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‘:'Jf:are included.

ABSTRACT

The stress distribution near the centerllne apex
-of pltch-cambered glulam beams is analysed The analysis .

is done with an orthotropic trape201dal finite element uti-
lizing the stiffness approach. The element 1s tested with

various grid sizes against known solutions and shown to

give an overall accuracy to within five percent.

'Radial tension stresses perpendicular to grain
‘due to moment were calculated for various geometries and
-zplotted as a des1gn aid. These stresses can be several
tlmes those found in a uniform curved beam '

The effect of changing the elastic modulil of
the whole beam or individual laminations was investigated
and found to be unimportant. '

Radlal stress due to shear forces was found to
. be unlmportant

Radial stress for one typlcal geometry due to
moisture change was 1nvest1gated in detail. This showed
; that ten pounds per square inch tensile stress was gene-
- rated for a one percent change in moisture content. _ gv‘
. Twenty two.tests were performed,on tension per-
.pendicular_to grain to indicate that the allowable stress

- would be near thirty five pounds per square inch.
A numerical example and de51gn recommendatlons

PR
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INTRODUCTION

. Pitch-cambered glulam beams (fig;l) are used as
robf beams in many buildings. However the stresses within
these beams have not been determined. in a rigorous manner.
- Since the‘abundance of recorded failures in North America
have not been satisfactorily éxplained, it seems justified
to investigate the problem deeper. '

:The:pitch-caﬁbered glulam beam is manufactured -
. 1in a way“that, at ahy cross section, the grain is parallel
‘to the lower edge. The individual. laminations are curved
in the middle part of the span, but are usually straight
.towards the supports. B .

For rectangular cross sections, such a beam
can be coﬁsidered to be in a state of plane stress. 1In
this tWo dimensional state; the axes of the elastic pro-I
perties, parallei and perpendicular to the grain, coincide
with polar coordinates. This is called polar anisotropy.

, In these pitch-cambered beams, there exist tensile
- stresses perpendicular to the grain. These stresses are h
caused by the variation in depth of the crosé sections and’
by the curvature of the gravity axes. Present design |
procedures estimate these stresses from the formula

M

bd R

_3
2 3

'O'I'

- ~where M is the applied momenﬁ, b the width of the bean,



d the depth of the beam and Rz the radius of curvature
- of the beam axis. This formula is for isotropic material
of constant curvature, constant depth and constant moment,

and so neglects many parameters of the problem.

" Most failures show a crack parallel to the grain
in the lower half of the cross section, close to the middie.
~of the span. At these sections there are large moments
and_sméll shear forces, as pitch-cambered beams are almost
invariable determinate and simply supported. This leads
to the conclusion,,that a moment applied on the special
shaped middle part might cause high radial stresses which
- bring the‘beam to failure. Also, moisture change could
create radial stresses additive to those génerated by
the moment. | |

The theory of elasticity gives solutions for _
curved: beams of constant section and curvature. A solution
for a curved beam of Douglas Fir, under pure bendihg, is
'shown by Norris (1). A general solution, given by Carrier (2),
is‘discussed_andiapplied by Foschi (3), for the case of
curved Douglas Fir beams of constant cross sections under
combined bending moments, axial and shear forces. For pitch-
cambered curved beams with polar anisotropy, there are no
exact solutions available. However, there is a pubiication,of
S.P. Fox (4) in preparation, which will treat this problem.‘
~Also, as far as 1t 1s known, the influence of moisture change
- on stresses in beams of this,type has not yet beeﬁ treated.

- The finite element method enables us today to find
the stress and straln distribution in any elastic continuum.
In this powerful method the real contineous body, in this
case a plane structure, is replaced by a number of finite



structural elements. .Thesé finite elements are infercon—‘
nected by a discrete number of nodal points. The continuum
1s now replaced by a type of structure which éan be treated
by means of normal structural analyses,'usually.the.stiffness_
method. | ' |

The analysis is completely routine work and can
be done by digital computers. The relatively large number
of finite elements required to represent realistically‘the
cbntinuum, results in a large number of linear equations.
To solve these, the computer is an important tool.

For this specific problem an appropriate‘finite
element was derived. Then a computer program was written
. to handie cylindrical anisotropic structures with ease.
After testing the finite'element, pitch—cambéred glulam
. beams, under external loads and under mbisturé~change,
were studied. Filnally recommendations are made to modify
the existing design procedures.. | |

"In addition, some laboratory tests on tension
perpendiculaf to the grain were made and compared with
published data, to show that revision was necessary in
this area as well. ' }



~ Fig.l. Pitch-cambered glulam beam.

Fig.2.'ﬁrrangement of nodal points.



2. DERIVATION OF A TRAPEZOIDAL FINITE ELEMENT
' IN PLANE STRESS

2.1. GENERAL

Our 1nterest is focused on plane stress problems
in pitch—cambered glulam beams. The original plate is |
replaced by finite elements in an arrangement of nodal
points on polar coordlnates,as shown in flg 2.  Herein,
AR can vary with depth only and R and B can vary with ¢.
f_Trape201da1 elements are the most convenlent for thls
arrangement of nodal points. '

, The original .structure has eylindrical ortno;
tropy but this will be approximated by rectangular ortho-
" tropy within the range of one element,as shown in fig.3.
E The smaller- the angle B, the better will be this appro—'
: x1mat10n. ‘

— ——
{ ~
. E_X : <\f§> 7
E g E [
— ! ~_ &5 1
R | T——_
\ © T

Fig.3. Trapezoidal finite element assumed
- . with rectangular orthotropy.



v The finite element must take into account initial
strains due to change in moisture content and temperature.
Initial strains occur if the single element isvfree to

" expand. If the element is constrained, then initial stres-

ses occur under the action of a change in moisture content
or temperature. Again these strains will be orthotropic »
on a rectangular system within an element? rather than on
‘a polar system. ’ '

.- A practical and convenient way to- idealize the
elastic continuum is by means of displacement functions,
as described in several papérs (5,6), These displacement
-functions specify uniquely the state of strain within the
élement. If, the initial strains are included, together
with the elastic properties, the stresées are alsé defined

throughout the finite element, and, hence along the boundaries.

Expressing these stresses in terms of the nodal
 disp1acements Will lead to the stress matrix. In matrix
" -notation this is:

stress vector

o} = [S1-(8}+{a},  fo} =< oy

'_{c}o?, Iyo initial stress vector

[813,8 = stress matrix

Gigui



© {8} =4 5 s L= displacement vector

" The boundary stresses are fepiaced’by a set of

generaiized forces corresponding to the generalized nodal
B displacement. These nodal forces can be expressed in
‘terms of the nodal displacements. This yields the stiff-

ness matrix of the finite element or

o)
£,
i3
: . : ; | £y A .

A{f} = [k]-{s8}+{r} {f} =ﬁ > = nodal forces

- ° L . fs )
fe
fq

fa

J

Y

[k1g,g = stiffness matrix of
the finite element

{f}

= nodal forces due to
©(8x1) ' ‘

initial strain



'2.2. DERIVATION OF THE FINITE ELEMENT

The variables used in the defivation are shown
in fig.4. It indicates the element parameters, coor-
dinate axes, nodal coordinates and the numbering of the

nodal forces and displacements.

Following the standard procedure two dlsplace—

ment functlons are assumed as

; ’.44
1

VvV = as + agx + azy t+ asxy

~ This assumption seems reasonable, since the
trapezoids have for small angles B, a shape close to
‘a rectangle. '

The nodal dlsplacements {8} in terms of the
'constants 81, @2y seeseesesse. g are obtained by pla01ng_

the nodal coordlnates into the displacement functions.
This gives '

{6} = [T1 - {a} S {23}

where {a}T= {ai, 2z, as, ay, as, as, a7, as}

apy + a2x + azy + aqu‘ o .{l}"



',“L(-%,,O)
- N a

‘Fig,ua._Elément parameters.

Fig.lUb. Directions of positive nodal
’ displacements and nodal forces.
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1 -3 ' n -3
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o 1 b on  bn
1 -2 o 2R
1 -5 o 0
| 1 5 _o’ 0

For later use, equation 2a has to be solved for f{a} as

{a} = [T17 {6} o . -3
A 1
o0 3 3
1 1
o 0 -z 3
i 1 1 1
2h 2h ~2hn " 2n
i1 1 1
‘ ___, |bR PR an Tan
~ where [i‘] = . & 1 1
2 2
° . 1 1
° % =z 3
11 1 1
2h  2h T2n "2h
11 1 1
bh bh ah ah

l
|-



The total strains are found py'appropriate

diffefentiation of the displacement functions as:

o
- 90X
€.
X
_ - ov
lel=qey =4 3
Y ] 9
u v
3y ¢ 9%
.

where -

S [el= {00 0.0 o0

0o 0 1 x 0

b

..1

Y = [c] {a}

{3}

0 0. 0
0 1 X
1 0 y

The initial strains, due to change in moisture

content or temperature, are assumed independent of x

and y within the element and are described by'ﬁhe initial

strain vector.

Hookes law now gives

{o} = o

sy

(5}

11.



Herein [D] is called the eiasficity matrix andiis

E1 Ev/ 0
b} = (B, E, O
| 0 0 G
, wheré' Ell = Ex/ (1 - vgyrvgx )-
_ B, - By / (1 = vyyvgy )
Ey = Vxy'E, = vyx-Ey

"and I . is the shear modulus.

’{AIt should be noted that x and y corfespona
to tangéntial and radial direction so that Ex and Ey
are Etangential and Epggial for the wood considered.
The stresses and strains may be expressed now in
‘terms of nodal displacements by substituting equation
2b iﬁto equation 3, and equations 2b and 3 into equa-
tion 5, to give | |

{e}

[c] [T17! (s}

{o} S[DI(LeIrTI 8d-{e} )

" Equation 7a can be written in the form

{o}

[S1{s}+{c},

where . [S]. = [DI[cI[TI™!

is the stress matrix

‘and {o}, = -[DIle},

o

. is the initial Stfess vector.

{6}

{7a}

{7b}

12.



Once thé nodal displécements have been deter-
mined by solving the structure stiffness equations, fhe
stresses and strains at any point of the finite element
can be found by the above relations. The stress matrix
[8] obtained from the Choseh displacement functions’is
explicitly:. | -

y _¥y _l,y 1.y -
bh bh a fan a ah 0 0 .0 0
a1t 1.x 1 x _1.x _1 x
(si=fpl} o 0 . 0 O Zn*6n Zh7oh “Sn‘ah "2k an
l.x 1.x 1.,x 1. x y _y _l.y 1.y
-2h'bh 2h bh 2h 'anh 2h ah  bh bh —ah'ah a ah

The principle of virtual displacements is now
‘used to derive the element stiffness matrix [k] as shown
below '

: jd{G}T{f} =‘j/é[€]T[0] av
where d{8} is a virtual displacement of the nodes and d{e}
~1s the corresponding change in the strains. Differentiation
_of:equation'6 yields a link between d{8} and d{e} so that

a8 (e} =\/(k[C][T]_ld{d}}T[Dj([C][T]_l{6}+{e}o)dv
.V . l

- wherein {c} is expressed as in equation 7a. Expansion of

this gives | '

ate1Tied = ateyTrr3T| frerTroircaviny ts3-rr3~T o1 rolced jav |
o 2 | o Y .

