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FINITE ELEMENT METHOD - A GALERKIN APPROACH

ABSTRACT

This study is concerned with defining the mathe-
matical framework in which the finite element procedure
.can most advantageously be considered. It is established
that the finite element method generates an approximate
solution to a given equation which is defined in terms of
assumed co-ordinate functions and unknown parameters.. The
advantages of determining the parameters by Galerkin's
method are discussed and the convergence characteristics
of this method are reviewed using functional analysis E
principles. Comparisons:are made between the Galerkin and
Rayleigh-Ritz procedures and the connection between virtual
work and Galerkin's method is illustrated.  The convergence
resu}ts presented for the Galerkin procedure are used to
provide sufficient conditions that ensure the convergence
of a finite element solution of a general system of time
independent linear differential equations. Application
of the principles developed i;-i]1ustrated with a convergence
proof for a finite element solution of a non-symmetric
eigenvalue problem and by developing a computer program
for the finite element analysis of the two-dimensional

steady state flow of an incompressible viscous fluid.
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NOTATION

The specific usuage and meaning of symbols is
defined in the text where they are introduced.

The summation convention holds for subscripted
variables with repeated lower case indices; it does not
apb]y to repeated upper case indices. The range of
summation is indicated where the variables are first

introduced.
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CHAPTER 1

INTRODUCTION:

1.1 Background

The equations that are encountered in engineering
practice are, .in general, of such a nature that no closed
form solution is available. 1In order to obtain answers
to such prob]ems recourse must be made to approximate solution
techniques. The finite element method was developed, on
the basis of physical intuition, as such a tool for applica-
tion in the ana]yéis of complex structural systems. The
development of the method is well documented and Zienkiewcz
(20) provides a comprehensivellist'of'references in his
review of the method.

In recent years the works of Melosh (8) and Keys
(6) in particu]ar have served to associate the method with
the Rayleigh-Ritz procedure. Such an association has
enabled rigorous mathematical arguments to be used to
justify the use of finite elements and to provide sufficient

conditions that ensure convergence of the approximate



"solution to the correct one. The work of Oliveira (13)

is notable in this respect.

1.2 Purpose and Scope

The purpose of this thesis is to extend the work
of previous investigators in this field and to define
precisely the mathematical framework in which the finite
element procedure can most advantageously be considered.

It will be established that the finite element
procedure generates an approximate solution for a given
equation that is defined in terms of assumed co-ordinate
functions and unknown parameters. This approximation may
be used in conjunction with a number of methods for the
determination of the unknown parameters. The relative
advantages of the Galerkin, Rayleigh-Ritz, and virtual
work procedures are presented and the Galerkin method is
judged preferable. Convergence results established by
Mikhlin (9) for the Galerkin procedure are reviewed using
functional analysis principles, and it is demonstrated
that they can be applied when a finite element method is
used to generate the approximate solution. Particular
attention is paid to the boundary conditions that must be
satisfied by the assumed co-ordinate functions. It is
shown that by suitably formulating the Galerkin procedure

it is often sufficient to satisfy only the principal ones.



The convergence results presented by Mikhiin are
extended to include problems with non-homogeneous boundary
conditions and the equations, and corresponding convergence
criteria, that governa finite element solution of a general
system of linear.differential equations is presented.

This system of equations includes problems to which the
Rayleigh-Ritz procedure is not applicable.

Application of the principles developed is
illustrated with a convergence proof for a finite-element
solution of a non-symmetric eigenvalue problem and by
deve]oping a computer program for the finite element
analysis of the two-dimensional steady state flow of

an incompressible viscous fluid.

1.3 Limitations

Attention.will be confined to the consideration
of problems that are characterized by time independent

linear .~ .differential equations.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

The subsequent definitions and later proofs are
based upon those presented by Mikhlin (9,10) and further

mention of these references will be omitted.

2.1 Basic Concepts and Definitions

In attempting to predict the behaviour of a
physical system by means of mathematical analysis it is
necessary to idealize the system in a manner that renders
the analysis tractable. This idealization is known as the
mathematical model of the system and in many cases it is
a differential equation. The finite element method will
be presented as a means of generating an approximate solu-
tion form to such an equation and thus to the physical
system. In order that the finite element procedure may
be utilized to its full potential a complete understanding
of its mathematical basis is desirable. With this in mind
a number of relevant mathematical concepts and definitions

will be introduced.



The problem at hand is the determination of
some function that satisfies a given differential equation,
within some region, and certain conditions on the boundary
of that region. The region will be a surface if the
function sought depends upon -two independent variables
or a volume if the number of independent variables is three.
If the function depends upon four or more variables then
the domain in which the function is defined is a hyperspace.
The concept of region, or domain, can be formalized by the
following two properties:

(i) If some point P belongs to the domain,
then all points sufficiently close to P belong to the
domain;

(ii) Any two points in the domain can be joined
by a Tine lying entirely within the domain..

The first property is equivalent to saying the domain is
open, or consists of only interior points;‘and the second
property specifies the domain be connected. The boundary
of the domain is defined as that set of points in any
neighbourhood of which there are both points belonging to-
and not belonging to the domain. Attention will be con-
fined to those problems where the curve or surface forming
the boundary is either smooth i.e. it has a continuously

turning tangent or tangent plane, or is piecewise smooth,



i.e. it consists of a finite number of smooth pieces. The
domain will be denoted by St and the boundary by 5 . Note
that the domain does not include the boundary. The set

of points that are obtained by combining the domain and’
its boundary is known as the q]osed.domain and will be
denoted by 2 . Only finite domains will be considered,
i.e. domains that can be included in a sufficiently large
sphere. .

The solution of the given equation is accomplished
by finding that function which when acted upon by a given
operator yields a known function. Attention will be
restricted to thoses functions that are square summable

over the domain i.e. to those functions U, such that

wu da < K
§
R
where K is a finite constant and Lebesgue integration

is employed, and the repeated lower case indices are
summed. The functions considered will, in general, be
vector valued and u; thus represents a column vector

with components u, Uy, ..... . U . Thus

.
Ui = Ky Ugy o0 Uy

The class of square summable functions over S , which will

be denoted by La(sz) , constitutes a vector space over



the field of real numbers. Thus if Vv, and W; are members

of - La(sz) and ¢ is a real number, then

(v + we)

I

c Ve + Cwy;

and the vector with components ¢ (v;-f(ué ) is also a
member of L, (s2) . The notation wu; € L, () will
be employed to mean «; is a member of the set L, (s2)
 When discussing approximate solution of a given
equation it becomes necessary to compare different approxi-
mate answers. It is thus necessary to be able to measure
the "distance" between functions. The structure for this
can be obtained by introducing the concept of a norm into
L—z (s2) . This is accomplished by first introducing an’
inner product into the space. An inner product of two

functions w;, y; is a function (wu;,V;) defined

such that
(1) (uc, vo) = (vi,u:)
(i1) (u;,bv¢+cw;) = b(uiy\/") +C(u'i)w';)

(iii) (ug , uc) > o where  the equality only holds if
U, =0
For functions in L, () define



(ul'. s V¢ ) = JVU;_ Ve ASZ (2.1)

S

The norm of a function is any function “ u;” satisfying

the axioms

(1) Jlu;!l > 0 , where the equality only holds if U; = O
i) fug+ vell £ Jall + Nivel

(iii) lcuc ] = Jc]ljucl)l - where ¢ is a constant

It can readily be seen that defining

Tue b = /(a:, «) (2.2)

satisfies these axioms. The distance between two functions
may then be characterized by the norm of their difference,
i.e. I{u;-—\Q Il . A complete vector space, such as
L, () » With an associated inner product is known as
a Hilbert space. It is possible to define alternative inner
products and corresponding norms to the ones presented, as
will be discussed in subsequent chapters.

Consider now more specifically the type of equa-
tions that will be considered. Attention will be primarily

confined to equations that can be expressed in the form



where w; and ﬁa are members of L, (s2) and %- is

&t

known. Atj is a linear differential operator or matrix

of such operators. The linearity of AEI implies

(1) Aq“ﬂ+wﬂ = Aq% +Aqw
‘ (2.4)

(i1) <A1|a Ala"'"' Alc7 Uy ccu‘}T.—. CuAL|u:+"" +CcA1cuc

where the ¢ are constants.

