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ABSTRACT

This thesis examines the influence of different gate opera-
tion curves on the surplus or deficiency of energy input to a hydraulic
turbine accompanying a sudden change of load on the turbine. A general
solution to the problem is obtained by evaluating the energy input to
the penstock and the energy conversion within the penstock during
transient conditions. The results show that for given maximum pressure
rise or drop, a considerable reduction in the surplus or deficiency of
energy input to the turbine can be obtained by use of a suitable gate
operation curve., At the same time it is possible to reduce the hydraulic

oscillations in the system.
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INTRODUCTION

Many of the complicated processes of modern industry require
electric power whose frequency is maintained within very close tolerances
(+ 1/10 cycle). In any large electrical system, any major increase or
decrease in the magnitude of the load on the system can be considered
instantaneous (such as would be caused by the loss of a transmission
line). Furthermore, the distribution of this load change between the
various generators is also instantaneous when compared to the speed of
response of the turbine governor. The resulting change in system fre-
quency is approximately proportional to the square root of the difference
between the combined input to the turbines and the combined output of the
connected generators; and inversely proportional to the inertia of the
whole system (i.e. including connected load). To keep the frequency
change (or corresponding generator speed change) within specified limits
for an assumed major load change 1t is necessary to either increase the
system inertia or decrease the difference between turbine input and
generator output; the choice being mainly one of economics,

In a hydraulic turbine-generator arrangement this input-output
difference is a result of the finite speed of response and seﬁsitivity
of the turbine governor and the inertia of the fluid supplying energy
to the turbine. This paper is concerned with the problem of minimizing
this input-output difference in a hydraulic turbine under transient con-
ditions. It is assumed that the governor sensitivity and speed of res-
ponse, and the allowable penstock pressure rise and drop are specified
and that the only variable quantity is the turbine gate closure curve.

It is further assumed that the penstock is of constant dimensions, the



reservoir elevation is constant, the turbine head-discharge curves for
the rated speed are known and any influence of turbine speed changes
on the head-discharge relationships can be neglected (with a frequency
change of + 1/10 cycle this last assumption is quite justified).

Although no optimum gate operation curves are derived in this
paper, an example is worked showing that the optimum closure curve for
limiting pressure rise derived by E. Ruus (6)1 is a reasonably practical
curve for minimizing the input-output energy difference.

The approach in this paper is based on the graphical solution
of the Allievi chain equations developed by Schnyder and Bergeron (1),
combined with an evaluation of the energy conversion taking place in the
penstock under transient conditions., Although energy methods are not
uvsuvally used in rapidly varied flow problems because of difficulty in
evaluating friction losses, it is shown that in this case the losses can

be neglected.

1. Numbers in the parenthesis refer to the Bibliography.



CHAPTER T

ELEMENTS OF THE SCHNYDER-BERGERON GRAPHICAL

SOLUTION OF THE ALLTEVI WATERHAMMER EQUATIONS

The theory derived in this paper is based on the graphical
method of waterhammer analysis developed by Schnyder and Bergeron. This
method is a graphical solution of the equation representing conditions
at the turbine gate simultaneously with the conjugate waterhammer equa-
tions developed by Allievi,

According to Allievi the conditions in the penstock at the tur-

bine gate can be represented by

V = Agi 2gHi
_ . = . .
or v= T, l i (in relative form)

For different values of Ag (or T) the H-V (or h-v) plot is a

parabola.

The conjugate waterhammer equations developed by Allievi are

Vv -v)

@]
PN RO

or h-1 =+29(v-1) (in relative form)



CHAPTER IT
THEORY OF ENERGY CONVERSION IN THE PENSTOCK

2.1 General
If conservation of energy is applied to the system shown in

figure 1, then for any given time interval

By = By + B =By = By (1)

where: Eg is the energy output through the gate in the time interval;

Ei is the energy input to the penstock from the reservoir in
the time interval;

Ec is the change of energy in the penstock, i.e., the difference
between the change in kinetic energy and the change in energy, stored as
strain energy, in the fluid and in the penstock walls. (EC is positive
if the net energy contained in the fluid and in the penstock walls is
reduced) ;

Efl is the steady state friction loss;

Ef2 is the energy dissipated as friction during, and as a re-
sult of, any change of energy form in the penstock.

The steady state energy dissipation Efl is usually a small
fraction of the total energy (at most 10%) and therefore can be neglected
safely. 1i.e. Efl = 0 for all calculations in this paper.

Any energy changes in the penstock must be initiated from out-
side the penstock and must be in the form of either pressure or velocity
changes., At the intake there is no regulating device and the reservoir

elevation is assumed constant, therefore, any change in the energy con-

tent of the penstock must be initiated by changes in velocity at the gate



(which are a‘function of gate movement)., If the velocity at the gate

is changed, then according to Allievi there is an associated pressure
change and this pressure change travels, at high velocity, toward the
intake. To say there is a velocity change means the kinetic energy of
the fluid is changed; similarly, a pressure change means a change in

the amount of energy stored as strain energy in the fluid and in the pen-
stock walls. Any difference between the change in kinetic energy and

the change in strain energy must appear at the gate. This energy, Eo’

is positive if the net energy of the fluid and penstock walls is reduced.
(With this convention a decrease in kinetic energy is positive and a de-
crease in strain energy is positive).

Finally consider the term E_.. which represents the losses in

f2
the conversion process which produces Ec' In a waterhammer process, with
the exception of a small length of penstock adjacent to the gate, there
is essentially no change in the direction of flow of a fluid particle,

so that the flow is essentially vortex free. As it is the creation of
vortices in a fluid which allows the dissipation of energy over a longer
period, the friction losses due to the conversion process must approxi-
mately equal zero (i.e. Epp = 0).

The energy equation can then be written to a good approximation

as:

Eg =E, +E_ (2)
Example

a = 3200 ft/sec H =100 ft

A =1/62.4 £4° Vo= 20 ft/sec

L = 3200 f+t



Consider an incremental change of velocity of

AV = - 1 ft/sec
The associated pressure rise is

AH:-?,;vi-l;%Q (=1) = 100 £t

The time required for this pressure wave to travel the length of 'the

penstock is

_ L _ 3200 _
1t = 2 = 3500 1 sec

At instant t = % the pressure is constant along the penstock and is

H=Ho+ DH = 100 + 100 = 200 ft

The velocity in the 'penstock is

V=V + AV = 20 + (~1) = 19 ft/sec

The energy output through the gate during this t = % seconds is
E =WAHV£=624—1—2OO(19)1=3800ft-1bs
g1 a * 62.4

The energy input to the penstock during this time is

= 62.4 = 100 (20) 1 = 2000 ft-1bs

E.,=wAH V 52,4

i1 o o

o e

The change in the kinetic energy of the fluid in the penstock is

=1l¥ 2 2
ARy =5 2 AL (V) - (V + AV)7)
6 L
AXE, = %%'621_4 (5200) (20" - 19°) = 1950 £8-1ne

The difference between the energy output and the energy input is

E - K., = 3800 - 2000 = 1800 ft-1bs
g i1 )



This is different from the change in kinetic energy of the fluid; there-

fore, the strain energy stored in the fluid and in the penstock wall is

APE1 = (&, - Eﬁ) - AKE, = 1800 - 1950 = - 150 ft-1lbs

g 1

(Note an increase in stored energy is considered negative).

From t = 1 t0 t = 2 seconds the wave is returning to the gate.

