(1-p)
u, -a+ 1 1 a- (3-u) -1 ' a
2(1-w?)  8(1-n) 4(1-u2)  8(l-u)

ok Uniform loads on the element implies that the element is stressed
by constant normal and shear stresses.



The inverée

4
SYMMETRIC
1y b
k-1] = L.| 3w 1 b+2(1+)
Et |
~14y b-2 -1 b
1-p - b= (1+u) u

where; "as in-:support Case A,

{l—u+2u2

8(1-u2)

“Inverse Difference Matrix

- ay /// ( —3 K
. . 8(1'“2)

of the natural -stiffness matrix is given»by

73

Therefore the inverse -difference matrix for any two matrices

with inverse parameters b, and b, is given by

Bl‘bz

(bl = &

This matrix has rank 2, and its non-zero eigenvalues are

given by

Eiv.

Eiv.

— _
0

0 1 SYMMETRIC

o o T

0 1 0 1

0 0 1 0 1

: by- b 2
no. 1 = 42 X )

. Et
' b;- b 2)
no., 2 = 1_2 X ( )_.

Et .
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The?efore, as for Support Case A; for b, > b2 [D]
is positive -semi-definite, 4Again-it may-be shown that the equaiity
of strain energy occurs under the - uniform:nodal loading shown in
Fig. 6.1.2;, so that under non-uniform loading the matrix with inverse
parameter b; ' ‘provides greater-strain energy than the matrix with

inverse parameter b, if b; > b,.

-'Stiffness:Difference Matrix

The stiffness-difference matrix for:Support Case B, with

respect ‘to-any two stiffness matrices:is given by

_ " _
1
FO 1 s - GYMMETRIC
1 o0 1
[S] = Et(a,-a,) o 1 o 1
| 4 o0 1 0 1

It has rank 2, and its non-zero eigenvalues-are given by

Eiv. no. 1 Et (al— az) (3)

Eiv. no. 2 Et (al— az) (2)

Therefore, again, it is-seen that for a, < a, the stiffness
difference matrix is negative semi-~definite. Again it can be shown
that equality of -strain energy-occurs only under the uniform loadings
shown in Fig. 6.1.2. Under non-uniform loading the matrix with

1

parameter a. will provide greater-strain energy than the matrix with

< .
'parameter a, if a, a,



Thus it is verified that the same strain energy comparison
results are obtained by using the stiffness difference matrix and the
inverse difference matrix. Also these results are independent of the
manner in which the rigid body modes are eliminafed to obtain the
natural stiffness matrix.

Now the results obtained by using the special difference

‘
matrices will be compared with the results obtained by examining the
elément strain energy bounds provided by the stiffness inverse matrix
eigenvalues.

First it will be shown that the results are independent of
the manner of obtaining the natural stiffness matrices.

Table 6.1.2 gives the eigenvalues of the inverse matrices

for support cases A and B.

75
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Note.that the ordering of the inverse matrix eigenvalues
is independent of the support case, and hence independent of the
manner of obtaining the natural -stiffness matrix.

The maximum and minimum eigenvalues providing the strain
energy bounds for support case A is plotted in Fig. 6.1.4. Note that
the ordering of the matrices by strain energy obtained by comparing the
bounds is the same as that obtained by using the special difference
matrices. This correspondence will not always occur because the
difference ﬁatrix comparisons compare stfain energies under the same
load vector, whereas the strain energy bounds are obtained for different
load vectors (defined by the eigenvectors corresponding to the eigen-
values). Here the correspondence occurs fortuitously because the.
inverse matrix eigenvectors defining the loads are similar for all the
matrices. This is shown in Table 6.1.3 for the Turner hybrid, Pian
displacement, the Argyris-Melosh-displacement mﬁtrix, Iﬁrner (A's) and
the Hrennikoff matrix. The eigenvectors are normalized to have length

of unity. A plot of the eigenvector coefficients is shown in Fig. 6.1.5.



Et A

'Tabieféél;Z:4%Eigenvalue8ne£wthezinvgrse;Mggyices o= 1/3
Pianadis=rArgyris,Melesh* -Turner disp. Hrennikoff, No. 10
. Turner.hybrid plaeement -disp. (from-triangles)-|Lattice Model| hybrid
Support: : 0.45833 - 0.47396 0.50000 0.51563 0.56250 3.12500
‘Case | |order of magnitude

Eive no. - 17.26. -+ 15,26 13.09. .- 12,19 .- 10.44 6.28
Eiv. no. 5.06 4,33 3.54 3.22 2.67 2.24
A Eiv. no. 2.26. 2.22 2.16. - 2.13 1.97 1.06
Eivi- no. 1.79. 1.72 1.59 1.52 1.33 0.16

Eiv. no. 0.966 10.962 0.953 0.946 0.923 0.119
Eiv. no. - . 10,28 -9, 68 9.11. 8.89. 8.50 7.70
Eiv. no.. 6.00 5.05 4.00 3.56 2,67 2,16
B Eiv.. no. 3.84 3.54 3.16 2.99 2.67 0.87
Eiv: no: 1.70 1.65 1.56 1.51. 1.33 0.18

Eiv. no. 0.849 0.848 0.845 . 0.844 - 0.837 0.119

LL
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Table 6.1.3 - Eigenvectors of the InverSe Matrices

Matrix Eiv. 1 | Eiv,'z'v . Eiv. 3 [ Eiv. 4 Eiv. 5
0:3417 | -0.3188 'f;Q,aszs 0.7092 | 0.2140

-0.5581 | 0.1991 ‘—0;4318 ~0.5198 | 0.4385

Turner ~0.1929 0.7515 | -0.0338 | ' 0.3747 0.5066
hybrid - ‘
~0.6627 ~0.3181 10.2951 ~0.1538 | -0.5907