Together with reducing Eq. 2.3 to an identity
within ‘52 » W will also be required to éatisfy certain
boundary conditions. The class of functions that satisfy
all the boundary conditions of the problem and possess
the required continuity properties to make the evalua-
tion of 'Aaj Qj possible is known as the field of
definition of AQ' and is denoted by D, . For example,
if ,Aq were a differential operator of the fourth
order then functions in DA must be continuous fourth
order derivatives at every point in 352 . In general,

Aéj will be considered defined for a dense set of some
Hilbert space H . A set M is said to be dense in H

if every element in H can be obtained as the Timit of

a sequence of functions from M



The following types of operators will play an

important role in the subsequent discussions. An operator

(i) symmetric,--if(ACJuJ,V,;) =(A;J-Vj,u1) for all U;,vi € Dy

(11)* positive definite, if (A iU, ui)yo for all u; € Dy
where the equality sign holds only if u,=o0
(i11) positive bounded below, if ﬂ Ujy U Y > Y uj, J)

for all u, e D, where Y is a positive constant.

The class of operators that are known as com-
pletely continuous operators will also be of importance in
the following presentation, and therefore a definition of
such operators will be given. An operator TJ , defined
in some Hilbert space H, is said to be degenerate if it

can be represented in:the form

=§|/uu%)¢k

where ‘N is finite and both W, , ¢k € H . An operator
“Fﬂ is then completely continuous if for any € >0 it can
be represented in the form

It
Tyy = Tyu t gy

where ‘FU is degenerate and the norm of'l~ is less than ¢&

y
(HTU j I el i)

10
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Together with Eq. 2.3 the problem of determining

the eigenvalues and eigenvectors of the operator Ai: will

|

also be considered. - That is, the solution of the equation

iJ'UJJ' = )\W'L (2.5)

will be discussed. In this equation )\ is a numerical
parameter and the solution of the equation entails the
determination of those values of A say %n for which
there exist corresponding non trivial solutions for u;
say Li?. Such Xu are cal]ed-the eigenvalues and the
corresponding uf the eigenvectors of the operator'Aﬁ .
In the following deve}opments the use of sub-
scripted variables will be abandohed, except where neces-
sary for clarification, and all the functions employed

assumed to be vector valued. Thus for.example Eq. 2.3 will

be written

Aw = |

2.2 Variational Formulation of the Problem

The purpose of this section is to introduce
concepts that are necessary for the later development of
the Galerkin procedure and at the same time to discuss the

range of applicability of the Rayleigh-Ritz procedure.  In
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order to do this the conditions under which the solution
'of-a‘given differential equation coincides with the function
that minimizes a known functional will be discussed. It.
will further be shown that it is possible to obtain a
solution via the variational formulation even when no
solution of the original equation exists in D, .

Consider the equation

Aw = -F e 2 (2.6)

where w and r are members of some Hilbert space H , and
w is prescribed to satisfy certain homogeneous boundary

conditions.

Theorem 2.1. Let A be a symmetric positive bounded below
operator.defined for some dense linear set Dy of H
If Eq. 2.6 has a solution (in DA) then this solution mini-

mizes the functional

Flu) = (Auyu) - 2(u,{) u e D, (2.7)

Conversely, if there exists in D, a function which mini-

mizes F(u) then this function satisfies Eq. 2.6.

proof:-
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Assume that u, n ¢ DA and set- U-w= I

where w is the solution of Eq. 2.6. Thus u = uJ+9
Flu) = (A (w+g), wtq) -2 (wry, )

= F(w) + Z(Aw—f,:)) + (AD",))
But Aw-.(’:O by hypothesis, hence

Now A s positive bounded below whence
2
(Anyy) 2 yi(ng) 7 0
Thus F(u) 2 F({w) with the equality.only valid Tfys 0.
Hence the function attains its minimum value when w=w
Conversely, assume the functional attains its
minimum value when w=w . Let n e D, and thus w+7\g€ Da
where A is a constant. Then by hypothesis
Flw+ An) 7 F(w)
which reduces to-
2
A (AEP g) + E:N(I\W"{a 0) 7z O |
The Teft-hand side is a non negative quadratic function

for the real parameter A . Thus

4(Aw - fiq)" < o
(Aw --(a D) ) =0
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But 9 is an arbitrary function from the dense set DA s
and the only function orthogonal to all such functions is

the zero function. Therefore

Ao =

That w is the only function that satisfies
Eq. 2.6 can be seen by assuming that w, 1is also a solution.
This implies A(w- wa)= 0 whence (A (w-wo), w-we)= 0
The positive bounded below nature of A then requires w-w,=0
Thus wWy,= w

It can occur that for some functions {?e H there
does not exist-a function w in the field of definition
of A that will satisfy Eq. 2.6. As an example of this
situation consider the problem of prediéting the deflection
of a uniform cantilevered beam under the action of dis-
tributed Toad 3(x) . The equations characterizing the

deflection of the beam are

El L’m' = ﬂ_(X) x € [o,L] (2.8a)
ylo) = y'le) = 4"(1) = y"(1) =0 (2.8b)

The differential equation is derived by considering the
equilibrium of an.infinitesimal Tength of the beam under
the assumption that the loading is continuous across such a

section.
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‘In this case the operator is

A = EI ¢* (2.9)
| dx*

and its field of definition D, 1is the totality of those
functions defined over [o,L] with continuous fourth deri-
vatives that satisfy the boundary conditions of the problem.
Thus if a}x)is continuous then there exists a solution in
DA but if 3jx) is discontinuous no solution can be
found in D, . This difficulty can be overcome by con-
sidering 1imits of functions that l1ie in D, .and it is
then possible to formulate the functional F(u) in such a
manner that a generalized solution of Eq. 2.6 is obtained.
Just as a discontinuous load may be considered as the
limit of a sequence of continuous loads, so functions with
discontinuous fourth derivatives-are introduced that are
the 1imits of sequences of functions with continuous fourth
derivatives. It can then be asserted that amongst the
new set of functions lies the solution (or generalized
solution if it is not . in Dy ) of Eq. 2.6 for any f € H
For the example considered H is taken as the set .of functions
square summable over [o,L] . The formal development of
these ideas follows.

A new inner (or scalar) product, called the

energy product, is introduced for the set Dg . Recalling
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'fhat the operator A\ is symmetric it is possible, using
integration by parts, to write
(Au,v) = I(Bu)(Bv)alsa, u,v € Dy

L7X

in which- B is a differential operator. The ehergy
product, which will be denoted by square brackets, is then

deffned as

I:u,v]A = J‘(Bu)(B_V) da | uv €Dy (2.10)

L7}
The energy norm, which is denoted‘by bold vertical 1lines,

is defined as

= (2.11)
lul, = /(u 4],

The energy product and energy norm satisfy. the axioms
defining an-inner product -and a norm presented in}the pre-
vious section.

It may be that the space Dy s incomplete with
respect to the energy norm i.e. not all Cauchy sequences -
in Dy converge to a function in D, . If this is so-
then Da is completed by defining 4 to be a member of

the space if

Ium—ulA——>o as N> @ (2.12)
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where U, is a typical member of a sequence [un} each
member of which is in Dp . The completed space so
obtained is a Hilbert space and is denoted by HA to".

- emphasize its dependence upon A . The energy product in
Eq. 2.10 is only defined for functions in DA but may in

an obvious fashion be defined for all functions 1in HA

[u,v], = fin f{Bun)(BVn)dﬂ )y Usivp €Dy (2.13)

n—>o
Thus the energy product and energy norm have meaning for
any function in HA . Their dgfinition ensures that they
satisfy all the required properties of inner products and
norms.
The field of definition of the functional F(u) of
Eq. 2.7 can now bé extended from Dy to H, and Theorem

2.1 becomes:

Theorem 2.1A. If A is a symmetric positive bounded below

operator, then of all of the functions in H, the one that

minimizes the functional.

Flu) = [u, U%\— 2(u,{), T HA (2.14)

is the solution of Eq. 2.6.
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proof:

Theorem 2.1 demonstrates that if Eq. 2.6 has a
solution w in DA this solution uniquely minimizes
F(u) in the class of functions constituting the field of
definition of A . It will be shown that the minimum of
F{u) in the wider class HA is not .altered and that the
function w only gives the minimum value.

Denote by d the minimum value of F(u} in Da

and by d the minimum in Hy . Then as H, includes Dy
d < d

Assume 2[ <d . Then there exists a function
@ & Hy such that F(a) < d , i.e.

[ a, G,] - é (a1 F)

la)® - 2(a,f) < d

But as & € H, it follows that there exists a sequence
of functions [un} € Dy such that lu, -G l—=> o |,
which also implies llUs- Q- 0 as A s positive.
bounded below. Thus Ju,|-»{&} and (th-f) - (U, #)
Therefore for sufficiently large n  F(d) and F(u,) differ
by an arbitrary small amount and it follows that Flus) < d
This however is impossible as u, € Dy . The contra--
diction shows 21 = d

To show that the minimum of the functional is

unique assume that w € HA also minimizes the functional.
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From the proof of Theorem 2.1 Aw - {, U) = o for any

function 3 e Dy . This relation may be written
[win] = (f,r,)) (2.15)
In particular setting 9 =W gives

[wyw] = (], w] o (2.18)

Eq. 2.15 is also valid for any function in HA . In fact
if 9 € HA then there exists a sequence of functions

{9“} € Dy such that | g-g.d—>0 , llg-9.ll—0o and
[w,onj = ({’Qn) . Preceeding to the Timit gives Eq. 2.15

which is the valid for arbitrary functions in HA . Thus

[w, @] = (£, @) (2.17)

By repeating the proof of Theorem 2.1 with ~F(u)
expressed as in Eq. 2.14 the identity [&,9] = (71’, n) dis
obtained where 9 is an arbitrary function in HA . Putting

0 = W, w gives
[®,@®] = (/,5) (2.18)
[0, w] = (-/1 w ) (2.19)

Subtracting Eq. 2.18 from Eq. 2.17 and Eq. 2.19 from Eq.

