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(1)
ABSTRACT

The evaluation of fluid forces on vibrating framed
structures in a fluid environment is of current significance
in view of the activity in ocean engineering. Accurate know-
ledge of the fluid forces under conditions of variable separa-
ted flow is .lacking. In this study an attempt has been made
to find a general method of evaluation of fluid forces on
cylinders for variable flow, using published data from tests of
constant velocity flow, uniformly accelerated flow and wave .
motion. The parameters that appear to govern the variable flow
forces are discussed,.and models for relating force magnitudes

to these parameters are suggested.

The dynamic response of framed structures in an ocean
environment has not been investigated except for linear sinu-
soidal wave motion in deep water conditions. The response of
shallow water structures to various types of wave forces, as
well as to earthquake excitation, has beén analysed numerically
here, taking into account\the interaction between the structure
and fluid motions. The effect of the mass and drag parameters’
on the structure response has been studied. Governing load
cases for the design of framed structures have been related to

structural period and water depth.
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CHAPTER I
INTRODUCTION
1.1 Scope:

The problem of vibrations induced in offshore
structures by deep water waves has been extensively studied.
In view of the increasing numbers of such structures being
designed and constructed it was considered desirable to
investigate the forces caused by other dynamic excitations,
namely, an earthquake input and those ocean wave conditions
which depart significantly from the assumptions of the linear
small-amplitude wave theories. The magnitudes of the response
to these kinds of excitation are compared with the response to
linear deep water waves and with the response to breaking wave
forces within the usual range of structures in shallow water.
Tower-supported platform structures and similar framed struc-
tures only are considered. Attention has also been given to
the problem of evaluation of the hfdrodynamic forces under

realistic water flow conditions.
1.2 Fluid interaction:

A flow diagram of the interaction between the water

forces .and the structural response is given in Fig. 1.
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1.3 Earthquake problem:

In the case of earthquake-caused vibrations, the
force system consists primarily of the application, .in effect,
of recorded ground acceleration values to discrete masses.
This equivalent dynamic force is fed into the linear structural
system as an input. Since the structural»motiohs cause an
interaction with the water in the form of hydrodynamic drag-
and inertia forces, the final response is not the linear
response, but is a function again of the. hydrodynamic forces
generated/influenced by the response. The hydrodynamic inter-
active forces attach themselves to the other inputted forces.
Detailed expressions given later show that the hydrodynamic
drag effects are nonlinear. In general the hydrodynamic

inertia effects are also nonlinear.lf
1l.4 Wave problem:

The inputs required for the wave response problem
differ in that the primary forces are caused by water motion
relative to the structure motion. The water velocity and
acceleration are calculated from one of several wave theories
using inputs of wave period, wave height, water depth and the

slope, roughness and configuration of the bed.
1.5 Simplifications:

Numerical studies have been conducted in both problems,

taking the initial inputs as deterministic. The hydrodynamic



interaction forces were moreover simplified assuming two-
dimensional transverse flow past.circular cylinders to be

applicable. -
1.6 Organization of the thesis:

The second chapter is concerned with the determination
of steady and unsteady fluid forces on cylindrical members wheh
input data on the velocities and accelerations of the water
particles relative to the member are supplied. The nature of
the fluid-induced forces for steadycflow‘is first discussed,
followed by an examination of such forces for progressively
increasing complexities of the flow in the unsteady area. Both
theoretical (qualitative) and experimental evidence available
relating to such forces areapresented and the need for an
experimental approach for the case of .an arbitrary flow-history
is highlighted. The dimensionless drag and mass coefficients
for the forces are introduced and based on a reanalysis of past
experimental -data a relationship for the instantaneous mass

coefficient is proposed-in terms of the flow parameters:

The third chapter discﬁsse%lthe flow conditions
createa by wvarious types of.waves and includes a short descrip-
tion of the earthquake ground motion. This chapter presents
quantitative - information for the determination of -fluid particle
velocities and accelerations for different wave theories. The

applicability. . of the various wave theories to varying conditions
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of the ocean-structure geometry, etc. and the need for taking

into account the various kinds of waves are set out.

The fourth chapter formulates the equations of
motion of the structure under earthquake and dynamic wave

force inputs.

The results of response computations under a) earth-
quake inputs, b) shallow water nonlinear oscillatory wave .
inputs, and c) breaking wave inputs are stated in detail in the.
fifth chapter. The response of the selected structures for
varying values of drag, mass and other parameters are compared.
The structure forces under various kinds of excitation and

loading are compared.

In the last chapter, the conclusions and a summary of
findings are given. The design criteria which would govern

for various ocean-structure situations are indicated.



CHAPTER 1T
FLUID FORCES

This chapter is devoted to the determination of the
forces on cylindrical members due to relative motion of the
adjacent fluid. These forces are to be used in calculating
the structure response. For cylindrical members the forces
consist of a velocity-dependent drag component and an accelera-
tion-dependent inertia force component. Dimensionless coef-
ficients of drag and inertia appear within the constants of
proportionality to the fluid velocities (to the second power)
and the accelerations respectively. The kinematics of water
motion being dealt with~separately in the next chapter (Ch.
IIT), the force problem reduces to the determination of drag

and inertia characteristics for specific flow conditions.

Unsteady flow characteristics exist in both the earth--
quake and wave force situations. The motion_has an arbitrary
character in the former and is oscillatory, ‘with occurrxence of
separation, in the latter. It is pointed out in the chapter
that the drag and inertia in separated flow are time-dependent
and not susceptible to an analytical solution.  Methods used in
the experimental determination of the average drag and average
mass characteristics under specific types of unsteady flow as

well as steady flow are indicated. The flow parameters used
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in the determination of the coefficients of mass and-drag are
selected on the basis of dimensional analysis and regression

of the existing experimental data.
2.1 Cylindrical pile force formula:

In computations for the forces on a cylinder due to
waves and to other types of structure-fluid interaction, the
total force is taken to be a superposition of drag and inertia

forces such thatl

F(t) = FI(t) + FD(t)
the forces being respectively

1) An inertia force FI(t) arising out of acceleration
of the fluid and represented by an added mass.

2) fA drag FD(t) comprising viscous friction and the portion
of the pressure differential upstream and downstream
due- to the existence of the wake. In the range of
Reynolds numbers of interest, this is proportional to

the square of the velocity.

The above superposition concept is however true only

for two-dimensional flow past cylinders.

Expressions for individual terms are:

v v (2.1)

Fp(t) 073

i
@]
©

1
FD(t) = 3C, 0 A v|v| (2.2)



where V0 = Enclosed volume of the member
A = Projected area of the member
v = Relative velocity between the member and the

fluid particles assuming fluid particle velocity
to be that of the undisturbed flow of the
surrounding fluid.

A dimensionless coefficient of mass

0
I

@)
It

A dimensionless coefficient of drag

p = Mass density of the fluid.
2.2 Basic flow phenomena:

In order to gain greater insight into the drag and
inertia forces, certain physical characteristics of fluid flow
are examined .in detail in this and succeeding sections. Dis-
continuous: features of the flow appear in the case of motion of
a real viscous fluid past a cylinder. First, in this section,

steady flow is considered.

For real fluid flow, separation of the layer in con-
tact with the boundary leads to the formation of vortices
(Figs. 2 to 4). As velocity of flow is increased, it eventually
results in their being detached, giving rise to a wake for a
distance downstream of 1 to 4 diameters. The discharge of
vortices [which when established constitute a Karman vortex
street, Fig. 4] occurs, at a sufficiently high velocity, alter-
nately .~ from opposite edges of the cylinder at a frequency

determined -by the Strouhal number S given by
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s = gl1-%:7] - 1D (2.3)
N v
R
where f = frequency of shedding of a pair of eddies
D = diameter
NR > m Reynolds nimber.
v o= % = kinematic viscosity.

Over the range of interest the number S is 0.21. The discon-
tinuity represented in the wake downstream is bounded by shear
layers starting from the separation points on the Qpposite edges
of the cylinder and extending for the aforesaid distance down-.
stream. The wake contributes to the pressure differential that
brings about the major part of the drag, it also accounts for

fluctuations in the drag from its mean value.

bl

2.3 Drag fluctuations-~-steady flow:

In steady flow when the velocity is sufficiently high
to lead to vortex-shedding, the mechanism for fluctuations in
drag (and in 1lift) is indicated, with reference to the changing
transient flow configuration*ih Fig. 5. Fluctuations in cir-
culation and velocity are, according to Berpoulli's equation,
accompanied by fluctuations in pressure, and hence in longitu-
dinal drag. An individual vortex causes a complete cycle in

the history of longitudinal forces (drag).9’22’23

This .occurs
because the right and left vortices dissipate in a longitudinally

identical wake (Fig. 5). The fluctuations in drag, which can
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amount to as much as 60 percent of the mean drag, occur at a

frequency of %L‘ where Te = time for discharge of .one eddy.22
e

2.4 Lift--steady flow:

A comment on 1lift forces in steady flow is in order.
In the realm of post-separation velocities, arising out of the
circulation around the.cylinder (Fig. 5) 1lift forces are genera-
ted transverse to the flow, being proportional in magnitude to
the square of the velocity and being of the order of the drag

forces. The cyclic reversals of circulation described previously

make the 1lift forces reverse cyclically at a frequency of 5%—
e
("the Strouhal fregquency”). Two stages of transverse asymmetry

of the vortex layout are needed to complete a cycle in the 1lift

force history.

2.5 Problems in unsteady flow:

Variability of the flow parameters is also found for
flow with a time~dependent velocity.  Observations are as
follows:

a) The limiting N_ for separation is time-dependent.

R

b) Positions along the boundary where separation occurs
are time-dependent.

c) The wake geometry influences the drag more drastically.

It is a function of velocity, cylinder diameter, vis-

cosity and degree of turbulence.
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d) Fluctuations of the instantaneous drag (and, in this
type of flow, inertia forces) from its mean value

are more ‘irregular.

The complications involved in an attempt at analytical
study can be seen from the fact that when the flow reverses, the
erstwhile wake becomes the upstream side of the cylinder. Quan-
titative knowledge regarding the flow and forces is lacking for

the general case of arbitrary acceleration (with separation).

2.6 CD.— Coefficient of drag:

The following sections will be concernéd with the

characteristics of the coefficient CD.

For steady flow a correlation between the drag coef-

ficient CD and N, is well-established (Fig. 6). The charac-

R

teristics . of the experimental plot (Fig. 6) are as follows:

The drag coefficient is nearly constant at 1.2

in the practical range of

10? < N < 5 x 10°

except for a drop to a minimum of 0.4 for supercritical
flows (NR > 2 x 105 approx.). It rises for low

Reynolds numbers to a limit of 10.



VARIATION OF CD

Fig 6

14,
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2.7 Limits for the pre-separation stage and

associated CD values:

While vortex-shedding in steady flow starts at an

NR of the order of 50, -the point of separation occurs at
- 104
NR =1.2 x 10

from rest. Thus the instantaneous wvalue of NR alone is not an

in the case of constant acceleration starting

adequate parameter for determining separation. The following
two conditions are proposed as a means of predicting separation

in variable flow:

v
max T

5 = 15, where D is

i) oscillatory flow: parameter

the diameter and T the oscillation period.

ii) other: NR = 1000 combined with an overriding limit
of % = 0.3, where s = distance traversed on the

current stroke.:

The value of CD prior to separation is that due to

friction drag alone and ranges from C_ = 1 to 2, ‘as found by.

