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(1) 

ABSTRACT 

Framework cel ls and no-bar cel ls are used for solving plane stress 

problems by the Finite Element Method of Analysis and the results obtained 

by using the two types of cel ls are compared with the e last ic i ty solution in 

two specific examples. The precision of the Finite Element Method is tested 

at different values of the Poisson's ratio of the material. 

The stresses found by the Finite Element Method are calculated in two 

ways: from the corner forces and the corner displacements, and the quality 

of the results employing the methods is compared. 

The precision of the results obtained with the bar cel ls has been found 

consistently better than with the no-bar c e l l s . Comparable precision has 

been observed in the stresses found from the corner forces and the corner 

displacements. 
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ChapteA Om 

INTRODUCTION 

The analytic solution of plane stress problems involves biharmonic 

equation subject to given boundary conditions. Unfortunately, however, 

selection of proper stress function, satisfying both the differential 

equation and the boundary conditions, is rarely possible and so i t is very 

seldom that the problems can be solved exactly. 

An ingenious method of solution was, however, introduced by Prof. 
•1* 

Hrennikoff in 1941 . The method consists of replacing the plate under con

sideration with a plane framework consisting of bar units or c e l l s . The 

cel ls have a certain definite repreating pattern and are joined to each 

other at the corners. The external outline of the framework must conform 

to the outline of the given plate, and the framework must carry exactly the 

same forces and in the same locations as the plate. The bars have the same 

modulus of e last ic i ty as the prototype and they must possess some appropriate 

cross-sectional areas, determined from the condition that the framework 

deforms in the same manner as the plate when placed in an arbitrary uniform 

stress f i e l d . 

The use of the framework method requires the knowledge of a relat ion

ship between the corner forces and the corner displacements. If one of the 

corners of a cel l is given unit displacement in the direction of one of the 

co-ordinate axes x or y, while the other corners are held in posit.-fon, the 

x and y components of the corner forces required to hold the cel l in the 

deformed state are called the "distribution factors" or "stiffness 

coefficients" of the c e l l . The distribution factors corresponding to 

* Numbers signify the references, l isted in the Bibliography 
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displacements of a l l corners, both in x and y directions, are arranged in 

the form of a matrix called the "stiffness matrix of the c e l l " . 

The model obtained by replacing the plate with elast ic f in i te cel ls 

is highly indeterminate and i t s solution involves numerous linear simul

taneous equations. Originally, the solution was achieved in a laborious 

way by the relaxation method. Subsequent introduction oof digi tal com

puters drastical ly reduced the labor of computation. 

Cells not involving bars have been also proposed. Unlike the frame

work cel ls the no-bar cel ls cannot be constructed physically, but l ike 

their framework counterpart, they allow one to obtain a set of d i s t r i 

bution factors which may be used in the solution of plane stress problems. 

It is desirable to compare both the bar cel l and the no-bar cel l solutions 

with the e last ic i ty solutions, where such are available. 

The distribution factors, for both types of cel ls are functions of 

the Poisson's ratio of the material. The effect of the Poisson's ratio 

on the precision of the solution is also examined. 

The plate stresses in the Finite Element solution are found in two 

ways: from the nodal concentrations and from the joint displacements. 

The quality of the two results is compared. 



Cliapt&i Two 

DERIVATION OF STIFFNESS MATRICES 

2.1 BAR TYPE CELLS 

Different patterns of bar. type cel ls and determination of their para

meters have been discussed in ref. 1 and 2. However, i t is f e l t desirable 

to repeat parts of this discussion in application to rectangular cel ls in 

the present work. 

2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS 

This pattern is applicable to any arbitrary value of Poisson's rat io . 

It also allows one to use different sizes of cel ls in the same problem. 

Consider a rectangular isotropic plate of uniform thickness ( f ig . l a ) . 

The corresponding framework cel l is shown in f i g . l b . 

t* CL - H l-s — a 

Fig. la Fig. lb 

By an arbitrary assumption, the inner rectangle has dimensions half 

as great as those of the outer rectangle; the diagonals pass over each 

other at the centre without being connected. The external forces are assumed 

to be applied only at the main jo ints , and not at the joints of the inner 

rectangle. The deformability of the framework is judged on the basis of 

displacements of the main joints only, while the inner rectangles are 

viewed simply as an internal mechanism insuring proper deformability of 

the framework as described by the main jo ints . 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

The cel l has five kinds of bar members: two kinds of outer bars, two 

of inner bars, and one of diagonal bars, assumed to possess the same area 

on the fu l l length. However, i t has been demonstrated^ that such a cel l 

can have the maximum of four independent characteristics, and so the area 

of the vertical bars of the inner rectangle is assigned at w i l l , the area 

k times the one of the inner horizontal bar, i . e . kA^. 

