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 ABSTRACT

in this:thesis, ; stiffnéss matrix which iqcludes the non-linear
. effects of ﬁrincipal plane shears, moments and ékial loads on lateral éﬁd
.torsionalldeflections is developéd for a doqblyvsymmetric wide flange section.

‘f_Iﬁifially, an exact eight 5y eight linear maffix is developed for an
elemeqt of éonstanﬁ section'properties. The eiéht allowable deflectiohs allows
the indepeﬁdent_representation of”the»deflections of either flange at_eithgr
end. The non—lineér effects are included in the differential équétions by
. considering the effect of the primary stresses on the equilibrium 6f‘a dis-

J

plabed element.

Two approximations are then introducedf The first consists of a
.numerical technique for solving the differenfial equations. The sgcqnd con-
éists of a‘simplification of the boundary conditions in solving the differen-
tial equations: Using thése'two approximations, tﬁe non—iinear portion of the
matrix-is then built.

Several structures are then anélyzed. Each structure is divided into
several elements. This allows beams of non—consfant section properties to be
analyzed, and increases the accuracy of‘the results of the appfoximate matrices.

The results of these analyses_arg then compared to theoretical
results and tabulated. It is seen that the matrix.giveé good agreement for all

- cases tested.
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DEFINITION OF SYMBOLS

moment of inertia of flange about étfong axis
moment of inertia of section abou: z axis
moment of inertia of section about y axis
polar moment of inertia
area of section
area of wéb
torsional constant
Youngs modulus 
shear médulus
JG
depth of section
2
2C/EIh
lateral deflection (along y axis)
Veftical deflection (along z axis)
éorsional deflection
flange shear
‘torque
distributed load
distributed torque
stiffness matrix defléétion.in n direction
stiffness matrix-force in n direction
length éf element
principal axial load in element
prinéipal moment at ¢ of element
principél shear in element .
Mo - VL/2 + Vx = moment in element @ point x

normal stress in element



DEFINITION OF SYMBOLS (Contd.,)

flange moment

P/A

shear stress in element

pressure due to n stresses

MO/ZEI = parameter in solgtion expansion

th . . i
n term in series solution of y

nth term in series solution of ¢
dummy integral parameter

dumﬁy iﬁtegral parameter

dummy integral parameter
differentiation with respect to x

Right hand side

Left hand side
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THE LATERAL~TORSIONAL BUCKLING OF

DOUBLY SYMMETRIC WIDE FLANGE SECTION
CHAPTER 1
INTRODUCTION

The lateral torsional buckling of beams has been a topic of interest
and research for years. The foundations of the‘theory of lateral toréional
buckling of thin rectangulér sections were laid by Prandtl and Michelle.[S, 612
ih 1899 in the study of the lateral buckling of thin rectangular sections,
H.vReissner [6] later stressed the effect of deflections in the major principal
axis in thé Prandtl-Michelle theory andAintroduced modifications to account for
them. In 1910, S. Timoshenko [1] developed the differential equation that in-
- cluded the warping effect of the flanges of 1 séctions deformed in to;sion. In
1929, Wagner [6] determined that thin open sections may buckle in a pure tor-
sional mode under an applied axial load.

Since then many other researchers have contributed to the knowledge
of lateral buckling. The usual'fofm this work has taken is the direct solution
of the differential equation ﬁor simple caseé and the use of numerical methods
in the more complicated cases. The drawback in the above approaches is the
difficulty in applying them to the genera1~case. As the complexity of the load
and support conditions increases, the problem becbmes intractible.

The purpoée of this thesis will be the presentation of a method for
the elastic analyses of lateral torsional buckling of doubly symmetric wide
. flange sections under principal moment; shéar and axiél loads. The method of
solution utilizes a stiffness matrix consisfing of two parts - an exact elastic

linear portion and an approximate non-linear portion. The matrix is developed

.

Numbers in square brackets refer to the References.
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using the assumptions that deflections in the principél plane remain small, the
stresses remain elastic, there is no distortion of the cross—section, and the
loads maintain their originalAdirection'of application. These matrices, once
obtained, can be used to build any case of varying support, fixity and load

conditions of beams with varying section properties,



CHAPTER II
DEVELOPMENT OF LINEAR MATRIX

In order to develop a stiffness natrix, the governing differential
equations of the section musf first be obtained.

“For the de&elopment’of the linear cace differehtial equations, a
right-handed co-ordinate system was used -as in Fig. 1(a), with the usual bending
moment—-shear sign convention used for bending of the top flange, as in Fig. 1(b).
Rotation producing poéitive v deflectioﬁ of the upper flange was chosen as posi-
tive as shown in Fig. 1(c¢). A positive end torque T induces positive pure ’
torsion in the section and a negétive shear in the top flange.

El ylll:l__

Yiiby

7 ‘ Mm dx WMﬂ

(a) | Q Q+dQ
' (b)

(¢)
(d)

Fig. 1 -SIGN CONVENTIONS



" To obtain the differential equation for torsion, it is only necessary
to consider the applied torque at any point along the section. The torque due

ree ty 2
to shear in the flange is = = Vh = - (h¢  /2) (EIh)= ~¢ EIh /2. The torque

. .
due to pure torsion is C$ . Therefore the equation for torque T acting «t any

section is
' ' 2 1 .
C6 -Eh ¢ _ . | o
2 . .
as first developed by Timoshenko [1].

Equation (1) reduces to
11y 2 2 2

) -a¢=-0T where o = 2C
¢ EIh
One integration gives
1 2 2 :
$ -—a¢=-aTI([x+A] ' (2)

C
To obtain the equation of the section under the action of a distributed
torque, equation (1) is differentiated once to give
tt 2 11 t
C¢) ~EIh ¢ =T = -gq : 3
. =5 , _
The equation governing pure lateral deflection is the well known
nn
2EIY = - o : (4)
Rather than solve equations (2) and_(&) for any condition of load or
variation of section properties, it is better to split the beam into a number
of segments; each segment having constant section properties, torques and
lateral shears. The solution of equations (2) and (4) for such a segment will
be relatively simple, and a stiffness matrix for the segment can easily be
built. By utilizing several elements to represent a structure under distributed

load or varying section properties, very little accuracy will be lost.

The segment used is shown in Fig. 2.
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Fig. 2  BEAM SEGMENT

In this figuré,'torsiqnal deflections and forces are accounted‘for
indirectly through fhé differences in lateral shear deflection and forces.
~The relationship between the eigﬂt independent deflections and their corres-—
ponding forces are.given by k8§ = f where § is an 8x1 matrix representing the
deflections 87, ... &g, f is an SXIvmatriX representing the forces £, ... fg,
and k is an 8x8 matrix joining thé two. By examining the segment in Fig. 2,

and using Fig. 1(c), the following'relations are obtained.