~0.3089 | 0.4392:‘ 0.7018 0.2505 0.3954

T0.3262 | —0.3072 | 0.5557 | -0.6680 | 0.2103

~0.5747 0.1744 -0.3838 ~0.5388 0.4490

Pian (2) -0.1933 -0.7544 -0.0229 0.3884 .0.4920
-0.6657 -0.2864 | 0.3244 | -0,1116 - | -0.5975

~0.2876 0.4733 0.6618 | 0.3165 0.3938

0.3027 | ~0.2659 | 0.6542 | -0.6067 | 0.2042

-0.5988 ‘0;1284  -0.3247 | —0.5473 | o0.4690

Argyris, ~0.1935 -0.7572° |  0.0238 | o0.s170 | o0.4634

.Melosh o ,

-0.6688 | -0.2217 |  0.3583 | -0.0555 | -0.6100

0,251 | 0,5388 "2 f0;581i-'ff“ 0,3943,'_ 3 9,3893

0.2900 —6;2228:“'_”5047637f | =0.5751. | 0.2006

-0.6113 | 0.0076 | -0.2984 | -0.5427 | 0.4827

Turner (A's)| -0.1932 -0.7553 | Q§0710 .0.4367 0.4430
-0.6697 | =0.1742]4'-'fo,3715 | 0,031 | -0.6181

~0.2373 0.5829 | 0.5221 0.4276 0.3851

0.2577 0.0000 0.8042 | -0.5000 0.1919

~0.6415 0.0000 ~0.2325 ~0.5000 | 0.5332

Hrennikoff | -0.1919 -0.7071 0.2858 0.5000 0.3625
~0.6696 0.0000 0.3684 0.0000 ~0.6448

~0.1919 0.7071 0.2858 0.5000 0.3625
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Now conclusions will be drawn on the basis of the strain
energy ordeiing obtained by using the energy criterion for the stiff-
néss matrices, for a square isotropic element,shéwn fﬁ Table 5.1.1.

Note that amdﬁgst the displacement‘matrices, the Pian matrix
provides the‘greatest.strainvenergy and Hence is the best displacement
matrix.

This matrix was obtained by Pian (1964, pp. 1336) by assuming
more ‘displacement modes thénvthé‘number of eiement nodal displacements.
This improvement in the displacement matrik,is contrary tq.general
experience (Clough, 1965, p. 91).and ‘it is felt that such improvement
will occur, in generai, only if internal stress equilibrium is improved
by doing so, as was conjectured by Pian for tﬁis case.

Also the assumption of more stress modeé seems to result in’"
less element strain energy.under equal nodal loads. - Thus as Pian
- (1964, pp. 1334-1336) induced more stress modes in the derivation of

'a' increased from a = 0.45833 to

plane stress matrices the paramgter a
a = 0,46875.

Also note that the use-of triangular elements provides the
least lower bound on the strain-energy. Therefore it may be concluded
that triangular elements would generally be inferior to the use §f square
elements.

Note also that the lattice model matrices (nos. 8 and 9) are
inferior to the displacement matrices, and the Gallagher matrix (no.l0)
seems poor. |

Note also that both the Turner Matrix (section 3.2.2) and

Matrix No. 10 (section 3.2.3) satisfy microscopic equilibrium

1
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equations within the element. But Turner matrix is very good while
Matrix No. 10 is poor. This shows that satisfaction of equilibrium
within the element wiil not necessarily lead to a good stiffness
matrix, as noted by Melosh (1962, p. 79) for elements for solids.

However, note that the hybrid Turner Matrix provides
greater strain energy than the best displapement matrix. Therefore
it will provide a higher lower bound -on the strain energy than a
displacement matrix or an upper bound. In the next section it will
be shown that all these matrices will tend to converge towards the
solution. In that case the Turner hybrid matrix may be considered
the best parametric matrix. Note also that the (10 x 10) matrix
(no. 3) on being reduced provides equal strain energy to the Turﬂer
hybrid matrix. |

Finally, note that all parametric matrices are capable of
represeﬁting constant stresses but not all of them yield good results.

6.2  -Providing Bounds on Strain Energy by varying the Matrix Parameter

t

It has been shown that the stiffness matrix parameter 'a
provides an index of the strain energy level under non-uniform
1oaéing. Under uniform loading all the matrices provide equal strain
energy.

An indication of this ﬁehavior can also be obtained by

looking at the strain energy expressions for the (8 x 8) matrices

derived in Chapter 3, and Appendix B. These are shown in Table 6.2.1,



Table -6.2.1 -

83

Element Strain Energy Expressions-for Different

Matrices
Element Strain Energy. Expression in' terms of nodal
Matrix dlsplacements

No. 1 _ 2 _ ~ 2

U1=8 Et . ( (u2- u;+ ug u“) +(VL+ v+ v, v2)
Uniform (1-u ). o

O, ,0 oT__.. : :
X’ y? xy + 2u (u,- u,tu,-u) (v,- v+v,-v) ]
Section 3.2.1 N L
Et. [u-u+u-u-v+v-v4+v]?
1 27 w73
16 (1+1) ! 3.2 !
Turner
Linear Ox’cy .
and Uniform : -y - 2 -V - 2
T U, = U, + Et [ (ug= u,- uyt )y (V= vym v+ vy )7
Xy 24
Section 3.2.2
Argyris,Melosh
Linear edge U= U+ Et!3‘E2 [ (u -u-u + u )2 (v - v,m v, + v )2]
displacements, 148 (1-u?) 4
quadratic in
interior
Appendix B
No. 10
Uniform Oy >0y U,= U+ gz (3+§u)[(u -y~ u,t u1)2+(v3— v,m vt Vl)Z]
: M

Linear Txy
Section 3.2.3




‘Note- that the-strain-energy expressions-for the Turner,
Argyris-Melosh, and No. 10 Matrices contain the strain energy
produced under -uniform normal and shear stresses-plus an additional

strain energy term. This additional term

' - _ ' 2 - - 2
Et [ (u3 u, u, + ul) + (v3 v, v, + Vl) ]

is only altered by the value of its coefficient, say 'c', for each of

these matrices. As 'c' increases from zero (for the uniform stress
case), the element strain energy under arbitfary displacement vector
increases, unless the;dispiacement vector is such as to make the
expression within brackets zero in which case no increase"wiil take
place. It can be shown that a displacement vector making the term
zero corresponds to displacements ‘under constant stresses,

Since the element strain energy inéreaseS5 as 'c'
"increases, for non-uniform displacements, the element strain energy
will decrease under non-uniform loading. This follows from the
theory for the stiffness difference matrix developed in section 4.1.