It is easy to see that under a l l conditions, the opposite sides of the 

inner rectangle are stressed equally. This follows from conditions of 

equilibrium of the four joints of the inner rectangle. 

Thus at jo int (8) , Fig. 2 

S2̂ sin<>£ = S^ CosoC 

and at jo int (6) 
1 * S 2 sin<*i = S 2 Cosoi. 

Therefore S 2 = S 2 Coto£ = kS 2 ) 

* ) and S 0 = S0 ( 
1 1 ] Fig. 2 

Similarly considering the equilibrium of joints (5) and (7) one 

gets S,!, = which shows that the bars on the opposite sides of the inner 

rectangle are stressed equally under a l l circumstances. 

The four independent parameters A, A-|, A,,, and A 3 of the cel l must be 

determined from the conditions of equal deformability with the plate in an 

arbitrary uniform stress f i e l d . 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

A general condition of uniform stress is achieved by combination 

of the following three types of uniform stress states: 

xy <TX = (Ty = 

(2) 

It is more convenient, however, to make use of the following three 

strain conditions which lead to the same result as (2): 

xy 

xy 

x = " xy 

Cx = *y 

(3) 

CONDITION 1 £ x y.ty = V*xy = o 

Uniform stresses p̂  and y U P - | are applied in x and y directions 

.respectively ( f ig . 3). pr — 

t t t t t 

Fig. 3 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

Since there is no deformation in horizontal bars 

and '1 V . S 

where 
ka 1 (4) 

Transferring the edge stresses to corners by simple statics and analyzing 

an outside corner of the c e l l , one gets: 

and S1 = fcf-SA.Cos* = • * O - / * K * ) 

Final ly , equating (4) and (5) 

(5) 

A, 

CONDITION 2 

' ~ ~ . a t (6) 

Y 

' — Y 

2 2 © 

Fig. 4 

This condition is analogous to Condition 1, carrying out the analysis 

in a similar manner, one gets: 

• out (7) 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

CONDITION 3 
Pure shear condition is assumed as shown in Fig. 5. 

PLATE C E L L 

Fig. 5 

From the deformability conditions (Fig. 5), i t follows that .the 

side members .are unstressed while the outer parts of the diagonals are 

equally stressed with tension in one diagonal and compression in the 

other. 

i . e. S 3= f y - f - Vi+fc1 t e n * i o n . . - a n d 5$- f^JtV'n-K*- Comp. (8) 

The equality of the displacements of the corners (T) and (3) of 

the rectangle leads to equality of deformations of the two diagonals, 

one in tension, the other in compression by the amount Coz>aL 

The antisymmetry of the loading condition demands that the stresses 

in the opposite sides of the inner rectangle must be equal and opposite. 

But, according to the statement of equation (1)., they must also be 

equally stressed, thus the sides of the inner rectangle, in condition 3, 

must remain unstressed, i .e S 0 = KS0 = 0. 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

With stresses S 2 , being zero, the diagonals are stressed with the 

same stress on their f u l l length and the change in length of the diagonal 

substituting the value of from (8) and equating equation (9) to osCoscL 

one gets: 

at 

To evaluate the area A 2 , apply Condition 2 (Fig. 4) again. 

Consider the inner rectangle: 

Unit strain in the horizontal bar = 5 2 /AZB (11) 

Unit strain in the vertical bar = s'2 / K A 2 E (12) 

But S 2 = KS2 from (1) 

Thus, from (11) and (12), the unit strains in the horizontal and 

vertical bars are equal. Since the load is symmetrical about both axes, 

the inner rectangle remains a geometrically similar rectangle after 

deformation. 

i . e . : Unit strain in side members: = Unit strain in diagonals. 

i > e - : , - S 2 = S 4 OR S 9 = _V. S. • (13) 
A2E A 3 E A 3 

consider the equilibrium of joint (4): 
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2.2 RECTANGULAR PATTERN WITH AUXILIARY MEMBERS (cont'd) 

S3 Cos* = - I op. S 3 = (14) 

Similarly , from equilibrium of Joint (8) 

S3 = S 4 ->- S 2' Cos °£ + S 2 SvnoL = 5^ + S2v"> -t-k2- ( 1 5 ) 

From (13) , . (14.),. .and (15) 

Cosot 4 A 3 

^ 2 Cos 4 
A3 

(16) 

The total elongation of the diagonal member 

2 A 3 E 

where £2 = 6-A1*) 
£ t 

Substituting the value of S3 from (14) in the above equation, one 

gets: 5 4 = - f e r ^ - • (17) 

Final ly , equating (16) and (17) and substituting the value of A3 from 

( 1 Q > : A - ~t 

2.3 RIGIDITY OF THE CELL 

It is necessary to see that the cel l has enough bar members in 

relation to the number of joints to behave as a r ig id structure. The 

cel l has 14 members and 8 jo ints , not counting the points of intersection 

of the diagonals. In s tat ica l ly determinate r ig id structures, the numbers 
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2.3 RIGIDITY OF THE CELL (cont'd) 

of bars (b) and joints (j) are related by the equation of b = 2 j -3 . 