1=y - on/2 ) fi = -EI(y Z¢  h/2) )
' 1 ) ’ Tt e

§, =y + ¢ h/2 ) fp =-EI(y +¢ h/2) ;
) x=0 ' ) x=0

§3=y + ¢ h/2 ; - f3 = + EI(y  + ¢  h/2) - cb /h ;

. ) '. Tty 111 t )

§, =y - ¢ h/2 ) fi, = + EI(y =4 B/2) +cCo /n)
L] 1 . " 1! 5
§g = y -—¢h/2§ fs =+ EI(Y -¢ h/2) ; )

] ] ) 1 T )

Sg =y + ¢ h/2 ) fe =+ EI(y +4¢ h/2) )
_ ) x=1 - ) x = L

§, =y + ¢h/2 ;‘ f7 = - EI(Y + 6 h/2) +Co /h ;

o) ‘ oy "M )

8¢=y - ¢hn/2 ) fg =~ EI(Y =-¢ h/2) -C$ /h)



If kg, g were obtained by allowing 8 = 1, with all other §'s
equal to zero, the calculations would entail working with combined bending and
torsion. It is therefore proposed to soive four basic pure bending cases and
four basic pure torsional cases which can re superposed to give any desired
deflected sﬁape. The four of these modes associated with the right hand end

deflections are given in Fig. 3.

| 1 | L 1 :
oy I
L» / L D
8,87 858,=8,=8;:=0 7= 8= 8'=82:83=84=‘87=88=o 5=86=|
(a) sheor (b) end rotation

T L <<

8'-82,-83-84-85-86-0 .87-88-2 81 82 83 84 8 8 =0 8 86-

'(c)_ tor sion - (d) warping

Fig. 3  PRIMARY MODES FOR RIGHT HAND END DEFLECTIONS

The éhapgs in fig. 3(a), (b) are solved using eq.(4); Since their
solution gives the well known beam>stiffness equations, they will not be gone
.into in furthér detail. The shapes presentedbin Fig. 3(c), (d) are torsional
shapes and cén be solved using eq.(2).

The shape in Fig. 3(c) represents a unit torsional rotation with all

other allowable deflections fixed. The end conditions for this case are:



x=0 ¢=0 . x=L ¢=1
¢ =0 ¢ =0

The solution of eq.(2) for this case is

= i +
0 30 sinh ox + PO cosh ax EQ.[X + Al ;
¢ )
where B =~ T D =T (cosh oL - 1) A = - (cosh oL -~ 1) )
o -0 o -_o kS )
‘ oC ' Ca sinh oL o sinh oL ) (&)
S V )
T = aC sinh alL )
° )

[2-2 cosh oL + oL sinh aL]

The shape in Fig:. 3(b) is obtained by applying equal and opposite
moments to the upper and lower flanges of one end, and restraining all other

allowable deflections. The end conditioﬁs for this case are:

x=0 ¢ =0 ' x = L $ =0
B _ _ '
¢ =0 - 9 h=-1
, ' 2
. -The solution of eq.(2) for this case is:
¢ = By sinh ox -+ D; cosh ox + Ei- [x +~A1] i
C
' )
‘where By =-T; D;=-1T; [sinh oL -~ oL ] A; = sinh ol - ol g N

o T [a{(l - cosh al)] o(l - cosh aL))
, ' )
. Ty= - 2C [ 1 - cosh al ] ~)
)

h [2-2 cosh oL + oL sinh oL]

Using the above solutions, the individual columns of the stiffness
matrix may be obtained by superposition. As an example, columns 6 and 7 can

be obtained by using the shapes in Fig. 3 as indicated in Fig. 4,



Fig. 4 SUPERPOSITION OF PRIMARY MODES

Similar operations yield the other columns of the stiffness matrix,
Presenfation of the matrix is simplified by introducing the following

functions. |

S; = (aL)3 sinﬁ aL/12¢

"8y = (aL)2 (cosh al. -.1) /69

‘S3v=‘aL (oL cosh oL - sinh oL)/4¢

© 8y = oL (sinh oL - oL)/2¢

¢ = 2-2 cosh alL + oL sinh aL

a =.2C/EIh2

where S;, Sy, S3, Sq‘énd ¢ are the samé as the staﬁility functions given in

Gere and Weaﬁer.[Z] Use of these fﬁnctions to represent the forces gives-the

complete linear matrix Ko, shown in Fig. 5.



o
2L [1 + S,]

2 ‘2
2L [1.- S3] | 2L [1 + S;]
3L{1-8,] | 3L[1+5S,] | 6014581 SYMMETRIC
SLIL + 5,1 | 3LIL - 8,0 | 6[1- 5] | 61+ 5]
© 9 2 2 .
L [1+ S,_}] L [1 - Sq] 3L[1 -~ SZ] 3L{1 + SZ] 2L [1 + S3]
2 2 2 2
L{1-5,] | L [1+8,] | 3Lll+s,]]| 3L{1-58,] | 21 [1-8,] 217 [1 + 5]
SLI-1 + 8,1 | 3L[-1 = 8,3 | 6[-1 - 5,1 | +6[-1 + 8,1 | 3L[-1 +5,] | 3L[-1 - §,] 61 + S, ]
3L[-1 - 8,1 | 3L[-1+8,] | 6[-1+ 8,1 | 6[-1 ~8,1 | 3L[-1 -5,] | +3L[-1 +S,] | 6[1 ~5,] |6[L+S,]
1 2 3 4 5 6 7 8

Fig. 5 LINEAR STIFFNESS MATRIX K,
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This-matrix represents tﬁe exact linear case with two limitations:
the.loads muét be applied at the node points of the structure and the section
prdperties between nodes must remain constant. |

A stfucture matrix was generated by standafd methods and the results
- for various load cases were compared to ekisting theoretical solutions. Two
structures were analyzed, a cantilever and a restrained beém. The cantilevex
had all degrees of freedom fixed at one end, and all free at the other. The
restrained beam had all degrees of frgedom fixed at one end, but only the flange
rotations were fixed at the other end. This éllqwed:placing an end torque on
the restrained beam. The results are given in Fig. 6. |

From Fig. 6 it can be seen that the matrix gives the same results as
the strength of maferials solution. This is to be expected since no approxi-
mation to the strength of material solutién was used in the derivation.

In some beaﬁs, most of the torque can be carried in pure torsion.

If the beam is represented with many short elements which tend to carry most of
the torsion in flange bending, the question arises as to whether fhé matrices
contain sufficiept_accuracy to convert the weak pure torsion resistance of thé
element to the predominant pure torsion resistance of the main structure. In .
other words, if tﬁere-is insufficient accuracy in the computation procedure,
the flange shear may overshadow the pure torsion terms in short elements and

" produce erroneous. results when summed into a large structure.

In order to investigate this problem several structures of varying
length were analyzéd. Each structure was fully restrained at one end, andvhad
the flange rotations restrained at the other end. For each of these structures,
‘a plot of to?que carried by shear over total torque (Vh/T) against x was made,
‘where the results came from strength of materials calculations.

The results are given in Fig. 7.



Cantilever -

LILLLLLLLLLL

—

T
J=1.25in?

L = 240" @ 3 Segments

11.

4 ' .2
I=4l.6in" E=30000k/in"

G = 10000 k/in?

Strength of Strength of
Material Matrix Value Material Matrix Value
Flange Moment | Flange Moment | Flange Deflections | Flange Deflections
X (Kip inches) (Kip inches) (inches) (inches)
0 70.5 70.496 0. | 0.

