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ABSTRACT

The stiffness properties 6f a short narrow rectangular beam as modi-
fied by a primary bending moment and shear stress distribution in the major
plane are presehted. The beam is a segment taken from a longer member the
"structure." A distribution of bending stress is assumed over the beam segment
length and its effect on the stiffness properties in lateral bending and torsion
obtained.

The stiffness matrix is used to obtain the critical value of load for
a number of well known examples of narrow rectangular beams and the results are
shown to be in good agreement.

The resuits of an energy solution, which produces a symmetrical
matrix, are presented. Comparison with classical examples shows accurate
results with the added benefit that the symmetrical matrix lends itself much

more readily to more complicated problems.
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NOTATION

E = modulus of elasticity

G = shear modulus of elasticity

I = moment of inertia

J = torsion constant

L . = length of "structure"

1 = length of beam segment

a,b,c = centrodial, major and minor axis of beam element
X,Y,3 = fixed co-ordinate system

e = eccentricity of load applied to "structure"
g = eccentricity of restraint applied to "structure"
B = torsional deflection in z direction

u = lateral deflection in x direction

M = moment about positive x axis

Mé = moment about positive y axis

Mz = moment about positive 3 axis

Ex = force along positive xaxis

Mx = internal moment about axis b

M = internal moment about axis ¢

T = dinternal moment about axis «

v = internal shear along ¢

Q = internal shear along b

M = average value of M& in segment

P = vertical load on structure

= fixed end moments

§§
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NOTATION Cont'd.

axial load in member

deflection vector for beam segment

force vector for beam segment

deflection vector for restrained beam segment
force vector for restrained beam segment
restrained 6 x 6 stiffness matrix
restrained 4 x 4 stiffness matrix

6 x 6 stiffness matrices for beam segment
transformation matrices

fibre stress at critical load

critical load coefficient

strain energy

lateral load

stability function co-efficient

stability function co-efficient
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A STIFFNESS MATRIX FOR TWIST BEND

BUCKLING OF NARROW RECTANGULAR SECTIONS

CHAPTER I

INTRODUCTION

The effect of primary bending on the stability of narrow .rectangular
beams has been extensively investigated by, Timoshenko and Gere (1), Goodier (2),
Bleich (3), Vlasov (4) and others. 1In Hartmann (5) and Bell (6) methods of
determining critical loads for plane structures are presented. .

A large amount of work has also been done on the effect of axial loédv
on the stability of members and structures, in Gere and Weaver (7) and in
McMinn (8) methods of modifying member stiffness matrices to show the effect of
axial load on lateral stiffness are shown. This method readily adapts itself
through the use of electronic computers to the prediction of critical load by
‘evaluation of that load which produces a zero determinmte for the structure
stiffness matrix.

In this thesis a method of determining the effect of a primary bending
stress distribution on the stiffness matrix of a narrow rectangular beam is
presented. The well known differential equations geverning the flexural-
torsional behavior are determined and solved subject to the various boundary
conditions as dictated by the definition of the stiffness matrix. The assump-
tion that fhe beam segment is relatively short compared with the "structure"
dimensions is made to simplify the solution of the equationms.

Comparison of critical loads for structures determined by using the

derived matrix agree very well with classical solutions available.

* Numbers in brackets refer to the Bibliography
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An alternate procedure using the energy method for determining a
matrix is presented. The resulting symmetrical matrix which lends itself
readily to more complex problems shows results which are comsistant with

available classical solutions.



CHAPTER II

BASIC EQUATIONS

2.1 General Remarks

In order to study the behavior of a beam segment under the influence
of primary Bending and associated shears it is necessary to derive the applicable
differential equations linking bending and torsion.

" For the purpose of this derivation an infinitesimal element of the
beam segment of length d2 as shown in Fig. 2.1 is considered. The element is
shown in its general deformed position as defined by the deflections u and B
relative to the_axes X,Y,2 which are fixed in space. Since the element is part
of a beam of narrow rectangular cross section, deflections in the y-2z plane aré
considered small and are neglected. Fig. 2.1 also shows the co-ordinate axes
a,b,c of the element which are coincident with the centroidal, major and minor
axes of the memBer and are in a translated rotated position to the axes z,y,=3.

The internal forces acting on the element cross section are of two
types:

(1) Primary forces M% and V of large magnitude due to primary

bending in the y-2 plane.

(2) Secondary forces T,4,M due to bending in the -2 plane and
torsion, as these forces form resultant stresses parallel and
perpendicular to the cross section, they are shown in the
a,b,c axes s&stem.