" Since d{s} is arbitrary

ey = (27707 [Teatoaredavie (631217 Y Lo 1 ted av  (8a)

v v



This relation can be rewritten as

e} = DKIEY ¢ L), e
where the stiffness_“mafrix is |
(k] = .[.’I.‘]_'.’TﬁC‘]T[Dj[C]dV[T]—1 - o ,A {9}
| and=th¢ nodai forceé dueV;o initial strain‘are
'.{f}o = —[T]"TﬁCJT[_D]{e}O.dv | I  {10.}
: v : :

_ . In a plahe stress element with a constant thick-
. ness t tﬁe_volume dV is t-dA or t-dx:dy. The stiffness
n'matrix [k], established by the previous matrix operation,
‘1s_symmetric due to the reciprocal theorem so that only
.the: 36 terms of the lower half need to be stored. Because
of'element'geometric symmetry, only twenty of these 36
need calculation as shown invfig;S. '

1

=

[k]l=t x

E -F L -M P

F -E M -L q P

‘é -H N -0 R s 7 |
u ¢ o N S . R U T

Fig.5. Stiffness matrix [k].

14.



To reduce the lengthy expressions in [k] a set

of abbrevatlons for the integrals over the range of the

trapezoidal element is introduced as follows:

=\jpi dxdy = % (a+b)

_ ' _ h?
y = V/\ydxdy = 7 ( a +2b )
I4x ='u/;3dxdy = %3 ( a2+ b2)( a + b )
Iyy ‘J/Q dxdy = 33 (‘a +3b )

The 'integrals of x-+dx- dy and xy-dx-dy. dlsappear

due to symmetry w1th respect to the Y- ax1s

+

The twenty terms enterlng the stiffness matrix

are glven explicitely without presenting the intermediate
calculations in table No.l.

mined by equatlon 10,

The nodal forces due to initial strain, deter-

[

{gr, = <

- f10

fa0

N

~

are given as follows:

~5—( at+ b)(E\exo*E, eyo)

BL( a+2b) (E,e40*Eveyo) +i—(
~BE( a+2b) (B, ex0*Eyeyo) +i—
ht | t
_8—(2a+ b)(E EXO+EV€yo) -5
B(2a+ b) (B exo*Eyeyo) 1
E—(_ at 5)(Evsxo+Ezeyo)' Bt
£ ( a+ b)(Evexo E,ey0) E(
—%—( at b)(Evexo+E2eyo)

a+ b)Gnyo

at b)Gnyb

a+2b)Gnyo

'%%(2a+'b)Gnyo

15.



E) Ea ~Ey
I, Iy Iyy I, Txx I, Iy I, Ty Ixx Iyy

Al 1/b2h? 1/4n? " 1/b2?h?

B -1/b2h? 1/4n? -1/b2%h?

c ~1/abh | 1/abh? ~1/4h? " 1/abh?

D 1/abh | -1/abh? ‘ -1/4n? -1/abh?

E 1/2bh? | 1/2bh?

F 1/2bh? -1/2bh?

G ~1/2bh?|-1/2ah | 1/2ah?

H -1/2bh*| 1/2ah | -1/2ah?

1| 1/a2|-2/a%h | 1/a%h? - 1/4n? 1/a2h?

K|-1/a?| 2/a%h | -1/a?h? . 1/Un? | -1/a%n?

L | ! =1/2ah | ‘1/2an? -1/2bh?

M -1/2ah | 1/2ah? | 1/2bn?

N 1/2ah | -1/2ah?| 1/2ah | -1/2ah?

0 'l 1/2ah | ~1/2ah?|-1/2ah | 1/2ah?

P 1/4n?| 1/b2n2 | 1/b2h?
Q 1/4n2|-1/b2%n? -1/b2h?
R -1/4n2| 1/abh? -1/abh 1/abh?
S |-1/4n2|-1/abh? 1/abh - -1/abh?

| o 1/4n?| 1/a%h? 1/a® | -2/a*h 1/a2h?|

U - 1/b4h?|-1/a%h? -1/a* | 2/a’h -1/a%n?

T HIdVL

‘9T



2.3.'TRANSFORMATION INTO POLAR COORDINATES

Before the member. stiffness matrix [k] can be
added to generate the structure stiffness matrix [K]; the
' local'coordinates mnst be transformed to a global polar
-system. The parameters determining the trapezoid are
related to the polar coordinates by: .

' 8
- Rl)vcoe 5

n-

a.= 2R, sin 5 o . e {il}
b = 2R, sin >
‘where R, R, and B are defined in fig.6.

After calculation of the stiffness matrix and
the nodal forces due to initial strain is carried out in
~ rectangular coordinates, it is desirable to convert the
result into polar coordinates. The new set of axes, with
the positive directions of the nodal forces and displace-
fments chosen radially and tangentially, will be denoted
'with a prime (fig.7). |

The dlrection cosines of the polar set referred
to the rectangular set, written in a square array, con--

stitute.a.transformation matrix [A] as:

\

17.



Fig.7. 'The two sets_ of nodal forces aﬁd_ displacements.

18.



19.

B -sinB
cos> 0 0 0 -sin3 0 0 0
8 o inB |
0 cos> 0 | 0 0 sin2 0 | 0.
B s1n8
}O 0 coss 0 0 0 sin2 0
' ' 0 0 0 cos%l 0 0 0 —sing
' Siné 0 0 0 .cosé 0 0 0
2 ) o
inf <8
0 -sin3 0 0 0 cosz 0 0
. ' B ‘ B
q; 0 —sin2 0 0 0 9052 0
0 0 0 sinf 0 0 0 cosd
| , : —
The components of the vectors {f}' and {f}; are related to
the éompqnents referred to the rectangular axes by~:
{£}' = [A] {£f} R
. . , {12}
{£}' = A1 {£} ' o
o} : o
~ and similarlyvfor'thé components of the nodal displacementsv
{8} = [A] {8}
The member matrix in polar coordinates is.then
TkI' = [X] [k] [a27 {13}
so that
{£}' - {r}! = [k]' {8} {14}



"The matrix [k]' is easily obtained fme [k] by replacing

A by A', B by B'" etc. in fig.5 where

A'
Bl
c!

D'

Fl

I'

Ll

M

;AO'
.P'
Q'
R
gt

T'

W

.E"

Cqr

N

O

= - S N S N © B &

@A v W o W oo = B oK o= H

~-2E

2F

G-L

~H+M

2N

oo

_C+R
-D+S
~I+T

K+U

" 2E

cos*®

cos

sin

ol D Dj®

,

+ sin

Pl
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3. COMPUTER SOLUTION PROCEDURE

3.1. BASIC STEPS IN THE PROCEDURE

The’éomputer program.develdped;is based on the
displacement method using a structure stiffness matrix.
The progfam, written for the IBM 7044, is givenvin'the
appendix.' The setup is shown in the simplified flow dia-
gram of (3.2). ' '

”  The'basicvsteps in the procedure are:

a) The pitch-cambered beam is subdivided by radial

‘ lines and many circular arcs. The area enclosed
by the radial lines and the ares, 1s approximated
by equilateral trapezoids.cbnnected at the corners
only. These trapezoidal elements retain the appro- .
-priate material and geometric properties of the
structure. ' '

An inclined, straight upper edge cannot be repre-
sented exédtiy in polar coordinates.. Therefore it
must be approximated by varying the boundary step-
wise. The respectivé thickness given to these boun-
‘dary elements is in proportion to the plate area
they have to represent. The respective thickness
of an element is taken as ” o

- Astructure

t - .
vresp» Aelement struqture

21,



_Fig;8. Approximation of the upper straight edge.

b)

c)'

22.

| % gy - Upper edge of the pitch~cambered beam

-Pelement

'structure

The area Agipuctupe 1S hatched in fig.8. Aelement

~ 1s the area enclosed by the arcs and the radial
. lines. This
in chapter four and shown to be sufficient for the

stepwise approximation is checked

limits of accuracy required herein.

.Thé elements

The boundary

or releasing

" "The unlocked

'd)

e)

nents of the

numbered.

and the nodes‘aré numbered.

conditions aré simulated by locking
the appropriate nodal displacements.
nodal displacements, i.e. the compo-

structure displacement vector, are

The element stiffness matrix [k] is generated and

transformed into polar coordinates [k]'.

The structure stiffness matrix [K] is generated from

[k]' by using the code number technique.  This tech-



- f)

"nique automatically,eliminates ﬁhe rows and columns

of the structure stiffness matrix,.corresponding to

the restrained joints.
The structure load vector {B} is generated.

The loads acting on the beam are applied to the
model at the nodal points only. Therefore, the

'Qdistributed external streésses have to be replaced

by statically equivalent nodal forces to yield the

g)

“h)

‘element displacement vector {&§}' is found by the code"

1)

terms of the structure force vector {F}. .

The nodal forces due to initial strain are given

by equation 10. The code number technique is used

to place them into a structure force Vector'{F}o,
due to initial strain. ' '

The structure load vector {B} is then

{B} = {F} - {F},

Cholesky's method is used to solve the system of

simultaneous linear equations in the stiffness relation

- {B} = [KJ]{A}

Knowing the structure displacement vector {A}, the

number technique and transformed into {&81}.

The stresses within the element are found by equation
Tb. They are calculated at the center of the elements,

since there the'directions‘of the XY coordinates
coincide with the polar coordinates. |

23.



3.2. SIMPLIFIED FLOW DIAGRAM

P

&
~

\

‘Read and Print the general geometrlc structure data
Max. No. of AR,

Values of AR,

-'No. of radlal groups,

‘No. of elements in each group,

innermost radius R and angle B of each group.

4

Divide the structure into the:elements.
Number the elements and the nodes. |
Assign the nodal numbers to the elements.
[Done in subroutine DIVIDE]

N

Generate for each element the appropriaté data.
[Done in subroutine DISTRI]

Read: : :
The thickness of the normal elements.
No. of boundary elements.

"Thickness of the boundary elements.

continued

2k,

o
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Print the:

No. of elements. :

No. of boundary elements.

No. of nodes.

Geometric data of all elements.
Nodal No.s of the elements.

Read and Print:
The data of the restrained nodes.

Generate the nodél displacement humbers.

y

\\ Print the nodal displacement numbers. //

Generate the: .
- Code numbers. _
[using subroutine CODE]
Bandwidth.

Print the:
Code numbers.
Bandwidth.

continued



G5

Read and Print the:
Moduli of elasticity of the structure,
i.e. of the normal elements.
No. of special elements.
. ‘Moduli of elasticity of the special
' .elements. - -

P
N

‘Generate the element stiffness matfix [k].
- Transform it into [k]'.

‘[Done in subroutine SMEM]

Place the element stiffness matrix [k]' into
the .structure stiffness matrix [K].

y

; , ’ N\ , .
<:: Is it done for all elements? ;>> NQ:>

YES

N

\ Read the number of loadcases. A /

"Read the type of loading.

continued

/
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] <:i Are there statically equivalent nodal forces? > NO> o

| YES
. ) ' | S - vV
\\Read the nodal forces.F. - | J/
L <Is there initial strain? \/ NO
YES
Read the: ‘ ' L
Initial strains of the structure.
No. of special strained elements.
Initial strain of the special
- - . strained elements.
et : N

Generate the nodal forces {f}_  due to
initial strain. .

Transform them into polar'coordinates'{f};.
[Done in subroutine EPSINI]

A

Build up the load vector [B].

continued



o
T

; \\‘Print stresses.

:

[Done in UBC-subroutine BAND]

Solve for the displacement vector {A}.

N

<
™~

Transform {8} into‘{é}.
Calculate the element stresses.

[Done with subroutine SIGMA]

Fill the element displacement Vector'{ﬁ}';

< Is it done for all elements?

NO

N
/

YES

N

, , N NO ’
<:: Are all locadcases considered? _:>>—“f—e>—ﬂ<:::>

YES

N

_<::~ More structures?