80" 22.32 22.501 0.1270 0.128
160" 6.55 6.57 0.3850 - 0.3843
240" 0. 0. 0.678 0.6780

L = 240" @ 1 Segment
-0 70.5 70.496 0. 0.
240™ 0. 0. .678 0.6780
N L = 360" R
J R :
Restrained 3 N >T
N N
R N
Properties as above
10 Segments @ 36" 15 Segments @ 24"
Strength of Strength of
Material ‘Matrix Value Material Matrix Value
Flange Moment | Flange Moment Flange Moment - Flange Moment

X (Kip inches) | (Kip inches) (Kip inches) . (Kip inches)

0 69.8 69.795 69.8 69.807

36" 41.5 41.473 - -

72" 24.15 24,155 24,15 24,161
108" 13.26 13,244 . -

144" 5.86 5.846 5.86 5.87
180" 6. - 0. - -

Fig. 6 TEST RESULTS FOR Ko

o
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S L g 1=41.6in% E =30000 K/in?
Tn 3 §-——%>T J=1.25int G=1000 k/in2
] ] R h= 10"
1.0 L=3'

Fig. 7 EFFECT OF FLANGE WARPING

It can.be seen from Fig.‘7 that ﬁhe.effects of the flanges in carry-
ing torsion for members of this t?pe is considerable and in the case of short~
‘members, the flanges carry virtually the enfire torque. This would indicate
that caution should be exefcised in represeﬁting structures with a large number
of elements. However, a thirﬁy foot beam of the same type as represented in
Fig. 7 was analyzed accurately using two foot elements (see Fig. 6) so the pro-
blem is not overlytseribﬁs.
The linear matrix developed in this»sectidn, or variation on it,
should be used in the analysis of grid frameworks composed of wide flange
sections,'as it considers the effect of flange warping. This is important, as

flange warping may account for a large part of the torsional strength of a wide

flange section.


http://can.be

CHAPTER TIL

DEVELOPMENT OF NON-LINEAR DIFFERENTIAL EQUATIONS

The team element may be subjected to moments, shears and axial loads

in the major principal axes as shown in Fig. 8.

—>X M= Ms—= +V,

Fig. 8 SIGN CONVENTION FOR PRINCIPAL SHEAR, MOMENT AND AXIAL LOAD

When this condition exists, the element behaviour is no longer linear,
and a struqture‘composed of these elements may reach a condition of instability.
To investigate this condition, elements of the web and flange under thé action
of P; M, and V were examined in a displaced.p6sition, as shown in Fig.’9.

From symmetry, the shear center of the section coincides with the
centroid, and its lateral deflection .is measured by y, as shown in Fig. 9(a).
"Lateral deflections of points other than the centroid are found from the rela-
~tion yi= vy +'¢n, bue to- the presence of P, M and V,lthe differential elements
are under the action of stresses ¢ and 1 as shown in Figs. 9(b), (c), (4), (e)
where .

and 1 =

» |
!
5
I

H
N
I
Q
o
!
>l
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_ curature = 2" =¢b'p
(d) web ' ' (e) flange

Fig. 9  ELEMENTAL BEAM SECTIONS IN DISPLACED POSITION UNDER THE ACTION OF

. - PRIMARY STRESSES - ’

The shear stress T is assumed constant over the web and the bending
‘moment M is given.by

M= Mo - YL + Vx
2
The stresses ¢ and T may be considered as generating lateral pres-

_.sures in the y direction of p_ and p_, as shown in Figs. 9(b), (c), (d), which .
Y . o T

“act on the element where

= T Mp ) t ’ - M - + | t 8
. P EOO *TH 3 yp t= Eco .fﬂ ; (v $ n) (8)
y y
| I ¥ .
P = jt¢ + 27t %_ - 2T¢'t . (9)
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where ¢t b in the web

w in the flange

The stresses o may also be thought of as generating vertical pressﬁres
acting on elements in the top flange of value P y» 38 shown in Fig. 9(e),

where

p,. = (o -Mh) ‘T R '

Vo (° o7 ¢ pe , . _ | (10)

By integrating these pressures over their respective -areas and divid-
ing by dx, the forces and torques per unit length can be obtained.

They are given by

+ h/2 ,
Lateral force/Length = 1 s (pc + PT) dn dx (11)
' dx .
.n=-nh/2

+ h/2 ' + w/2 '

Torque/Length = 1 I (p0 + pT) ndn dx + 1 ; Py pdp dx (12)
dx » dx S
n=- h/2 p = - W/2

, , + w/2 .

Vertical force/Length = 1 _ ;o Pyg dp (13)
‘ o dx v
p=-w/2

Now, the lateral force/unit length becomes the R.H.S. of eq.(4) to

give: , +h/2

. . L) 11 1 .
I R S A S (14)
n =~ h/2 y
The torque/unit length becomes the R.H.S. of eq.(3) to give:.
2 v” 1 ) +'h/2_ . 1y T ) 1
Elh ¢ - Cy = [-(c_-M)(y +¢ n) nt+ 2t¢ tn] dn
2 o J T o} I) . -
n=-h/2 y
+ w/2 ' A + w/2
. - _ 1 2 - te 2
+ I .(Oo M ) ¢ p edp + ! (Oo + ) ¢ p edp (15)
( 'ZIy) ( ZIy)

Cp == w/f2 ) : p = - w/2
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Thevvertical force/unit length affects the z deflection of the cen—‘
troid of the section in the following manner:

+ w/2 . ' + w/2
1t .

_ e . Tt .
EIyZ ! Eoo %%'; ¢ pedp + / Eoo + %%'g ¢ pedp . (16)
p=-w/2 y A p =~ wl2 y

By multiplying out, integrating, and using the symmetry properties
of the section, egs. (14), (15), (16) reduce to the governing differential
equation of the section as follows:

- Tt T

. ' .
2Ely = - Py + M$p + 2¢V . (17)
: 2 un 1 . 1 1 '
Eth ¢ - - C¢p = - ooIp¢‘ + My (18)
7 .
mn - :
EI =0 19
vZ = | ( .).
where IP = polar moment of inertia about centroid.

Equation (19) is the equation governing the vertical deflections of
the section.‘ It sfates that the principal axes forcés M, P and V have no
effect on the verﬁical deflections when the element undergoes a lateral or
torsional aisplacement. It should bébnoted though that there will be some
effect on the y, z and ¢ deflections due to ver£ical deflection, but in this
derivation the vertical deflections are assumed to be smali‘and their effect
is taken as zero.

The exact solution for the differential equations for the varijious
‘end conditions required.by the stiffnesé matrix would be difficult to obtain..
Instead an iterative teéhnique will be devéloped.

If the beam is represented by seﬁeral elements, these will be much
shorter than the structure. This means the deflections of the element relative
‘to its local co-ordinates will be much smaller than the structﬁre deflections
and consequently the element will be much stiffer than the structure. Because

[

of this, the critical P, M and V for the structure will be much lower than the
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critical P, M and V for the element.‘ Thusvthe P, M and V in each element will
have only a small effect in modifying the deflections; consequently thé linear
éhape, previously obtained, will be quit= close to‘the final deflected shape.