Therefore, it is concluded that 'c¢' gives an indication of

the element strain energy level,

--Now it is found that the stiffness matrix parameter of

t !

Hooley and Hibbert is a linear function of

c'.
Thus 3= 2¢c
a = “—"J%f‘ +
: 8(1-u7)
where' 'a' = stiffness matrix parameter
and 'c' = coefficient of the strain energy term

_ - N2 - - 2
Et [ (u3 u, u2+ ul) +(v3 v, vq+ Vl)‘ ]

84
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Hence 'a' also gives an indication of the strain energy level.

This corroborates the same conclusion drawn in the last section.

Also note from Fig. 6.1.3 that for 3-u L a £ =
8(1-u?)
1

we have < b

12

where 'b' is the inverse matrix parameter.

Therefore as 'a' varies from 3-5 to = , the strain
. 8(1-u%)
energy under non-uniform load varies from infinity to a small magnitude

represented by 'b' = 1, which is much smaller than b = 3 for the Argyris-
Melosh displacement matrix (a = _ 3-u ) providing a lower bound.
6(1-u?)

Hence by varying the stiffness matrix parameter between

3-u b a x 3-u . 1t is possible to cover a range of
8(1-u2) 6(1-u2)

| A

element strain energy levels from « -

to a lower bound given by a displacement matrix. Since the strain energy
in an element is finite in magnitude, some value of the paraﬁeter exists
which will provide an upper boupd on the strain energy. However, while
values of the parameter giving a lower bound are defined by displacement
matrices, it has not yet been found possible to select a parameter provid-
ing an upper bound on the theoretical basis of equilibrium matrices.

Note that the ordering of element stfain energy obtained by
using different parameters is independent of element size. If the
loading on the element is non-uniform, the strain energy will be ordered
by parameter. If the loading is uniform the strain energy of the element
will.be independent of the parameter and equal to the exact strain energy.

Now it has been shown in section 4.2 that the results of the
element matrix copparisons apply to a structure composed of them. This

result is independent of the number of elements, their distribution or
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their size.

Therefore the ordering of structure strain energy depends
upon the orderihg of the element matrix parameters,; but is independent
of structure Subdivision.‘ |

Hence if curves for the-strain energy of a‘structure with
respect to strueture 'subdivision -are drawn for different values of the
matrix parameter, then no two curves:will ever intersect. An example
of this is shown in Fig. 6.3.1, where the deflection of a cantileﬁer
under the load (proportional :to tﬁe'strain'energy) is'plotted against
structure . subdivision. |

It will ﬁow be shown that -all such parametric curves must
converge towards the solution,

Synge (1957, pp. 209-212) has proved -that :a-given function
and its first derivative'can»be-approximated—as-closely:as-wg like by a
pquhedral function bésed 6n a-suitable triangulation. -This polyhedral
function is defined within a triangle as:a:linear ‘interpolation of the
Values at the vertices.

Using ‘a linear displacemént field, which corresponds to a‘
reéresentation of the»interpolation-fUnction‘for‘a”triangular'element,
Turner et al (1956) obﬁaingd-the'stiffness-matrix for a consﬁant—stress
- triangle. Therefore the stiffness matrix for such a triangular element
will‘provide convergence to the solution with sufficient network refine-
ment. This has been noted by Melosh (1962,»pp. 81482).

Note .that this convergence to the solution is obtained for
all load vectors.

Let us now divide a region of ‘interest -into triangles as
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follows. We first divide the region into~"squares; and:subsequently
subdivide each square into four triangles by joining the diagonals.
One such progressive refinement of the region using such triangles

is shown in Fig..6.2.l.

Now we apply nodal loads to-the subdivided region éuch
that only the nodes corresponding -to tﬂe«éorners«of the squares are
loaded, no loads being applied to the-interior nodes. This represents
a special load vector, and again convergence to the solution must take
place.

But such a subdivision, and manner -of -loading corresponds
to the use -of the Turner-triangles matrix with parameter a = 0,515625
(Table 6.1.1). Therefore this specific parametric matrix must converge
to the solution.

Now let us assume that -the same nodal loads are applied to
the Pian displacement and the Argyris-Melosh displacement matrices;
Then -these two parametric matrices -must -converge towards'the solution
defined by the actual strain energy U, to which the square element
formed from the Turner-triangles has converged.

If not, let the sblution fromlﬁhese two matrices converge to
different values, U; and U, respectively.

Then, considering the hierarchy of strain energy levels

(Table 6.1.1)

since parametric strain energy curves never intersect.
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But U, and U, are lower bound solutions from displacement

matrices. Therefore

A
c

and U

Therefore our assumption is false, and

Thus these three matrices must converge towards the solution

under equal nodal loads.

Hence, the nodal displacements obtained in each case must be

the same.

That is, for each infinitesimal element in the region, the

veector of nodal displacements
Lups vys Ups Vps ups Vg, Uy, Vu—'

must be identical.