2.16 gives
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[w-—a),a—)]:- @)

Finally subtracting these two equations gives [w-w, w-w] =0
whence W = w
If the minimum of the functional expressed in
Eq. 2.14 is given by a function that is not in D, , then
this function is known as a generalized solution of Eq. 2.6.
As an-i]]ustration of these concepts consider

again the problem of the bending of a beam defined by

Eqs. 2.8.
L
(AL“V) = J‘vEI o dx
° L
it [ uL - " ﬂd
= (VEIu-vflu + Eluv ax
Thus ° °

L
Lu,v ] =ju"EIV"dx (2.20)
' 0

The operator is thus symmetric and is in fact .also positive

bounded below. Thus the functional Ffu)is

L L
Fu) = ju“EIu" dx - ¢ uﬂdx (2.21)
o 0
which is twice the potential energy of the system. 1In this

case functions, U, in HA are defined'such that
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[y(all—u:)zdx —> O as n—>» o
)

in which the u, e€ [)A and therefore have continuous fourth
derivatives and satisfy all the boundary conditions of the
problem. Such a definition means that the functions in

HA

implies that they have continuous first derivatives. These

have generalized second derivatives which in this case

functions must therefore satisfy the same boundary condi-
tions 1ﬁvo1v1ng the first derivative of the function or the
function itself as the functions u, . The definition
does not imply that the functions must satisfy.those
boundary conditions involving second or third derivatives.

Theorem 2.1A states that the function that mini-
mizes the functional given in Eq. 2.14 is the solution of
Eq. 2.6 and that this function can be found uniquely amonst
the elements of FiA . In this context it is convenient
to introduce the concept of a complete set of functions
in Hp

A set of functions { ¢h § R=1,... is
said to be complete in Flﬂ (with respect to the energy

norm) if for every Vv & HA and € > o0 there is an integer

M and constants a@,,..-.. Q. such that
M .
[v-2ad | < ¢ (2.22)
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In other words, any function in HA can be approximated
arbitrarily closely, in energy norm, by a linear combina-
tion. of members of a complete set in HA

Consider the general case where the symmetric
operator A is of order 2m . Expressing the energy
product in its symmetric form would then involve deriva-
tives of maximum order m and functions in H, would be the
limit in energy of functions with €m derjvatives that
satisfy all the boundary conditions. Such functions ppossess
~generalized m Hl order derivatives and must satisfy all
those boundary conditions that do not involve derivatfves of -
the nzfﬁ order and higher. The boundary conditions that
involve derivatives of order greater than or equal to m are
known as natural for A . The remaining boundary conditions
are called the forced or principal boundary conditions. In
an equivalent way those derivatives of order less than m are
known.as principal derivatives. Thus functions in HA neces-
sarily satisfy the forced boundary conditions but need not
satisfy the natural. This is an important consideration
when choosing trial solutions for the approximate solution
techniques that will be discussed in.the next chapter.

The eigenvalue problem that is represented by the

equation

Aw = hw (2.23)
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can also bé expressed in a variational manner if A s
symmetric and positive bounded below. The developments
are presented by Mikhlin (9) and will not be repeated
here as those concepts necessary for the further develop-
ment of this thesis have already been introduced in the

preceeding discussion.-



CHAPTER 3

APPROXIMATE SOLUTION TECHNIQUES -

The purpose of this chapter -is to present methods
that can be used to obtain an approximate solution for Eq.
2.6. Again it is convenient to assume that A is a differ-
ential operator of order @m and that the boundary conditions
are homogeneous. The developments presented herein follow
those given by Mikhlin (9). |

Many approximate methods are based upon the con-

cept of assuming a solution in the form

M
k

in which the a, are unknown parameters and the ¢k are
known co-ordinate functions. This form is valid if w is
a single function. However, as indicated in Chapter 2 w
may be considered as a vector quantity with more than one
component. In this case an approximation of the form of
Eq. 3.1 must be assumed for each component of w . Thus,
in general, if w 1is a vector quantity it will be denoted

by w; where-

_ _ _ — T
w, = @, Wy -... We 7
and where each component is then approximated by
T
L T
- ) = 1, ... C.
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Once again in the interests of algebraic simplicity the
following developments will be in terms of Eq. 3.1.
Treatment of such approximate method% éan be
found in the works of Crandall (2) and Finylason-and
Scriven (4). Attention in this thesis will be confined
to the discussion of two related methods: Rayleigh-Ritz

and Galerkin.

3.1 Rayleigh-Ritz Method

The Rayleigh-Ritz method is applicable only if
the equation to be solved has a solution that corresponds to
the stationary value of some known functional. The method
then calculates the unknown <1h in such a manner that the
approximate solution W renders the given functional
stationary in the M dimensional subspace spanned by the
co-ordinate functions ¢k R=1,...M

Theorem 2.1A states that if A is symmetric and
positive bounded below then the solution of Eq. 2.6 is

that function in HA which minimizes the functional

Flu) = Tuyul, = 2(uf)

The Rayleigh-Ritz procedure is to substitute the
approximate solution w into the functional and then:

minimize F(G) with respect to the ak . Hence
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o) = (2 adod o] - 2(Zan. {)

Now, if the 4% are linearly independent F(®) is stationary

when
dF(®) _ 0 R=1,... M
Ja

Thus

w; 541+ 594 4 -2lgof) = ©

Using the symmetry of the energy product gives

M

qu[%v%]A = (CPj,{') Cjehen (3.2)

R=1
which is a system of linear -equations for the aj which has
a unique so]Utioh as the ¢k have been assumed to be
linearly independent.

If the set of co-ordinate functions {4%} s where
the #% are linearly independent, is complete in HA the
approximate solution obtained by the Rayleigh-Ritz method.
can be made arbitrarily close in energy norm to the exact

solution by increasing M sufficiently.

proof: -
The minimum value of. F(u) 1is obtained when

u=w , the solution of Au)=f
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F(W) = [w,uﬂ - 2(w,Auﬂ = —twlz
Let d = ~1wl® which is the exact lower bound of the
functional F(u) . Hence if € is ‘an ‘d@rbitrary small"
positive number, then there exists in H, a function v
such that

d ¢ F(v) ¢ d+ ¥

Further as the set. {<#R} is complete in

energy it is possib]e.to show
Fiv) - Flv) < ¢€/2
M
Vo= 2 bede

To see this note

Frul = [u’uj - 2(“"{)= [u-u,u-w]—[w,w]

where

é 2

" Whence '

F(7) -Fiv) = 1v-wl® = (v-wl

=(1F-wi+iv-w)(Iv-a1-1v-wl]
The triangle inequality gives

v ~w} - tv-wl & | v-vli
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Thus
Flv) - Flv) €(Iv-wi+y-wl) 1v- vl

By the completeness of the set {41} M can be chosen
such that

lv -v]l < €y
where ¢ is to be chosen.

vl < Ivl + &/
and

Fiv) -Fv) < [21vl +2lwl + £, ) €
Choose ¢ such that

(21v) + 2lwl + &) e <V,
Thus

Fiv)l -Flv) < €,

d< F(V) s Fv)+€ < d+e

Let w be a function constructed by the Rayleigh-Ritz

method. - Then:

d¢ Flw) ¢ Fiv) ok d< FlB) ¢ d+¢

d N
Letting g£-»o0 implies F(®) —> @ = - lw

Thus
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Therefore

Iw-wlA»?o as M — co (3.3)

Thus the Rayleigh-Ritz approximation converges,
in the sense of the energy norm, to the exact solution if
the co-ordinate functions afe complete in HA

In practice it is not strictly necessary for the
co-ordinate functions to be complete in HA . It is
sufficient that they be complete with respect to any
subset of HA that contains the exact solution. In this
respect recall that consideration in this theésis has 'been
restricted to those functions that are square summable.
Specifically, the right hand side of Eq. 2.6 must be such

a function, Thus

J(Aw)adﬂ - J]/zdsa < (3.4)

L7

If A has order dm and if { is a bounded function then
Eq. 3.4 implties that the Em-| derivatives of w are
continuous. Therefore it may be conciuded that the space
of functions that have continuous @m-—| derivatives and
further, satisfy all the boundary ;Onditions, ébntains the
exact solution. Thus it is sufficient that the co-ordinate

functions be complete with respect to this space which will
] ,

A
ensured in the sense of the energy norm.

be known as H Convergence, however, is still only
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The Rayleigh-Ritz procedure may . also be employed for the
determination of the eigenvalues of Eq. 2.23. The necessary
development is presented in Mikhlin (9).but will not be
repeated here. .It is worthy of note that the épproximate
eigenvalues so. obtained are bounded below by their

respective exact values.