Y

NO

N

()

N YES .
/T

O

28.



4.ACHECKING OF THE FINITE ELEMENT WITH VARIOUS PROBLEMS

It is the object of this chapter to see if
.the finite element previously developed will predict,
with sufficient accuracy, the stress distribution in
pitch-cambered beams . To do this, finite element so-
‘lutions are compared against elasticity solutions for

various problems.

~All percentage errors given in comparison
with known solutlons are calculated corresponding to
the follow1ng relation based on absolute values

Jcalculated value| - |known valuel

berrorh = -~ 100

Iknown value|

4.1. ISOTROPIC CIRCULAR BEAMS AND RINGS

 The material in the finite element ‘solution .
is determined by the [D]-matrix. To .represent isotropic
material [D] has to be the corresponding elasticity
"matrix, i.e. - ' ' '

E, Ey O : B! v 0
[Pl = |By, B, 0| =12z |v 1 0
0 0 G 0 0 1-v
- 2
E VE _E

or. B, = B, =qir,By-phr ad 6 =y

29.
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- EXAMPLE = 1

IISOTROPIC CIRCULAR BEAM, SHEAR LOADING

Fig.%9a shows properties of a curved beam under
shear loading for which the elasficity solution is given
in TimoShenKO-(S)lon page 73. Fig.9c gives a plot of
the tangential stresses near the inside edge. Herein,

. two finite element solutions are shown: One for a con-
>‘stant distribution of shearfioad at ¢ = n/2, and the other
for the shear distribution according to the elasticity
solution. In fig.9b are shown tangential and radial
stresses at ¢ = B/2. The two finite element solutions
produced the same result at this section remote from

 the applied_load. Even for this'coarse grid size, the
element predicts the stress distribution with}sufficient'
accuracy. | “



5
—
4
F B=10°
3 ,
d Eb %‘=2"
12
~— 7 v =.3
AR 3>I 6 i *
3 16
. 21
26
3
R ® _+"\36
, L4l

Fig.9p{_Tangenfial stressés‘along"r'=vR +

Vv

b
o

Fig.9a. Isotropic circular béam, shear loading..

+..25 % (parabolic)

o ($) A= .
A (qb=(|)0 D =+.27% (rectangular) "
8
j elasticity |

he N3 — A

| finite element
4 | parabolic load
_ : finite element

2 ~ -~ rectangular load

o L1 L L _ s

' 25 35 45 55 65 75 85 90°

05 I5
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o, =C,,: —
t " g2
A 6M

% *Cv e

- where
- M= V(R+ S
A=+ .25% | (R+2)
elasticity
_ elasticity
Cev _ finite element
| £=-59% }
o | 1 | 1
- | 2 3 4 5
~_finite
_ element
: elasticity —
-5 ' / \\ '
b=-6.3%
d
Fig.9b. Stresses at ¢ = B/2.
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EXAMPLE 2

JSOTROPIC CIRCULAR BEAM; MOMENT LOADING.

Fig.lO shows'the properties and stresses of a
curved beam under pure bending for which the elasticity
solution is given in Timoshenko (5) on page 61.

' It is the samé beam as in example,l, except
that the load is'pure moment. The nodal forces were
distributed linearly at ¢ = 7/2 to represent the applied
‘moment. ' ‘

Again, the element predicts the stresses with ,
sufficient accuracy. ' ' -



15 R :
-c .SM
% _CMG bd?
| e .8M
ol A=.2% % =Crm bd2
.. / ‘
Cim
.5 —\—
: . - )
: A=9.6 °/o . /A - .3 /o .
finite —\_~ Crm
element ST :
, elasticity \
0 L ! I ] I
i 2 4 5
finite
element
-5
elasticity
. D=37T%
ol -
. d N
B ,|_

Eig.lo. Isotropic circular beam, moment loading,
’ . stresses at ¢ = B8/2.° '
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EXAMPLE 3

THICK ISOTROPIC CYLINDER UNDER UNIFORM EXTERNAL PRESSURE

B " The elasticity solution is given in Wang (6)
oh-page 5&.

. Due to radial symmetry‘the problem is sblved 
" with one radial group_(fig}ll).' However, to check the
program, a quarter of the cylinder hasvbéén used too,
with the same element size, and the same result_was
obtained.

, The depth of the beam 1s divided into three
'elemehts and the group angle B is taken as 6°. The
stresses are calculated for a ratio % = ,3. The radial
nodal forces, due to external pressure, are found by the

formula

The remafkable»accuracy found here with only three ele-

ments is due, of course, to the uniform stress set up

‘within. the element. However, previous examples have con- -

tained all modes of deformation and still showed good
accuracy. ’

35.



40—

rp

RS
G

1.0 %

50
% =GpP
=C. -
% _ tp P 45
35
30

Cp| ™

rp

= .05%

20

1.5

Fig.11. Thick isotropié cylinder under external pressure



EXAMPLE = U

THICK ISOTROPIC CYLINDER UNDER UNIFORM‘TEMPERATURE GRADIENT

The elasticity solutlon is developed according
to Timoshenko (5) on page Lhot.

P - By using the boundary conditions op =.0 at
‘r =a (=R) and at r = b (=R+d) and by introducing an

. assumed linear distribution of the temperature T = Tor,

“the following elasticity solution for the stresses is

obtalned
or=°‘ET [( -a)( ) - (r-a>]

“ET [(r +a )( S (2r3+a3):l

O =

In the finite element solutlon, the respectlve

1initial straln is given by the formula

where‘TE is the temperature in the center of the element
~as given by Ty = T, (R + i (n - 1/2))

N total number of elements radially

n element number from inside.

37



Again, due to radial symmetry, only one
radlal group is required to solve the problem. By
‘taking five elements in the group, as shown in
fig.12, the error in the maximum o, is 4.1%. With
10 elements in the group this is reduced to 1%.



’unifor'_m temperature gradient.

. Fig.12. Thick isotropic cylinder,

. d. R K
C—= r
R .2
R 4 1 4
v =.3 1121345
Cir |
' A=+1%
| 10 p—/ _
o d \« finite element|-
% *CrET 2 X
elasticit
0 — Y Ny | !
| 2 | N 4 | 5
\\< 1%
-1.0 \
4
Cer ' '
) exact B8=-4. % (=1.0% for 10 elements)
.05 : )\‘/ vt
d ’/(5 \
% =CrEl 7 finit \
, ‘ element
! ' ! L
o T2 | 3.| 4 5




4.2. ORTHOTROPIC CIRCULAR BEAMS

The remaining examples consider orthotropic
material and the [D]—matrix is given'with the example.

EXAMPLE 5

" CIRCULAR ORTHOTROPIC BEAM UNDER PURE MOMENT

Fig. 13 shows propefties of a curved ortho-
1tropic beam of Douglas Fir under pufe moment for which
‘the elasticity solution is given by Foschi (3)} Foschi
"used the following elastic properties of Douglas Fir
given by Hearmon (7). - '

Ex = 2.2765 - 10° psi
Ey, = 0.1537 - 10° psi

vy = 0.290

vyx = 0.020 |
G = 0.1276 - 10° psi

From these E,, E,, E,,;and G of the [D]-matrix are ob-

~ tained as
E, = 2.29 - 10% psi
E, = 0.155 - 10° psi
E, = 0.045 ° 10° psi

G. = 0.128 ° 10° psi



o ;To demonstrate the convergence trend by reducing
the element size, the depth of the beam is divided once
into three, once into five and once into ten elements,

while B is kept constant. The nodal forces at the ends

‘were distributed linearly to represent the applied moments.

- The: result obtained with tenvelements comes very close to.
the exact solution. Fig.13 shows the three finite element
approximations and tﬁe exact solution at ¢ = %. Also
avpart of the isotropic case is plotted for comparison.

41,
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elements per. -

‘group
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- elasticity | \\ o
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-
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,v 0o d
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elasticity. and 10 elements

S s——— SN

of =1 7 =

R K | 3 elements \

ol | |

Fig.13. Circular oif’tv_hot;ropj..c beam under puré moment .



" EXAMPLE 6

'CIRCULAR ORTHOTROPIC BEAM UNDER SHEAR LOAD

- In this example shear loads, instead ofbmoments,
are applied on the same beam with the same [D]-matrix as
in example 5.  The applied shear load is representéd by
a set of -equal nodal forces at the ends of the beam. In
:,fig;lu the finite element approximation with ten elements
over the depth is compared to Foschi's exact solution.

s,



elasticity —
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20 \\‘
\
\ -_finite
‘.\é_el_emenj
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. . - 6M
, elasticity o | =Cry B-c-l-é
5
A _ : where d
finite _ M=V(R+3)
element ' ‘
\Qwite element
° N '
elasticity
.5 \\\\
A
.4
%&ﬁcny
’ Asz:::~*‘$\7r‘ﬁ~ - o
finite element 4 \
- o o

"Fig.lu. Cirgular orthotropic beam under,shear load,

stresses at ¢ = n/2.
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4.3. PITCH-CAMBERED ORTHOTROPIC BEAM

A favourable opportunity to check the finite
element is offered by Fox. In his PROGRESS REPORT No.l
(4), on DOUBLE-TAPERED PITCHED BEAMS, a theoreticai
"solution for the problem is obtained by using‘Fourier

series and a point-matching method to satisfy the upper
boundary conditions at several points. The other boun-
dary conditions are satisfied everywhere. 1This theory
has.beeh verified-by testing experimentélly, a glued
laminated beam with the geometric propertilies given in
fig.15. ¢ | S

This test beam under pure momeht is chosen
‘as an example to compare the two theoretical solutions.
The’stress diStribution given by S.P. Fox is based on
the material properties -

"E, = 2.45 - 10° psi
Ey. = 0.169 - 10° psi
Vyy = 0.033
G = 0.137 - 10° psi

The equivalent [D]-matrix in the finite element

solution has the terms

= 2.4 - 10°% psi

0.169 *+ 10°® psi

El
EZ
E 0.0799 * 10° psi
G

_ : - 0.137 - 10% psi

o us,



The finite element grid,-used to represent the °
béam, is shown in fig.1l6. The boundary elements are approx-
imated as described 1n chapter 3.1. page 21. The stresses
at centerline are obtained by quadratic interpblatiqn and
are plotted invfig,l7,togéther<with Fox's,solution. The
-two solutions are close together. The difference in maxi-
mum tangential stress is 1.9%, in maximum radial stress 4.6%
and in minimum tangential stress 3.0%.

L 111
I —
. a 7
d =14.40
i
' 3 ="h’
¢ g |
) =
- 8 &
3 t : .
. —el . 2"
8 o

symmetric about ¢
| Laminations 1/2" thick
Beam 4" wide

o = 16.646° /
a = 18.430°’(tana f.333)'

Fig.15. Geometric dimension of the tested beam.
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Fig.16. Finite element grid, loa'ding conditién mome-nt._

A
Eh

47.



Top

ottom
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+
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Fig.1l7. Stresses at centerline of the tested beam.
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The chosen length 6 R‘in the finite element
‘ approx1matlon ‘'should be sufficient by S¢t. Venant's prln—
ciple to produce accurate results at‘the centerline. To
check this, the beam under the same loading condition has
been extended to a length of 1.5 6R. . The change in maxi-
mum stresses at centerline was less than 1/2%, well with-
in the desired accuracy. |

In the extended case, where a part of the straight
- beam has to be used to get enough length, this straight part
hes to be simulated by a curved‘beam with a large radius

R = 10 R, since the computer program is written for curved

_ beams. A change from R = 10 R to R = 20 R varies the maxi- .

