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ABSTRACT
This study investigates the propagation of a surge wave in a power
canal following load rejection or reduction. Dimensionless relation-
ships are derived to predict (a) the initial wave height, (b) the
variation of the wave he?ght along the canal and (c) the maximum stage
of water depth at the downstream end for straight prismatic canals of
rectangular, triangular and trapezoidal cross-sections. The effects
of various parameters, such as velocity and depth of initial flow,
frictional coefficients, bed slope, cross-section of the canal, distance

of wave propagation and initial wave height of the surge are studied.

A computer program is developed for the calculations required. It is
found that, as a positive surge propagates along the canal, the

wave height decreases linearly with distance for a short canal, according
to an>exponentia1 function for a long canal. An approximate logarithmic
relationship is also found between the variation of Qave height of a

positive surge and canal cross-sectional parameters.

The variation of water depth at the downstream end of the canal is not
linear with respect to time. An almost linear relationship between
the maximum water depth at the downstream end of the canal and the

length of the canal is noted.

The dimensionless relationships derived in this study may be used to
establish design criteria for crest elevations of the banks and walls

of power canals to avoid overtopping.
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NOTATION
A ~ cross-section érea ’
b width of free surface
by . boﬁtom width of canal
c - wave celerity |
7 Froude number = V/, /27y
g gravity acceleration
H total head ét reserveir
k dimensionless parameter = bgy/m:y,
L canal length
Ly “~ reference length =y /S,
1/m _ ‘canal side slope
n resistance coefficient in the Manning formula
R hydraulic radius
P wetted perimeter
Q discharge
‘r dimensionless parameter = l+i%i
S friction slope (energy gradient)
" So " slope of bottom
t | time
) water velbcity
Vi absolute wave velocity = Vt ¢
w unit weight of water
x distance
x*_ distance of wave propagation
y water depth
¥ centroidal depth of cross-section area
# note ﬁhat some Authors use F = v2

8-y
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Z surge wave height
A | dimensionless para.meter. = VWO/ v,
B _ >dimensionless parameter =. zo/y0
T discharge ratio = Q/Qé
o unit shear force on bottom and sides
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M ‘ ehergy coefficient »
¢ dimensionless parameter =< X > ( X )
- : L r=1 LR r=n
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CHAPTER 1 INTRODUCTION

The prediction of the height and velocity.ofvé éurge»wavé, the maximum
stage and the other flow characteristics in a canal due to large
instantaneous changeé in dischafge has been_of'interest to engineers for
many yéars._ The designer of a hydro-electric headrace canal, for egample,
must determine the maximum stage of water that coﬁld occur as a result
.of a sudden load rejection in poweraoutput, consideriﬁg both thé surge .
wave cregt and the subsequent unsteady risé_in stage at any point.

In hydro-electric head or tailrace canals, large changes in discharge
are initiated by opening or closing of turbine gaées. These discharge
changes cause positiye or negative surge waves. A wave, which results
from an increase in water depth is called a positive wave. A wave, which
results from a decrease in water‘debth ié called a negative wave. 1In a
positive surge wave, the higher-portiéns of the wave have a greatér vel-
ocity of propagation‘fhan the lower ones. Hence the front of the wave
teﬁds to becéme steeper and steeper until the slope of the fronﬁ is
enough to cfeéte a roller. The front of.the wave fhen resembles a
moving hydraulié jump. After a positive sufgé-waﬁe front in a head

race canal passés a given sectién, the water level at that section does
not, in general, remain stationary, but continues to rise. The unsteady
water surface rise behind the sufge wave persists until. interrupted by
the negative waQe, which results from the reflection of the positive

wave at the reservoir at the upstream end of the canal.



The negative waves are not stable in form, because the upper portions

of the wave travel faster than the lower portions. This results in a

gradual flattening of the wave front as it moves along the canal.

- At solid boundaries, such as closed gates, a positive wave is reflected

as a positive wave and a negative wave as a negative wave. At the

reservoir, a positive wave is reflected as a negative wave and a

negative wave as a positive wave. In a short canal, the wave front may

travel back and forth several times before a new steady state is reached.

However, the first maximum stage is higher than the subsequent peaks on

the water surface oscillation cycle and is the most significant for

design considerations.

This study includes four parts:

(1
(2)

(3

4

Determination of initial surge wave height and velocity (Chapter 2),
The method of computation of the propagation of surge waves (Chap-
ter 3),

The variation of wave heights for positivg and for the refleqted
negative surges (Chapter &), and

The variation of-water depth at the downstream end of the canal

(Chapter 4).

The study deals with:

(a)

(b)

Initial uniform steady flow with Froude numbers from 0.05 to 0.20
inclusiQe.

Straight canals of constant longitudinal slope, shape, size of
cross-section and frictional coefficient throughout. Rectangular,

triangular and trapezoidal cross-sections are considered.



(c) Positive waves caﬁsed by an insfan;aneous load rejection at the
doWnstream_end and travelling upstream toward the upper end of
the canal.

(d) Downstream travelliﬁg negative waves, resultiﬂé from reflection
of positive waves reaching the reservoir at the upper end of the
canal,

Several approximate methods for computafion of the propagation of surgé

waves in canals have been developed by previous investigators. The

methods suggested by R. D. Johnson(l)*, and H. Favre(Z) are in current
use. According to Johnson;s method, the total length of chaﬁnel is
divided into several reaches. The slopes in the water surface and the
canal bed in each reach are represented by a vertical drop in the water
surface and in the canal floor at junctions between the reaches. The
water surface and canal floor within each reach are assumed level.

When a wave reaches the jupctioﬁ, two component waves emerge, one of

which travels upstream and the other downstream. When the downstream

travelling component wave reaches tﬁe downstream end of the canal, it
will be reflected énd travels upstream. When the upstream travelling
component wave reaches another junction farther upsﬁream, it will be
transmitted and reflected again into two component waves which travel
in opposite directions. When two waves travelling in opposite direc-

tions meet, another pair of waves is generated. The wave heights and

water depths at any section of canal can be computed step by step.

Favre introduced a method using two empirical equations for the com-

* Numerals in parentheses refer to corresponding items in References.



putation of a surge wave propagating along a canal. He made the assump-
tion that the longitudinal profile of the water_surface behind the wave
frént is a straight line. In addition, the whole length of canal is
considered as one reach. This methoé may be applied to relatively

short canals with a étraight and moderate s}ope, to obtain an approx-

imate solution,

Because these manual computational methods are laborious their useful-
ness is restricted. In recent years, the advances in computer tech-
nology has stimulated the development and application of more rigorous

approaches. On such rigorous solution is described in this study.

In this thesis, equations of momentum and continuity for a rapidly

varied flow are used to solve the height and velocity of a surge wave.

‘The partial differential equations of motion and continuity governing
the gradually-varied, unsteady flow in the front of, or behind, the

wave region are converted into tofal differential equations by using
the method of characteristics and.solved'by a finife difference tech-

nique.

A mathematical model is set up on an x-t plane with characteristic
grids. Using this model, a computer program is developed for calcula-
tion of the wave height and velocity at any section of the canal as a
surge wéve is travelling upstream. Similarly flow parameters at any
section in front of and behind the wavé region, are obtained for the

~downstream travelling wave from computer calculations.



Although a simple and idealized éanal is considered. in this study, the
method and techniques‘employed and relationships derived may be modi-

fied for the computation of surge wave propagation in a complicated

real power canal.



CHAPTER 2
DETERMINATION OF WAVE HEIGHT AND VELOCITY FOR INITIAL SURGE WAVES

2.1 Fundamental Equations Govefning the Surge-Wave Height and Velocity

If the velocity of the water flowing in a canal is changed rapidly,
a wave is generated with a sudden change in depth. Figure 2-1
illustrates a surge wave resulting from a sudden change in flow,
due tb a gate motion, that increases the water depth. The depth
of flow is always considered to be positive with reference to the '
channel bottom. Wave velocity, celerity and water velocity are
assumed to be positive in the downstream direction. The water
between two cross-sections, one just upstream and the other just
downstream of the wave front,.is considered. The velocity of the
mass of water between these sections 1 and 2 is decreased from

V1 to VZ’ and the momentum is decreased accordingly. By Newton's
second law of motion, the unbalanced force required to change the
momentum is the product of the mass per unit time and the change
in velocity. This unbalanced force is equal td the difference
between the hydrostatic pressure forces acting on the area A2 and

A, at section 2 and 1. It follows that:

1
: W . . _
—_..A . \Y -V . V -V = - . - . . e -
) 5 1 ( 1 v ) . ( 1 9 ) = w Aye¥, = WeAy o Yy {2-1)
Where

w = specific weight of water
g = acceleration of gravity
A = cross-sectional area
V = water velocity



v
\

]

absolute wave velocity

y = centroidal depth of cross-section area.
Subscripts 1 and 2  indicate parameters at sections 1 and 2

respectively. °

- The equation of continﬁity between section 1 and 2 is

A2 . ( v2 -V, ) = Al . (vl -V, ) L eeens ( 2-2.)

By substituting Eq. (1-2) into Eq. (1-1) ‘and solving for Vw s

— - 1
| Vw = V1A+ c e (2 3

where ¢ = celerity (relative to flowing water),

c= * / g-(Ap-5y = Ay¥y ) e (223
Ay -1 - Al/A2 ) :

Eq. (2-5) is the general expression for the absolute waQe»velocity

in a power canal. The’sign in front of the square-root term in Eq.

(2—3) depends on the direction of wave propagation. A positive sign

is used if the wave moves downstream, and a negative one if the wave

moves upstream. If V_ is eliminated from Egs. (2-1) and (2-2),

P . Y - |
é ey - A ‘y.= (v 2 ’

. -V, veeeen -4
g (A - A ) 172 (2-4)

The above equation represeﬁtsvthe relationship between velocities
and depths of flow at sections 1 and 2. From Egs. (2-2) and

(2-4) y, or V2 may be determined by a process of trial and error,
given the other three independent variables. The magnitude'of the
wave height is equal to (;2 - yl). Positive values of (y2 -.yl)

indicate an increase in depth while negative values indicate a

reduction in depth.



Although the above equations are derived for the case shown in
- Fig. 2-1, they can be applied to positive or negative waves trav-
elling either upstream or downstream. For initial surge waves,

Eqs. (2-3) and (2-4) may be rewritten as:

wo (o} | o
(2-5)

LR TR )
Co = _
) Ay - (1 -4A,/4)
and
, A, . A
} - o 2
A - A Y, = (Vy - v) ciiee (2-6.)

g-(_A - Ay )

where subscript o indicates parameters of the undisturbed initial

flow.

With these equations, the initial wave parameters, such as celerity,
height, etc., may be determined for any cross-section of the canal.
If a wave travels in still water, Vo "is equal to zero. Thus, in

this case, the absolute wave volocity is identical to the celerity.

Solving Egqs. (2-5) and (2-6) by trial and error is laborious.
‘To simplify calculations, therefore, a dimensionless form of the

equations is given below for three types of prismatic canals.



2.2 Initial Surge Waves in Canals of Rectangular Cross-Section.

For the rectangular canal (Figure 2-2), Eqs. (2-1) and (2-2)

can be simplified to

. (Vo -V )

Y =Y 7% —g‘ Yo (Vo = Vyo ) (2-7)
and
Yo Vo — =
o " (Vo-Vyo )=y . (V-v,) ... ( 2-8)
"where y 1is- the depth of flow
Eliminating V_ from Egs. (2-7) and (2-8) gives
. ) - )
2 2 2 yO'Y'VO'(l'V/Vo)
yo -yl = ~ . e € 2-9)
' ' (y -vy,)
Dividing Eq. (2-9) by yz ~ reésults in
v 2
2 y \ v
(2 oy e 2 (1 - —) e (2-10)
9 . yo 8 YO yo Vo : :
Let
i Z
g = 0 , where Z0 =y -V,
Yo
and discharge ratié,
Q
T = N , where QO = A(;VO and Q = A.V
o :
then
o y _ .
= 148 e, ( 2-11)
Yo
and
\Y ( . ;
e e 2-12
Vo 1+ 8



Using Eqs. (2-11) and (2-12), Eq. (2-10) gives the dimensionless

<

equation

s B(1EB) - (2+8)
o i 2 (1+8 -1 )2

Vo

4
g ‘o

10

Eq.(2-13) shows that the initial wave height in canals of rectangu-

lar cross-section is a function of the Froude number of the initial

iflow and the discharge ratio. For a constant discharge ratio, the
initial wave height is only a function of the Froude number of
the flow. The family of curves correspoﬁding to Eq. (2-13)

is shown 6n»log-1og‘paper in Figure 2-3. Given the Froude
nuﬁber of the initial flow, and the change in discharge after
the gate opening or the gate closure, the initial wave height

can be obtained directly from this graph.

Solving Eq. (2-2) for the absolute wave velocity, gives

vwo =
Yo =
or v v
wo - YoVor (1 - 5ot ) :
— =22 % Yo’ ... ( 2-14 )
.0 yo"!O'( 1 - .—Y—)
| Yo

Substitution of Egs. (2-11) and (2-12), Eq. (2-14) can be

simplified to




2.3

11

where )is the ratio of absolute wave velocity to the initial

flow velocity, )\ = Vwo/vo' Substituting Eq. (2-15) into Eq.

(2-13) and simplifying gives

» (A =1+7 ) . (2x-1+7)
o 232 0 (1= 2)?

Eq. (2-16) gives the relationship between the wave velocity

V ~ the Froude number Fo of the initial flow and the discharge

wWo

ratio ¥ . For a given value of 't , the initial wave velocity

is a function of the Froude number. Eq.

graphically in Figure 2-3.

(2-16) is shown

Initial Surge Waves in Canals of Triangular Cross-Section.

For a triangular canal (Figure 2-4), Eq. (2-6) may be

simplified to:

R 2 2
1 3 3 Yo + ¥

3(Y'yo)= ‘-V2.

2
&-(y -y(?;)

In a triangular canal

v Q/A '_ T

= 2
v Q, /A, (1+R)

v
2
S
(o]

wee (2417 )

By using the relation above and Eq. (2-11), Eq. (2-17) can be

rewritten as:

or

2' ('1.+B)12. [(1*8)2;1]'[(1*8)3‘1]

F. = ,

1 2 ‘
[(1+B)3-1]=F2.(1+B) - T
3 . C(1+B)% .

° 3[(1+3)2-r'|2

( 2-18)



2.4
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If Eq. (2-2) is solved for absolute wave velocity, and a similar

substitution of the dimensionless parameters, Tt and Blis used, then

Voo _ (1+B).ET+_B_)2_ 1
Yo o (1+8)% -1
or ' o
\ = S ( 2-19 )
2
(1+8) -1

Eq. (2-18) shows that the initial wave height in a symmetricai
canal of triangular cross-section is a function of the Froude
number of the initial flow and the discharge ratio.