Hence, in the present case, the number of bars required = 2 x 8 - 3 = 1 3 

which is one less than the number of bars present. The cel l i s , there

fore, indeterminate and is obviously r ig id . 

The cel l may become non-rigid in special circumstances. Examination 

of the expressions for A and Â  shows that the main horizontal bar be-
2 i 

comes zero when k -/ fc = o, i . e . : k = i f . Similar ly , the vertical 

bar vanishes when k •= '/V̂ tT . Both these conditions signify 

that i f the ratio of the shorter side to the longer side equals V^c-* t 

the area of the longer bar becomes zero. The total number of bars in 

the cel l then becomes 12 making the structure non-rigid. A model con

sist ing of such cel ls may s t i l l perform adequately in conditions of uni

form stress but i t becomes a mechanism when the stress is no longer uniform 

as is the case in a l l practical problems. The conclusion is that the cel l 

with a side ratio of V m a y n °t be permitted. 

The area A 3 of the diagonal can never be zero. The areas A 2 and kA2 

of the auxil iary bars become zero only when = 1/3. Then the mid-length 

hinges on the diagonals disappear and the cel l reduces to that of a simple 

rectangular pattern maintaining i t s r ig id i t y . 

The cel l may become structurally unstable under compressive stress, 

in view of the absence of e last ic restraint to rotation of the inner 

rectangle about an axis perpendicular to the plane of the framework. 

However, this does not affect the calculation of bar stresses since the 

model is not used for investigation of s tab i l i t y . 



- 11 - Derivation of 
Stiffness Matrices 

2.3 RIGIDITY OF THE CELL (cont'd) 

As varies between the l imits 1/2 and o, A 2 changes a l l way from + 

inf in i ty through zero to a negative-value. The area A becomes negative 

Negative values of A, A-j or A 2 make i t impossible to construct a physical 

model of the cel l but this does not affect i t s appl icabi l i ty in calculations. 

2.4 STIFFNESS COEFFICIENTS FOR THE CELL 

Calculation of distribution factors, after obtaining the areas of the 

bars, is a matter of ordinary structural analysis. However, the easiest 

way of obtaining them is by the use of an auxil iary condition in combination 

with the three main conditions discussed above. 

AUXILIARY CONDITION - 4 

The cel l is subjected to a state of deformation.in which one of 

i t s main vertical members is lengthened and the other shortened by 

the amount :.2 S ( F i g . 6). x 

when K < ff/lC • Similar ly , the area A, becomes negative for K>V/̂ JT. 

Fig. 6 

It follows from antisymmetry of the stress condition about the 

vertical axis that a l l bars other than the two main vertical mem

bers remain unstressed. The stresses in the vertical sidebars, 
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2.4 STIFFNESS COEFFICIENTS FOR THE CELL (cont'd) 

and corner forces equal to them, are given by the equation: 
2 A i E r _ i - / * k z . / 

* = S ' =• ~ k a 4 7 7 ^ 7 * E t * 4 

It should be noted that in the previous three conditions, the corner 

forces were obtained from the plate stresses and not from the bar stresses 

as is done in the Condition 4. 

Before combining the three conditions to produce unit displacement 

of any corner, i t is necessary to demonstrate the nomenclature for the 

stiffness coefficients of the c e l l . 

The eight directions of displacement of the cel l corners are shown 

in Fig. 7(a) and the eight corner forces corresponding to unit displace

ment in direction 1 are shown in Fig. 7(b). 

Fig. 7(a) Fig. 7(b) 

In general, = ^ o r c e required l n the direction i to 

produce a unit displacement in the direction j , in the absence of a l l 

other displacements. 

