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" "ABSTRACT

This thesis presents the results of a theoretical and experimentai
study of the lateral buckling of straight beams of rectangular cross-eeétion
- resting on columns, a type of structure commonly found in the roofing eystem
of multi-bayed buildings. The_strﬁcture is. analyzed as a simply supported
‘beam, uniformly loaded, restrained at one end against longitudinal torsion
and restiﬁg near the other end on a flexible.column whicﬁ may provide varibus
torsional and lateral restraints. Beyond thé column is a cantilevered pro-
jection of various lengths and loads. The.entire top edge of the beam is -

. considered as fastened to a continuous decking which restrains it against
horizontal displagement but permits free-rotation abbut this edge.

The method of solutioﬁ of the theoretical lateral buckling load is
ufby using a computer program to calculate the structure stiffness matrix's
;&eterminant at increasing lbad levels, and a plot of the determinant versus:
load level yields the critical load (at determinant equals zero). This theo-
retical approach is verified by model experiments in the laboratory.

Design curves and equations are produced incorporating the usuall
flexural beam and axially loaded column strength concepts, with lateral
buckling considerations. Recommended design code procedufes are forwarded'
based on these curves which would permiﬁ more economical use of deep beams.

| Included in the thesis is the comp_utef pfogi‘am listing used in the

solution technique.
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NOTATION

TEXT PROGRAM DEFINITION

A Length of cantilever projection
d DB Depth of beam
Eb E .Modulus of elasticity of beam
E EL Modulus of elasticity of column
e EC(I) Eccentricity of top flange from centroid of beam

segment I
fb 2.1 ksi Approximate fléxural stress in beam
fi Forces at degrees of freedom
G G Shear modulus of beam
I B(I) Moment of inertia of beam segment I about y-y axis
i BC Moment of inertia of column about z-z axis
J T(I) Torsion constant
KT,KB KT,KB Fixity factor for top and bottom of column O:pim, 1l:fix
k. Basic buckling stiffness matrix of segment
k k transformed to top flange
k SM(I,J) k transformed for no horizontal displacement of top
flange

L CL _Length of column
1 X(I) Length of beam segment I.
Lb L Length of beam
M BM(I) Primary moment of midpoiﬁt of segment I
m Torsional moment
n Dimensionléss.factor for column
~NF ‘ NF  Rotational degree of freedom at which column acts
NI NI Number of load factors o input
NM NM Number 'of beam segments



TEXT PROGRAM "DEFINITION
NP(I1,J) NP(I;J) Displacement numbers for a beam segment
NRS NRS Structure number
NU NU Total number of degrees of freedom
P P Concenﬁrated load on end of cantilevér
Q Translational force
r Superscript denoting rotation
R R Primary axial column force
SK SK Spring constant replacing column properties
S S(I,J) Structure stiffness matrix
S5 STBy Stability functions for column
t Superscript denoting translation
T,T1 Transformation matriqes
v V(1) Primary shear in segment I
W 1. Primary load intensity on beam
W External load on joint
Z Section Modulus
& F(K) Load multiplying faétor.' Also eigen value
8 1. Rotational apgle change abouf top flange
Y P/L Factor relating P to wL,
Gi 1. Deflections at degrees of freedom of segment
n -Rgtio of cantilever projection to Lb
XL Stability factor
OCR Beam bending stress at critical buckling load
Dimensiénléss factor‘ | |

Abscissa of graphs
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INTRODUCTION

In the design of roof systems composed of continuous gluiam beams:
and columns, econemy favors deep and narrow sections. Since the top edge of
such beams is usually supported against lateral translation by a roof deck,
the lower edge is Jeft free. In continuous systems, this lower edge is partly
in compression from bending and loaded by a column: Such a system can become
unstable and buckle sideways in a torsion—flexurél mode about the constrained
centre of rotation at the top. The object of this article is to investigate
this phenomenon for some common conditions of suppoft and continuity. |

A stiffness matrix develdped by B.A; Zavitz [1]a and modified herein,
has been chosen for the theoretical study. This is checked against several
timber models to establish its validity, and an electronic computer is used to
produce_a'variety of design charts. Finally, summary recommendations are made
to ensure safe design of such sfructures.

The stiffhess method is chosen as it offers the only practical way.
to include any load and boundary condition,; together with column restraint and
buckling. Other systems of analysis are available and in 1960 G. C. Lee [2]
compiled a complete set of references for known solutions of various beams.
and lpadings. However little researcﬁ has been done on the buckling of beams
as they might be commonly used in structures. Subsequent to Lee's work,

L. A. Bell [3] presented a numerical solution to the governing differential
équations but his syStem,althouéh accurate, was too cumbersome to produce the

design charts required, and it did not include column buckling.

a. Numbers in square parenthesis refer to the bibliography,



DERIVATION OF STIFFNESS MATRICES

The general system under consideration, as shown 'in Fig.(l), consists
of a continuous beam which may or may not be hinged to produce determinancy.
It can be supportéd on a number of columns wﬁich are fixed or pinned té their
base and to the beam{ Diaphragms can be provided at various locations, such
as at end walls or over the columns, to preveant rotatiom. Tﬁe'top_edge is .
prevgnted from léteral translatién atAall points by the roof deck but no tor-

sional restraint is provided on this edge. .

: w
A

p) N

R

<

' \Hlnge/ - >l e )
\Column / | - Typicol segmenf
[ 77777
FIGURE I. GENERAL SYSTEM -

‘2.1 ASSUMPTIONS

- It is assumed that the ‘beam is composed of a number of small" segmenté
"of length 1, loaded and constrained only at the j01nts between segmenté.‘ The
structure stiffness matrix is then generated from the stiffness matrices of
these segments and the-stiffneés of the'éolumn.‘ The criticél 1oad w ds reached

"when the structure stiffness matrix becomes. singular. -



3.
In the derivation of the member stiffness matrix and in the following

theory, it is assumed that:

(a) . The material remains elastic.
(b) Deflectjons are small,
(c) Plane sgctions remain plane.

(d) Vertical forces remain vertical during buckling.-

(e) Beam is straight, horizontal and of rectangular cross-section,

(£) Column is straight, vertical and of constant moment of inertia.

The foliowing derivations will set_up the stiffness matrices of the

various elements of the system.

2.2 STIFFNESS MATRIX OF BEAM SEGMENT

The matrix presented by Zavitz links the six components of force

and deflection shown in Fig.(2) by

ké = f (L
. = : %
where § (61, 62, 63, 64, 65, 66)
= o %*
£.= (£, £, £4, f,, £5, £)
and k = 12 EI . | M _V -6 EL |- 12 EI M _V |-6EIL
13 1 2 l2 l3 1l 2 12
M _V [M] -Vl |-M_V |-6J vi
1 2 1 6 12 1 6
-6 EL |-M_VL| 4EL | 6EL vi 2 E1
12 3 1 12 6 1
-12EL |-M,V | 6EL | 12EL | M,V | 6EL
13 1 2 l2 13 l. 2 12
-M_V -6 vi M v | & |-w
1 2 1 6 172 1 . 6
- 6 EIL V1 2 EI 6 EI M+ Vl| 4 EL
l2 . 6 1 12 . 3 1
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FIGURE 2. SEGMENT DEGREES OF FREEDOM FOR k

In the matrix k, the moment of inertia about the weak axis is:

I = b3d/12 |
the torsion consfant is:

3= (34/3) @ - .63 b/d)
and the segmeﬁt length is 1. Thevsymbols'v and M represent the primary shear
and mément about the strong éﬁis induced by vertical loading as defined in

Fig.(3);‘

- M)
ML — Mg
M-= M +V1/2 = (L bending moment

 FIGURE 3. SEGMENT SHEARS AND MOMENTS



2.3 TRANSFORMATIONS FOR RESTRAINTS

The Zavitz matrix.k allows free and‘independent lgteral translation
and rotation of the cross sections. In the problem to be studied, the lateral
motion of the top edge is prevented, but free torsional displacement is allowed.
Fig.(4a) shows a cross section at the left end of the segment with degrees‘of ‘
freedom § and f at the gravify axis.- Fig. (4b) shows the saﬁe-section.with

degrees of freedom & and f so placed to allow the locking of 31,_

_FIG. 4a . FIG. 4b

FIGURE 4. LEFT END OF BEAM SEGMENT

The following equations will transform § to 8: -

§1 = 61 + "e_(52, : N (a) )
52 = 8, ' (®) )
53 = 8 | () ) -
_f4 = 54 + e55' o ’ ‘ (d) ) .
fs = 5 ' (e) )
8 = S ,(f) )



that is,

ol
n

)
o

whexre T =

O O O © o »
©C O © O = 0
o O B O 0.0
o »—-_m o O O

- The forces f are transformed

F o= T.f

i

whgre Tl 1 0 0 0 O
-e 1 0 0 O

0 0.1 0 0

0 0 010

0 0 0-e 1

0.0 0 0 O

Egns. (1), (3) and (4) &ield:

1. =°
(leT ) §
Since T—1 = T %
1
%) 8 =
(leTl ) 6 ‘

k = *
.or k leTl

where k links the deflections and forces of Fig (4b)
Since the deck prevents 61 and 64, k .can be reduced toaé4xé

matrix i by removing rows and columns 1 and 4 from k to give:

H O © 0o © o

to f'by

= O O O O o

f

[

3

(4) -

(5)

(6)

(7)



where

where

Hll ot

ol

12 gre® | Jc - 12 E1e®* 36 |
3 1 6 Ele ' V1 3 71 6 Ele , V1
L 2 "% 1 = T7%
‘ 1 1
-0 M _ V) + 2 Me
(1 2) 1
6 Elei- M + V1 4 EL - 6'EL V1 2 EL
12 3 1 26 1
- 12 Ele _ JG 12 ELe | JG |
3 I. |- 6Ele , V1 3 1 - 6 Ele V1
1 22E = 1 , ==F .=
| : 12 6 | 12 6
+ 2 Me ' e MW
6 1 )
6 Ele , V1 2 EI -6 Ele vl 4 EL
=t 1 S tM+T3 1
1 1 _
Here Kk § = f (8)
= S s s X = 3 3 3 K *
= — -— - — % =‘ .= = = %
(fz, f3’ fss f6,) (fl)fz’ f3’ f49)
and T are defined in Fig.(5).
A2
4

5y

FIGURE 5. DEGREES OF FREEDOM FOR k



2.4 COLUMN STIFFNESS

As the beam rotates torsionally at‘the point of attachment of a
column, the forces induced»in‘the column top will create a torsional moment
which will either increase or decrease thils rotation. The column effect caﬁ
then be replaced by a torsional spring constant SK which in turn is added to
the diagonal term of the structure stiffness matrix S or subtracted from the
load vector,

As the beam deflects.at the c&lumn point, the rotation about‘the
vertical axis could be reStraine& by torsional stress in the column. This
effect is negiected.