D
Keulegan,lo‘for waves. In general, for waves and earthquakes
the velocities in this range are low and so the force associated

with drag is small compared to the inertia force; thus a high

degree of accuracy is not required in this range.
2.8 Past experimental data:

An experimental approach has to be resorted to for

forces in unsteady flow with separation. In succeeding sections
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flow phenomena in specific types of unsteady flow as observed
by past investigators are described--in order of increasing
irregularity of motion and decreasing member rigidity. These
observations yield an insight into the important flow para-
meters that influence forces. Such a knowledge of parameters
is necessary so as to attempt to formulate a relation for

inertia and drag forces in the case of a variable flow.
2.9 Experiments for CD in oscillatory waves:

Turning to the work of past experimenters on the wave
motion type of unsteady flow, the drag coefficient CD has
generally been evaluated by measuring the total force on a
cylinder, immersed in the flow, at the instant the wave crest
passes the cylinder. At this instant the water particle
accelerations are theoretically zero and so the total force is
equal to the drag force. The observed values of«CD‘onvthis
basis show wide scatter when plotted against NR (Fig. 7). The
values of CD with the respective data sources are tabulated
in Table 1. The disparities among these values are due to
factors listed in Appendix I. It is also commented thgt roughness

5 3

of the cylinders increases CD in the zone N_ > 2 x 107,

R

2.10 Rigid cylinders in standing waves--mean CD:*

McNown13 has determined the influence of vortex-

shedding on Ch for rigid model cylinders under standing waves.
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TABLE 1
WAVE FORCE COEFFICIENTS
[From Ref. 3]

Experimenter Diameter CD CM Type of
and Date of Flow
Cylinder
(in.)
Crooke, 1955 Model 2,1,% 1.60 2.30 Oscilla-
tory
Keulegan & 1
Carpenter, 1956 " 3,25,2 1.34 1.46 "
" 12,13 1.52 1.51 "
(Standing
Waves)
]
Keim, 1956 " l,%' 1.00 0.93 Accelerated,
: non-oscil-
latory
Dean, 1956 " 3 1.10 1.4e6 "
Wiegel et al, 1956 Prototype 24 1.00 0.95 Ocean waves
California
Reid, 1956 " 8% 0.53 1.47 Ocean waves
Gulf of
Mexico
Bretschneider, 1957, " 16 0.40 1.10 "
Wilson, 1957 " 30 1.00 1.45 "
Paape, 1966 Model - Variable with

. H
ratlo D
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The tests involved large amplitude water oscillations. Average

values of CD have been given as a function of the parameter

T
2T '
e
where T = period of standing waves
Te = eddy-shedding period for the maximum velocity
v .
max
Average CD falls steeply- from 2.0 for %L~in the neighbourhood
e
of 2 to an ultimate value of 1.2 if“%g is much different from
e
2. %— can be physically interpreted in terms of vortex-shedding
e ,
and Strouhal number. This parameter %E-alone however would not
e

provide good correlation to C_ for an arbitrary kind of unsteady

D

flow.
2,11 Rigid cylinders in standing waves--varying CD:

A specific analysis of the variation of drag and
inertia forces at various instants in the cycle of oscillation

was carried out by Keulegan and-Carpenter.lO

The rigid model
cylinder was placed at the node of standing waves, with flow
conditions adjusted to ensure uniform horizontal velocity from
the surface to the bottom. The tests involved large-amplitude
water oscillations. Through a Fourier analysis of the measured
foreces, and assuming that the coefficients of higher harmonics
~were negligible, they evaluated CD at various instants through-

out a cycle of oscillation (Table 2). The separation of the

instantaneous values of CD and CM was effected as follows:



TABLE 2

VALUES OF-CM AND CD FOR STANDING WAVES

- (CYLINDERS)

v T R.M.S. Average . Instantaneous Values of C, &
M Over Cycle : ' M

D t_ t_ t_ £ £

CM CD T-O.Z T-0‘4 T 0.5 T 0.6 T 1
CM CD CM CD. CM CD, CM C CM CD

3.0 2,14 0.70. 2.05 1.6 2;1 0.9 1.9 0.4 2.1 0 2.0 0.4
15.6%* 0.80. 2.05 1.2 2:1 -0.3 1.9 =2.0 2,0 -0.3 1. -1.4 1.9
44.7 1.76 1.54 1.9 1.5 2.1 1.4 2,2 1.6 2.1 1. 2.2 1.4

. : T .
*This corresponds to ST =.1.
e
t = time from passage of crest.

“0¢
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Letting T the period of the flow oscillations

il

F

total fluid force
and then using the fact of periodicity of F and the symmetry

of the flow, -
27 - 27
F (7F t) = ~-F (1F-t + ) (2.4)

. . . F .
The non-dimensionalised. force 55525 can accordingly be
expressed as a Fourier series with respect to the variable t.
The coefficients of the Fourier seéries are-determined from

measured values of -the flow—induced forces. On the other hand-

the Morison expression for the fluid forces, namely,

|y

21t
s 5 (2.5)

%
F (o) . 21t 1
2 MDv_ St Tt 3 Cp

2t
T

CoOs

°
<
o
=)

(where v, = max. velocity) .

can also be expanded as a trigonometric series. Like terms in
the two trigonometric series are compared to yield series
expressions for CD and CM as a function of t. Though CD is
time-dependent, weighted average values over a wave cycle can
be evaluated from an integral for the mean value. Furthermore

exXpressing
F =. f(t,T,vm,_D,p,\)’) (2.6)

by means of dimensional analysis they obtained .

21t VmT Vme
=t G o R v ) (2.7)

=
o
X
Z
"

pvm D
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These experimenters went on to evaluate coefficient

CD at various instants of the cycle from the computed coef-
ficdients of the series expressions already derived; this was done

v T
max

D 3

Table 2 shows that over the range of time when the instantaneous

for a series of flow regimes represented by the parameter

velocities were non-zero, (%'# 0.25), instantaneous values of

CD did not vary significantly. FurthsrTby using the concepts of
Strouhal number %? and the parameter —%—, it was established that
when Z%E was much smaller than 15, no eddies formed;'that a
single vortex was formed in each stroke when X%E reached 15 and
that numerous eddies per stroke formed for large values of Z%E .

Distinct variations in (mean values as well as cyclic fluctua-

tions) CD occurred in these ranges. This is exempliii;d-by the
values in Table 2. ¥ean CD rose sharply from small —%— to ;
maximum of 2.2 at X%_ = 15 and fell gradually for larger‘z%— .
There was ex;ellent correlation found between mean CD and the

v T

parameter —%—.

2.12 Limitations of varying CD values:

Factors that invalidate .the applying of these values
obtained in Section 2.1l to an oscillation problem are:
1) Deviation of the pattern of water oscillation from

that of a standing wave.

wave height
diameter

2) Geometric similarity (ratio ) is unlikely

to be the same in the prototype.
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2.13 Tests on rigid model cylinders in

constant acceleration flow:

For a non-reversing unsteady .flow situation, 'N_ again

R

is not an adequate parameter, since separation is not dependent
on velocity alone. This is due to the fact that it takes time
from the start of motion for separation to occur and vortices
to be formed. For uniformly accelerated motion from rest, .

plots of CD against the parameter % were given by Sarpkaya and

Garrisonll (reproduced at Fig. 8), where s = current distance

traversed from rest. The parameter % was selected on dimensional

considerations. The plot (Fig. 8) shows that CD is low at small

% and reaches a maximum at % = 2.5 at which there was a symmetric

vortex configuration. It decreases to 1.0 at the shedding of

the first vortex (asymmetric vortex pattern) -~around % = 4.8; it

thereafter eventually attains a value of 1.2 at large % =6 to 7,
the variations in Ch occurring only during the first two vor-
tices. This highlights the time taken for traversing an adequate

distance in a stroke for the wake to form and for C_ to assume

D
, v_T
separated flow values. No correlation of Ch with N, or —%—

was found. -
2.14 CM - Coefficient of mass:

In this and succeeding sections the past data on
experimental values of CM for particular cases of unsteady flow
wikl be summarised. The theoretical value for inviscid irrota-

tional flow is 2.0. For wave inputs on model and prototype
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piles (rigid piles), Table 1 indicates values of CM from 0.95
to 2.3 (Appendix I details the reasons for the scatter). . The
coefficient was evaluated therein using the following approach:
At the instant the level of the wave surface
is at the still water level, the velocities are
theoretically zero and the force .is purely an inertia
force. The measured force at this instant .yields a
value of CM. This value is then assumed to be con-
stant for subsequent predictions/computations of

wave. force.

In view of the scatter of the data available so far,

judgment must be exercised in selecting C taking into con-

MI

sideration the similarity of conditions in a given situation to

those which prevailed in an experiment.
2,15 Rigid cylinders in standing waves--mean §M:

Experiments on rigid model cylinders under standing
waves to examine the influence of the vortex-shedding frequency

on CM: Paralleling section 2.10, the results of McNown from

these experiments show that average,CM falls from a value of 2

at low.%— to a minimum of 1 at %— = 2 to 3. It increases again
e e

with large o to 2, i.e., there is & definite correlation with
o ,
T
parameter T
e
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2.16 Rigid cylinders in standing waves--varying CM:

Experiments for instantaneous CM for rigid model

cylinders in standing waves (Keulegan and Carpenterlo):

Section 2.11 has indicated that instantaneous values of CM were
segregated in a series form, with respect to the time variable .

6 = 21t The expression for the instantaneous CM was found
v_T

T °
m

to be directly proportional to -5 The computed values of

the time-dependent CM at various cycle -points are given in

Table 2; they show that CM values fluctuate more markedly than
v_T
CD values, specially when —%— = 15. Also, weighted average

values of CM over a wave cycle were found from the expression

va 27 F sin6de
D 4 >
pv. D
m

-1 27 .2 _
C, = T é CM(G) sin~eds = (2.8)

M

o
wjN

where, in framing the expression for CM_as a 0 ~-series, the
v_T
higher order terms have been neglected. The parameter ~%—'is

seen to influence CM directly, a conclusion which is also arrived

at by dimensional analysis (Section 2.11). Mean values of CM
during a cycle. were correlated strongly with z%z and distinct
variations in CM occurred for specificvbgnds of values of X%E'.
Mean C,, sharply falls from 2.1 at low —%; to a m%nimumvof-O.S at
z——T—‘;‘lS._ It then rises gradually for larger z%—.' The parameter

—%— was indicated to be important in any regression. The values
obtained -should be interpreted with caution as some computed
values of CM are hegative (physically impossible) as Table 2

shows.
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2,17 Experiments on rigid model cylinders

under constant acceleration from rest:

Section 2.13 indicated that for Ch there was no
v T
correlation with NR or-—%— in this flow. As expected this
also holds true for CM. Plots of CM against the parameter

% (due to Sarpkaya and Garrison: Fig. 8) show strong correla-
tion. This highlights the time taken in travérsing_an adequate
distance in a stroke for CM values to drop from 2.0 at rest to
a lower ultimate value. At the start of motion when the rela-
tive flow is virtually irrotational, CM assumes the value 2,
which decreases thereafter with increasing % to 1.2. The CM

curve rises again, reaching arn. asymptotic value of 1.3.
2.18 - Oscillated flexible cylinders--mean resistance:

The results of a test for the measurement of combined

drag and inertia forces are mentioned next.

The tests were conducted in the laboratory with single

flexible model cylinders oscillated at large amplitudes in still

9,21,22 investigated the forces for large amplitudes

of longitudinal oscillations’%%'>> 1) within the region 2 x lO3 <

water. Laird

NR < 4 x lO4 which fell within the practical range of flow. He

found large increases in the fluctuating intensity of the total

force over those on rigid cylinders of-the order of up to 5
times (Fig. 9).  Combined resistance (drag + inertia) was

measured and reported, but the drag predominated. The average
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resistance forces were found to increase by about 3 to 4 times
the steady-state drag D. Laird interpreted the unsteady flow

forces in terms-of the flow phenomena at various values of the

parameters'ég and f
n
where f = forced oscillation frequency of the cylinder
(This influences mean oscillation speed and
hence the Strouhal frequency fe).
fr.1 = natural frequency of the flexibie model in air.
f = Strouhal frequency.

e .
Fig. 9 highlights the amplification in fluctuating

£

total drag for values of fg near unity. Based on the data for
n

the 3 oscillators with fn = 1.51, 1.72 and 1.97 respectively,
Laird has stated that as fe is reduced from a value equal to
fn' so.long as the reduction is small, the maximum variable
drag does not decrease. An explanation offered.is that in
these slower runs (smaller fe corresponding to smaller f),

there is greateéer. time . for the structural amplitude to increase

during each stroke.