But the strain energy of the element in-terms-of these dis-

placements is given for each of the -matrices by

UT = UC + ¢y UB -(Turner-triangles)

UA-M = . Uc + c2 UB (Argyris-Melosh)

U = U + c¢_ U_ - (Pian displacement)
P C -3 B
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where Uc-and UB are—constant'energybeompongnts‘and“the:c's are linear
functions -of the parameter. (As example see Table 6.2.1),
Now these strain energies must be'equal since each represents

the solution strain energy, say U.

0
o

" so that

This requires that UB
Up = Uy = U, = T = U

We thus see that when the element size becomes infinitesimal

Up approaches zero.

This result is also-verified-by examining the strain energy
expressions for the parametric matrices shown in Table 6.2.1.

When the element size becomes iﬁfinitesimal-the nodal dis-
placements at nodes 2, 3, -4 may be expanded by Taylor's series about
node-l. Keeping only the first-order“termé"of the expansion and sub-

stituting in the energy expression one gets the final result

v o= U, + ¢ [ 0]

where the coefficient of c¢; approaches zero and

Et 1 (e.2 4 €.2 1 2u e_e 1 v 2 dx?
U = [ === " *+ 7y F xy t—moTxy ]
2(1-1%) AT :
which corresponds to strain energy in an infinitesimal element by linear
elasticity theory.
But the strain energy-of an element -under all parametric

matrices is given by
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where Ch is a constant varying with the parameter,

As element size becomes infinitesimal UB + 0. Therefore

but Uc = U, the solution strain energy. Therefore US = U.

This proves that all parametric matrices must convorge towards
the solunion with sufficient structure subdivision.

Therefore the paramotric strain energy curves plotted against
structu;e subdivision ropresent a one-parameter family of non-intersecting
curves all of which approacn the oolutiontin the limit.

Melosh (1962, pp. 20-21) has shown tvha,t a sufficient condition
for monotonic convergence of nisplacement matrices is that under pro-
gressive structure subqivision, the displacement field in a particular
ievel of . subdivision must be oapable of reoresenting the displacement
field before that level of subdivision. He has noted (1962, pp. 31-32)
that the Argyris-Melosh displacement matrix satisfies this criterion;
and it is eésilybseen that the Turner-triangle matrix does the same,

Thus, it has been established that two‘strain enéfgy curves
corresponding to tho parameters definéd by the Argyris—Melosb ano the
Turner-triangle displacement matrices converge monotonically to the

.tfue solution. Stfain energy curves conforming to othen values of the
‘parameter aiéo convefge to tne‘solution bnt it hés not been possible to
prove thatnthey do so monotonically.:

In a specific problem, pafémetric.strain energy curves may be
obtained.for'difﬁerent values of fhe pérameter by fhe method suggestod

by Hooley and Hibbert. If these experimental curves appear to converge
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monotonically to some limit as the structure is progressively Subdividedl 
it is a reasonable inference that the true strain energy will be between
curves converging from above and below the supposed limit. The possibility
must be admitted, héwever, that the apparent limit may not be the true |
solution, In this case the energy will not be bounded.

Note that the paramefric matrices with parameter a > a, ..
are capable of representing constant stresses within the element, so that

this capability has been found sufficient for providing convergence to

the solution.



Note that the convergence criteria:of*Bazelyvet~al-(l965;_pp:,2—3):
1. the displacement function must-contain-rigid body modes
2. the displacement function-must be capable-of expressing
constant strain conditions
does not ensure that a matrix will provide-good results-with ordinary
structure subdivision (not too coarse-or too fine).
For example if plane-stress-matrices are chosen using

3- 1 . :
as= 2 and a =-10,000; both- satisfy the-criteria-but the first

2
8~ matrix will give a-verthigh upper bound, and the second
a very low lower bound, so that both results will be far away from the
actual solution.

If, however, a set of -matrices satisfying these criteria
are derived then it is possible that one or more of them may be good
matrices. The choice could -be made by strain energy comparisons and
comparisons with analytical solutions.

Thus amongst the parametriec -plane-stress matrices, the
Turner matrix is knoWn to give»the-best*results?in specific cases
(Hooley and Hibbert, pp. 46-47).- Its convergence ‘to the solution has
been established. Therefore, it may be eonsidered~tﬁe«best parametric
plane stress matrix.

It should be pointed out that the best matrix on the basis
of strain energy will not always give the best stresses. This is
because the stresses are inflﬁenced-by the -structure subdivision and
the manner of determining them, i.e. |

1. within an element by linear transformation of element

displacements

92
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or 2, béfween nodes by displacement~differentiation
or 3. at nodes by spreading nodal forces over tributary areas.
each of which may be most appropriate for a specific element matrix.

However a correspondence Beﬁween the best-matrix oﬁ‘the
basis of strain energy aﬁd the-best-stresses'is possible by judicious
structure subdivision so as to pick up stress-gradients-and an appro-
priate manner of stress determination.  Thus Hooley and Hibbert obtained
the same ordering for extreme fibre stress of a cantilever, as is given
for strain energy in Fig. 6.3.1, - the Turner matrix providing the best
solution in both cases.

Note that the above-arguments: apply to the use of the same
type of element matrix for the structure.--If a strﬁcture contains
element matrices with different strain energy levels, say-a high strain
energy matrix in one part- (low-value-of: parameter);-and a low strain
energy matrix in another (high value of parameter), then the combination
may give a good overall strain:energy-result but poor local stresses.

6.3 Upper -Bound on Strain Energy-byﬂusing'the Special Element

The use of the special square elemeént dnglOﬁed in Chapter V
for obtaining upper bounds, is illustrated by means of two examples, .
one of which has been previously analysed by Hooley and Hibbert.,

Example -l - Cantilever Beam as per Hooley and Hibbert (1966, pp. 46-47)

Hooley and Hibbert have compared the end deflection of a

cantilever composed of a number of finite elements. The element matrices
are varied by choosing different parameters. The results are reproduced
with the nomenclature of this thesis in Fig. 6.3.1.