At t = 2 seconds the conditions in the penstock are

]
il

H =100 £t
0

<i
]

V, + 24V =18 ft/sec
The energy output through the gate in this time is

E_=wAHTV2. 3800 ft-lbs = E
g2 a g1

The energy input to the penstock in this time is

L 1
ip = WAH (vo + 2AV) S =624 2.3 100 (18) 1

=
1

1800 ft-1bs

The change in the kinetic energy of the fluid is

1 2 2
AKE}2=-2-§AL((VO+AV) - (v, + 24V)7 )
162.4 1 2 2y
=3 55 67 3200 (19° - 18~) = 1850 ft-1lbs

Since the change in pressure is equal and opposite to that of the first

% time interval the change in stored energy is

APE2 = - APE,l = -~ (-150) = 150 ft-1bs



As a check:

E =E.  +E =E.+AKE + APE
g 1 c 1

E
g

3800 = 1800 + 1850 + 150 = 3800 ft-1bs
Note that the net energy output of the wave in the first % interval is

B = AKEl + OPE; = 1950 + (-150) = 1800 ft-1bs

In the second-% interval the net output is

B, = AKE, + APB, = 1850 + 150 = 2000 ft-1bs

The difference between the two wave outputs is

=
1
=
1

2000 -~ 1800 = 200 ft-1bs

Also,

E., - E

i i1 1800 ~ 2000

-200 ft-1bs

1
I

These two values exactly cancel so that as far as the gate is concerned,
the energy output of the incident and reflected waves from the reservoir
is constant. (At the gate end of the penstock no velocity change is

noticed until the wave returns to the gate).

2.2 The Energy Balance for an Infinitesimal Incremental Gate Movement

Any continuous gate operation can be approximated by a series
of instantaneous infinitesimal, incremental movements., Consider the
change in power output at a penstock gaté due to one of these increments
occurring at time t, when the head.and velocity at the gate are H and V
respectively. (Note that the conditions are not necessarily those of

steady state). If the time interval ¢t is made small enough so that



no waves which have been reflected from the reservoir are within a dis-
tance 2 O6x = 2a §+t of the gate then within 6x5 H and V will be cons-
tant during the time interval §t. In this distance §x, the change in

the kinetic.energy of the fluid due to the wave is

6KE=%M(V+ 6V)2--:2LMV2

=-12- -Vé A( 8x) (VP + 2T &V + &V° - 79)
-3 a8 (v §v + 872 (3)

Since the change was infinitesimal

SV << V
and as a result
872 =0
and
<SKE=§ A (éx) (v V) (4)

As a decrease in kinetic energy is to be considered positive, a minus
sign must be added to make the emergy and power outputs of the wave of
correct sign. Therefore, the energy output of the wave due to the
change in kinetic energy is

éEK=-<SKE=-§A(c$x) (v §7) (5)



The change in stored energy (see figure 2) in distance dx consists of
two parts: a) the work done in expanding the penstock and b) the work
done in compressing the fluid.

a) The work done in expanding the penstock

From Hookes law

2

SR = ‘S’—-EB- SH

The work done on the pipe wall in expanding from R to R + 4R is equal
to the strain energy increase Se stored in the pipe wall. For infinite-~
simal values of dJdH and dR this is

2

S,=F dR=w 2TR dx & "S’—E S
2 2
Se=w 2‘TTSREL éx) R (2 §H) (6)

b) The work done in compressing the fluid

In the length dx the length of the water column is changed by

5){1 From Hockes law
éxl=% ( éX) 8H

The work done,'Sf,in compressing the fluid is equal to the strain energy

increase stored in the fluid. For infinitesimal values of Csxl and 6H

this is
Sp=F 6X1=WTTR2H%(6X) dH
5, = wo T R —5K—X (H d$H) (7)

10



The total change in strain energy in distance (Sx resulting from the
wave is

S =Se+S (8)

By rearranging and adding equations 6 and 7 we obtain

S ={w2'ﬂR2 (éx)%+w2WR2(éx)%}(H )

T
2
Further rearrangement and multiplication by &2 yields
g
W 2 2R 1w 2
ST—gTTR S« {(SE+K) - } g (= dn)
But by Allievi the wave velocity is
1
a =
x2i 1
g ‘s E K
and therefore
@R, Ly ® _ L
s E K g a2

Furthermore the cross-sectional area of the penstock is

Substitution of these values yields

W
ST—g

2 (8x) % @ ) (9)

11
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With a decrease in strain energy considered positive, the energy output

of the wave due to the change in strain energy is
2
& (6x) £ (udnm) (10)
The total energy output of the wave is
<SEc = cSEP + éEK (11)
Substitution of the results of equations 5 and 10 into equation 11 yields

a SE, =—‘§ A (Sx) (v&v + g; H $H) (12)

Substitution of H = HO h and V = Vo v into equation 12 and rearrangement

yields
W gk g a v Ov
6EC_gA(5X)HOV03,(VO‘a6H+g Y )
With éV=-§6H
and §V = voév
__g 6H
6v - a V
[e]
a VO
with %0 = 7 0
(o]
it follows that
_w g -
‘5Ec‘g aE v & (h-2pv)Sv 6x (13)
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The power output of the wave is

SB, . Sx
I3 =éAHOVoa(h—2}>v) ov <%
But
Sx _
3% e
and therefore
SE
éz=Pw=wAHOVO (b - 20v) v (14)

Consider now the graphical solution to a waterhammer problem
shown in figure 3. An incremental wave created at the gate when condi-
tions there are represented by point "b" in the figure, will, as it tra-
vels towards the reservoir, encounter head and velocity relationships that
fall on the line b-c at all times. The slope of the line b-c is 2p and

therefore the equation of the line must be

h = 2pv + constant (C)

or

h - 20v=_¢C (15)

In equation 14 &v is a cconstant, since

Sv &nh

a0y

and d&h is unchanged as the wave travels along the penstock of constant
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wall thickness. Therefore substitution of equation 15 into equation 14

yields

Py=wAHR 7V C 8v = constant (16)

The net différence between the change in kinetic energy and the change
in strain energy resulting from the wave travelling toward the reservoir
is & constant at any point in the penstock.

At the reservoir the conditions are represented by point "c"
figure 3. If the time interval d+t after the wave is reflected from the
reservoir is made small enough so that no waves that have been created at
the gate are within a distance EEéx = 2a ét of the reservoir, then within
6X, H and V will be constant during the time interval §t. In this dis-
tance dx the change‘in the kinetic energy of the fluid due to the re-

flected wave is

$Epp = -g A(Sx) (W) &v (17)

The energy output due to the change in strain energy is as before
s " e,
EPR=—éA(cSX)52 H X (18)

The net energy output of the reflected wave is
<§EoR = OB + ey

By meking the same substitutions as before, with the exception that for

a reflected wave

év = £ 4w

we obtain by the addition of equations 17 and 18
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$E_, =§ A( 8x) gHO Vv, (-h- 2pv) &v (19)
and
cSER
‘HPWR =3 Z =w A Ho VO (-h- %pv) dv (20)

The change in power input from the reservoir due to the arrival

and reflection of the wave is

dPR=wAHOVO(2h)cSv (21)

where h =1 ,

The wave leaving the reservoir, where conditions are given by
point "e¢", figure 3, will, from the principles of graphical analysis, en-
counter a pressure-velocity relationship that falls on line c-d in figure

3, The slope of this line is = 2p and therefore its equation is

-h = %pv*+ K
or

-h - 2pv =K (22)

Since this line and the line given by equation 15 pass through the common
point "e", (figure %) whose coordinates are
h=1, v=1v

the value of K can be determined in terms of C. From equations 14 and 22,

%pv =0 -1
%pv K+ 1

and therefore X

Il

1l
(@]
|
N
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The equation of the line c¢-d is then
- h - 2pv = C-2 (23)

Substituting equation 2% into equation 20,

Pp = v AH Vo (C-2) v (24)

From the same reasoning as for the incident wave, PWR must be a constant

as the reflected wave returns to the gate.

Also Py - Bp=wAH T {c §v - (c-2) év}
Py - Pp=wAH V (28v) | (25)

But,.if . ’h=1, the condition for the reservoir, is substituted in equation

21 then:

ép, =wam V. (28v) = B -P (26)

Thus the difference in power outputs between the incident and reflected
waves 1s exactly compensated by the change in power input from the reser-
voir, so that as far as the gate is concerned, the power output of the
wave 1is a constant throughout its life span of 22 seconds. At the gate
no change in input resulting from this particular wave is noticed until
this reflected wave reaches the gate, at which point the wave ceases to
exist and a new wave is formed.