Eq. (2;19) shows thét the absolute wave velocity is a function of
the wave height. In other words, the ratio of wave velocity to
that of the initial flow is also a function of the Froude number
and the discharge ratio. The graphical form of Egqs. (2-18) and

(2-19) is shown on Figure 2-5.

Initial Surge Waves in Canals of Trapezoidal Cross-Section.

In a trapezoidél canal (Figure 2-6), the cross-sectional parameters,

b, A, y, at sections upstream and downstream of the wave front are

o
1

by +2m - Y,

1
AO'—Tyo-(bo+m'yo)
§=y0 3b0+2m°}'o
-o 6 b, +m . ¥,

and

b2 = bo 4 2mnm.Yy



y . ( by +m .y ) 13

"™
1

. y 3p,t2m .y

6. ‘bo +m.y
Substitution of these relations into Eq. (2-4) gives
% 2
P (3 bo +2m.y ) " (3 bo + 2 ? X))

2 , » _
Vg Yo (b, + m.y ).( b, *@.X)).( 1 V/VO )

g- [ ( bo + m.y ).y - ( b, + m.yo).yO ]

Dividing by.m-yg'results in

L (T (3P w2y y o1 . By,

6 Y m.y, . Y, 6 m.y,
2 b b |
v2 y (o410 + Y y.(1-_ )
= . .M.y m.y Yo 0 ” '
.- (2-20)
gy v, (EEO_ + Xy 2 - (Baygy :
= . 'yo yo [e) m'yo
Let
b .. 2-21 )
. o (
m.y
then ‘
v t-(k+1) : '
_— = e .. ( 2-22)

Vo (k+1+8). (1+8)
. Substituting Eqs. (2-21) and (2-22) into Eq. (2-20) gives

1 2 . 1
______(1+B)-[3k+2(1+3):|—___(3k+2)
6 _ 6

(k+1).[(g+1+3).<1+3)-r.(k+1)]2

onN

.[(k+1+'3).(1+3)-~(k+1)]..(k+1_+[3).(1+,8)

or

o {(1%')2,[3 k+2(i+,@] - (3k+2) } : ‘[<k+1+5>.<1+g>-<k+1>].(1;55,.<k+1_+@

(o]

6 (k+1) . [(k+1+B ). (1+;3 ) -Te(ktl) ] 2
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In a trapezoidal cross-section, one additional variable, k, which
is a function of the bottom width, side slope of the cross-section
and the depth of the initial flow, appears together with discharge

ratio and Froude number, to determine the initial wave height,

iPhysically, (1 + k) is a ratie of the area of a trapeéoidal
cross-section to that of a triangular cross-section with the
same depth and side slope. For a constant value of k, Bis
independent of the individual value of bottom width, side
slope or the depth of initial flow. If the same relation in
Eqs. (2-11) and (2-22) are used, then from the continuity

equation, it follows that

+B).(HHBY T . (kH)

Vwo - “(k+1) ‘ ) (1B ). (1+3) )
v, _ (1+B) . (k+1+ 3) I
(k+1)
or
N = e D s N ( 2-24)

(A+B) . (k+1+B3) - (k+l)
It may be nofed that the shape factor, k, also éppears in the
wave velocity equation. Egs. (2-23) and (2-24) are shown.
graphically on Figures 2-7 (a) - (j). It should be noted
that the rectangular and the triangular canals are the

particular or limiting cases of the trapezoidal canal. A
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trapezoidal canal, when its side slopes become vertical (k = oC ),

is a rectangular canal. When k = o , Eq. (2-23) is identical to

Eq. (2-13), and Eq. (2-24) to Eq. (2-15). When the bottom width

of a trapezoidal canal is reduced to zero (k = 0), it becomes a
triangular canal. For k = 0, Eq. (2-23) is identical to Eq.

(2-18), and Eq. (2-24) to Eq. (2-19). Therefore, the rectangular

and the triangular cross-sections are the two limits of the trape-
zoidal cross-section. This can élso bé seen from Figure 2-7 (a) - (j)..
Thus Eqs. (2-23) and (2-24) are also valid for both fectangular

and triangular canals.
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CHAPTER 3

NUMERICAL CALCULATIONS FOR SURGE-WAVE PROPAGATION
\ : -

© General

When an.initial surge wave is generated at the'upstream or down-
stream end of.a channel, it travels immediately away from_thé
source of generation with.its velocity of propagation. This veloc-
ity of propagation is usually considerably in excess of the meaﬁ
steady-flow velocity. A positive waveicaused by a rapid éhange of

discharge has a profile with a steep front similar to a moving

hydraulic jump. If the initial profile.of the negative surge wave is

‘formed with a steep front, it will soon flatten out as the_surgé

‘wave moves along the channel.

Arrigoréus solution for the calculaﬁion of the propagation of
surge wéves.doés not exist. A rapid approach by the aid of com-
puter is introducéd in this chapter. 1In this approach, the surge
wave is.deterﬁined by using the eﬁuatiops of continuity and
momentum (see Chaptér 2), and the flow velocities and depths at

the upstream and the downstream of wave front boundaries are.cal-

. culated using the unsteady-flow equations. These unsteady-flow

equations are solved by using the method of characteristics by

which the partial differential equations are traﬁsformed into

particular total differential equations. The numerical solution

is obtained by a first order finite-difference technique.
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3.2 Basic Assumptions

The application of the method of characteristics to unsteady-

flow in an open channel is based on the following simplifying

assumptions.

(a) Homogeneous water, neither density currents nor sediment
movement are considered.

(b) Lateral flow is neglected, i.e., one dimensional flow is
considered.

(c) Friction due to the motion over a rough channel bed obeys
Manning's formula.

(d) Channel slope is small énough.so that cosg = 1,

(e) Vertical component of fhe acceleration hasla negligible
effect on the‘pressure.

(f). The pressure aistfibution along a vertical line is

hydrostatié.

3.3 The Equations of Characteristics

Various ways have been used for deriving the equations of
characteristics. . The expressions developed by V. L. Streeter(3)
are used in this study{ According to Streeter, two pairs of the

equations of characteristics, written for a gradually varied

unsteady—fldw‘in an open channel, are

dv (g.E dy . g.1, : ’ »
—— - . - . = « s a8 e -
ac K it wE® 85070 (3-1)

dx _ v+ [B: , . eeees (3-2)
dt . B _ .
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/ : T ' : :
G R s 0 L (3
fd§_=v._ s h Cevees (374

‘where | :

w = the specific weight of water,

A = the cross-sectional area,

B = the surface width of cross-section,

R = the hydraulic radius,
S = slope of bottom
N\
To = the unit shear force on the bottom and sides of

a channel,

~——— = the celerity of an infinitesimal wave.

The first group of equations are called positive characteristics
+ . . ) .

or C equations, while the second ones are called negative char-

acteristics or C° equations. The first equation of each group is

valid only when the second equétion of the group is satisfied.

Solution of Equations of Characteristics for a Gradually Varied

Unsteady Flow

The equations can be represented graphically on an x-t plane,

as shown in Figure 3-1. The point P fepresents the position of
the canal section undef consideration at time tp and the points
R and S.represent, respectively, the position of certain upstream
and déwnstream sections at time tR and.t . The velocity of wave

propagation can be represented by the slope of the lines

constructed on the x-t plane using Eqs. (3-2) and (3-4). Point
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"R represents the position of the upstréam section from which

an infinitesimal wave, once developed, will arrive at section

P after the time interval At = tp - tR.

Similafly, point S represents>£he position of the downstream
section from which a wave once developed will arrive at
section P after At = tp - tS. Values of V énd y at the
intersection boint P are obtaiﬁed By solving Eqs. (3-1) and
(3-3) simultaneously. >In order to accomplish this, the.
first order finite difference technique is used. The

equations of characteristics are transformed as follows:

- R

»:% V, -V, +GR . ( Yp - yR-) FOR . (t -t )=0 ... 5'3—5 )
xg = (Vp +RG) « (tp - € ) : oo (3-6)

. "g Vp " Vg -6 - (yp -y )+ GNS . (£, -t ) =0 e (37 y
c B . . ' .
. XP__- Xg = ( VS -SG) - ( tP - ts ) ee. ( 3-8 )

- where the subscripts indicate the variables at the corresponding -

_ points, and

er = |2 ER RG = S = SG =
- AR 3 ’ ’ ’
GNR = g.(5, - S )
and
GNS = g.(SS -5)

SR and SSvare the frictionélwslopes at points R and S respectively.

According to the Manning formula, the frictional slope can be
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. expressed as

S ;__.nz-v. lV,
2.21 R¥/3
where n-is.thg coeffiéient of'roughness on the canal bottom and
sides (or Manninéfs n), and V is the meaﬁ Veloéity of flow.
V.[VI indicates tﬁat the frictional resistance is always in the
opposite direction-of'the flow. - Knowing the variables, x, t, V
and y, at points R and §, £he four unknown variables x, t, V and
&, at point P, can be found using equations, EQé. (3-5) through

(3-8).

" A grid of characteristics is established to facilitate a computer
solution. A particular section of the canal may be arbitrarily
chosen. For simplicity, the canal of length L is divided into a
number of equal lengths. The procedure for calculétion

follows.

3.4.1. Preliminary computation

Compute the initial velocity and depth of the flow by

. using Manning's formula, y ="1A486 'R2/3' 1/2 , and

S

store the known values of x, t, V, and y at points P

(m, 1), m=1, 3, 5, «..., etc., Figure 3-2).

3.4.2 Computation for the flow in the channel

Based on the values of x, t, V and y at point R, the

characteristic line RP. for a short distance can be laid
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out at a slope of 1/(VR+RG) from Eq. (3-6). Similarly,
based on the values of x, t, V and y at point S, the
characteristic line SP can be drawn to represent Eq. (3-8).
These two characteristic lines from R and S intersect at
point P. The valﬁes of x, t, V and y at P are then obtained

by solving Egqs. (3-5) through (3-8) simultaneously, i.e., . .

. L Xs TR + tp. (Vg + RG) - tg. (Vg - SG)
P_ V 00.0(3 - 9 )
. YR + RG - VS +‘SG

+ (Vo +RG) + (¢t - D I eo..( 3 -10)

'XP = xR P

. V_-V_+GR.y +GS.y_ -GNR-(t -t )-+GNS - . -
YRR YRS Y (tp-tg)+GNS - (£ -t )

Yy T cee( 3-11)
GR + GS
and
=V -GR-(y -y _)-GNR.(t_~t Cereveeees (03712
v, = Vg (yP yg) “ONR- (£_~t.) ‘

Computation for the flow at boundaries

At either end of the channel, only one group of the character-

istic equations is available. For an upstream boundary

(Figure 3—3-a); Egs. (3—%) and (3-8) hold, and for a
downstream boundary (Figure 3-3-b), Egs. (3-5) and (3-g)
are valid. Therefore two auxiliary equations derived
from the given boundary conditions at either boundary

are needed so that four unknowns can be solved.

Some examples are solved and illustrated as follows:
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Example 3-1. A rectangular channel 1000 ft. long and 12 ft.
wide carries 720 cfs water at normal depth. S0 = 0.001 and

Manning's n = 0.014. At the upstream end, the flow is given
by Q = 720 + 180. sin (0.03 t) and at the downstream end the
depth is maintained constant at y = Y- Calculate the flow

conditions in the channel.

Solution: The computer program in IBM 7044 computer system
for this problem is given in Appendix A(l1). A portion of

the solution is shown in Figure 3-4.

Example 3-2. A rectangular channel 20 ft. wide and 10,000
ft. long is discharging under steady-uniform flow condition
at'yo = 6.0 ft. Channel slope S0 is 0.0016. At time t = 0,
the flow is,increasea at the upstream end linearly until it
has doubled in 20 minutes. The flow is then decreased
linearly until it is one-half the original flow in 10
additional minutes. For Manning's n = 0.0185, find the
velocity and depth in the channel for the first 40 min.

of unsteady flow. The gage-height-discharge curve at tﬁe

downstream end is Q = 132 (y - 2.32)3/2.

Solution: The computer program for this problem is
listed in Appendix A(2), and a portion of the solution is

given in Fig. 3-5.

The solutions of examples 1 and 2 have been checked with
the Example 15.5 and Example 15.6 in reference (3).

A good agreement was obtained.
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Numerijcal Calculations for Positive Waves Propagating in Power

Canals,

A continuous ﬁnsteady flow in an open channel can be solved by the
method of eharacteristics only by making the assumption that the
vertical acceleration of flow is.smalliand therefore.can be neg-
1e¢ted. For surge préblems, the steep step in the wave region
constitutes a discontinuity, and the vertical acceleration of the
flow cannot be neglected. A rigorous theory for the cémputation
of sﬁrge waves has not come to the author's knowledge. However,'
a surge wave resembles a moving hydraulic jump in an open channel.
In the regions upstream or downstream of the wave front, the flow
is steady, or gradually varied unsteady flow and can be solved by
the method of characteristics introduced in the previous sections.

The wave front region itself represents rapidly varied unsteady

flow and its solution must be based on the equations of continuity

and momentum, i.e., Eq. (2-1) and (2-2). The calculation proced-

ures for a surge wave caused by a load rejection at the downstream

" end from an initial steady flow follows.

3.5.1 Initial flow condition

The origin of abscissa x on the x-t plane is chosen at the upstream

‘end (Figure 3-6). Assume that the initial flow conditions are

known throughout the canal at t = O. A canal is divided into

reaches of equal lengths, and the known values of x, t, V and y at

points P(1,1), P(3,1), ... are stored as x(1,1), x(3,1), x(5.1), ...,

23
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t(1,1), t(3,1), t(5,1), ... , v(1,1), v(3,1), v(5,1), ...
y(1,1), y(3,1), y(5,1), ... . The values of x, t, V and y

at points P(2,2), P(4,2), .... are obtained from the points

p(1,1), P(3,1), .... etc., by the method of characteristics.

For example, the values of x, t, V and y at point P(6,2) are
obtained from the equations of characteristics which pass

through P(5,1) and P(7,1).

Initial positive surge wave at downstream end of canal

The equations of continuity and momentum, together with
the given change in discharge due to a load rejection, are
used to determine the initial wave height and wave velocity.

= L (Figureé 3-6), and t, is obtained by the manner

*A
mentioned in section 3.4.3. Thus, the variables x, t, V
and y at point A are determined. The variables at other

points upstream of the wave region, P(1,3), P(3,3), ....,

are determined by the method of characteristics.

Wave propagation along the channel

Wave travels from A to B (Figure 3-6)

(a) Determine the point B:

Assume that the surge wave travels from A to B with the
velocity equal to its initial velocity at A as the first

approximation.

tB and Xp are then obtained by solving equations

g . -
¥p "X = ( YE + N )-(tB “tg ) .l 3 - 13)

E

% '-x,A‘=l(-vw) R (3 - 14)

‘where the subscripts A, B, E indicate the values of V, A,
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B, x and t at the corresponding points.