Note that the deflection under the load increases as the wvalue
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of the parameter is reduced. Here the deflectidn is directly
proportional to the strain energy, so that by varying the paramet;r
for the element matrices the structure strain energy is varied.
This behavior conforms to the theory developed in section 4.2,

Note also that all matrices converge towards the solution
with increased subdivision as was anticipated by the discussions in
section 6.2, Here the convergence in all cases is monotonic. However
there is no guarantee for monotonic convergence in all plane stress
problems.

Finally note than an upper bound subject to the limitations
discussed on page 91 is obtained by a stiffness matrix with parameter
a = 0.429.

| Now upper bounds on the strain energy will be obtained by
using the special element for two degrees of structure subdivision.

For the coarse subdivision, the psuedo-truss is statically
determinate so that only the equilibrium solution is available for
obtaining the upper bound.

For the fine subdivision, the psuédo~truss is statically
indetermihate so that self-straining is possible, and an upper bound
is obtained incorporating some self-straining.

The structure is divided into 12 square elements, forming

the psuedo-truss system as shown in Figu 6.3.2., This truss has

no. of joints, j = 32
no. of bars, n = 60

no. of constraints, R = 4 (for attachment to support)
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Therefore no. of redundancies; ‘r= n + R - 2j

60 + 4 - 64

=0

i.e, truss=is-statically determinate.

Uniform shear: force is-applied tévthe free end of the
“cantilever as two concentrated loads P at truss-joints at that end,
‘and ‘the bar forces determined.

Now the strain energy in each element is computed on the
basis of the forces being tfansmitted through it.

Thus for element No. 1, the forces are transmitted as shown
in Fig. 6.3.3.

From section 5.3, the strain energy on account of the trans-

mission of these forces is given by

# 2 2 4. 2 2 2
u* o= Lo PZHQfaRZ4S 24T

+ 1+ P (Q1+ R+ 5;+ Tl) _ M (Q1R1+ R, T+ §;T;+ lel)]

V2

where P1 = P

Q = -v2pP

s, = V2P

Rl =0

T, = 0 i
whence ‘

u* | [ 5P2 + 2uP?]
1 2Et

p? [ 5+ 2u]
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Obtaining the strain energy in the remaining elements
in a similar way, the total strain energy in the structure is given

by

v = %52 (155 + 6u)

Another equilibrium solution is ébtained for psuedo-truss
bars oriented as shown in Fig. 6.3.4. This psuedo-truss is also
statiéally determinate, and the bar foréeélafe as shqwn in Fig. 6.3.4.

The strain energy is calculated for each individual element
on tﬁe basis of‘the forces being transmitted through it, and summed to

give the structure strain energy, which is

u* = 2P% (155 + 6W)
Et '
This result is identical to the previous one. For iy = 0.2
v* = 2P2 (156.2)
Et

For the fine subdivision, the structure is subdivided into
48 square elements, forming the psuedo-truss system shown in Fig. 6.3.6.

This truss has

b = 112

n = 240

R = 8
Therefore r = n+R- 23

= 240 + 8 - 224

= 24
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Therefore this truss is statically indeterminaté and twenty-
“four - self-straining solutions are possible.

However for the purpose of illustrating the procedure for
incorporating the self-straining solutions with the equilibrium
solution, three self-straining solutions are arbitrarily chosen as
shdwn in Fig. 6.3.6. For obtaining the equilibrium solution, a step-
wise distribution is assumed for the-edge loading.

The element bar forces are now the sum of the equilibrium
solution shown in Fig. 6.3.5 and the self-straining solution given in
Fig., 6.3.6. | |

The element strain energies are summed té give the structure
strain energy in terms of the applied load P, and the arbitrary self-
straining forces Q, S and T. '

The structure strain energy is given by

N [(2396+108u)P% | (69.5-3.5u) PQ _ 180 Q?_124 PS
9Et
4+ 180 S2_(130.5-105u) 180 T? ]
Now Q, S, T are evaluated so as to minimize U*, from the
equations

aU*

36 = 0 - (69.5~3.5u) P + 360 Q = 0
%

oU :

e = 0 > (-124) P +3608 = 0

U

— = 0 > -(130.5-10.54) P + 360 T = 0
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From which
¢ = -(69.5-3.51) P
360
124 P
S = g
360
T = (130.5-10.5p) P
360
Substituting
gt = P2 [ 2344.3 | '112.5w _ .17 w2 ]
9Et
For u = 0.2
u* =  2P2 [ 131.4]
Et

The upper bound obtained by Hooley and Hibbert for the

coarse subdivision is

x 2P2 [ 121 ]
Et

(o]
1

Table 6.3.1 shows a comparison of the results.
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Table 6.3.1 ~ Upper Bound Comparisons for the Cantilever Beam

| 7% error w.r.t %
Upper Bound on Hooley -

Method ' Strain Energy Hibbert upper bound Remarks
Special Element-—
Coarse sub- 2P2 (156.2) 29,17%

division Et
Special Element-— _ only 3 of 24 pos-
Fine sub- 2P2 (131.2) 8.47% sible self-strain-

division Et ings used
Hooley~Hibbert- network corres-—
variation of 22? (121) - ponding to coarse
parameter Et _ subdivision

|
|
i
i
!

- Note that the special element gives upper bounds which reduce
with increased structure ‘subdivision and inclusion of self-strainings.
However it seems that for the same ‘subdivision better results may be
obtained by Variation of the stiffness matrix parameter provided bounding
by wvariation of parameter is valid.