3.2 Galerkin's Method

Galerkin's method specifies that the residual
obtained by substituting the approximate solution w into
Eq. 2.6 is made orthogonal, tﬁroughout the ‘domain, to each
of the co-ordinate functions 4% . This procedure is
applicable to any operator that is positive definite.

Thus ‘it is required that

j\(ALTJ"-F)‘#J dfl—': O J:I,...M (3.5a)
2
which may be written

J;(A (Zlak‘i)k) - {) fPstz =0 J =1, M (3.5b)

This system of Tinear equations has a-unique solution for
the ap if the ¢k are linearly independent throughout S .
Note, however, that the evaluation of this equation in the

form given is only possible if -the co-ordinate functions have
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continuous m-1| derivatives. In fact convergence is
ensured, as will be proved in this section, if the co-

0
ordinate functions are complete in HA , i.e. they have

continuous €m-| derivatives and satisfy.all the boundary

conditions. However, as will also be demonstrated, it may

be possible to express Eq. 3.5b in a form such that the co-

ordinate functions need only be complete in a space equiva-

lent to HA to ensure convergence.

The general characteristics of ‘a class of ‘problems

for which the Galerkin protedure is known to converge will
first be discussed. Theorems will then be presented that
form the basis of the subsequent convergence investigation
In this discussion the conditions that the co-ordinate
functions muét satisfy to ensure convergence, the type of
convergence obtained, and the relationship between the
Rayleigh-Ritz and Galerkin procedures are specifically
dealt with. |

A class of equations for which the Galerkin
procedure is known to converge is characterized by the

equation

w—)\Tw=]0 e Su

where w is the required element and F is the given

element of some Hilbert space H. T is some completely

(3.6)
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continuous 6perator in H , and A is a numerical parameter.
The genera] properties of such equations will first be
established.

Assume that A can assume any fixed value with
modulus not exceeding some constant R , so that |JAISR
Then, as T is completely continuous it may be expressed

in the form

T = 17 +7T° (3.7)

[} .
where T is degenerate and

T € Her (3.8)

It can then be shown (9, p. 463) that the linear operator
(E —7\'T")-l , where E is the identity operator, exists and.

is bounded. Eq. 3.6 can be written in the form
\
w-AT'w =3 T'w = | (3.9)

which when multiplied by (E-WT")'gives

h

W= ME-2T) Tw = {(E—)T“)" F (3.10)

Further as T' s degenerate it is possible to write

N
T'w = 3 (w, Ye) &g (3.11)
R=l
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where the set of elements ¢k and also the setA\.,)k can be

considered as linearly independent. Then

o N
(E- 2TV ' T'w = 2 (w, Ye) Uy (3.
k=1
where
Uye = (6-»7"1" ¢ (3.

are linearly independent. Eq. 3.10 may now be written in

the form

w - %ZCk“h,h = F (3.
k=1

where Ce = (w, Yx) (3.

Forming the inner product of each term in Eq. 3.14 .with

th ~gives .
(W, Ym) - kack(ua,k, Ym) = (Fy s Ym)

N
Co = M2 QM Cx = B (M, m= 1 (3
k=1

where
Ok = (u)u,k"Lll"‘) ; bm()\) = (FysWYm)

Thus the solution of Eq. 3.6 can be obtained from Eq. 3.14

if Eq. 3.16 can be solved for the unknown Cj

12)

13)

14)

15)

.16)
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The conditions under which Eq. 3.16 will have a
solution can be examined by investigation of the matrix of
coefficients of the Ck . Writing the equation in matrix

form gives

_' - ?\O.“ 3 ‘)\ O”Zl ........ 9 —)QI_;“ C.l bI(A)

—>\aZl y 1=ha,,, . . v "M, ¢ ba()‘}
(3.17)

: —>\ONI1 -)\awz 2 ) I-)\.QNN C;“ bNM)

Denote the determinant of the above matrix byrlDR(h\ . The
cdefficients A,k and consequently iDR(h) are continuous
functions of A in the circle IAl &€ R  of the complex
plane. This continuity, together with the fact that
D (0) = | implies Dg(N)#0 and that the determinaht"
has only a finite number of roots in-the circle |nl < R

If Dg(h)= 0 then the homogeneous system obtained
from Eq. 3f16 by replacing the right hand side by zeros
has a non trivial solution. Then it follows that the

homogeneous equation

wWw-Nw =0 (3.18)



35

has a non-trivial solution and the A considered is a
quantity which is the reciprocal of the eigenvalue of
T . Such A are also known as characteristic values.

If Dg (»)# o then Eq. 3.16, and hence Eq. 3.6,
has a unique solution. In this case thérefore the
operator. (E—:-—)\T)-l exists and will be denoted by [}
Those values of A for which r; exists are known as
regular va]ues.

Thus the existence df solutions of equations of
the form of Eq. 3.6 containing a completely continuous
operdtor is proven. The following alternative (called
Fredhoim's alternative) holds: either the non-homogeneous
equation is soluble and uniquely so for any independent
term { and then the corresponding homogeneous equation
has only the trivial solution, or the non-homogeneous
equation is not soluble for some value of F and then
the corresponding homogeneous equation has a non-trivial
solution . The first part of the alternative holds if A
is a regular value and the second if A is a character-
istic value.

The following theorems - which form the basis for
the discussion of the convergence of the Galerkin procedure

can now be proven,.
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Theroem 3.1. Let {Th} be a set of completely continuous
operators in some Hilbert space H which tend to some

completely continuous operator T in the sense that

H 'r-—-j":1 “ —7 0 as n —» oo (3.]9)

Further let {{;} be a set of elements of the same
space which tend to some element f . If A is a reqular

value of the equation

w-rTw =f | (3.20)

then for sufficiently large n , A will also be a regular

value for the equation

Wa = ANTqwa = ‘(m (3.21)
and the so]utibn of Eq. 3.21 will tend to the solution of
Eq. 3.20 as n — oo

proof:

Consider the equation

V- 2ATav = ¢ (3.22)

where 3 is an arbitrary element from B . This equation
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may be written

v-ATv - M (Ta-Tlv = 9 (3.23)

-1 .
By hypothesis G = (E=MT)  exists and applying it to
both sides of Eq. 3.23 gives '

V- 20 (Ta-Tlv = r‘hj (3.24)

Now

I (Ta-TH € NG N Tn-TN (3.25)

which from the conditions of the theorem can be made as
small as required for sufficiently large n . Choose n

so large that

IXT(T-T) I < e

—_\-l
It then follows (9, p. 467) that the operator (E-)(;(Tn-lﬂ
exists, is defined for the whole space and its norm does
not exceed 2.

From Eq. 3.24 the solution of Eq. 3.22 is
_ . -1
v = (E-20(T-T) [ g

Thus the operator
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M= (E-2Ta)" = (€

t
>
yﬁ

(Ta-TN' 11 (3.26)

exists for the given value of n . Therefore the given
value of )\ is regular for Eq. 3.22.
To establish the second part of the theorem it
will first be shown that "'1»' G | > 0 as n—> @
Define: B, = A N (T, -T)

Note that
o LA \k R.
2N TS EDTw = (E-ATR) 2 N (Tfw = w
R=0 k=0
whence
- S Rk
(E-2T)  w = 20T, w
k=o

Thus making use of Eq. 3.26

and making use of Eq. 3.25

TR T N8B AIGD = NBU RN 5 asnoe (3.27)
I"'"Bnn
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Thus

oG4 = (0 R ur Gl i)

€
)
i
€
i
- 3
>

hence

ll wﬂ__w“ < |\ ["‘\h._l-\h“ “-r.\“ + “P)“ “{n"ru

By virtue of Eq. 3.27 the first term on the right hand side
tends to zero and by postulation so does the second term.

Thus
| wy -w | = o as n-»y o (3.28)

and the theorem has been: proved.