2.2 Derivation

The following four equations arise by demanding the element be in

equilibrium in its deformed shape as shown in Fig. 2.l.a.
I Mx=0 de - Vdz =0

on rearrangement

M'-V=0 (1)
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z F& = 0 =-dQ-vdg=0"
on rearrangement “
Q'+ V8 =0 2)
z M? =0 . du + deB + dM&dB - Qdz =0
neglecting terms of higher order and
rearranging
M4 ME - Q=0 (3
z Mz =0 dr - qu"dz - deﬁ"dz = 0A
neglecting terms of higher order and
rearranging T - M&u” =0 (4)
From Hooke's Law of elastic behavior the following well known relationships
are obtained.
EIy" = M (5)
GJR' =T (6)
Relationship (1) is a statical identity relating M&'to V. The remaining,
(2) to (6) form 5 equations in the 5 unknowns M,Z,T, ﬁ and B.
By differentiating equation (5) once and substituting in equation
(3) the relationshipb |
EL"' +Mp' - Q=0 (7
is obtained.
By differentiating equation (7) once and substituting in equation
(2) the relationship
EIU" + st" +2v8 ' =0 (8)
results.
Similarly the relationship
GJB" - M&u" =0 9)

is obtained.



Solution of (8) and (9) for ﬁ and B in closed form is not possible
in general since M&, V and EI. are .functions of z. The beam could be considered
split into many small parts whereini%r, V and EI might be considered as con-
stant. However simultaneous solution of the equations would be inconvenient
and for this reason a stiffness procedure as outlined in Chapter III is

preferred.



CHAPTER III

METHOD OF SOLUTION

3.1 General Remarks

The end of a beam has in general six degrees of freedom. In the pre-
vious derivétion deflectiéns in the y-z plane were considered small and
neglected and the forces M& and V were assumed to be defined. Tﬁis then
eliminates two degrees of freedom which when combined with the assumption that
axial forces and deflections are small leaves three at each end of the beam.
They are u, ﬁl and B associated with the forces T,M, and Q.

A 6 x 6 stiffness matrix X will then govern the behavior of the beam

segment Fig. 3.1 such that

K& =7 (10)

f3163 fﬁ 66

f|,61 / ]
fa,04

Fig. 3.1 DEFINED FORCES AND DEFLECTIONS
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Where f and § are 6 - component vectors which represent the forces

and deflections of Fig. 3.1. The first column of X represents f when 61 =1

and all other displacements are zero. Similarly the second column .represents

the forces f when §, = 1 and all others are zero.

2
The deflections$d will be

61 = U at 2 =0
62 =8 at Z = 0
63 =1 at Z = 0
64 = at 72 =1
65 =8 at 72 =1
66 = yu' at Z =1

The forces f will be

£y =FLu" - MB' - VB at 7 = 0
f, =-GJ8" +-Mxp' » at 72 = 0
fy =EL" - Mg at Z = 0
f, = FIu"' +M 8" - V8 at 7 = 1
fg=GIB' - My’ | at 7 = 1
fg = BIn" + Mg at 7 = 1

These forces are merely the components of the stress resultants T,
M, @, Mx and V in the z,y,z directions. There is‘a force in fl and f4 that is
not obvious namely MxB' which arises because Mé acts on a twistéd cross section.

In order to find any column of X it appears necessary to solve (8)
and (9) subject to the boundary conditions on § for that column. A method of
successive approximations is chosen to satisfy (8) and (9). First they are
rewritten as: |

EIu"™' = - M g" - 2V’ (11)

and GIR" = M&ﬁ" (12)



If the beam ségment is small enough such that the average Mi is much less
than the critical moment fqr the length 7, a suitable initial guess is the
linear deflection curve for the column of X being considered. This .guess is
then substituted into the right hand side of (11) or (12). and the deflection
curve ﬁ or B is found. One such cycle is sufficient if the segment is short
enough.

Before illustrating the method in detail it is necessary to define
.M as

wo=@+%) -va -2 (13)

where M represents the average moment over the length 7, or the center line
moment.

3.2 Derivation of Stiffness Matrix

3.2.1 Column 1

By the definition of K, 61 =1 and 62 ces = 0 the boundary

S

conditions on (11) and (12) are therefore:

o o=-1 at Z = 0
g =0 at.Z =0
p' =0 at 72 =0
u =0 at Z =1
B =0 at Z =1
u'' =0 at 7z =1

The solution by successive approximations will take the form:

u=ul+u2+...+pn

B Bl+82+...+3n

Assume that is the linear deflection shape for column 1 of X
Mq P

and is given by
2 9 3
= - 1+ 55 - S (14)
l 7
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This assumption will satisfy equation (1l1) if the right hand

side is zero and therefore if further accuracy is required u, would be. estab-

2
lished to partly satisfy equation (11). Substituting ul" into (12), where
ey L6 12z
H = —a
1 — - 3 (15)
= 1
gives
" _ .
we, =[@+35) —va -1 -2 - e
1 2 ZZ . Z3

Integrating (16) twice and introducing the boundary conditions above gives

GJB, = M [-= + - -] - [ - ]
1 1 T2 3 2 "2 T3

~

+ 7 [-% + (17)