‘mum stresses at centerllne not more than .07%.

The last thing to be. checked is the influence
of the stepwise approximation of the upper bcundary. To .
do this; stresses in tnis beam are calculated withiupper
boundary elements of zero thickness and also with full
thickness. The maximum tangentisl stress changes by.8%
Ptbetween those two extremes, while the maximnm radialtstress
changes by 5%. The approximation, using a thickness bet-
ween the two extremes, can produce an error w.r.t. the

original beam which is only a part of the total dlfference

- Since ‘this error has the same magnltude as in the examples

-1 to 6 for curved beams, where no stepwise'apprcximation'
is required, the desired accuracy is obtailned. The adtual'
accuracy 1s well w1th1n 5% » Qulte sufflclent for the prac-
tical purpose hereln o '

. The good results in the examples of thlS chapter,~
-obtained by the finite element solution, Justify the appli--
cations made in the next chapter. There the_parameters d,
'R and o in the pitch—canbered beam are variled to cover the
practical‘range; ' ’

49.
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5. STRESSES IN PITCH-CAMBERED BEAMS

" PREAMBLE

In the following are shown stresses due to moments,
shear loads, change in moisture content and change in elastic
pfoperties,'in an attempt'tofevaluate the facters’which might
create high stresses. o

' The beams have been divided into 10 or more radial
groups, With about 15 elements at centerline, to provide
ﬂjgood'reeults. The results are presented in terms of the
parameters d/R and tana. Fig.18 shows the‘parameters and
the grid of an example which is used several times in
this chapter to demonstrate various effects

If not mentioned spe01fica11y, the following
elasticity constants are used

:i’ EX = Etan
By = Egan / 20
G = Egan /15
yxy = ,0185
vyx = 370
This glves
E,"Ey O 1 E /E1 0 1 _ .0185 0.

[D)= |Ey B, 0| =|E/E, E,/E, 0| B, =|.0185 .0500 O E,

0 0 G 0 o al 0 0 6621
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‘where E, = E; / (1 ~Vxy yX) can have any value, as this
constant factor does not effect the dlstrlbutlon or magni-
tude of the stresses, except in the case of m01sture change
where E is taken as 18101 ksi.

This is reasonable for Douglas Fir. The effect
-of ratio changes in this [D]-matrix is checked in section
5.4. It should be noted that x and y corfespond'with the
tangential and radial direction of the beam; tnat»is with
the grain end perpendicular to the grain direction of the.
wood. ' ‘



'/ straight

Fi‘i’g.19. Three possible cases ofpifch-—camb’ered beams .
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5.1. STRESSES FROM MOMENTS

" The peak at midspan of the pitch—camberéd'beam'
induces a stress COncentration; This stressvconcentration
1s local by St. Venant's principle. At some distance from
the centerlihe Where the beam is straight, uniform tapered

or curved (see fig.19), the existing formulas are valid.

The stresé-concentration at centerline in beams
under pure bending moments, is investigated in this section.
. To bover:the practical range a group of 26 beams, with d4/R
: varying from .01 to .8 and taﬁuvfrom_.l to .6, has been
-chosén_for the finite element solution. A sketch of four
beams in the upper and 1ower parameter rahge is given in

fig.20 to aid in visualising the parameters.-

All beams showed at centerline the Qharacteristic
stress distribution sketched in fig.21 with zero radial and
tangential stress at the top of the beam. For cross sections
adjacent to the centerline the stresses at the top edge are
different frém zero. The stress éoncentration pfoduces

a local maximum in the radial stresses.

, The maximum and minimum stressés at centerlihe,
as indicated in fig.21, are related to the value

M 6 M
Zcenterline

‘Aby the dimensionless poéfficients Crms CM and Cgym as
follows: v ' |

53.



54,

S : compression
max |+ - o
- :

~ stresses at ¢ - 2

stresses at 8 -g—

Fig,?l. Characteristic stress distribution

for pure bending moment.:



6 M

maximum radial stress » Crmax = CRM §gZ
maximum tangential - tc - C 6 M

. tensile stress S ~Ytens ™ pq7.
maximum tangential - c’ _ d 6 M
compres31on stress ' comp ~ “YCM bd?

Due to symmetry, only one half of the beam had
“to ‘be solved by finite elements and a quadratic 1nterpo—
latlon had to be used to get the values at centerllne,

since the computer program produces stresses at the centers
of the elements ' ' |

Table 2 shows for each considered beam the para-
meters d/R and tana, the number of elements NE at center-
iine, the number of radial groups NG and the stress coeffi-
cients Cgry, Cpy and Cgop- ) '

A graphical presentation of the radial stress.
~coefficients Cry is gilven in fig.22. The coefficients are
_ plotted against (d/R). A set of curVes is obtained by‘

~ connecting the points of constant tana. The coefficients
Crm of radial stresses can readily be taken out of this
graph for any parameters. - -

The values for radial stresses obtalned by the
cla531ca1 formula for curved beams . '

_3 M 1. a4 6mM
Or = 3 5a(R+a/2) - T (R+a/2) ba?

"are” plotted by a dashed line. From the comparison it can
be seen that the whole practical range produces up to 4 times
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 TABLE 2

Parameters and stress coefficients

of the considered beams

No | tana|d/R | NG | NE [ o Cru
-1 0.0} .5 91 .10 | 1.067 | -1.323 | .0599
2 0.1}.01 | 12| 22 | 1.151 | -0.710 | .0243
3 0.1 .05 | 15 | 16 | 1.124 | -0.751 | .0253
-l 0.114.1 16 | 19 | 1.127 | -0.763 | .0302
5+ 0.2|.01 | 11| 23| 1.371 | -0.687 | .o0Ls55

L6 0.2 .05 | 10 | 15 | 1.324 | -0.7025| .0463
7 0.2 .1 10 | 16 | 1.2826 | -0.7165| .0487
8 0.2 .2 13 | 15 | 1.2743| -0.7320| .0601
9 0.2 .4 14 | 14 | 1.3869| -0.7281| .0825
10 0.3].1 10 | 15 | 1.5538| -0.7341| .0731
11 0.31 .2 10 | 15 | 1.4881| -0.7434| .0817
12 0.3 .4 10 | ‘13 | 1.5241( -0.7281| .1059
13 0.3 .6 12 | 13 | 1.6343| -0.7182| .1252
14 | o.4|.o1 | 16 | 20 | 2.042 | -0.818 | .0946
15 0.4 .1 10 | 11 | 1.9174| -0.7775| .1000
16 0.41] .2 10 | 14 | 1.7805| -0.7937| .1076
17 0.4 | .4 16 | 15 | 1.7244| -0.7794 | .1312
18 0.4 .6 11 | 16 | 1.8015| -0.7672| .1550

19 0.5 .2 15 | 13 | 2.2418 | -0.8964 | .1438
20 0.5 .4 | 13| 14 | 2.0202| -0.8569| .1608

21 . 0.51| .6 15 | 15 | 2.0202| -0.8271| .1851

22 0.5 .8 | 14 | 15 | 2.1001| -0.7999| .2071
23 0.6 .01 16 | 20 | 3.016 | -1.066 | .1600
24 .1 0.6 .2. | 15| 15 | 2.6702| -0.9870| .1788
25 0.6 | .4 13 | 13 | 2.4215| -0.9502 [ .1975
26 0.6 | .6 13 | 13 | 2.3208| -0.9030| .2189
27 | 0.6 .8 14 | 12 | 2.3561| -0.8764| .2431
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higher stresses than given by this classical formula.
~Even if the depth at the point of tangency is used in
the formula, the stresses obtained by finite elements
are still remarkably higher for small d/R's.

The calculated stress coefficients for the

. tangential stresses are plotted in fig.23.' The points
are connected by hand, to produce curves from which the
stress coefficlents for tangential stresses. can be
obtained for any parameter. For the bonsidered béams
with deepest cross sections at centerline, the signi-
ficant-tahgential stresses for design do not occur at
;'centerline cross sections. From an inspection of the
Astresses in each element in the computer output, it
was observed that the tangential bottom fibre stress,
due to pufe bending, was the smallest at the center-
line; Evén though Cqy 1s greater thanAls the extra
depth at center keeps the tangentlal stress smaller
‘than in adJacent cross sections.
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5.2. STRESSES FROM SHEAR LOAD

A pure shear 1oad at centerllne is produced by
the loading condifions shown in flg 2U

Due to antimetry, there is, at centerline, no

" tangential stress (Ot) and also there is no radial straln

(ep). Introducing og¢ = €, = 0 1nto Hooke's law
oy = E eg + Eyep
Op = EVEt + Ezer‘

it can be seen that the radial stress-must be éefo.

To check the magnitude of the centerline shear
stresses, the béam with tana = .U and d/R = .2 of fig.18
is investigated. Fig.25 shows the shear stress distri-
bution at centerline. The maximum shear stress at center-

line is:

[ol)
~

- s
Thax = 1.4 2

. Even though the maximum shear stress at centerline is 40%

more than normal, this will not govern design since the

depth here is larger thah at the supports and the maximum

shear force is about one quarter the support shear.
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5.3. STRESSES DUE TO CHANGE IN MOISTURE CONTENT

Change in moisture content causes the initial

. . ) . e -
strains €,5 and ®¢4, i.e.

Ep,
{e}o = €
0

t.

o.

If the distribution of strains {e} satisfies the compa-
tibility equation - ' o
a2 ;- d - 1 3%, _ 1 2y 1 3Ypt
BTt p ey 1250 - S}t pr gt T pw gt t i

then no stresses are produced, if the structure is suppor-
ted in a determinate way. With {e} ='{e}o the equation is

. 32%e 193 e 1 a2e,
CTrtt 7 oar (2% < frol} * pw TppEt = O

This equation is satisfied if €., and €., are indepen-
dent of r and 6, or if €ty = 1‘/231,.O and varies linearly
with r and 6. The latter case is unlikely. The first
‘case shows that a uniform moisture change causes no stres-

ses, but nonuniform moisture change will induce stresses.

o Since in a pitch-cambered beam 1t 1s not obvious
what -strain distribution {e} causes maximum stresses, a
closer look into a representative example is indicated.

The beam with tana = .4 and d/R = .2 shown in fig.18 is
Iinvestigated; As shown in the figure, the elements 1 to 8
"are spaced equally while the depth of the elements 9 to 14
are fixed by the approximation of the upper edge. A total
of 1l pairs of load cases were run. For each pair one

‘group of elements of constant radius were given
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first Cepg = .01 el =0

‘ = : €, =
and then -Asro 0 _ to .01
In fig.26 two different cases of a group\of'strained‘
elements are shown. Group a has elements along the whole
beam, while group b reaches the top edge before the support.

Thé stresses of all these load'cases can be com-
bined to represent other stafes of initial strain by super-
position. Similarly influence lines can be obtained. The
latter was done for radial stresses. '

_ _ jf As the radial stresses at centerline are the
Alargest, influence lines are of interest there. The

stresses'Adr at the center of an element n adjacent to
the centerline, due to strain change in one group of

_elements at level y, is a function of seven parameters.

Ao, = f[Ay, y, d, R, o , e, E]

The parameters are shown in fig.27. A dimensionless re-
presentation is in the form '

. Ao B A d
R o T NS

[e]

which requires only five'parameters. Hefe'% and tanq are
set at .2 and .4 by the chosen geometry of the example;
- the modulus E is fixed as given on bage 50; the,fadial or
"tangential strain €, 1s taken as'.Ol.- Since there exists
a linear system, the stress variles directly,With"eolso'that
‘results for other strain magnitudes are 1n direct ratio
~to the one chosen. ' The stresses can now be written as
b, = f£[ 8L 17

da- ? d

since the other three parameters are now constant.