Theorem 3.2. If ||T,-T )l = o where T and T, are

completely continuous operators then the eigenvalues of -

the equation

w _%Tw = @) (3.29),.

are obtained by the 1imit process as n-»@o from the eigen-

values of the equation

Wo - AT, wa = O (3.30)
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proof:

The proof utilizes the fact that as T, =T
the coefficient matrix of Eq. 3.17 corresponding to T,
whose determinant is denoted by ti(h) converges to the
matrik shown in Eq. 3.17 whose determinant is denoted by
Dl d)

Let N, be any root of DA} which lies within
the circle IMNI SR and let p be its multiplicity.
Surround Xo by a circle of radius & such that there
is no root of DR(A) besides A, within or on a circle
with this radius. In particular Dg(N) 1is non-zero on the
circle |A-DNel=€. Define:

q= mn IDRU)I ’ ﬁ7°

IN=Dol=¢

Now select N such that for n >N

o, 0) = D) | q 2 Ih-del= €
By Rouche's theorem (16, p. 89) D:(A) has p equal roots
in the circle | A-)Xo)J < &€ . Denote them by )n,,)na~~~-)np
whence

[ Adg=Rel < € 4 jeb.oip o n7N

Since ¢ can be chosen as small as required, this is -

equivalent to the statement
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I ?\ je b P (3.31)

- o

Theorems 3.1 and 3.2 enable the question of ‘the con-
vergence of the Galerkin procedure to be considered when
applied to equations of the form of Eqs. 3.6 and 3.18.
Consider first the Galerkin equations that are applicable

to Eq. 3.6.

“ 2 Tw = ][)

where T is completely continuous in some Hilbert 'space H
Assuming an approximate solution in the usual manner the

Galerkin equations become

f(a_wa)qu da =f{¢J.da L jen ()

2
where’ M
B =7, 0%
k=l

Eq. 3.32 may. be rewritten

zak((q)k’% T¢k'% = {{7%) (j"r'
Also withqut any loss of generality the co-ordinate functions

¢k , which are Tinearly independent, may be considered

to be orthonormalized in the space H . That is
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= 0 ki

whence
M
g ofarhed) - g g e

The convergence of the approximate solution so obtained is

~governed by the following theorem.

Theorem 3.3. The approximate solution of Eq: 3.6 constructed

by the Galerkin procedure converges to the exact solution:

(in the norm of H) if

a) Eq. 3.6 has only one solution in H
b) the operator T is completely continuous in H-

c) the co-ordinate functions form a complete set in H

proof:
As the set of co-ordinate functions ¢ is
complete in " H it is possible to write
Tw=5(Tw. bl b ; £ =0 (f %
k=l fe=!
Define

n.

an=§'(rw.¢k)¢k; L= 4 4% (3.34)

R=

-
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Then H{,\-fll 0 as n—vy e . Also |T,-Tl—=>o
as will now be proven.

As T s completely continuous in H it can
be expanded.into‘a sum- T=T'+T" , where T' is degenerate
and I T"W| < €z , where € is an arbitrarily small.
positive number. Then

(T-Talw = Tw -Tow =7 (To, ) &
k=t

8

8

i

(T~ -Tn) ZJ T'w 4>R 43 + Z w’ ‘PR)‘?)R (3.35)

k=n+i R-ru—l
Recall
fwlh? = (w,w)
whence
i 2 oo 2
12 (T'w, &) 9l = Sy (T, @) (3.36)
/?-=/z+/ k=n_+-l
as the %k are assumed normalized in H . Now by Bessel's

inequality the right hand side of Eq. 3.36 does not exceed

[T w) ¢ 170 Jol® < & Juj

Hence
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”Z T"w, t#k)#) | < é&a | wl | (3'37)‘

k = R+l

Consider now the first term in Eq. 3.35. The degenerate

operator T'w may be written in the form

s
I
T w ::Z(L\),\Pj)u
j=1
where s is a finite number and \h ) Uj are members of

H . Thus

”Z (T'w, ) S| = “ii (wy W) (uj, ) Pkl

kR=n+i k=net j=t

I < E it bidt
< uwnZ uwju//f | (b)) (3.38)

The series 2_ \(%jr¢k converges. Hence the coef-
k=1

ficient of I w (] will be less than £&/2 for sufficiently

large n , say n >N . Thus from Eqs. 3.35, 3.37 and 3.38 -
HT-Ta)w | < & luwl n >N

whence

“T—Tn I\—?O‘ as n —» oo
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which was to be proved.
The operator Tp is degenerate and hence ‘completely

continuous. Thus from Theorem 3.1 the equation
NTown = fa INEED

has a unique-solution for sufficiently large n and

” Wy — W ll-? o as. n —» oo

Substituting for T, and fn in Eq. 3.39 gives

n

=§(( 140 $+ 2 (T 80 8) = 7 Ao (3.40)

R:l

where Ap = (45 8)+ M(Tuw, ?) (3.41)

Substituting the value of w, from Eq. 3.40 into Eq. 3.41
gives
NS A ) - Lm o (3.42)

k=1

From the preceeding statements the constants calculated from
this .equation ensure that the approximate solution as given

by Eq. 3.40 converges to the correct solution. But Eq. 3.42
is identical to Eq. 3.33 obtained from the. Galerkin procedure.
Thus the Galerkin approximation converges to the exact

solution in the norm of H.



46

Similarly by repeating the above arguments the appli-
cation of the Galerkin method to the problem of finding the

eigenvalues of the equation

w - ANTw = 0 (3.43)

can be shown to be equiva]ént to finding the eigenvalues of

the equation
w, - N Tw, =0 - (3.44)

From which it follows by Theorem 3.2 that the eigenvalues of
Eq. 3.43 are the 1imits of the corresponding eigenvalues of

Eq. 3.44. Thus the following theorem may be stated.

Theorem 3.4. The application of the Galerkin method to the

problem of seeking eigenvalues of equations of the form
w=-2ATw = 0
leads to a convergent process if

é) T is completely continuous in H

b) the co-ordinate functions form a complete set in H.

Note that the above theorems have been developed
with respect to a giveh Hilbert space H. 1In general, when
dealing with differential equations, this space will coincide

with the HA space developed in the previous section.
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The basic equations considered in this thesis have

been assumed to be expressible in the form of Eq. 2.6.

Ao = 4

In order to see how this corresponds to equations of the
form of Eq. 3.20, which have been central to the preceeding
discussion, and at the same time to illustrate the relation-
ship between the Rayleigh-Ritz and Galerkin procedures,

consider that the operator A has the form

A = R + K (3.45)

In this equation R is a symmetric and positive bounded
below operator of order 2m and K is any operator such
that its field of definition encompasses that of R , that is
Ku has a meaning whenever Ru is meaningful. Thus 1in
~general A need not be symmétric. Substituting for A

in Eq. 2.6 gives

Rw + Kw = —P (3.46)

which can be expressed in the form of Eq. 3.20 as

w + RTRw = R"-F

or-
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W ++ Tu) = _Fl (3.47)

where T= R'k and ﬁl= R"tf
Define a space HR as in Chapter 3.1 in which

the inner product is given by

LuyvI = (Ruyv) = J(Du)(Dv)dsz (3.48)

52
in which D 1is a differential operator of orderm
Theorem 3.3 ensures the convergence of the
approximate solution of Eq. 3.47 if T=R'K is comp]ete]y
continuous in some Hilbert space H and if the co-ordinate
functions are complete in H . Thus if T s completely
continuous 1in HR repeating the proof of Theorem 3.3 in

terms of the energy product in HR ~gives the equivalent of

Egq. 3.42 as

k,l J R 9 ’ PR II )

G = k;‘j Acd,

and the ¢% have been assumed orthonormalized in'HR , 1.e.
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[C’th CPJ]R = ] k-‘-—“}

Further the theorem states
|6 ~wl,—~0 as M—>e

Consider now applying the Galerkin procedure

directly to Eq. 3.46. The required equations are

f(Re ko {ldn= o join

st
which may be written

M

Zak{(ch)k, ¢J-)+(I< &, 4)})} = (4, (bJ) (3.50)

k=1

K has been specified to be such that its field
of definition encompasses that of R . Assume further that
it is defined for every element of HR . Then Eq. 3.50 can

be written

5 e o 40+ (Kb g1} = (£14) o

which then has meaning for any 4% € F4R . Eq. 3.51 may be re-
written by noting first that the &, have been assumed
orthonormalized in HR and secondly that the following

relations hold
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(K 4 ¢J) = (RR'K ¢, q)J) = [T%{%]R

(£, ) = (R0, o) - L4 4],

Thus Eq. 3.51 may be written
M
Q “"z'Qk[TCFR,CﬁJ']Ra [f,cbj]R j=l-M (3.52)

This equation coincides with Eq: 3.49. Thus the_app]ica-
tion of the Galerkin procedure to Eq. 3.46 provides an
approximafe solution that converges in the norm of HR to

the exact solution of Eq. 3.47. Clearly any solution of

Eq. 3.46 is a solution of Eq. 3.47. However it may be that
no solution exists in Dg but a solution does exist in HR .
In this case the solution of Eq. 3.47 is the generalized |
solution of Eq. 3.46 and in this way any solution of

Eq. 3.47 will be considered a solution of Eq. 3.46.