By placing the linear deflections, which were previousl&,obtained,.
into the R.H.S,‘of eqs.(17) and (18) we obtain new linear equations;-in which
the effect oer, P and V will be approximately accounted for; solving thése
new equations for homogeneous Boundary conditions yields increments in y and ¢.

This prdcess can be repeated using £he newly obtained y and ¢ to get
a further refinement on the linear y and ¢.

This may be simply written as

nn t 11 1

2ELy ., =~ Py +Mp o+ 2Vp | (20)

' 2 tn 1y ' 1 " .

E;:h ¢ - C¢n+1 = - 001p¢n + My : (21)
nt+) ’ '

where n = 0, 1,'2 ... and yo.and'¢o represent the linear deflectiomns.

Since the boundary conditions are satisfied by the linear deflections
v, and ¢0, the éequence of new éo}utions Y, and ¢n’ n=1, 2 ... as remarked
above must'sétisfy homogeneous bbundary conditions. .

Upon termination of the iteration procedure, the final results may

be obtained by summing the Y, and ¢n functions obtained, as shown in eqgs.(22)

]

Y=y, tv1ity2 ..y

n

d=¢ * b1+ b2 ... ¢ (22)

n

By usiné tﬁis;technique, the final y and ¢ obtained satisfy tﬁe
required end conditions, and the terms in the stiffness matrix can be fouﬁd by
suitable aifferentiation of y and ¢. |

As has begn previousiy indicated, the use of several.elements to
represen? a structure reduces the efféét of M, P and V on the element deflecf

tions. Indeed, this effect can be made as small as we please by taking
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sufficient elements; in these circumstanées, then, it can be maintéined fhat
one iteration of eqs. (20) and (21) will give sufficient accuracy in the
results. Since the linear forces have already been found from Y, and éo’ it
only reﬁéins to find the forces due to y; and ¢;. These forces will be the
non-lincar terms of interest, gnd the matrix obtained from tﬁem will be called
' K;. This matrix may be thought of arising from a known distributed.load, due
'tq a previously obtaiped set of y and ¢, being applied to the linear différen—

tial equations.

L | |

It should be noﬁed that the use of y and y' to find shears -and
moments implies that the co-ordinate system in which the forces on the beam are
represented translates and rotates with the member. In other words, the forces
are tangent and perpendicular to the final deflected beam shaéé; This means
that the forces on the beam end must be transferred into the structuré co-
ordinate system. Since the forces found from the differential equation need
only be modified by the cosine of anglés ¢ or y', they remain basically
unchanged for small éefleétion #heory. However,>since the principal forces M,
P and V are alsé represented in these axes, they must alsq be transformed into
étructure éb—ordinates by the usé of the sine of ¢ or y', Since for small
deflection theory sine 6 = 6, the components will be the forces of interest
mqltiplied by the déflection of interest. The joint forces must be suifably
adjusted to account for the presence of these components. Theée component
forces may be thought of asvpoint loads, and the matrix due to their effects
will be called K,. Since these forces are due>only to the linear end deflections
vof_the element, they are.unaffected by element length or assumed endlconditions
for the solution of the non-linear differential>eqﬁations.

For convenience of reference, the effective distributed loads will

be known as loads of the first type and the point loads will be known as loads

of the second type. The complete non-linear portion of the matrix is then
!
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K

1 + K

o to which must be added the linear matrix Ko' o,

Although‘the numerical techniqué as described simplifies the solution
of the differential equations, it still entails the solution of a second order
differential equation as well as several integrations. It is therefore pro~
posed to overccme this work with a further approximation or simplificaﬁion to

be described in the next chapter.



CHAPTER IV

'METHODS OF APPROXIMATIONS.

20.

Before presenting the next approximation used in the solution of the

differential equation, it may prove valuable to investigate this same approxi-

mation applied to a simpler and more familiar problem.

In the anadlysis of beams under the action of distributed loads, one

method of treatment entails dividing the beam into several segments by intro-~

ducing new joints along the member as in Fig. 10(a).

w : W’
R S A D
IL 1 J ]FL!L!L!,L!,L!L!L L

wl wlh

N

¥ - o ]
o o 2 wl wL  wh wbL wL o
Wahdh b dh ) 2 L L ] i@

'Ll/tlLJL !/L‘!F!L'!L!L!L

) ) | 1 ] B

Fig. 10 REPLACING DISTRIBUTED LOADS BY FIXED END REACTIONS
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The distributed load on each segment is then replaced by fixed end
reactions acting at the joints, as in Fig. 10(b). When these are placed on the
beam as joint loads, the moments cancel at the interior joints and are present
only at the end joints, as in Fig. 10(c). These are usﬁally ignored as they
have negligible effect on the analysis results if sufficient elements are
used. . |

For beams with an arbitrary load'distribution; the end moﬁepts wili
not in genéral cancel at each interior joint. However, the end shears are
proportional to the length of the element, whereas the end moments are pro-
portional to the length squared. This means that as thé length L goes to zero,
the end moments decrease faster than the end shears. Therefore, by decreasing
L, which means increasing the number of elements, the moments approach zero.
Since an increaSe.in';he'number of elements also causes the distributed loads
on adjacent members to approach each other in value, the end moments not only
approach zero, they.approach each éther but with a sign difference. A good
approximation is then obtained by using severai elements, ignoring the small
moment resultants, andvusing only the end shears. This amounts to replacing
the fixed ena-reactions of each element by pin-end reactions.

' This leads to the next apperimatiog in the solution of the differ-
ential equation for iateral torsional buckling:

Apply the type one loads of the R.H.S. of eqs;(ZO) and (21) to a
simply supported element rather than a éixed element.

| This will eliminate end moments acting at the joints due to loads of

type one.. The type two loads exist unchanged by this approximation.
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CHAPTER v
ILLUSTRATION OF METHODS OF APPROXIMATIONS

As an illustration of the above method and approximation, the buck—
ling matrix of a beam coiumn will be developed with the type one loads acting
on é figed élémentvand then oﬁ a simply supported element. Each non-linear
. matrix will be developed in two parts: a first part due to type one loads and
a second part due to type two loads. The exact matrix is given by Gere and
Weaver [2].

For a beam elemént under constant axial load, the differential equa-

tion is

" tt

Ely = - Py : T : : (23)
for the element of Fig. ll(a).' Equation (23) will be applied to a fixed
ended element first, utilizing the sign convention of Fig. 1(b) for shear,

moment and load.

(a)

Properties — E, I

: y =M/EI +6
Q_ﬁ?’l y' | | (G
: ,/rTTTTT111 X
b , W >
( ) | -E ‘ . yn: —i_ + 12x _
l? L? | L;
" y"' = M/EI r2
T
6EI , T X
> JIERES
L "'4 y" :-.-_4'_.. -'. ..6_x_.
(c) T L 12

Fig.1ll ORDINARY BEAM STIFFNESS DEFLECTIONS, FORCES AND CURVATURES
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) L .
The equation of Yo for 61 equals unity is

o 5, +1% | (24)
: L L - .