Soft
N
[
~Lf
Wi &
Ced

Equations-(14) and (17) for u, and Bl satisfy equation (12) exactly, however

1

since Y, was assumed to be the linear deflection curve equation (11) is not

1
fully satisfied. The normal procedure in this method of solution would be to
substitute values of Bl' and 81" into the right hand side of (11) and solve

again for u, establishing u On the other hand the established values of u

2° 1
and Bl may define the deflected shape of the beam segement to a sufficient
degree of accuracy. To establish a measure of the accuracy of My and Bl a

comparison is made of the values of end moments produced; firstly by the
requirements of the boundary conditions of the stiffness matrix acting on
equation (11) with the right hand side zero, and secondly those produced by a

lateral load of magnitude represented by the right hand side of (11) with

In the first case the value of end moments will be of the order
represented by

M_ = — ) (18)
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In the second case the value of the lateral load must be first
established. To simplify this, values,offo',vﬁl" and Mx will be. assumed as
constant and of value representing their order of magnitude only. These

assumed values are then

LT

Mx =M+ > (19)v
MV

By =it T (20)
oMV

By a2t 671 (21)

These values of Mé, B

l' and Bl" will then define the lateral

load on the beam segment as

LMV MV
q=-WM+llgmrter] -2V g+

o 1 (22)

End moments corresponding to this load would be of the order

2
M, = 1" (23)
F a4
Substituting g from equation .(22) the end moments become
M, -HM 7Vl - 5v°1° (24)

F =167 = 2467 24G7

The values of MF in equations (18) and (24) cannot be compared

directly since equation (24) contains terms with M and V. These terms may be
réduced to a more convenient form by considering the intended use of the matrix.
It is intended to predict critical loads for structures comprised of several
beém segments. The maximum values of M and V that will occur in a segment of
the structure is then the moment and shear corresponding to the critical
structure loading. For the purposes of this accuracy check, consider a simply
supported beam with a point load at the center line. The well known value of
critical load is

_ 16V EIGT (25)

cr 'LZ 
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Where L is the length of beam or "structure." By letting I take the value

‘L=al (26)
16 EIGT
Peop =7 2 2 (27)
a1

The maximum values of moment and shear are then

8VEIG

a2 Zz

Substituting these values into equation (24) the end moment becomes:

V= (29)

y = - &EL - 28 ET - 40 ET (30)

3212 3312 3%2

Considering then equation (18) and (30) and eliminating the common factor EI/ZZ
the requirement of further approximations to the deflection curve namely Hy oen
My, depends on the magnitude of equation (30) as compared to the value 6.
However since several approximations were involved in obtaining equation (30) a
more logical approach would be to consider the value of 1/a2 as compared to
unity. Obviously a choice of 10 elements would lead to relative magnitudes of
1:.01. The determination of the ratio that will lead to satisfactory results
is best determined by numerical trials since an inéreasing number of segments
will likely lead to better accuracy. Numerical trials presented in Chapter V
confirm that for certain situations 10 segments is very satisfactory.

With the assumption that fufther approximations are unneéessary and
that equation (14) and (17) adequately define the deflected shape of the member
the forces fl to f6 are evaluated by substitution of Mé, Bl and ﬁ into the

1

equations of Part 3.1. The forces are as follows:

fy 3 Il " 6T T 4GT -

-2 - 2
_lemr mS My, VL
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In the above expression.the last three terms as compared to
the first term are small with increasing number of segments by.the same .reasons
as presented previously. For this reason they will be neglected and the force

fl taken as

Similarly the remaining forces are:

_M v
fz‘z"z
6ET
fa=~-—"=
f, - _ 12BT
Z3
fe__M_V
3 = FAR)
Fe o _ BEL
Z2

which constitute the first column of X Fig. 3.2,
3.2.2 Column 2
By the definition of EQ.GZ = 1 with the remaining deflections

zero. The boundary conditions on (11) and (12) are therefore:

u=0 at 7 = 0
=1 at Z =0
p' =0 at 2 =0
u=0 at 7 =1
BR=20 at 2 = 1
u' =0 at 2 =1

The solution by successive approximations will take the form

B=Bl+62+...+8nand u=p1+u2+...+pn

Assume that Bl is the linear deflection curve for Column 2 of K, therefore:

(30)
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This assumption will satisfy equation (12) if the right hand side is .zero. Pro-
ceeding as before by differentiating equation (30) and substituting into equation

(11)

= (31)

EI'ﬁ]'_"" -

Integrating four times and introducing the boundary conditions above gives

4 *Vz3 VZzz

7
* 12

P4
1227 6

and Bl may be established as in Case 1 and

Erﬁl - (32)