The force increases over those for rigid cylinders
were attributed to lateral oscillations induced by fluctuating
lift forces and to the increase in the wake widths which the
lateral oscillations caused. When the maximum fluctuating 1lift
was relatively high, .the total resisting force was correlated

directly to the square of the wake widths. Drag predominated
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over inertia in these tests, though no separate values of the

drag and inertia forces are available,

Structures should be designed to have a flexibility
lower than what would significantly raise the fluid forces

f

(i.e., magnify.CDl2> 1.2); from Fig. 9 the fg ratio should be

n
less than 0.3. Practical structures with braced cylindrical

piles fall within this category.

2.19. Lift in flexible oscillating cylinders:

9,21,22 .
concerning

The preceding experiments of Laird
oscillations with large amplitudes show 1lift forces to be sig-
nificant when the Strouhal frequency is close to.jbr»f_lower
than fn (= 0.6 fn to fn). A possible cause for the above effect
when fe was less than fn would be the transfer of energy from
the secondary drag oscillations at a frequency of<2fe.- From

%

the relationship fe = 0.21 <

5’ it is seen that for the practical

wave flow velocities of less than 12 ft./sec. (r.m.s.), the
above lift effects would not be significant .for the usual
diameters of 1 to 3 ft. and- -structural frequencies of 0.3 to

1 cycles/sec.. The extreme cases warranting examination of
lift would be piles of small diameters under waves of large
heights. Furthermore -lift effects are ruled out in the earth-
qguake case .since the distance .travelled in each stroke is‘not

sufficient to cause prolonged eddy shedding.
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The magnitudes of 1lift in the shallow water case with

small-diameter piles are about those of drag.

2.20 Framing of relations for the instantaneous varijiable

drag and mass coefficients (separated flow):

For cases of arbitrary accelerative motion, it is
necessary to recognise the most important parameters that
influence the value of-CD and CM’ and to have recourse to
experimental data to determine the correlation. An insight
into the important variables has been offered by the experi-

mental work described in Sections 2.9 to 2.18.
2.21 Choice of parameters:

The technique of dynamical similarity has been used
to select dimensionless parameters that would correlate experi-
mental values of the drag and inertia coefficients. Deriva-

tions given by Morison4and Crooke may. be referred to.

2.22 Empirical coefficient of mass in arbitrary motion

related to dimensionless parameters:

Some variables influencing CM after the onset of

separation are:

1) Acceleration of the body
2) Acceleration in the surrounding fluid due to the
presence of the body--depends on boundary configura--

tion



3) .

4)

5)

6)

7)

32,

Duration of the acceleration
Rate of change of the acceleration
Interaction of the velocity and
i) the distance traversed on the current
stroke

ii) the time elapsed~bn the current stroke
Residual vorticity from previous cycles of oscilla-
tion
Symmetric or non-symmetric nature of vortex formation--

related to Strouhal number.

Item number 4) could not be explicitly taken into

account in the parameters chosen. Examining the relevant para-

meters, the most important of the basic wvariables influencing

the value of C,, are:

M

L = length parameter

v = velocity of the body
A = 1local acceleration

T =. time parameter

Dimensional analysis was carried out, leading to two parameters

being found to influence CM:

c, = ¢C, (

M M (2.9)

AT2 vT
T T

Physical significance of parameters:
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AT?
5 a measure of
(Local inertia)x(Viscous force)2
(Convective inertia)3
%? , taken in conjunction with %? ; represents

Convective inertia
Local inertia

the ratio

The broad effect of variatioﬁs in %; on CM

. . . VT .
is that an increase in ) increases CM when T

is large and v is low.

A reanalysis of the experimental data in Section 2.16
and 2.17 disclosed that the instantaneous value of CM was
adequately determined as a quadratic surface in the g-n—CM space,

where

oy
]

2
0.125 LoglollQ%E—] + 0.985|2] - 4.11
2
n = —Loglollggz—I + 0.124l%§| + 0.903 (2.10)

T being the time elapsed from the start of the current stroke.

The best regressive relation found was:

C, = 1.35+ 0.026 £2 - 0.152¢ + 0.62n2 (2.11)

Fig. 10 shows the variation of Cy with the two parameters

2
logT. and %?bin the range covered by the tests. The

values of CM as predicted by the equation and as experimentally

Log

observed are shown for specific data. The test results for

constant acceéleration all showed good correlation, while only
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a few of the oscillatory flow test results diverged to an

appreciable extent.-

The choice of £ and n as independent variables instead

lOA'I‘2 vT . s .
of |=F—| and || enabled elimination of -cross-product terms
n lOﬁT and %?. The £-n space representation involved a
10aT?

| and ]%g', the rotation

rotation of the orthogonal axes | 5

being small, i.e., sin_l(0.125). CM given by equation (2.11)

is valid in the range bounded by the following inequalities:

2 ' ,
1.088 < (0.99 Log.. |28T 1 _g.15 |¥L1) < 2.1 (2.12)
10 b D
10AT? |
0.8 < Logy I—_B__] < 3 (2.13)
0.7 < |¥I| < 14 (2.14)

D

In practice flow parameters would usually be within
the ranges of the expressions given by (2.12), (2.13) and

(2.14).

2.23 Empirical coefficient of drag in arbitrary 2-D . motion

(with separation):

Although a dimensional analysis approach similar to

that for CM was followed, it was not found possible to formu-

late an empirical expression for C_ that satisfactorily.

D
correlated the experimental values. The significant variables
influcncing the coefficient of drag after separation occurs are:

i) Degree to which the wake has been established

2) Symmetry of vortices
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3) Instantaneous value of circulation--this is
related to viscosity, velocity and density

4) Fluid shear at the boundary of the body

5) Neﬁrﬁessof the frequency of cylinder motion to
Strouhal frequency

6) Residual vorticity from previous cycles--related

to. 3)

Treating these as being represented in the variables

L,v,A,T,u and p, C. is found by dimensional analysis to be a

D
function of the following (factor no. 5 above could not be

explicitly taken onto account).

AL vT
N_, = and — .
R V2 L
where N is- a measure of’ Convective inertia
R Viscous forces
AL - Local inertia

is a measure of

_;7 Convective inertia
zg (ref. section 2.22) is an indirect measure of

Convective inertia
Local inertia

In an alternative choice of dimensionless parameters, < is a

function of:

u'v'T2 VTx;and AT2
37" D D
pD

uVT2 . (Viscous force)x (Convective inertia)
is a measure of

where 3 5
pD (Local inertia)



3‘7 .

2

. . . 2
Ag is a measure of (Local inertia)x(Viscous forces):

(Convective inertia)3

As stated previously, regression carried out on the past experi-.
mental data did not give close agreement for the many proposed
relationships, the data being meagre. Further experimental

data is needed before a valid expression for CD can be pro--

posed.
2.24 Force reductions due to neighbouring cylinders:

Reduction of wave forces on a trailing.cylinder owing
to the presence of a leading neighbour amounted to only 15 per-
cent for a clear spacing of 3 diameters and 45 percent for a

clear spacing of 1 diameter (vide tests byiLaird,zo’zl’23

).
No reductions .or alterations in drag forces are therefore
justified in practical tower structures where the spacing is

in most .cases greater than 4 diameters.



CHAPTER III
WAVE THEORIES

In the previous chapter methods have been presented
for the determination of the fluid forces on a member if the
relative velocity and acceleration between the fluid particles
and the member are.known. In order to meet the latter require-
ment, this chapter is concerned with laying out the necessary
information for determining the fluid motion in. waves, or the

ground motion in an earthquake situation.
3.1 Wave theories:

For tower structures in the oceans as well as wharves
one of the major design criteria is the lateral force resulting
from wind-generated waves, and occasionally single waves such
as Tsunamis. Many investigators have worked on the problem of

14

predicting the magnitude and frequency of wave motions and

1,2,3 Because of the

the resulting fluid particle. velocities
many variables influencing wave geometry and water kinematics,
a general theory for the mechanics of water waves in an arbi-
trary situation would be very complicated. In order to obtain,
with a reasonable amount of effort, fairly accurate estimates
of fluid particle velocity and acceleration under some of the
more common regimes of flow, various simplified wave theories

have .been formulated. Some of the factors that determine: the

wave theory appropriate for use are:
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- depth of water
- fetch, i.e., exposed length of water
- wind conditions

- slope of beach.

For any one location which determines depth, fetch and beach
slope, different wind velocities produce waves of different-
heights and frequencies. The structural designer must then
determine which condition is most severe for the proposed
structure, taking into account the differing force and res-

ponse levels. for different structural frequencies.

In the following proposed wave theories expressions
for particle motion will be presented which require prior know-
ledge of at least two parameters. The most common ones used
are the wave height H (measured from trough .to crest) and the
period T, the time between the passage of successive waves.
Thus we must be able to determine H .and T from knowledge of
the local conditions of wind speed, fetch, depth, beach slope

and wind duration.
3.2 Wave height and period:

Methods for the evaluation of the wave height H and-
the period T in the deep water situation will now be considered.
vRelationships for wave height and period for waves.generated
in shallow water are available in ref. 6. 1In deep water, where
d 1

7> 3 (d being the water depth and L the wave length), the
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principal parameters that influence the wave height H and the
wave period T of wind-generated waves are the mean wind speed
U, the fetch length F and. the wind duration t. By dimensional
analysis it can be shown that, neglecting less important para-

meters, the following relations must hold

S L gr gt
o 17 %)
g _ ¢ (9E g%,
’ .
U2 2 U2 U

The nature of the functions fl and f2 have been determined -
empirically for the limiting cases of infinite t (depicted in
Fig. 11) and of infinite F [expressed in egns. 3.4]. For
example, for infinite duration t, Fig. 11 shows an increase

in height and period with wind velocity and.fetch as would

be physically expected.

For large time duration t, steady-state conditions
are in effect reached and the wave height H and period T depend

upon the Froude number gt This is the fetch-limited case.

U2 ng/3
Regression on experimental data gives the curves of > and
gT U
1/3 versus gr shown in Fig. 11.
[§] U2
Here Hl/3 = significant wave height, i.e., average of
the upper 1/3 values of H.
T = sgignificant period, similarly defined.

1/3
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In the zone g% <'104 the relations for H and T are nearly

U
linear on log-log plots and .so reduce to

0.5

Hl/3 = 0.045 UF (3.1)
= 0.4.0.3
Tl/3 = 0.6 U F (3.2)
where the units. are
U- = surface wind speed in m.p.h.
F = fetch length in miles
Hl/3 = height in feet
Tl/3 = period in seconds
gH gT
For g% > 105, ——%Lé becomes asymptotic to about 0.35 and 3/3

U U
becomes asymptotic to 9. This corresponds to the case of a

very large fetch and shows that in the practical range, an
increase of fetch beyond 100 miles has no influence on the waves.

From the approximate empirical relation6 (p.3)

H oax. = 1.87-Hl/3

the maximum design wave height becomes

H - 0.084 urd-?
max.

[valid for 9-’% < 104 (3.3)
8]

For the other case of a duration-limited wind wave, regression

points to the following:



1.5 1.6
Hl/3 a U to U
0.4 0.5
and Hl/3 o t to t |
(3.4)
0.7
Tl/3 o U
) 0.3
and Tl/3 o t
(Ref. 1)

Approximate expressions valid in the range 20000 < %% < 500000

are as follows:

_ 0.4 1.6
Hl/3 = 0.005 t U
_ 2,0.3 0.7
Tl/3 = 0.006 't 4} (3.5)
Here t = duration in seconds
U = surface wind speed in ft./sec.
gH gT
Again for large t, —~%£§ and -—%Li tend to constant values
U

gt ; -
T Hl/3 and Tl/3 increase faster with the

independent of
wind velocity U in this case compared with the fetch-limited

case.
3.3 Ranges of applicability: -

The various wave theories to be made use of in the

appropriate ranges of flow conditions are -as follows:.

a) Linear small-amplitude theory, which is limited to

the situation d > 1 (i.e., < > 2.5 ft./sec.z)
L 2 T2
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(vide Appendix II). A plot of L versus T for this

theory is given in Fig. 12. The ratio of L to the

length Lo for infinite depth (LO = gT2/2ﬂ) is plotted
against % in Fig. 13.

0 ) . 1 d 1
Third order Stokes: equations for 25 <1 < 3- This

is a nonlinear theory. There are other Stokes'
equations of higher order, but they generally do not
improve the accuracy commensurate with the increased

computations involved and so will not be discussed.