)
ik
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‘Because %X is small, it can be assumed that

Aop varies linearly with Ay so that

*A—Z—’;g = s %)

and

0

=fg<%>a<§>
© . 0

For an influence line at one point, due to ini-

]

g

"

v '..fg,(%ii)

tial strain in thé element groups 1 to 14, the stresses'at
this poiht are required from all load cases. Thé sum of
the stresses of all load cases is~zéro, since it represents
i-unifdfm‘étrain oVer the whole beam. From these stresses
the values g are calculated and plotted at the correspon-
ding level (y/d) of the strained group. Now the total
area, enclosed by an influence line, corresponding to uni-
form strain over‘the whole beam, is zero. Influence lines.
were calculated for the ceﬁters of all 14 elements>at

centerline. A few of them are éhown in fig.28 and fig.29.

" © It should be noted that these plots are for radial

or tangential strain € _=.01, so that results. for other strains

can be obtained by direct ratio. As well they are calculated
using the modulus E| = 1810 ksi of page'Sl so that results
for other E, are obtained by direct ratio again. |

The influence lines for radial stress show that
the largest possible stress, due to pure radial or tangential
~strain, is obtained at the center of element 9, however,
- with a different strain distribution for each. The two
influenée lines for this point are'shown in figures 30a and.
'30b together with the two strain loads providing maximum o..
. From the figure it can be seen, that each strain load |
'pro&hces a considerable stress only in one influence line,

while the»pther influence line does not ccontribute.
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These two ihfluence lines for radial stress due
to initial strain can be combined to one for radial stress
.due to moisture change if the relation between m01sture

‘content and shrlnkage of the wood is known.

| Wood shrinks most in the direction of the annual
growth rings (tangéntially to the tree), somewhat less
across these rings (radially), and very little along the
grain (longitudinally). The Wood Handbook (8), fig.71l

.on page 319, gives for Douglas Fir a flat grain (tangential)‘
shrinkage of about 1.5% when the moisture changes from 10%
to 15%. F. Kollmann in TECHNOLOGIE DES HOLZES (9) gives

“the longltudlnal strain due to moisture change as approx1—
'mately 1/23 of the flat grain shrinkage. '

Herew1th the follow1ng initial strains, corres-

pondlng to 17 moisture change are assumed to be reasonable

Y]
"

-3% , for.a 1% moisture change

ro '(1.5%)/5.
(€p,)/23

(.3%)/23 = .013% for a 1% moisture change.

ct
(o]
|

With these relations, the influence line, due to
mbisfure‘change,'as Shdwn in fig.30c, is obtalined by super-
position of the adjusted influence lines due to strain
change from figures 30a and 30b.

With the maximum area of 10.1 psi/% m.c,‘under

- the influence line, a moisture change of 5%, distributed

as shown in fig.30b, produces fhe following maximum stress
op = 5-10}1» = 50.5 psi

This will be tension perpendicular to grain when the moisture

in the central reglon decreases.



, However, it has to be noted that these influence
lines represent moisture or strain distributions5 as shown
in fig.26, which means the moisture contents within the
groups of elements are constant. This occﬁrs, for example,
4f a=different ampﬁnt of molsture content 1s present in
‘the laminations at the time of glueing, and subsequent
drying shrinkage produces sﬁresses.

The influence lines cannot be used for a moisture -
distribution as shown in fig.3l, since the moisture content
there varies along'one group of elements. Influencé lines
could be made by an analogous procedure to treat this type
. of strainidistributions. Instead the case was solved by

:~app1yingAto all elements the corresponding initial strain
as shown in fig.31. The maximum radial stress 0, at center-
line was then '

o, = '146.8 psi tension

For thé increase in moisture content the radial initial
strain sfo contributes the most, namely 45.5 psi, while

- €to With 1.3 psi produces almost no radial stress in this

|
. sw

case.
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5.4, VARIATION IN ELASTIC PROPERTIES

Up to here, the [D]-matrix given on page 50, has

been used as the 'basic'matrix for the investigations.

~ are affected'by changes in the moduli of elasticity.

.Table 3 shows how the stresses due to pure moment

TABLE 3

Effect of variation in elastic properties of the whole beam.

71.

, Ao,in’%
D-matrix |E,/E,basic | E,/Eybasic | G/Gbasic tangential | radial
o - tens.[ comp.
basic 1 1 1 - - -
E, varied 2 1 1 - 2.4 {—1.6 | + 4.9
' E, varied 1 2 1 -0.9[-1.3] +1.1
G varied 1 1 1/2 +10.1 | +13.0 | -11.7

A doubling of E, or E, has. a small effect, but the stresses

- are somewhat sensitive to a change of G. However, the

amount of change is still tolerable.

More likely the elastic properties may vary from

lam to lam. This influence has been checked for bending

moment, by assuming a variation in one modulus of elasti-

city in one lam at a time.

Table 4 shows the changes in

maximum radial stress, due:to changes in the elastic pro- :

perties of the bottom layer of elements with high tangential



(tenéile stresses (see fig.26); of the seventh layer with
high radial stresses; of the tenth layer with high tan-
gential compressive stress. '

TABLE 4

Effect of variation in elastic properties in one lam.

Change of
modulus in

Aoy in %

one lam to | Var. in layer 1| Var. in layer 7 | Var. in layer 10
E, > 2F, - 8.82 - 4.58 - 2.14
E, + 2E, 0.00 +0.72 +0.84
Ey > 2Ey +.0.16 + 0.61 0.00
G -1/26G - 0.22 +1.03 - 1.86

- As before, the effect of these éhanges'is tolerable.
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SUMMARY

This chapter has shown, that the max1mum radial
stresses at centerline due to shear and variation in elastlc
properties are negligible, but that the stresses due to
moment and meisture change are important.

The polnted peak.induces concentratioﬁs ofrradial‘
stresses-from moments at the‘centerline, and these stresses
‘must be calculated by the graphs of fig.22. At other points
on the beam, one or two depths away from this stress riser,
the regular curved or tapered beam formulas may be used for

stress calculatlons

This pdinted‘peak also generates stresses due to

' non'uniform moisture'change, whether the beam 1s loaded or

not. It is difficult to set the magnltude, as fleld testlng

18 necessary to establlsh some realistic moisture gradlents
In the. meantlme, however, it might be advisable to add

20 psi- radial tension to any calculated‘stress from moments
at the peak. This 20 psi is about half the absolute magnl—'
tude determlned ‘herein for one geometry
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- 6. EXPERIMENTAL TESTS ON STRESS PERPENDICULAR TO GRAIN

Average strength values of Douglas Fir are listed
in the publication STRENGTH AND RELATED PROPERTIES OF WOODS
GROWN IN CANADA by the Forest Products Research Branch of
_the Department of Forestry, Canada (10).

_ For air-dry condition the ultimate tensile stress
perpendicular to grain is givén there as L4UO. psi. This
valﬁe_results from short time tests. To compare it with
fhe allowable working stress under long time loading, it

may be multiplied by the factor 9/16. For Douglas Fir, the

“ maximum tensile strength perpendlcular'to grain under long
time loading, now becomes 9/16 x U440, = 248, psi.

A The CSA-Code 086 (11) specifies, on table 8, the
allowable working tensile stress perpendicular to grain for
~glulam Douglas Fir 24 f strength grade in dry condltlons as
65 psi, or 1/3.8 times the long term ultimate. '

The calculated radial stresses in section 5.1.,
are about twice the values given by the curved beam theory.
But with the ultimate strength of 3.8 times the allowable
stress, a factor of two does not explain failure, especially
when many failures bccured under little more than dead load.
Othér influences must be significant. It could be that the
"allowable stress perpendicular to grain, given in the code,
is too high. Therefore a series of‘tésts were done to check

the allowable stress.

‘Samples from two different glulam plants in the
Vancouver area were tested. 'The test pieces, of the shape

given in fig.32, had a cross section of L4.5"x4.5" or 20.2 in?2.
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. Two steel plates, with concentric threaded holes, were
glued on with Epoxy for application of .the tensile forces.

Twenty two members have been tested with the re}_

sult shown in table 5. The average value is
Ofailure ‘= 128. psi

This value is less than 1/3 of the advertised
ultimate_and it must be’recognized that beams designed,
with the classical formula, under pure bending only, might
be already in the critical range;

Although the number of tests is small, the ten-
dency is clear and the conclusion must be drawn, that the
‘ultimate radial stresses must be further inVestigated._
Such investigations should not use clear samples and the
-study should include size effects and drying cracks.

75.



TABLE 5
" RESULTS OF TESTS ON TENSION PERPENDICULAR TO GRAIN

| Loading time about 5 minutes; moisture content-about.lo%t

Test member | Ult. load | Ult. stress v AT
: 1b. psi

1 2890 143 - 15 | . 225

2 1685 83 445 2025
3 21115 119 + 9 81
4 2000 . 99 + 29 8u1

5 1740 | 86 + 42 | 1764

6 1940 96 + 32 1024

7 2130 105 + 23 529

8 2120 105 423 | 529

9 2300 114 + 14 196
10 2020 100 + 28 | 784
11 2310 | 114 + 14 196
12 2090 103 + 25 625
13 3300 - 163 1 - 35 1225
1y 1955 97 , + 31 961
15 4290 212~ | -84 | 7056
16 2340 116 + 12 ST
17 3100 153 - 25 625
18 2375 117 1 + 11 121
19 2235 110 o o+18 | 321
20 4625 228 -100 10000
21 2725 135 -7 U9
22 4350 . 215 --87 7569
Sum - 2813 +356 36893

Average = 128 ~-353
- Standard deviation 36223 = % ﬁi._psi

-Coefficient of variation’ 158, = 32 %



. This difference of three between the ultimate

stress of Douglas Fir in radial tension and the values
found herein are probably due to drying craeks which

appeared in many of the 22 samples;' If a clear, straight

grained sample is used, drying will not induce nearly

‘as many cracks as 1f 'real' wood is used. Those cracks

normal to the direction of radial tension induce excee-
dingly large sftress concentration‘factors.which reduce
‘the ultimate strength.

, The long term ultimate stress taken as '9/16
of the short term glves 72 psi. A safety factor of 2
gives an allowable stress of 36 psi. Since this is
60% of the allowablé now used, and the peak about
doubles the actual stress calculated by the classical
curved beam formula, it is not surprising that failures

occur.
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7. NUMERICAL EXAMPLE

The geometry of a roof beam for use in wet
‘conditions is shown in fig.33. The beam'spans 4o feét_
with a spacing of 16 féep. The laminations of the size
1 5/8™ x 7" are out of Douglas Fir 24 f strength grade.
" The centerline cross section of 39 inches requires‘2u

-lams.

DL = 20psf

f LL = 40psf

point of
tangency

1 =40'-0"

" Fig.33. Roof beam. .