(b) Determine point C

By using the equations of continuity andlmoméntum, determine
the water velocity and depth behind the wave front at B.

For the first approximation these are not different

from ones found at A. tC’ V_, and Yo are obtained from Egs.

C

(3-5) and (3-6) and boundary conditions in which x, = L.
"{c) Determine point D

First, the velocity and depth at point D are estimated, then
the variables at B can be obtained from those at D by the
equations of characteristics by considering an infinitesimal
wave travelling along the characteristic line DB and
reaching point B at the same time as a surge wave travelling
from A to B along AB. t_ is obtained for the first

D

approximation by the equation

¥ . %p B B Ctg=ty) . .23 -15)

where the apﬁroximate values of'parémeters x, t, Vand y

at B are determined in above procedures, and Xp = L.

Then, Yp is obtained by linear interpolation from.those

at A and C, assuming that the rate-of change of water surface
at the downstream end during t, to- t_  is linear with

A B

respect to time. With this new value of Ype determine

the new value of tD'along characteristic line BD.
Continue this iteration until the two successive relative:

values of t, meet the requirement, say, the difference less
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than 0.001.

(d) Determine VB and Vg by using characteristic equation,
Eq. (3-7), along DB and the equations of momentum and

continuity at B.

(e) Compute the new value of wave velocity at B (Eq.
(2-3) ), and average the wave velocities at A and B.
'This is the new wave velocity with which the wave travels

from A to B.

(f) With the new wave velocity obtained from (e) repeat
the procedures of calculation from (a) to (e) until the
differences of two successive calculated relative values

of V and y at B, C, and D are less than 0.001l.

(g) Determine the variables at all necessary points
upstream of the wave front (at point B) by the method of

characteristics.

Wave travels from B to G, L etce -~

Using the calculation process similar to that_in section
3.5.3.1. the variables at G and F are obtained. The values

of V and y at C are given from the previous set of computation.
The new variables at H are obtained from those at G and

C by equations of characteristics. It is necessary in

this step to carry on the calculation for the other points

at the downstream end, such as I (Figure 3-6) in this step,



along the characteristic line GH to provide the information for
carrying on the next step of éalculation for wave propagation.

By this procedure, a trace ofvthe propagation of the surge wave
along the prismatic canal is obtained and terminates when the wave
front reaches the upstream reservoir. It should be noted that,
for a positive surge wave, the velocity of wave propagation is
always greater than that of an infinitesimal wave in the region
before the ffont of the surge wave, and less than that of an
infinitesimal wave in the region behind the front of the surge
wave, i.e., the inverse slope of the line KE is less than the in-
verse slope of the line AB, which is again less than the inverse
slépe of line CH. Eventually, as a surge wave travels continuously
along the canal, these lines would converge and intersect each
other. Because positive surge waves have an abrupt front, the
characteristic lines cannot project from one side of the surge to
the other. When the characteristic lines before and behind the
wave region and the trace of wave propagation meet, (see figure
3-6), flow parameters at M are dete;mined from P, and those at P

are obtained from points 0 and Q.

The flow chart of the computer program for this computation is
shown on Figure 3-8. For a positive wave occurring at the upstream
end and travelling to the downstream end, the characteristic lines

will be similar to these in Figure 3-7.

The process of computation for a positive surge wave starting

27
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at the downstream end. and propagating upstream in the canal

has been programmed in FORTRAN IV for the IBM 7044 computef.
Examples have been selected to examine the computer program.
farallel hand calculations.by the Favre.method are shown for

comparison.

ExamEle 3.3. A rectangular channel 38,800 .ft. long, 45 ft;
wide and 41.175 ft. deep cérrie; a flow with a vélocity at
- 7.101 ft/sec. So = 0.0002376. _Suddeﬁly, the flow is completely
stopped at the downstreém end by closing a gate. Compute the
initial wave height, and wave height'wheﬁ it reéches the

upstream end.

Solution: The results of gombutér computation using method
of characteristics give Zo = 8.39 ft. and Z = 4.23 ft., where
Zo and Z are the downétreamvand upstream wave heights
..respectively, (Figures 3-9 and 3-10.). Details of

the computations are shown graphically on Figure 3-11.

.The alternative calculation for this example carried out by
the Favre method gave Z = 4,15 ft. for the wave reaching the

upstream end of canal. Details are shown on Fig.3-12 .,

Comparing the results from the twoAdifferent methods, a
fairly good agreement is observed, It should be noted that,
in the Favre method, the water'surfa;e'in the downstream
‘area is assumed straight line when the wave front reaches‘

the upstream ‘end.
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When the wave reaches the reservoir, the actual water surface
for the case of complete closure is fairly close to a horizon-
tal line in the lower end of canal, while it is somewhat
sloped in the upper end. From Figure 3-11, it can be seen

- that the variation of wave height when it travels along the
channel is nearly linear and therefore Favre's assumption is

justified.

Example 3.4 A rectangular channel 1000 ft. long and 12 ft.
wide carries 720 cfs water at normal depth. S0 = 0,001 and
. Manning's n = 0,014, The flow at the downstream end is sudden-
1y shut off. Carry out the calculation of flow conditions and
propagation of surge wave along the channel.
Solution: The reshlts of calculation are shown on Figure
3-13, and have been compared with the example on.pége 258, .

reference (3).

3.6 Numerical Calculations for Negative Waves Propagating in Power

Canals

When. a positive wave reaches the upper end oftthe canal, it is
reflected as a negative wave and proceeds towards the downstream
end. If the wave height is small or moderate compared to the
depth, it can be assumed that the steep wave front is retained
during the travel and the equations derived for a positive wave can

be applied without introducing significant errors. The height of
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thevnegative wave reflected from the reservoir is usually
relatively small. On the assumption that the profile of a negative
wave will not change significantly, a scheme for comﬁuter»coméuta—

tions is used as follows. .

. 3.6.1 Determination of the initial reflected negative wave

Assuming that there is no entrance loss and no vélocity head
‘recovery (see section 4-7), the water level immédiately
behind the wave front of the reflected negative wave at the -
extreme upper end of channel is the same as that in the

reservoir. It follows that

o 25
where y and V_ are the wa;ér depth and velocity of the

initial steady flow (Fig. 3-14 (a) ). At the reservoir,

which is the upstream boundary df.the canal,

—*R = 0 and y, = H. The velocity of the negative wave is
according to ~ Eq. (2-3). .

g.(A, .y, - ALy, ) ' :
_Vh = .Vl _+‘h/ 272 11 S ¢ 3—17 )
Ay (L - A /Ay ) . o

vhere ¥, and v, (Figure 3-15) are given in the

‘last step of the calculation in the propagation of the

positive wave. By using the equation of continuity, V1

is obtained, i.e.:

Ay (V, - V) ‘ -
oo o Wt W) L (318
1 A w

1

and the height of the negative wave 1is
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Z=yZ"y1 -oc-ooooo-o-oc--c.o.va( 3—19 )
- where ¥y = H |

Here Z has negative value which indicates the negative wave.

1 3.6.2 - Reflected Negative Wave Propagates Along the Channel

3.6.2.1 Determination of the negative wave travelling from R to P
(Figure 3-16 )
(a) Assume for the first approximation, that the wave
travels from point R to point P (Figure 3-16) with
a velocity equal to its initial velocity at R. Determine

tp and xp by solving equations .

x-x‘gV-v(tP“t)‘ ...-..'.(3-20)

'
o)
I

(»tP -tg) ... (3-21)

Then, calculate the variables downstream of the wave front,

Yo and V2

, by linear extrapolation from those at E and S.
(b) Determine the water depth and velocity behind the wave

front, Yy and V. by using the equations of continuity and

1

momentum and values extrapolated above.

(c¢) Determine the new value of wave velocity at P by Eq.
(3-17). Further determine the new value of wave velocity
propagating from R to P by averaging the velocities at R and

P.

@ Repeat the procedures (a) through (c) until the desired

accuracy is reached.
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(e) Determine the variables at D by equations of character-
istics from poiﬁts R and P.
(f) Determine the variables at Q by equations of character-

istics through D Q and the boundary conditions.

Determination of the negative wave travelling from R to P, etc.
(Figure 3-17)

(a) Determine the variables Vg and V_, , at E, by equations of

E
characteristics.,

(b) Determine the wave height and velocity at P by using the
procedures mentioned above in 3.6.2.1l.a through 3.6.2.1.f.

(¢) Determine the variables at points F, Q, ..., K by equations
of characteristics.

(d) Continue these computing processes until the negative wave
reaches the downstream end.

It should be noted that, for a negative surge wave, the velécity

of wave propagation is always less than that for an infinitesimal

wave in the region before the front of the surge wave and greater

‘than that for an infinitesimal wave in the region behind the

surge wave, i.e., the inverse slope of the line RE (Figure 3-17)
is greater than RP which is greater than that of line RF. There-
fore, as a negati&e surge travels downstream continuously along
the canal, these lines would diverge. The investigation shows
that Fhe unsteady rise behind the positive surgé or in the

front of a negative surge varies nearly linearly. Therefofe,

it is logical to assume that the variation of velocity and

depth of the flow in the front of the negative wave at P is



linear with respect to time, in a short time period from t

~t., without introducing appreciable errors.

P’

E

to
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CHAPTER 4 RESULTS OF ANALYSIS

'4fl: General

| In previous chapters eQuations‘and techniques have been devel-
oped to calculéte the magnitude‘of the initial wave height and
the wave height a£ any point as the surge wave propagatesv
along the canal. The purpose of.this chapter is to find ap-
propriate dimensionless relatioﬁships between the variables

governing the variation of wave height, the distance of propa-

gation and“other flow parameters.

4,2 Dimensionless Ratios

When solving hydraulic transient problems, it is convenient to
make use of dimensionless ratios. The introduction of such
ratios usﬁally'reduces the number of variables involved in the
problem.and simplifies the solution. In the problem of the
. variation of wave beigﬁt, Z , of a surge wave propagating
—along a power canal, the independent variables involved ére
_the depth y_, velocity V_ of the initial flow, side slope 1/m
and bottom width bo’ canal longitudinal béd slope So; the

distance x of wave propagation, gravitational acceleration g,

~and the initial wave height Zo’ i.ce.,
. * . .
Z = fl (g,yo’ Vo,So,m,bo,X ’Zo) eoscsc0scsscnse (4-1)
It should be noted that the frictional effect is included in

Eq. (4-1) because, given the parameters in this equation, the

friction factor can be calculated from Manning's formula.

34
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The effect of gravity is represented by a ratio of inertial forces
to those of gravity. This ratio is given by the Froude number;

defined as

where Vo and y, are the mean velocity and depth of the initial
flow, g is the gravitational acceleration. This is normally the
most important dimensionless ratio in open channel problems

and is well-known as Froude's Law.

The ratio x*/LR is adopted for the dimensionless abscissa of
the distance of wave propagation, where x* is the distance of
propagation of a surge wave from the downstream end, and L_ is

R

the reference 1ength of channel, i.e.,

Physically, L_ is the length of a horizontél line passing

R
through the water surface at the downstream end and the canal

bottom at some point upstream (see Fig. 4-1).

The ratio Z/Zo is used to represent the relative value of the
wave height at any section of canal to its initial value at
the downstream end. ' The shape factor k represents the cross-
section characteristics, where k = bo/m.yo. It should be

noted, that the initial wave Vheight Z,1is a function

of the Froude number Fo and water depth Y, of the
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initial flow, section factor k of the canal and discharge ratio T

" Thus, the Eq. (4-1) may be reduced to

Z =f
—z . 2

(o]

(r, x*/LR,k).. e .. (4-2)

It is thus assumed that the variation»of Z/Zo is é function of Fo
and x*/LR for a constant valﬁe of k. The analysis for the vari-
ation of surge waves for different_values of k will be discussed
for canals of rectangular, triangular and trapezoidal cross-

sections, separately,

Variation of Posifive Surge Wave Height in Reétanzuiar Canals
In a rectangular canal, the cross-sectional area is governed by
the width and depth of tﬁe flow. In this case, m is equal to
zero (vgrticai wall) and the fac£or‘k is equal to infinity.
Eq. (4-2) is the reduced to

yA _ = f (Fo, X*/LR) . o e .'. « e s o o (453)

7 3
o

In order to determine the relationships in Eq. (4-3), Fo’ L bo

“and So were kept as independent variables and Vo’ n and Zo as

dependent variables. Vo is determined by Froude's law and the
frictional coefficient, n, is determined from Manning’S'fb?mula.
The énalyses were carried ogt by varfing the values of Fo, yo,b0
and SO systematically in addition to giving values of the initial
change in discharge and canal length as the input data for the

computer program. When Y, varies from 5 ft. to 40 ft. at 5 ft.

intervals, the results of computer runs for given values of Fo,
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bo ana So’ which resulted in a positive wave, that occurred at
the downstream end and travelled upstream, are plotted on a
dimensionless plane with x*/LR as abscissa and Z/Zo' as
.ordinate. The plot shows that the relationship x*/LR versus

Z/ZO does not vary, although the value of Yo varies. Similarly,

. for given values of.Fo, Yo and So, the value of bo is varied

from 1 ft. to 60 ft. at 5 ft. intervals, and for given values of
S0 is varied from 0.0001 to 0.01 at 0.0005 intervals. Again, the

relationship, x*/L_ versus Z/Zo'does not vary. However, when

R
Fo is varied, while keeping yo, So and bo constant, the relation-
ship curve does vary. It is therefore concluded that the re-

lation curve Z/Zo against x*/L_ varies only with Fo and is

R
independent of the individual values of Yo bo and So’ as indicated
in Eq. (4-3). Similar computer runs were carried out for the
values of Fo from 0.050 to 0.200 atv0.025‘intervals. Results
are plotted on Fig. 4-2. It can be seen from this figure that,
for a given Fb’ the curve is nearly a straight line at higher
values of Z/Zo. The figure shows that the rate of variation of
Z/Zo is initially rapid and nearly constant and then_decreases
gradually. Theoretically, a wave would need to propagate to
infinity before it completely disappears. In this study, the
lower limit of Z/Z0 is set to O.QZSf Thus, in summary:
(a) The relation curve, Z/Zo against x*/LR, varies with FO
only. It is not effected by the change of individual
values of other parameters such as the cross-section,

longitudinal slope of the channel, and the roughness

of the channel.
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(b) For a constant value of Z/Zo, the higher the value of
Fo,‘the higher will be the value of x*/LR. This does
not imply, that the wave travels a longér distance to
reach a given réductioﬁ in wave height, because a flow
Qith a higher value of FO is always associated either
with a larger longitudinal slope SO and a smaller value
of LR’ or -with a smaller roughness of channel and a

smaller depth of flow Yo and thus with a smaller LR.