Example 2 - Plate Under Action of Equal and Opposite End Loads

The exaﬁple chosen is a simple adaptation of a problem analysed
by Gallaghef et al kl962, pPp. 43-44) which consisted of'a plate under plane
stress acted upon by equal and opposite concentrated loads, as shown in
Fig, 6.3.7. Using ;he Argyris~Melosh displacement stiffness matrix, the con-
centratedfioadiﬁg is equivalent to the linear streés distribution over
- the width of the subdivision, as shown. In order to use the special’
element for obtaining an upper bound, this iinearly vérying stress diétri—
bution would ﬁave to be appréximated by a step-wise distribution of
streéso One Such step-wise distribution usihg 1/2 iﬁ, square elements
is shown:in Figs 6.3.7. The corresponding psuedo-truss problem is

large in magnitude as may be seen by the following data.
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j = 13000

n = 32000

R = 4

r = 32000 + 4 - 26000
= 6004

Therefore for the purpose of illustration of the method
a plate under distributed end loading as shown in Fig. 6.3.8 is solved
using the Argyris displacement matrix to obtain a lower bound, and the
special element to obtain an'uéper bound for the same network sub-
division.

The displacements under the loads from the displacement
analysis are respectively 0.0530 in. and 0.0364 in. so that a lower
bound on the strain eﬁergy may be expressed as

(2P)?  (1.118)
Et

The complete psuedo-truss has

i = 110
n = 240‘
R = 4
r = 240 + 4 - 220
= 24

For obtaining the upper bound, two self-straining
solutions are arbitrarily chosen. These are given by the 0O's and

R's bar forces, the equilibrium solution being given by P's.
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On summing the element strain energies, the structure

-strain énergy is given by

1 [8P2 - 16 PQ+28Q2 ~4PR+9 R2+ 16 QR ]

Again for minimizing U*

aU* = 0 ~» -16P +5Q + 16 R = 0
aQ
ou* = 0 +> -4P +16Q + 18R = O
3R
whence
Q=  0.2978 P
and R = -0,04255P

So that the upper bound is

ux = (2p)? (1.425)
Et ’

Therefore the strain energy of the solution is bracketed between

(2p)? (1.118) < U < (2P)? (1.425)
Et ‘ Et
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lote that the upper bound would come closer if more of the -

self~straining solutions were incorporated. Thus this method of

obtaining upper bounds can be efficiently utilized only when the com-

putations are performed with the help of a digital computer.
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CHAPTER VII

SUMMARY AND - RECOMMENDATIONS

The investigations made in this thesis are summarized as

Plane stress stiffness matrices are derived explicitly for square

isotropic elements under different assumptions on the stress

distribution within the finite element.

(1)

(ii)

(iii)

An (8 x 8) matrix is obtained under the assumption originally
used by Gallagher of uniform O» Oy’ linear Txy'

Two (10 x 10) matrices are obtained under the assumption

of linear O Oy and Txyt using interior nodal translations.
and corner edge rotations as additional generalized dis-
placements. These matrices do not appear suitable for
general usége but will perform as well as the Turner matrixr
under the same nodal loads.

A (12 x 12) matrix isAderived under the assumption of
hyperbolic Oy Oy ana parabolic Txy’ agéin, exemplifying

the use of edge rotations at corners as additional general-

" ized displacements. This matrix is found unsuitable for

general usage as it behaves unexpectedly with varying

Poisson's ratio.
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2. A method is proposed for choosing stiffness matrices for all
classes of finite elements (i.e., elements for plane stress, plate-
bending, shells, etc.) on the basis of strain energy. The "pest' "
stiffness matrix from an available set is defined as the one
which yields the closest approximation to the true strain energy
of deformation. In ofder to make this choice, a comparison is
made 'of the strain energy of deformation produced within a finite
element by the differen£ matrices under the same nodal loads. It is
shown that such comparisons require a study of the quadratic form
of the invérse difference matrix i.e.,(Kl"1 - Kz"l)u
(1) It is proved thap the quadratic form of tﬁe inverse dif-
"ference matrix may be obtained by a study Qf the quadratic
form of the stiffness difference matrix-(K1 - K, ) with
consequent simplification of the process of comparison.
(ii) It is proved that the results of the element matrix compari-
| sons, geﬁerally, apply to a structure composed of them.
(iii) It is noted that comparisons under the same nodal loads
do not alwayslportray the behaviof of matrices forrwhich
the copsistent nodal loading may be different or for
matriées of different orders,' Howleverg the same nodal
loading can always be one of the t?pes of loading to
which all matrices may be subjected, and it is hypothe-
sized that comparisons under this condition Will be useful
in evaluating.the matrices.,
(iv) It is shown that the strain.energy;of a finite element

under normalized loads is bounded between the maximum and
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minimum eigenvalues of the inverse matrix, and hence
it is shown that Melosh's hypothesis for choosing
matrices corresponds to a comparison of element strain
energy.

3. The theofeticai comparison procedures developed above are
utilized in a study of parametric matrices.for square isotropic elements.
¢9) It 1s shown that in addition to the lattice model and

other matéices obgserved by Hooley and Hibbert to belong
to the class of parametric matrices, other important
matrices also belong to this class. These include the
Pian displacement matrix, the displacement matrix formed
by using the Turner triangles and the Gallagher matrix.

(11) An explicit parametric inverse is obtained for the
parametric stiffness matrices.

(1i1) The quadratic form of the parametric matrices is studied
and it is found that the natgral stiffness matrix is
indefinite for Oléza <a__ and posifive Qefinite for
a > a,.

(iv)  Explicit parametric eigenvalues are obtained for the

| inverse difference matrix and the stiffness difference
matrix, and it is verified that they give identical
results for the matrix strain energy comparisons.

v) The explicit parametric inverse is used to prove that
all parametric matrices_give the exact strain energy

under uniform nodal loads (i.e. the element deforms,

exactly under constant oy, oy, Txy)- It is shown that



(vi)

“(vii)
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the stiffness matrix parameter represents a measure of the
strain energy under npn-uniform nodal loads (i.e.,under loads
teﬁding td bend the elément); The>Critical vélue of the
parametéf corresponds to an unstable configdration in which

the slightest non-uniform load produces infinite displacement.