‘The dead load (normal duration of load) is
.20 psf and the live load (2 mopths duration of load,
i.e. snow duration) is U0 psf. Herewith, the beam has to

be designed for a total uniformly distributed load of

960. 1b/ft

(20. + 40.) x 16
' " 0.96 k/ft.
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The allowable working stresses for glulamed
Douglas Fir 24 ¢ strength grade for wet conditions are
given in table 8 of the CSA-code 086 (11) to

1900 psi for bending
145 psi for shear and

55 psi for tension perpendicplar to grain.
"These velues,are for normal duration of loads.
Since the governing stresses for the considered beam occur
oVer‘a two months duration, the allowable stresses may be
increased by the factor 1.15 to '

qtall 1000. x 1.15 = '21b5. psi
Or,y; = 55- x 1.15 = 63. psi
Tall = 145, x 1.1 = 167. psi

The design is madelby checking the tangential-
and radial stresses at centerline of the beam and at the
point of tangency and by checking the shear stress at the
support. ‘ '

The stresses at centerline are calculated for
comparison by the proposed as well as by the existing
formulas. The parameterS'd/R = ,1 and tan a = .2 give
the stress coefflclents (see table 2 or flgures 22 and

23) |
0.0487

CRM =
CTM = 1.283
Com = -0.717



The moment at centerline is
2

_ql? _ .96.x o2 a ' «
M = 98— = 22— = 192.0 kit

The maximum bending stresses obtained by the formula-
M/Z are ’

6 M _ 192 x 12000 x 6
bd* 7 x 39 x 39

o} = = 1298. psi

:-Bettér désign practice uses the smaller cross section

at the point of tangency

6 M _ 192 x 12000 x 6 _
bd? = 7 x 30.6 x 30.6

‘o =

The proposed formula gives the bending stresses

Ocomp = CCM.X ga¥ = -0.717 x 1298 = -931. psi
?tens = Cqmy X ga¥ = 1.2§3 x 1298 = 1665. psi

It can be seen that the stresses obtainéd by-

the present design method give very little information
about the actual tangential stresses,'although‘the
_ stresses are on the safe side, if the cross section at

‘the point of tangency is used.

= 2109. psi < ogy7 = 2185. psi
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The radial tensile stresses by the curved beam

formula are

3M 3 x 192 x 12000

°rmax = 2bd (R+d/2) 2 x 7 X 39 x (390 + 19.5) 30.9»psi

Here, too, better design practice would Use the depth at
the point of tangency to give

3M 3 x 192 x 12000
2bd (R+d/2) 2 x 7 x 30.6 x (390+15.3)

= 39.8 psi

Ormax
The proposed formula gives

orma);: = Cry X %j’l\zd‘ = .0487 x 1298.= 63.2 psi

I

The‘curved beam formula underestimates the maximum radial
stress considerably. The actual stress is about twilce as
much as given by the curved beam formula. It even exceeds
the present allowable stress slightly} If 20 psi are
added.for coverage of stresses due to change in moisture
content, the present allowable stress is exceeded by an

"intolerable amount.

For the stresses at point of tangency existing
" formulas can be used. The bending moment there, at a
distance. x = 6.63 ft from centerline, is

_ 12 x? | _ uo2 6.632
M—-Q(B'—‘—2—)—.96( — -

) = .96(200-22) = 170.9 kft.
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 Herewith, the tangential stress is

6 M _ 170.9 x 12000 x 6 _ 170.9 x 12000 _ . .
bd® = 7 x 30.6 x 30.6 1092.7 = 1873. psi

g =

The maximum radial stress is

-«

v _ 3M o
: ormax B -

_3m 3 x 170.9 x 12000 - 35.4 psti
~2bd (R+d/2) 2 x 7 x.30.6 x (390+15.3)

':.Both stresses are smaller than-thevallowable ones.

The shear stresses are checked at the support,
where the maximum shear force occurs. The vertical re-

action at the support is

\

p = 91 _ .96 x 40 _
F 3 3 | l9.2_k

Herewith, the maximum shear stress -1s obtained as -

3 19 2 X 1000 X cos(11°20 )

=3 el n g = 132.3 psi

This example shows that the present design method
‘gives the significant stresses 1n tangential direction '
‘but does not satisfy for radial stresses. For a safe
des1gn the actual stresses have to be known at centerline.
They are readlly obtained by the proposed method u51ng

the stress coefficlents CCM: Com and Cgrm @s shown in flg 22

and fig. 23.

i
i

o
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8. CONCLUSIONS -

‘The trapezcidal element proposed does predict
a stress_distribution'cloSe énough for all practical
‘purposes-on these problems. Also, it allows stress
determinations from changes in m01sture content and

elastlc propertles

The peak at the centerline of pitch—cambered-
beams induces a stress concentration so that curved beam
' formulas are invalid near the top. Therefore coeffi-
clents from fig.22 and fig.23 should be used to calcu-
late the maximum radial and tangentlial stresses, due to
bending moment. '

‘Radial stresses induced by shear and variation
in elastlc properties are not significant, but those |
created_by'change in molsture content are in the order
‘of magnitude of 20 psi and should be considered.'

The éllowable stresses, used at present, should
~be reduced to'about half their value, but testing needs

"to be done to find a more realistic reduction.

With the increased calculated radial stresses
Iand the reduced allowable radial stresses, it w111 be.
 d1ff1cult to produce an economic design in some cases.
- When. such occurs, the designer could con31der re1nforc1ng
the beam with steel dowells. These dowells from 3/8"‘to
say 3/4" diameter are placed in Slightly oversized holes,

ALyl



drilled almost the full depth of the beam, and partially
'filled with an adhesive such as 'Epoxy'. Such dowells

serve the same purpose as reinfording steel in concrete.

It 1s also possible to carry the total force arising from '

the radial stresses by two vertical steel plates fastened
with glulam rivets tq either side of the beam at its
centerline. '
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DIMENSION RG{30) .M Fr(30)1JD(20094,yDCLR(ZO)9%FTAG(3O),8FTAM(200)}

IR11200) ,R2(200) yTHMI200) 4ND(250,2)yNCODE(20048)4FI(8),EPSIJL3)

DIMENSIGN SMM{36),S5S112950),3( 500),DP{(8),EPSIM{200,2),E(200,4)
DOUBLE PRECISION START,WORD o :

™00

N VR

MAXMEM=220

CMAXJN=250

MAXMEM_ AND _MAXJO_ARE_USED TC DEFINE. THLinlMFNSIUNS IN _THE SUBROUTINES,
DATA START /SHSTART/

PRINT 20

READ 10

20

10

_FORMAT (72H

PRINT 10
PRINT 20

-.w)._..__- R — P e J— _,b
FORMAT (//1??H L EIE 3 3 2 2 FVEFT T L EIF IS B-E S FE X R x#i***#*igktftgi***4*r#*#

] e %% Ao e e str R ok Heoie oo vlee di gt ol sk e ool e ok e AT 2R R F ko Aok sk vk kR e r:r:“r':;:ﬂ':x* 2 e sk ok oA ER

101

. FORMAT(1814)

2ERFRRHKEERARRERS /)

READ 2y MXDELRyMASTRyMATELNPS

PRINT 101, MXOELR
FORMAT (-/25H NUMBER CF DELTA RADIUS =,I14/12H I- ‘DELR)
READ 102, (DELR(I),I=1, MXDELP)

201

102

103 .

FORMAT (F10.6) ’
PRINT 103, (I,DELR{I),I= IyyYDELR)

FORMATY (14,F12. 6)_WM”@_
READ 2,NRG

PRINT 201, MNRG

2 _FORMAT_(I4,F10.3,F10.6)

FORMAT {//26H NUMBER [OF RADIAL GROUPS =,14/25H IRG MEG RG

1BETAG) , .

READ 202,'(”Eu(Ikb),RG(IRG).BETAG(IRG),IRG:I,NRG)

PRINT 2C3, (IQb.MEb(IRr)}ﬁé(IQG),BETAG(IR'S?E‘E “1,NRGY T
FORMAT (214,F10.3,F10.6) » .

CALL DIVIDE [MAXMEM,NRG,RGyMEG,JCyME,NJ)

208

204

FORMAT _(F12.64514)

CALL DISTRI (NRG,RG+MEG, OELR BETAG,BETAM,ME,R1,R2)
READ 204, THyNSHM

DG 2908 I=1,ME

"THM{I)=TH

PRINT 210yME,NSM,NJ

210

212

FORMAT (//20H NUMBER OF MEMBERS =y 14/720H N CF SPEC.MEMBERS =,14/20

1H NUMBER OF JOINTS =,14)

IF_(NSM.EQ.Q) GG 1O 222
PRINT 212

FORMAT (//16H SPECIAL MEMBERS/12H I THM)
00 220 I=1,NSM

214

216
220
222

TREAD 2149 ISV, THR{15M)

FORMAT {14,F10.6) :
PRINY 216 ¢ ISMyTHMUISM)
FORMAT {1442X+F10.6)

CONTINUE

PRINT 224

224

FGRMAT (//22H MEMBER SPECIFICATIONS/59H I JOINTNRS(I,J)

1 R1™ . R2 - BETAM THM) k4

. PRINT 226, (I,J0(1,13,J011,2),J40(1, 3),JP(I,4) RILTI)4R2(T)BETAM(T) |
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226
300

5 COMPILER MAIN | 09-08-69 11:47:38

1y THM(T) a1 =1, ME)

FORMAT (1442X43414,2F10.3,2F10.6)
MS=8 - .

NCC=4

PAGE 0002

305

MST=MMS/NCO
READ 2, NRJ
PRINT 30%, MRJ

_ FORMAT (//3CH NUMBER OF RESTRAINED JUIKTE =,14/12H JR ND1 ND2)
DG 310 1=1,NJ -

DO 311 K=1,MST

311

310

NDLT,K)I=1

- CONTINUE

CONTINUE, __ .
D2 312 1= lyNPJ
READ 24 JRy NU(JR,l)yND(JP 2)
PRINT 2,JR NDIJR, 1) ND(JR42)

312

CCNTINUE
NUM=0
DO313_I=1,MJ
DG 314 K=1,MST

IF (ND(1,K).EQ.CIGOC TO 314
NUM=NUM+]

314

320

313

ND(T,K)=NUM
CONTINUE
CONTINVE - e e o e e

PRINT 220
FCRMAT (//19H JOINT CODE NUMBERS)
PRIMT 221, (T,4(ND{T,43,J=1,MST),1=1,NJ)

321

317

FCRMAT (5(314,2X))
D 316 1I=1,ME
DC_217 J=1,4MS .

CALL CQDRE (MAXMEM,MAXJC+JOyND, I,d, 1COM)
NCODE(T,J)=ICDOM
CONTINUE

316

326

.325 ..

CONTINUE

PRINT 325

FORMAT (//21H _ELEMENT CODE. MUMBERS/24M 1
“PRINT 326, (Iy(NCUDE(I,J)vJ 14MS),1I= lgVF) .
FORMAT (14,2X,814)

NU=NUM

NCODEL1,1708)

o MSM=MS=]

- Ne=1

D0 350 I=14ME

D0 351 J=1,MSM
ICDJ=NCODE( T, J)
IF(ICDJ) 352,351,353

353

354

JP=J+1
D0 352 K=J4P,4MS
TCORK=NCODECT oK)

IF LICDK) 354,352,354
NBT=T1489 S((IARS(ICD&)-IARS(ICJJ)))+1
lF (MBT-NB) 352,352,232

355
352

251 _ CONTINUE.

‘NB=NBT
CONTINUE
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350 CONTINUE

- READ 362, E1,E2,EMU,G,NESP

; 262 FORMAT (4Xs4F16.8,14)

“ PRINT 360, E1,E2,FEMU,G,NESP . :
: 360 FORMAT (//5H EI =4Fl2.4/5H E2 =4F12.4/5H EMU=,F12.4/5H G =,F12.4/
. 1/42H NUMBER OF MEMBERS WITH SPECIAL E-MODULI =,14)

R DG B0 =l s M e e e
- ‘ E(I,1)=F1

i 7 E{1,2)=F2 , -

v : E(I,3)=EMU

_ 370 ElI,4)=6 I

o IF (NESP LEG. 0) GOTOQ 380

. DD 376 I=1l,NESP o e
e REAC 372, 1ESP,E(IESP,1),E(IESP, 7a,r(xeso 3),E(TESP,4)

. PRINT 373, IESP,E(IESP,1),E{IESP, 2),E(IcSP 3),ELIESP,4)

o 372 FORMAT (14,4F16.3)
g 373 FORMAT ([4,4E16.3)

% 376  CONTINUE

o380 ___ _CONTINUE - .