- In all caseS‘itfis assumed that none of fhe primary mément M from w
goes into the column.

The effeét Qf the éolumn on the stiffness of the structure will
depend upon-the following:

1. AThe fixity of the ends of the éolumn. There are five possible caseé:
pin-pin, piﬂ-fix, fix-pin, fix-fix, and diaphragm where SK appro#ches
infinity and no rotational degreé of frgedom exists at the top of the
column,

2, Column properties: length L, moment of inertia,.Izz and modulus E,

3. Axial load R in the column.

(a) Fix~-Fix Case
Here it is assumed that the column is fixed both at the
foundation and to the beam so that a continudus deflection

curve exists in the buckled state as shown in Fig.(6a).



R
A\ r
(¥t

f
2 |
- - ‘ mhrr
FIG. 6a . . FIG. 6b FIG. 6¢
FIGURE 6. FIX—FIX COLUMN
Rather than solve for the forces'f._and f,, of Fig.(6a),

1 2

due to rotation g and translation gd of the column top, it is

© more convenient to consider the two unit cases of Figs.(6b) and

(6c). The forces at the column top of Figs. (6b) and (6c) ére'

given in closed form by J. M. Gere and W. Weaver [4] as:

flt =12 EI. 0D simi =12 EL S
© .3 12 (2-2 cosAL -~ AL sinAL) —= "1 . (a)
L : L3
t ~ ' 2
f2 = 6 E_I. ()\L) (l'COSAL) = 6 EI S
: 2 6 (2-2 QQSAL - AL 51nXL)A ;5 9 . (b)
r _ ‘ ,
_ L | _ _ ,
£ = 4 EI AL (sinAL - AL cosAL) =~ _. '
2 - - = 4 EI S :
L 4 (2-2 cosAL - AL sinAL)} =3 )

whefe A = V/RJEIL

N N N N N N N N N NN NSNS

(9)
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The final forces at the top are then:

Hh
I

t r
= £,°8d + £, 8 | | (10)

Hh
[]

t r, -
f2 gd + f2 8 ‘ (11)
Fig.(7) shows a more detalled view of the joint between two

segments of beam to which the column is attached.

FIGURE 7. BEAM JOINT AT COLUMN

It should be ﬁpted that the force Q.1is shown as.ﬁhe locking
force required to prevent tbp‘flange translation. Force W is an
external joint 1oad'fe§lacing the'distributed load w on 'the seg-
ments. The final force AV represents the difference in priméry
shears V acting at the shear centre. Equilibrium of the joint
requires that:

=0 AV =R-W (12)



ZH =0 Q=fl

il

IMo =0 m
or the torsional moment m equals:

m=fd+ £, - RBd/2 - WBA/2

The term WRA/2 will be considered later so that:

_ t r, t r
m= (£ Bd+ £, °B)d+ (£, Bd + £,

The spring constant SK is m for B = 1 so that:

SK = 12 EI Sle/L3 + 2(6 EI Szd/Lz) + 4 EI S3/L - Rd/2

(b)‘ Pin-Fix Case

Here the base is assumed fixed while the column top is

Qd/2 - WBd/2 + £,d/2 + £

2~ RBd/2

B) - RBd/2

pinned at the beam as shown in Fig.(Sa).v'

" mrir

FIG. 8a

w7rr

FIG. 8b

FIGURE 8. PIN — FIX COLUMN

11,

(13)

(14)

(15)

(16)

(17)
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As shown in Fig.(8b), the top of the column has no moment

capacity and only the force flt need be considered.

By superimposing the forces shown in Figs.(6b) and (6¢),

it can be shown that this force equals:

t t T te Ty, ' o
£7 = f7 - £ (£7/£,0)] AL

where fi on the RHS of Eqn.(18) are defined in Eqns.(9). .

| 2 .3 : : .
Thus: SK = 3 EI d“ (AL) : .
13 3(tan AL - AL) Rd/2 - (19
’ 2,3
= 3 EI S,d/L” - Rd/2 (20)
where Sg =.(AL)3/3 (tan AL = AL) o (21)

’

(¢) Fix-Pin Case

Here the base is assumed.pinned while the tdp’is fixed to

the beam, Fig.(9a). -

FIG. 90 ~ FI6. 9. FI6 8¢
. FIGURE 9. FIX —PIN COLUMN



(d):

13.

The column top forces of Figs.(9b) and (9¢) are found

from a linear combination of the cases of Figs.(6b) and (6¢)

together with the function S4 of Gere and Weaver. This gives:

SK = 3 EI Sedz/L3 + 2 (3 EI S7d/L2) + 3 EL s9/L ~ Rd/2

where S = (AL)3/3 (tan AL - AL)

6
5, = (L) tan AL/3 (tan AL = AL)

1 Sg=5,

Pin-Pin Case

(22)

(23)

- (24)

(25)

In this. case it is assumed that the column is pinned at -

both the base and at the beam as shown in Fig.(10a).

FIG. I0a ~ FI16. 10b
FIGURE 10. PIN— PIN COLUMN
From the statics of Fig.(10b), it is seen that: :
£ %= - R/L |
| A .

r= ‘r<=<-
£,=1, =4

The sprihg»coﬁstanfieQuals:vYSK = - RdZ/L,- Rd/2.

(26)

(1)

(28)
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‘(e) ‘Diaphragm Case

This case assumes that the lower edge of the beam and/or .
"the top point.of the column is‘sq constrained that no possible
rotation of the beam can occur'at that point. This implies an
infinitely stiff spring and the torsional degree of freedom is

therefore set equal to zero.

2.5 EFFECT OF TOP EDGE LOADING

In the analysis of‘thé forces acting at‘segment,joints, Fig.(7), it
'was noted that a rotational momeﬁt mAwas produced due to the external joint
load W. This final effect must be calculated at each jbintlin the structure
and added to the diagonél elemenfs qf kK. As previously derived in Eqn.(15)
. this moment is: | |

m = - WRd/2

Considering'only one éegment, W = wl/2 for a distributed load w on
tﬁe segment. - The additional.buckling effect; SJL;‘as a spring constﬁnt is
found by setting B = l.b-Thuszl . | | i o

o SJL = - wld/4 | o - (29)

must be added to elements 1,1 and 3,3 of k.

A concentrated joint ‘load of P will p?oduce a spring constant

SJL = - Pd/2 R | GO
which is ad&ed to elemenﬁ 1,1 of k if the load is at the least joint number

or element 3,3 if at the other end.

SOLUTION TECHNIQUE

The stiffness matrices presented in thé previous chapters contain
two types‘of parameﬁers...Firstly_are the system constants such as EI, Lb’ Js

etc., and secondly, the quantities M, V and R which depend on the external
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loads w and/or f. It is convenient to dgfine M, V and R as primary internal
forces due to basic input load of w and/or P. Since.these internal forces
vary linearly with external loads, the internal forces can be expressed as
oM, aV and oR due to an external load of ow and/or oP. In other words the
factor o defines a load 1evellabove the primary‘input level of loads,

The segment stiffness matrix now becomes at the load level T

k = ko +'aki +-ak2 (31)
whereioé '1231_e2+gg. 6 Ele - 12§le2;_._I_G_ { 6 Ele
‘ 13 1 1% 13 L ) 1.2
6 Ele 4 EI - 6 EL 2 EI
12 1 12 1
- 12 Ele?_ Jg - 6 Ele 12 Ere® | J¢ - 6 Ele
13 1 12 13 1 12
6 Ele 2 EI - 6 Ele 4 EI
12 1 12 1
k; = |- 2Me 0o + 2 Me 0
1 1
- M 0 0 0
+ 2 Me 0 -2 Me 0
1 1
0 0 M 0
1__(2= Ve —_\Ll' 0 +y_];
, 6. 6
yi 0 yi 0
3 6
0 Vi - Ve - V1
6 6
yi 0 v 0
6 3
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The column spring constants are more difficult to consider as they
contain gR inside the traﬁscendental function Si’ which cannot be factored
out as was done in segment matrices. However the column springs SK(d) can be
written as:

© [SK(a)]
Mo ]

The structure stiffness matrix S can now be expressed as:

S = Ko +_a(K1 + K, + SK(a)/o + SJL] | : (32)

2

where Ko'is the linear portion of the structure matrix generated by the

_appropriate addition of io for each segment; Kl and K2 are the appropriate

sums of il and Ez for each segment. The terms SK(a)/a and SJL are added to

the appropriate diagOnal'termg pf‘K1'+ Ké. The tefms in the square bracket
of Eqn.(32) may be replaced by K(&) to give;

SeK tak) B €t
The square matrix K(a) is unfortunately a function of the load level,u.sinée,
it contains the transcendental fugction Si.'