Substitution of eq.(24) into the R.H.S, of eq. (23) gives

Ely; = - P[-6 12x -
y1 [_2+__3_] (25)
[ L 2] .
Integration gives
1o 6' 6 2 ‘
ET = - P[- X
Y1 {—’;+—-—~3 +A% (26)
LT L .
BTy, 2 o
4! ""P['é’zi—+—l3—+-Ax+B] (27)
[ L L ]
Ely, = - P < ‘- AxD
Y1 = - {“%+5—3+———§ +Bx+c}’ : (28) -
L 2L ’
EI = - P Y > Ax. | Bx :
71 ”"_%“X +E— S S +CX+D% (29)

It is to be remembered that the y, in the above equation is the y,
due to loads of type one.
For a fixed element, the end conditions are:
@x =0 y; =0  @x =1L 'y, =0
. ) ',
Yy = 0 vy, = 0

Using these end conditions and solving for the constants gives

A= 6/5L
B=-1/10
c=0

D=20
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Egs. (26) énd (27) then give end shears and moments as

T

11
@x =0 M= Ely; = P/10 @x =L M= Ely, =-P/10
1y ) ' ' 1ty
V=Ely, =- 6P/SL V=Ely, =- 6P/5L
T ‘ .
For §p=1, y5 = ”%+—6-§§ , (30)
L

Substitution of eqs.(30) into egs.(23) gives

Elyy =-P(-4, 6x) - NEY
« 1772)
Integration gives
11 ( 4 2 ) .
Ely = - P(~ 4x , 3%
! (1" 2 A (32)
K - 9 3
EIy = - P (—_2_}_(_ p: S ) ’
1 ¢ Tt 2 + A%+ B)) (33)
! 3 b 2
Ely, = - P (- 2x X X )
1 N 55_'+ ;;5-+ AlL + B x + cl) : (34)
’ L 5 3 2
Ely, = - P (- 2x X Alx B1x )
1
B ( 12L+20L2+ 6 + 5 +C1x+D1) (35)

The end conditions for a fixed element are

@x = 0 y1 =0 x=1 yi = 0

1 ' v

J1 y; =0

]
o

Solving for the constants yields

Ay = 11/10
By = ~2L/15
C1=0'

D1=0
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Substitution of Ay, Bl,'Ci and D, into eqs.(32) and (33) yields the

shears and moments of interest.

Tt Tt

Ely, = 2PL/15 @x =L M=Ely = PL/30

'
11 1ttt

Ely, = - 11 P/10 V=Ely, =-P/10

>
f
©
=
f

1

v
The end forces for §3 and §, equal to one can be found using similar
calculations to the ones above. When the results are placed in matrix form,
they give the portion of the non-linear matrix due to loads of the first typé

acting on a fixed ended element. The matrix is given in Fig. 12.

_6p (_1lp | 6P | P

5L 10 5L 10 )
'Tg _% +—1-§ +%
- 1%~ + %% +.i%- - 2%%

Fig. 12 NON-LINEAR BEAM COLUMN MATRIX FOR
TYPE 1 LOADS, FIXED END CONDITIONS

For the portion of the non—linear matrix due to loads of the second

type, the value of the linear end displacement need be considered. See Fig.13.

Fig. 13 NON-LINEAR BEAM COLUMN TERMS FOR TYPE 2 LOADS
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For §; = 1, as in Fig. 13(a), thefe are no components of P acting in
v.the shear direétion, so there are no ccntributions in the second portion of the
matrix for this deflectéd sﬁape.

Fér 8§, = 1, as in Fig. 13(b), the load P which the joint must provide
has a component in the shear direction of value P x sine (@) = Po = P at the
L.H.S of the structure. This value must be entered in the shear forcexposition
of the matrix for §, = 1. The R.H.S has no component.

By treating the other deflections the same way, the second portion of

the non-linear matrix is built up as shown in Fig. 14.

0 +P 0 0
0 0 0 0
0 0 0 ~-P
0 0 0 0

Fig. 14 NON-LINEAR BEAM COLUMN MATRIX FOR TYPE 2 LOADS

When the matrices presented in Figs. 12 and 14 are added, the result

is the complete second order matrix as shown in Fig. 15,

- e | _® | ,e | _»
5L O 10
"% | "B tT | *m
vl | -8 | tw

Fig. 15 COMPLETE NON-LINEAR BEAM COLUMN MATRIX, FIXED END CONDITIONS
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In summary, this matrix wac found by using the linear deflected
shape to generate a load to use in eq.{23). This load was applied to an
elemént fixed at the ends.

It is of interest to-note ét this point the relation between the
exact matrix for buckling, containing sine and cosine functions, aud the approx-
imate matrix in Fig. 16. If1the series expansioné fof the sine and cOsine:are
éubstituted into the exact matrix, the second term of this expansion gives the
appfoximate matrix derived abové.

quation (23) will now be applied to‘a pinvended element;

Fig. 12 still répresents the linear deflected shapes and thevtype one
loads. To solve for the forces, it is only necessary to integrate eq.(éB)
fwice since the known end conditions of y;' = 0 at the ends will solve the two
constants of integration, and then one differentiation will give the end shears.

However, because of the simple type one loads for these cases, statics can be

used to determine the end shears, as in Fig. 16.

L | e

T
, 0

-4P  6Px
L

W= —— o+ —
2

Fig. 16 NON~LINEAR BEAM COLUMN TERMS FOR
TYPE 1 LOADS, PINNED END CONDITIONS
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Similarly, the end forces for §3 and §y equal to one can be obtained.

Combining the end forces into matrix form gives the portion of the non-linear

matrix due to loads of the first type acting on a pinned element. See Fig.'17.

P P

— — Lo—
L P L 0
0 0 0 0
P P

+ T 0 -7 |*+P
0 0 0 0

NON-LINEAR BEAM COLUMN MATRIX FOR
TYPE 1 LOADS, PINNED END CONDITIONS

Fig. 17

The portion of the matrix due to loads of the second type remains un-
changed. Therefore, the complete matrix is found by adding the matrix of

Fig.17 and Fig. l4. This yields a relatively simple matrix, as shown in

Fig. 18.
P P
-1 0 + L 0
0 0 0
P P
+ I T 0
0 0 0

COMPLETE NON-LINEAR BEAM COLUMN MATRIX,

Fig. 18
: PINNED END CONDITIONS,

It is of interest to note that this is the non-linear matrix for a

pin-ended strut under axial load.
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The effect of the approximations willlnow be considered. Three-struCr
tures, a pinhed.column, a fixed column with a pin at the center and & fixed
éolumn were analyzed using the matrices presented in Fig. 18 and FingSS. Each
column,was anéljZed using a vafying number of élements. The per cent er.ors

~in the 1esults of each analysis were plotted against the number of elements
used for each column, as shown in Fig., 19,

It should Be noted that the forces due to loads of the second type
~in the matrix are of no importance in members with cohtinuous déflections.
fhis arises from the fact that the adjoining ends of elements in a continuous
structure have the same deflections but the end forces are of opposite sign.
The contributions of end forces to each joint from each member then cancel
each other out. However, if a pin exists in the structure, continuity of
slope no longer exists and the end force components of adjacent elements may
not be self cancelling. This implies that the type one loads are all that is
necessary to analyze continuéus structures, but that they will fail to analyze
strucfures with interior pins. The results of anaiysis of various interior
pinned column using matrices with and without the effects of loads of the
seéona type bear this out.