The relationship between the corner forces and the corner displace

ment for a quadrilateral cel l may then be written by the matrix equation (1 
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2.4 STIFFNESS COEFFICIENTS FOR THE CELL (cont'd) 

" k n k12 k13 k14 k15 k16 k17 k18 

F 2 k21 k22 k23 k24 k25 k26 k27 k28 A a 

F 3 k31 k32 k33 k34 k35 k36 k37 k38 A 3 

F 4 k41 k42 k43 k44 k45 k46 k47 k48 * 4 

F 5 k51 k52 k53 k54 k55 k56 k57 k58 A * 

F 6 k61 K62 k63 k64 k65 k66 k67 k68 "Aft 

F 7 k71 k72 k73 k74 k75 k76 k77 k78 A 7 

LF-J k81 k82 k83 k84 k85 k86 k87 k88 

( 

A 8 

18) 

The eight corner forces corresponding to any one of the main corner 

displacements may be found directly by moving the corner in question, 

but they are more conveniently determined by combining the several 

basic conditions analyzed above. Not a l l the conditions need to be used 

to produce the unit displacement of a particular corner. For example, to 1 

obtain a unit displacement in x direction of corner (T), (Aj=1),.only-

three conditions are used (Fig. 8). The distribution factors are obtained 

by adding up the corner forces of individual conditions (Figs. 3, 5, and 6) 

with the values of "p"s replaced by corresponding S values expressed in 

terms of A, (Fig. 8). 
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2.4 STIFFNESS COEFFICIENTS FOR THE CELL (cont'd) 

k*' (d) 

Fig. 8 

The eight forces of figure 8(d) represent the elements of Column 1 

of the stiffness matrix (k).:in equation (18). 

A similar set of eight forces can be obtained by giving unit 

displacement to corner (T) in the y direction. The distribution factors 

corresponding to unit displacement of corner (T) in x and y directions 

are summarized below in Table 1: 

TABLE 1 

Corner (JJ Unit Displacement in 
y Direction 

Corner (JJ Unit Displacement in 
x Direction 

v l l 
4 + K z c i -3/n) 

8K 0-/u») 
v21 

E C 

Et 
c12 = 

v22 Et 
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2.4 STIFFNESS COEFFICIENTS FOR THE CELL (cont'd) 

TABLE 1 (cont'd) 

Corner (1) Unit Displacement in 
x Direction 

Corner (1) Unit Displacement in 
y Direction ' 

'31 
E t 

K32 
i - 3 / ^ 

Ml 8c*'- A * - 1 ) 
Et 

K42 

0 - 3 / * ) 

If /*» - 4 K 2
 E t 

'51 
- 4 +K a(i»/H) h 

8Kcr^uTr v52 
1 - 3 / * . 

'61 E t v62 

71 E t 72 
EE 

8 6-/*) 

'81 60 -/O '82 
E t 

The corner forces produced by the displacements of corners (2), (3), 

and (4) are numerically equal to the corresponding forces resulting from 

displacements of the joint (T), presented in Table 1, although some of 

them have opposite signs. 

This correspondence and. the signs are determined by inspection. 

The stiffnex matrix expressed in terms of the coefficients of Table 1 

is given in equation (19). 

8x8 

k l l k12 k31 k41 k51 k61 k71 k81 

k21 k22 k32 k42 k52 k62 k72 k82 

k31 k32 k n "k21 k71 "k81 k51 "k61 

k41 k42 "k21 k22 -k 7 2 k82 "k52 k62 

k51 k52 k71 "k72 k l l "k21 k31 "k41 

k61 k62 "k81 k82 "k21 k22 k32 k42< 

k71 k72 k51 "k52 k31 k32 k l l k21 

k81 k82 -k61 k62 "k41 k42 k21 k22 

(19) 
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2.4 STIFFNESS COEFFICIENTS FOR THE CELL (cont'd) 

Examination of the matrix (19) reveals that i t is symmetrical about 

the main diagonal. 

i.e.: 
This result is in agreement with Bett's rec:t(3jr<?cal theorem. 

2.5 NO-BAR CELL 
4 

Finite Element cel ls not made up of bars have also been proposed. 

Their nature may be explained as follows: 

Imagine a piece of rectangular plate placed in a stress f i e l d , preferably 

a simple case such as that of the uniform stress f i e l d (Fig. 9(a)). The 

deformation of the plate under this stress f i e l d is also shown in the figure. 

Fig. 9(a) 

S= K-XJ K / T Iff 
FINITE ELEMENT CELL 

Fig. 9(b) 
The stresses acting on the edges of the plate are assembled at the cor

ners in a manner consistent with statics such as the one employed ear l ier 

in the framework cel ls (Fig. 3). A different method based on energy 

considerations may also be used for this purpose. The transfer of edge 

stresses to the corners transforms the piece of plate into a no-bar cel l 

(Fig. 9(b)) to be used in the analysis. The ce l l must satisfy several 
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2.5 NO-BAR CELL (cont'd) 

of such stress conditions. Proper combinations of these would result in 

single corner displacements and would allow one to determine the d ist r ibu

tion factors. 