The structure stiffneSS'equation-npw becomes:

[Ko + a K(a)]A = F=0 ' ,' | _ . (34)

- The problem now is to find a value of d for which S becomes

singular. One way of doing this 1s to rewrite Eqn.(34) as |

KA = - oK) - | (35)

~and iterate as follows:

K A

Bt =" @ K(a)An (36)

,A An+1 is computed during one cycle and placed back in the right hand side
as:An for the ngxt cycle, If this system is uéed with a Choleski routine, it
has the advéntage that only one conversion of the symmetric positive definite
matrix KO is required to lowef triaﬂgular form while each iteration compares

to an extra vector load. Further, the unsymmetric matrix K(a) is oﬁly needed

to operate on An and no conversion or inversion is required. The disadvantage
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is that the system converges to the lowest absolute value of ¢ and in some

structures this may yield a negative d, indicating that the external load
must be in the opposite direction to those assumed in calculating M, V and R,
While this is mathematically precise, it is physically iﬁpractical as in the
majority of practical cases, including the ones considered here, the loads
are gravity loads so that a negative o indicates that the structure must be
turned upside down. The system would have indicated which sense the wind
ﬁust blow on an unsymmetric'structure to produce minimum buckling load.

| The iteration system was then rejected in févour.of calculating the
determinant of S as a function of a.:-The first time |S| becomes zero gives a
criticai value of d from which all internal stresses at buckling can be cal-
culated. Further, the gréph of |S| vergué o can be stafted at any value of o
to pick up positive or negative critical d as desired.

A computer frogram was writtén to output ISI for various o for any

’fypej§f co1umn, and diaphragms. Input consists of the primary M and-V‘for
eécﬁ segment together witﬁ primary.external IQads w and P aﬁd the1coiumn'axial

load R.. A description of this program islgiven in Appendix I.

EXPERIMENTAL MODEL TESTS

4,1 - INTRODUCTION
The three span beam with hinges in. the-ﬁiddle span, Fig.(1), is a
common type of structﬁre where buckling is a'problém. For this reason it wés
decided to concentrate on this éxample. Rather than model the whole structure,
‘iﬁ was decided to use only the left portion as shown in Fig.(1ll) as the

simﬁly supported centré portion has its unsupportedvlowér edge all in tension.
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3P

P PP P PP P P P P
S S A S S S

L
P2 | | ; 60“ X
< 2 spaces @ 6" = 72" ! N
FIGURE . Il. TEST BEAM AND LOADING

4.2  APPARATUS

The photo in Fig.(12) shows the test frame as a.stiffvbench.sup—‘
porting the left end and the column.. The plywood-wall.behind was rigidly
fastened to.the bench and served to iaterally brace the top edge.

The left support permitteq,freé rotation about the pfincipal beam
'a#es butlpreventéd'all other motion. Aluminum bars, with a smali hole in‘
each end, slippéd over finishing nails driven into the tﬁp edge of the beam
and into a cleat on the wall. These bars, spaced at‘3” on centres, prevented
" lateral motion of the top edge but ﬁere loose enough to aliow free rotation.‘
| Loads were aﬁplied to the top edge through scale pans below the 
table. The photo of Fig.(lB)-shows how the load is applied to the top edge
so that no torsional restraint is providgd. The bolts in‘compression were
turned to a sharp point in a lathe to fit into a conical hole drilled into the
- steel plate on the top edge qf the beam. The photo of Fig.(13) also shows the
pin—pin coluﬁn.' This was ‘also a metal'to'metal confact of a point in a . |
conical hole'tb provide no rotational restraint.

The columné fixed at the base and pinned at the top were also made
of steel. vThese were élamped to the beﬁéh.and provided withja'conicalAtbp ;: 

end as was the pin-pin case. 



s
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The photo of Fig.(l4) shows a fix-fix wood column tested and the
method of connection to the beam. The bottom was clamped to the bench.

One of the bars used to restrain the top edge was placed at the
columh'top to prevent lateral deflection of that point. This prevented tor-

sional rotation and acted as a diaphragm.

4,3 PROCEDURE

| AThe model beams used were clear, dry Douglas Fir; The value of Eb
‘was measured by bending the sample about its weak axis over ifs full lengthl'
with a concentrated force at the.midpoint. The valuelof G'was found by
twisting the sample over its full length with equallend torques. The values
of Eb and G togethér with measured dimensions of the pigce were used in com-
puter runs to predict the critical load. The critical load was,fouﬁd experi-
mentally by means of a Southwell plot - (or Lundquist plot). The rotation of
tﬁe beam about its';ongitﬁdihal axis,was.meaéured at increasing load levels by
'méans 6f;a‘mirr6f taped to the side of the beam. The plot used this rotation

with-the load level.

4.4  EXPERIMENTAL RESULTS
Table II summarizes the results of eight tests. The spans'were
alwaysias‘shown in Fig.(11). The loading was as -in Fig.(11) for the first

sevén_fests, but test #8 has a load P at the column point only.



TABLE I - EXPERIMENTAL RESULTS
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column

NRS | . Beam Test Column Case Model | Theory g at
& Beam XS R &G i and Parameters Pcr Pcr Cogﬁmn
| (ksi) (1b) | (1b) (psi)
102 2312. 1. pin-pin 14.63 14.24 446,
82.7 L = 15"
§¢§ 3.52" ,
7 2 pin-fix 23.46. | 22.27 716.
761" QZ?- 3/8" 6 |
L = 13.5"
103 1964. 3 diaphragm 47.73 | 54.58 4760.
?? 1148.9
;ﬁ 3.034" A fix-fix 49.72 | 54.31 4960.
Z A
. 425"
.314" 1.015" .
: L = 13.5"
z .
104 2029. . 5 pin-fix 5.53 5.29 390.
125.7 5"
DA 7 '5”
;? 7/
,; 3.334" ~
4 .
, 6 pin-£fix 12.42 11.02 877.
.365" ‘ N » ,
QD s b
L = 13.5"
7 ‘diaphragm . - 77.72 78.82 5480.
1105 : 2312. 8 _pin-pin 149. 148.
‘ 102 with ' -
~only load 82.7 L = 15"
above E ;
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4.5 DISCUSSION -

The results were considered quite good‘considering the complexity
of the structure and the number of variablé parameters. They were consistent
with expected results in that, due to friction true pin ends could not be
expected, and the experimentai results are thus slightly higher than theo-
retical. Conversely total restraint at the'column could not be provided by
the experimental diaphragm.and.fix—fix cases and therefore these cases are
slightly below the theoretical. |

In setting up the experiment, it was noted that sharpness of the
pins of the lqading apparatus and the sharpness of_thé pin-ended qolumns sig-
nificantly affected the results. Both the pin ends and corresponding conical
holes in the metal plates had.té be carefull& machined. The initial eccen-
tricities of the loads and column reactions will not affect the finai buckling
moment. This is analgous to lﬁtéral loads on columns not affecting the Eulef
load. This fact can be used to advantage by offsetting the loads slightly to
6§ercome_initial deformations of the sémple and keep the rotatiomns smgll. A
better Squthweli plot can thus be oBtained, i.e. oﬁe having small rotations
right up to incipient buckling. |

: ; The experiments.ca;ried out verified that the computér‘program.pre-
pared in accordance with the presented theory was in faét in close agreement
with the actual physical conditions. Theréfore no further testinngas deemed
advisable. and the prograﬁ could be used to check variéus beam and column

structures to produce design criteria.
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" DESIGN CHARTS

5.1  STRUCTURE PARAMETERS
It is ippractical to construct design charts for general structures

of the complexitygconsidéred here because the'multitude of system parameters
require a prohibitive npmber of cdmputer runs and graphs. For this reason,
.i;‘Was decided ﬁo construct design graphs forvfhe structure of Fig.(1) with
two‘ﬁinges in the centre span. Such infdrmation’willlhelp in understanding
and predicting the behavior of similar structures. As was the case wifh the
‘model study, only a pbrtion Ofkthe strﬁctu¥e‘was énalyzed,‘Fig.(lS), as the
middle portion is‘assumed not.to'bucklé,: Fig.(15)vshows thé two load cases
studied. Both ioéd_éases produce tﬁe-éaﬁe momeﬂt.ét the support and create
.. compression in the unsuppofted bottoﬁ edge, but thé‘ﬁalf'ioad_of Fig.(le).
produces compression over the lower edge_of-ﬁhe whole systeﬁ; whefégsAthat'of

Fig.(15a) has part of this edge in tension.

ywlp - ywbyp
w ' w
I 1 I I I 1T 1 I / 11 v
V) e
| |
EI—H [L | EI—p| |L |
. . | : ]
< Lb 1N ~Lb KL= X
FIG. I5a | FIG. 15b

FULL LOAD CASE . o "HALF LOAD CASE

FIGURE 15. STRUCTURE AND LOAD CASES ANALYZED -
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The ctitical stress, Ocp» Wust be a function of the following para~-
meters for a specific type of loading:

= £ [b, d, L s y» EI, L] (37)

OCR " b’ Cp
Herein:
Eb is the beam modulus of elasticity

Gb is the beam shear modulus
b is the beam width
and the remainder are defined in Fig.(15).

These ten items contain two dimensions,so that the following eight

dimensionless'parameters govern the pfpblem:

GCR [b ’ LIERE. £ L ¢EI
E -f[Q 'Lb 299 | ng 2 ' (38)
b bd"L Eb ‘ : 4

where ¢ 1s a dimensionless number.