Thus Eq. 3.51 obtained by applying the Galerkin’
procedure to Eq. 3.46 ensures convergence to the exact
solution if * T =R'k 1is completely continuous in Hg and
the co-ordinate functions are complete in HR . The co-
ordinate functions therefore.need not satisfy the natural
boundary conditions of the problem i.e. those boundary

cenditions involving derivatives of order m or higher.
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If K s not defined for all functions in HR
convergence can be obtained by choosing co-ordinate func-
tions from H; i.e. functions with continuous 2m - |
derivatives that satisfy all the boundary conditions.

A particular case of Eq. 3.46 is where K is the

null operator, in which situation AEiR and is symmetric

and positive bounded below. Eq. 3.51 then reduces to

k:z; QR[¢R’ ¢J’]R = (701 4’j) jo oM (3.53)

This equation is identical to Eq. 3.2 obtained by the
Rayleigh-Ritz procedure and converges under identical
conditions. Thus for a symmetric, positive bounded below

operator the two methods lead to the same equations and are’

~governed by the same convergence criteria. The Galerkin’

procedure thus appears as a generalization of the Rayleigh-
Ritz procedure.

The Galerkin ‘procedure can thus ensure convergence in
energy norm for equations of ‘the type given in Eq. 3.46 when
the co-ordinate functions do not satisfy the natural boundary
conditions of the problem. This convergencé‘involves”the
derivatives of ‘W0 up to order m but provides no -information
as to the manner of convergence of higher order derivatives.
The following presentation illustrates the manner in which

these higher order derivatives converge.
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Assume 3 is some fixed element from HR .

(RG-+KB -%v?)‘= [R(&—w)+K(@—ng)
Thus

[(R% + Kk® *f’ﬂ)l'é | w-wl b9l + (K(G-w).g) (3.54)

The second term on the right hand side of the equation is
a bounded Tinear function in HR and may therefore be

expressed as an inner product on this space (9). Thus
(K(E-w)g) = [@-w, p]s lw-wl iyl

where '} is a fixed element of HR . Thus Eq. 3.54 may

be written

[ (R +ka-(,3)l\< Ilﬁ"wlg(lgl+ll}fl) (3;55)

However the Galerkin procedure ensures

5 - —~ 0
| w wlR

Thus Eq. 3.55 implies

J‘( Ry + Kw *-/ ) 3 dos — © 3 € HR
A _
"If A is symmetric and positive bounded below

i.e.K=0 a stronger convergence can be proven. To see
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this assume a € L,(sn) . Then since HAis dense in L, (s)

there exists 3'6. Hy such that [la‘— 3|\ < &€ . Now

(A@“rvﬂ) = (Adj-#1ﬂ') + (Aﬂ-fv 9’?)

Further

|(ha-f, 9l < [HAS I + 1 {lte < ce

C= Consi'.
and for M sufficiently large

| (Ad-f.9) s To-wh gl <€
Hence
| (Ao -4, 9)] § (cr))€

Whence as & <can be made arbitrarily small

J'{Aw-.r)ﬂda—%o aél—a(ﬂ)

s
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CHAPTER . 4

THE FINITE ELEMENT PROCEDURE

The finite element procedure was originally
developed by engineers on the basis of physical intuition
for application in the analysis of complex structural systems.
The review by Zienkiewcz (19) outlines the development of
the method and contains a comprehensive list of references.
Recently the mathematical framework of the procedure has
come under close scrutiny and it is the purpose of this
chapter to discuss this aspect of the method.

In 1969 Oden (11,12) pointed out that the formu-
lation of a finite element model of a function is a purely
topo]ogiéa] construction and has nothing to do with varia-
tional principles. The finite element method, as will be
shown in this chapter, is in fact a means of constructing
an approximate solution form to a given equation. This
approximation is expressed in terms of known co-ordinate
functions and unknown parameters. This approximate solution
form may be used in conjunction with a number of . techniques

to determine the unknown parameters.
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The problem considered is that of obtaining an
approximate solution to Eq. 2.6 under homogeneous boundary
conditions. As was discussed in.Chapter 3 there are a
number of techniques available that are based upon the
idea of assuming an approximate solution in the form

M

W =Z ak‘?’k
k=i

It will first be demonstrated that the finite element pro-
cedure generates such an approximation, and thén the con-

vergence results that have been presented for the Galerkin
procedure will be interpreted in terms of a finite element

approximation.

4.1 Generation of a Finite Element Approximation

The basic steps that characterize the finite
element procedure will be presented. A rigorous discussion
of the following points has been presented by Oden (11).

The first step is to replace the domain of defini-
tion of the problem Q by sU" such that St* may be exactly
subdivided into a number, say E, of non overlapping sub-
domains called elements. The domain of a typical element
will be denoted by % and such domains are generally
chosen to have a simple geometrical form. Adjacent elements

are specified to have a common boundary. Thus
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"N " =6, mFn, ma= ... E (4.7)

where 6 1is the empty set, and
E _
a* - u & (4.2)

The elements are chosen, if possible, such that ﬁf coincides
with St , but if not, in such a manner that the error
involved is a;ceptab]e. It will be assumed that the ¢ have
been thus chosen and the notation §i, St will be used to
represent a* , s*

The second step in the method involves the assump-

tion of an approximate solution for w in each of the

elements that can be expressed in the form

-~

weé = Z/:V Qe ¢ 4
k=1 K 4)'? e= ... E (4.3)

where the ¢: are co-ordinate functions defined only in
2% and the a: are the values of ®° or one of its
derivatives at certain nodal points generally situated on
the boundary of S$1° . For example if a: n= ly..... N
corresponds to the value of WS at the node with co-

ordinates x? then
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1 k—:n (4.4)
= O R+ kv”': ‘)""N

e
Such a definition ensures that the ¢k are linearly

N W
A ®
—_——
>
~ s
|

independent throughout ¢

It is possible, by a linear transformation, to
express any w* containing N linearly independent terms
in the form of Eq. 4.3. 1In particular a polynomial may
be so expressed, which means that the approximate solution
may be expressed in polynomial form, which is often
convenient, and then transformed into the form of Eq.

4.3.

In the application of the finite e1emént procedure
it is only necessary to assume co-ordinate functions defined"
over individual elements to obtain a solution. However,
in order to demonstrate that such approximations can be
considered to be of the form of Eq. 3.1 it is convenient
to introduce other functions which are defined in terms of
the ¢; in the following manner.

Consider functions X; defined over the whole

domain $. such that
e
[ (xi) = &g (x:) X, ¢ &°

(&) otherwise

9

(4.5)

i
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where the X; represents a point in the domain. Then
the assumed approximation for w throughout the whole
domain S may be written
3 e . ¢ (4.6)

QZ Z U Ik
On interelement boundaries where nodes of adjacent elements
coincide it is natural.to specify that these nodal values
should be the same. Assume that there are M independent
~global degrees of freedom in S¢ which will be denoted
by a, . Then the element degrees.of freedom are.related

to the global degrees of -freedom by the relationship

e
a G (4.7)
k Z ik G
where
éﬁl = if node ai coincides with aj
= 0 otherwise
Then
N M e
- ~ € e
w ZE EE 9 Cih Xk
e=l k=lJ-' _
define’

Gk Y (4.8)

o
]

=
il
Nm
AN
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Eq. 4.6 may then be written

M

— :Ea-f#'

v G
in which the ¢i are linearly independent throughout the
domain.

Thus a finite element approximation has the
form of Eq. 3.1. The essential feature of the method
lies in formulating an approximate solution that is defined
over the whole domain in terms of approximations that are
non-zero only over subdomains.

A refined approximation is obtained by resub-
dividing the domain S into a larger number of elements.
The same approximate solution is assumed in each of the new
elements and therefore the final approximation is again
in the form of Eq. 3.1. The co-ordinate functions ‘% are
refined in such a way that they have the same shape but
are defined to be non-zero over a smaller region of s than
their predecessors.

It is a]So possible to refine the approximation
by leaving the number of elements constant and increasing
the number of .co-ordinate functions per element.

The unknown parameters in the approximate solution

may be evaluated, for example, by solving the equations

given by the Galerkin procedure:
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é%ak[q)k’d)‘f]}\ = ({)14’}) = '/)} 1J:lv--'M (4.9)

=1

This equation is in practice generated by
assembling thé relations obtained from individual elements.

Writing Eq. 4.9 for each of the elements in turn gives
Zl:i' e Q e _¢e ( e)l e e=1.. .E (4 .IO)
e 40 =T - sl

where the superscript & indicates that the inner products

R

are evaluated over the subdomains ¢ . Solving Egqs. 4.10

e

k
employed to determine the re]ationship.betweenxah and'ﬂj by

~gives the relationship between a, and ﬁe which can then be
making use of Eqs. 4.7 and 4.8.