The accuracy of ul
therefore further approximations Moy eoe W and 62 ‘e Bn are neglected.
With equations (30) and (32) the deflected shape of the member is

adequately defined and the forces fl to f6 may be evalﬁated. Proceeding as in

Case 1 the forces are:

f1=zwi—.“g
f2=zﬂ
f3=_'ﬁ+v_§
fzﬁ'%*%
f5="G%
e = _g_z

where additions to f2 and_fs_are neglected. These values constitute the second
column of X Fig. 3.2.
3.2.3 Column 3
By the eefinition of X, 63 = 1 with the other deflections equal
fo zero. The boundary conditions on (11) and (12) are therefore:

p =0 at 7 =0

B =0 at 7 Q

I
o

ﬁ' =0 at Z
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p -=0" .at’Z=Z
B =0 at z2 =1
u' =0 at 2 = 1

Taking the solution in the form of successive approximations as

before the deflected shapes are:

3 2. . _
w o= s+ 5 - 2 (33)
1 1
and
3 2 .3 .2
_7 27 _ 22" Vi &7 - 237 22
Wsl—M[z+ZZ—Z]-2[Z- 7t 73] (34)
4 .3
. - 2z
+ v [E= - ]
ZZ2 37

On evaluation of the forces fl to f6 the third columm of X
Fig. 3.2 is obtained.

Columns 4, 5 and 6 of ¥ may be derived in a similar manner and
the complete matrix is shown in Fig. 3.2. Before discussion of the use and
accuracy of X an alternate method of derivation for K is presented in the

following section,
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,/
1287 M_v - 6L - 128 | -M _V| -6BL
Z3 A 2 Z2 Z3 A 2 Z2
M_v 6J - M V| -G + VL
L 2 A 6 7 2 A 6
6EL 7+ 4ET 6EL VL 2T
2 3 A 2 6 A
A 7
1287 M.V 6EL 12ET MV 6L
Z3 L 2 Z2 13 7 2 Z2
M_V 6 L M.,V Gl _n
A 2 2 6 A 2 JA 6
6L Vi 271 6T 7+ VL 4ET
Z2 6 A Z2 3 7

Fig. 3.2

STIFFNESS MATRIX X
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CHAPTER IV

ALTERNATE METHOD -OF SOLUTION

4.1 General Remarks

A more direct method of obtainihg the stiffness matrix K is to con-
sider a cantilever beam as shown in Fig. 4.1. The end Z = ! is considered
free for deflections M and B and deflections in the y - 2 plane are considered

negligible as before.

}X
I\_A+\£—Z-
\\ ] ' -7
_ - 6El
« V
(a) 12E1
ZZ
_ _

(b)

Fig. 4.1 FORCES FOR COLUMN 4 of X

The method of obtaining X is to place the free end.? = 7 into a
deflected position as dictated by the boundary conditions for columns 4 to 6
of X. The deflected shape of the beam is assumed to be the linear deflection
for the particular column of X being considered. This assumption corresponds

to the one in Chapter III where no corrections to the first approximation
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(the linear .deflection)were made. Equations for moments ¥ and T at Z = 2
from a free body of the segment from 7 = Z to:Z = 1 in its deflected shape are
then obtained. The moments 7T are required in columns 4 and 6 and ¥ in
column 5 since the basic shapes for these columns are respeétively ones of
lateral deflection and torsion. For this distribution of ¥ or T the linear
equatioﬁs

ETu'' =M (35)
and

GIB' =T | | (36)
are solved and give deflectiéns U or B.at.Z = 7. End forces are then applied
to provide equal and opposite end deflections to satisfy the deflection con-
ditions for the column being considered. Forces 4 - 6 are then these correc-
tion forces plus the original linear forces along with those forces due to
realignment of the primary forces at 7 = I due to deflections. The forces 1 - 3
are obtained from equilibrium of the element.

4.2 Derivation of Stiffness Matrix

4.2.1 Column 4

Assume a linear deflected shape as shown in Fig. 4.1 (a) such

that
a2 .3
b= - 2oy 28 (37)
/) [
and
' 6z 632
W=t (38)
[/ [/

The usual linear forces as shown are required to maintain the end Z = 7 in this
position.
Considering the free body from 7z = Z to Z = [ the equation for 7
at Z is

T=V A - 1) +'[(M+V-§'.)-V(Z—-z>]ﬁ' (39)
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Substituting W and ¥' from equations.(37)-and (38) and introducing equation

(36) -

2 .3
_‘*E?]Jr:M[
¢ 1 1

Gt = viL+ L 8y

B "6Z2
l :

62 . -
— * f};; 1. (40)

Integrating once and substituting the boundary condition, B = 0 at Z = 0 the
deflection at Z = 7 is:

=YL _ M ‘ .
(L) = 5= - =7 (41)

In order that the deflection B(7) be zero the end torque

+ (42)

<
=R

M =
3

as shown in Fig. 4.1.(b) is applied. The forces f4 to f6 are then the sum of
the forces shown in Fig. 4(a) and (b) along the respective directions. The
forces fl to f3 are obtained from equilibrium of the beam. These forces then
represent column 4 of x Fig. 3.2.