The final two ratios will not affect o if a diaphragm between
adjacent beams is placed at the column top, and the f1na1 ratio is not
required for the pin-pin columh case. |

In all cases.the tof edge is free to rotete torsionally but res-'
trained from lateral motion. The 1eftesupport preveﬁts all motion except
rotation about the principal aies.f The right end is free tobretafe about all.
three'axes.

The final dimensionless ratio merits more discussion.and is defined
‘ass | |

n = ¢ EI Lb/bdszEB

where'¢ is a‘dimensionlesé constant and may be given any value without affecting

(39)

the'iesult.' it is convenient to define ¢ as:.

| K =',6n (E,) (m ) | : : : l<4.°>j

<—> (RLb) . R
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where: Mm is the maximum moment in the beam at full load condition.
| R is the column reaction at full load conditionm.
fb is a reasonable allowable bending stress. This was set at 2.1
ksi for the whole study and in no way is it connected to the actual
bénding stress which.may be present in. any real beam.
The ratio Eb/fb was set at 1600/2.1. Since Mm is proportional to
RLb, theﬁ ¢ depends on n and y. This is permissible as n and y have been

included as ratios. With this definition of ¢, the ratio n becomes:

2 2.
_ [ Mn)/z] [n2 EI/LZ)
"] [GR ] | (41)
: b -

The load level a, as included does nét affect n but affords the
following interpretation for n. If g is chosen. to give the bending design

load on the system, then o, Mm/Z is the maximum bending stress in the beam.

1
The left hand ratio is then the ratio of this stress to an aliowabie stress
and will be near unity. The term le then fgpresen;é the column load at this
condition so that the right hénd term is the ratio of the critical load of a
"pin ended Euler column to the actuallload in thé column., Thus n is approx-
imately equal to the factor of séfety against column buckling and will vary
from about two to five. It is not exéctly the safety fgctor because fb may
not bé 2.1 ksi and the column may not be pin—pin. However, this serves to
define an order of magnitude of n. In all cases, n-'is to be calculated from
the preceding formula, Eqn.(41), using.fb = 2.1 ksi, even if the coldmn'is not
pin-pin.

Example

Determine n for a structure with

L =40 fe. ©m = .25
L = 255 in. . Yy = .3
= 50 in. ‘ " b =5.1n.

d

"EI 960,000 k in2 (any support.condition, any material)
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Solution
If w is the uniform load (kips/ft.)
Mm = [w .3(40) .25(40) + w (.25 x 40)°/2] 12 = 2040 w kip in.
Z = 5(50)2/6 = 2083 in>
Full Load R = [(40 + 10)%¢/2 + .3(40) w(50)}/40 = 46.25 w kips
"~ From Eqn.(41)

n = [__2040w ] [9.87(960,000)] _ 1.47
- [2.1(2083)] [65025(46.25w) ] '

5.2 VALUES OF PARAMETERS
: Results are presented for five.separape cases of column type,

namely: | | | R -

(1) Pin-pin

(2) Pin-fix (fix at bottom)

(3) Fix-pin (fix at top)

(4) Fix-fix

(5) Diapﬁragm at column top

For all column types the foliowing values of n and 'y were used:

Case n Y
A .1 | b
B .2 .3
c - .2 5
D : .22' .28
E .3 .2

These values are for three equal bays, except case C which has the centre bay
(column to column) equai to 1.4 Lg. Case D places the hinge such that the
maximum positive and negative moments are equal.

' The parameter L/d was constant at 5.1 to ease the plotting problem.
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The factor n'was set at 2.0, 3.0 and 5.0.

The ratio Eb/Gﬁ is taken at 16 as the material under consideration
is glulaminatéd timber, | |

The ratio L _/d was set at 6.0, 15.0 and 37.5.

.The depth to breadth ratio of the Beams was taken as 6.0, 8,0 and
10.0. |

.Results of the above ﬁarametersvaré given in tabular form in
Tables Ii to VI, and plotted on graphs, Fig.(16) to (30).

In all of the following graphs, the oxdinate is:-

1000 oCR/Eb
where R represents the maximum bending stress at buckling whether it be.
from positive or negative moment, except in the diaphragm case where iﬁbrep-
‘resents the bending stress at the column. The abscissa used in all graphs is:

p = 1000 (b/d)? Y&/l |
where Lc is the length of the lower edge which is ac;ually under compression,
M;ny piéts of critical stress were.made agéinst various parametefs before p
-_wasvéhosén as the most convenient; This définition of p seems to‘bring‘the

curves ofieach graph close fogether‘so they mé& be approximated with one

straight line either horizonmtal or thrqugh the origin.



CASE A B
A
d d P ORD. ORD. . ORD.} »p ORD, ORD.
| b
LOAD
¢| 6| 26.05 |15.67 | 18.90 |10.45 |17.12 | 9.11 {18.15 | 9.9 |15.89 | 9.07
FuLL (| 8 | 14.62 | 8.99|10.62 | 6.00 | 9.61 | 5.25 |10.18 | 5.71 | 8.92 | 5.23
(l10 | 9.36| 5.89| 6.80 | 3.89 | 6.16 | 3.64 | 6.52 | 3.70 | 5.71 | 3.39
6. , o -
(| 6| 10.82{ 6.64|10.35 | 6.91 [10.35 | 6.56 |10.28 | 6.64 | 9.95 | 6.62
marF (| 8| 6.08| 3.83] 5.81 | 3.99| 5.82 | 3.79] 5.77 | 3.82 | 5.58 | 3.82
(lwo| 3.90| 2.48| 3.73| 2.58 | 3.73| 2.46 | 3.70 | - 3.58 | 2.48
(| 6| 16.45| 8.07|11.93 | 6.54 |10.81 | 6.00 {11.47 | 6.29 |10.03 | 5.79
ruil (| 8| 9.25| 4.60| 6.72 ] 3.79 ) 6.08 | 3.46 | 6.45| 3.63| 5.65 | 3.36
(lwo] s.92| 3.02| 4.29| 2.43| 3.89 | 2.25 | 4.12| 2.35| 3.61 | 2.18
15. ' , - A
(| 6| 6.8¢| 4.82] 6.54| 4.93| 6.55 | 4.73| 6.49 | 4.72| 6.28 | 4.65
marir (| 8| 3.85| 2.77| 3.8 | 2.86 | 3.68 | 2.73| 3.66 | 2.74 | 3.54 | 2.70
(lwo| 2.46| 1.83] 2.36| 1.86 | 2.36 | 1.78 | 2.34 | 1.78 ] 2.26 | 1.75
(| 6| 10.62| 5.62) 7.56| 4.69] 6.85 | a.46| 7.26 | 4.59] 6.36 | 4.34
roll (| 8| s.ea| - | s.09| 2.73) 3.71 | 2.57 | 3.94| 2.63| 3.45 | 2.52
(o] 3.74| 2.07) 2.72| 1.77| 2.46 | 1.67 ] 2.61| 1.71| 2.28 | 1.64
37.5 S
Tl 6] 4.33] 3.95| 4.164| 401 414 3.8 4.11| 3.84| 3.98 | 3.83
‘marr (| 8| 2.35] 2.251 2.25| 2.37| 2.25| 2.25| 2.23| 2.27] 2.16 | 2.21
(10| 1.56| 1.48] 1.49| 1.52] 1.49] 1.46| 1.48 ) 1.45] 1.43 | 1.44
TABLE II - DIAPHRAGM CASE RESULTS
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- CASE

C
T d | ORD, p ORD, ORD. o ORD. ORD,
b | o '
" LOAD
(] 6 |26.05 .125 118.90 | .225 |17.12 | .260 | 18.15 | .231 {15.89 | .276
| FoLL (| 8 |14.62 .073 110.62 | .131 | 9.61 | .151 }10.18 | .134 | 8.92 | .163
- ¢]10 9.36 | .048 | 6.80 | .085 | 6.16 | .098 | 6.52 | .087 | 5.71 5
6. 4 .
(| 6 |10.82 .220 {10.35 | .382 110.35 | .388 10.28 | .389{ 9.95 | .459
HALF (| 8 6.08 .128 { 5.81 | .222| 5.82 | .226 | 5.77 | .226 | 5.58 | .266
({10 3.90 .084 | 3.73| .144 | 3.73 | .147{ 3.70 | .147 | 3.58 | .173
(] 6 |16.45_ | .121 {11.93 | .214]10.81 | .248 | 11.47 | .219 |10.03 | .262
FULL (] 8 9,25 071 6.72 | .125| 6.08 | .144 | 6.45 | .127 | 5.65 | .152
(] 5.92 .046 | 4.29| .081} 3.89 | .094| 4.12 | .083] 3.61 | .099
- 15. .
' (l o 6.84 w214 | 6.54 | .368 | 6.55 | .370| 6.49 | .370 | 6.28 | .434
HALF ({ 8 | 3.85 - 3.68 - 3.68 - 3.66 - 3.54 -
(|10 2.46 - 2.36 - 2.36 - 2.34 - 2.26 -
(.6 |10.42 119 | 7.56 | .209] 6.85 | .242| 7.26 | .214| 6.36 | .255
FULL (] 8 5.64 069 ) 4.09] .122] 3.71 | .141| 3.94 | .124| 3.45 | .148
. ()0 3.74 0451 2.72 1 .079| 2.46 )} .092) 2.61 - 2.28 | .097
37.5 : :
(|l 6 4.33 .209 | 4.14 - 4.14 | .361| 4.11 ] .361| 3.98 | .424
CHALF (| 8 2.35 - 2.25 - 2.25 - 2.23 - 2.16 -
- (|10 1.56 - 1.49 - 1.49°| - 1.48 - 1.43 -