A plate polygon of N-sides has 2N degrees of freedom of i t s corners 

as they move while the cel l deforms under stress. Three of these d is 

placements may be affected by r ig id body movements without imposing any 

stresses on the c e l l . This leaves (2N-3) independent stress conditions 

required for derivation of stiffness matrix, irrespective of actual shape 

of the f in i te element. A rectangular cel l thus demands five (2N-3=5) stress 

conditions for obtaining i t s stiffness matrix. Of these f i ve , three must 

correspond to the uniform states of stress, i . e . : the same states as used 

for the bar type c e l l s . The corner forces obtained for these three con

ditions are equally applicable for the present case since they were 

found from the plate prototype and not from the bar stresses as explained 

ear l ier . 

The two extra conditions to be used now are shearless bending in the 

plane of the plate with stresses acting in x and y directions. 

CONDITION - 4* - Bending with stresses acting in x Direction 

(Fig. 10(a)). 

No stresses of any kind are present on the.vertical sides of the 

element and no shear stresses on the horizontal sides. 
*c--f> 4 f 

Ko. 

•< — - CX >-

r 
K 

r 

Y 

Fig. 10(a) 

i i / 

Fig. 10(b) 
if x c 6 
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2.5 NO-BAR CELL (cont'd) 

The corner forces for the cel l (Fig. 10(b)) s tat ica l ly equivalent to 

the flexural stresses are found thus: X .a = (2 • ) x (P4 ) 
c 3 a ^a 

OR: X, 

CONDITION 5* - This condition is similar to Condition 4* with 

stresses acting in y direction (Fig. 11) 

•a 

+5 
\ f - - ^ / 

2.6 STIFFNESS COEFFICIENTS OF. THE NO-BAR CELL 

Conner (T) is made to displace a unit distance A^=l by 

bining the three conditions as shown in Fig. 12. 

com-

CJOLN.D--- 1 

Fig. 12 
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2.6 STIFFNESS COEFFICIENTS OF THE NO-BAR CELL (cont'd) 

The distribution factors are obtained by adding up the corresponding 

corner forces of the individual conditions as was done with the bar c e l l s . 

The set of distribution factors corresponding to unit displacement of 

corner (T) in direction 2 (A2=l ) may be obtained in a similar manner 

from the three conditions 2 , 3, and 5*. The results are summarized in 

Table 2 . 
TABLE 2 

Corner (1) Unit Displacement in 
x Direction =̂1 

Corner (1) Unit Displacement in 
y Direction 2=1 

" l l = ] Et 
£ t 

'12 80- AO 

'21 8 (i-M) '22 12 8 K 6 - » A ) 
Et 

'31 .UK <<-/«•») 
E t '32 

'41 ^r- E t '42 
8 0 - ^ ) 

'51 

Et 

E t '52 

'61 '62 (2fA* 2>* _ ' ̂  Et 

71 E t 72 g O - A*) 
'81 E t '82 , i z Q~,u a ) 8*. fit AO, 

E t 

The distribution factors corresponding to unit displacements of 

corners (2), (3) and (4) are obtained from Table 2 in the same way as 

for the bar type c e l l . Equation 19 is equally applicable in,the present 

case. 

The same set of distribution factors have been obtained from the 

energy consideration in Ref. 4. 
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2.7 SYMMETRY OF STIFFNESS MATRICES 

The matrix formed of the coefficients of Table 2 l ike the matrix 

described earl ier is symmetrical about the principal diagonal. Symmetry 

of the stiffness matrix of a ce l l made up of bars is the direct consequence 

of Bett i 's reciprocal theorem, since the framework ce l l is a real e last ic 

structure and Bett i 's theorem is applicable to a l l l inear e last ic structures. 

As to the no-bar c e l l s , i t s stiffness matrix is always symmetrical 

when i ts terms are determined from the energy considerations. With i t s 

terms found by the Law of the Lever, as described above the matrix is 

symmetrical or unsymmetrical depending upon the cel l i t s e l f being symmetrical 

or unsymmetrical. Thus the matrix is symmetrical for a rectangular cel l 
3 

and unsymmetrical for a cel l in the form of a trapizoid. 

2.8 COMPARISON OF MATRICES 

It is interesting to note that some of the corresponding te,nms in 

Tables 1 and 2 are equal and i t is easy to see the reason for this 

peculiarity. The elements in Column 1 of Table 1 were obtained by com

bining the Condition 4 with Conditions 1 and 3 (Fig. 8). The corresponding 

elements in Table 2 were obtained by combining Condition 4* with the same 

conditions 1 and 3 (Fig. 12). Thus the contribution of the Conditions land 

3 to the two sets of distribution factors is the same. Condition 4 and 

Condition 4* have no corner forces in the y Direction, thus making the 

total corner forces in the y Direction equal for both types of c e l l s . 