Consider the wave as it arrives at the gate. Figure 4 shows an
enlarged graphical solution of the problem for point "d" in figure 3. At
the instant before the wave arrives h and v are given by point d. The

instant the wave arrives the head is altered by'<5h.and the velocity by
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$v so that conditions at the gate are represented by point p. At this
instant the wave ceases to exist and therefore its power output ceases

also. However conditions at point p are unstable as the relative gate

opening is § and the head and discharge must be related by v = J—Ej

Therefore a new wave must be formed at the gate so that conditions are

such as are given by "R" in figure 4; or, if at this instant an incre-

mental closure &7 takes place, by point "q" figure 4. In either case

the new wave formed will produce a constant power output, as far as the
gate is concerned, during its 2% 1life span.

The power increase (which may be of positive or negative sign)
at the gate due to the cessation of the o0ld wave and the creation of the
‘new wave is given by the sum of the change in power due to the cessation
of. the old wave and the change in power due to the creation of the new

wave and is

WN ~ “WRO (27)

(Where "N" denotes the new wave and "O" the wave that just ceased).

From equation 20 and figure 4 it follows that

Pugo =V A H T (ny +2pv,) 6vR (28)
If
hy = hp
and
Vs = v,

then for a wave created by a reflection only it follows from equation 14

that



V.

Py = WA ﬁo~vo (hd - %Fwd) ( 5vl - 6VR> (29)

Substitution of equations 28 and 29 into equation 27 yields

gp

]

w A H_ Vog(hd-vad) (évl- Svy) + (hd+2pvd)5sz

or

§p = w a1, ¥, {(n-207) Sy + 2 (2v)) 6 § (30)

But, —2}3 émh is the pressure wavé "'§ F'" which originated from the gate

EL seconds earlier.
§P=wAH T {(hd- 2pv,) Sv, - 2vy (§ F)} (31)
Similarly if an incremental closure takes place to point g figure 4

cSP:wAHO vo{(hd- epvd) 6v2 - 2vy (SF)} (32)

avi and (sz are the net changes in velocity taking place at
the gate at time t. Therefore neglecting subscripts and dividing equa-

tions 31 and 32 by &t we obtain

6V‘ dF }
KT:WAHOVO{UQ—%OV) é_‘t—zvﬁ (33)
or in the limit as t-0

apP av ar
ST = WAH T {(h— %ov) el 2v it } (34)

20

Note: This result can be obtained directly by the following derivation:

P=wAH V_ hv
o o0



dap
dt

av

8]
w A HO Vo{h FrR P>

dv dF
dt dt

wAH V {(h-va)

av
dt

T

dar

21
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CHAPTER IIT

APPLICATION OF ENERGY PRINCIPLES TO THE

DETERMINATION OF OPTIMUM GATE OPERATION

3.1 General
Consider the h-v diagrams shown in figures 5a and 5b and the
corresponding plots of power output versus time shown in figures 6a and 6b.

TS and TF are the initial and final gate positions. P_ and PF are the

S

initial and final steady state powér outputs through the turbine gates.

TC is the total time of géte motion for a gate operation between TS and

TF and T_ is the time for the power output to first cross the steady

F

state PF line. As this point is not reached until conditions at the gate

are given by hF’ VF then T 2> T, .

F C

The excess energy output resulting from a gate operation is

represented by the shaded areas of figure 6, which are

T T

F F
AEg = / (P - PF) dt = / Pdat - PF TF (35)

0 0

The derivative of equation 2 with respect to time yields

de dB. dE
i

B _ i _e
P=3F =T " & (36)

Therefore M m
P AR, F dEc
ékEg = // 3% 4t o+ }[’ e dt - Py TF (37)
: 0 0
Tp
E = | B +8 ] - P.T (38)
g i c 0 FFE
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" a) Gate Closure . b) Gate Opening

FIG 5 TYPICAL GRAPHICAL SOLUTIONS TO WATERHAMMER PROBLEMS
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FIG 6 POWER INPUT TO THE TURBINE DURING TRANSIENT CONDITIONS
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E,O is the total net energy output resulting from all waves

originating at the gate between t=0 and T=T If a continuous gate move-

F.
ment is approximated by a series of infinitesimal incremental movements

then

e J L @,

0] n=1

where for a wave travelling from the gate to the reservoir
Ewn = PWl’l (t - tn> (59)

and for a wave travelling from the reservoir to the gate

Bpn = Puygn (8- (6, +2) (40)

tn 1s the time of origin of the wave at the gate.

Note that

P, =0 if (t-t) > %
and

Pp, =0 if (- (b +2))=>2

(This follows from the original assumptions made in deriving P, and PWR)

3.2 Evaluation of EC between t=0 and t=TF.

A1l the waves created up to point Q of figure 5 will have a full

life span of %% sec so that

B, = P ) | (41)
EWRn = PWRn (E (42>
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Substitution of equations 14 and 20 into equations 41 and 42 yields

B, =vAH V. (h-2pv) §v

O [

(43) .

n

B, =W AH T (-h-20v) Sv %

n

(44)

If the constant terms h'afjv and -h—%p'v are evaluated when h=1 i.e. at

the reservoir, then

o |

(1-2pv -1- va) évn

EWn + EWRn w A HO VO

wAH V
o o

o |

(-4pv) Sv, (45)

Figure 7 shows an enlarged picture of the wave occurring at t=tn. The
total energy output of this wave is given by equation 45. But from

figure 7,

AV,
v, = — (46)

thus

Q Q Av,
Zl (By + Byp)y, = WAH V 2 El (-4pv) — (47)
and
Q v
Av F
Lim Z (-4 pv) _é___lfl =S—2pv av

n—se e

- P =) (48)

aVO

Substituting equation 48 into equation 47 and substituting‘f)= ol
o



28

Q
2:. (EW + EWR)n T~ og ALY, g ° VF2)

n=1

=

AKE (49)

This is the total kinetic energy change of the fluid between
the initial and final steady state conditions. Therefore the total energy
output of all waves produced up to the waterhammer line of slope 20 pass-
ing through the final steady state v, hF point is equal to the change in
kinetic energy of the fluid in the penstock in going from the initial %o
the final steady state points and is independent of the way in which the

gate is operated. This may be seen more easily by referring simultaneously

2

to figures 7 and 4. If for each wave reaching the gate after t = tF o

the gate is adjusted to point p of figure 4, no new waves will be created
2L

at the gate after t = TF = and the pressure-discharge relationship
i 1 i £ £i b P =k op o E
will fall along line Q-F of figure 7. At t= IR B Tl v
that is h, =h =h, v, =v
i g 0 1 g
and therefore
dEc
i -0
dEC
With =t - O there can be no waves in the penstock and no additional

strain energy. The total energy output must then be

Eg = Ei + EC = Ei + AKE
where AKE is the change in the kinetic energy of the fluid resulting

from the velocity change from Vg to Ve Therefore
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Be & L (g,

Now consider the energy output per wave of all the waves ori-

ginating between t=tQ and t = TF - %f = TR. A1l the waves produced

in this time interval will be reflected by the intake but will not have

enough time to return all the way to the gate. Therefore

E = wAH V (h-2p v) Sv (50)

L
Wn a

n

and

Ean =w A Ho VO (—h-Zﬁ)v) 6?@1 { TF - (tn + %)z (51)

The total energy output up to time TF due to waves originating in the time

interval t = T. to t = T_ is then

Q R
R R
L oty - L a1, ez b, 2
n=Q +1 n=@+1
R
+ }: wAHE V. (-h-2pv)<§vn {TF—(tn + i—)} (52)
n=Q+1

The energy output of each wave originating between T, and TF’ none of

R

which reach the reservoir is given by

Bym = w A H OV, (h-2pv) Sv_ (T, - 1) (53)

and

Bipn = O (54)
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The total energy output of the waves originating in this time interval

is then
F F
Z (B, + B ), = Z wAH T (h-2pv) Sv (15 - 1) (55
n=R+1 n=R+1

The total energy output of the waves created in the time interval t = O

to t = T, is then

F
F
Ec - 2:: gEW'+ EWR>n
n=1
or Q R 7
Bo=) B+ Bglv ) @By, v ) G By (se)
n=1 n=Q+1 n=R+1