4.2.2 Column 5

Assume a linear deflected shape as shown in Fig. 4.2(a) such that

- 2
B 7 (43)
and
v o1
B =7 (44)

The usual linear force as shown is required to maintain the end 7 = 7 in this

position.



1
1
| % -
L B
G
N (a) £
| {l/!
- o 6
i ) -
T¥_y
(b) 7

Fig. 4.2  FORCES .FOR COLUMN 5 OF X

Considering the free body from Z = Z to Z = 7 and employing
equation (43), (44) and (35)
EIZ' =¥ (1-%) o (45)

Integrating twice and introducing the coundary conditions, u = u' =0 at Z

il
o
-

the deflections at 7 = 7 are:

- 2
wy =M T

25T ~ 12 (46)
and
=2 3
_M1t v
v =T - (47)
In order that the deflections u'(l) and u(l) be zero the end forces
_M v |
Fx =7 + 2 (48)
and
- n
My = 2 (49)

as shown in Fig. 4.2.(b) are applied. The forces f'4 to f6 are then the sum of
the forces shown in Figs. 4.2.(a) and (b) along the respective directions
noting the re-alignment of the primary bending moment and shear force due to
the deflection R. Forces fl to f3 are obtained from equilibrium., These

forces then represent column 5 of X Fig. 3.2.
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- 4,2.3 " Column 6

Assume a linear deflected shape as shown in Fig. 4.3.(a) such

that
,;22 ,_23
pEc T+ 5 (50)
[/ /A
and
9y 352
X T (51)
A '
J

@) - z

(b)._

Fig. 4.3  FORCES FOR COLUMN 6 OF X

The usual linear forces as shown are required. Considering the free body
7 =7 to Z =1, introducing equations (50), (51) and (36), and ihtegrating,

the deflection g(Z) is.

2 —
I /AN 1A
The correction force required
m =% 4y | (53)
- Z R

as shown in Fig. 4.3.(b). The forces fa_to Te and fl to f3_are.evaluated in
the previous manner. These forces are then those of column 6 as shown in

Fig. 3.2.
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The methods preéented in .Chapters III and IV give identical results;
the latter however . lends itself to a better physical understanding of the pro—A
blem. 1In both methods better values of ﬁ and B could be. obtained, in the
first by making further approxiﬁations and in the second by considering pro-
gressive modifications to assumed shapes. These are in fact the same procedure,
.howevér; as was shown in Chapter III the necessity of furthef'approximations

does ﬁot appear warranted. Numerical results presented in Chapter VIconfirm

this assumption.

4.3 Consideration of EccentriC'Load

The stiffness matrix -as derived in Chapter III and IV show the effect
of a primafy bending moment and shear force acting at the centroidal axes of
the member. This primary force system is assumed to reméin constant throughout
the bucklingvdeformation; This assumption is valid if the deformations are
small and the load is applied at the centroid of the section.

However, if loads are applied above or below as shown in Fig. 4;5 it
.islevident that buckling deformations create torsional moments about fhe cen-
troidal axes of the member. In order to determine the efféct of placing a

load in these positions the structure stiffness matrix must be modified

accordingly.

oy

TORSION DISPLACEMENT |

e

T W .

2]

@ (b)

Fig. 4.5 STRUCTURE LOADED AT BOTTOM CHORD
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Considering the structure in Fig. 4.5 the load on the bottom edge
may be. considered as a load.at,thefcentroid.plgs a torsional moment applied
along the displacement. This moment is proportional to the magnitude of the
load and the value of the displacement. Obviously it is identical in effect
on the structure tovthe effect of a torsional SPriqg of stiffness Pxe and may
be treated by introducing a torsional restraint of that value in the diagonal
element of the structure stiffness matrix corresponding to the torsional dis-
placement at that location. It is also evident that if the load were above

'tﬁe centroid of the'section, introduction of a negative torsional restraint
would have the correct effect on the structure.

Numerical trials as presented in Chapter VI establish the . accuracy
of this prqcedure.

4.4 Consideration of Restrained Centre of Rotation and Axial Loads

) f

- In the performance of tests on lateral buckling of beams the use of
a restrained centre of rotation is convenient and naturally many building
s&stems seeh as girders with decking dispiay this type of restraint. Also
the effect of axial loads, must be included in a buckling analysis.
Firstly the effect of axial load may be included by introducing the
stability function Si of Gere and Weaver (7). These functions, shown below,

are shown in the stiffness matrix Fig. 4.6 where H is the axial load in the

member.
. 3
Sl =" sin A/12¢
2 AN
82 = A" (1l-cos A) /69
§5=14 (sin A - A cos A)/4¢
S, =2 (- sin A)/2
where
32 = mr/er