That is k ^ , k ^ , k g l , and kg-j are the same for both. On the other hand, 

the Condition 4 and 4* contribute different corner forces in the x Direction 

thus making the distribution factors in the x Direction ( k n n , , k ^ , 

and k 7 1 ) unequal for the two types of c e l l s . 
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2.8 COMPARISON OF MATRICES (cont'd) 

A similar reasoning shows that, the distribution factors of the Column 

2 in x Direction are the same in both Tables. 

2.9 SOLUTION OF PLATE MODEL BY FINITE ELEMENT METHOD 

The plate under consideration is replaced by a model consisting of 

many cel ls of proper shape and size and is provided with the same 

boundary conditions and the loads "F" as the prototype. The solution of 

the model involves determination of a l l nodal displacements for which 

purpose the stiffness matrix (K) of the model is set up by the computer 

by combining the stiffness matrices (k) of the individual c e l l s . The 

computer solves the system of simultaneous equations: 

The plate stresses are subsequently calculated by dividing the 

nodal forces by the corresponding tributary areas equal to the product 

of the length or breadth of the cel l and the thickness of the plate. 

An alternative procedure of finding the stresses directly from the 

displacements is discussed in Chapter V. 

the c e l l s . 

Thus: 



Cha.pte/1 Jh/itd 

EXAMPLES OF SOLUTION BY FINITE ELEMENT THEORY 

Finite element solutions, making use of different matrices, pro

cedures and values of Poisson's ratio are compared on two examples for 

which there exist rigorus e last ic i ty solutions. 

3.1 EXAMPLE 1 

A thin semi-infinite plate is acted upon by a concentrated force 

P per unit thickness directed perpendicularly to the straight edge 

(Fig. 13) P/UNIT T H I C K N E S S 

The expressions for the displacements u and v in x and y Directions 

are 

' 7T E. 7T£ 

(20) 

The significance of the symbols is given in Fig. 13. D is the 

distance from the origin; of a point on x-axis which is considered 

stationary. 
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3.1 EXAMPLE 1 (cont'd) 

The expressions for stress are given by: 

<r = - ^ • c o s 4 © 

(21) 
6L = S;»4e 

In view of the symmetry of the structure and the loading system i t 

is suff icient to analyze one-half of the model which is assumed to consist 

of 12x6 cel ls of size (axa).- The immovable point F is located at the bot

tom of the model. The boundary conditions are prescribed (Fig. 14) in 

terms of the known displacements along the boundary BCF, determined by 

a 
rt 

r 
: 

I IV 

-6 MO. <9>*z %—H 

-An\$ OF S Y M M E T R Y 
Fig. 14 

Y 

DISPLACEMENTS ARE APPLIED 

0 - Indicates no d is 
placement 

1 - Indicates possible 
displacement in that 
direction. 
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3.1 EXAMPLE 1 (cont'd) 

the e last ic i ty equation (20). No horizontal displacements are present 

along the axis of symmetry AF. 

The stresses and displacements at the nodal points along the x-axis 

are shown in Plate 1. The plate consists of several graphs presenting 

stresses and displacements along the x-axis for the values of Poisson's 

ratio f*-= o.o, o.2 and o.4. Each graph contains three curves: the 

curve of stresses or displacements determined by e last ic i ty solution and 

the two curves of the percentage deviations of the bar and no-bar models 

solutions from the e last ic i ty values. At most of the points, the errors 

are below 10% and usually much below this f igure, except where the function 

i t s e l f (stress or displacement) is very small. However, greater errors 

in (Tx are found at the node next to the point of application of the 

load P. The reason for this discrepancy is quite clear from the sign of 

the error and the nature of the true solution. At the point P the 

e last ic i ty stress (Tx is in f in i te and at the adjacent node directly below 

P, i t is very high retreating fast both ways to the le f t and to the right 

from the axes of symmetry. The nodal concentration in x Direction naturally 

reflects the mean stress (Jx over a certain adjacent area and th is , of 

course, is smaller than the true stress on the. axis of symmetry. The 

Finite Element Stress tTx is thus numerically smaller than the true stress. 

The error of this type when the e last ic i ty stress exceeds numerically the 

Finite Element stress is called negative. Cfy andTxy stresses on the 

x-axis are zero. 

The high percentage error has a practical significance only when 

the values of the function (stresses or displacements) are themselves 
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3.1 EXAMPLE 1 (cont'd) 

large and not when they are very small. 

The results obtained at the joints near the applied load P can be 

made closer to the e last ic i ty solution by using smaller rectangular cel ls 

joined to the bigger cel ls below by appropriate triangular elements. 

However, the results w i l l be affected by the presence of the triangular 

cells^and the direct comparison of the precision of the f in i te element 

method with regard to stresses and deflections while using the rectangular 

bar and no-bar cel ls w i l l be obscured. 