Substitution of the results of equations 49, 52 and 55 into equation 56

yields

R
B, = AKE + w A H_ VO{Z (n-2pv) Sv, (-;i)

n=Q+1
R
+)  (n2pv) Sv (- (s, + D)
n=Q+1
=
v ) (n-2pv) dv (T, - tn>} (57)
n=R+1

Substituting for convenience the results of equations 15 and 23, which

are,
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and
Qn -2 = -h—%p:v

into equation 57 we get

R
E, =AKE+WAHOVOfZ c, (v {;—

n=Q+1
L
+ }_ (c, - 2) 6vn (T - (b, + %))
n=Q+1
F
+ }:: :Cn. évh‘ (TF - tn)} (58)
n=R+1
Rearrangement of the term
R
>__ (c, -2 Sv, (1, - (v, +))
n=Q+1
yields
R R
Z (c, - 2)<§vn (Tp - (%, + %)) = Z_ (-2) <§vn (Tp - (%, + %))
" n=Q+1 n=a+1
R R

c) e, Sv (- b)) Z_ c, dv, (- (59)

n=Q+1 n=Q+1
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Furthermore
R F F
Z Cn évn (TF - tn) + Z Cnévn (TF - tn) = Z Cn(gvn (TF—tn)
n=Q+1 1’1=R+1 n=Q+1

(60)

Substitution of the results of equations 59 and 60 into equation 58 yields

R
E, = AKE + v A H_ VOEZ_ (-2) v, (T, - (t, + )
n=Q+1

F

DY o e ()

n=Q+1

3.3 Evaluation of the energy input to the Penstock for the time inter-

val t = O to t = TF'

The wave originating at the gate with an associated velocity
change 6vn causes a velocity change of 2<5vn at the reservoir. Therefore,

referring to figure 8, the energy input to the penstock during the time

interval t = 0 to t = T, is given by

F

Q
L
L=V AH T [ho Vg TF+Z n, (28v) (T - (8, +32))

n=1

=
1

R

+ z_—_ h_ (26vn) (Ty - (b, + %))} (62)

n=Q+1
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Note that any waves leaving the gate after t = TR = TF - % will have

no effect on the input to the penstock during the time interval t = O
to t = TF' As a result, the last term of equation 62 is only summed to
n = R. Remember too that for gate closure 6Vh_is negative.

The first term of equation 62 yields

wAH V (ho vS) Tp = Pg Tp (63)

Furthermore, referring to figure 7 note that
}___ 2 6vn=VF_vS (64)a

(This means that the final steady state velocity is first reached at the

reservoir at time TF - %). Using this result we obtain

Q
Iy
w A H, T, z:: h, 2 évh.(TF " (tn * g))

n=1

Q
=wAH V {ho (TF—%) )_ 2 5vn
n=1
Q
v en v (—tn)}
n=1

L
wAHOVO{hO (Tp - 2) (vp = vg)

Q
+Z h_ 28v, (-tn)}

n=1

= (Pp-Bg) (Tp -2) + wAH V Z_ ho28v_ () (64b)



Letting ho = 1, which is the condition at the reservoir, and substitu-

ting the results of equations 63 and 64b into equation 62 yields

Q
B, = P Ty + (Pp - ) (TF-§)+wAHOVC'){Z 2 &v_ (-t)
n=1
® |
+ Z_ 2évn (TF - (tn +§)>}
n=Q+1

or

Q
E=(P-P)L+PT+WAHV szév (-t.)
i S F’ a FF o 0 n n
n=1

R
SIS MRCRTIE Y (65

n=Q+1

3.4 Evalvation of the Excess Energy Output

The excess energy output ZSEg can now be found by substituting

the results of equations 61 and 65 into equation 38 which is

and upon substitution yields

AEg:— Pp TF+(PS-PF)a e Ty

q R
+w A HOVO{Z 2 évn (-tn) + Z 2 (Svn (TF- (’Gn + %))]

n=1 n=Q+1
(cont'd)

34
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R
+ AKE+WAHO Vo{z_ (-2) évn (TF - (tn+§))
n=Q+1 ‘
F
+ > c, évn (TF - tn)} (66)
ﬁzé;l

Cancellation and rearrangement of terms yields the general equation for

stg which is

Q
AEg = (PS - PF') % + AKE + w A H VO{Z 2<§vn (-‘-tn)
n=1
F
£y o, v (1, - tn)} (67)
n=Q+1

If the gate is operated so that during the interval tn = TF

- %? to t = T, no new waves are formed then the h-v diagram will be as

F

shown in figure 9. In this case we have

g
6V‘ ] =0
Q+1
and therefore
F
E:: c, 6vh‘(TF -t,) =0 (68)
n=Q+1

Equation 67 is then minimized by minimizing the absolute value of (refer

to figure 10)



Q
}_ 2 (Svn (-tn)

n=1

which is the shaded area of figure 10 and can be written as

Q
RIS IS

n=1

A11 other terms of equation 67 are constant for a given gate operation

between TS and TF (Note in the term

Q
Z 2 cSvn (-tn)
n=1

the maximum value of tn is

and for gate closure 6vn is negative. As a result

|\/] o

2 évn (—tn)

o
[l
=

is positive). Obviously from figure 10 the term
Q
Y 2de || )

n=1

is a minimum if “ 2 6v ” is as large as possible when tn is as small
n

36
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b) Gate Opening -

FIG 11 WATERHAMMER CHARTS AND SURPLUS ENERGY PLOTS FOR THE TIME

INTERVAL t+ =T. TO t =

T

Q
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a) Line h = 2Qv to the Left of ‘J'F.

4‘ h'z_pV'Ca’
A Jr h-2pveClg
) h-2pvs Ce
b-?_pv'(3" J .
E Cndyy
rneQei
=2ﬂv
B”
9 ‘Pf
el ¢
g8 & !
< L
23

b) Line h = 2pv to the Right of TF

FIG 12 WATERHAMMER CHARTS AND SURPLUS ENERGY PLOTS FOR THE TIME

INTERVAL t = TQ TO _t = TF' -~ GATE CLOSURE
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"b) Line h = 2pv to the Right of TF

FIG 13 WATERHAMMER CHARTS AND SURPLUS ENERGY PLOTS FOR THE TIME

" INTERVAL t =T

0O t =T

- GATE OPENING

Q

F



40

as possible since

This means that the maximum velocity and head changes should be made as
soon as possible for this form of gate operation.

Now consider the general equation 67 with:

n=F
Cgvn # 0

n=Q+1
The only difference in Eg between this case and the case where:

n=y

1}
(@]

S,

n=Q+1

B
is the term 2 C SV (T, - % ). This term is just the sum of the
=1 n n F n

energy outputs of all waves created between tn =T and tn = TF, AS SEEN

Q
BY THE GATE. (Remember from the discussion of an incremental wave that

the rate of energy output of a single wave is asgs far as the gate is con-

cerned, a constant throughout its life span).

J
If E (%1 év5. is plotted against time, then changing the

n=Q+1

axis of integration yields

F
;;__ Cn.évn (TF - tn> (69)

0 n=Q+1 n=Q-+1

NN
=
M
Q
O~
<
o
o+
nt
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The qualitative results of such plots for several gate opera-
tions are shown in figures 11,12 and 13. Note in these figures that

the optimum method of gate operation after t = T, depends upon the rela-

Q
tive position of the line h = 2S)v so that in certain instances it is
advantageous to reduce the rate of gate operation in the time interval-
t = T, to b= Ty if l,z:Egll is to be kept to a minimum.