. d 1
Cnoidal theory for T <35

excessive computations being involved. Approximate

--not made use of due to

results in this range may be obtained from the theory
in b).
Solitary wave theory for breaking waves, broadly wvalid
when g‘ > 0.78. For a first check, the value of H-
given by deep water expressions may be used in checking
this inequality.
In the above,
d = depth of water below the original
water. level

I, = wave length

and L is obtained from the equation:

g1?
2md
5= tanh T for case a)
g1 ord g L4+4 cosh? 3%9
— tanh < [1 + (TT) ( — 21Td)]for case D)
16 sinh I

o for case d). (3.6)
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T =- time period of the wave, with usual values
<16 secs. obtained as outlined in Section
3.2.
H is a variable selected as indicated in Section 3.2. For the
%'= f%,\a plot
of the coefficient ¢ in the following expression is given in

limit of the range of the Cnoidal theory, namely

Fig. 14:
L (Wave length in feet) = AcTz
where T = wave period in seconds.
Appendix IT gives a brief outline of the theories for
a), b), ¢), and d). Only deterministic models of waves are
considered.

In Table 3 the ranges of the relevant parameters over
which the various wave theories are applicable have beén indica-
ted. A graphical representation of the ranges of validity:of
these theories is embodied in Fig. 15. The ranges pertinent to

each theory are discussed in the succeeding paragraphs.
3.4 Characteristics of Stokes theory:

The mathematical basis for the Stokes shallow water
(finite amplitude) and solitary wave theories are given in

Appendix II.

The third order Stokes oscillatory shallow water theory
gives a substantial improvement in accuracy over that in the

small-amplitude theory mainly in the following ranges:
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TABLE .3

RANGE OF APPLICABILITY OF THE WAVE THEORIES

Stokes”
Linear Shallow Solitary No Theory-
Airy Water Wave
Parameter Theory Finite-Amplitude Cnoidal (Breaking) Interpolation
1 L (ft./sec.?) >2.5 0.2<%.<2.5 <0.20 <0.08 0.08<3<2.5
2 2 2
T T T
. d. d _ d
2 Equivalent T >0.5 0'O4<f<0'5 <0.04 <0.016 0‘016<f<0‘5
3 Ej (ft./sec.z) <<0.3 <0.3 - - Large >0.3
T [limited rangel] (>9.8)

. H . H
Eguivalent 3 v.small - <0.78 = 0.78 a‘<0.78_
Side condition a .
for range of - - - —§<0.08 -

H_ T
T2
N.B. 1. Figures are.approximate.

2. Conditions 1,2,3.and 4 are taken together for classifying each case.
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% < % } i.e., éj <1.8 ft./sec.2
T
or 0.08 < J%“< 0.3 ft./sec.2
T

The most important expressions for the third order finite-

amplitude theory, as summarised from Appendix II, are as

follows:
24md
l4+4cosh™——
Wave velocity C =v Ltann@M9r14 (122 L (3.7)
: 2T L L -, ..42qd
l6sinh ———
L
' 247d.
2 l4+4cosh™—
Wave length L = X tanh2T9[14 (2182 Ly (3.8
27 L L . . 427d
l6sinh ——
L
. 2ﬂ2‘ 3 3 l+8cosh6—")1—£r,-91
Wave height H = 2a+————2— a [E( 62nd )] (3.9)
L sinh ——
L
Depth of trough = a (3.10)
Horizontal velocity u = C[Flcoshg££§i§)cos(Kx—%ﬁt)+cmosh
47 (z+4d) 27 6 (Z+d)
—5 cos2 (kx 7Ft)+F3COSh——E————
2T
cos3(Kx—Ert)] (3.11)
. 3u._ 2mC 2m (x+d) _. _2m '
Local acceleration 3E © —T—[Flcosh I sin (kx th)+2F2
47 (x+d) _. _2m
COSh——f————SlDZ(KX Tt)+3F3
coshéﬂééiélcos3(Kx—%;t)] (3.12)
W= H_
KK = = (3.13)

Fl,F2 and F3 = functions stipulated in Appendix II.
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3.5 Additional limit (of wave steéepness) of validity

of third order Stokes theory:

Apart from the following limit of the valid range (for
transition to breaking waves. in shallow water represented by

the solitary wave theory), namely,

2 < o0.75 (3.14)

db being the water depth below the trough, there is an addi- -
tional limiting condition for the wave heights at which waves

break. This is as under:’

H _ 2md
-I_: = 0.142 tanh —'L— (3.15)

(Linear deep water waves transform to breaking waves directly).
For greater heights, the third order Stokes; theory does not

correctly represent the water kinematics.

For conditions intermediate between (3.14) and (3.15),
values of breaking velocities are evaluated from wave heights
and lengths obtained by interpolation. The Stle57 shallow
water wave theory is employed to compute particle velocities

in such cases, the range of this modified approach being

0.08 < J% < 2.5 ft./sec.?
T
(3.16)
0.3 < l% < 0.78 ft./sec.2
T

These limits apply to frictionless flat ocean beds. -
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The height of breaking waves would actually be
considerably limited by the effect of the slope of the beach.

Plots of experimental values of the breaker heighl H with its
18,19
transformation along the bed inshore are available as guide-
) H
lines. The plots are available as functions of 2 ’ 29 ’

LO d

and bed slope i

o
il

wave height of incoming wave in deep water

e
Il

incoming wave length in deep water

o}
Il

water depth in shallow water.
3.6 Breaking waves:
Solitary wave theory:

This represents a symmetrical wave with the water
surface almost wholly above the trough, as qualitatively shown
in Fig. 16. The geometry of the wave is subject to the limit
at Section 3.3 d°, which applies to non-viscous flat ocean
beds. For sloping beaches, the experimentally obtained values
of modified variables such as H and.d are available?glé;e
relatively small-reduction of breaking heights due to bottom
friction is obtained from computation of the energy per wave

cyele that is dissipated by laminar damping. This is obtained

from the empirical expression

H = H, e L (3.17)
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where € b is a bottom damping factor which increases with
increasing kinematic viscosity w.

gb decreases with increasing water depths and wave length

and increases with wave period.
2

€ takes on values from 10_3

to 2 x 10~
x = distance from the toe of the beach slope.

These values for breaking wave heights are fed back into the

solitary wave relations.
3.7 Impact type of breaker forces:

This model (Fig. 17) is accurate for asymmetric
breaking wave profiles such as plunging waves and the steeper
among the spilling waves. The impulse for each wave is obtained
from drag expressions for piles. The portion of the impulse
due to change of momentum on contact is comparatively small.

In particular cases the computed impact-type excitations were

found to be smaller than those for solitary wave representations.

3.8 Determinants of breakers:

H, ..
Fig. 18 indicates 4 regions in the i - _0 plane

d
(i being the beach slope, H0 the deep water wave height) when
different types of-waves reach the shore--spilling, plunging,
and \non—breaking]7' The breaker heights exceeded the theore-
tical figure of 0.78d in model tests with appreciable bed slope.

The plot at Fig. 18 demarcates breaking regimes from non-

breaking ones. Plunging waves generate the highest velocities
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and wave forces out of the various types of breaking waves.
The -solitary wave model represents the plunging type of
breaker fairly accurately and hence wave force calculations
for the solitary wave, withoutany scaling, wou}d be conserva-

tive for other breakers also.
3.9 Earthquake motion:

The primary input used in this thesis is the ground
acceleration record of an actual earthquake. The dynamical
problem is formulated in terms of the motion of the structure
relative to the ground, the absolute motion of -the structure
being the superposition of the relative motion and the ground
motion. Since the ground motion occurs without imparting any
motion to the main body of the water, the absolute structure
motion is also the relative structure--fluid motion (in the

absence .of other waves).

However the range of the total motion is such that
it would not cause éeparation and vortex-shedding; therefore
the values ovaM and CD in the pre-separation range shoﬁld be-
effective. This was checked by numerical computations for stiff

as well as flexible structures.
3.10 Comparative ground accelerations:

The characteristics of the El Centro, 1940, N.-S.
o]
ground record and the Taft, July 21, 1952 $.21-W ground record,

which were used as the inputs to the structures analysed, are



now stated. The El Centro ground motion persists strongly

for the first.1l0 seconds and less perceptibly till the 30th
second reachiﬁg a maximum acceleration of 0.3g at 2.5 sec. The
dominant frequeﬁcy is 2.05 cycles/sec. The Taft ground motion
extends appreciably for 30 seconds and reaches a maximum
acceleration of 0.144g at t = 4.1 secs. The dominant frequency

is 3.0 cycles/sec.



CHAPTER IV
DYNAMIC RESPONSE PROBLEM

This chapter presents the systems of differential
equations of motion for framed structures .used.to compute the
dynamic response to the earthquake excitation and wave force

inputs discussed in the previous chapters.
4.1 Origin of nonlinear terms:

The structural.énalysis portion is a linear damped
dynamic problem using the standard stiffness method of formu-
lation. Nonlinear terms are introduced through the forces
applied to the structure which arise throuéh the inertia and
drag forces of the fluid on the structure due to the relative

displacement.
4,2 Assumptions:

The following assumptions have been made in the

dynamic formulation:

1) The framed structure is elastic, has cylindrical
members and is symmetric normal to the direction of
the ground/wave motion,

2) Rotatory and vertical translatory inertia are neglec-
ted, an assumption checked subsequently by computa-

tions.
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4)

5)
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Fluid forces and resistances can be discretised at
nodes

The -effect .0of the change of section shape on fluid-
cylinder interaction was neglected:

Fluid forces on the cylinder are two-dimensional .

in nature.

4.3 Basic formulation:

The ‘basic equation for the dynamical problem is of

the form
[m] {0} + [Cc_, . 1{U} + [kI{u} + {H(U_,U_)} = P(¢t) (4.1)
where
{U} = n x 1 vector of generalised coordinates, which in
this case represents the reduced column matrix of
horizontal nodal displacements.
[m] = mass matrix.
[Cstr] = relative viscous damping matrix representing internal

damping related to the reduced vector of velocities

"{U}. The individual terms of the matrix are obtained?®

by setting. constants a and B in the expression

C.. =am.. + B k...
1] 1] i3
so that the percentage of critical damping in the.

first two modes is ‘a preselected value. .
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[k] = reduced stiffness matrix with respect to horizontal
translations only.

’{H(ﬂr,ar)} = vector of forces due to the hydrodynamic effect,
which is a function of the relative velocities
and accelerations’ between structure and fluid.

{P(t)} = vector of other forces on the system. These forces

may be either physical forces or conceptual forces
such as the imparted inertia in the earthquake case.

Dots represent time-differentiation.
4.4 Earthquake inputs:

The exact form of the equations of motion is established
on the assumptions stated in Section 4.2. In matrix form the

equations are written as:

[Emgd + 1R V] (U, 3+ [ I J+ K V31 {U_}+[Cy T (0, 3+ IRQA] (040 ) 3 (0, +0_)

+IKI{U} = {0} (4.2)

An equivalent equation of dynamic equilibrium is
[[m ]+[K VI1{U}+[C_, T{U} K A|UJ{U}+[k]{U}

str]{Ug}+[k1{Ug} (4.3)

where'{Uf} n x 1 vector of generalised coordinates, i.e.,
displacements relative to the ground in the

horizontal direction

{U } n x 1 vector of the ground displacement, a given
function of time. Every element of the vector {Ug}

is the same function of time.
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vector of absolute displacements which was also

{u}={u,+U )
that relative to water.
[m ] = diagonal matrix of discretised masses in the
structure (off-diagonal terms appear in case of

coupling)

meVJ diagonal matrix of added mass, containing the
coefficient of mass, water density and the
enclosed volume .corresponding to each node.

rKDA(¢ﬁfﬂgl)J{ﬁ+ﬁg} = n x 1 vector of fluid drag forces.

[C.,..]

str as previously defined.

[k]

as previously- -defined. .