In conclusionvthén; it is proposed to.calculate y, on the basis of
yl =y, = 0 at each end and jusf use the calculated end shears in the matrix
rather than using y; = y; = 0 as tﬁe end conditions and using the associated
caiculated shears and moments in the matrix. The typé two terms, which are

added to the above results, are the same for either set of assumed end con-

ditions.
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CHAPTER VI

DEVELOPMENT OF LATERAL STABILITY MATRIX

i Application of Approximations

Only one iteration will be used to develop the matrix. The linear

- portion ofrthe matrix, correspon@iné to the deflectioﬁs Y and ¢;, has already
been obtained. The»non—linear terms of the matrix due to y1 and ¢i wiil now be .
found by solving the differential equation fdr ¥ and ¢1 using boundary condi-
tions of.y1 = y;' = ¢, =¢1‘ = 0 at each end._‘shears and torques are tﬁen found
from ¥, and ¢1. It is deduced from the previous section that it is nqt neces-—
sary to use y; = y; =0 and ¢, = ¢1i = 0 at each end as boundary conditions.
Once égain, the type two load terms ;re independeﬁt of whichever boundary con-

~ ditions are used. However, the use of statics to determine the end shears on a
pinned element was discarded as the type one loads were more complex than those
associated with the beam column. Instead, the gaverning diffgrential equations,
after substitution of the linear deflections in the R.H.S were integrated twice
and then solved for the end conditionms.

Equations (20) and (21) become for n = 0,

nit Tt ty

2Ely; = - Pyo + M¢o + 2V¢o _ } (36)
2 un [R] ¢|' e ’
- = - 0 . :
Egh ¢1 Co, - oIp o + MYO A » (37)

Integrating twice, eqs.(36) and (37) become

11

te . ’
2ELy, = - Py_+ [/M$  dxdx + 2V/¢ dx + Ax + B : (38)

2 1 3 " _ :
.Egh ¢, - C¢1 = - 001p¢0 + ffMyo dxdx + Dx + E , (39)



' A '

Sy '
Integrating ffM¢o dxdx by parts, and remembering M =V and V = 0, gives

imMe dxdx = Mg dx - f¢ Vdx

(40)
1
Integration of fM¢odx by parts gives
! .
fM¢odx = M¢o - VI¢de ‘ (41)
_ Substitution of (41) into (40) gives
1y .
ffM¢o dxdx = M¢0 - 2Vf¢odx (42)
A similar integration gives
- L] :
ffMyo dxdx = Myo - 2nyodx (43)
Now, substitution of eqs.(43) and (42) idinto eqs.(38) and (39) gives
Tt ]
2ETy, = - Py +Mp + Ax +B (44)
2 vy .
Eéh ¢y - Cp; = - GOIP¢O + Myo - 2nyodx + Ex + D (45)
. A T
The end conditions of ¢, = ¢, =¥ =V = 0 were then applied to

32.

équations (44) andb(45); These equations lend themselves to this approach, as

the L.H.S of both equations become zero at x = 0, L, and the R.H.S of the

~ equations countains only the values of the linear deflections at x = 0, L, the

integration of y6, and four unknown constants. These constants A, B, C, D are

easily found and the non-linear matrix forces due to loads of type one are then

obtained by application of the differential equations (46).

Ty 1 1

Shear = Ely,; = - Pyo + M¢o + V¢o + A

2 111 ' 1

)
Torque = C¢1 - EIh ¢y = + ooIp¢o - My0 + Vyo - E
2

(46)
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ii Calculation of Non-linear Stiffness Matrix for Type One Loads

The terms of the non-linear matrix will be calculated first for §, = 1,

" R B
for which yo’is given by one half of Fig. 3(a) or,
o _;2 . : .
- 23
. L : v (47)

Integrating eq.(47) three times gives

. dx = 3

Jyjdx =x - X ‘ (48)

AR R

A constant should be added to eq.(48), but it is taken to be com-
bined with D in eq.(45). From Fig. 4, the values Qf the linear deflections at

the ends of the element for 57 = 1 are:

x=0 Y, 0 x =1L Yo 1/2 )
| | )
¢o =0 ¢o =1/h )
)
) _ ) _ ) 49)
YO =0 } ¢0 =0 ) (
' ' )
¢o =0 Yo © 0 )
)
The end conditions for solution of eqs. (44) and (45) are
) L I8 B Tt ’ . .
Y. =¥y = ¢1 = ¢1 =0 @x = 0,L » (50)

Usiqg eqs.(50), (49) with the differential equation (44) gives

x =0 2EI[0] = - P[0] + M[O] + A[0] + B ' | (51)

]

x =1 2E1I[0] - P[1/2] + M[1/h] + A[L] + B (52)
Solving eqs. (51) and (52) for A and B gives

B=0 A=+P M + &)
oL " -2 2.
hL
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Using eqe.(49) and (50) with the differential equation (45),gives

x=0 EIh?[O] - ¢[0] = ~_coIp[O] + M[0] - 2v[0] + E[0] + D (53)
. 2 . ’ .
x =1L _E_I_QZ[O] - ¢[o] = ~ O‘OIp[vl/h] + M[1/2] - 2V[L/4] + AL + D (54)
2 .

From eqs.(53) and (54),

- LW
D=0 E=o l oMt )y
hL 2L 2

Substituting the values of A, B, D, E back into eqs,(46) and using the rela-

tions in (49) gives

SHEAR  @x = 0 P[O] + M[0] + V(O] + A

fa
i
1

' » VL
=1 E@-M +-=) )
L (2 [#) - 2 )

@x =L Q= P[0] + M[O] + V[1/h] + A

o<

(2 5 ) _ (55)

Il
o
=3

i

TORQUE @x ooIp[O] - M[0] + V[O] - E

VL
f 0oIp + (Mo + 2 )-+ v
hL 2L -2

@x

]
B

3

]

o I [0] - M[O] + V[1/2] - E
op '

VL
- Oo;p + M + 5 )

hL 2L

1

By using suitable signs, and the relation Q = T/h, the column of the stiffness

matrix for §; = 1 was built from relations (55) and is shown in Fig. 20.



7
0
0
L VL
1 [P_~Mo+2]+1[001p—-Mo+2 + V]
2L [2 h ] "h[ hL 2L 2]
VL VL
1 [P~ Mt ] - ;h[qolp Mty V1
2L {2 h ] h{nL 2L 2 )
0
0
VL VL
-1[v+1 - Yot 2 ) 1 -1 [+ 0oIp Mt
2 [h "L (2 h ) 1. h{ &L 2L
vL yL
'.]:[.Y+l.(F_"MO+2)]+_l[+001p-Mo+2
2 [h L (2 h )] h[ hL 2L

Fig. 20 TYPE 1 TERMS FOR NON-LINEAR MATRIX FOR 87

1

35.



36.