Variation of Positive Surge-Wave Height in Triangular Canals

A canal with a triangular cross-seétion is not often used in
practice. It is a limiting case of the trapezbidal cross-
section where the bottom width is zero. Two variables, depth
and side slépe, are involved in controlling the cross-section
area. In this case, the shape factor k is equal to zero.

Eq. (4-2) is then again reduced to Eq. (4-3). A systematic
analysis.similar to that for rectangular canals in section

4-3 was used. Simiiar relation curves were obtained. Eq. (4-3)
is valid for a triangular canal. The characteristics‘of the
variation of relative wave height Z/ZO against'x*/LR in
section ‘4-3(a) and (b) also hold. The curve does not depend
on side slope of the canal. The resﬁlts of the variation of a
positive wave propagating along a triangul;r canal with Fo from

0.05 to 0.20 at 0.025 intervals are plotted in Fig. 4-3.
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Variation of Positive Surge Wave Height in Trapezoidal Canals

The trapezoidal cross-section is one of the most common shapes

used for canals. TFor this case, the cross-sectional area is

" governed by depth Yo bottom widtﬁ_bo and side slope 1/m. The

shépe factor k can vary between 0 and o¢ . For given values

of Fo and k, a systematic4ana1ysis similar to that for rectanguiar
and triangular canals is used, i.e., the value of one variable is
changed and the othersAheid‘éonstant. The results show that fhe
curve Z/Zo against»x*/LR does not change for fixed values of

Fo and k. ‘Therefbre, Eq. (4-2) is valid for é surge variation

in a trapezoidal canal.

For given‘values of Fo’ and for values of k = 0, 0.333? 0.500,
1.000, 1.667, 2.500, 5,000 and oc surge calculations were made.
Results for Fo = 0.200, are plotzed on fig. Afh. From th;s fami}y
of curves, it can be seen that the higher the value of k, the
higher is the value of x*/LR for a given Z/Zo.>.The curves wiFh

k = o and k = 0 are two limiting cufveé.' These coincide with

those drawn for a rectangular and a triangular canal respectively.

For a given k, the relation curve Z/Z0 versus x*/LR, varies with
Fo. For each given value of k, there is a -family of curves

corresponding to various values of F . For r = 1+1/(1+k) having

o . 3
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values of 1.50 and 1.75, the results for Fo varying from 0.05
“to 0.20 at 0.025 intervals are shown on Figs. 4-5 and 4-6 respect-

‘ively, where r is given in Eq. (4-6).
The remarks in section 4.3(b) also apply for a trapeioidal canal,

4.6 Approximate Equations

As it has been mentioned earlier, the relation curve Z/Zo against
x*/LR is nearly a straight line at higher values of Z/ZO.' There~
fore for Z/Zo values greater than 0.6, the curve may‘be approx-
imated by a straight line without introducing significant errcrs.
When Z/Zo'is less thaﬁ 0.6, the cﬁrve ma& be expressed by an
exponential function. The apbroximatéd formulas representing the
best fi£ by thev"leasﬁ square" method are givén in the following

sections:

4.6.1 Approximate equations for the variation of a positive

Z
o

2 = 1,0 + 0.1876 1.0 - 1.0 ( x*

Z S 0.3899 F_- 0.00037 | L

] _ o R

.0 .- L) L] . [ o (l*"l*a)
(b) For 2_ ~ less than 0.60 the equation suggested is
.Z_ = A+ B .exp (C.x*/LR) e« e o o o s o o o (4“Z¥b)



41

where A = Fo - 0.01589
26.54 Fo - 6.7334
B=1.167 + 0.6728 Fo
C - -0.7985

3.045 - 1.702 Fo

Eqs. (4-4a) and (4-4b) are plotted on Fig. 4-2 for comparisom ,
It can be seen that.the values estimated from the equations are
good approximations. When a surge wave travels along the
channel with a given initial flow for which the Froudé number

is different than those shown on Fig. (4-2), the variation of

the wave height may be obtained from the above equations.

4.6.2 Approximate equations for the variation of a positive

(a) For Z_greater than 0.60 use equation

Z
o

Z =1.0 + 3.041 [ 1.0 - 1.0 C(xx )

Z 0.4358 F + 0.000092 L
o R .

(o]

4. e v e s o o (4=52)

(b) For Z_ 1less than 0.60 use equation

Z

o .
Z =A+ B .exp (C.x*/LR) e e o o o s « (4-5b)
zo . . .

2

where A = - (0.0352 + 1.479 . Fo)

B= 0.642 . Fo + 1.205

C = - (0.7485 . FO'1'135 + 0.6106)
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Egs. (4-5a) and (4-5b) are also plotted on Fig. 4-3. For a
éurge propagating along a triangular canal, the variation of.

wave height may be predicted from these equations.

4.6.3 Approximate equations for the variation of a positive surge

-y o sl e e o e e e S e e e e e e e e e = e = e - e = e

From Fig. 4-4, it is seen that the value of k varies from zero
to infinity for various sizes of trapezoidal cross-section canals.
To simplify mathematical treatment, the parameter r was used to

substitute for k, where,

1 + k e e L] . e e L] L] . o « o e o . . (4"6)

Thus r = 1 when k =cC , and r = 2 when k = 0. The value of r

varies between 1 and 2 for trapezoidal cross-sections. - For

a given Fo ~ and Z/Zo, the variation of x*/LR versus k is

nonlinear . A parameter ¢ may be defined, such that
L%
X
(1) |
¢ = Rr=n * ® @ ® ®» @ ® e e » e e o o » o (4-7)
)
3 LRr=1
* *
in which ( x ) is the value of ( x )
. r=l A
R- . R

appropriate to the curve of r = 1, i.e., for a rectangular

%

canal; and ( x )r - n is that for the curve of r = n of a given
- =
R

trapezoidal caﬁal for a given Z/Zo. Values of ¢ were plotted

against r on log-log paper, Fig. 4-7, and it was found that the

points located approximately on a straight line. Therefore, it



may be concluded that the relationship between @ and r is a

logarithmic function. It may be assumed to be

.é; =cr -d e o s e s e a s s 05 e s s o s (4-8)

where ¢ and d are the coefficients to be determined. This
relationship holds for various values of Z/Zo and Fo' Because

all curves have to pass the point of XR/L = 0 and Z/Z0 = 1.0,

R
i;e., when r = 1.0 and ¢ = 1.0, c is eqﬁal to 1.0. Thus Eg.

(4-8) is simplified to
¢ = r—d e & @ & o o e e & & & o e o o (4_9)

where the value of d is equal to the negative slope of the curve

on Fig. (4-7). The exponent d, determined by the least square

method is equal to 0.565. Eq. (4-8) then becomes

"00565
r

$ = e e o e e e o s e e e e e . (4-10)

Using this equation, the value of ¢ may be obtained provided
the shape factor k is given. From Eq. (4-7), the distance of
propagation of a surge for a certain amount of reduction of wave

height in a trapezoidal canal can be predicted by

ES

. * ’ i
(E_R)I”:n —¢-(-i{—R)r=l (4-11)

*
where / x may be obtained from Eqs. (4-4a) or (4-4b)
< LR ) r=1 ‘

provided Fo is given. Comparison of the estimate from Egs.

(4-4a), (4-4b) and (4-11) with the computer results are shown
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on Figs. 4-5 and 4-6. Two examples are shown to illustrate the

application of these formulas.

Example 4 - 1

Given F0 = 0.1, So = 0,001, m = 1.0, b0 = 10 f+4, Y, = 10 ft.
For the case of total closure and for Z/Z0 = 0.3,find the distance

of propagation of a surge moving along a trapezoidal canal.

Solution
Ly = Yo = 10,000 ft.
5
: (o]
k = bo = 1.0
m.y
r =1+_1  =1.5
1 +k
when F0 = 0.1, and Z/ZO = 0.3, it is found from Fig. 4-4
(ﬁ) = 0.1715
LR r=1 : |
¢ =19°% _o.7958 | L e
Xy = 0.1715 . (0.7958) = 0.1365
( L ‘>r = 1.5 :

*
x = 1365 ft.

x

From Fig. 4-5, (_5_
L

= 0.1370

0

) r = 1.5'

*
x = 1370 ft.
It may be seen that the distance estimated from proposed formula

is fairly accurate.
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The above equations may also be used to estimate the wave height
or the distance of propagation of a surge travelling in a tri-

angular canal in which r = 2.0 and é = 0.6761.

-Example 4-2
~Given F_ = 0.125, 2/Z = 0.30, S = 0.001, ¥ = 10 ft.,
o o o - o
find the distance of propagation of a surge wave travelling along

a triangular canal.

Solution:
LR = 10 = 10,000 ft.
0.001
(a) From Fig. 4-2, ~.§i = 0.2160
( LR ) r=1

By using Eq. (4-11)

e

X ) - = 0.6761 + (0.2160) = 0.1465
( LR r =2

X = 1465 ft.

3%k

(b) From Fig. 4-3, it is found (3&_) = 0.1480
L r =2

*
(c) Using Eq. (4-5b), A = 0.583, B = 1.2850 and C = 8.5296

x = 0.1498
L

=

X = 1498 ft.

Percentage error of (a) = 1480 - 1465

= 1.6%
1480
= _102%

Percentage error of (c) = 1480 - 1498
: 1480
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Reduction of Wave Height After Reflection at a Reservoir located

at the Upper End of the Canal

When water enters a mild slope channel, the depth M (Fig. 4-8)
is related to the static reservoir level by the energy equation.

The relation between the depths y|\and yg can be expressed by

V2

= ' 1
YR ¥V 4+ Y.+ u. —
R I e ILL 2g e o [y - L - L] ° L] (4-12)
where Ve is the head loss due to friction at entrance and may be

expressed in terms of the velocity head at the entrance of the

canal, that is

. L] e o o o & o . o * o & ¢ o (4"13)

in which Ce is a coefficient which depends on the conditions at
entrance.
Assuming the entrance loss Yo is negligible, Eq. (4-12) can be

rewritten

YI + T e © o ® ® & o o o c‘ . (4-14)

N <
e

When the water empties into a reservoir, an amount of kinetic
2

_1, carried with the flowing water, is

energy equal to
. 7e

M

expected to be restored as a potential energy. Thus, the res-
ervoir level should be higher by this amount than the water level
at the upstream end of the éanal. This energy, however is usually
dissipated in eddies and whirls. In practical calculations it

may be ignored, and Yy may be regarded as equal to Yr (no‘velocity

head recovery).



A positive surge wave reaching the reservoir at tbe upétream end
of the canal will be reflected as a negative wave which then
proceeds downstream. The flow direction at the entrance after
the wave is reflected, will depend on the length and slope of the
channel. In general, in a short channel, of mild slope water
velocity will be reversed i.e., water flows iﬁto the reservoir.

In a long canal however, the velocity of flow is reduced but
usually theré is no change in direction (water still flows into
the canal). The amount of reduction of wave height will therefbfe,.
depend on the direction of the flow at the section of entrance
immediately after the negative wave passes. If the flow direction
changes (reverse to the initial direction), the reduction of wave

height AZ is:

2

Ly
or 1 e & o o e o o o (4'15)
AZ —_f4 T

If the flow does not change direction, the reduction of wave

height is:
V2
AZ = ¥y —¥y - y.’.—zé——. N C S
VZ
Assuming the value of V2 is small and g _2 1is negligible,
. 58

Eq. (4-16) is identical to Eq. (4-15), and AZ is a functioﬁ
of initial velocity. Therefore, the reduction of wave height
after reflection at the entrance of the canal can be obtained
approximately by Eq. (5-15) regardless the direction of the

flow after reflection at that section.
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It has been.shown in Chapter 2 that the initial wa;e height at
the downstream end depends'on the Froude number of the flbw..
ThusAthe'ratio.A Z/Z_o is a function Qf the Froude number

(see Fig. 4-10). The approximate equations'for calculating

A Z/Zo in fectangular, triangular énd trapezoidal canals are

found in the following.

For rectangular Canals,=£§Z/Zo,§aries with Froude number, and
the distr%bution is linear on log-log papeér with Fo as abscissa
and AZ/Zo as ordinate. Using the least square method for best

fit, the equation obtained is

.

0.968

AZ = 0.4533 F e e o o o o e o o o. (4"‘17)
Z © :

(o]

4.7.2 Equation for triangular canals

For triangular canals, the corresponding equation is

AZ = 0-6631 FO 0.979 .« o .. ov e ® o o e o (4'18)
Z .

o

For trapézoidal canais, it is found théf.A;Z/ZO varies not only
with.Froude number but also with the parameter r. For a:givén
value of r,vthe relafionship between..ﬂZ/Zo and Fo is similar

to that for the rectangular gnd triangular canals. The equation

is of the form

AZ =P « F 2 e ® o o o o o e @ e & o o o (4-19)
(o]

" where Py and p, are the coefficients to be determined. P1 and
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p, are the functions of r. They are determined- as

0.4533 ¢ 0+2%490

P, R 1)

p. = 0.9680 r 0-01628 . (4-21)

2

Therefore Eq; (4-19) becomes

- ‘ 0.01628 _
AZ = 0.4522 ¢ 0.5490 F 0.9680 r Y. . (4-22)
— e}
o
Eq. (4-22) is valid for the values of r from 1.0 to 2.0
which means that Eq. (4-22) is also valid for rectangular and
triangular canals because when the values of r are equal to

1.0 and 2.0, the Eq. (4-22) is identifical to Eq. (4-20) and

(4-21) respectively.

4.7.4 Alternative procedure

AZl/Z also can be fouﬁd-by an alternative procedure based on derivations

4n Chaptet 2. Dpividing both sides of the equation

by Zo’ it becomes

2 2 2
F
.Az = Vl = i —o“ = Fo 0 . e e (4-23)
z 2g.2 ‘ 22, 2
o o _ -
Yo

where B= Zo/yo

The values of .AKZ/ZO for various flows in rectangular, tri-
angular and trapezoidal canals can be found from Eq. (4-23)

with Egqs. (2-13), (2-18) and (2-23) respectively.
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Propagation of Negative Waves Reflected from a Reservoir at the

Upper End of a Prismatic Power Canal

Negative waves are not stable in form because points on the upper
part of the wave travel fasﬁer than those on the lower part. 1If
the height of.the wave is relatively large, compared with the depth
of the flow, the wave velocity varies from point to point along

the wave front. The initial profile of negative surge waves having’
a steep front will flatten out as the waves travel along the canal.
1f tﬁe height of the wave is moderate or small, the equations in
Chapter 2, derived for a positive wave, can be applied to deter-
mine approximately the height énd velocity of negative waves.