Dots represent time-differentiation.
4.5 Further simplifications:

Equation (4.3) represents a system of nonlinear
differential equations with variable coefficients. To evaluate
the importance of CM and_CD in the overall response they were
assumed to be constant at a particular value throughout the
motion, with a separate computation being made for every dif-
ferent choice of CM and CD. Assuming CM and CD as constants

allows the equations of motion to be reduced to a system with

constant coefficients as under:

{m

virtualJ{Ur+Ug}+[CstrJ{U£}+FKDA(1Ur+Ug])J{Ur+Ug}+[k]{Ur}

= {0} (4.4)
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- or equivalently

[m

virtualJ{U}+[Cstr]{ﬁ}+-FKDA’ﬁIJ{ﬁ}+[k]{U}

= [Cgy 11U I+ IKI{U ) (4.5)

where [m

virtualJ incorporates constant values of L

4.6 Method of solution:

The equation (4.4) was solved by time-step numerical
integration for specific ground motion record inputs. Previous
studies have led to techniques for linearising the non-linear
drag terms. For a deterministic input no advantage is thereby
secured, since iterations are involved, and linearisation was
not resorted to. The 3rd order Runge-Kutta method was used
for numerical solution, and the formulae for this are given
in Appendix III. The size of the time steps had  to be kept
down to 1/4 to 1/10 of the smallest of the natural periods of
the structure in order to maintain stability of the solution.
The stéeps ranged from 0.005 seconds to 0.0005 secs., the latter
for structures with 10 degrees of freedom, and these were
sufficiently small to follow the fluctuations in the irregqular
ground record. Chapter V details the structures analysed and-

the types of ground record used for input.

4,7 Wave force input:

Besides the assumptions in Section 4.2 it was neces-

sary to simplify the-excitation which though deterministic
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in direction in shallow water, is stochastic with respect to
amplitudes and frequency. A further assumption in the analy-
sis of structures consisted in allowing for the contribution
of only one set of sway-bracings to the stiffness, noting
their large slenderness. Lift forces were assumed to be
negligible and the flow presumed to be sub-crikical. The.

equations of motion become:
(m J{ud+(c_ ,  T{Uul+(k]{U}
= [K, VI {V U+ KA (Vv ~0])]{v, -0} (4.6)

where'{VW} = vector of water particle velocities at the struc-
ture nodes,

and .other symbols are as previously defined.
4,8 Wave response computations:

The larger of the wave heights give rise to high
water particle velocities and resulting high drag forces. Then
the equations of motion become highly nonlinear. They were
solved by numerical time-step integration extending over. several
cycles until the amplitude in successive wave cycles converged
to a steady-state value. While selecting the inputs for res-.
ponse computations, as elaborated in Chapter V, a period:of
the nonlinear wave resonant to the structural period and the
greatest corresponding amplitude of excitation (i.e., wave

height) in each case were chosen.



CHAPTER V
RESULTS OF COMPUTATIONS

Calculations of the dynamic response of selected
structures to earthquake excitation and shallow water non-
linear wave action are presented herein. Displacement res-
ponse and stresses under the.above two types of excitation
along with those under breaking waves have been compared for
selected structure geometries and water depths. The effect
of varying the values of the parameters CM and.CD on earth-

quake response has also been examined.

5.1 Choice of structures for evaluating

earthquake response:

The structures chosen for analysis are diagram-
ﬁatically shown in Fig. = 19. - Structures A and B have a
resemblance to bell-type well-head structures and are totally
submerged. The displaced volume is large -for both A and B
with the stiffness and natural frequency low for A. As the
added masses are appreciable, the responses of A and B high-
light the influence of Cy,. Structure C represents the other
extreme of the range of displaced volumes and structural
stiffness. It is a tower-supported deck platform structure
with a relatively small enclosed volume and a high natural

frequency. The natural periods and mode shapes for the three
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structures are given in Table 4 where the nodes represent only
horizontal degrees of freedom (as used in the reduced stiffness
matrix) and are numbered as shown in Fig. 20.  For the fully sub-
merged bells A and B, -it is seen that the influence of CM inc-
reases the fundamental period by. as much as 25 perc¢ent. 1In
arriving at the tabulated values of the periods and in calcula-
tions of the response, -the distributed mass/inertia characteris- -
tics of the upper member of structures A and B were taken into
account. - Beam members of the plane frame type were used in

modelling the structures, a member having six degrees of freedom.
5.2 Earthquake response:

The range of parameters CM’ C_. and the percent critical

D
(structural) damping for which computations were made, are given

in Table 5. 1In addition to the El Centro ground shock which was
applied to the three structures, the Taft ground record was also
used -as the input for structure A. The response-maximum displace-
ments and base shears--to earthquake inputs for progressively
increasing values of the parameter CM are tabulated in Table 6.
For larger walues of CM’ which cause longer fundamental.periods,
the maximum displacement under the El1 Centro input increased for
‘structure A as expected (of the order of the following): -

20% over the range 1.0 < CM < 1.5

6% over the range 1.5 < CM.< 2

26% over the range 1 < CM < 2).

The maximum base shear for structure A also increased by about

42 percent as CM increased from 1 to 2. For structure B the
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PERIODS AND MODE SHAPES

TABLE 4

Participation
Natural Factor.
No. of C Periods (For Linear
Structure Nodes Mode M (secs) Mode Shape. Behaviour)
A 3 l 1+0 2.3 Node 1 2 3 1.485
' Ampl. 0.129 0.259 0.957
1 1+1 2.814 1 2 3 1.49
0.129 0.259 0.957
2 1+0 0.383 1 2 3 1.010
-0.691 -0.593 0.412
2 1+1 0.463 1 2 3 1.04
-0.992 -0.595 0.411
3 1+0 0.038 1 2 3 0.080
0.992 -0.110 0.066
3 1+1 0.042 1 2 3 0.077
0.994 -0.090 0.054
B 3 1 1+0 1.217 1 2 3 1.488
0.067 0.129 0.989
1 1+1 1.49 1 2 3 1.495
0.067 0.129 0.989
2 1+0 0.153 1 2 3 1.234
-0.660 -0.646 0.385
2 1+1 0.186 1 2 3 1.255
-0.660 -0.646 0.384
3 ‘140 0.008 1 2 3 0.0805
0.997 -0.068 0.037
3 1+1 0.009 1 2 3 0.078
0.998 -0.054 0.029

*89



TABLE 4 (Cont'd.)

Natu-
ral Participa-
No. Per- tion Factor
Struc- of C iod - (For Linear
ture Nodes Mode M (secs) Mode Shape.- Behaviour)
C 10 1 1+1 0.99 Node 1l&2* 3 485% 6 7&8%* 9&10%* 1.192
Ampl. 0.128 0.145 0.475 0.490 0.78 1.0
Anti-symmetric mode -
2 1+1 0.263 182 3 485 6 7&8 9&10 0.636
0.525 0.594 1.0 0.772 0.27 -0.387
Anti-symmetric mode
3 1+1 0.145 1g2 3 485 6 7&8 9&10 0.503
1.0 0.909 -0.345 ~-0.368 -0.313 0.135
Anti-symmetric mode
4 1+1 0.114 1&2 3 485 6 7&8 9&10 0.056
0.17 0.134 -0.518 -0.313 1.0 ~-0.249
Anti-symmetric. mode
5 14+1:0.078 la2 3 4&5 6 7&8 9810 0.0005
0.088 0 -1.0 0 0.003 0
Anti-symmetric mode
6 1+1 0.075 Symmetric mode 0.0005
7 1+1 0.039 Symmetric mode 0.0002
8 1+1 0.036 Symmetric mode 0.0002
9 1+1 0.023 Anti-symmetric mode 0.016
10 1+1-0.017 Anti-symmetric mode 0.001

*Ampls. equal in

anti-symmetric modes, but equal and opposite in symmetric modes. .

*69



TABLE 5

RANGE OF PARAMETERS

%

Critical T (secs.)

Structure M D .
o Damping
A B
A 1+1 1.2 2 2.81 1.49
B } 1+40.75 1.2 2 2.68. 1.42
(For E1 Centro) 1+0.5 1.2 2 2.56 1.35
1+0 1.2 2 2.3 1.22
1+1 0 2.5 2.81 1.49
1+1 0 3 2.81 1.49
1+1 0 4 2.81 1.49
1+1 0 5(A only)2.81 -
C 1+1 1.2 2 0.99
(For E1 Centro) 1+0 1.2 2 0.988
A 1+1 1.2 2 2.81
(For Taft) 1+0.5 1.2 2 2.56
1+1 0 3 2.81
1+1 0 4 2.81
N.B. C, = 140 indicates structure without water.

M

7.0.



TABLE 6

EARTHQUAKE RESPONSE

Parameters
Ratio of
Critical Natural Maximum Maximum
Earthquake C C Damping Period- Displacement’ = Base Shear

STR. Record M D z (secs.) (ins.) (Kips)

A El Centro 1+0 1.2 0.02 2.30 17.95 28.91
1940 :

1+0.5 1.2 0.02 2.56 . 21.42 36.12

1+0.75-1.2 0.02 2.68 22,51 37.91

1+1 1.2 0.02 2.81 22.60 51.2
B E1l Centro 1+0 1.2 0.02 1.22 6.44 36.10.
1940 1+0.5 1.2 0.02 1.35. 6.26 41.84

1+0.75 1.2 0.02 1.42 6.81 46.25

1+1 1.2 0.02 1.49 7.32 48.70

A Taft,1952 ° 1+0 1.2 0.02 2.30 3.79 9.92
1+0.5 1.2 0.02 2.56 3.92 11.57

1+1 1.2 0.02 2.81 4,22 14.18

C El Centro, 140 1.2 0.02 0.988 6.78 603.9

1940 1+1 1.2 0.02 0.99 6.71 641.5

N.B. C,, = 1+0 represents structure without water.

M

‘TL
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response was less sensitive to CM. The percent increases over
the range 1 < CM < 2 were 14 percent and 35 percent for displace-
ment and shear respectively. In the case of structure C there
was negligible difference in the response with or without the
added mass effect. Constant values of

Cy = 1.2 and

Percent critical damping ¢ = 2 percent

were assumed in making the comparisons.
5.3 Effect of structural shape:

The effect of structural shape, i.e., displaced
volume, stiffness and mass distribution on the response is
illustrated by the three examples chosen. The smaller the
displaced Volume and the smaller the natural period, the less

sensitive is the response to hydrodynamic effects.
5.4 Effect of CD:

A similar parametric study varying Ch showed that the
response is insensitive to CD for earthquake inputs. Computa-
tions of the response for structure A with the nonlinear drag term
and with that term being replaced by an additional equivalent
viscous damping ratio of 0.01, 0.02-and 0.03 are given in Table .
7. Comparing the maximum response in either case, additional
damping effects due to water drag do not evidently exceed 2 to
3 percent critical viscous damping for such structures. Further-

more, for large-diameter cylinders, from Table 8, drag (and also



TABLE 7

DAMPING EQUIVALENT OF DRAG

Ratio of
Critical Natural Maximum Maximum
Earthquake c c Damping Period Displacement Base Shear
STR. . Record . . . . . . Mo D . B (secs.) . (ins.) (Kips)
A El Centro, 1+1 1.2. 0.02 2.81 22.60 51.21
1940 1+1 0 0.025 2.81 26.04 58.74
- 1+1 0 0.03 2.81 25.32 55.06
1+1 0 0.04 2.81 23.95 48.88
1+1 0 0.05 2.81 22.70 44,23
A Taft, 1952 1+1 1.2 0.02 2.81 4,22 14.18
1+1 0 0.03 2.81 4,13 13.39

1+1 0 0.04 2.81 4.00 12.25

‘€L



TABLE 8

WATER INERTIA AND DRAG FORCES FOR STRUCTURE B

T = 1.49 CM = 1+1 CD = 1.2

El Centro Ground Record

74.