¢ =2 - 2cos X - A sin A



In addition, an extra.term appears because of the effect of # on

the torsional rigidity GJ and is represented by a modified torsional

24,

rigidity GJ = (GJ. —":T—IZ—' H).
{
1261 MV 66 | o L—’12E_sz M _V |- 6EI
i_v @ |-n “E L,V @ v
A 2 1 6 A 2 A 6
- 6ET -= VL 4ET 6ET VL 2T
7 < 59 M+ = 7 53 2 < 5y 6 7
1 L A
- 12T -M .V 6ET 12ET MV 6ET
= xS =+ = —= % S x S -+ 5 — X
.3 1 ) /2 2 /3 1 7772 12
MV - G- rn M.V [ -
) A 6 ) 7 6
- 68T Vi 2ET 6ET — VL LET
2 Sy % 7% 5, szsz M+ 7. "

Fig. 4.6

MATRIX WITH STABILITY FUNCTIONS
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Consideration of a.restrained centre of rotation at a distance g
from the centroid as shown in Fig. 4.7 has the effect of reducing the number

of degrees of freedom from 6 to 4..

+p
-
1
TR
j
>

Fig. 4.7  RESTRAINED CENTIRE OF ROTATION

With reference to the deformation and force system § and f as shown
in Fig. 4.8 and the system used in Chapters III and IV Fig. 3.1 the following

equivalences are noted.

5,=8, %98, f1=1
5, =6, fo=Fy-f19
85 = 8 Fy=1y
8, =6, %9 8 f,=1,
8= 8 fo=Ffs-Ff,9



P

(a) LOWER END

Fig. 4.8 RESTRAINED FORCE AND DEFLECTION SYSTEM

These equivalences may

s =
and
?:
where 7 and T, are given by:
11lg
1
T = 1
lLig
1
1

Fig. 4.9

g
X
(b) UPPER END
be placed in the matrix form
T s (54)
7 f (55)
1
-g |1
Tl =

TRANSFORMATION MATRICES
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% 1
noting that T- = Tl* :

%).8 = F ,
from which
k = T KT % . (58)

A new 6 x 6 stiffness matrix k referenced to the deflections §. and

forces f is therefore available by transformation of X. However the deflectilons

61 and 34 are zero by virtue of the restraint. This enables the removal of
rows and columns 1 and 4 of k and the development of a new 4 x 4 matrix %.

The matrix X is not shown since the multiplications in equation (58) are

carried out numerically for each particular case. The reduction to k enables

the analysis of restrained centre of rotation problems.
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CHAPTER V

DERIVATION USING THE ENERGY METHOD

5.1 General Remarks

Derivation of a stiffness matrix by differentiation of the strain
energy function for the beam will by definition produce a symmetrical matrix.
The results of such a derivation, as obtained in private consultation with
Anderson (9), are presented in this section. For the purpose of this derivation
the simplifying assumption that moment on the segment was constant, and hence
the shear equal to zero, was made.

5.2 Brief Description of the Method

Bleich (8) pfesents an energy expression for the beam as follows
L 2 2
U=1/2 é (EIu''" + GJ8"" + 2M u''6) dz (59)
which corresponds to the additional strain energy of a beam subjected to an ini-
tial moment M& and a twist-bend deflection.
Assumptions as to the functions ﬁ and B are the same as presented in
Chépter ITI page 9 where

=y, +p, + ...+
u=g o, i

n
and
B = Bl + 82 + ... +Bn
As before ul and Bl are taken as the linear values, My and 82 cal-

culated from the effect of the moment on the linear deflected shape and sub-
- sequent deflections neglected. The second derivitives of U with respect to
the deflections 61 . 66’ which represent the components of the symmetrical

matrix K1, are shown in Fig. 5.1



K1
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Fig. 5.1

STIFFNESS MATRIX K1

29.
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CHAPTER . VI

APPLICATION TO.STABILITY PROBLEM '

6.1 'General Remarks

jThe stiffness matrix K as derived in Chapter III and IV contains the
effect on the usual linear matrix of bending moments and shears in the plane of
the beam element. This matrix may be employed to determine the critiﬁal value
of load for narfow rectangular beams.

| The procedure used is to formulate a "structure' composed of several
small beam segments. With reference to the determination in Chapter III of the
- required number of segments, the ratio of segment to beam length of 1/10 was
used. The member stiffness matrices are built up using values of M and V from
a linear analysis of.the structure. These member stiffness matrices are then
entered into a structure stiffness matrix in the usual manner.

The actual determination of the critical load is obtained by first
assuming a value for the external load, performing the linear analysis, building
the structure stiffness matrix and evaluating the determinate. The external
load is then increﬁented until the structure stiffness matrix is zero which by
definition is the critical value of loading for the structure.

6.2 Numerical Examples

For the purpose of comparing the results of critical load evaluation
by the above mentioned method with values as presented in the literature the

beam shown in Fig. 6.1.a is used.