The negative waves reflected from the reservoir may be small, com-
pared with the depth. For a wave with a height of less than 20%

of the depth the error introduced by assuming that the negative
wave proceeds downstream with an unchanging profile will be in-

significant. 1In this study the calculations for negative waves

" are based on the above assumption. The equations for positive

waves (Chapter 2) are then assumed to be valid for negative waves.

The basic expressions for calculating the propagation of negative
waves, which result from reflection at the upper end of the canal

are presented in Chapter 3.

Similarly to the calculations for a positive surge wave, system-
atic variation of the variables for different shapes of canals was
used as the input to the computer program. Results obtained for

the negative waves are plotted on the same dimensionless plane
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together with those for positive waves. The variation of the

relative height, Z/Zo’ of the negative wave in term of xx/LR

is shown in Figure 4-10a through 4-12g.

From these figures the following points are observed:

1. When a wave is reflected at a given value of xK/L (or a

R
given value of Z/Zo) the shape of the curve is independent of
- .the initial parameters Yoo Vo and SO for a given FO and r.
2. For a given Fo and r the shape of curve for a reflected wave
depends on the location (x%/LR) of the point of reflection.

3. The rate of reduction in height of a negative wave diminishes

gradually as the wave travels ‘downstream.’

4.9 Maximum Water Depth at Downstream End of Canal

When a surge wave occurs at the downstream end of the canal dﬁe to
the load rejection, the water depth at the downstream end increases
suddenly by the amount équal to the initial wave height. As the
wave front travels upstream, the water surface does not remain
stationary. This is because the diséharge of the flow is reduced,
the velocity is also reduced, .and the kinetic energy of the flow

is converted to potential energy in the form of an increased
height of the water surface at the déwnstream end. Figs. 4-13 and

4-14 illustrate the elementary fashion of this variation of water

depth in the positive and negative wave propagating cycle.

The depth of water at the downstream end increases with time.

The rate of increase is initially approximately linear with time.



If the depth is expressed by the ratio y/yo, then the rate of
variation of y/yo,with respect to time increases with larger
values of the Froude number. For a flow with a given Froude

number, the rate of increase in y/yo also varies with canal charac-

52

teristics, such as longitudinal bed slope, frictional roughness and

shape. ' If the cross-section of the canal is given, the rate of

increase in y/yoincreases with the increasing of SO.

As an example, for a rectangular canal, with b0 = 30 frt.,
¥, = 30 ft. and n = 0.03095, the curves with various given Froude
numbers are plotted in Fig. 4-15, Similar curves for the tri-

angular canal of Y, = 22.36 ft;, m = 2.0 and n = 0.03095 and the

trapezoidal canal of bo = 25.5 ft., m ="1.5, n = 0.03095 and
r = 1.5 are plotted in Fig. 4 - 16 and Fig. 4 - 17 respectively.

It is interesting to note that the slopes of curves increase as

the values of cross-sectional shape factor r decrease.

After gafe closure the depth at the downstream gﬁd increases cénti~
- nuously until this~is interrupted by.tﬁe a;riving'negative wave,
reflected from the upper end of the cahal-and then decreases
rapidly by an amount of abouf twice the negative wave height. The
maximum water depth therefore occurs at the tiﬁe immediately

before thé arrival of the negative wave front. As has been men-
tioned before, this maximum water depth is one of the most impof-

tant items of information in the design of the canal.

In this study, systematic variation of individual variables was
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used as input to the computer program. Results are plotted on a

dimensionless plane with ymax/yo as ordinate and 2L/L_ as abécissa,

R
where L is the canal length. For rectangular canals, it is found
that the curve of yﬁax/yo against 2L/LR does not change with the
various values of bo’ Y, and So if the Froude number of initial
flow, Fo is fixed., This relation also holdsnfor triangular canals.
For the trapeéoidal canal, one more variable, r, is introduced.

The curve yr.nax/yo against 2L/LR ?aries not only with Fo but also
with r. For a given Froude number, the value of ymax/yo increases
with increasing value of r. For a given r, the value of ymax/yo
varies with Fo. The results of computer calculétions for a
maximum stage developed at the downstream end due to a sudden
reduction in disﬁharge in rectangular, triangular and trapezoidal

(for r = 1.5) canals are plotted in Figs. 4 - 18, 4 - 19 and

4 - 20.
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CHAPTER 5 CONCLUSIONS
The primary objective of this study was to derive dimensionless ratios
to describe the initiation and propagation of a surge wave in a power

canal following a load reduction or rejection.

The initial surge-wave height, resulting from an instaﬁtaneoué reduction
of discharge, varies with the shépe and dimensions of a canal and with
the amount of thé initial flow. This study shows that, in dimensionless
terms, the relative initial wave height is a function of the shape fac-
tor Kk, discharge ratio t and the Froude number 6f the initial flow Fo.
For a sudden total closure, i.e., T = 0, B is only a function of Fo in
a rectangular‘and triangular canal, and is a.function of Fo and k in a
trapezoidal canal. A dimensionless equation, Eq. (2-23), derived in
this study can be applied to predict an initial surge wave height due

to a sudden total or partial change in discharge in canals of rectang-

ular, triangular and trapezoidal cross-sections.

The results of calculations from the mathematical model developed in
this study are in close agreement with those from the methods proposed
by previous investigators, in particular, with the results from the

Favre method applied to short canals.

When a positive surge wave is initiated at the downstream end of a
canal and propagates upstream, the wave height decfeases graaually. The
rate of decrease of wave height depends on canal parameters such as the
frictional coefficients, the bed slope, the shape and dimensions of

the cross~section and the initial flow.



This decrease-of wave height is approximately linear for a distance,
for which Z/Zo is still greater than 0.6. When_Z/ZO becomes less tﬁén
0.6, the variation of wave height is more an expotential function of
x*/LR. The deviation from Favre{s assumption for a straight line
watef surface profile increases with increasing diétance from the

point of the initiatioh of the wave. The writer has derived dimension-
less equations from which the wave height of a positive surge at aﬁy
section of a rectangular and a triangular canal may be predicted.

Eq. (4-4) is for rectangular canals, and Eq. (4-5) is for triangular
;anals. The influence of shape ana size of the cross-section of a
canal on the variation of wave height.of a positive surge, may be ex-
pressed by a logarithmatic function. Eqgs. (4-10) and (4-11) give the
relationship of surge wave heights in a trapezoidai and rectangular
_cross-section. Using these two équations, the variation of wave height

in a trapezoidal canal can be predicted from Eq. (4-4).

In a long canal where 'a negative surge ‘wave, reflected from thevresef-
voir at the upper end of the.canal, travels downstream, the reduction of
its height is initially rapid. This becomes gradually smaller as the
wave travels toward the greater water depth. 1In a very long canal, a
negative wave may propagate downstream for a long distance with little

attenuation after this initial reduction.

The rise of the water surface behind the wave front at the downstream
end of the canal is not linear with respect to the time. The rate of

this rise in the water surface increases with larger values of the

'

Froude number F0 of initial flow. The maximum water depth at the down-
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stream end of the canal, caused by a reduction in discharge, occurs
immediétely before the arrival of a negative surge wave that resulted
from reflection at the upper end of the canal. This maximum depth
depends on the slope, length and cross-section of the canal and‘the

initial flow.

The dimensionless relationships derived in this study may be used to
establish design criteria for crest elevations of the banks and walls
of power canals to avoid overtopping. In this criteria some allowance
must be made for secondary surges not analysed in this thesis and for

a minimum desired freeboard.
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FIG. 3-1 DEFINITION SKEICH : C' AND C- CHARACTERISTIC GRIDS
ON THE x-t PLANE

(a) | (b)

FIG. 3-3 DEFINITION SKETCH
(a) UPPER END BOUNDARY (b) DOWNSTREAM END BOUNDARY
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( ™
EXECUTION _
1 2 3 5 6 . 7 8 9 10 11
J
\ ‘ _J
4 1 v 7.635 7.635 7.635 7.635 7.635 745135 7.635 7,535 72635 7.535 7.635 5
Y T.859 7.859 7.859 7.459 7859 L T.d59 T.459 7.359 ' T.859 7.459 7.559
X 0.000 100.000 200.000 300,000 400.000  500.00d 600,600 700.000 500. 00U 900,900 1000.000
T 0.000 0.0C0 0.000 0.000 34000 0L0N0 0.000 0.0G0 0.209 .00 C.000
2 v T.634 7.634 1.634 7.0634 7.636 1.63¢ 7T.034 7.03%6 H34 7034
4 7.859 7.859 7.899 7.859 7.85%9 1.659 7.559 7.859 7,459 1.859
X 73.998 173.998 273.998 373.393 473,995 573.995 673,298 775,993 ATS 99 973,398
T 3,143 3.143 3.143 3.143 3,163 3.163 3.163 10163 30103 3,143
3 v 8.063 7.633 7.633 7.633 7.633 T.633 7.633 7633 7T.633 7.533 7-636
. Y 8.081 7.853 7.859 7.859 7.359 7.859 7.859 7.859 7.859 7.559 7.859
X 0.000 147.994% 247.994 347.994 447.994 567.99% NS LR 747,193 BaT.793 J6T7.993  LUDV.000
7 12.067 . 6.236 6.286 b.286 5.286 5.286 b.2kA Le28b 6edrh 6,256 4,245
4 v 8.076 7.632 7.6132 7.632 T.632 T.632 T e T a3i 7.632 7.633
Y R.019 7.859 7.859 7.859 7.859 7.859 7259 Ted59 S T.4%9 7.459
X T4.527 221.985 321.985 621,985 S21.985 621.985 721.9R5 B21.985 521985 373.994
T 15.165 9.430 9.430 e 430 9.430 94430 94430 Ve b3y 94630 7.391
5 v B.453 8.070 7.631 7.631 T.631 7.531 T.631 VU3 T T 70631 7.532 7.632
Y 8.28% 8.076 7.859 7.859 7.859 7.359 7.859 7.859 1.8%) 7.393 7.859
X 0.000 149,044 295.974 395.974. 495.976 505,374 695.974 795974 895,970 347.3¢4  1006.000
T 24.420 18.244 12.573 12.573 12.573 12.573 12.573 12.573 12.573 10.H3% £.496
— - e : 1
6 v B.463 8.064 7.630 7. 630 7.630 7.630 7.630 7,630 7.631 7.631 [
Y 84280 8.074 7.859 7.859 7.659 7.359 ©7.459 7.459 7.359 7.559 ’
X 74.931 223.553 369.959 4694959 569,759 669.959 T6Y.959 869.959 921.072 9473.989
1 27.443 21.323 15.716 15.716 15.716 15.716 15.716 15.714 13.677 11.639
7 Y 8.699 8,433 8.058 7.629 7.629 T.629 7.629 7.629 7.630 7.630 7T.631
: Y 8.440 B.2175 8.071 7.859 7.859 7.459 7.859 7459 7.857 L5 7.859
X 0.000 149.850 298.053 443.941 543.941 663,941 743,961 563061 875.956 947.976  1000.000
T . 36.946 30.469 24.403 18.859 18.859 18.859 18,359 158.7259 15.321 14,782 12.744
B v 8.637 8,423 R.052 7.628 7.6208 T.628 7.625 7.627 INYE 7.630 . :
% B.434 8.270 8.069 7.8593 7.4999 7.859 7.459 1.859 1.259 7.859 i
X 75.180 224.756 372.544 S17.921 617.921 717.921 B1T.921 8644937 J21.759 973.9985
T 39.931 33,493 27.4864 22.002 22.002 22.C02 224002 14.966 17.925 15.687
9 v 8.789 8.675 H.4164 8.067 7.627 1627 7.627 7.528 7623 7627 7.630
Y 8.528 Boa27 8.265 8.067 7.859 1.359 1859 7.459 7.859 1.859 7.859
X 0.000 150.345 299.650  447.0206 591.897 691.897 791.4897 543,016 394,939 I4T.96T  1600.C00
T 49,579 42.918 36.520 30.565 25.146 25.146 254140 23.107 21.063 17.230 16.992
L W,
FI1G. 3-4 A PART OF RESULTS OF COMPUTER CALCULATIONS IN EXAMPLE 3-1
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FI1G. 3-6 SCHEMATIC PRESENTATION OF CHARACTERISTIC GRIDS FOR

A POSITIVE SURGE WAVE PROPAGATING UPSTREAM

t%oe
Of
ep
06‘~
¥
Tug
Sy,
~r
0
L
(1,3) F-
3,3) 5,3) J O
(2,2) (4,2) (6,2) (8,2)
) (131) (3,1) (5,1) X et (7,1)
’_X=0 X =
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FI1G. 3-7 SCHEMATIC PRESENTATION OF CHARACTERISTIC GRIDS FOR

A POSITIVE SURGE WAVE PROPAGATING DOWNSTREAM
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CALL
UPST

GO BACK TO

WAVE FRONT
J =J+1

I=10R8+3-J

FORM
x(1,3)=x(1,5)
t(1,3)=t(1,5)
V(1,3)=v(1,5)
y(1,3)=y(1,5)

|

START WITH
GIVEN 1.S.F.|(1)
SET x,t,V,y

J=J+l

l CALL MID (2)

Je=J+1

I=10N

CALL WAVMID (3)

COMPUTE 2.,V

I=1-2

CALL MID

(19)

) | RESET
NWAV,
NWPT

CALL WAVMID
(wave at upper
s tream end)

(21)

27)

F1G. 3-8

COMPUTE
z, v,

(23)

NEGATIVE -
WAVE
COMPUTATION

CALL MID
COMPUTE
x,t,V,y

)

(14)

FLOW CIIART OF THE COMPUTEK PROGRAM FOR A POSITIVE

WAVE PROPAGATING UPSTREAM ALONG THE POWER CANAL
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SECTION 0

SECTION 1

At time t=0

At time t=0

At time t=t

At time t=0

At time t=t

At time t=t

before immediately 1 when wave before wave immediately1
wave is after wave occurs in reaches after wave
formed is formed Section O Section 1 reaches Sec.l
ho=41.175 h(=49.567 hi=54.644 hy=41.175 nt=41.175 hy=41.175+4.27
+
F0=41.175x45 F(')=49.567xa5 F'(;=54.644x45 F1=41.175x45 Fl =41.175x45 =45.445
+ 1
Qp=292x45 Qb=0 QB=0 Q1=292x45 Q =292x45 Fy=45.445%45
vg=7.101 v4=0 V=0 vy=7.105 v, *=7.105 Q,=154.7x45
=, ! o = += ln-
By=45 Bg=45 By=45 B =45 B, =45 AQ,=-137.3x45
P)=144.134 p'(;’-15a.zea vi=3.41
Ry=49.567x45 | R(=15.89 B{=45
144,134
=15.45 Ah = 0O 1=135.89
l=
20=8.393 A Fy = O Rl 15.05
)"0-45 AQy =0 2y=4.27
ao--34.84 B1=-32-14
C,ym-41.94 ¥ 1=45
AQO--292 €;=-39.25
AF(')=8.393x145 A Fi=10.27x45
Asgsume ZB= 5.077 (Horizontal) B, = 45
"B =
y 0 45 AB 0
"- ” ] =
Avo Z5-Yp AQ =0
=5.077x45 Aa = 2,699
"-
A0 a8 = 33.49
. nz (V2) R = 15.47
1= ©
v Taeel RO I_= 0.000237

= +0.00002525

L = - 38800

Summary of trials:

v

=1.705

»
2y -
v )m 5.81

No. of
trial Guess 2] Water Volume ¥j Water Volume 4~
1 4,27 339000 x 45 344000 x 45 1<V
2 4,00 342000 x 45 334000 x 45 ¥1>Vv,
3 4.10 339500 x 45 337500 x 45 ¥1>V,
4 4.15 339000 x 45 339200 x 45 '0‘1-_5. v,

FIG. 3-12  SUMMARY OF CALCULATIONS IN EXAMPLE 3-3 FOLLOWING

FAVRE METHOD
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" RESERVOIR

RESERVOIR -

(b)

" FIG. 3-14 (a) POSITIVE SURGE REACHES THE RESERVOIR AT THE
UPPER END OF THE CANAL.
~ (b) NEGATIVE SURGE REFLECTED FROM THE RESERVOIR.
F at point R in Fig. 3-16
o
Ve |
yl - et Vl
Y2 T Yo l
Hrlr/=l //://j A== sy~ = | .