3.5 TIdeal Gate Closure Curves

For gate closure, from the condition that the maximum head and
velocity changes be made as soon as possible so as to reduce the energy
input, the maximum allowable head (hm) must be reached at t = 2% and

maintained at least until t = T This will minimize the term

o
Q

}:: 2 évh'(-tn)

n=1

of equation 67 (refer to figure 10a). If the line h = 2?'v is to the

left of point Q on the h-v diagram, then the term

¥

Z_ Cn 6Vm (TF - tn)

n=Q-+1
which is negative, is maximized by decreasing the rate of gate closure
after t = TQ' Figure 14 shows the h-v diagram and the gate closure curve
for such a case. Note that to maintain a constant head at the gate be-

tween t = 2% and t = T., the closure curve in this time interval is speci-

Q.,
fied by the closure curve in the time interval t = 0 to t = 2% (i.e.

point X specifies point @ etc.). If the extreme case of figure 14b is
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a) Waterhammer Chart b) Gate Closure Curve

FIG 14 WATERHAMMER CHART AND GATE CLOSURE' CURVE FOR OPTIMUM

GATE OPERATION
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<V
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taken, it becomes a series of instantaneous closures taking place at

2L

t:O,-{;,T

Q
As instantaneous closure is impossible and a closure of the
form shown in figure 14b extremely difficult to duplicate, the most rea-
sonable, form of gate closure would seem to be that made up of a series
of straight line segments joining points S, X, Q, F of figure 14b. How-
ever this curve has the disadvantage that if closure should be started
from a point other than ’TS’ a higher than allowable pressure rise may
result (6). It is possible to derive a gate closure curve for which the
maximum waterhammer occurs at t = %% and for all other times h.sshm-

As the closures under consideration are always less than full gate (and

never to‘r; 0) this curve could be a reasonable solution.

3,6 Ideal Gate Opening Curves

For gate opening Z&Eg is a negative quantity so that to make

\I[ﬁEg ” as small as possible the term

Q

Z 2 6vn (-tn)

n=1

of equation 67, which is negative must be made as small as possible and
the term

F

Z C, Cgvn (TF - tn)

n=Q-+1

should be made positive and as large as possible. With these factors in

mind, results of similar form to gate closure may be obtained.



3,7 Ideal Gate Operation When 20 > (% T

= const.

For many cases the slope of the waterhammer line is greater
than the slope of the irF line. Such a case is shown in figure 15.

Points Q and F coincide so that we have

F

Z c, cgvn (T - t,) = O (70)

n=Q+1
The general equation then reduces to

Q
<y ke am ]
AEg = (PS - PF) St AKE + 2 5vn (-tn) (71)
n=1
From figure 15 it is obvious that the input velocity is reduced to the

final steady state velocity by reaching trF as rapidly as possible.

With gate opening the same results apply so that the minimum

44

absolute value:.of ZlEg is obtained by reaching TYF as rapidly as possible.
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CHAPTER IV

EVALUATION OF DIFFERENT GATE OPERATION CURVES

4.1 Instantaneous Partial Closure

In figure 16b a very rapid gate closure is shown as a series
of small increments. If At is very small then the closure can be con-

sidered instantaneous. The point Q is located as shown in figure l6a.

For all the waves formed by the closure to X-F’ tn % At = 0. For all
the waves formed by the reflection of returning waves tn = %% + Ot = %%,
With TF = %% for instantaneous closure, we have in the general equation
Q
) 2fv () = o (73)
n=1
and
F B
EZ: Cnvévn <TF - tn) = zl_ Cn évn (TF - tn>
n=Q+1 n=Q+1
JF
+Z Co évn (TF - tn)
n=B+1 '
B
ca ]
= 2 6, O, (74)
n=Q-+1

The energy output of the waves formed between n = Q + 1 and n = B can

be evaluated by referring to figure 16a and noting that on the line h = 1
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Av .
$v, = = | (75)
and
c, = 1-2pv (76)
From this we obtain
B _B_ Vl
2L 21, Av ~ 2L dv
= S Y L (1-2pv) 5= = f (1-2pv) 5
n=Q+1 n=Q+1 vF
(77)
or _]?: Vl
2L - L 2
= Cnévn = 2 [ v -pv ] (78)
n=Q+1 Vo

v, is located as shown in figure 16a (Note that as At - O equations 77

1

and 78 become exact, Substitution of the results of equations 73 and 78

into equation 67 yields

v

1
L L 2
AEg=(PS—PF)a+AKB+WAHoVoa [v—PV:l (79)
Vp

Furthermore we have
Po=wAH V (ho vS) (80)
Pp=wAH V (ho vF) (81)

and
1 w 2 2 2

AKE}=2gALVO (vs- -vF) (82)

Substituting equations 80, 81 and 82 into equation. 79 and letting ho =1
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we get
L 1w 2 2 2
AEg:wAHOVoa (vS-vF)+2 e ALYV, (vS -vF)
"1
L 2
+ wAH V [V-Sav } (83)
Vg
Example
2
A = 1/62.4 ft V., = 20 ft/sec
L = 3220 ft H = 1000 ft
a = 3220 ft/sec Ts = Vg = 1
p = 1 TF = VF = ’6

For the given data the surplus energy resulting from an instantaneous

closure will be calculated using equation 83%. From the data

wAH V
o

® =

T 62,4

L £2.4 1000 (20)= 20,000 £t 1bs.

From the h-v diagram shown in figure 17a,v1 = .48. Substituting values

into equation 83 yields

~ 1 62.4 1 2 2 2
AEg = 20,000 (1 - .6) + 5 350 2. 3220 (20°) (1 .6%)
+ 20,000 {(.48 - .48%) - (.6 - .67)]
AE, = 8,000 + 12,800 + 200 = 21,000 ft-1bs
. 2L . .
As a check the power output during t = 0 to t = = is from figure 17a
2L '
= Pp=wAH V(b vy) =2 (20,000) 1.52 (.74) = 45,000 £t 1bs.
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The desired power output in this interval is given by

2L 2L _ _
T Pp =T WAH TV (hF vF) = 2 (20,000) .6 = 24,000 ft-lbs
As a result we have

2L
AEg = (PB - P

= = 45,000 - 24,000 = 21,000 ft-1bs

)
If in the above example an instantaneous closure had been made
to §= TQ = 675 at t = 0 and from TC'Q = .675 to TF = .60 at t = 2L

a

then no waves would be formed after point Q. This gives

B
Z Cl’l évl’l = O
n=Q+1

and as a result

AEg = 8,000 + 12,800 = 20,800 ft-1bs

This amounts to about a 1% saving in zﬁEg, and a 25% reduction in pres-
sure rise when compared to the first case. Furthermore there are no re-
sidual oscillations in the hydraulic system. In this example the line
h = 2pv was essentially to the left of the area representing the zone

of gate operation, thus permitting the above mentioned savings.

Example

2/62.4 £4° V. = 10 ft/sec

(o]
P = .5

The remaining data is the same as the previous example. The h-v diagram

A

for this case is shown in figure 17b.
Substituting into equation 83 we get

AE_ = 20,000 (1 - .6) + 10,000 (12 - .6%)
(cont'd)
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+ 20,000 {(.38 - .5 (.38)9 - (.6 - .5 (-6)2)}

AEg = 8,000 + 6,400 - 2,200 = 12,200 ft-1bs

As a check, from figure 170 we get

AR, - EL (p, - = 40,000 (1.51(.69) - 1(.6)) = 12,200 ft-1bs.

In this example if closure is made in two steps; T . to TT at t = 0; and
5 Q

TQ to ’}'F at t = %Ii then the value of AEg is increased by 16% i.e.

AE_ = 8,000 + 6,400 + 0 = 14,400 ft-lbs.

The effect of being to the left of the line h = 20v is very marked on

the term ) o v (7, - t).

In comparing the two examples which were for the same initial
and final steady-state power outputs the effect of reducing the term AKE
by reducing the initial velocity should be noted. Also the necessary in-
crease in penstock area accompanying the velocity reduction, results in
an increased capacity of the penstock to store energy- thus resulting in
further savings. These savings are accompanied by the disadvantage of

hydraulic oscillations.

4.2 Gate Closure which Yiélds the Smallest Value of Maximum Waterhammer

This form of closure was de%eloped by E. Ruus (6), and for a

given pipe line constant O and closure time T, gives the minimum possible

C

value of maximum waterhammer, It is shown in the derivation (6) that the

change in pensitock water velocity at the turbine gate and at the intake
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vary in the time interval t = 0 to t = T, as shown in figure 18. The h-v

C
diagram is shown in figure 19.