- When the parameter approaches infinity, the element becomes

so stiff in bending that no.émount of non-uniform load can
cause the elemenf to bend.

It is proved that if strain energy curves are drawn with
respect to structure ‘subdivision,'then no two curves will

intersect., It is proved that all parametric strain energy

curves will approach the true solution with progressive struc-
.ture subdivision. This includes the Turner matrix, the Pian

- matrices, the Argyris-Melosh matrix and the Gallagher matrix.

Monotonic convergence to the solution is not theoretically

established for all parametric strain energy curves, If,

however, in a specific problem, the strain energy curves are

observed to.converge mohotonically, then it is a reasonable

' expectation (see page 91) that the strainvénérgy of the

solution may be bounded by varying the.mgtrix parameter
accordiﬁg to the‘pfocedure suggested by Hopley and Hibbert.
A strain energy ordering is obtained'for.the parametric
matrices, andtthe following conclusions are drawn with res-
béct to matrices for square isotrbpic elements, The
Piaﬁlmatrixvis.the best displacemént'matrix. The

Gallagher matrix is inferior to the Turner, Pian and

- Argyris-Melosh matrices. Constant stress tri-nodal
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triangles are generally inferior to the use of
square elemenfs. . Matrices satisfying microscopic
equilibriqm or capable of representing constant stresses .
will not nécessarily yield . good resdlts.

(Qiii) The ordering of strain energytqf the parametric matrices

on the basis of the eigenvalues of the inverse, is

!

examined,‘and it is found to correspond with that obtained
by a study of the difference matrices. It is verified that
the correspondence occurs because the eigenvectors of the
Jinverse.matrices are similar.

4.. A ﬁethéd is prbposed_for obtaining upﬁer bounds on the strain energy
:of a ;egion under plane stress by replacing the continuum with a
psuedo-truss system, fhe bar forces of'whiCH pfovide the eqﬁilibriuﬁ
_and self-straining solutions., Two examples of its application are
presented and an indicati&n‘is obtained in a specific cadse where
Eéunding by variat?én'of parametef seems valid that a be;tér uppef
tbound-may-be obtained by Varying the matrix‘parameter for the same
structufe.‘subdivision.

;Ihe following reéémmendatibns are made for further study;

l: The effect of using equal nodal loads iﬁstead of consis;ent nodal
‘ 1qading ip making gtrain energy comparisons ‘should be %nvestigated
so. as to détérmiﬁe whgther‘any qualificaﬁions are necessary in the'
comparison procedure.

2, WHen éomparing matricesjof different orders the effect of arbitra-
rily aésumipg-some 2efo nodal loads should be investigated so as .

to- improve upon the.comparison procedure in.such cases.



In the case where the special difference matrices are indefinite,
thei effect of the relative number and magnitude of the positive
and negative eigenvalues and the load vectors.ﬂefined by the
corresponding eigenvectors should be studied numerically.

Sets of stiffness matrices for solids,'plate and shell problems
incorporating rigid body modes and capable of representing
uniform strains should be developéd so as to determine if
parameters governing the element strain energy level may be
found for obtaining bounds.

Available stiffness matrices for solids, plates and shells
should be evaluated on the basis of the strain energy criterion
developed in this thesis,

A digital computer program should be developed for the upper
bounding procedures using the psuedo-truss system.

Studies are also desirable to investigate the relationship bet-
ween the sensitivity of overall strain energy bounding and local

bounds on stresses and displacements.
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APPENDIX A

TWO_ENERGY THEOREMS

Theorem of Minimum Potential Energy

The theorem of minimum potential energy (Sokolnikoff, 1956,
pp. 384-385) states that of all displacements satisfying the given
displacement boundary conditions, those that satisfy the équilibrium
configuration make the botential energy a minimum, where the potential

energy is given by

v = U - f Tquydl - [ Fjujdv

r v
where U = gtrain energy
I' = the portion of surface where surface forces
T; are prescribed.
v = the portioﬁ of the body where the body forces
F; are prescribed.

Note that by Clapeyron's Theorem (Sokolnikoff, 1956, p.86),
the strain energy of an equiliﬁéium state is equal to one-half the

work of the external forces on the displacements of the solution,

i.e. 20

- f Tiuidl“ - f Fiuidv
T v

Therefore the potential energy

Uu- 2U

<3
It
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Therefore a minimization of the potential energy implies
a maximization of the strain energy.

Theorem of Minimum Complementary Energy

The theorem of minimum complementary energy (Sokolnikoff,
1956, p. 389) or least work states that of all the stress states
satisfying the differential equations of equilibrium in the interior,
and the stress boundary conditions, the actual state of stress (i.e.
that satisfying compatability) makes the compleméntary energy a

minimum where the complementary energy is given by

% .
\Y = U- i) Tiuidr
T
where U = strain energy

and r the portion of the surface where the

displacements uj are prescribed.