FIG. 3-15 DEFINITION SKETCH FOR POINT R IN FIG. 3-16
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trace of the positive
surge wdve

FIG. 3-16 SCHEMATIC DIAGRAM OF CHARACTERISTIC‘GRIDS FOR

THE NEGATIVE WAVE AT POINT R

’5;——-trace of the negative surge

T

l.—upper end boundary trace og '
the positive
surge '

FiG. 3-17 SCHEMATIC DIAGRAM OF CHARACTERISTIC GRIDS FOR

THE NEGATIVE WAVE AT POINT R



- FIG. 4-1

DEFINITION SKETCH
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FIG. 4-3

VARTIATION OF WAVE HEIGHT OF A POSITIVE SURGE
PROPAGATING ALONG A TRIANGULAR POWER CANAL
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FIG. 4-8 SCHEMATIC DIAGRAM FOR A POSITIVE WAVE REACHING
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THE UPPER END OF THE CANAL
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FIG. 4-11 (b)

VARIATION OF WAVE HEIGHT OF A NEGATIVE SURGE
PROPAGATING ALONG A TRIANGULAR POWER CANAL
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FIG. 4-12 (a)

VARIATION OF WAVE HEIGHT OF A NEGATIVE SURGE PROPAGATING
ALONG A TRAPEZOIDAL POWER CANAL FOR r ='1.50
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APPENDIX A(1)

- Program Listing

€ EXAMPLE 15.6 A |
c OPEN CHANNEL SOLUTION BY CHAR GRID METHOD IN RECTANGULAR CHANNEL
DIMENSION V{(224100), Y(22,100), X(22,100), Y(22,100) |
WRITE(6,100) |

WRITE(6,101)
READ(5,300) GO, By Gy HL,y DXy HN,SO
e YO =8 , .
2 RO=YU%B/({B+2.%Y0D) »
VO=1.486%RO*x0,66T%SQRT(SO) /HN
YONEW=QC/(B*VQO)

IF((YONEW-Y0) «LT. 1.0E-3) GO TO 3
YO=YONEW
e 00 TO 2

3 YO=YONEW
V0=Q0/ (B%YD)
DO 10 I=1, 21,2

Vil 1l)=V0

Y(I,1)=YO
nww*wjnlyl)=0.
10 CONTINUE
X{1,1)=0.

00 11 1=3, 21, 2

J=1
IM=1-2
e XTI L)=XIMy1)+DX
11 CONTINUE
WRITE(6,102) Jy (V(K'l)v K=l, 21, 2 )
WRITE(6'103) (Y(Kyl)f K=1121'2)

WRITE(64104) (X(Kyl)y K=1421,2)
WRITE(6,105) [(T(K,1l), K=1,21,2)
€ FIND THE SOLUTICN IN THE_MIDDLE SECTION OF CHANAEL
J=2
80O DO 40 I1=2, 20, 2
IM=I-1

JM=J-1

IN=1+1
_GR=SQRT(G/Y(IM,JIM))
GS=SQRT(G/Y(IN,JIM))
RG=SQRT(GxY (IM,IM}))
SG=SRRT(G*Y(INy,JM})

SSNUM=HNEHN®*V{ IN, JM)*ABS(V{IMN,JIM) )
RS=BxY (INyIJM)/(B+2.%Y (TN, JIM))
_SSDEND=2.21%RS*%1.,333
GNS=G*(SSNUM/SSDENO-SO)
RR=B%*Y {IMy M}/ (B+2.%Y(IMyIM))
RRDEHO=2,21%RR*%1,333




L Ll

RRNUM=HN*HN*V { IMy JM)*ABS(V(IM,IM) )

GNR=G¥ (RRNUM/RRDENO-SO)
TPNUM=X(INyJM)=X{IMeIM)+T(IM, M) (VIIMy IJM)I+RG)I=T (INyIJM)E(VIIN,IM) -
15G) : -
TPDENO=V{IM, JM)+RG-V{IN,IM) +5G

T(1,J)=TPNUM/TPDEND
TPR=T(1,J)-T(IMyJM)

e XA T I ) EXCIM, M)+ (V LIM, JM)£RG)XTPR S
TPS=T(1,J)=T{INyJIM)
VRS=V{IM,JM)=V(INyJM)

Y{ToJ)=(VYRS+GR®Y(IMyJM)+GS*Y(IN,JM)-GNREATPR+GNS*TPS)/{GR+GS)

YPR=Y{I,4J)~Y(IM,yJM}
VIT3)=V(IMyIM)-GREYPR=-GNR*TPR
__40___CONTINUE R
WRITE(6, 106) Jv (VAKyJ)y K=2,20,2)
- WRITE(64,107) (Y(Kyd)y K=2,20,2)
WRITE(6,108) (X(KyJd)y K=2,20,2)

WRITE(6,109) (T{(KyJ)y K=2,20,2)

o FIND THE SOLUTIOM AT THE UPSTREAM END 0OF CHANNEL
e 3 I L e - - e e e et e
X{1yJJ)=0.
(=1
IN=1+]1

SG=SQRT(G*Y (INyJ))
TU1,Jd)=T(2,J)=X(24J)/IV(24J)-5G)
L Q=T20.4180.%SIN(0.O03%T(1,dd))
GS=SORT(G/Y(24J))
TPS=T(1,JJ)-T(2,J)

RS=B*Y(2,J)1/(B+2.%5Y(2,J))

SSDEnDO=2.21#RS%*%]1.333
SSNUM=HNX*HN*V (2,J)1%ABS(V(2,J))
e GNS=6X*{SSNUM/SSDENO~SO) n . e
YP=Y(2,J4)
18 VP=Q/(B*xYP)

VPS=VP-V(2,J)

YPNEW=Y{2,J) +(VPS+GNS®TPS)/GS
IF{(ABS(YPNEW-YP) .LT. 1l.0£-3) GO TO 19
o YP=YPNEW e e
GO 10 18
19 Y{1yJJ)=YPNEW

Vil,3J)=Q/(B*Y(1,JJ))

C FIND THE SOLUTION IN THE MIDDLE SECTION CF CHANMEL
DO 50 1=3,19,2
R m=1-1 N o
JM=JJ-1
IN=1+1
GR=SORT(G/Y(IM,JM))

GS=SQRT(G/Y(IN,JM))
RG=SQRT(GHY (IMyJH))
e e OGESQRTLGHY L INy UMY ) e i+ i et s oo
SSNUM=HN%HNV ( INy JM)$ABS (VI TN, M) )
RS=BXY (INyJM)/(B+2.%Y 1Ny IM))

SSDENO=2.21*%RS*%*1.333

GNS=G*{ SSNUM/SSDENO-SC)

RR=BxY (M, M) /(B+2.%Y (1M, IM))

_RRDENO=2421%RR%%1.333

RRNUM=HN®HN®V [ M, JM)%ARS(V(IM,JM) )

GNR=G* (RRNUM/RRDEND-SO)

TPNUM=X(TNy JM)=X{IMy JM)+T (IM, JMIE(V{IM, IM)+RG)-T(IN, JMIX(VIIN, M) -




L1z

15G)

TPDENO=V(IM, M) +RG-V(IN, JM)+SG
T(I,JJ)=TPNUM/TPDENDO
TPR=T(1,JJ)=T(IM,IM)

XD JJ)=X(IM, M)+ (VIIM, JM)+RG)*TPR

TPS=T(1.,JJ)-T(INyJIM)
VRS=V (IMyJIM) =V IN,JIM)
YT 9oJdJ)=(VRS+GRE2Y(IM, JMI+GS®=Y (IN, JM)—GNR*TPR+GNS*TPS)/(bR+G§) B
YPR=Y(1,JJ)-Y(IM,IM)

V{I43d)=V({IMyJM)-GR*YPR-GNR*TPR

50 CONTIMNUE
c FIND THE SOLUTION AT THE DOWNST&EAM END OF CHANNEL
X{21,J4J)=HL
U & t’2) . : e e e e
IM=1-1

RG=SQRTI(G*Y (1M, J})
T(21,J4)=T(IM, JI+(HL-X{IM,J))/(V{IM,J)+RG)

GR=SORT (G/Y(1HyJ))
TPR=T(21,JJ)=T(IM,J)
L RREBEY(IMyJ)/(B4+2.%Y (1M, J)) , 3 o o
RRDENQ=2.21%RR%%1.333
RRNUM=HNFHNAV ( [My J)%ABSIV(IMyd) )

GNR=G* (RRNUM/RRDEND—-SC)

Y{2L,4J01=Y0

YPR=Y(21,JJ)~-Y(IM,J)

V(21,34 =VIIMeJ)-GREYPR-GNR*=TPR
WRITE(6,102) JJy (VIKyJJI)» K=1,421, 2)
WRITE(6, 103) (Y(K,JJ),K=1,21,2)
WRITE(6, 1043 (X{K,JJ)eK=1421,2)

WRITE(6,y 105) (T{KeJJd)eK=1,2142)
IF{ J .GT. 32 ) GO TO 70

60 10 80
300 FORMAT(7FB.0)

100 FORMAT(4X s IHT 49X, IHL 49Xy 1H249X%X31H3,9X,1H4,9X,1H5,9X,1H6,3X,1HT,9X,
LIHB,9Xy LH9 48X 4+2H10,8X,y2HL1 ) :
101 FORMAT(LX,1HJ //)
2102 FORMAT(I3,4X,lHV,11F10.3) _
103 FORMAT(7X,1HY,11F10.3)
104 FORMAT({7X,1HX,11F1043)
105 FORMAT{TX,1HT,11F10.3 //)

106  FORMAT(I344X,1HV,6X¢10F104.3)
107  FORMAT(7X,1HY,6X,10F10.3)
108 FORMAT(7X,lHX,6X,10F10.3)
109  FORMAT(7X,1HT,6X,10F10.3 //)
70 ~ sTOP
END

$ENTRY
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11

80

- APPENDIX A(2)

Program Listing

EXAMPLE 15.5

113

OPEN CHANNEL SOLUTION BY CHAR GRID METHOD IN RECTANbULAR CHANNEL

DIMENSION V(22,100), Y(22,100), X(22,100)y T(22,100)
WRITE(6,100)

WRITE(6,101) :
READ(S5, 300) YO, By Gy HLy DX, AD, PO, HN, SO
Q0=132.%{YD-2.32}%%x1.5 ‘
v0=00/A0

DO 10 I=1, 21,2
vil.1l)=vQ
Y{I,1)=Y0
T(I,1)=0.
CONTINUE
X{1,1)=0. v

DO 11 I=3, 21, 2
J=1

IM=[~-2
X{Iy1)=X{IM,1)+0DX
CONTINUE
WRITE(6,102) Jy (VIKs1l},y, K=1,y 21, 2 )
WRITE(6,103) (Y(K,yl), K=1,21,2)

WRiTE(61104) (X{Kyl), K=112112)

WRITE(6,105) (T{Kyl)y K=1421+2)

FIND THE SCOLUTICON IN THE MIDDLE SECTION OF CHAN“EL
J=2

DO 40 =2, 20, 2

IM=1-1

dM=J-1

IN=I+1 _

GR=SQORT(G/Y(IMy,IM))

GS=SQRT(G/Y{IN,JM)}))

RG=SQRT{(GxY(IM,JM))

SG=SQRT{GxY{IN, JIM))

SSNUM=HN*HN#V ( INy JM)*ABS(V(IN,JIM))
RS=B%Y{IN,IJM) /7 (B+2.%Y [ IN,JIM))
SSDENO=2.21%RS*%1.333 .