Node : 1 2

3
(Max. Water
Ratio Lnertia Force) 853.0 67.0 13.7

(Max. Drag Force)
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lift) effects are seén to be small compared with added inertia.
5.5 Relevance of subcritical region:

Checks of the instantaneous NR showed that except
for very short durations at the extreme top node, the relative
motion between fluid and structure was in the subcritical
region. Further, -flow separation would occur at only the

topmost node of only the most flexible structures.
5.6 Dynamic response to finite-amplitude Stokes waves:

The results for a single pile (period 4.4 secs.) as
well as 6 other pile-supported platforms of fundamental periods
between 2.11 and 3.45 seconds are reported. The structures
range in depth from 40 ft. to 100 ft., i.e., where shallow-
wéter'wave ¢onditions would be encountered. While the struc-
tural configurations as shown in Fig. 21 are reasonably standard
and amenable to practical construction, the member sizes and
.consequently the structural periods were chosen so as to induce
resonance with ocean waves covering a practical range. The
member sizes were therefore designed to keep the flexibility and

natural periods high (over 2 secs.).

The values of the parameters CM and C._ used, some of

D
the structural sizes and selected wave data for which vibration
response was computed are given in Table 9. The wave periods

and heights were selected so that one of the harmonics of the
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TABLE 9

STRUCTURAL AND OTHER PARAMETERS FOR FINITE-AMPLITUDE WAVE RESPONSE

~

Natural

Str. Base Height Dia. Total Total Ratio Depth Period Height Wave
No. Period of Fixity of of Pro- Enclosed (Proj.Area) -. of of of Length d
Structure Struc- Main jected Volume Enclosed Vol. Water Wave Wave L L
(secs.) ture Piles Area Cub.ft. -1 a’ T H Ft.
1st 2nd Ft. D Sq.Ft. Ft. Ft. sec. Ft.
. Mode Mode . .- .. .. o Fl.
I 2.11 0.23 Rest- 60 1.5 179.6 167 1.07 40 4.2 12 90 .44
rained
_EI
k=T
IT 2.65 0.28 Rest- 60 1.5 179.4 155.2 1.16 40 5.3 19 139 .29
rained
_EL
4L,
IIT 3.45 0.40 Fixed 60 1.5 166.2 161.8 1.03 40 6.9 25 244 .16
IV 4.4 0.50 Fixed 920 3 405 954.2 0.42 60 6.0 25 184 .33
V 1.44 0.17 Rest- 82 2 336 490 0.69 75 2,87 5.8 42 1.79
' rained
=.:E£ N
3L
Vi 2.55 0.52 Rest- 128 4 997.6 2466 0.41 100 5.0 17 128 .78
rained
_EI
2L
VII 2.84 0.41 Rest- 128 2 467.6 612.8 0.75 100 5.65 21 l64 .61
trained
k=E£' k = rotational stiffness of base joint.
c.=1.2; ¢Cc_=2.0 1,1 are member inertia and JIength to next JT. for bottom section
D M of pile.

‘8L
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nonlinear waves would be in resonance with the first mode of
vibration of the structure. This criterion can be satisfied
by matching the first harmonic of a small wave, with a corres--
pondingly small energy input, or one of the higher harmonics
of larger waves. The particular situations which generate the
largest dfnamic forces under the action of non-breaking waves
are the ones reported here. Computatiohs for breaking waves

in these depths are presented later.
5.7 Computed response -to Stokes waves:'

Table 10 lists the maximum steady-state displacements
and overturning moments at the base. Despite the fact that the
period of the second harmonic of the wave excitation equalled
the fundamental period in eQery_case except Str. IV, ‘the
maximum diSplacemenﬁs in Table 10 do‘not increase in a regular
manner with increasing height d or such other parameter. A
small change in structural period, as between I and II, causes
a large change in.dynamic response. Although the water depths
are the_séme for I and II, the value of T selected to synchro-
nise the second harmonic with structure II was greater;
accordingly the wave size was greater, causing an increase
in the ratio g. ‘Consequently because of the comparatively
greater amplitude of the second harmonic of -the wave, the peak
displacement is much greater for Str. II than for Str. I. The

cases of structures VI and VII are similar.



TABLE 10 -

RESPONSE VALUES FOR FINITE-AMPLITUDE WAVE INPUT

Str. T, D Ratio d T H Max. Displacement Max.
sec Ft. Projected Area Ft. Sec. Ft. Xma (Time After Crest) Overturning
‘ Enclosed Volume In * (Wave Period) Moment
-1 * K.In.
Ft.
I 2.11 1.5 1.07 40 4,2 12 4.63 0.4 24100
II. 2.65 1.5 1.16 40 5.3 19 16.3 0.1 53200
IIT 3.45 1.5 1.03 40 6.9 25 41+ 0.2 82100
Iv 4.4% 3 0.42 60 6.0 25 28*% 0.4 38700 -
v 1.44 2 0.69 75 2.87 5.8 1.25 0.5 38500
Vi 2.55 4 0.41 100 5.0 17 3.8 0.4 152000
VII 2.84 2 0.75 100 5.65 21 6.7 0.1 148600
N.B. CD = 1.2

*Simple pile -
tFlexibility high, nonlinear analysis warranted.

‘08
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Other causes for the variations in maximum displace-
ments are:

a) Greater wave heights H selected to accompany the
greater T directly increases the amplitude of the
excitation. This accounts for the comparatively
high displacements for Str. II, III and VII.

b) The small area exposed to drag is seen tO keep down
the displacements for VI.

c) . The extremely low structural stiffness of Str. III
would engender a large "static deflection" and
results in the large peak displacement shown.

d) The effective hydrodynamic daméing ratio, a function
of the average particle velocity, differs widely and

influences resonance amplification.

Similarly the maximum overturning moments do not
increase‘monotonically with either water depth or input wave
height; nor do they increase in the same manner as the peak
displacements. This is partly due to the fact that in different

structures the degree of participation by the second mode varies.
5.8 Force variations with time:

A plot of the total wave force on the piles of a
typical structure (Str. I) taking into account the motion of
the structure is shown in Fig. 23. The total force from the

variable water surface to the base of the pile has been plotted.
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The plot indicates the following:

1) drag predominates over inertia for the structure
in.question, where the wave dimensions are large
relative to the water depth.

2) the force-history plot is not symmetrical about the
time  of passage of the crest. This is due to the
inertia force being at 90° phase and also to the
change in the drag pattern owing to structure motion

. and higher order terms.

3) the inertia force plot is not symmetrical about the

still water level time, this being due to higher

order terms.

The time variation of the steady-state bending moment
in the pile section adjacent to the platform for structure I
is plotted in Fig. 24. The moment fluctuates at twice the
frequency of the wave, which is explained by the fact that the sec-
énd harmonic at half the wave period coincided with the struc--

tural period.
5.9 Interaction effects on inertia forces:

The inertia portion of the wave force on pile members
is significantly different for a flexible pile structure, as
compared with a corresponding rigid pile. This is because the
struétﬁre accelerations are comparable in magnitude to thé water

particle accelerations even though the velocities differ widely.
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Thus the taking into account of the feedback of structure motion
in arriving at inertia force values contributes to a refine-~

ment of the response solution.
5.10 Supercritical flow conditions:

Although subcritical values of Ch (1.2) were adopted
for most computations in the wave problem, velocities at the
surface of the water exceeded critical values for 1on§er dura-
tions than in the earthquake situation. NR approached 2 x lO6
(i.e., > 2 x 105) based on r.m.s. velocities for the topmost
node for some structures subjected to the highest waves. For
4 ft. dia. piles it approached 6 x 106 (based on r.m.s. values).

This feature would reduce the wave forces. At other nodes

subcritical values prevailed.

5.11 Keulegan parameter:
\4

T
max.

5 values (Ref. Section 2.18) ranged from 20 to

30, i.e., greater than 15, the value for at least one vortex to-
be discharged. Eddy-shedding frequencies were much lower than

natural frequencies, ruling out lift resonance tendencies.
5.12 Breaking wave (solitary wave) response:

To take into account the effect of shoaling in

increasing wave heights at breaking, plots of the breaker height-

18,19,20

depth relations given by experimenters were adopted.
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To make use of the aforesaid relations, the point of commehce—
ment of the beach slope was taken at the point where %~= %‘
(the limit for shallow water) and was used to define initial
water depths. The solitary wave theory was used to find the
water kinematics at.-the passage of the crest and thus the
force levels. The parameters for the various force computations
are tabulated in Table 11. The summarised particulars of the
computed loads are in Table 12. The deviations of these
computed forces froﬁ the true forces occur due -to the foilowing
factors, whose overall effect is to warrant a slight decrease
in the computed forces:

a) Increase of the staticallyAcomputed member forces

and stresses due to dynamic amplification.

b) Decrease: . Supercritical N_ values at the upper

R
portions of thé'piles reduce CD in steady flow situa-
tions, this being by a factor of 3 in the upper
portions.

c) Decrease: -For spilling breakers and for waves deform-
ing but not breaking under the particular slope, veloc-

ities would be lower than for a theoretical solitary

wave of translation.-
5.13 Comparative forces under various excitations:

Comparative values of forces and moments produced by
the various wave and earthguake inputs are given in Table 13.

The moments/forces for earthquake inputs have -been scaled down



TABLE 11

STRUCTURAL AND OTHER PARAMETERS FOR BREAKING WAVE (SOLITARY WAVE) FORCES

Str. No. Height of  Dia. of Total Projected Depth Height of Wave
' Structure Main Piles Area Below Flat Smooth  Sloping

Ft. D Sg. Ft. Trough Bed Bed

Ft. Ft. Ft. Ft.

I 60 1.5 180 40 - 31
1T 60 1.5 180 40 - 31
v 90 3 405 60 - 40
\Y 82 2 336 75 - 45
VI - 128 4 998 100 - 50
VII 128 2 468 100 - 50
IX 135 2 1013 95 50 -
X 165 3 1450 135 30 -

A:



TABLE 12

LOADING DUE TO BREAKING WAVES

Str. No. Type of Pile Total Depth Beach Wave Characteristics (Proj.Area) Total Total

Breaker Dia. Height of Slope TW H0 Hb (Proj.Area Force Over-
D Of Str. Water i Sec Ft Pt of Pile) on turning
Ft. Ft. d : ) ) Piles Moment"
Ft. .. . . . . o K K.In.
I,I1,IIT Spilling 1.5 60 40 .05 10 33 31 1.11 128 63600
Iv Plunging 3 90 60 .05,.02,10 40 40 1.0 4 230 171100
(.05) .01
Spilling
(.02,.01)
v Plunging 2 82 75 .05,.02,12 50 45 1.06 266 214800
(005) -Ol
Spilling
(.02,.01)
VI Spilling 4 128 100 .02,.01 10 55 50 1.02- 735 783000
VII Spilling .2 128 100 .02,.01 10 55 50 1.05 367 391000
IX Spilling 2 135 120 0 10 50 50 1.13 950 960000
X Unspeci- 3 165 150 0 16 -50 - 4 1.13 a)*303 270000
fied
.............. ... ... ... ... . b)tos50 960000
N.B. *Lower limit (under linear oscillatory waves) - T Upper limit: as for IX

1. Static calculations for moments.
2. Beach slopes are indicated . in parentheses.
3. CD = 1,2

"88



TABLE 13

COMPARATIVE VALUES OF MOMENTS AND AXIAL

FORCES UNDER VARIOUS EXCITATIONS -

El Centro Quake

' Breaking Waves . - - "Response. Spectrum
Oscillatory Linear Waves Stokes ShalloWAWater Waves [ Scaled by 0.75 : Scaled for Yielding
: T Worst Mom. Worst Axial Worst Mom. Worst Axial § Worst Mom. Worst Axial Worst Mom. Worst Axial
Str. n d K" Force K" Force | Beach K" Force K" Force
No. Secs. ®n Ft. K o K \ Slope . K K
I 2.11 2.98 40 302*1 1 950 240 | 0.05 2770 13 1185 143
940 270
IT 2.65 2.37 40 - _ - 3200 230 ; 0.05 4500 . 10 1850 140
3160 640 | - ‘ 1550 40
IIT 3.45 1.82 40 - - 2180 240 } 0.05 2340? 25 ' 890 *2 85
vV 1.44 4.36 75 - - 396 55 : 0.05 2410 18 787 92
: 156 1309 ’ 0.02,0.01 2910 95 415 330
vl 2.55 2.46 100 13000 250 23100 1480 l 0.02,0.01 11500 290 ‘ 5400 215
3500 2170 2450 . 5020 1030 2050
VII 2.84 2.21 100 3500%*3 10 5550 0 :i 0.02,0.01 1210 720 800 100
1540 1030 : 2300 ; 17 250 450
| . | %
VIITI 0.99 6.29 200 1231 304 1250 300 : i Y | 4830§- 1360. 2720@ 760@
IX 1.18 5.33 120 - - - - : 0 3400? 1480 1090 625
X 0.80 7.97 150 1680 - 500 .- - i 0 _ 3400 1480%*4 2110 670
XI 0.99 6.29 250" 1900 510 / - .- 0 3350 610 3200 735
’ |
XII 4.48 1.40 800 31800000+% - - - | - - - 280000 -
XIII 6.28 1.00 1200 % - - - ! - - - + -
*l static application of shallow water wave forces. *2 Estimated. % 3 standard deviations of displacement at top = 2.7 ft.
*3 Concentration of load at a point assumed. *4 Estimated. Ref.: Malhotra A, and Penzien J.: Response of offshore
@ Exact elastic values by time step integration: Mom.: 6500 K"; | structures to random wave forces (J.A.S.C.E. -Vol. 96,
Axial force: ' 1800K. ' s _ ‘ No. ST.10, October, 1970).
+ 3 standard deviations. Ref.: Foster, E.T.: Model for nonlinear - ) + Displacement at top in elastic behaviour = 1.33 ft.

dynamics of offshore towers (J.A.S.C.E. Vol. 96, No.EMI, Feb.1970). i
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byva half to allow for the reduction in design forces that
would result from ductile yielding of the structural members.
This is conservative when compared to current earthquake design
philosophy df structures.16 For reasons gquoted in Section 5.12,
the computed breaking wave moments/forces have been scaled down
by 25 percent. The comparative values of stresses are given

in Table 14.