An important feature of the finite element pro-
cedure that follows from the above construction of the
~governing equation is the 'banded nature of the coefficient
matrix that may be obtained by suitably ordering the a, .
Such a feature is important in the numerical solution of

prob]ems’with a large number of degrees of freedom.

4.2 General Remarks

It is worthwhile to note the analogy between a

finite element approximation of a function and a Fourier
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series approximation of a function. One important difference,
however, lies in the fact that in a Fourier series the
co-ordinate functions have continuous derivatives to any
order throughout the whole domain, whereas a finite element
co-ordinate function ¢y » generally has discontinuities

in its lowest derivatives at element boundaries. Another
difference is that refinement of a finite element approxi-
mation is effected by a redefinition of the co-ordinate
functions as opposed to simply adding extra functions as

is common in Fourier series approximations. - One advantage
of a given finite element approximation is its facility to
approximate various boundary conditions. This 1is possible
as the boundary conditions are handled by prescribing

values to the generalized co-ordinates a; Tlocated on the

boundary. J
A central question in the application of a finite

element approximation concerns the conditions that the

assumed solution within each element must satisfy to ensure

convergence as more and more elements are taken. In

particular, two related questions must be answered:

(i) on what basis should the approximation in each element
be chosen, and
(ii) .what continuity of w and its derivatives should be

ensured at the nodes and across element boundaries?
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These questions can be answered by investigating the condi-
tions under which the particular method employed to evaluate
the unknown parameters is known to converge. It is clear
that such evaluation can be effected by a number of differ-
ent techniques. Thus it is also clear that the finite
element "method" need not be associated with any particular
technique. Specifically it is not accurate to state that
the finite element method is a Rayleigh-Ritz procedure.

The finite element method simply generates an approximate
solution form, defined in terms of unknown parameters, that
may be used in conjunction with a number of -techniques to
obtain an approximate answer to the given equation.

It is natural to investigate the relative
advantages of .the dffferent solution techniques available.
Traditionally virtual work or Rayleigh-Ritz have been
used in finite element work. The Galerkin procedure has
been used in a number of specific cases (17,18,20). These
cases could, however, have been analysed using the Rayleigh-
Ritz procedure. The possibi1ity of .applying the Galerkin
procedure to-a class of problems to which the Rayleigh-Ritz
method is not applicable, and at the same time ensuring:
convergence, does not appear to have been previously explored.

As was pointed out in Chapter 3 the Galerkin

procedure is a generalization of the Rayleigh-Ritz method
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and hence in general preferable. In particular, problems
that are characterized by non-symmetric operators may be
amenable to the Galerkin procedure, whereas they cannot
be handled by Rayleigh-Ritz. Also, as is illustrated in
Chapter 6, the Galerkin procedure is applicable to all
those problems of structural mechanics that virtual work
can be used for, with the added advantage.that unlike
virtual work Galerkin has proven.convergence criteria.

On the basis of these remarks the Galerkin pro-
cedure will be chosen-for the determination of the
~generalized co-ordinates a; |

J

those sufficient conditions that the element approximation

and for the investigation of

—

w must satisfy in order to ensure convergence of W to

the correct answer.

4.3 Convergence Criteria

In Chapter 3 conditions that ensured convergence
of the Galerkin procedure for a wide class of problems
were presented. In this section these results will be
utilized to provide sufficient convergence criteria for a
finite element approximation.

Theorem 3.3 asserts that the convergence of
the Galerkin approximation js ensured when applied to

equations of the form
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w-7\Tw=-F

if ‘the solution is unique in some Hilbert space H, the
operator T is completely continuous in H , and if the
co—ordinate.functions are comp]eﬁe in H . The interpre-
tation of these conditions in terms of 'a finite element
approximation will be presented by means -of a particular
example.

Consider the problem of determining the equil-
ibrium configuration of a uniform beam when subjected to
both a normal load and a load that is proportional to the
slope of the beam. Such nqn.conservative loads are en-
countered in the study of aeroelasticity. The governing

equations are

EI %w + Cj' = f x € [o,L] (4.11a)

ylo) = yfv} = q"(o) = y"(L) =0 (4.11b)

where ¢ 1is a constant and f is the normal force. The
operator-in this equation can readily be seen to be un-

symmetric: This equation corresponds to Eq. 3.46 in which
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R = eI d° : k = cd (4.12)
dx* dx

As in Chapter 3.2 construct a space HR in which:

L
= _ - non
lulR _y/’[u.,u]R = /-jbruu dx (4.13)

0

Functions W that are in HR must then satisfy the condi-
tion
) 2
fJEI(u"—un") dx — 0 asn-—vew) U € Dy (4.14)
0

The space HR contains the exact solution and, as is.
verified in Chapter 7, T = R K - is completely con-
tinuous in this space.. Thus Theorem 3.3 ensures conver-
~gence if the‘co-ordinate functions are complete in HR‘.
A finite element approximation is obtained by
dividing the beam into E sections and within each section

assuming a solution of the form

N 4
- & e 4 (4.15)
- = |.... E
1 =2 % % T
R=1
The element stiffness equations are, on the basis of Eq.

4.10, given by
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i

€

':Z 0 j(EI(c{J:)"( JF) + c(¢:)'¢;)dx = IM;Ax N (4.16)
=] i Le

where the relation

(4871 = [oe 871 + (kg ¢ @

has been used. Eqs. 4.16 can then be assembled into the

form

DMz

akjo(EI 4’: j" ¥ C¢k 4’4’ ) dx = Hﬂ-dx Jebem (4.18)

0

k

L}

and the approximate solution

g - 5 0, I (4.19)
b=t

converges to the correct answer if the ¢k are complete
in HR . The conditions that must be satisfied by the
assumed solution within each element in order to ensure
that the co-ordinates defining the total solution be com-

plete in Hg must therefore be established.
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In this example, Eq. 4.14 shows that functions
in H

continuous first derivatives. Thus the finite element

g Must have generalized second derivatives.and hence
approximation must ensure the continuity of slope across
element boundaries. Further it must also satisfy the

are

forced boundary conditions as all functions in HR

required to satisfy these conditions.

Before considering the conditions under which
completeness can be obtained the definition of complete-
ness will be repeated in terms of a finite element
approximation. A finite element approximation is com-
plete in H in some stated norm if for arbitrary func-
tion VéEéH and any €350 there exists a subdivision of-
the domain corresponding to ™M degrees of freedom such

that
M
lV"Z,aJ"f’J'l < 3
j

The conditions that a finite element approxima-
tion must satisfy for completeness have been provided
by Oliveira (13). They will be quoted for a function
w, that has ¢ components W, w,,... w, . It is
assumed that the energy norm is based upon a symmetric

energy product that contains derivatives of each component
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W of maximum order m It is further assumed that

T
the exact solution is such that the derivatives of its
components of order m. + 1 are continuous within each
element. Discontinuities of-the my and ms; + | deriva-
tives are still allowed at points which always remain on
element boundarigs»as the size of thé element is progres-
sively reduced.

Oliveira then proves that completeness will be
obtained if continuity of the m, -l derivatives is
eqsured throughout the domain and if the approximation

G): | for w, within each e]ement is based upon a

polynomial of degree.not less than m+ , all the terms
of which are affected by fndependent arbitrary coefficients.
These conditions are often expressed by stating that the
elements must be conforming and that they must be able to
represent constant strain.

Thus in the example being considered the com-
pleteness requirement means that qe must be based upon a
complete polynomial of order not less than two. Satisfaction
of both the conforming and completeness conditions can be

obtained by assumihg an approximation within each element

of the form

- e 3
= Fa™x o+ a;xt 4+ g X (4.20)
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and choosing degrees of freedom corresponding to the
displacement and rotation at each end of the element.
| Note that it was possible to choose an approxi-
mation in Fig as K = cd/dx is defined for all the co-
ordinate functions in Hg . Co-ordinate functions in

f{R have continuous first derivatives and K is defined
for all such functions.

Satisfaction of the indicated conditions thus

ensures energy convergence of the finite element approxima-

tion to the correct solution %, . Specifically

L

JEI (§"-qs) dx — 0 as Mo o (4.21)

]

It should be noted that conformity is only a
sufficient condition forvproving the convergence of a
finite element approximation. Oliveira (]3) has also
studied the question of non-conforming eTements in-the
context of the Ray]eigh-Ritz procedure and concluded that
under certain conditions they too can ensure convergence
to the correct solution. Non-conforming elements will
not be discussed in this thesis. However it is possible
to introduce a well defined norm into the space of functions
that satisfy the forced boundary conditions and have con-

tinuous principal derivatives only at nodal points of the
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domain. In this way the work of this thesis can be
extended to provfde a systematic study of the convergence
properties of -non-conforming elements.