GNS=G*{ SSNUM/SSDENO-SO)
RR=B*Y{IM, M)/ (B+2.%Y(IM,IM))
RRDENO=2.21%RR*%*1,333

RRNUM=HN#=HN%XV{IM, JM)*ABS(V(IMs,IM})
GNR=G* ( RRNUM/RRDENO-SO)

TPNUM=X(INgJM)=X{TMg M) +T(IMy IMI% (V(IMy JMI+RG) =T {INy IMI*(V{INyIM) -

15G)
TPDENO=V(IM,JM)+RG-V{IN,JM) +SG
T(I,J)=TPNUM/TPDEND
TPR=T{I1,J)=T(IM,JM)
XCTyJ)=X(IMyJM)+(VIIM, JM)+RG)*TPR
TPS=T(1,J)=T(IN,JM)
VRS=V(IM,JM)=V(IN,JIM)
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X{ToJJ¥=X(IMy, JMI+{(V(IM,JM}+RG)%TPR

TPS=T(I4JJ)-T(INyJIM)

VRS=V(IM,JM)-VIINy,JIM)
Y(LJJ)=(VRS+GR®Y({IMyIM)+GS*Y(IN, JM) ~GNR*TPR+GNS*TPS)/ (GR+GS)
YPR=Y(I,JJ)-Y{IM,JUM)

L. ... FIND THE SOLUTION_AT THE DOWNSTREAM END_OF CHANNEL _

VII1,JJ)=V(IM,IM)-GRxYPR-GNR*TPR
50 CONTINUE

X(21,JJ)=HL SR
[=21

IM=1-1

RG=SQRT(G*Y (1M, J}))

T(21,J0)=T(IM )+ (HL-X[IMyJ) I/ (V(IMy,J)+RG)
- GR=SQRT(G/Y(IMsJ))

TPR=T(21,J4)-T(IMyJ)

RR=B*Y [ [M,J)/(B+2.%Y(IM,J))

RRDENQO=2.,21%RR%*%*]1.333

27 ¥YP3=(YP-2.32)%%3

RRNUM=HN&=HN*YV (I M, J)*ABS(V(IMyJ))
GNR=G* (RRNUM/RRDENO-S0)
YP=Y{IMyJ) R
VP=132.*%SQRT(YP3)/(B*YP)

VRP=V(IM,J)-VP

YPNEW=Y(IMy;J)+(VRP=-GNR%®TPR)/GR
IF{ ABS(YPNEW-YP) .LT. 1.0E-3) GO TO 26
YP=YPNEW

GO TO 27
26 Y(21,JJ)=YPNEW
YP3=(Y(21,JJ)-2.32)%%3

V{21,JJ)=132.%SQRT(YP3)/(B*Y (21, JJ))
WRITE{(6,102) JJy (VIKyJJ)y K=1,21,2)
WRITE(6y, 103) (YI(KyJJ)K=1421,2)
WRITE(6y 104) (X{KyJJ)yK=14y21,2)
WRITE(éi 105) (T(K'JJ)QKleZIVZ)

IF( T(1,JJ) GT. 2400.) GO TO 70
J=J+2 '
GO TO 80

300 - FORMAT(9F8.0)

100 FORMAT(4X s 1HT y9Xy1HL +3X41HZ299X, LH3 39X,y LH4 49X, LHS 39X 1H6 Xy 1H7 49X,
11H8,9X, 1H9,8X,2H10,8X,2H11 ) : :
101 FORMAT(IX,1HJ //)

. 104 FORMAT(7X, lHX,11F10.3)

102 FORMAT(I3,4X,1HV,11F10.3)
103 FORMAT({7X,1HY,11F10.3)

105 FORMAT(7X,1lHT,11F10.3 //)
106 FORMAT(I3,4X,41lHV,6X,10F10.3)
107 FCRMAT(7X,1HY, 6X,10F10.3)

.10 sTop

108 FORMAT{7X,1HXy6X,10F10.3)
109 FORMAT(7X,1HT,6X,10F10.3 //)

END
$ENTRY
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40

Y{I,J)}=(VRS+GR*Y{IM,IM)I+GS*Y(IN, JM)-GNR*TPR+GNS*TPS)/(GR+GS)

YPR=Y(1,J)=Y (IM,JM)
V(IeJ)=V(IMyJM)-GREYPR-GNR*TPR
CONTINUE |

WRITE(65106) Js (VI(KyJ)y K=2,2042)

WRITE(()' 107) (Y(KtJ)y K=212012)
WRITE(6,108) (X(KyJ)y K=2,20,2)

LWRITE(64109) (T(Kyd)y K=2,20,2)

FIND THE SOLUTION AT THE UPSTREAM END DF CHANNEL

Jd=J+1
X(1,JJ)=0.

=1

IN=T+1

SG=SQRT(G*Y (IN,J)) S
TU1,JI)=TU2,J)=X12,J)/7(V{2,J)=SG)

IF( T(1,JJ) .GT. 1799.) GO TO 17
DQ=QD*T(1,JJ)/1200.

- Q=2.%Q0~-DQ

IF( T{1l,JJ) LT. 1199.) GO TO 16
DO=Q0*(T(1,J4)-1200.)/1200..

GO 10 17
Q=Q0+DQ
GS=SQRT(G/Y(2,4,J))

TPS=T(1,JJ1-T(24J)
RS=B%Y(2,J)/(B+2.%Y(2,J4))
SSDENU=2.21%RS%%1,.333 o
SSNUM=HN#HN*V (24 J)%ABS(V{2,J))
 GNS=G*( SSNUM/SSDENO-SO)
YP=Y(2,J)

18

VP=Q/ (B*YP)
VPS=VP-V(2,J)
YPNEW=Y{2,J)+{VPS+GNS*TPS)/GS

IF(ABS{YPNEW-YP) .LT. 1.0E-3) GO TO 19

YP=YPNEW
GO 1O 18

19

Y{1,JJ)=YPNEW
VI1,Jd)=Q/(BREY(1,dJ))

DO 50 [=3,19,2
IM=][-1
JM=JJ-1

'_>FIND THE SOLUTIGON IN THE M[DDLE SECTION OF_CHANNEL

IN=1+1

GR=SQRT(G/Y(IM,JM))
GS=SQRT(G/Y(IN,y,JIM))
RG=SQRT(G*Y{IMy,JM)})
SG=SQRT(G*Y(INyJIM))
SSNUM=HN®HN%V {(IN, JM) *ABS(V(INyJIM))

RS=BXY{(IN,JM)/(B+2.xY(IN,IM))

SSDENO=2,21%RS**%1.333
GNS=G%®{SSNUM/SSDEND-SC)

RR=B*Y([MyIM)/(B+2.%Y(IM,IM))

RRDEND=2.21%RR#*%*]1,333

RRNUM=HN*HN*V{IM, JM) ¥ABS(V(IM,JIM))

GNR=G* (RRNUM/RRDENO-5G)

TPNUM=X(INgIM)=X(IMyIM)I+T (IMyIMIX(VIIM, JM)+RG)—T(IN'JM)*(V(IN JM) -

15G)

TPDENO=V (IMy JM) +RG-V [ IN,JM)+SG
T(I,JJ)=TPNUM/TPDENO
TPR=T{I,JJ)=-T{IM,JM)




oo

oNoNeNe!

Q£

116
APPENDIX B

Program Listing

SURVE WAVES IN THE POwLik CANALS
WFP IS THE CONTROL PAKAMETER IE POSITIVE OR NEGATIVE WAVE
BuZwIOTiH OF vWe Se AT YO SECTION
B=wILTii OF CHANNcL BOTTOM
DiMEMGSION V70581 pY(70e56)X{(T70¢58)T(7058)
1 ReAu(Brl101) FrRUMHKETI v GAMArHITHeREFPT e Xie Br WFP
101 FURMATISFLI0.0)
IF(KC LTe UsU) SiOP
JuliEzo
Q=00
HinEo==140
UpPEnDZ-1 40
Gz=3d.2
FINZRO*¥ %5 e 0667 /HREL
YOUNUNMZROX (O XIM/GAEAA+2 o Bk SURT (1 e GHAM*%2) )
Yus /ORUMZI{XF*(1e0+1 e 0/ GAMA))
B=Xiik 0/ GAMA
Gu TO 1152
1151 IF(AM oLEe DU ) 60 TO 1153
YO=2 e 0%iRORSURT (Lo Ut XMEX ) /KN
Gy 10 1libe
1153 YuswO*xB/(S=&.0%ik0)
1152 VuzZE*SQIRT(GAYU)
SUSHAVO/Z (L U4804HREL) Y *%2
BuZut+e UukYO* K
YUBARZIYO#(BO+c . Ux3) /(3. 0x(B0+D))
AuZ (I3+YOxRXMI*YO
Gu=vO*AD
PUZB+Z2 U YO SURT (Lo GHAMEKX)
XL=Y0/S0
HLF:O- . '
WiITE(E6Er140) For RUrHKeI»GAMAPHI TN REFPT» Xidr3 »YU» VO
180 FURFAT(SX e 3l FSrFQedraXridrt ROZSIFSeLr2Xr3H KZeFGelr2Xr6H GAMAZ=,
I F4elsr2X00H HiIiTiErFGeir2Xr7H REFPTZFSezr bl XMZrFael e SX0 3H Bz
2 FOelr2Aral TUSrFQecr X iid VOZrEHe2 // )

!

NEGATIVE WAVE REFLECT AT RESCRVOIR ( CONSTSTANT VALUES OF X/LO)
ThE HUMBER oF 1T rtAS 10 3 CHANGED AS HL CHARNGES>
HITi=r0e UF REACHES OF CHARNEL UDIVICED
REFFTEPT. OF MEGATIVE WAVE REFLECTING EXPKRESSED BY X/LO
Da=AL/HITi
H1i0=2 e 0#HITiitREFPT
HO=AL*REFPT

S Tuminlu+0.l
IUuNZIO+1
IuM=10-1
IUA=ZI0ON
I+ (iCH «GTs 20) Gu 10 4
Ki=1
ou 10 5
Ri=iGli=20
Ku:“1+1
XU:UOU

Dy 10 I=1elONre &



10

C

11

80

81
C

.71

313

VIiIr1)=vo
Y{(Ir1)=Y0O
T(Ir1)=0Uo
CuNTIHUE
X{1r1)=0,
N5T=0
J=1

LOCATLICN OF WAVES NWWPT

NwPI1ZION+1

Ci"lECK:BQ

Du il I=3+,1I0Mr 2

Ii=1-2

XeIrdl )oK (OLMe1)+UX

Cuint THUE

Jz=2

NJ=u

TeSi=Z=1.0

Du 0l Li=ze ICr 2

1=Tu=-LL+2

Ipnz=li~1

Ii=i+l

Jiimu=1

CALL GHRSUIrJrGrVeYrXrTrB3rHNe S0 IVie JMr R e RGr GNR» Xi4)
Chlib GNRSIIrvJrGeVeYrXoTeS3p e 500 INe JMr G5 SGr NSy XiM)
CALL MID(APVeTrYrRGrSE1ESrGRr OGN ONSe Lo dthvJN?LM'dﬂ)

FIND Trif WAVE AT DUWNST. EiD

Jzdt1l

I=IUN

Iiizi-1
Iiwv=i+1
Jii=mu—=1
XUIrd) =il
V(IrJd)I=U.u
C=SeRT(G*kYO)
ZuTU kY0
Brz0+2+0xZ20% XM
Va=C=VO0

ZU=(GU=a) / (BHaVe)

BrzoQ+2«04204aM

Ye=Y0O+Z0

BriTue Sk (ButuP)

APrZAG+HZU*obM

YPBARZYP* (BP+Z0%0) /(5. U (BP+3))
ChlUiiT (AP ®YPUAR=ARO*YUBAR) %6
CuEinC=AUk (14 0~AU/AP)

CHbwz=sanrT (Ciuui/CDENO)

Ir (RESICHEW=C) «Lie 0.0uUl) GO TU 72
CIDe5xF(CHicwtC)

Gu IC 71

Yilrd)ZVP

Viuze=vo

VuO=VY

ZuZY¥ (I ed)=YO

NaPi1=1

NwAV=T

YER=K(TrJ)=a{IM rJM)

BiTotz e Uk (Liie Jii) 2 Xhi

LL/
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A= BHY (Te MY R AM) Y (IH 0 JW)
RoZoH@RT(G*AR/BR)
TIrdI=T 0L 2 IMI+APRZIV TN »UM)+RG)
XAZrilL=X{TIsJ)

D=2u/20

=70

E=VwC/VIWO

TiOo=T(IGCN»3)

TeST=2.0

BeThI=XK/ XL

Ti=i(Ied)=TTO

WlIE(er1o1)

131 FORCATIIR e Lidle 7X02H Zr8X03H VWeBXr2H De9Ke2H Er1UXe3H XX G Xo
1 O BETAL o5Xe30 1TeBardH YY #3Xe130 DEF AT D EnD 2U4X02H (e6Xe S Y
L/i0rSXe2H T /)

WinITELG6r133) ZevwWeDrEn XReGETALY TTeY (T 0 J)
153 FURMAT(SX e 4F LUt rFlZedrFlUed tF5eirF8e3 )
C PUbeH 137 FrUroE TAL»TOrZeViWr e 0AMAPHKETL » XX
C FINg tHE FLOW Iw iHE MIUDLE CHBL
C  CHECK 1HE wAVE LOCATLION
Iz1~2
28 BaP=B+2.0xY {120 d) %XM
YiBnRSY (I +20Ji*{(BiP+2.0%8) /(3.0 (BIP+3))
AP=(3+uIPI*Y(I+2rJ) /el
CiaUrniT (AIP*YIUAR=-AUXYOUAR) %G
CutiC=A0* (1 0=AU/AIP)
CzSuRT (CRHUM/CLENOD)
VL‘;:L‘V() v
IH:i-l
JinZu=1
Chlle GMRS{IrdrGeVeYeXeToBeHNs SO LMo IMr GRIRG e GHR» Xi1)
TrHuNEX(I+2r G) =A Cie Jo) AT CLide Ik (Y (TMp IM) FRGI+T(L+2 0 J) # Vi
TrDekOo=v iLtMr i) ROV
T iPNUNM/ TRPUEND
Iivzit+l
ChaLl GNRS(UIrJrGrVoYrXrTrBrHNeSOrINeJdMr 53S9 SGr GRSy X))
TENUMEXCTive I =X CIMp JED + T (Ie JM) k(Y CIMy IM) KRG =T CIN» IM) R (VI J) -
1 56)
TeoeMO=V (LM Jit) TRo=V (iN» Jiv) +50
TCInJ)=TPWUNM/ TPUERO
IFC TP «Gie. T(Ied)) GU T0 22

45 KZMaAV=1
LzTUl+3=(K=NSTIHHNST=HJI*2
62 IF U HWPT oHEs 104 ) GO TO 24

Chublic WAVDUMIK Ly Ge VoY e XrTrBeHN»SOrVOrYOr VP TP XPPe TP K+ L~1r 11
1 oUumie VW mLr £ AD Y YORAR)
Gu 10 25 -
24 Chull WAVMIDC(R /L oGeVeYrXoTeBrlinder SOeVUIYOr VP YP e XPr TRP2K+1eL=101-1,
I U=l VWeNSTeXmra0r YOBAR)
25 A v=EK
Z=Y(Krel)=70
b=2/20
ExVi/VuO0
KaZiib=X({KrsL)
BeTrlzXX/ Al
Tizi(Ke)=TTC
WLiC(60133) ZeVurDrErXArBETAL  ITeY (KoL)
C PouidCi 137 FrUeBETALr 102 VW rUr GAMAPHKEL» XX



36
34

N O
W

¢
61

64

C

IF{u «LTe 0.020) SO0 TU 1

Ii- (WWPT oLEe 1) GuU TO 3%

Ny Pi=1 :

CIRIENWAV=-NWPT .

IF(1K «LTs 1) GU TO 34

bu o6 Ibz=lie IK

MoK—-T0

N=L=1D

VIMeNI =V (ReL)

Y{MeNIZY(Keil)

X{Me ) =R (KoL)

TiMeHIZT (R L)

IF U M JEde 1 ) GU TO 34

COUNT INUE

IF( NWAV JEQG. IU) GO TO 33

K= AV .