7~

>

! ~
,/10@10”=100" /

F7

i
e

~

,'/”

MEMBER DATA

10"

E = 30,000 k.s.i. J=3.333 in* A =10 in?
G:=10,000_k.s..1. 1= 0833in* [£=10in
Fig. 6.1 EXAMPLE BEAM

The beam is of narrow rectangular cross section with a length depth width ratio
of 100:10:1,

structure stiffness matrix is of a size as determined by the boundary conditions

as dictated by particular examples.

Six straight beams were investigated for critical load and the results

in terms of y are shown in Fig. 6.2,

31.

The "structure" consists of 10 segments of length 10 and the

Ser = yEIGI/T

"**Yl From test using matrix K .

Fig. 6.2 .

*y From available theory
'***YZ From test using matrix XK

EXAMPLE RESULTS

Case # End Cond. Loading y * Yl**-» Yz***
1 S.S. Equal End Couples .1885 .1898 .1940
2 S.S. Point at c.g. at 2545 .2750 .2600
3 S.S. Point at Bot. at .2740 .2795 .2820
4 S.S. Point at Top at .2350 .2360 .2370
5 , S.S. Uniform .2130 L2145 .2160
6 Cantilever Point at c.g. at End . 2410 L2425 2480
o

1
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Since the results agree with those available from.the literature to
within 3% it is assumed the method gives sufficiently accurate results for

this simple type of structure.
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-CHAPTER . VII

CONCLUSTIONS

The author concludes that both matrices developed, namely X énd.Kl,
give sgtisfactory results when applied to critical load problems of simple
structures. Investigation into the limits of the short length .segment shows
that a reduction in the number of elements from 10 fo 3 decreases the accuracy
of the result by approximately 5%. However due to the simpie nature of the
structures analysed, namely those with simple primary bending stress distri-
butions it would be inadvisable to predict a definite number of segments for a
specific. degree of 'accuracy. A more logical procedure would be to plot critical
load vs number of segments and determine convergence for each specific case.

The extension of the use of these matrices to more complex pfoblems
would be inadvisable until definite reasons are presented to explain why. two
entirely different matrices give consistent results to the same problems.
Obviously the matrix K1 lends itself much more readily to numerical application
since its symmetrical nature may be fitted into existing structure analysis
programs.

When valid explanations for the above mentioned problems are obtained
other effects such as the effect of axial load on torsional rigidity and pre-
viéusly derived effects of axial load on lateral stability may be added
resulting in a matrix with which complex problems of flexural torsional stab-

ility under lateral and axial loads could be analysed.
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APPENDIX A

A.l. ‘Descéription of‘ComputerﬁProgram

In a brief manner the .sequence of operations and the presentation of

data required is as follows:

1.

A card is read which bears the structure data.

(a) number of memberé, NM

(b) elastic and shear modulus, E.G

(c) moment of inertia and torsion constant, TT, T.

(d) 1length of each segment, AL

(e) number of degrees of freedom, NU

The next cards, one for each member, bear the average moment FM (I)
and average shear VM (I) as determined by an.independent elastic
analysis under an assumed load.

Next, a series of cards, one for each member, with its code number,
NCODE (IL,J).

vThe above member data and moment and shear values are used to
determine member stiffness matrices SM(1,J,K).

The above member stiffness matrices are then used in conjunction with
the code numbers to build the structure stiffness matrix, SM (I,J).
A subroutine, "INVERT," is called from which the value of the deter-
miaAte, "DETERM," is obtained.

The value of the determinate is printed out.

If it is greater than zero the values of FMC(I) and VM(I) are
incremented by a factor, FA, and steps 4 thru 7 repeated.
Termination of calculation is governed by obtaining a determinate

value of zero or less.



A.2 FORTRAN SOURCE LIST

ISN

: 1 'EURTVKF“SUUHCL LIST
RCE STATEMERT

DO300 I=1,NM
AA=(FM({1)%*%2}/C
S(I41,0)=(12.0%A/(AL%%3))

S{Ty142)=(FM(T)/ALY4VM(T) /20
S(I:1:3)==(6.0%A/(AL¥¥2))
S(14144)==S(1,1,1)