In Plates 2 and 3 are presented the data pertaining to the Sections 

AA and BB similar to the ones of Plate 1. Here again, the results are much 

the same as in Plate 1, i . e . : the errors are reasonably small and con

sistently better with the bar c e l l s . 

3.2 EXAMPLE 2 

In this example a point load is applied within an in f in i te plate 

(Fig. 15). 

Fig. 15 

The exact values of stresses and displacements are: 

(2 2) 
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3.2 EXAMPLE 2 (cont'd) 

UL -

C H-AO* S i n 0 • Cos 6 
4 7 T E 

(23) 

The significance of the terms in these equations is the same^and as 

in Example 1. D is again the distance from the origin of the point on 

the x-axis which is considered stationary. In view of the symmetry of 

the structure i t is suff ic ient to analyze only one-quarter of the 

model which is assumed to consist of 12x6 cel ls of the size a x a. The 

immovable point on the x-axis is located at the bottom of the model. The 

boundary conditions for the model are prescribed in terms of i t s known 

displacements along BCF. (Fig. 14), determined from equation (23), as in 

Example 1, with the exception that the y-displacements (v) along the y-

axis AB are also specified to be zero. 

The results obtained by the f in i te element theory are shown graphically 

in Plates 4, 5, and 6 in the same way as in the Example 1. The stresses . 

and displacements at nodal points along x-axis are shown in Plate 4. 

Because of symmetry v andTxy have zero values along this axis. The 

values of U. obtained by using both types of cel ls have an error less 

than 3%, but the results obtained with no-bar model are slightly better 

than the bar model. The values of (Tx obtained by using the bar model 

are much better than'those obtained with the no-bar model. Both models 

give a high percentage error at the node next to the point of applica

tion of the load P, and the reason for this discrepancy has been ex

plained in Example 1. tTy values are sometimes better with the no-bar 

model and sometimes with the bar model. 
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3.2 EXAMPLE 2 (cont'd) 

The stresses and displacements along the Sections AA and BB passing 

through the middle of the model are presented in the Plates 5 and 6. The 

results obtained with the bar model are consistently better than with the 

no-bar model. 

3.3 DISCUSSION 

The difference between the distribution factors of Table 1 (bar 

cel l ) and Table 2 (no-bar cel l ) is that the former are based on imitation 

of deformabilities of the prototype by the model in conditions of uniform 

stress, while in the lat ter , the model and the prototype are made to deform 

in the same manner not only under uniform stress, but also in conditions of 

shearless bending. For this reason, one might expect a greater accuracy 

of the no-bar c e l l s . However, the results of the two examples do not 

confirm this expectation. 

The plate stress distribution in practical engineering problems is 

never uniform. At the same time, the manner of deviation of the plate 

stress from uniformity is not l ike ly to be that of shearless bending. Hence, 

from the theoretical point of view, the results obtained with the no-bar 

model need not necessarily be better than with the bar model. Actually, 

in the two given examples, the bar model was found to be superior to.,: 

the other. 

As the size of the mesh decreases, the stresses in the v ic in i ty 

of the individual cel ls become more uniform and the results obtained by 

either type of cel ls should become more precise and in the l imi t should 
3 

converge to the e last ic i ty solution. Therefore, the use of either type 

of cel l appears quite proper in the Finite Element Method of Analysis, but 

the precision is expected to be better with the bar c e l l s . 
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3.3 DISCUSSION (cont'd) 

Although the shape of the cel ls in both examples was square, i t is 

f e l t that the results obtained with oblong cel ls would not be much d i f 

ferent as long as the ratio of the sides of the rectangles differs suf

f ic ient ly from the relation K = "J~f£> . 
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ACCURACY OF FINITE ELEMENT METHOD AND POISSON'S RATIO 

The precision of the results obtained by the Finite Element Method 

seems to depend on the value of the Poisson's rat io , and so i t is desirable 

to study more closely this dependence. In the e last ic i ty solution, the 

displacements are always functions of /I* , but the stresses are influenced 

by ft- only when the loads are applied within the area of the plate, as in 

example 2, and are independent of with the loads acting on the periphery 

of the area, as in Example 1. The distribution factors in the Finite 

Element Method depend on . Then one may expect that in the problems 

of the latter type the effect of on the stresses must somehow cancel 

out. 

The effect of ^ on the percentage error and displacements found 

by the Finite Element Method is demonstrated in Plates 7, 8, 9 and 10. 

The f i r s t two of these refer to the Example 1 and the last two refer to 

the Example 2. The exact values of the functions and the percentage 

errors are found at six nodes located on the lines 15-21 and 36-42 of 

Figure 17. Five values o f r a n g i n g from 0.0 to 0.4 at an interval of 

0 .1, are used for the above purpose. 