&~

IF {(MATEL) 400,401,400

- 400 PRINT 402 :

g 402 FORMAT (1Hl, 25H ELEMENT STIFFNESQ MATRIX//) L
" "GO 70 404

A 401 PRINT 403

S| 403 ___FORMAT (//37H ELEMENT STIFENESS MATRIX NOT_PRINTED)
i 404 CONTINUE

: NS = NUZ%NB

{ DO 405 [=1,NS

% 405 S(I)=0.0
i NB1=NB-1

DO 0T L=y ME
1 DO 408 I=1,356

[ 408  SMM(1)=0.0

i R1L=R1({L)

S RZ2L=R2(L)

1 BETAL=BETAM(L)

S O THL=THMIL)Y e _ .
T E1L=F(L,1)

3 E2L=E(L,2)

‘ EMUL=F(L,3)

i GL=E(Ly4) :
4 CALL SMEM (RIL,R2LoBETALyTHLyELL»E2L,EMUL yGL 9 SMM)

o LIF IMATEL _WEQ. 0). GC TO_ 422
N PRINT 420, L

. 420 FORMAT (/14)

PRINT 421, SMM(1) .

- PEINT 421, SMM(2),S5MM(9) ' ' .

g PRINT 421, SMM(3),SMM{10),S¥M{16) '
s __PRINT 421, SMMU4) ,,SMMILL) o SMAULT) o SMIL 22
2 PRINT 421, SMM(S),SMMIL12),SMM(18),SMM{23),SMM(27)

. PRIMT 421, SMM{6),SMM(13),SMM{19),S5MM(24),SMM([28),SMM(31)

PRINT 421, SMM{7),SMM(14),SMM{20),5M4{25),SMM(29),5MM(32),SMM(34)
K. PRINT 421, SMM(8)4SMMIL5)ySMMI21),SMM(26)3SMM(30),SMM(33),SMM(35),
R 1SMM{36) ‘
_ FORMAY {1X,8G16.0)

421
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422 CONTINUE

i | DO 409 J=1,8
- If (NCODE(L,J)) 409,409,412
L 412 1= (J-1)H(16-J) /2
' DG 41C 1=J+8
SR IF (NCODE(L,I)) 410,410,406
ol 406 IFINCODE(LyJ)=NCODE(L,I)) 413,450,414 B
450 . IF(I-J) 451,413,451 o
5 451  K=(NCODE(L,1)-1)%NB1+NCODE(L,J)
. © N=J1+]
_ SIK)I=S(K)+{2.0%SMM(N})
S GO TN 410
613 K=(NCODE(L,J)=L)=NBLENCODE(L, 1) e
GO TO 415 , .
« 414  K=(NCODE{L,y1)=-1)%NB1+NCODE(L,J)
3 415  N=J1+I '
S(KI=S{K)+SMM(N)
N 410  CONMTINUE
409 _ _CONTINUE. B
o 407  CONTINUE .
> “IF (MASTR .EQ. 0) GOTO 450
: " PRINT 1000

1000  FORMAT (1H1)

o> 460 CONTINUE

b PRINT 442, NUWNSB ___ " — e

462 FORMAT (//22H VUW%FP DF UNKNOWNS =,14///22H BANDWIDTH : C =

7' 1 '] I 4 )

] ' - IF (MASTR ) 4€44,466,4564

g 464  PRINT 465
g 465 FORMAY {////727H STRUCTURE STIFFMESS MATRIX/)
bt PRINT 425, (S{K)yK=1,NS) - .
; 425 FGRMAT (1X,8616.6) '

; , GO TO 500

! 466 PRINT 467

P 467  FORMAT (//39H STRUCTURE STIFFNESS MATRIX NOT PRINTED)
! 500 READ 2,NLC
Ao o PRINT_SOLy NLC '~ e S

_ 501 FORMAT (////722H NUMBER OF LOADCASES —.14)
> DO 590 L=1,NLC :

, DO 502 1=1,NU

& [ 502  B(11=0.0
*g READ 2, NSL,NE

@l . PRINT 503, L__
- 5013 FORMAT (LH1,9H LOADCASE,IA)

= ) IF (NBL .EQ. O) GO TO 700

; PRINY 506, NB3L

e 506 FORMAT (//24H NUMBER (CF LCADS GIVEN =,I4/712H K B{K))
N DD S04 I=1,NAL o :

e . PEAD 505, KeBUK) __ .

, 504 PRINT 505, X,8(K)

e 505 FORMAT {14,F10.3)

700 IF (NET) 701,722,701

Y

701 READ 702, EPSI1,EPSI2,EPSI3,NSSM
> 702  FORMAT (3F10.6,14)
- - PRINT 704, EPSIL,EPSI2,EPSI3,NSSM . . .. ..
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i ! 704  FORMAT (//23H INITIAL STRAIN ETANG =,F10.6/23H ERAD
gl 1 =,F10,56/23H ESHEAR=,F10.6//37H NUMBER OF SPECIAL
« 2STRAINED MEMBERS =,14) .
DO 706 J=1,4ME
- EPSIM(J,1)=EPST1
- 706  EPSIM{J,2)=£PSI2
N TP _INSSM .EQ. 2) .60 TQ 709 . A ~ S
7. \ DO 708 1=1,NSS¥
. - READ 710, I[SSM;EPSIM{ISSM,1),EPSIM{ISSM,2)
710  FORMAT (I4,2F10.5)
> PRINT 71Ll, ISSM,EPSIM{ISSM,1),EPSIMIISSM,2),EPSI3
,r 711 FORMAT {1443(2X4F10.5))
I 708 _ CONTINUE e ~ . ;
i 709 DO 720 J=1,ME
: R1J=R1(J)
) R2J=R2{J)
o BETAJ=BETAM(J)
o THI=THM(J)
: - EPSIJUL)=EPSIMIJ,1) . e - I
> EPSIJ{2)=EPSTM(J,2)
~ EPSIJ(3)=EPSI3
- ELJ=F(J,1)
. E2J=E(J,2)
" EMUJ=E(J,3)
L BRI A
: CALL EPSINI (R1JyR2J,BETAJsTHIELJyE2J,EMUILGUI,EPSTJ,FI)
o DO 714 NC=1,8 , J
| - IF (NCODE(J,NC)) 712,714,712 : ‘ )
[y "712  NCM=NCDDE (J4NC)
1 BINCM)=B(NCM)+FI{NC)
i 714 __ CONTINUE_____ . I _ .
il 720  CONTINUE
5 ‘ GO TQ 750
R 722 DO 724 1=1,ME
& DD 724 J=1,2
. 724 EPSIM(1,4)=0,
... EpSI3=0, S
: 750  CONTINUE
i PRINT 507
507  FORMAT (//114 LOADVECTGR)
" PRINT 513, (B{I),I=1,NU)
< DET=1.E-8
ol o CALL BAND (S ByNUGNE,LWDET)
+ IF(DET) 508,509,510 :
ia 508  PRINT 511,DET ,
S11  FORMAT (34HOMATRIX A IS NCT POSITIVE-DEFINITE/T7HODET = ,E15.7)
[ ' GO T4 590 ‘
N 509  PRINT 512,DET , : :
S ®12  FORMAT (20QHODETERMINANT IS ZERQ/THODET = ,E1%.7)
GD 1O 590 :
- 510  PRINT 514
514  FORMAT (//19H DISPLACEMENTVECTOR)
b PRINT S13,(B(I),I=1,NU)
» 513  FORMAT (1X48G15.6)
JJUT R O PRINT 555 . e e .
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555 FORMAT (///7779H STRESSES/S51H J RADIAL TANGEN
2 T TAU)
- 550 DO 560 J=1,ME
- R1J=R1(J)
R2J=R2(J)
A BETAJ=BETAM(J)
I S . DO 554 NC=1,8 __ ) e e 2 - _ e
> IF (NCODE(J4NC)) 553,552,553
| 552 DP(NC)I=0.0
‘ GO TO 554
’ 553 NCM=NCODE (J4NC)
ye DP{NC)=8(NCM)
| .S554  CONTINUE . .
* CEPSTJ(1)=FPSIM(J,1)
EPSIJI2)=EPSIM(J,2)
EPSIJ(3)=EPSI3
ELJ=E(J,1)
" E2J=E(J,2)
e BEMUI=E(Y,3) —
"“\7 GJ’—'E(Jylr): : ‘ '
N CALL SIONM (R1J,R2J,BETAJLELJyE2J4EMUISIGCIIDPHEPSIJySTHySRADySRTH)
556 PRINT 558, J,SRAD,STH,SRTH
1 558 FORMAT (1443X,3(1X,F15.6))
-2 IF (J.GT.NPSY GO TOQ 560
e, WRITE 0 745582) J 9 SRAD, STHy SRTH e
' 560 CONTINUE
i 590 CONTINUE
: ~ ~ READ 610, WORD
v 610 FORMAT (AS)
V1 IF {WORD .NE. START) GO TO 620
e PRINT_1000___ - _ ——
e GC TO 100
. 620 CONTINUE
; STOP
= END
:)‘: r— . - N - — JE— — e s ek e At St <o e e AA T T e e
|
1 N
: i
< :
~da
L
<
> |




IV G COMPILER DIVIDE 09-08-69 11:48:16 PAGE 0001

_ SUBRCUTINE DIVIDE (MAXMEMyNRGyRGCyMEGy JOy IMUS,NJ)

4 DIMENSION RG{(1), MEG(1),J0(MAXMEM, 4) '

N IBAS=0

§ [MUS=0

- DO 10 IRG=1,NRG

« IF (IRG.LEQ.1) GO TN 11

e IRIMEGUIRGEII-MEGLIRG) ) ALy Y L w M2

n 11 MM=MEG(IRG)

N 7 DO 13 JRG=1,MM
I=IMUS+JRG

' JO(T,1)=IBAS+JRG+MEGIIRG)+2

o JO{I,2)=1BAS+JRG+]

L U022 )=IBASHIRG B -
JCUI4)=1BAS+JRG+MEGIIRG) +1

. 13 CONTINUE

‘ IRAS=IBAS+MEG(IRG)+1

v IMUS=TMUS+HMEG(IRG)

- GO TO 10

12 T MM=MEG(IRG) _ i e i o B

-] DO 14 JRG=1,MM

= 1=1MUS+JRG

IS JOUI 41 )=IBAS+JRGHMEGIIRG-1)+2

& J0(T,42)=1BAS+JPG+1

N JOU1,43)=18AS +JRG

e .. J0{1,4)=1BAS+JRG+MEG(IRG-1)+1 . _ _ e

’ 14 CONTINUE '

o [BAS=IBAS+MEG({IRG-1)+1 /

] - [MUS=TMUS+MEG(IRG) )

g 10 CONTINUE

o ~ NJ=IBAS+MEGINRG)+1

| . _RETURN e e - e

<, END

;-

?
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IV 6 COMPILER

SUBROUT INE DISTRI
4 DIMENMSICN

. IMUS=0
- DD 20 IRG=1,NRG

DISTRI

09-08-69

11:48:21

PAGE 0001

(NRGyRGyMEG)DELR yBETAG,BETAM, IMUS,R1,R2)

RG(1)yMEGI1)sDELRIL)4BETAGHL) BETAMIL) R1I(1)4yR2{1)