- TABLE III - PIN~PIN CASE RESULTS
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: ' CASE A B C D E
L e
] n—-> 2 3 5 2 3 5 21 3.5 2 31 5 2 3 5
d ) ORDINATE p ORDINATE ORDINATE ORDINATE ORDINATE
. b ’
LOAD
: ( 6]26.05 4i1].4781.612 [18.90].368|.435|.569 }17.12|.381 |.446 |.575(18.15 |.359|.424 |.552 15.89].398 |.463].594
FULL | ( 8[14.62].295].365|.496 {10.62].270|.337 [.471| 9.61|.276|.341{.470{10.18 |.261(.327{.459] 8.92|.286 |.352|.482
‘ (10| 9.36{.239(.305(.439| 6.80(.222(.289{.423} 6.16/.225(.289{.419] 6.52{.216{.282(.413] 5.71(.232(.297[.427
6. . - ) . .
. (.6[10.82].449].567|.803 [10.35].604|.721|.955 [10.35|.569}.666 |.860]10.28|.600{.712|.934} 9.95|.662|.771.988
HALF | ( 8 6.08|.360|.478|.714 | 5.81}.449],566|.799| 5.82(.412{.509[.702| 5.77 |.442|.554|.776| 5.58}.476 {.585|.801
(10{ 3.901{.317|.435].670| 3.73}|.374{.490|.726| 3.73{.336.432.625| 3.70|.366|.477|.698| 3.58{.385].494}.710
( 6[16.45].403|.470}.604 111.931.356|.423{.557110.81|.369.434(.563{11.47|.343}.409}.540{10.03|.383(.448{.579
FULL | ( 8] 9.25].291{.357|.491{ 6.72(.264|.330{.464{ 6.08(.269}.333(.462| 6.45|.255|.320].451} 5.65{ - |.343{.473
(10} 5.92{.236|.302|.436 | 4.29|.218 |.285|.418{ 3.89[.220|.285|.414] 4.12|.212{.277|.408] 3.61{.226|.291}.421
15. : ' : : S | cT ‘ _
( 6] 6.84(.445|.561{.797} 6.54.590|.703(.937 | 6.55|.552{.649}.842] 6.49[.581].693|.915].6.28].637}.746/.963
HALF | ( 8] 3.85| - - - 13.68] - - - {13.68] - - -1 3.66| - - -} 3.54] - - -
(10} 2.46]| - - - 12.36] - - - | 2.36] - - -} 2.351 - - - 12.26] - - -
( 6110.42].397|.464).597 | 7.56{.351].417{.551] 6.85 .363|.428|.5561 7.26|.338].403].534] 6.36.376|.441.572
FULL | ¢ 8| 5.64(.287|.353|.487 | 4.09}|.260{.327{.460} 3.71|.265}|.330.458} 3.94{.251|.317|.448| 3.45|.273|.338.468
( 10! 3.74(.233(.300(.433 ] 2.72{.216{.282}.415| 2.46|.218{.282{.410{ 2.61}.209| - |.405| 2.28].223|.288|.417
37.5 _ , : _
( 61 4.33].439|.557(.793| 4.14] - - - 4.14].5431.640].833] 4.11(.573].684).906] 3.98}.627|.736].952
HALF | ( 8] 2.35] - - - 2.25] - - - 2.25| - - -] 2.23] - - - | 2.16) - - -
(10} 1.56] - - - 1.49) - - - 1.49] - - - | 1.48}) - - - {1.43] - - -

TABLE IV - PIN-FIX CASE RESULTS
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CASE A B c D E
T pes 2 3 5 2 5 2 3 2 | 3 5 2 3
Iy | |
. d di » ORDINATE ORDINATE P ORDINATE ORDINATE o ORDINATE
LOAD
( 6]26.05[2.01{2.97]4.89/18.90/2.02{2.99{4.92(17.12{1.98{2.93|4.8218.15|1.98|2.94{4.84 |15.84]1.99]2.95 |4.84
FULL. | ( 8|14.62]1.97}2.93|4.84(10.62{1.99{2.95|4.84] 9.61|1.95|2.89|4.66{10.18|1.95(2.90|4.73| 8.92{1.9612.904.67
(10| 9.36(1.95|2.91{4.81| 6.80{1.96|2.91|4.18] 6.16|1.92{2.83|3.69] 6.52{1.93]|2.86/3.65] 5.71|1.90]2.84(3.36
6. -
( 6[10.82{3.76{5.42]6.6010.35[3.73|5.60]6.82[10.35(3.11{4.59/6.46|10.28/3.57|5.25|6.57] 9.95{3.52[5.17{6.57
1eaLr | ( 8] 6.08|3.55(3.81(3.82] 5.81(3.61(3.95|3.97] 5.82(3.04|3.74(3.78] 5.77{3.45|3.7913.81} 5.5813.40(3.79]3.81
( 10| 3.90|2.47{2.4812.48| 3.73[2.56{2.57(2.57| 3.73|2.45|2.45|2.46 3.70{2.47|2.47|2.47] 3.58|2.46|2.47|2.47
( 616.45{2.0012.97|4.88]11.93{2.01(2.98|4.90{10.81]1.98]2.93{4.79]11.47]1.98]2.93)4.80110.03]1.99/2.9414.79
FULL | ( 8} 9.25(1.96|2.93|4.83] 6.72{1.98(2.93(4.15| 6.08|1.94[2.87|3.45] 6.45{1.95]2.79]3.61} 5.65/1.95(2.87(3.35
( 10 5.92]1.95/2.90{4.80] 4.29] - |2.65|2.70| 3.89[1.91{2.23|2.25] 4.12{1.92{2.34{2.35] 3.61|1.91]2.17(2.18
15. , ~ ’ ' ’ ' :
' ( 6| 6.84]|3.65|4.76(4.78| 6.54(3.71{4.90(4.93) 6.55[3.12|4.50{4.71] 6.49]3.55|4.68(4.71] 6.28|3.51{4.61]4.64
HALF | ( 8] 3.85| - 12.77[2.77] 3.68| - |2.86|2.86]| 3.68| - [2.73|2.73} 3.66]2.74|2.74|2.74] 3.54] - |2.70!2.70
(10} 2.46]1.83}1.83(1.83] 2.36|1.86|1.86{1.86} 2.36|1.78|1.78]1.78] 2.34|1.78]1.78]1.78] 2.26[1.75]1.75|1.75
( 6|10.42]|2.00{2.96(4.87] 7.56{2.01{2.97|4.84] 6.85(1.97(2.92]4.39] 7.26{1.972.92]4.48] 6.36]1.98/2.93|4.31
FULL | ¢ 8] 5.6411.96]2.92|4.82] 4.09|1.97|2.87|3.00! 3.71{1.94}2.55|2.57} 3.94]1.94]2.61]2.63] 3.45|1.94]2.50]2.51
A (10§ 3.74|1.9412.87|4.63] 2.72[1.89]1.95|1.95| 2.46{1.66/1.67|1.67] 2.61|1.70{1.71{1.71] 2.28]1.63]|1.63|1.64
37.5 : , : -
_ ( 6| 4.33|3.67|3.94]3.94} 4.14| - |4.01{4.01| 4.14(3.09]3.84[3.85] 4.11|3.35|3.84(3.84} 3.98]3.50|3.80]3.80
HALF | ( 8} 2.35| - |2.25]2.25] 2.25) - |2.37|2.37} 2.25| - |2.25{2.25] 2.23|2.27|2.27|2.27] 2.16] - |2.21|2.21
(10} 1.56]1.48]1.48|1.48] 1.49]1.52|1.52{1.52| 1.49|1.46{1.46|1.46] 1.48]1.45[1.45|1.45] 1.43|1.44|1.441.44
TABLE V - FIX-PIN CASE RESULTS
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CASE A B c D E
. -
n—> 2 '3 |5 2 31 5 2 3| 5 3 2 3
Ly
d g: P ORDINATE p ORDINATE ORDINATE  ORDINATE 0 ORDINATE
LOAD - |- ' - L :
. ( 626.05|4.17]6.19]10.2|18.90 |4.18]6.20]9.95|17.12[4.10]6.048.78 |18.15|4.11]6.08]9.32 |15.84 |4.12]6.07]8.77
FULL | ( 8{14.62|4.11{6.12{10.1{10.624.11]5.91]6.61| 9.61{3.99{5.10/5.22[10.184.035.45|5.67| 8.92[4.01|5.10{5.20
( 10] 9.36(4.08!6.07]9.93] 6.80|3.89{4.23|4.27] 6.16]3.32(3.38(3.39] 6.52{3.56(3.67{3.68| 5.71(3.343.37[3.38
6. . N :
( 610.82]6.53(6.61(6.62]10.3516.73{6.85(6.88110.35(6.10(6.50|6.54 {10.2816.45(6.58!6.60] 9.95(6.41{6.57|6.61
HALF | ( 8] 6.08|3.81{3.82{3.82] 5.81(3.96{3.97(3.97] 5.82|3.76[3.78{3.78| 5.77[3.80(3.81{3.82] 5.58(3.80(3.813.81
(10| 3.90|2.48(2.48(2.48] 3.73{2.57|2.57|2.58| 3.73]2.45]|2.45|2.46| 3.70|2.48|2.48]2.48 | 3.58|2.47|2.47|2.47
( 6[16.45]4.17]6.18]10.211.93|4.16[6.10]7.17|10.81|4.07|5.72|5.97 [11.47|4.09|5.86|6.26 {10.03|4.09]5.64|5.80
FULL | ( 8] 9.25|4.07]6.1019.79] 6.7213.93|4.11]4.16| 6.08|3.41{3.45|3.46| 6.45/3.56|3.62|3.63} 5.65(3.33(3.35/3.36
{1 (10} 5.92{4.06{5.96(6.91] 4.29| - |2.70(2.70] 3.89|2.24]|2.25/2.25} 4.12]2.35]|2.35{2.35] 3.61]2.18/2.18/2.18
1s. ' . i o : . | _ , |
( 6} 6.84]4.7814.8214.78] 6.5414.914.92(4.93] 6.55(4.70(4.71|4.72] 6.49{4.70]4.71]4.72] 6.28]4.63|4.64 4 .64
HALF | ( 8| 3.85|2.77|2.77|2.77] 3.68|2.86|2.86/2.86] 3.68|2.73{2.73/2.73] 3.66|2.74|2.74]2.74] 3.54|2.70{2.70|2.70
(10| 2.46|1.83|1.83{1.83| 2.36/1.86[1.86|1.86] 2.36]1.78|1.78]1.78| 2.34{1.78{1.78[1.78] 2.26{1.75|1.75(1.75
: ( 6]10.42]|4.16(6.16[10.0] 7.56|4.14|5.14(5.17} 6.85|4.02(4.42|4.43| 7.26|4.04|4.54]4.54] 6.36]4.02{4.33)4.34
FULL | ( 8| 5.644.09/6.05| - 4.09]2.99(3.00]3.00] 3.71|2.57}2.57|2.57} 3.94]2.63)2.63]2.63] 3.45/2.51]2.51]2.51
- ( 10| 3.74|4.01{4.7314.76] 2.7211.95{1.95]|1.95) 2.46]1.67|1.67]1.67| 2.61|1.71]1.711.71] 2.28]1.64|1.64]1.64
37.5 . : , _
E ( 6} 4.33{3.94{3.94{3.94] 4.14{4.01{4.01|4.01| 4.14{3.84|3.85{3.85| 4.11]3.84]3.84|3.84] 3.98/3.80!3.80(3.80
HALF | ( 8| 2.35|2.25|2.25[2.25| 2.25|2.37|2.37{2.37] 2.25|2.25|2.25[2.25| 2.23|2.27|2.27|2.27] 2.16|2.21]2.21]2.21
( 10| 1.56]1.48[1.48]1.48) 1.49/1.52{1.52|1.52) 1.49|1.46]1.46]1.46] 1.48/1.45/1.45/1.45) 1.43]1.44|1.46]1.44
TABLE VI - FIX-FIX CASE RESULTS
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5.3 DIAPHRAGM RESULTS
A study of Figs.(16), (17) and (18) shows that it is conservative
to state that: _
o g /B = -S/a)? VAL )
c
for both full and half load cases.
A buckling factor of safety of 3 on the usual bending stress of 2.