LETUM+3=(K=iST)+HNST=Nuk2

KISl AV+H L

Du o2 K=Kne 10

Lz{ +1

Kig=in=1

Kivzin+1l

Liw=L~-1

Ciull GMRSIK LG VeYeXeTr3rHNrSOrKMeLMrGReRGeGNR Yy Xivl)
CihLi GMRS(KrLrGrVeYrXeTeBeHHrSOrKNILMr 65050 r GNS e Xii)
CaLic MIOLA VT r1rxGrSGroSrGiKs GNP GNSIRKeL e KiNeLMe &M LM)
I (L «GE. JOIM) w0 TU 61

CONIINUE

FOMNU THZ UNSTEAUY FLOw AT DOWNSTREAM END

KzIul

L=+l

XK L) =Hil

VIKeL)=Zu e

Culi DOWMIXrYrTrViKoLrBrGerHINeSOrXiv)
Ti=T{(RKL)=TTO

Yi=i(KeLL)/YU

Wik ITE (B 3G8) YR e L) e YY o TT

398 FulsAT(LOUXP3F1lueys )
FILiib iHE FlLuw IN iHz FRUMT OF WAVE

IFO LWPT osEws 2) 00 Tu 91
IF(UPEMU «6GTe 0.0) 60 TO 200
I=zI-2 .

IFC I LT« WNWPT ) GO TO 63
1=1-2

Gu 10 64

10 Y(I4+31rU=1) «Gie YU) GO TO 45
Gu V0 28

Hu=zu

Hu2=HJ/ &« U

JoTnd2+0401
Hu2i=(HJ+1.0)72.0
Jel=HJ21+yeul

If?(ug. GEQO dal) GU TO 20

IF s2=Jz21l J IS A eVeN NUMSER

L PzIO+2-§

Iuv=I0~-1

Du &7 LL=LLPy TUMe2
IzTu=-LI+2

LAz,



Iij=i=1
Iiv=1+l
\J‘i\‘i:d—l

Calic GMNRS(IvJrGrV oYX TrB3eHN»SOe IMeJMe GRYRG e GRNR» XM)

CAbic GHRS(IvJrGe VY1 X2 TrBeHNeSOr I
27 CALL MIDUXoVeT oY rRGrSGrGSrGReOGNRe OGNSy Lodre INe M IMe JM)

Jo VEN=-1
Jubu=2

C  FINu IHE FLOW IM THZ UPPER STREAM END

Iz1
XK(IrJ)=Ceu
Y(I,J)ZYO

CiaLi UPST(GrXeYrVeTrIrdeBaHNeSOr XM)

Gu 10 31
26 Jevehz=2
Juhuz==-1
LiP=10+2-1
Do 22 LL=LLPy» IO 2
Iz10~-LL+2
Tm=i=1
Iis=i+i
Jirimd=1

Call GNRS(IrdrGrVeYeXeTrBrHNeSOr Ithe UM GRIRGr GNR» XM)
Cihlie GNRSCIvJrGr VoY e XeTeBrHNe SO Iiie IMr GSeSGr GRSy XiM)
29 Chalk MIUGA»V T riGerSOruSerGORe GRice OGNS Iode Tue UMre iM2 JiM)

31 J=J+1
IZION+3~J =PMu42
C GC LACK TC THE wAVE FRONT
C  CHANGE THE vALUES OF J
IF (J «LE. ©) GU TO 39
MNu=ind+1
Jzd=-2
InZiOM+o~-(6+ (NJ=11)%2)
Du 42 Kzzr IK» 2

42 Calh VYAT (K &2 VY s XeT)

K=IRK

=06

=i+l

ODu 43 Kz=KKr ION

L=+l

IF(L «6E. JOIM) GO TO 630
43 Cilic VYATIKeL VoY eXeT)
6350 IARZLON+I-(5+ (1id~-1) x2)

DU 07 K=lrvIKee
37 CAaHlll VYAT(KeS»VeYrXeT)

K=In ’

L=5

Kn=in+1

Du 98 KzZKK» 1UN

Lzl+1 .

Ir(L «GEZ. JUIM) Gu TO 640
38 Crlile VYAT(K L2 VoY X2 T
40 L=J+(iid+»2)

K=zJuh+3=-L

KT=10k=K=1iST

K= 4 Ofi=iviinV

I (KS LT« KT) Gu TO 39
DU @7 KXZATIKS

MeBGSrSGrGNS e XM)

120



K=IUMN=-KX A
LzIOMH+3=(K+(NJ=1) *2=RST) +NST
MzK
N=L : ,
68 IF (ABS (Y (=L oN=1)=YO0) +LTe 0+1) GO TO 69
CALic VYAT(M=1r ii=19 VeYeXeT)
MiZk=1
Mizii=-1
Mz=M=-1
NzN-1
GU TO 66
69 Le=vu
DU 47 K=Kr ION
L=bL+lbl
IF (L «GE. JUIM) GU TO 39
Lizi ’
47 Cabll VYXT(KeLeVeYrXeT)
39 I=Iur+2=(J+ind+2) _
' IF C (NWAV=IST) oLE. I) GG TO 64

51
Ui-FEn[=1.0
J=J+1
Gu 10 45
C WEGAIVE WAVES
- C ReSET THE VALUES AT PTe S
200 KoiNwAY
LzIup+3=(K=NST)+N5T=NJ*2
HWEC==1.0
iPR=1
Ic=o _ .
Ib:b Y
IrL=2
Io=y
Iu=o ‘
ViIseZ IV (K4zrLl)
Y(1502 )=y (R+20L)
X{ISre VX (K+ZeL)
Tiloe2 I=T(K+zrL)
C RESET THE VRLUES ALUNG (¥ PASSINHG REFLECT PT.
KiRZ 1 Cli=lNWAVY
ICKe=0
DO £C1l I=Lrdrg
ITuKi=Idnl+1
K=K+l
DU 201 LK=Z1rKiN
MozK+LK=1+idriL—-1
Nzb+lLK=1-1dnlL+1
IF(n «GTe JOIM) Gu TO 202
J=ho
VIIrddz=v (i)
Y(Ired)=Y Cirinid)
X{Ted) =X Civiniy)
201 TCIrd)=T Civeid)
C FINu THE INITIAL NEGATIVE:  WAVES
Gu 10 203 _ ,
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202 - Kh=LK=1 A
203 Jz1
IFGWFP «GE. 0.0) GO TO 1
V1e1)=V (S 1)
Y{1¢1)=Y(301)
X{1r1)=xk(3s1)
TC121)=T(501)
X(IFL o) ZA(IPReJ)
TIFL e D =TLIPKYJ)
Y(I};L'\J):‘IO"‘VU*\IO/(20U*G)
BPR=G+2.0#Y (IPRrJI *xxM
APR=(BHEPIO) =Y (IR J) /24 U
YRPRUAR=ZY (iPReJ) x {LPR+Y2z« G%3) /(3. 0% (BPR+{3) )
Bri=B+2.04Y (LPLsJ) *xM
APLZ(G+LPLY +Y (IRPLeJ) /e 0
YPLoARSVIPL e Jd) #{uPL+E e uxD) /7 (3. Ux (BPL+3))
VeZv LIPRy ) +SURTLOR AAPLHYPLEAR=APR*YPRBAR)Y *APL/ (APR* (APL-APR) ) )
VIIFL e JIZ(VIIPRPJI) =W *kAPKZAPLEVW
2zYIPLeJ) =Y {1PKJ)
O=ALS(Z2/20)
EZVHU/V‘J'!U
XA=rl+X (IPRyJ)
BeTAIZXA/ AL
TE=1(IPRyG)=TTO
Wik ITE(H6r103) 2oy eDrEr XX GETAL» TTeY(IPRYJ)
C PUNCH 137y FoUroETALeYOrZs Ve Br GAMA»HKE L » XX
VIigel)z=ylzel) :
Y(4rdl)=({2ei)
AlGerl) =X (20 1)
Tige1)=T (29 1)
210  J=J+1
Cali GNRSUIrJrGrVeYrXrTrBoHNI S0 ISerd 1 GSeSGrGNS e XiN)
JixZu-1
CaLic GNRS(IvJrGeVeYr T3 rHN»SOr IE» R GRIRGr GNR» XM)
: Calele MIOD AP VITrY 1 GrSGrOSrGRrOGHNIKPGNS»y IErJr IS»Jr LEr JIR)
C FINu ArTrATePT. P
BPrR=C+2. 0xY(IPRrJR) %X
APRE(BE+oPRI*Y(IFReJRI 7260
YRROARSY CIPRyJRI*(BPR+2.0xB) /(3. 0%k (BPR+B) )
BrLED+2. 0xY (IrL e JiR) % X0
APL=(G+oPL) 4Y (IFLPJRI 7240
YRLoARSY (IPLs UR) #{BPL+¥2.0483) /(3. 0% (BPL+U) )
Vo=V IIPRy GRI 50T LG (APLXYPLEBAR=APR*YPREAR) *APL/ (APR* (APL-APR)))
TOIPRy SIS ) =X CIFR e JRIFTUIPRy IR R Yw=T ISy J) % (VIISru)=S6) )/ (VW
1 =VUiIS,rJ)+S06)
ALIPFRr DI ZA ISy d) VIS ) =S¥ (TUIPReJ)=T(IS U))
C Fify WHE Vo or AT PTe P BY REANS OF INTERPOLATION
YOIPRy P2 (1Srdl Y (T rd) =Y ISy ) (TUIPRYII=TLIS D))/ (TUIEYJ) =
1 70i5ed)) S
VIIFR eI SVUISe D)V I v d)=VIISey XV R(TUIPRyJ)=TOiSe D))/ (T(IE,»J)-T(I
1SeJ))
C ASSuMe THE VALUE OF V(IPLed)=V(IPLeJd=1)
270 VIIPLed) =V IiiFLru=-1)
X{Irrled)ZA{LPeJ)
TCIPLe =T OiPRY D)
BrREGA2.0xY (IPRed ) kXM
APREZ(BHUPR) Y (IPRyd 17240
220 APLE(VUIPR e J) =V ¥APRZIVIIPLYJ)Y =ViW)



rao

Ir(UAMA JLE. Usu) GO TO Lligl
YOIFL e D) 2 (=p+S50rT (B*B+4 0 0 XMxAPLL)Y ) /(2. 04 K)
Gu 10 1182
1181 I (AM oLE. 0.0) Gu TO 1183
YOIFL e J)ZSQRT (ARPL/XM)
Gu 10 1i8z
1183 Y(IPLed)=apPiL/i
C DEToRHINE THE PTe OF G
1182 1ir{Jd «GT. 2) GO Tu 221
HZYQ+VO*VUu/ (2. 0+6)
X({Twed)z=X{291)
Yilwed)ZH
Crilic ONRS{OIPLyJrGr Ve Y e X TrBridide 00 IPLrJr GP PG G Xiv)
TiIwe D ZTIPL e JIHIX(TIwed) =X TPy J) ) /(Y LIPLyd)=Pu)
V(Iu'd)”V(Iier)+oP*(Y(1Q JI=YCIPL o) ) =GRP*(T(IwurJ)=T(IFL,J))
Gu 10U 22
221 Cali bNx{b(L\;'d'oerYr/\:|ruvrl{leUolOIJRoLﬁrhl'lbobl‘-h'n)\M)
Chrlle OMRSUIFPL ey JrGrVeY e XeToBrHr 500 IPL Y Jr GP PGy GiuP s Xidt)
Cabe MISIA e Vel v 101G oPOor GP e GHyGNHe GNP IQr e IPLrJr I e JR)
C DETERGINE THE PT. OF U '
222 CALL OMRSUIUrJrGrVeYrAr Toi o HNeSU» IDP JRWGRIRGr GMNix e XM)
Callic OMRSUIUrdrorveYrar T e HINP SO LQeJde GG QG GHQ» XiM)
TOIue D ZAIQrd) =L CIDrIR)ATCIL P JR) X (Y IIDr IRV HRG)I=TLIGr ) (V(IQrd)
I =) )/ (VUIUPURIHRG=V (T Grd) +G0)
X(Tur )X (TUrJRI+F OV ITLrSRIFRGI R (T(IDy ) =T(ID»JR))
Y{Llue D) Z(VEIGrIR) =V Tur J)+GRET LD dm)+6b*Y(lJ'd)—bNh*(T(IJ JI=T(ID
I v Ji) ) +0HGH (TCIUrU) =T(IGrd) )Y/ (ORTGG)
VIIoeJ)ZVIOrdRI=GRE(Y (DD »J) =Y (LD JK))—GNR*(T(IU'J)-T(ID'JR))
C FIho THE isEw VALUZ OF VIPL 3Y MEANDS OF INTERPOLATIUN OF POINTS QeDoe
C Aty P
VELEVITIG e D)+ (VLD ) = (1o )Y AT CIPL D) =TI e DI ZLTUIDe )Y =T(IwrJ))
IF(ABSIVPL=V(IPLrJ)) oLfe 0.001) GO TO 250
VIIrLrd)ZuUeox (ViFL+V (TIRPL, )
Gy 1C 220
250 2=YUIPLyJ) =Y (IPKrJ)
o D=AUS(Z720)
E=Vu/ Vo
RKASHALAY (IPReJ)
bBeTAlI=XA/AL
Ti=i(IPRyU)=TIO
WinliZ(60133) 2rvideDrEr XArBETALYTTeYUIPRYJ)
C PUNGH 1370 FouroET ALrTOr ZeViir B0 oAMAr HKETL ¢ XX
Ir(u oLLTe Kn) Gu 10 200
YiR=Y(IPRYJI/TO
Y=Y {Irled) /Y0
TiT=T(IPR,J)=TTU
TITIZTIPLyJ)=TTO
WnITE(60299) YUIPR» ) oYY L TTTyYCIPLY D) p YYLOTTTT ,
299 FURMATI2X9 200 MAX DEPTH AT DOwlN3Te ENMU r3FLlU3r0X23F10e2 /77 )
280 IFGHNEG suTe uveu) GO 70 1
IF(U «LTs KR) GU 70O 210
C HEGAT A VE WAVE REACHIS DUWWSTREAM oD
J=Jdtl
JiZu=1
X{IFReJ)=HL
ViIFERed)IZuL o
BrRE=B+20xY ([FRrJR) *XH



APRZ(B+BPR) *xY (IPRrJRI /260
YirROARZY L IPRy SRIKIBPR+Y2. 0%B) /(3. 0% (BPR+i3) )
BrL=B+2e0xY (TPL r Jid) & X .
APL=(D+uPLY#Y(IFL»JR) /2.0 .
YPLOARSY (IPLy JRI X (BPL420%B) /(3. 0% (BPL+(3) )
Vo=V (IPKr IR +SORT(Gx (APLAYPLBAR=APR*YPROBAR) *APL/ (APR* (APLL=APR) ) )
TOIPRyJ)ZIXUIPRe)I =X CIPRr JRI DV /Vu+TIPR P UR)
YUIPReJIZY (IS =10+ (TUIPReyJ)=TLiSrd=1) (Y (IE,d Y=Y(IS»d=1))/(T(IE
1 +J )=-TlISrd=1)) ‘
HNEO=1.0
Gy TO 270 :
157 FURMATIFO o3t 5F B4 r3F86e20F1062)
END