Some of the parameters that have a bearing on compara-

tive responses are:

1) natural period

2) water depth

3) diameter of piles

4) mass/{(member stiffness) ratio

5) bed slope.

Other parameters such as i) depth of water at the
toe of the beach slope, 'ii) bed roughness, etc. would also be

relevant, especially for breaking wave forces.

For each structure the critical load case, as Well
as depth d and period Tn’ have been noted in Table 15. From
considerations discussed in previous sections and chapters, the
' naturai period Tn and the water depth d were adjudged to be

the parameters most materially affecting the comparative response.



COMPARATIVE STRESSES

TABLE 14

Stresses (K/in.2)
X~-section Osc. Stokes?’ Shallow El Centro Quake
Str. T I, d Linear Breaking Response Spectrum
No. n Area In. Ft. Waves Water Waves Waves MasseﬁK?t Top Stresses .
I 2.11 31 861 40 +3.1+0.03 9.9+ 7.7 +38.7+ 0.5 2x150 +9.4+ 3.9
+9.8+ B.7
IT 2.65 31 861 40 To- +33.5+ 7.4 +47.1+ 0.3 2x150 +19.4+ 1.3
+32.9+20.6
IIT 3.45 7.1 287 40 Unrepresentative Structure
IV 4.4 56 800 60 " "
v 1l.44 28 1200 75 - +4.0+ 2.0 +38.8+ 4.5 2x200 +7.94+ 3.3
+1.6+46.8 +4.2+11.7
v 2.55 112 21000 100 +14.8+2.2 +26.4+13.2 +17.5+-3.4 2x500 +6.2+-1.9
+ 4,0+19.4 +3.7+59.8 +1.2+18.3
VIT 2.84 28 1360 100 £31.0+0.4 £49.1+ 0 +14.4+34.1 2x300 +7.1+ 3.6
+13.6+36.8 +27.1+°0.8 +2.2+16.1
VIIT 0.99 85 12600 200 +1.8+3.6 +1.8+-3.6 +6.9+16.0 2x400 +3.9+ 8.9%.
X 1.18 37.7 2720 120 - - +*15,0+39.2 2x400 +4.0+13.8
X 0.80 56.5 9170 150 #3.3+8.9 - £6.7+26.2 2x400 +3.5+.9.9
XI 0.99 126 18900 250 . £2.4+4.0 - Ty, 3+ 4.8 2x320 i4.lj“5.8

~*Exact wvalues

(by time

step integration) for elastlc behaviour:

+5,2411.9 K/in.<

‘16



TABLE 15

GOVERNING LOAD CASES FOR OFFSHORE TOWERS

92.

Structure T, d Governing Load
Secs. Ft.
T 2.11 40 Breaking-(Solitary) wave -
1T 2.65 40 Breaking (Solitary) wave
I1T. 3.45 40 Breaking (Solitary) wave
\Y 1.44 75 . Breaking (Solitary) wave
A 2.55 100 Shallow water oscillatory wave
VIiI - 2.84 100 Shallow water oscillatory wave
VIIT 0.99 200 1. Breaking wave 2. Earthquake
IX 1.18 120 Breaking wave
X 0.80 150 l. Breaking wave 2. Earthquake
0.99 250

XI

Earthquake
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The fundamental period Tn is the most important system
characteristic that principally determines the degree of reson- .
ance with excitations with various dominant frequencies. Since
the offshore structures were taken as geometrically almost
similar, and the increase in masses was graded in relation to
depth, it also follows that for a given d, the period'Tn in-

directly reflects member cross-sectional sizes.

In the case of oscillatory waves, the water depth
influences the maximum wave dimensions, the contact area, and
the relative magnitudes of higher harmonics of nonlinear waves;
in the case of breaking waves it determines the height and
velocity distribution of the wave and the contact area. For
these reasons a plot in the d-Tn space corresponding to the
type of loading that may govern design has been made and is
shown in Fig. 25. In constructing this plot attention was
restricted to the region between the two bounding lines A and
B since practical structures would not likely fall outside
this region. Depending on the values of d and Tn’ four dif-
ferent load types were found to govern, these being i) oscilla-
tory waves in shallow water, ii) breaking waves, iii) earth-
guakes and iv) oscillatory waves in deep water. Between the
zones where an individual load case governs, transition zones

are shown where two adjacent types are equally likely to govern.

5.14 Broad ranges of influence .of load types: .

In overview the plot in Fig. 25 is seen to highlight

the following:



i)

ii)

iii)
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the dominant influence of breaking wave forces

on structures with depths less than 90 ft. and to

a certain extent on those with depths less than

160 ft.

the dominant influence of earthquake loads on
structures with natural periods less than 2 sec.

the importance of designing on the basis of periodic .
deep water waves for structures with a d-T combina-

tion falling outside i) or ii).
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CHAPTER VI
CONCLUSIONS
6.1 Effects of mass coefficient: -

Virtual mass effects have to be examined in detail
in determining response to earthquake motion for bulky submerged
structures with large periods. In the case of such structures
this would necessitate determining the virtual mass coefficients
corresponding to the variable flow phases. A conclusive rela- |
tionship of CM to the flow parameters was not established,
although a possible one, based on limited experimental data,
has been suggested. It was observed that for some of the
structures considered, the peak earthquake-induced displacements
increased by about 25 percent for the highest values of CM over

those for zero added CM.
6.2 Shallow water waves:

As regards water wave inputs in shallow water, large
dynamic displacements would be sustained only by flexible
structures with periods well over 2 seconds. -The greatest wave

forces occur at or near the time of the passage of the crest.
6.3 Load types governing design:

A graphical relationship is presented showing the load.
type, such as earthquake or wave forces, that governs the design

of offshore structures. The two parameters that govern the load
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type are the natural period of the structure and the water depth.

The choice of these as the basic independent parameters and as

being the principal determinants of the comparative response

under various types of excitation, was based on the following

considerations:

a)

b)

c)

the fundamental period T is the characteristic that
mainly influences dynamic response to inputs of dif-
fering frequencies.

the water depth d determines the maximum wave dimensions
and the water contact area. 1In the case of oscilla-
tory waves, it also influences the relative magnitudes
of higher harmonics of nonlinear waves that induce
structural resonance and moreover, in the case of
breaking waves it determines the velocity distribution
in the wave. The water depth also influences the

overall structural size and hence the natural frequency.

other material parameters are reflected in some form

in these two parameters.

The resulting plot of the d-T space in Fig. 25 delineates the

regions where various types of ocean waves and earthquake loading

would govern design. The various regions are located within a

pair of bounding lines which constitute a restriction on prac-

tical structural geometries.
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From an overall point of view the following broad

trends appear in the various areas of the plot:

i)

ii)

iii)

the dominant influence of breaking wave forces in
the design of structures with water depths less than
90 feet, and also to a lesser extent, on those with
depths less than 160 feet.

the appropriateness of considering earthquake loads
in the design of structures with periods less than 2
seconds

the dominant influence of periodic deep water waves

on offshore structures in the rest of the d-T region.

The.effects of other kinds of loading such as dead loads and

water currents can be superposed without affecting the relative

preponderance of the effect of one of the above load types.

This.plot is a useful aid in preparing a first design

of a shallow or deep water structure of the platform deck type. -

6.4 Other conclusions:

a)

In the shallow water range, manipulation of pile
spacing would not significantly reduce wave response, ’
but structural geometry and the design of structural
modal frequencies widely separated from the frequen-

cies of the higher waves would do so.



b)

<)

d)
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The stéady—state response to waves as computed is
considerably less when the interaction between water
and structure velocities is considered than when it

is ignored.

Wave. forces in the large.wave-height range are pre-
dominantly drag forces whereas fluid forces under an
earthquake excitation are mainly inertia forces.

The ranges of water velocity and pile diameter where
the magnitude and frequency of 1lift are important

have been specified. Combined response in longitudinal
and -lateral directions taking into consideration 1lift
forces should be studied for structures with periods
greater than 3 seconds. For the .structures considered

here the 1lift forces were negligible.
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APPENDIX I

CAUSES OF DISPARITIES BETWEEN WAVE FORCE

COEFFICIENT DATA

Most experimenters used values for water velocities
which were computed instead of being measured .during the
wave force experiments. The true velocities,. it -is con- .
ciuded, différéd from the computed values to. varying
extents. Another source of divergence was that some
experimenters measured the velocities at the crest or at
some other point and related the drag coefficients to the
measured ones.

Some experimenters used the linear theory in computing
velocity values whereas others used nonlinear theories.

Neglect of the random variation of the wave form
in prototype tests.

.The effect of parameters, which could not be pin-
pointed, other than NR.

Uncertain knowledge of the diffusion of turbulence.

Neglect of the convectional terms of the acceleration
%%‘in the force expressions.

Varying roughness and flexibility of the models and
prototypes.

Vibrations of test piles.

Turbulence around the structures by which the prototype

test piles were supported.
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APPENDIX II
WAVE THEORIES

The time period of ocean waves and their heights have
been correlated experimentally with wind inputs (fétches, wind
speeds and duration). For computations of the characteristics
of deterministic wave forces, the period and height would be

known independent data.
Linear Theory

For a simple harmonic wave progressing in the x-

direction with phase velocity C as shown in Fig. 26, the

ph
differential equation to be satisfied2 for all x and within

-d <z <nis

394309 (II-1)

where ¢ is the velocity potential function such that

9

-

Horizontal velocity u = —%%; Vertical velocity w = —3; (I1-2)
The boundary condition at the bottom is:
W = _9¢ 0 on z = -d
3z
(II-3)
u = -3¢ _ 0 on z = =-d
9x

The condition on the upper boundary is a mixed boundary condi-

tion:
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7/

.