If for the general form of the waterhammer chart shown in figure
19,.P“and hm are the specified wvariables, then the correct shape of clo-
sure curve can be obtained. This curve has many of the characteristics
of the optimum curve for keeping ZSEg as low as possible., A general de-
rivation of this curve for partial gate movements is given below.

At the gate during the first %% time interval (refer to figure

18), the rate of change of velocity is given by

av
o - K (84)

The head-discharge relation for the gate is

v =T n (85)

Purthermore from Allievi's first chain eguation we have

h-1 =-20 (v -v) (86)

Combining the results of equations 85 and 86 we obtain

v =T 1-200-v) (87)

Integration of equation 84 and substitution of the result into equation

87 yields

Kt+vS=T\/l-2f>(Kt+vS—vS) (88)

or
Kt + Vg
T. —5 (89)
ﬂ 1 - g;>Kt
2L

K is determined from equation 86 by substituting h = hm at t = o and

dividing the equation by %% . The result is



= == K
2Ly 2L dt
-ij( a) a
or
hm -1
K = —=- (90)
4o
For the closure between time t = %% and t = TC we have
v =T\/hm . (91)
and therefore
dv dj—
& - X = xn \f by (92)
or
aJ _ (93)

at {~£;

Integration of eguation 93 with respect to time yields

T-2 -2 .7, (94)
h

fri is determined by substituting t = %% into equation 89. The result

yields

= ..
= m— e — B 95)
e A I T (
1 -2pK S hm
Finally substitution of this result into equation 94 yields

T= (b-2k24v) == (96)

n

m
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The gate closure time TC is determined as follows. From figure 18 the

total velocity change at the gate in time T, is given by

C

K %% + (TC - %%) K = vp - Vg (97)

From figure 19 we have

s = Ty | By (98)
vs = Jsf 1= S5 (99)

Combining the results of equations 97, 98 and 99 we obtain

and

(100)

Tyf\/g;:'“ fré L
+ =2
oK &

The general form of the closure curve as given by equations 89 and 96 is
shown in figure 20. The results are general and apply to gate opening
as well és gate closure. However, for each value of‘?é the curve is
different. (If closure were started from ]2%%5of figure 18, hm would be
exceeded (6).)

To evaluate z}Eg for this form of gate operation it is neces-

sary to know T From figure 19 we have

Qo

o " P = Zp (b, - 1)
or

vy = 2%; (h -1) + v (101)
also

v, = (102)

Yo T iré hﬁ (103)
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Combining the results of equations 101, 102 and 103 we obtain

T, = 7= G5 (-1 + T (104)

[r,

But from equation 96 we have

: L 1
= - K— —
Ty = QKT -2KF +v) I (105)
m
Equating equations 104 and 105 we obtain
1 T,
56 (hm-1)+7;,=2KTQ-2Kg+VS (106)
or
M +TF_TS -7 L (107)
20 2K 2K T QT a
Substituting
hm -1
B S

into the first term of equation 107 and rearranging we get

T, = —IEI;—TS- (108)

It is now possible to evaluate ‘AEg for this optimum form of

gate operation. Consider the term

Q

z:j 2 évn (-tn)

n=1

of the general equation for ZXEg. According to figure 21 this area is



Q 0
Yook (b)) = (- 2 (109)

n=1

(Recall from equation 64a that

we obtain

n S F 4 4K
n=1
The term
F
Z Cnévn (TF - tn)
n=Q+1

of the general equation can be evaluated if it is assumed that TF is a

straight line between the points h , vg and ho, v.. (For Ah<= .6 this

B F

is a reasonable approximation.) This term can be written as

E B

2:_ “n &vn (TF - tn) = 7- Ca éVn (TF - tn)

n=Q+1 n=Q+1

¥

S o by (T, - ) (111)

n=B+1
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The term

B
EZ: Cn.évn (TF - tn)

n=Q+1

can be evaluated along the line h = 1 (refer to figure 22)by considering

the facts that

le1 = 1-2pv
S oo
n 2
Furthermore, since %% = K, we have from geometry (refer to figure 22)
TC - TQ
Tp = B, = Tp - (TQ + 55_:_;§ (v - vQ)) (112)

Furthermore from geometry we have

Vi - Vp = Vg - Vg (113)
V- Vg =V - vQ (114)
Combining equations 112, 113% and 114 we obtain
TC - TQ
Tp = t, = Tp - (TQ 0 (v - vF)) (115)
1 F
As a result. we have
B v
. 1 T.-T
~ C_Q dv
}:: cncgvn (TF - tn).- S (1 - 20v) [TF - (TQ + v (v - vF))] 5
n=Q+1 Vo
(116)

Similarly, since évn is a constant between n =B + 1l and n = F (as a

result of the straight line approximation)



mn

; § (F e av
Z C,0v, (Tp - t) 5 (1 -2pv) {TF—(TC + Ty (v-v )t

n=B+1 v1
' (117)

Rearrangement of equation 117 and reversal of the limits of integration

yields

by
T dv

bl T -
Z C, cgvn (TF - tn) “;-j (1 - 2pv) Vl;-vg (v - Ve) 5 (118)

n=B+1 vF

Adding equations 116 and 118 and cancelling terms we get

I T_-T v J1
Z c_ évn (Tp - t) % F2 9 Vl"l’F ( (1-2pv) av
n=Q+1 Vp
A2
Tp - TQ ' (1-2
-3 o 5' -_fjv) v av (119)
p

Upon substitution of

the solution of equation 119 becomes

F -
}Z: Cn évn (TF -tn) < % (vl - VF) [-% -4; (2 Vp * vl)J (120)
n=Q+1 '

From figure 22 we have

v, = Jp (121)

59
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v = T, \]—h; - Eiﬁ (n - 1) (122)

Substitution of the results of equations 121 and 122 into equation 120

yields
F
Lo bt [Ty ke - n ][2
n=Q+1
ST (v -Ho,-m] e

s

Ty 20) ([, +2) ] (124)

Equation 124 is valid for gate closure and gate opening of the form given

by equations 89 and 96 provided 1

L
Ty > 22
and
> <1§£]
v
Ty

(PS-PF)—=WAH v % (TS -TF) (125)
and

AKE:%% ALV (TSZ-TFZ) (126)
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or

A -waE T2 (p) (T2 -Tp9) (127)

0

Furthermore upon substitution of

h -1
m

K =
L
-49 —_—

into equation 110 we obtain

Z 25vn (-t,) =% hji T (TS -TF')2 (128)

Substitution of the results of equations 124, 125, 127 and 128 into the

general equation for ‘AEg which is

Q
: /
A (Pg = Pp) 5 + DKE + w A H VO{ / ngn (~t,)
n=1
F
+ > C gvn (T - tn)} (129)
n=Q+1

yields

2
(¢] F)

\IEI;-; { 2f)TF -‘]Em -1 :l[ hy +2 —TF (29) (‘/—hm-l_ 2)]}

(130)

AE, = w & E V2 { 8 -To + p(F2 -T2 +E§-T (% -7

+
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This equation for zﬁEg is subject to the limitations previously mentioned.

FPor the case where
2 > QE
P dv T
F

AEg can be evaluated from figure 23 where the assumption has again been

made that T% is a straight line. The shaded area of figure 2%b is as be-

fore
Q
Area mpvj = E:: 2 gvn (-tn) (131)
n=1
Furthermore
1 2L
Area mpxv, = 3 (15 - 2;) ((VS - VF) + (vl - VF)) (132)
Area VXYV, =-§ ((vl - VF) + (v2 - VF)) (133)
Area VYEy = % ((v2 - VF) + (v3 - VF)) (134)

From figure 2%a we have

L - v —g-lS)—(hl-l)+%(hl-1)=(5jg+%) (hy -1)  (135)

v2-vF=-§l?(h1-1)+%(hl-1)=(%-$)(hl-l) (136)
VQ-VF=-2%(h2-1>+§(h2_1)=(—18-+2—1,;)(hz-l) (137)
VB-VF=—$'(h2-1)+—<h2—l)——(’%‘f’ﬁ%) (b, - 1) (138)

etc.