. i e 0021 JRG =1, MM
v ' o I=TMUS+JIRG
' RI({I)=R1M

RIM=RG(IRG)
MM=MEG( IRG)

A R2(II=RIM+DELR(JRG)

> RIM=R2{ 1)

BETAMI1)}=BETAG(IRG)

2l

JCONTINUE
IMUS=TMUS+MEG(IRG)
CONTINUE

& RFETURN

Al END
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SUBROUTINE CODE(MAXMEM, MAXJIO,J0,ICDsI1,J,ICDM)
DIMENSION JO(MAXMEM,4),ICD{MAXJIO,2) ’
GO TO (192134495169 7+8),J

JMNU=1 '

GO TO 10
JNU=2
GO 10 10,

o —:3 i o JNU=3 T ’ - T o T T -
\ 7 GG TO 10

5 4 JNU=4 -

10 JD=1

vo- GO TO 29

e .5 9NU=1 - e -
- . GO TO 11

o 6 JNU=?2

‘ GO TO 11

¥ 7 JNU=3

o GO TO 11

: 8_ JNU=4_ _ 3 e B
> 11 Jp=2 _
S 20 I1=J0(I,dNU)

¢ ICDM=ICD(II,JD)

. RETURN

P END

’ — i . S e e e e e e e e e et e
i
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=
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SUBROUTINE SMEM (R1,R24yBETA,THyELyF2,EMU,G,5) .
C TRAPEZGIDAL ELEMENT TRANSFORMED INTO PCLARCOCROINATES
" DIMENSION SK(36),S(36)
' H=(R2-R1)*COS{BETA/2.).
A=2  ,*R1=SIN(RETA/2.)
< ' B=2 . %R2%=SIN(BETA/2.)
F1 =(A+B)*H/2.

. FY =(A+2.%B)¥H"H/6,
N FXX={{AxA+BxB) %= (A+3))*H/36, .
. FYY=(A+3 . xRV ERHEHEH/ 12,

SAl1=1./(A%A)
oy SAZ2=1./{A*H)
' SA3=1G/CARAEHY
SA4=1./{ARARHEH)
o SAS=1./(A%H%H)
, SA6=1./(AXREH)
R SAT=1./(A*B=H=H)
- SB1=1./{H*H)
__SB2=1./H4
= SB3=1./(B*HxH)
< _ SB4=1./{B*BAH=H])
! C SC1=1./(4. #HYH) #{F1%3)
»i SC2=(FYYXEL)+(FXX=G)
= SD1=FY*§
b SDR2SEYREL - S
SD3=FY®EMU
oy , SE1=F1%5
SE2=F12€1
¥ SE3=Fl=gMU
s SFl=1e/{4.*H*H) #(F1%E2)
e SFR2EAFXX¥*E2)+(FYYRGY .
‘ SK{(1) SC1+SB4=%SC2
X SK(2) = SC1-SB4%SC2
: SK(3) ==SC1-SAAxSN2+SAT*SC2
i) SK{4) =—=SC1+SA6=SD2-SA7%SC2
. SK{5) = SB3/2.*%(SC1+S03)
SK(6). = SB3/2.7(~-SD1+SD3)___ e .
SK{7) =-SA2/2.%SEL+(SA5/2.%SD1)-(SB3/2.%5D2)
SK{8) (SA2/2.%SEL)-(SA5/2.%SD1)-{SB3/2.,=5D3)
SK{16)= {SA1%SE2)~{SA3%2,%SN2)+(SA4*SC2)+SC1

S e

SK(17)=-(SAL%=SE2)+(SA3%2.%5021-({SA4=SC2)1+SC1
SK{18)=-{SA2/2.%SE3)+(SAS/2.%5D3)-{SB3/2.%SD1)
 SK(19)=—(SA2/2.%SE3)+(SA5/2.%SD3)+(SR3/2.%5D1) L
, SK{20)= (SA2/2.%SE3)+(SA2/2.%#SEL)-{SA5/2,%5D3)-(SA5/2.%5SD1)
- SKI21)= (SA2/2.%SE3)-(SA2/2.#SEL)-(SA5/2.#SD3)+(SA5/2.%SD1)
SK{27)= SF1+(SR4=5F2)

PO SR I

T e

= SK{28)= SF1-{SB4*SF2)

A SK{29)=-SF1+(SAT%®SF2)-{SA6*xSD1)

. SK{30)=-SF1-{SAT=SF2)+{SA6%SD1)

: SK{34)= SF1+(SAL#SE1)={SA3%2.5SD1)+(SA4%SF2)
3 SK(35)= SFL-{SAL*SEL)+{SA3%2.%SD1)-(SA&%SF2}
CC=COS(3ETA/2.)*COS(BETA/2.)

> CS=COS(BETA/2.)=SIN(RETA/2.)
A SS=SIN(BETA/2.)%SIN(BETA/2.)
S{1):= CC¥SK(1)=CS¥2.%SK(5)+SS4SK(27)
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S(15)=-S(7)

S(16)= CCx#SK{15)+CS552.%SK(20)+SS%SK(34)

SMEM 09-08-69 11:48:25 PAGE 0002
S(2) = CC¥SK(2)+0S%2,%<SK{6)-SS™SK128)
¢ SU3) = CC*SKI3)+CS*(SK(7)-SK(18))-5S%5K{29)
“ SU4) = CORSK{4) +CSH(=SKI8)+SKI{19))+SS*SK(30)
S{5) = CC*SK(5)+CS*{SKI1)=SK(27))-5S*SK(5)
ST6) = CCHSKI6)+CS(—SK(21-5X(28) 1-SS*SK(6)
4 SIT) = COXSK(T)+CS#(~SK(3)=SK(29)) +SS*SK(18)
e w22 SU8) = CCESKU8Y+CSHASKLA)oSKIB0I #SS=SK(19)
T St9) = S(1)
N - S{10)= S(4)
, S{11)= S(3)
: S(12)=-S(6)
- S(13)=-515)
5 S CL8)==S08) — - R . — ]

; S{17)= CC%*SKI{17)-CS*2.% SK{21)-SSxSKI(35)
‘ S(18)= CC%SK(18)+CS*(SK{3)+SK(2G))+SS=SKI(T)
- S(19)= CCxSK{19)+CS*(—SK{4)+SK{30))+SS:SK(8)
g 512002 COESKL20)#CS*(-SKO16)+SKI34))-58%SK(20) o - N
- S(21)= CCASK(21)+CS={SK{17)+SK(35))-5S%5K(21)
5 S{22)= S(16)
; S(23)=-5(19)
1 S{24)=-5(18)
£ S(25)=-S5(21)
3 SU127)= CCHSKI27)+CS#2%SK(5) +SS=SK{ 1)
§ S(28)= CC*SKI28)+LS%2.%xSK{6)=-SS¥SKI(2)
{ S{29)= CCHSK{29)+CS™{SK{T)=-SK(18))}=-S5%SK(3)
Y S(30)1= CC*SK{3C)+CS=(SK(BI-SK{19))+SS=SK{4)
S(31)= S(27) -
e b ...SU32)=_S(30)_ e e
' S{33)= S{29) ,
S(34)= CCHSKI{34)-CS#2.% SK{20)+SS%SK(16)
S{35)= CL#%SK{35)-CS¥2.% SK{21)-SS*SK{17)
z S{36)= S(34) ' '
1 DO 10 1=1,36
Jo 10 SUI)=SUI)*TH R .
B RETURM
b END
|
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SUBROUTINE EPSINI (R1,R2,BETA,TH,E1,E2,EMU,G,EPSI,FI)
DIMENSICON FT{8),FI(1),EPSI(1)

PAGE 0001

“

- C=COS{BETA/2.)

o, S=SIN(BETA/2.)
H=C= (R2-R1)

. A=2.%R1] %S

L. B=2eER2%S

CAA= THX(A#8)/4.
AB= THEH*{2.%A+B)/(6.%A)
AC= THEH¥(A+2.%8)/{56,%8)

AE=E1=EPSI{L)+EMUZEPSTI(2) -
AF=ENUREPST({1)+E2%EPST{2)

R AGEGXEPSIN3) I e
« FTU{1)= AC%*AE +AASAG
FT(2)=-ACHAE +AA*AG
« FT(3)=—A3%AE -AA*AG
¢ FT(4)= AB#AE —AA%AG
FT(5)= AAXAF +AC*AG
S ETA6) = AARAR -ACEAG
a FT{T)=—AA%AF —AB¥AG
- FT(8)==AA%AF +ABXAG
o FI(1)= CHFT{1)=-S*FT(5)
: TFI(2)= C*FT(21+S5FT(5)
3 FI(3)= CAFT(3)+S%FT(7)
Y - LJEDCa)= CERTL4)=S*FTA8) — -
i FI(S5)= C*FT{5)+S=FT(1)
: FI(6)= C*FT(&)-S*FT(2)
IR FI(7)= C*FT(7)—S*FT(3)
4 FI(8)= CHFT(8)+S4FT(4)
1 RE TURN
Al END. - — S
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PAGE 0001

SUBROUTINE SIGM (R1,R82,B5TA, E1,E24EMU,G,DP,EPSTSIGX+SIGY,TAU)

) DIMENSION DPUL)4DKIB)4CTI(3,43),EPS{3),EPSI(])
i C=COS(RETA/2.)
. S=SIN(BETA/2.)
DKI1}=CxDP(L)+S*DP(5]
- NK{2)=C*DPI2)-S*DP{6)
o L BKUB)=CEDP U3 =SSR O P T e
‘ DK U4)=C*DP(4)+S=DP(8)
o - DK (5)=C=DP(5)-S=DP (1)
v DK{6)=C=DPE)+S5*DP(2) )
DK{T)=C*DP(7)+S=DP(3)
ol DX (8)=CxDP(8)=S*DP(4)
e e HECEIR2=RYY — _ e )
A=2,%R1#S
B=2,¥R2%S
-\ X=0.
: Y:H/ZO
a CTI(1,1)= Y/(B%H)
¥ CYI(l,2)=-CTI(1,1) . e —
_ CTI(1,3)=~1.0/A + Y/(A%H) '
>- O CTT{144)=-CTI(1,3)
N " CTI(1,5)= 0.
4 CTI(1,6)= 0.
j  CTI(1,7)= 0.
oo CTIL1,8)= 0. e e e
: CTI(2,1)= 0.
A CTI(2,2)= O.
d CTI{2,3)= 0.
g CTI(2,4)= .0..
g CCTI(2,5)= 1.0/7(2.0%H) + X/{B%H)
o | CTIl2,61=_1.0/(2.0%H) = X/(B%H)__ _ . o
; CTI(2,47)==1.0/12.0%H) + X/{A%H)
Y CTI(2,8)=-1.0/12.C%H) = X/{AxH)
B CT¥I(3,1)= CTI{2,5)
i CTI(3,2)= CTI(2,06)
| CTI(343)= CTI{(2,7)
Aol CTI{3,4)=_CTI(2,8) — e ,
f CTI(3,5)= CTI(1,1)
g CTT(3,6)= CTI(1,2)
3 CTI(3,7)= CTI(1,3)
'? CTI{3,8)= CTIl1,4)
f DO 20 K=1,3
A L EP SR =R P S LK) e e I
: DO 2C J=1,8
~ EPS(K)=EPSIKI+CTI(K,J)=DK(J)
~ 20 CONT LNUE '
‘ SIGX= EPS(L)®EL+EPS(2)*EMU
SIGY= EPS(1)=*EMU+EPS{2)+E2
S T I L o o I s
RETURN
~ EMD
\.
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