ksl gives:

3(2.)/1600. = .5(b/d)> U S I (43)
or . . ' »
(d/b)? I Jd = 133 (44)

Values of this ratio greater than 133 will require a reduction in
_the usual allowable bending stress, so that for economic design:

(a/)? Vi 7d = 133 | (45)

This is a general conclusion from the conservative approximations of
the graphs and the allowable bending stress, but more accuracy can be obtained
fof individual cases from graphs or tables, |

It should be specifically noted that the moment used for OcR in the
diaphragm cases is the moment at the column, which may or may not be the maxi-

mum moment in the structure.

5.4 PIN-PIN AND PIN-~FIX COLUMN RESULTS

Perusal of the graphs for these cases, Figs.(19) to (24), shows that

the maximum ordinate is given by approximately:

1000 ¢ = 1.0 ; : (46)

CR/Eb
with many cases less than half this value.

For E_ = 1600 ksi, this yields ocg equal to.1600 psi. With the usual
factor of safety of 3 for buckling, this yields an allowable'streSS of 530 psi.

This allowable stress is so low as to show that this system of support is unecon~
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omical. For this reason, no approximate formulae are presented for design.

Instead, it is recommended that this support system not be used.

5.5 FIX-PIN COLUMN RESULTS

In thi§ case, with the column fixed at the beam and pinned at the
base, an éntirely different type of behavior is observed from the graphs,
Figs.(25) to (27). Herein, the colﬁmn is stfong enough to start restraiping
the beam from buckling. The left hand part of this plot can be approximated
by a straight line thfqugh the origin as was done for the 'diaphragm case;
The right hand paft can be appréximated by a horizontal line. The left hand
: linear part shows that the co}umh is‘stiff enough to restrain the beam as
would a diaphragm, ' This is then a beam buckling region with the column almost
motionléss. However, when the plot is hofizontal; the beam is stiffer so this
is essentially a cplumn buckling portion‘witﬁ the beam slightly changing the
| cfitiéal load on the column. | |

Now that the phenomenon is undersfood, the ordinate at the horizontal
part of thesé curves can be derive& almost exactly. To do tﬁis, it is assumed

that the critical load of the column is:

R _ .2 2 ' | > ' ; 47
crpr = " EL/(L+d) | (47)

This column load can be replaced by Mm to give, for the full load case,
2 2 o ‘

Mm m EI 7 EI ' S
CRIT _ - D2 - . (48)
Zfan : : -

from which:

1000 ocp = n % 1000 0 A €
Ep awm’® B | |
=1.32a2 o (50

(1+d/L)2_
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For L/d = 5.1 on these graphs

1000 o, /E, = 0.92n | (51)
The graphs show this factor to average about 0.96n on full loading cases, as
would be expected as the approximation for ﬁCRIT in Eqn.(47) is conservative.

For the half load case, the left side of Eqn.(48) musf be multiplied
by the ratio of half load reaction to full load reaction. For Case B fhis
ratio 1s 0.539. The expressibnifbfvcritica1 stress on the horizontal line

then becomes, for Case B:

1000 ¢

Eb

CR = 0.92n/.539 - . | (52)

= 1.71ln - . (53)
The average value for the half load graph is approximately 1l.7n for d/b = 6,
. | It is noted from the graphs that as the beam gets stiffer the
critical_stress incréases slowly, that is, the plot is notbquite horizontal,
This increase is due to the beam restraining the column from buckling. Iﬁ the
limit, with an'infinipely stiff beam (zero length, for example), the top of
the column is fixed not only to the beaﬁ, but fixed for rotation. At this
point, the critical column load will be about twice the Euler 16ad, so that
the factér, .92n will increase to a maximum of. 1.84n,
‘In summary then, it is recommended that the critical bending stress

be taken from the smaller of the following two expressions:

og/E, = ~-920/1000  (full load) @) .
. ) (54)
= 1.7n/1000 (half load) EOP)
or | | | _
s .
o/ Sm/d* VAT | (55)

It is emphasized here that this is the maximum buckling stress'in the beam

wherever it occurs. More accuracy is obtainable from graphs for individual

cases.
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5.6 FIX~-FIX COLUMN RESULTS

The curves here, Figs.(28) to (30) are similar to those for fix-
pin columns except that the horizontal poifions have ordinates of 2.0n
instead of .96n fpr the full load case. This 1s to be expected as a fixed
base will double éhe criticaliload of the column.

It is recommended . then, that the critical bending stress be taken

~from the smaller of the following two expressions:

oCR/Eb‘ = 1,.84n/1000 (full load) (a)" )
' : ) (56)
= 3.4 n/1000 . (half load) (b) )
or 4
qCR/Eb = ) .5(b/d)° /d7LC" : | | (57)

where the stress is the maximum bending stress in the beam. Such expressiohs
- are conservative but greater accuracy can be obtained for individual cases

from the graphs.'

DESIGN CODE RECOMMENDATIONS

The following design.sbécification is given as a summary of the
preceding work and as an aid in extension to other load andlboundary condi- -
tions. It is conserva;ive for the system considéred in previous chapters
and would be reasonably close for the cases not too far removed from those
considered.

1.0 _ ~In a continuous beam apd column'system of glulam, whereiﬁ the top
. edge is continuously Supported_agaihst lateral motion by éuitable
bracing or.roéf system, and the lower edge of these beams is not so
supported but is in compfession due to negative moment, the allowable
: bénding stress shall bé calculated in accordance to.clauée 1.1.below.-

‘

In such a system the ends of the beams must be prevented from rotation

torsionally.



1.1.1

1.1.2.
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If a diaphragm is provided between beams at the column and is so
designed as to prevent torsional rotation of the beams, then the
critical bending stress is given by:

- Vi

where Lc is the length of the bottom edge in compressién'and Ocr is

- from the moment at the column.

If a diaphragm is not providéd as in 1.1.1 then:

(a) the column to beam connection must be-équaré ahd rigid
so that as the beam rotates torsionally; the ;olumn top
undergoes thevsamé rotation. | |

(b),: the column to beam connection ﬁust bé designed to resist

“the axial column load, together with a moment due to
accidental eécentricity of magnitude RL/SO;'Qhefe‘R_is

the column force and L its length.

" In such cases the critical bending stress is given by:*.~l

where;

o = 1.8 n Eb/lOOO_:_ fix base; full load
= 3.4 n Eb/lOOO fix base, half load
= 0.9 n E_/1000 | ‘pin base, full load

= 1.7 n E, /1000 pin base, half load

 but in no case ShalquRféxceéd that stress given by:

5
ocg =. 5 E,(b/d)7 VAL

where: ' '
'UCR Iis the maximum critical Bending stress in the beam
Eb is thebbeam flexural modulus

and ﬁ is defined as follows:

n

- Om/z£,) (x% EI/L?R)

Mm is the absolute maximum moment ‘in the beam - =

SN
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Z is_the section modulus
fb is 2.1 ksi

EI is the flexural rigidity of column.