LINEAR WAVE

Fig 26
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- gg| + L (u2 + wz) + E| + gz | = 0
ot _ 2 ol __ _
zZ=n zZ=n z=n
where p = fluid pressure (zero at free surface)
(pr = mass density of the fluid
Since
2 30, 2 39
u” << < Powt << ot
this becomes n = 139 on z = @
' g ot
In the small-amplitude linear theory this is simplified to
n= 123¢ on z = 0 (II-4)

g ot

The general solution of equation (II-1l) is of the form

| . Cg2 . ~CgZ
¢ = C +C,x+C_z+(C,c0SCgx+CySinCyx) (Coe © +Cqe )
or equivalently
b = Cl+C2x+C3z+(C4cosC8x+C5sinC8x){Cgcoshc8(z+Cll)
+ClosinhC8(z+C12)}

Using the spatial periodicity of ¢ at intervals of length L,
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Having chosen the moving origin of coordinates at the crest

means

Use of the condition II-3 makes

C10 = 0
C12 = d
¢ = C4pC9cosh{ T (z+d) } sin T X

Changing the moving origin of coordinates to a fixed one,

velocity being %

= .. L (2T ) bsin (21 x- 2T
o ¢ = C4,Cgcosh{ L(z+d)}51n(L X Tt)
. L - H .
Use of II-4. and a velocity u = T at z = 5 yields
_ H cosh 2n(z+d)/L _. .2m _ _ 2% _
b = Cph > sinh 27d/L sin( 5 X irt) (II-5)
_ L
where Cph e

The velocities = are then derived:
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Horizontal Velocity component

2n(z+d)
qH cosh L . 2n . _ 21 -
U = 9% Sinh 2qa/n - cosly ¥ - Ft) (II-6)
27 (z+d)

mH sinh L in (21 x - 274 -
T “simh 2qd/n Sinly o x - FH (II-7)

Vertical component w

Surface elevation n = % COS(EE.X ?'%; t) (IXrI-8) -
e a e a1
Specialising to the case of deep water (f'> 5),
g1
Length of wave.L0 = o (II-9)
. o L
Wave phase .. = C h™ T
velocity p
= 9T -
= o (IT-10)

Variations of pressure with depth are negligible.

Finite-Amplitude Stokes Theory

2,3 starts with the assumptions that the

This theory
motion is irrotational and both potential ¢ and stream function
Y exist. The free surface boundary condition is however dif-

ferent from the linear case.
The solution of

vy = 0 (II-11)

subject to the boundary conditions as under, with a moving system

of coordinate axes,
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V| =0
z=r
‘plz=— =kl
1o@yy2, 25,2 -
gn * 3 [(Bz) + (ax) 1 _= Ky
is found to be
p(x,2) = Clz + C2 +(C3 cos C7x + C4 s;n C7x)
-C,2z
C,2z 7
(Cge 7+ Cge (II-12)

Using the conditions of

1) spatial periodicity at intervals of length L
2) vertical velocity at bottom for d+« being 2zero

3) horizontal velocity at bottom for d-« being zero

C6 = 0

Cl = C

where C = 'speed of motion of the coordinate axes.

ph
- KZ .
w(xlz) = Cphz + C2 + C5e (C3 coskx + C4 sinkK x)

_ 27
where -k = I
Since V| =0 for all n,

zZ=T

c, =0
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ii%LEl_ = -z + BeKZCOSKX is a particular solution if
ph . :
c,C
g = 22  (1I-13)
ph
and C4 = 0

Using Cauchy-Riemann relations, the potential function

¢ is found

Qéﬁigl = -x + BeKzsinKx.
ph

From the expression for y, putting z = n, .

n = BeKncost

n = B[1+Kn+%(Kn)2+%(Kn)3+...]COSKX (II-14)

Stokes' Third Order Theoryz’3

Approximate values for n,y and ¢ are given by this

theory correct to the third order in B.
Expressing n as
2 3
n = Bno + B nl + B T12»
and substituting
2 3 '
Bno + B8 nl + 8 T‘|2 = F(BlnolnllnleIX)

Retaining terms only up to 32,
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2 . 2 1 2 2
ng ¥ Bnp + B ny, = [COSKX]+B[KHOCOSKX]+B [(Knl+§K U ) coskx]

1

equaling coefficients of 80,~B and 32 respectively,

Ng = COS"KX
- - 1 1 ,
Ny = Kng COs kX = 3K + 3K COSs “ 2KkX
ny, = (knl+%Kng)éOSKX = %KZCOSKX + %Kz cos 3kX.
Therefore n = %KBZ + B(l+% 2B2)cost + %KBZ cos 2KX+%K283COS3KX
(II-15)
The coefficient of cos «kx is rearranged, letting a = B(l+%k232)
Solving for B, B = ¢€.a + ¢ a2 + € a3 +
14 l 2 3 o o o
- € e .2 . e 3, 9%2 ¢ 2 3,3
or a = “ja+ “,a" + “ja” + 3 ( jatej,a tejza’)

.o t. . .
Retaining terms upto 3rd power of a and equating coefficient:of

like powers, B8, and €3 are obtained, and then

€lr €2

lKa2c0s2,<x + é|<2a3cos3|<x (II-16)

>
Il

1 2
Fka +.a coskx +

2°¢ 8
Choosing a new moving origin of coordinates at z = %kaz
1 = a cosgx + %Kaz cos2kx + %K2a3 cos 3kx (II-17)
. . 2 3
Substitution of 8 = €48 + €52 + €42

I

o)

1
ol

~

W)
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in the expressions for ¢, yield ¢, and-by differentiation, the
components of velocity. The expression changes for fixed

coordinates to

2 1 2 2 323 2
n = a COS(KX—Tgt)+§Ka cosZ(Kx~ﬁ;t)+§K'a cos3(Kx—7gt)

(IT-18)
Stokes' Third Order Theory--Finite Depth

Similar to the-foregoing derivation for the case
‘when d+», a perturbation technique applied to the solutions

¢, ¥, n and celerity C and application of the surface and

3

ph

bottom boundary conditions yieldl’ the general- third order

relations:

Wave profile

2_3

= _2mey el _2Mey T2 _2Zm -
n = a cos (kx Tt)+ T f2 cos2 (kx Tt)+ L2 f3 cos3(kx T‘t) (I1-19)
where f. = f (g) _ (2+cosh4nd/Icosh2nmd/L
2 2L .3 21d
2 sinh™ —
L
_ d, _ 3 l+8cosh6 27d/L
£3 = 53(p) = 15 3
sinh™ 27d/L
22 3 . 4
Wave height H = 2a + 28 a” f_ () (I1I-20)
L2 3'L
. . _ 2T (z+d) _2n 47 (z+d)
Horizontal velocity u = Cph[Flcosh——f———— cos (kx II|t)+F2cosh——i———-
0052(KX—%;t)+F3COSh§£éEi§LCOS3(KX—%;t)]

(IT-21)
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and horizontal local accelerationrg%'
2mC 47C ;
du  _ ph 2m(z+d) 2T ph 4m(z+d)
T S __T_—FlcOSh__f__—_ sin (kx- t)+ N F2cosh——f————
61C
51n2(Kx-g—t)+———E—F3cosh§£15ié)51n3(Kx— 1Tt)'(II—22)
where Fl = 2ma l¢ 2d
sinh &M<
L
_ 3, 2m,?2 1
Fo =7 )7 1 37a
sinh —=——<
L
F _ ;L.(Zﬂa)B[ll 2cosh4ﬂd]
3 64 L 7 2md
sinh
L
2 4ﬁd
l4+4cosh
- gL 2qd ¢ ma, 2 L _
Cph v 5 =—ta h———[1+( inn 4 77d 1 (IT1-23)
.
2 4ﬂd
l4+4cosh”
L = 9T tanh2“d [1+(272) 2 ¢ L) (II-24)
2m L 1651nh4 2ﬂd
A

The above development presupposes that the wave length L is
known. L is to be found from the nonlinear relation at (II-24)

above,
Solitary Wave Theory

This represents a wave with the entire water body lying
above the original water level,‘and mathematically the water
particles move only in the direction of wave advancei: As Fig.

16: ' shows the wave length is infinite. The equations for the
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water profile and wave velocity are:

y_ = a+i sech?["> E (x-ct)] (IT-25)
S 4 d3
~ 1 H,
c = /§HI(l+§'a)
£ Vgd(1+3) (II-26)

These are correct to the lst order and along with
additional expressions for the particle velocity u are not

adequate in the vicinity of the crest for large values of the

. H
ratio -d—

- =v%sech2[vg £ (x-ct)] (II-27)
/aa a

Munk-McCowan Solitary Wave Theory

This theoryl is more reliable particularly in the
vicinity of the crest of the wave for large values of g and
provide a better fit to the scanty experimental data, It is

however more difficult in computation and the surface pressure

is not constant.

c = Yga(1+3) (II-28)
My. M.
1-cos (—%)cosh (—=7).

2= N a’ a7 | (11-29)

[coék%¥)+cosﬁ(¥§)]2

where M and N are found from the following:
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QT
|
2=

: 1 ;. H
2 .2 2 H
N = 3 sin [M(l+§ a)]

This theory yields lower values of the dimensionless

u

velocity C

than the previous one and its generalised third order

form.
Cnoidal Theory

This is a nonlinear theoryl for permaneht periodic

. . d 1. 1
waves 1n shallow water where T < 15 to 5"

functions K(k) ,E(k) ,cn u and sn u appear in the expressions,

' Jacobian elliptic

which are involved. The wave period T and height H are indepen-

dent inputs. Wave length L is given by

, oY
Lo 4 g (2Bn-—5 Y2 (II-30)
/3

in which L and k are defined by 2 equations as follows:

T/ - (e

k2
2L+1- (Y£74)
- Yy - Yo Yy
(2L+1-—F)E (k) = (2L+2-—== - ==)K (k) (Ref.1)
d d d
where K{(k) = complete elliptic integral of the 1lst kind of
modulus k
Ve ='distance from the ocean bottom to the trough
Yo = distance from the ocean bottom to the crest’
E(k) = complete elliptic integral of the 2nd kind of

modulus k. °
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An approximation to L is

_ / 1ed> |
L 2 KK (k) (IT-31)

The wave profile in terms of Yg measured from the bed is given.

by
= 2 x _ 't
— Y.
5 /3_(2L+1——EE) L
= Ye + H cn™ [ vy d3 (x-ft),k] (II-32)
. _ H- 1,1 _ E(k); _
The wave velocity C = /gd[l+d k2 (2 K(k)] (I1-33)
Water particle velocity u:
3y, v.,2 v, H
L = [-%+—EE*—E—+(2§ t2)cn ¢ )
vYgd 44 2d
2. 2 2 '
H™ 4 - 2
- =— on"( ) - 8HK (k) (%—%a){—kzsn ( )
4d L

en“( ) + cn2( ) dn2( ) —sn2( ) dn2( ) N

sn[2K (k) (& - %)] etc. (II-34)

where sn( )
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APPENDIX IIT

RELATIONS FOR THE THIRD ORDER RUNGE--KUTTA METHOD

The system of equations to be solved are rewritten in

the form of 1lst order equations:

ﬁi = Zi i=1'ooov.g (III-l)
dzi :
_ ﬁl = —d—t- = 21 i=1l,...n (ITI-2)

zi is available from the computed values of variables of the

preceding step, and through the use of the equations of motion:

For a succeeding time step, the dependent variable u and its

first derivative are found as follows:

_ . 1 3 _
Zi(t+At) = zi(t) + 7K + 7 Kis (ITI-3)
il
where Kip = (At)zi(zl,zz,;..zn, ul,uz,...un,t)

o , 1 1 11 1
Kijp = (At) 2y (243K 1, 2543KY s e e 2 F3K 1,0 3077 /05305y

1 1

_ 2. L a2 2. L2 2
Kig = (B8)Z; (2343K ) Zobako o re e 2 43K 5l 430y 5 Uy +3d,)5,
U 42 e+ 2t (II1I-4)
et oty

1 3
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where

q;1 ='(At)zi
- _ 1
q;, = (At) (zi + 3Kq)
;5 = (at) (z, + %‘ﬁz’ (III-6)
Substituting (III-6) into- (III-4) and (III-5), (III-5)
- is rewritten
u, (£+AE) = u (6) + (Ab)z, (£) + 3 (ab),, (III-7)
and
Kiq = (At)ii[zl(t),zz(t),z3(t)...zn(t),ul(t),uz(t),
...un(t),t]
Kié = (At)ﬁiEZl+%Kll,Zz+éK21,..aZn+%Knl,ul+%(At)Zl,
Uyt (AE) 2, . ou +E (M) Z_, t45 (4E)
ki3 = (av)z, [Zl”’%';lz' z2%“22' e Zn 5.;:+%Kn2’

2, 2, 2 2

2 2 2,

(I11-3), (III-7), and (III-8) are explicit formulae.



119.

The above set of equations are part of one form of the
third order Runge-Kutta relations for a particular choice of

parameters. -