Dividing equation

we obtain

64

138 by equation 137 and equation 136 by equation 135

1
Go) B mD -

Vs = Vp %'- 5%7) (h2 - 1)
v _VF—(—i-+2—]§)— (b, - 1)
Therefore we have
Vg - Vp = R (v2 - VF)
Vo = Vg = R (Vl - VF)

Substitution of the

yields

hrea vygavs = 2 R ((vy - vy) + (vy = vp))

Therefore we have

= R (Area vl¥¥v2)

etec,

_(-i-+%) (hy -1) "17F

(140)

(141)

results of equations 140 and 141 into equation 134

(142)

(143)

Q o0
}:. 2 évn (-tn) = Area mpxv, + Area v xyv, ( Z: R7)  (144)

n=1

However

2

and as a result

p = s

R< 1

320
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This means that

~o
% J 2 J 1
R =1 +R+R + +o.. + RY = = (145)

J=0

and

Q
E 2 8v ( -t ) = Area mpxv, + 1 Area v Xyv
n n 1 1-R 1 2
n=1

Referring to figure 23a with h1 = hm we have

Ve = ‘3% V/Lm * é? ( hm -1)

v vy mvp) = 2T (- 1)

and
V']‘-VF
so that

-2 (T, + Tova +-;—§-) (m, - 1) - 2T

Q
2L- 2 évh (-tn) = % (TC a

n=1
v =@ T (Vo - 1) (146)
where
h -1
. TF hm_1—‘21‘é zg’j;_(/im+1) (147)
= = 147
e LN RV A
F hm _ + E@
20T+ (Vb +1)
1 fj B m (148)
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and

2L _ irf Vfim -ir
2K

O Ru

(149)

- L {(TFﬁm—TS)(ﬁé%> -1} (150)

Substituting these values into the equation for Z}Eg which is in this case

given by equation 71, we obtain

Av_ = wam V. % { (T -Tp + p(T2-TD

T 1 (TF) (ﬁlm - l)] } (151)

It can be shown that when

V/E + 1
T, = ——2%— ‘ (152)

equations 130 and 151 coincide. If

V/L + 1

Te < —5— T (153)

equation 130 applies, If

h +1
Ty > f Tap (154)
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equation 151 applies.

From equations 124 and 152 it is seen that for any gate operation

F
Z C, 6vn (TF - tn) = 0
n=Q+1
if
VfE +1
or if

T (hm + 2)
F = TZP hm n 2) . (156)

For values of frf given by

vfhm + 1 hm + 2

25 >’g>2§> L+ 2) (157)

Q
Zj 2 évn (-tn) is a positive quantity for gate closure and a negative

n=1

quantity for gate opening. For values of TIF given by

h + 2 g |
Tp < ZI;J Ve + 2) (158)

Q
}:: 2 évn (—tn) is a negative quantity for gate closure and a positive
n=1

guantity for gate opening. These results are shown in figure 24. Only

for gate operation into region B of figure 24 would be advantageous to
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reduce the rate of gate operation after t = TQ. For gate operation into
regions A or C of figure 24 gate operation should be at the maximum rate.

It is interesting to note from figure 24 that for all but low
values of? (9<fl.5) the optimum gate operation is that which leaves no
hydraulic oscillations in the system. (The normal range of gate operation
is between 'T= .5 and 3; 1. Below 3'= .5 the machine is running at speed
no load). ‘

Close examination of equations 130 and 151 shows that the effect
ofj:on ZkEg is very pronounced while that of hm is less impértant. There-
fore in design a reduction in 9 (although increasing the diameter of a
penstock) may possibly result in economic savings because of the reduction
in head rise for the samé specified zﬁEg (particularly if decreased steady
state friction losses are taken into account).

The relative importance of P and hm show that the worst values

of AEg will be obtained at rated head.

4.3 Turbine Wicket Gate Closure Curve

A typical turbine wicket gate closure curve is shown in figure
25 and the associated h - v diagram for closure from full gate is shown

in figure 26, This type of closure begins slowly so that the term

i% 2 évn (-tn) of the general equation for ZSEg is much larger than

n=1

it would be for the optimum closure curve shown in figure 25. The remain-
ing values in the equation for ZlEg would be reasonably similar for the

two closures. Note that for gate operations from full gate to partial gate,
(which are important for their effects on the electrical frequency even

if they do not cause maximum speed deviation), the effect ofvthe initial

slowness of the wicket gate closure is even more magnified when the ratios
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of the values of z&Eg for each type of closure are considered. This is
because mpst of the difference between the two values of ZSEg occurs in
the first 3 (%;) seconds in the example shown, Use of a good closure
curve can result in savings of 20 - 30% in the value of ZSEg for the same

head rise.

4.4 Use of an Upstream Gate in a Closing Operation

Duxing the first % seconds after the initiation of gate closure
the power input to the penstock is unchanged. If closure were initiated
at the upstream end of the penstock, simultaneously with closure at the
turbine, zﬁEg could be substantially reduced along with a reduction in hm.
Figures 27, 28 and 29 show the gate closure curves, power input to the
penstock, and power output from the penstock, and the h - v diagram for
a case where closure is made in 12 % seconds at the downstream gate and
7 % seconds (to .05 gate) at the upstream gate. (The upstream closure is
more rapid because the initial effect at large gate openings is small).

The head discharge equations for different gate openings of the

upstream gate are given by:

2 S)VO
) a

h-1=v2 (- 1) (159)
Y
where Y is the relative gate opening (5).

In figure 29, the head rise when the downstream valve only is
used is 2,5 times greater than the head rise due to combined up and down-
stream closures. In figure 28, ZSEg is approximately 20% less for the
case of combined closures when compared to downstream closure only.

Use of an upstream valve in the closing operation obviously can

produce a large reduction inAEg and in waterhammer and may avoid the

use of a pressure regulator. The butterfly valve and spherical valve
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are not suited to this type of operation and a needle valve would pre-
sent tremendous design problems. Figure 30 shows an alternative which
should eliminate most of the problems of the other valves and might war-
rant some investigation. Aside from the problem of a suitable valve
there are several operating problems; particularly that of failure of

the upstream valve. A possible solution to this problem is to mount an
electrical contact on the upstream valve that would be connected to a
solenoid controlling part of the fluid supply to the downstream servo-
motor piston. If the upstream valve failed to operate, the electrical
contact would remain open, the solenoid would then remain closed and the
rate of closure of the downstream valve would be limited to a safe value.
Another problem is the actual operating sequence of the two valves. (It
would be uneconomic to leave the upstream gate in its partially closed
position),’ If the downstream gate were closed to its final steady state
position and the upstream valve closed to say'Y==.05, then by maiﬁtaining
the upstream valve in this position until the initial value of AEg were
nearly cancelled by the losses due to the upstream valve, the upstream
valve could then be slowly opened to full gate. The net speed change of

the turbine would be zero and hydraulic oscillations would be reduced.
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CHAPTER V

CONCLUSIONS

5.1 The Use of the Energy Method of Solution.

Although many text-books state that energy methods are not
applicable to problems of rapidly varied flow, it cannot be denied
that in certain instances energy methods can lead to valuable
interpretations. If the process causing the rapid flow variations
is adiabatic (as it usually is - even in the case of an hydraulic
jump) and if the accelerations of the flow take place in the direction
of the stream-lines (so that no turbulence - which is the major source
of energy loss -~ takes place) then the energy losses, which usually
make solutions by energy methods'impossible, can be neglected. It
such is the case the use of energy methods is justifiable, The
'waterhammer process meets the above requirements and so energy problems
méy be solved directly.

Use of the energy method for an incremental gate movement
shows that as the pressure wave travels along the penstock, any change
in kinetic energy is accompanied by a change in the energy, stored as
strain energy, in the fluid and in the penstock, and the net change of
energy at any point in the penstock is a constant for a given wave as it

travels in one direction along the penstock.