_ 1.1.3 . --Thé'allowable bending stress shall be calculated from the standard
.column formulae for glulam using Fb instead of Fa’and using a slender-
ness ratio given by the following:

slenderness ratio = 7w VE/12 Ser

'_ where 9er is giveﬁ in clauses 1.1.1 and 1.1.2 [5]..
Herein Fa is the basic allowable compressive stress parailel to grain
- 1if no axial buckling is possible and Fb is thé‘basiC‘ailowable bending

-~ stress if no lateral buckling is possible.

1.1.4 Columns without diaphragms at the top, but pinmed at the top and .
fiked at the base or pinned at both ends offer so :little restraint to
the beam-that the critical stress is excessively loﬁ;‘fIf such systems

are uSed,'SPecialwtest,or analysis shall be made. .
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APPENDIX ‘I - PROGRAM FLOW CHART

bn the following page is the flow chart of the computer program
used in the producﬁion.runs for the column cases, full load. It is set up
for the calculation of the determinant of S at NI load levels for each of
the four column fixity cases. A negative'|S| ends that column case and
causes the next column case to be considered. To bypass a column case it is
only necessary to put a blank data card in for the F(K) values. The routiﬁe
will be repeated for each set of structure cards input.

For runs to check the experimental findings, it is necessary to
exclude the section:of the source deck which calculates_£he moment of inertia
. of the éolumn based on the strength of the beam. The actual BC of the column
used in the experiment is input along with other column data.

As the column does not affect the diaphragm case, all sectiomns
dealing uniquely with the coluﬁns (those markéd with *) can be deleted, and a
single diaphragm case run for each structure.

On‘an IBM 7044, the fime required for one sfructure considering

four column cases, 18 beam segments and four load levels, was approximately

1 minute.



FLOW CHART - FULL LOAD

(START )

bt
sl

| Reed Data Card D1| - J
' 'DOI=1,NM
[Print TITLE| . | Build SM from Beam Info and
| M and V times F(K). Add SJL

[Read Card D2 Beam Info]

{Print Beam Info

lgead Card D3J

[Print Beam Info|

)
[Read Set D4 (I = 1,M0)| > Continue

ICalculate R and Mm1

Build S from SM's and NP(I,J)'s|

Call SUBROUTINE FMUR
for segment M, V and. 1

[Print_Segment‘Infg]

YES

*KFg;:Z\\~ > N
: (///(ﬁo S :

Continue

1, *Calculate SK for Column
Read .Card D5, F(K)'s, and , , -Add SK to S(NF,NF)
#*Read Card D6 Column Info v e R’ 3
for that column case, KFIX ‘ Call _SUBRO?TTNEf‘DETER
' o for |8 - ‘

- [*Calculate BC of Column]
1 .

Print F(K)'s and *Column
Info for current KFIX

)

[Zero out S Matrix| Print Print
. F(K) & |s]| F(K) & |s|

Ipse load factor F(Kf]

AKFLX+1

Continuel
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'APPENDIX ‘II - DATA INPUT -~ OUTPUT

' Data information requiring units is input for the particular data

cards as follows:

D2

D1

D3

- D4

D5

D6

.=  no ﬁnits

‘;! ksi for ﬁ‘and é

~ feet for lengths and‘kips for P
- in4 for B and T, inches for EC

- no units

inches for CL ksi for EL

: Uniform load of 1 kip/ft is assumed as basic load

Table VII outlines the sequence and format details of data cards,'

"required in ome complete structure ana1y51s.

TABLE VII - DATA INPUT SEQUENCE

CARD  DATA INPUT FORMAT - DETAILS
Dl . TITLE. R 13A6 o Alﬁhanumerics
A Lo : : only
D2 NRS, NM, NU, NI, E G, NTYPE | 4I5, 2F10., I10 | One card
p3* NRS, L, A, B, XL XA NL NA 110, 5F10., 2I5 | One card
D4 set’| NP(I,3), B(I), T(I),.EC(I) . | 4110, 3F10. | NM cards
| . | | I=1toM
» J=1+¢to 4
ps5? K S S ST | k=1tonr
* D62 CL, EL, KT, KB, NF. . - . | 2F10., 3110 - | Ome card:'_
‘NOTES :

1" NL = Number of segments in L o

' NA = Number of segments in A
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NL + NA = NM

XL = L/2NL
XA = A/2NA
2 'Cards D5 and D6 are input four times, once for eacp column case,

*  For: diaphrggm case, D6 1s omitted and D5 input onge only. NP(I,J)'

“will be zegp at NF.

Outpuﬁbprints out the following:
= all data input

calculated M, V.and 1 for each segment plus R and maximum moment "

values of Si’ fl and f2 at column top, and SK

values of_F(K) and the corresponding determinants of §

if NTYPE = 1, matrices SM and S.

APPENDIX III - COMPUTER PROGRAM LISTING

Tﬁelcompleto progfam listing for p;oduotion runs for column cases, -
full load is outlined on the followxng pages. |

The 1lstiog is set up for n = 3; For .any other valuo of n, place
. the follow1ng card at location marked “a" ln lis;ing. |

= 7./3.#BC ifn=17.

For half load rums femove the seﬁenvcards mafkod "h" and replace
:vwith the following se;en cards: B
P*(L+A)/L + A*(L+ S*A)/L

iRFL .5*(L+A)**2/L + P/L*(L+A)

CENTM = O.

COLR RFL*FLOAD

R1l

- P*A/L - A®A /(2.%L) -

VX = - R1

1

- RI*(Y*L/S - XL)
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In addition, the following two cards go atﬁ location hy and hy, as marked:.
| IF (I.LE. NL) GO T0 500 .  (at h,)

- 500 CONTINQE L (at h,) :
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“\‘“j‘ 102

TREAD 102sNP(1>11sNP(Ts2) sNP(Is3) TNP(T+4)sB(I1sT(IVECIT)
. FORMAT (411053F1040)
CALL FMVR(NRXsLosAsPoXLsXAsNLINASVXISEGesMy1)

BM(I) = M
V(1) = VX
O X(I) = SEG

X(I) = 12.%X(1) ‘ ' ' :
PRINT 103yNP(191)9NP(192)9NP(1’3)oNP(IsA)oBM(I)9V(I).B(I)9T(I)9EC(
1I)eX(1Y

j‘:‘,’mmr\wmqm

(.\l ,.,

R

103

FORMAT(lx.qxloyeFls.s)A
DB = 2,%EC(I)
BST = B(I)

2

14

CONTINUE _
DO 14 I = 1sNM
BM(I) = 124%BM(1)

g,

R = o EH(L+AV¥%2/L + P/LEILFAT
R1 =- (o5%(LEL-A%A)-P¥*A) /L
‘COLM = A¥A/2. + PXA

0
'~

CENTM = (L¥L-AXL+A*A)®#2/(8o*L%L)
" PRINT 1003 sRsCOLMSsCENTM

1003 FORMAT(5H R = sF10e3518H POS MOM AT COL = +F12.3s14H MAX NEG MOM =

C

1 sF1203) A :
- PROGRAM TO BE DONE.FOUR TIMES sONCE FOR EACH TYPE OF COLUMN FIXIDITY
DO 47 KFIX =144 ' R ' : :

INPUT LOAD FACTORSsTOTAL OF NI
READ 59 (F(I)9I=19NI)
'FORMAT (7F10,0)

PRINT 108 s (F({ITsI=1,NI) : T _
" FORMATI(/7/1Xs7F12.5) ' : : . h
'INPUT COLUMN INFO —-- LENGTH sMODULUS OF ELASTICITYs FIXIDITY OF TOP

AND BOTTOMsKX=0 - PINsKX = 1 - FIXs AND DEGREE OF FREEDOM sNF s WHERE
. SPRING CONSTANT 1S APPLIED
COLUMN FORCE 1S ALREADY FOUND AND MOMENT OF INERTIA OF COLUMN 1S DETERMINED

FROM ALLOWABLE FLEXURAL LOAD LEVEL OF BEAM
READ .15sCLs ELs KTs KBs NF - '
FORMAT(2F10.093110)

TCENTM = ABS(CENTM)
CRITM = AMAX1(COLMsCENTM)
ALLOWABLE MOMENT = F ALLOWABLE (241 KSI USED) X Z

NG
A 'y B0 o

o

"DETERMINE ALLOWABLE LOAD FACTOR

ACCM = o BO0I3*BST*¥(1e/3 1 #¥DB¥¥ (5,73,

CRITM = 12.¥%CRITM

‘19
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ELOAD = ALLM/CRITM

COLR = R#*#FLOAD

.C - COLUMN MOM OF INERTIA sFOR FACTOR OF SAFETY OF 3 USED

BC = COLR®¥CL*CL/(EL*¥3:27)
PRINT 16sCLs ELs R9BCsKTsKBs NF

| .16 "FORMAT(11H COL DATA =34F106353110)

K =1

¢ ZERO OUT STRUCTURE STIFFNESS MATRIX S
8 DO 6 I=15NU

DO 6" J E1%NU

| 6. 7 StI19J)¥=0,0

IF(F(K)eLTooOOl} GO TO 46

C BUILD " MEMBER™STIFFNESS™ MATRIX?SM?h*Qs(ROW?COL)
DO 9 I=1sNM
SL = X(I}

STC = E#BUTY7SL
' SE6 = 6o*STC/$L*EC(I) ' ‘ - ' A
SM{1s1)7 = 2.%SE6/SL¥EC(I) + T(I)¥G/SL — 20%EC(I)#*(BM(1)/SL ~

1 V(I)/Zo)*F(K) )
- SM(291) 'SE6 - (BMI(I) - V(I)*SL/Bo)*F(K)

SM(3+91) =-2o*SE6/SL*EC(I) - T(I)®G/SL + 2o *BM(I)*EC(I)/SL*F(K)

SM(491Y = SE6 + VITY*SL76c*¥F(K)

SM{1s2) = SE6 — VIIV®SL/6.%F(K)

SMU292) = 4o%STC

SM{352) ==SM(152)

SM(442) = 24%STC

SM(1s3).= SM(3s1):

SMTU2¢3Y ==SM(1+2]
. SM(3s3) = 2e*$E6/SL*EC(I) -+ T(I)*G/SL - Zo*EC(I)*(BM(I)/SL+V(I)/2¢
-1 YEFK) .