‘ Sou
0 + $IBFTC BAZ _ . B = '
1 % . DIMENSION NCODE{2546):SMI60,60)3S5(25;6,6) FM(25),VM(25)
¥ C THIS ML TRIX IS THE COMPLETE SHEAR T
2 # 99 CONTINUE ' '
.3 % READ(5,3333) NST
5 % 3333 FORMATI(110) T T T T o
6 * WRITE16,3334) NST _
7 % 3334 FORMAT'1X,22H THIS IS STRUCTURE NO.,;I110,/77)
10 % READ(S, I00INMsEsG,TT2TAL,NU
13 ¥ 151 FORMAT(1F10.2)
_ L4 #  WRITE(6,100)NM,E4G,TY,T,AL, NU
15 # 100  FORMATI{1110,5F10.1,1110)  ~~——~ 7 =~ T I
16 # "~ READ(5,101)(FM({I),1=1,24)
23 * WRITE(G6,1033(FM{I),1=1,24)
30 * READ(5,101 )Y (VM(T),I=1,24)
35 % WRITE(6,103}(VM{I),I=1, 24)
42 % _ READ(5,151)TS e
43 % WRITE(6,151)TS -
44 %+ 103 FORMAT(1X,6F10.1)
45 % 101 FORMAT(6F10.1)
46 ¥ - DO 150 TI=1,NM
47 % READ({5,102) (NCODE(II:J),J4=1, 6)
54 % WRITE(6,104)(NCODE(II, J),J 1+6)
61 * 104  FORMAT(1X,6110) i B T ) T
62 % 102 FORMAT(6110)
63 # 150 CONT INUE
65 ¥ B=GxY
66 # A=E*TT
_“,élrf._wm C=A%B _ o }
T AR 6 S ;
71 - DO 800 KK=1,10
72 200 CONTINUE

StI41, 5)——FM(I)/AL+VM(I)/2.
S(I,1,6)=S{T1,1,3)
S(E42,1)=(FM(T)/ALI+(VM(I)/2.0)

TS(14242)=B/AL
S(1,2, 3)—(VH(I)*AL/6.0)
SIT42,4)=-FMLI)/AL-VMI(I) /2.

S(I}2’5)=”S(11212)
S{I52:6)=-(VM(1)*AL/6.0)
S(T143,1)=S(1,1,3) o

TS(1,3,2)=-FMIT1) -VM(T)*AL/3
S(1,3,3)=(4.0%A7AL)
5(19374)=’S(I'193)

i
o
v N w .
TN TR TY T T Y [ TV VRV TN AT

S(I,3,5)=—-VM{I}*AL/6.

S({I143¢6)={2.0%A/AL)

S(I44,1)=-S(1,51,1)

ST 42V =-FM(1)/AL-VM(T) /2.

SU144,3)=5(1,3,4)



http://5F10.lt

FORTRAN SQURCE_LIST

T N

END

FORTRAN SQURCE LIST BAZ.
ISN SCURCE STATEMENT "
122 #, S('Ivlfv‘r):S(Ivlvl) ‘
123 % S{1,4,5)=FM(I)/AL-VM(I)/2.
124 # S{I144,6)=5(144,3) -
125 #% S{I,5, 1)=—(rh(l)/Al)+(VH(I)/2 0)
L. 126 % _SU1,4542)=-S{1+252) L _
127 ¢ S{145+3)=S(142,6)
130 # S{I:5, 4)—(FM(I)/AL)-(VI(I)/Z.O)
131 # S{1,5,5)=S{(1,2,2)" '
132 % S{I,4546)=S5(142,3)
133 # S(1,6,1)=S(1,3,1)
134 %  S(I,6, 2)——VH(X)*AL/6. _
135 % S({I1,643)=5(1,3,6) .
136 # S{146:4)=S(1,4,6)
137 #% S(1,6,5)=FM(1)—VM(I)*AL/3°
140 # S{I4656)=S(1,3,3)
141 # 300 CONTINUE
143 £ DO 400 J=1,NU_ .
144 # DO 400 I=1,NU
145 % SH{J,1)=0.0
146 * 400 CONT INUE
151 # DO 500 I=1,RM
152 % DO 500 K=146
1583 #  IF{NCODE(I4K))420 “ooaﬁgg N o
154 % 420 M=NCODE(I,K)
155 + DO 502 J=1,6 :
156 % IF(NCODE(I J11430,502,430
157 # 430 =NCODE(I¢J)
160 % SM(M N)=SM{M,N)+S(I, K J)
161 % 502 CONTINUE
163 + 500  CONTINUE
166 # SM(15,15 )= SM(15,15)+TS*5 0
167 % 501 FORMATI(6F20.6)
170 # DO 600 JJJ=1,NU
171 # D0 600 III=1,NU
172 % L USMUJJI,IIT)=SM(JJJ,111)/100.0
173 # 600 CONTINUE - o
176 # CALL - INVERT (SMyNU,60,DETERM,COND)
177 % WRITE(6,650)FA,DETERM L
200 ¥ 650 FORMAT(13H LOAD FACTOR=,1F10.3,13H DETERMINATE=,1E20.6)
201 # WRITE(6,103)(FM{I),1=1,12)"
206 #  WRITE(6,103)(VMII),I1=1,12)
213 % HRITE(6,15117S
214 # IF(DETERM) 701,701,700
215 # 700 FA=FA+0.05
216 # TS=TS%FA
217 # DO 6801=1,24"
220 ¥ Fh(I) =FM(I)%*FA o - B
221 % CNMOT)=VMIT ) %FA
222 '+ 680 CONT INUE
224 % 86O CONT INUE
226 ¥ 701 CONTINUE
227 % G0 TO 99
_230 % 702 _ CONTINUE - e _ _
231 % STOP
232 % -