For 8g =1, Yo is given by one half of Fig. 3(b) or

y = - 1 4+ 3x
o L T 2X
2

L L

Integrating three times gives
T T ' ' (56;

From Fig. 4, the values of the linear deflection at the ends of the element for

8g = 1 are:
x =0 Vo = 0 x =1 R 0
1 . )
Y, = 0 Y, = + 1/2
¢o =0 _ : : ) ¢o =0 | 57)
1) |
¢0 =0 ¢o =+ 1/h

<

The end conditions for solution of the differential equation (44)_and (45) are

stilly, =y, =¢;, =¢; =0 | S (58)

Using eqs.(57) and (58) with the differential equation (44) gives

I

0 2E1[0]

x - P[0] + M[0] + A[0] + B, (59)

x =L 2EI[0] = - P[0] + M[O] + AL + B, ' (60)
From eqs.(59) and (60), B, and A, are

Using eqs.(57) and (58) with the differential equation (45) gives

x=0  EIh[0] - C[0] = - o I [0] +M[0] - 2V[0] + E,[0] + D, (61)
2 . 2
=L EIhz[O] - C[0) = - o I [0] + M[O] zv[LLJ + E,L +D | (62)
x= = =7 %% B PYY 1

-2
From eqs.(61) and (62)

D1 =0 El = -~ VL/12
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Substitution of the values of A;,.B;, Cl,;leack into eqs.(46) and using

relations (57) gives

1

SHEAR- x =0 Q = - P[0] + M[O] + V[O]

™
Il

o

L
i
1

P[1/2] + Qi +2E) (1/h) + V(0]

I

, VL
= g+(Mo+2 )

(63)
2 h
TORQUE  x =0  T=+o.T[0] - MO] +V[0] - E
=+ 3L
12
X =1 T=+¢g I [1/h] + 1 + L& )[1/2] + V[0] - E
v : op o 2 1
VL
. .—+GOI - (Mo+2 )+%
h

\

By using the relations in (63) with suitable signs, and the relation Q = T/h,
the column of the matrix due to type one loads for 8g = 1 was built, as shown
in Fig. 21.
Similarly, the othef stiffness deflections were treated. The com-
plete non-linear portion of the matrix due to loads of type one is K, and can

be written as K; = Pk, + Mklm + Vk, , as in Fig. 22, The portion of the

lp lv

matrix due to loads of type two must still be calculated.
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
-a+hb -a-5 ~(atb)/L | (-~atb)/L 0 0 (a+b) /L (a-b) /L
-a-b | -a-b (-a+b) /L | -(a+b) /L 0 0 (a-b) /L (a+b) /L

0 0 0 0 0 0 o | o0

0 0 0 0 0 0 0 0

0 0 (at+b) /L (a-b) /L - + -(atb)/L (-a+b) /L

0 0 (a-b) /L (a+b) /L + - b (-at+b) /L (-a-b) /L

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 +L +1 0 0 0 -1 0

-L 0 0 -1 0 0 0 +1

0 0 0 0 0

0 0 0 0 0 0

0 0 -1 0 0 -L +1 0

0 0 0 +1 +L 0 0 -1

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1 -5 0 -6/L ~1 -1 +6/L

+5 -1 +6/L 0 +1 +1 -6/L 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

-1 -1 0 -6/1 +1 -5 "0 +6/L

+1 +1 +6/L 0 +5 -1 -6/ 0
a=1/4 b= Ip/Ah2 Fig. 22  NON-LINEAR MATRIX FOR TYPE 1 LOADS

‘6¢
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iii  Calculation of Non-linear Matrix for Type Two Loads

The effect of the type two loads can best be calculated by splitting
each stiffnass deflection into its lateral and torsional component.

For 67 = 1, the component linear deflections are given in Fig. 23.

1. L/Té [y RN

¢ ,,(c)', . ' (b)

b=

A

Fig. 23  COMPONENT DEFLECTIONS FOR 6, = 1

By applying M, P and V and taking their components about the R.H.S.

of the section as shown in Fig. 24, gives

s | v M
(a) yan | - ‘ T
' - ”

- B | Wn
‘\oﬂqe _ : A W
"OQ Va o r -
(b) 7 P 7
O - iy
6317‘ : ' \Z Qi/L}"f
Om : B , - ——2M

Fig. 24  FORCE COMPONENTS DUE TO END DEFLECTIONS FOR 6, = 1
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~In Fig. 24(a), there are 1o components acting in any of the allowable
joint deflections. Therefore:

Shear =0

Moment = 0
Torque = 0

For Fig. 24(b), the components acting on the cross section which must

be supplied by the joint are

Shear = + V/h
VL
= + —
Moment (Mo 5 )Y/h
Torque = 0

The L.H.S. of the deflected shapre for §; = 1 has no components, as
all the deflections are zero. The column in the matrix for loads of the second
“type for 87 = 1 is given in Fig. 25,

- For 8¢ = 1, the comboneﬁt linear deflections are given in Fig. 26.

(a) : - (b)

Fig. 26 COMPONENT DEFLECTIONS FOR ¢ = 1

Applying M, P and V, and taking their components along the allowed
deflections gives:
(i) For the L.H.S. - no components, no forces.

(ii) For the R.H;S. - see Fig. 27.



Fig. 25 TYPE 2 TERMS FOR NON—LINEAR MATRIX FOR &7 =1

42.
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( a)

, , RN M
(6) E fl\ >

Fig. 27 FORCE COMPONENTS DUE TO END DEFLECTIONS FOR §g = 1

For Fig. 27(a) components acting along the allowed deflections are

M/2, P/2. In stiffness matrix sign convention,

Shear = - P/2.
Moment = "0
Torque = (Mé + VL/2)/2

For Fig. 27(b)-the'slope changes continuously from top to bot tom.
Therefore integration along the cross section must be used. Consider the

effect of 0 at z on an element of area tdz, where

A force =gztdz
slope @ z in x direction is z/h

Therefore, the component of force at z is g¢gztdz
' h
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Integrating with respect to z to get the shear and torque gives

‘+ h/2 . 2
Shear = -~ s EG zt - Mrz t; Cz = + EE ='Mo + VL/2
( h Izh ) h h
z = - h/2
+ h/2 2 3
Torque = -~ s Ecoz t - Mrz t; dz = - ooIz
( h Izh ) . h
z = - h/2 -

Because the flanges suffer the same angular displacements as the
section as a whole, the end slopes of the flanges must be taken into account.

See Fig. 28.

- - %st I
| I — ’ Y

Fig. 28 = VERTICAL FLANGE DEFLECTIONS AS FUNCTIONS OF ¢

The slope of the z deflection in the x direction in the flange is

1 .
€6 = £/h at point §. The differential force at point f is

A force = gedg

The vertical shear component is

+ w/2

s (Ooeg -~ M hé&e)

Eh 21;‘15:0
£ = = w/2 z
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The torque is

+ w/2 2 2 3 + w/2
- s Eooeg f MrhE eg 0 - 223 . Mrg e
( h : 21 ) h 6Iz
= - w/2 z - w/2

However, the bottom flange has the same configuration with a moment
stress on it of opposite sign. Therefore the net torque contribution of the
flanges under moment stress is zero. However, the axial load contribution is

7

the same for the bottom flange as for the top.