5.2 The Importance of the Line h = 2P v on the Waterhammer Chart.

The energy method explains why, under certain conditions of
gate operation, the change in power output is initially opposite to that

desired. If the point representing the conditions at the start of a gate
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operation is to the right of the line h = 2§)v on the waterhammer chart,
then any waves related to an originating point located to the right of
this line will cause a change in the kinetic energy of the fluid that
is greater than the amount of energy that the penstock and the fluid
can store. Therefore, if the gate operation is one of closure, there
will be an excess of energy equal to the difference between the absolute
value of the change in kinetic energy and the absolute value of the
change in stored energy. This excess appears at the gate and the
result is an increased power output. If the gate operation is one

of opening, an energy deficiency equal to the difference between the
absolute value of the change in kinetic energy and the absolute value
Qf the change in stored energy will result. IInless 9 is very small
this means that for most gate operations the initial power change

will be opposite to that desired.

JE + 1

5.% The Importance of the Line Tr; 2§> on the Waterhammer Chart.

For any given relative head h this line defines where the slope
of the 'j-curve is equal to the slope of the waterhammer line (29 ).

This line is always to the right of the line h = 2Qv. Any gate

V@;-F 1

operation finishing to the right of the line = —Ei§——- must maintain

that is consistent with the maximum allowable

the maximum value of It

head deviation, if the absolute value of zlEg is to be kept to a minimum.

P
(The term E:: C 6V‘ (T_ - t ) in the general equation for AE _does not
n n F n g
n=Q+1
\/?l-i‘l )

exist to the right of the line J = 25 .
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5.4 The Importance of the Area on the Waterhammer Chart Between the

V% + 1
L i h = 2 d Im ee——
‘}pes QV'an 29

In this area any waves created will cause an energy output

opposite to that desired. As a result it is desirable to create the
minimum number of waves possible in the %% seconds béfore the final
steady state power output is first reached. (Up to the point TF - %%
the energy output is fixed by the total change in the kinetic energy of
the fluid between the initial and final steady states, and the energy
input to the penstock. Thus it is desirable to decrease the creation
of waves only in the last %% seconds before reaching steady state power
output. ) This is equivalent to reducing the rate of gate operation in
this interval. Although the resultant reduction in the absolute value
of ZXEg dvue to the reduced closing rate may be small, the hydraulic
oscillations in the system will be greatly reduced, thus leading to
greater system stability. The example of instantaneous gate closure
demonstrates the idea that in cases where a partial gate operation takes
place in a time less than %% seconds, 1t may be quite advantageous from
the point of head rise as well as energy output and hydraulic stability to
reduce the rate of gate closure after a certain interval.

F

5.5 The Importance of the Te1m1§:; Cn(gvn (TF - tn) in the General
n=Q+1

Egquation for_[&Eg.
In the discussion of the gate closure which yields the smallest
value of maximum waterhammer
P
Z Cnrgvn (TF - tn)

=Q+1
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was evaluated to be:

F

Z Cnévn (TF - tn> - (j_i%l—?-_l) 2? TF - (‘/ﬁm+ 1>.H (hm+ 2)

n=Q+1 -

'2?’%(‘/@+2>]

If the variations in head during the last é; interval of closure are
not too great then this equation would be a reasonable approximation
for any type of gate operation. If so then it is irﬁmediately obvious
that unless 9 is very small or,/ﬁm is very large this term is of

. 1'2 1'2
negligible value when compared to terms of the order of§3( s " p )
which is representative of the change in kinetic energy between the ini-
tial and final steady states. Therefore the main advantage of making

the absolute value of this term as small as possible in the area between

Vil
29

duction of hydraulic oscillations. Even to the left of the 1iné h = 2?'v

the lines h = 2§>v and 'T; of the waterhammer chart, is the re-

the advantages of reduced hydraulic oscillations may well outweigh any

reduction of zﬁEg that would be obtained by keeping %%[ at a high value.
Q

5.6 The Importance of the Term zz: 2 Svn (:tn) in the General Eguation
n=1

for AE .
— g
The last section showed that for a wide range:

F
Z C, Svn (Tp - %) =0

n=Q+1

If such is the case then:
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Q
AEg = (PS - PF) I&-: + OKE  + {2;1 2 Svn(-tn) } {(WAHOVO)}

From this equation, the importance of changing the energy input to the

penstock as rapidly as possible is obvious (WAHOVOZ“_ Z‘Svn(—tn) is
n=1

the variable term in the energy input equation). Furthermore this.
equation gives an approximate method for comparing the relative merits
of different closure curves since the rate of change of velocity at
the intake is related to the rate of change of velocity at the gate.

We can then write

Q
) 25v(-t)=f(%f-)
ol n' n

aJ

Therefore those closure curves which have a high initial value of a6
can be expected to produce smaller values of AlEg. In fact the plot
of input power is usually very similar in form to the gate closure

curve (compare figures 28 and 27 for the case of no upstream closure).

5.7 The Use of an Upstream Gate in Closing Operations.

The example showing the effect of combined up and downstream
gate closure showed that many advantages may be gained by the use of
this type of synchronized closing operation. As there is usually a

valve on the upstream end of a penstock, it seems well worthwhile %o

make greater use of it, particularly in cases where a pressure regulator

is necessary. The possible economic advantages of one less valve and
its accompanying energy dissipator, along with reduced penstock costs
and energy savings make further investigation of this possibility of

definite usefulness.
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5.8 General Comments

F
Because of the generally small value of } C éV (P, -t )
negel BB F n

much stability can be gained with negligible effect on Z&Eg if turbine
gates are always regulated in a manner such that the hydraulic oscillations
are reduced to as near zero as possible. To this end it might be of some
advantage to govern hydraulic turbines on the basis of the change in load
on the generator instead of on the basis of speed deviation. (For
small load changes the turbine gate is often regulated on the basis of
load - in such cases the turbine speed governor is not in action.) If
governing were based on the amount of load change for large load
variations a form of programmed gate operation might be used (i.e. for
each load change there would be a predetermined gate operation pattern).
The result would be better speed regulation and increased system stability.
Good speed regulation in general is determined by the ratio
of the total energy supplied to the prime-mover, to the kinetic energy
of motion of the fluid supplying the energy to the prime-mover. Thus
a steam turbine is comparatively easy to govern - the ratio of the
total energy of a pound of steam to its kinetic energy of motion is
usually far greater (particularly with the present high temperature,
high pressure, steam plants) than that of the highest head hydro-power
plants.
In a hydro-power plant the total energy supplied varies as
the product HV while the kinetic energy of the fluid varies as V2.

The ratio of these two energies is:

Total Energy o HY =
Kinetic Energy v2

H
v
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il
&8

1
But 2? = aVO
Therefore g) is a measure of the ratio of the total energy of the fluid
to the kinetic energy of the fluid. Furthermore, from the fact that
the line h = 2§>v indicates under what conditions the delivery system
(i.e. the penstock) can store an amount of energy greater than an
accompanying change of kinetic energy, (at which point good governing
becomes possible) it is seen that ? is a very important fagtor in®
turbine governing. (This was demonstrated in the discussion of the
gate closure curve which yields the minimum value of maximum waterhammer).
"A low value of §) is not only indicative of a high total energy to kinetic
energy ratioc, but alsc increases the area on the waterhammer chart in
which good governing is possible,” Because of its effect on the pressure
head rise for a given gate operation (the lower the value of g), the
lower the maximum pressure deviation) increasing @ may be more
economical than usually believed, particularly;if the savings due to

decreased steady state friction losses are included.
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APPENDIX T

SYMBOLS, ABBREVIATIONS AND UNITS

waterhammer wave velocity
cross-sectional area of penstock
penstock diameter

modulus of elasticity of penstock wall
energy -

force

acceleration of gravity

total pressure head

steady state pressure head
infinitesimal change in pressure head
total change in pressure head

H
relative pressure head = T
0

bulk modulus of fluid
penstock length

power

penstock radius

work

time ~ general

specified time interval

velocity of the fluid in the penstock
full gate velocity at H = HO

relative velocity =

Vo
unit weight of watexr avo
pipe line constant = Eéﬁg

relative gate area

ft/sec
ft

ft
lbs/ft2
ft-1bs
1bs
ft/se02
ik

£t

ft

£t

1bs/ft2
£t

ft-1bs/sec
£t

f1-1bs

sec

sec

ft/sec
ft/sec
1bs/ft5
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