SM(#*B)*::SEG_T—TBM(I)—“_V(I)*SL/B_T*F(K)

SM(1s4) = SM(4y1) -

SM({2+4) = SM(4+2)

SM334) E=SM(Tv4)
SMU4s4) = SM(252)

‘-IF(NTYPE.NEol) GO TO 208

T PRINT 2059SM™ T

208 -CONTINUE ’ '
C -ADD SEGMENT JOINT LOAD9SJL’MOMENT INFLUENCE TO MATRIX

€ SJLE172 THE LOAD ON  THE SEGMENT FORUDL OF‘T’KTP/FT

SJL = ~SLRF(K)/24.e | o
SM(151) = SM(1s1) + SJL*DB/2s .

"ZS‘u
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v
N

SM(3+3) = SM(3+3) +SJL*¥DB/ 2+
TF(ToEQoNM) SM(393) = SM(393) ~PXF(K)*DB/2
IF(NTYPEoNEo1) GO TO 204

205
204

PRINT 205sSM
FORMAT (1XsTH %% s4E1567)
CONTINUE

C

BUILD STRUCTURE STIFFNESS MATRIX S9NU*NU FROM POSITION NUMBERS AND

[o2 B¢ I o S Vo R TS B~ S A0

C MEMBER STIFFNESS MATRICES
DO 20 LL = 1,4 e
N1 = NP(IsLD)
IF(N1) 22922521
21 ‘DO 17 MM=1s4
N2. = NP(IsMM)
- "TF(N2) 19919518
18 S{N1sN2) = S(NloNZ) +SM(LL9MM)
19 CONTINUE
17 CONTINUE
22 CONTINUE -
20 CONTINUE
: DB = 2.#EC(I)
9 CONTINUE
TEF(NTYPE-NE.1) GO TO 210
_ CALL MATOUTI(SsNUs70)
; 210 CONTINUE
. C DETERMINE CRITICAL LOADS FOR FIXIDITY
R CLS = CL%*CL
FB = EL®*BC/CLS
PE = 9,86%FB
XL = CL*SQRT(R*F(K)/(EL*BC))
: IF(KT+KB-1)53952951
€ CASE FIX - FIX
51. PCR = 4o0%PE
_ "IF(KeEQe1)PRINT 40 ‘
40 FORMAT(I0H ¥FIX-FIX¥)
.C° MODIFY FOR NON-LINEARITY

IF(R#F(K)elLToeO1#PE}GO TO 66

T DENOM = 24=2¢¥COSTXL)~-XL*SIN(XL)
. STB1l = XL##3%SIN(XL)/(12+*¥DENOM)

STB2 = XL#¥XL#¥(1e4~-COS(XLY)/(64+%*DENOM)

ST83 = XL*‘SIN(XL)-XL*CDS(XL)) /(4 o ¥DENOM)
GO TO 54 . :
CTRT = 1.

ogs
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54

$STB2 = 1.

STB3 = 1le
HC= IZo*FB/CL*STBl*DB + 6.%¥FB%STB2

. 200

CM= 6., #FB*DB*¥STBZ + Qo*FB*CL*STBB
PRINT 200

201

T PRINT 2015FBsSTB1sSTB2sSTB3HCYCM
. FORMAT(6F1003) -
GO TO 65 e

FORMAT(55H - FB . 'STB1 STB2 STB3 HC

CM)

52

C

C

56

PCR = 2.0%PE - P
IF(KB-1)57+56+56

- CASE PIN - FIX

MODTFY FOR NON-LINEARITY

DENOM = 3o#*(TAN(XL)=-XL)
IF(KeEQol)PRINT 41

41

FORMAT CITOH ¥PIN=FTX¥)
STBS -=_XL##3/DENOM
IF(R*F(K)oLTooOl*PE)STBS =1le

Y

“HC= 37*FB/CL*DB*ST85
>.fCM 0o )

PRINT 206

206

"_209

FORMAT (16H sras' —HCT
PRINT 209sSTB5sHC o

- FORMAT(2F10,.3)

-

C

GO TO 65 s

"CASE FIX - PIN
MODIFY FOR NON-LINEARITY

87

&2

DENOM = 3+ *(TAN(XL)=XL)

IF(KoEQe1)PRINT 42 Al
_FORMAT(10H *FIX-PIN%) o

TTTIF(R#F (K )Y e LTo e OI¥PEVGO TO 68
- .. STB6
- STB8

XL#%3 /DENOM | - e
XL%%2#TAN (XL ) /DENOM - .

—STB7
STBY
GO TO 61

sSTB8
-STB7

noninon

68

" STBY

STB6 = 1.
“le

s$TB8 1.

T STBY”
61

n Wvlu

T
HC= 3.*FB*(DB/CL*STB6 + STB8)
CM= 3,#FB*(DB®*STB7 + CL%#STB9)

19
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A,f;.f;‘ .1202 ‘

TPRINT 202

FORMAT(55H - FB STB6  STB7T

- PRINT. 2039FBgSTB6;STB7’ST889HC9CM

' STB8

. HC

MY

203

FORMAT(6F1043)
GO TO 65

~ CASE PIN -~ PIN

e m}JT~mtn§‘n

53

“PCR = PE~
IF{KoEQe1)PRINT 43
FORMAT (10H *PIN-PIN¥*)

™

By,

~MODTFY FOR NON=LINEARITY

HC =f’R*F(K)*DB/CL
CM= 0o

DETERMINE SPRING CONSTANT SK
SK = CM + HCxDB =~ R*F(K)*DB/Z.
PRINT 695K

FORMAT(6H SK .= ’E1$d7)
SANFsNF) = SINFsNF) + 5K
- IFINTYPEoNE.1) GO TO 207

211

- 207

PRINT 211sS(NFsNF)

FORMAT(QOH,DIAG'ELEMENT'S(NFoNF) AFTER SK ADDED = +E1547)

CONTINUE

23

CALL DETER ( $» NU» 35 70s DET T
PRINT "23»F (K) sDET s IEXP

_FORMAT{15H LOAD FACTOR = »F9e5s7H DET

i
¥

.461

IF(DEToLEeOe) GO TO 47 -
K=K+1 :
-lF(K-NI’898947

sE1507,110)

'_:f47.f

- CONTINUE
CONTINUE
GO TO 100

"END

{»SIBFTC DET -

DETERMINANT OF BAND MATRICES WIDTH 2M+1

c

~ SUBROUTINE DETER ( As Ns Ms» TAs DET )

DIMENSION A(IA»1)
INTEGER Ss. T

- COMMON/MATEXP/TEXP
IEXP=0 -
PROD=1,0"

NI=N-1
PO 5 K=1sN1 -
TEND=M+K

CERYEIRE T e
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E=3

(82}

b

S

N,

RN
PO SENT R SRR JTo)

2

~r

TR _

|

o

IF (TEND <GE. N ) IEND=N
K1=K+1 N

" DO 10 S=K1sIEND

G N W N oW

IF (A{KsK) oEQe 00.0) GO TO 99

- TEMP=A(S9K)/7A(KsK)
DO 11 T=K1sN

11
10

A(SsT)I=A(SsT)-TEMP®*A(K,T)

'CONTINUE

CONTINUE

N.‘v-! [e)

EES—

IF CABS (PROD) .LT.'ieos+15 TGOTTO TG -
PROD=PROD*1.0E-15 .. N e

IEXP=1EXP+15 L -

14

IF TABS(PROD) oGTe 1e0E-15) GO TO 15 - g
'PROD=PROD#*140E+15 : ' ' ' 1"

IEXP=1EXP-15 o o <

PROD=PROD*A(KsK)
CONTINUE

16

IF (ABS(PROD) oLTe 1.0E+15 ) GO TO 16
PROD=PROD*1.,0E~15 -

IEXP=1EXP+15 - -
IF (ABS(PROD) oGTe 160E-15 ) GO TO 17

ST

PROD=PROD*1.0E+15
IEXP=TEXP~15
PROD=PROD#*A(NsN)

¥§9=,

DET=PROD

RETURN:

DET=0.0

PRINT 1

.~ FORMAT(33H DET ='o°o.'ZERo TERM ON DIAGONAL)
" RETURN |

TEND - ' — ['r,'f T
SUBROUTINE FMVR(NRXgL9A,PsXL9XAaNL9NA9VX9SEG¢M,I) C
‘REAL LM

8= NC
TT=UNAC

VI = P¥A7/L - e

————— R1 = o5*(L¥L-A%A)/L
TFLI.GTeNL) GO TO 1

Ly T

MXT2 VI=R1=-XL+2Z ¥Y# XL

M = -o5%(LeL- A*A)/L*(Z.*Y*XL XL)+(2.*Y*XL XL)**2/2.+P*A/L*(2.*Y*XL
I-XL) . | . g

°99

craat LHITED



©. " SEG = L/S
..GO0 T0O 2 _
CVX B wA =XA 4 2.%(Y-S)¥XA - P
M = ob%{A+XA=2,%(Y-S)¥XA)

PHIA+XA-2+ #(V=S)%XAT

" CONTINUE
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