Therefpre,lthe total contribution of the shape in Fig. 27(b) is

given by
Shear = (Mo + VL/2) /h
Moment = 0
Torque = - 2 ¢ I -0 I =~g¢gl1
‘ _ o oz op
‘ h h h

After combining these forces, the column in the matrix for §¢g = 1 due
.to type two loads is given in Fig. 29. The remaining six columns can be found

from similar calculations. This matrix, called K,, can be written as

K, = Pk__ + Mk__ + Vk_
Pz mp : V2 .

See Fig. 30.
The complete non-linear matrix for lateral torsional stability is

given in Fig. 31-and is obtained by adding the matrices K1 and K2.

iv Numerical Examples

The matrix in Fig. 31 was used to calculate the critical loads of
several structures, and the results were compared to the theoretical solutions.
A determinant plot method of solution was used, That is, the deter-

minant of the structure matrix for increasing values of M, P and V were



-0
0
0
0
0
0
‘ VL - VL
- P - 0oIp + Moty Mt
2
4 h . 2h 2h
VL VL
—_11+°olp+Mo+2v-—Mo+2
4 h2 2h 2h

~ Fig., 29 TYPE 2 TERMS IN NON-LINEAR MATRIX FOR §g = 1
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NON~-LINEAR MATRIX FOR TYPE 2 LOADS

Fig. 30

b =1 /Ah
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M (E,)

ST

O N O W

0 N O W N

0 N O~

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 ~(a+b) /L | (~a+b)/L 0 0 (a+b) /L (a-b) /L
0 0 (-a+b) /L | -(a+b)/L 0 0 (a-b) /L (a+b) /L
0 0, 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ,
0 0 (atb) /L (a~b)/L 0 0 -(a+b) /L (-a+b)/L
0 0 (a=b) /L (a+b) /L 0 0 (~a+b) /L | -(atb)/L
0 0 + L/2 - L/2 0 0 0 0
0 0 + L/2 - L/2 0 0 0 0
0 0 +1 0 . 0 0 -1 0
0 0 0 -1 0 0 0 +1
0 0 0 0 0 0 - L/2 + L/2
0 0 0 0 0 0 - L/z + L/2
0 0 -1 0 0 0 + 1 0
0 0 0 + 1 0 0 0 -1
0 0 -3 + 3 0 0 0 0
0 0 -3 + 3 0 0 0
+ 1 1 - 6/L 0 -1 -1 0 + 6/L
1 1 0 + 6/L + 1 + 1 - 6/L 0
0 0 0 0 0 -3 +
0 0 0 0 0 -3 +3
1 1 - 6/L + 1 +1 + 6/L 0
1 1 + 6/L 0 -1 -1 0 - 6/L
a=1/4 b I_p/Ah2 Fig; 31  THE COMPLETE NON-LINEAR MATRIX

FOR LOADS OF TYPE 1 AND 2

‘8%
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calculated and plotted. The value of M, P and V at which the determinant
equalled zero was taken as tHe criticél load. This.technique'was preferred to
an eigenvalue approach since it avoids the préblem éf converging to a veal

. eigenvalue which arises.when an eigénvalue technique is applied. to systems
containing unsymmetric matrices.

’ AA table of the results is given in Figs.32 and 32(a). A plot of
the number of elements used against the accuracy obtained for féur céses is

. given in Fig. 33.
| The effect of applying vertical loads at points other than the cen-

~ " "troid can be accounted for by modifying the stiffness matrix of the structure.
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10 ELEMENTS USED IN EACH STRUCTURE

———O pinned -———E fixed

~ 'PURE EULER BUCKLING 1:97in*L=20" E=30,000k/in? |
STRUCTURE = ERROR

LN o—-'// \@—ELZ%
p__+"4 - ///O\ E. P
Z 2

<€ 1.2%

ilee>-g—————""’///O\\§\‘~"“‘““—‘ E< P %
;__’/—O"ﬁff/o
P . 4
e | | |
P j E< " 5%
———0 pinned -—-—E fixed
PURE TORSIONAL BUCKLING SR
STRUCTURE o - ERROR
P 5 o ' ' o<t 29,
P 4 E_P
> 2 €—35%
A . 2 ,.
I,=1000if* 1:=500ir* J=5in* E =30,000k/in2 L=20'
G = 11,500 k/in
A =10 in?
h =9.5in

Fig. 32 TABLE OF RESULTS FOR TEST STRUCTURES



10 ELEMENTS USED IN EACH STRUCTURE

8' pinned

~ LATERAL TORSIONAL BUCKLING
STRUCTURE - ' ERROR

fixed

TRITTTRRSY

M< . , DM 5%
2 LP V%
P
v 1 %
P
\ L~
é 2 ‘2.50/0
f
w
o 1T 1 11T 1 1T 11T 71T 117
1%
. w
-7 [ Tt 1 °r 1T 1T T 17T 1T 1T T T 1T T T 1 Z :
z 3%
5 i
2%
w
| U P U I O I 1 1 7 1t 1T 1 o
4 %
._!E ’ - ___.S 2°/o

I=21in% I,=151in% A=7.125in? J=.148in* E=30,000k/in?
G=11,500k/in?

Fig. 320" TABLE OF RESULTS FOR TEST STRUCTURES
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10 i | N\ _ pinned ends

Error

%
Error

— |
6 7 8 ) 10 H. e

-+

fixed ends
Error

oNnN OO D
T

Fig. 33  PLOT OF ACCURACY VS. NUMBER OF ELEMENTS USED



CHAPTER VII
CONCLUSIONS

An 8 x 8 matri#lfor the exéct linear treatment of doubly Symmetric
~wide flange beams unaer tprsioﬁ and lateral displacemént was developed. This
- matrix allows each flange at either end tovassume translations and rotations

independent to the other flange.

An approximate matrix accounting for the effect of principal plane
forces on the lateral deflections was developed. When added té the linear
matrix, it makes possible the determination éf the lateral—ﬁorsional buckling
'loads of wide flanged beams.

The non-linear matrix was based on small principal plane deflectioﬁs
~and no distoftion of the cross—section. Applied external loads must maintain
their direction of application.

To obtain the non-linear stiffness matrix, differentialvequations
were developed by considering a displaced element under the action of the
principal forces. These were then solved.to find thé end forces which were
entered in the 'matrix. | | |

To ease the solution of the equation, a numerical-technique was
developed. ;This entailed substitﬁtion of tﬁe linear deflectéd shape intp the
k.H.S. of the differential equation to produce a known load, and then solving
the L.H.S. for the néw yi and ¢,. The new deflections were y, and ¢, were
then placed into the R.H.S.'and the procesé repeéted. The end conditions used
wére to be those of a fixed element. Effectivg end point loads acting due to
‘the initial linear end déflections gave a second load set.

. Two approximakioné were then utilized to further simplify thé solu-

tion of the equations. The first entailed using only one cycle of the itera-
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tion scheme. The second was to apply the effective lateral loads to an
element witﬁ nb end moment réstraint.

Tests of the element against known solutions indicate that good
accuracies can be thained, but depend én the number of elements used i1 the
analysis. Acceptable accuracies were obtained using ten elements, the largest
error encountered Being S%.

The advanfages,of this matrix éfe several, Cases inﬁolving general
load, support and gnd cbnditions'of sections with varying section properties

may now be solved by simply breaking the structure up into several elements

and applying the presented matrix.
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