Note that under a stress boundary condition (i.e. no non-

zero displacements are prescribed), the complementary energy

whence a minimization of the complementary energy implies a minimization

of the strain energy.
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APPENDIX B

STIFFNESS MATRIX UNDER ASSUMPTION OF_DISPLACEMENT FUNCT ION

" WITH LINFAR EDGE DISPLACEMENTS

Assumed displacement function

whence nodal displacements are_(refer-Fig; 3.2,2)
up = agxay,

u = a3(x0+a) Yo

=
13

a3(x0+a)-(yo+a)

u = a3.z§o (yo+a)

Ny v, T 8.y,
v2 = a7(xo+a) Yo
v, = av(xo+a) (yofa)
v, = a7xo(y0+a)
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Strains from the displacement function are

ex = U = a5y
&y = uy = a,x
YXy = uy T vy = asx + a.y

Hence element strain energy is given by

2 .2 - 2 -
u _ Et2 I ey + 5y 4 2y exfy 4 I-n vy Xy]d_xdy
2(1-u%) : 2

X~ta yata
e 00 0T @y? (a0 2 (@) (ax)

2(1-u%) X5 Y,

2
(a3x +a7y) dxdy

1-u
+ 1
2

On integrating one obtains

5 } Eta a32(y02a + v, a2 + 332+ a72(x02a+'x'o‘a2 + éi)
2(1-u2) 3 3
2u a,a, (2axo+a2)(2ayo+a2) 1-u a32(x02a+xoa2+ as)
+ - He—{ 3
4a - 2 3
2 2 243 2 2
N a, (yO a+yoa fi_)+ 'a3a7(2ago+a )(2ayo+a )} ]

3 2a



From nodal displacements

obtained

az (2yo+

Nlm
w

nﬂ [
~

rol Y
~J

(2x,+

(2y0+

a3

(2x0+.a )}

On substituting these

_ U-2_. u1+ U.3_ uL*
2a
2a
_ Ug= Uy~ u2+ u,
a’ o
- v2— v1+ v3 vl+
2a
- + -
. WV Yy
2a
. U3 VT vt Yy
a2

values for the

in the strain energy expression, one obtains

48 (1-u2)
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the following relations are

arbitrary coefficients

1

2

. - _ 2 _ - 2 -
_— “Et (u2 u;+u3 uu) +(vl_+ v1+v3 v2) N Zu(u2 u
8(1-u?)
. Et u,.- u1+ u,- u2+ v, v1+ Vi v
16 (1+)
—y) . - - 2 -
s Et (3-u) { (u3 u, u2+ ul) N (v3 v,

1

+u3—uq)(v4—v1+v3—v2)

- 32

]
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Again using the formulation

2
K, . = S
1j aqiaqj

‘The stiffness matrix is-of form given in Tablé 3.2.,1.1

with

e _ A (24 - 8i) where A _ Et
11 24 2 (1-1%)
_ A (6 + 61)
Koy = % (
K _ A (-6 + 18u)
31 - 24
- A (12 - 4w
K Y
X - A (<12 + Gu)-
51 24 ‘
A (-6 - 6U)
K = —_—
61 24 . :
_  A_(6 - 18u)
e Y
_ A (8uw)
Ke1 = %

This stiffness matrix is identical to that obtained by
Argyris (1955, pp. 125-126) and Melosh‘(l962, p. 31-32) as the same

type of displacement function has been used in each case.
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APPENDIX C

BCUNDING ELASTIC BEHAVIOR

Here the basis and procedure for obtaining bounds on the
nodal displacements and the mean strain between nodes is given.

De Veubeke (1962, pp. 185-186) has shown that bounds on
flexibility influence coefficients may be obtained from bounds on
structure strain eneggy. |

The bouﬁds"on the direct influence coefficients i.e. the
diagonal elements of’the flexibility matrix Cii are obtained by
applying single Ioads cdrresponding to the generalized displacements.

Thus under a single loavai,with corresponding displacement

34 , the influence coeffigiept Ciiis given by
6y = CyyPy
and the strain energy can be written ‘
U = %. CiiP12 (exact solution)
From a compatible displacement analysis we obtain

U - % QiiPiz (lower bound)

From an equilibrium analysis we obtain

T = C,.P.? (upper bound)

Y=
’_I
H
H
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Therefore

1 C;iPs2 2 1 Cy4P3% 2 1 Cy4P4?
2 o2 2
and after dividing by 1 P?
2
__.. > C.. >
11 = 11 = —11

N

The bounds on the cross—influence coefficients (off-
diagonal elements of the flexibility matrix Cij i#j) are obtained by
applying two loads at a time, one corresponding to the displacement i,

the other corresponding to the displacement j.

Let 84 = Cs s

be the exact displacements associated with the two loads PiAand Pj.

2

If Cyy4, Ci4s Cjy are approximate influence coefficients

obtained from a compatible approach, and Cyjy, Cij’ ij those from an

equilibrium approach, then from previous results we know

and

v
o

v
o
v

C..
11

Il

|
e
e

c s L 2 s s s
11 11 J3] 3]

Let P, = AP
J

then the exact strain energy is given by

2 2

|
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Obtaining the upper and lower bounds on the strain energy as before and

dividing by 1 Pi? we can write
2 l

_ -
Ciy + 2\ Cyi + A2Cys

2 : 2
13 §3 2 Ciq + 2% Cyy + A2Cyq 2 Gy + 2% Cyq + A2y

3] 3]

Taking the first inequality, and solving_for_Cij assuming A to be positive,

we get

2C44< % €y = Cgy) + 2055 + & (G -Gy
< % €y - L) + 284y + & (G5 -0y

The positive X\ giving the smallest upper bound is found to be

»oos ‘/{(Eii"gii)/(éjj -Gy )}

Whence Cij;= Eij + /{(Eii-— gii)(éjj - ij )}

Similarly, taking A to be negative we get from the first inequality

Cio 2 Gy = V(G - Cyy N, -Gt

ij ij ii i3

Treating the second inequality as for the first we get new

bounds

Gy = Gyt MGy Ly €y - G
R R TRAC TR T

Out of the two upper and lower bounds, the closest bounds are chosen.



- bounds for &.
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Having obtained bounds on the flexibility influence
coefficients, it is then possible to obtain bounds on the nodal
displacements of the structure for any given nodal loads.

Thus the displacemeﬁt 6; would:be given by
84 = (Cqy» C41) Py + (Cips C4p) Py + ..ot (Cip, Cyp) P

The maximum and minimum value for each term on the right
hand side can then be determined and appropriately summed to give'
ie
Knowing the bounds on the displacements of adjacent nodes,

bounds may be obtained on the mean strain between them.