The Plates 7 and8 show that in most cases the curves of percent 

error versus /IA. for stresses are l inear. In some cases the errors change 

from positive to negative or vice versa. The percentage errors for dis 

placements " UL" do not change much with the change in / U . . Their 

graphs are l inear with small slopes in either direction. The displacements 

" v " have small absolute values at some of the joints under consideration 

resulting in a high percentage error by the Finite Element Method. The 



- 29 - Accuracy of Finite Element 
Method and Poisson's Ratio 

curves of errors of y at such points are not shown in the figure. 

In Example 2, the formula (22) showsr.that 

Mr Pi 

where f(r ,e) is constant for any particular point and (6"") represents 

any one of the stress components t^x, 0Jyt and f x y at the same point 

for different values of . Equation (24) shows that the stresses at 

any point vary l inearly with . 

The percentage error of stresses at joints 17, 19, and 21 (Plate 9) 

vary almost l inearly with the Poisson's Ratio and the amount of variation 

is signif icant as seen from the graphs, while for joints 38, 40, and 42 

the variation is less signif icant. Like the previous example, thee errors 

at times increase and at others decrease with increase of the Poisson's 

Ratio. The plots of percentage error of displacements versus ^ are also 

nearly l inear in most cases, although the amount of variation from the 

true values is very small. 

No substantial difference is noticeable in this respect between 

the two examples in the f i r s t of which the true stresses are independent 

of the Poisson's Ratio, and in the second one are functions of i t . The 

percentage errors in both examples are comparable. 
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DETERMINATION OF STRESSES FROM NODE DISPLACEMENTS 

In Chapter 3, the Plate stresses were calculated from the nodal force 

concentrations. As an alternative procedure, they may also be found from 

the joint displacmenits. 

Stresses at a point in terms of strain components are: 

- fr 0 *+A*Y) 

The strains may be evaluated in two different ways. 

a) Consider an inter ior jo int (5) in Fig. 16. 
I K ex — cu — > H 

ko. 
i 

f 
ko-

i 
Y. 

1 

8 

Y 

Fig. 16 

The average strains at joint (5), in the simplest form, may be 

given in terms of i t s displacements of i t s adjacent jo ints , thus: 

2 k. a. 

U6-U4 

(2 0 
V 8 - V 4 ) 2 a 2Kcx 

where u and v are the displacements in x and y directions res

pectively. The subscript shows the corresponding jo int . Substitu

tion of equation (26) in (25) leads to: 

L-2KO. 2 a. 



P/UNIT THICKNESS 
A 1 

X A 1 

NUMBERING OF JOINTS AND SECTIONS ALONG 
WHICH STRESSES AND DISPLACEMENTS ARE COMPARED 

FIG. 17 
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(27) 

b) A more elaborate expression for the strains at the node 5 making 

use of the four surrounding c e l l s , leads to the following expres-

The no-bar model was used for comparison of stresses found by 

equations (27) and (28) in the Examples 1 and 2. At some nodal points, 

the results are better with equation (27) and at others-with equation 

(28). The more elaborate formula appeared to have no extra precision 

of results over i t s more simple counterpart. 

Stresses obtained from the corner forces and the nodal displacements 

(equation 28) were compared in accuracy for the bar and the no-bar 

models. The results are shown in Plates 11, 12, 13, and 14. The 

Plates consist of several figures each containing three curves showing 

the e last ic i ty solution and the percentage error in stresses employing 

the two methods. The curves show that for the bar model the results 

are s l ight ly better with the corner force, although the difference is 
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very small. For the no-bar model the results at some points are better 

with the corner forces while at the other points, they are better with the 

nodal displacements. 

Thus, both the nodal force and the nodal displacement methods appear 

adequate for calculation of stresses, but the results obtained have not 

been extensive enough to allow one to form a definite conclusion as to 

the superiority of one method over the other. 



CONCLUSIONS 

Actual solution of examples shows that: 

It is quite proper to use both the bar type and the no-bar type 

rectangular cel ls in the Finite Element Method of Analysis. 

The precision of the values of stresses and displacements obtained 

with the bar model is better than with the no-bar model. 

The accuracy of the Finite Element Method depends upon the property 

of the material. The nature of variation of the percentage 

error in stresses and displacements at any point is l inear in 

ŷ - in most cases. 

No noticeable difference in the percentage error in stresses for 

different values of is observed between the two examples, 

in one of which the true stresses depend on ^ and in the other 

do not. 

The plate stresses may be calculated either by employing the nodal 

force concentrations or the joint displacements. The results ob

tained by the two methods are comparable in precision. 
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