The developments that have Been presented .with
respect to Eq. 4.11 can be paralleled for any equation
that can be expressed in the form of Eq. 3.20. Consider,
in genéra], the problem of obtaining a finite element
solution for Eq. 3.46f Writing this equation out in

indicial notation gives

= 4.22
Rmn‘“n t Kmn Wa = 'fn myn = ly... € ( )
Assume a solution
_ _ _ - T
woo= { @, 4 By oo We ? (4.23a)
where -
-
— g T
O, = ) a., 9 T=1,...¢ (4.33b)
R=1
The Galerkin equations for Eq. 4.22 then:-become
— - T _
J\(er W t k'l'n-\ Wm ~ {)T) ¢k dsz =0 I:'lr-‘cc_ (4.24)
=1,

If K 1is defined for all the co-ordinate functions in

this equation may be expressed in the form
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[0 80 I+ (kn s 4 ) = (fe0 6] (4.25)

¥
— T
where C we, ¢h ]R is the symmetric form of
_ - . .
J (er‘”m) ¢k dso . Writing Eq. 4.25 in element form

n
“gives

Tq¢ T\ T T=1,... €
[(D_:, (ﬁ? ']R + (KTmu—J:l7 Z\) = ('F-r’ :)3 k=l,..NT (4-26)
e = |

.. E

where

T
N _
- @ eT
= 4,27

W =) ay, 9 (4.27)

k=1
Similarly eigenvalue problems that are expressible

in the form of Eq. 3.18 may be so.treated. Consider, for

example, the problem

- (4.28)
Rmn. Wo + 2 kmn Wwq = 0
The required finite element equations are
e eT_e -e eT (4 _ T:l’..-cT(4.29)
ElUT, ¢k + A (k}awn7 k) = 0 k=l..N

R
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Thus application of the Galerkin procedure enables
the equations and corresponding convergence criteria of a
finite element solution to be set down for a wide class

of problems.



CHAPTER 5

APPLICATION OF THE GALERKIN.PROCEDURE TO PROBLEMS WITH

MIXED AND NONHOMOGENEOUS BOUNDARY CONDITIONS

Attention has been confined so far in this thesis-:
to problems with unmixed homogeneous boundary conditions.
In this chapter a problem with mixed homogeneous boundary
conditions will be treated and the modifications necessary
to deal with nonhomogeneous boundary conditions presented.
For illustration purposes the equations governing the
equilibrium configuration of a linear elastic continuum

will be considered.

5.1 Homogeneous Mixed Boundary Conditions

The governing equations in this case are

- 0. . = KJXL € SL (5.1a)

U = 0 € Sy (5.1b)

73
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O by = e e S, (5.1c)
o nj + Ui = o) € Sy (5.1d)

where 09 is the stress tensor, (3 the density, Xk the
body force per unit mass, U, the displacement, nJ the com-
ponent of unit outward normal to the boundary, and ¢ s
a constant. 5u s 5@ , and SM represent respectively
those portions of the boundary on which the displacements,
stresses, and mixed conditions, are specified.

In order to formulate this problem in terms of
the displacement vector U, the gradient of the stress
tensor-in Eq. 5.1a is related to the displacement by means

of -the constitutive re]ation

0; = 2pm {cj + )\ £, g‘.j (5.2)

LJ k

and the kinematic equation

(5.3)
E.. = J_ UL .
lJ 2( 1)

where r. and X' are Lamé's constants, Sﬂ is the Kronecker

+ uJu’.)
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delta, and €ﬁ is the strain tensor. Carrying out the

indicated substitutions gives

(5.4)

/‘Iuc'jj + ()‘+f‘)u,)",)" = FX\-L

which may be placed into correspondence with the general

equation

) = . | (5.5)
AerJ f‘

In this case A, 1is a matrix of differential operators

|

of the second order and is symmetric. For present purposes
it is convenient not to express Aﬂuﬁ by means of Eq. 5.4
but instead to use the relation

‘A (5.6)

0 ")
Eq. 5.6 can now be used to illustrate the symmetry of Aﬁ .
Thus
\ " | i d C

[: u."_') u‘] —_ —OIJ’J UL 74 U-L,ué € DA

, 2
where Ua denotes the stress tensor corresponding to the
displacement vector uL . Now

Lu,uo] = I(—{mj ui").J- + ULJ' UL",J) ds

se
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LU‘J iy da - [ njul 4

As the variables considered are in the field of definition
of the operator they must satisfy all the boundary condi-

tions of Egs. 5.1. Therefore

" \ i i ‘
L] = 40 (6 vui)da o [cutur ds

s Sm

Jn chl E‘jl de 4 L: u; ui ds
= j\a(zrl El.) ELJ +>\ Ekh EJJ)AQ + fsiui uL JS
= [ bL;_", U:]

Whence the operator A is symmetric and the energy product

4
in the space '4A is given by
- . " o { 1] d \ " A (5 7)
n Sm
In this case the mixed boundary condition givesrise to a
surface integral in the energy product. The Galerkin

equations governing the solution of this problem can be

obtained from Eq. 4.25 by equating Aﬁ and R;; and assuming

§

Kq is the null operator. The equations are
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[ JT ! (FJ JA = (‘r'r' CPI ) :;-i ::.Z.TASLT (5.8)

where an approximate solution has been assumed .in the

form
- _ - - T
Uc = < w, . 4, , Uy ?
] N T (5.9)
Urp = Z Qrk ct)k T=1e3
k=l

Writing Eq. 5.8 out in full gives

c,, :ds'z v {ci i ds = [ pX b1 da (5.10)
X 4’1 j I jf ¢

Sm n

in which 5;k is the stress tensor derived from the approx-
imate solution ai . This equation ensures convergence

of the approximate solution if the co-ordinate functions

are complete in HA . By noting that the energy product
defined by Eq. 5.7 contains first derivatives of the dis-
placement it is sufficient that the assumed displacement
field be continuous throughout SL . Thus a finite ejement
approximation may give use to stress discontinuities at
element boundariés. Further it can be noted that the
boundary conditions prescribed on Sy and Sy contain first

order derivatives and are therefore natural. The co-ordinate

functions therefore need not satisfy these boundary conditions.


http://ffr.fi
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If the co-ordinate functions are chosen from

-]

HA i.e. if they have continuous first derivatives,

which ensures a continuous stress field, and satisfy. all

the boundary conditions, then

J‘ Tkh‘? Jﬂ. =J5Th 43 (JSL + \YCELT()PJTJS (5.11)
2 5

Eq. 5.10 can then be written

J’;E;h,k‘#j de = LFXT?PJ-TJQ ;;1“ (5.12)

A
necessary to express the energy product in its symmetric

Thus if the co-ordinate functions are in H, it is not

form.

In general Eq. 5.12 may be written

[ar. ¢; ]; = ({0 4 Trhes (5130

where

T 7° _ T | (5.13b)



5.2 Nonhomogeneous Boundary Conditions

The governing equations are

" 0. - ek ¢

LLL = u: € SL(
ULj n‘i = TLO € ST
0;] o+ Cdp E € € Sy
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(5.

(5.

(5.

The approach in this case is-to change variables in such

a way that the problem is reduced to one with homogeneous

boundary conditions. Thus, assume that there exists a

3 ' ! 3 3
function u; , whose components have continuous first

derivatives, such that

"0 = T
0y 1 :
UZ-J'nJ- +ocu; = C;

L
Define a new variable uﬁ such that

[ |
u, ¢ T Yy

]
=

Substituting Eq. 5.16 into Eqs. 5.14 and taking note of

Eqs. 5.15 gives

(5.

(5.

(5.

(5.

14a)

.14b)

14c)

14d)

15a)

15b)

15¢) -

16)



Thus in terms of

conditions, and the only difference from Eqgs.

80

= f)X‘_ + O.L)"') —1 ‘(p;_" £ S

= 0 3 Su
= 0

€ 57

' = 0 e s,

(5.17a) -

(5.17b)

(5.17c¢)

(5.17d)

1]
U

the problem has homogeneous boundary
5.1 is the

If this term were known

introduction of the term

Ugﬁ

it would be possible to obtain an approximate solution for

il
u,
functions were compl
corresponding to the

Assuming

- i
UT

the required Galerki
e (| T
L Ur ¢J
Thus a solution for

|

ete with respect to the H, space

“energy product given in Eq. 5.7.

T
Tk YR

LT
=zq
k=1
n equations, from Eq. 4.25; are

L= (4]

T=La3 .
j= h”.L

u-ll could be obtained such that

8

1]
- U |A"ﬁ’ 0

and convergence would be ensured if the co-ordinate

(5.18)

(5.19)

(5.20)



81

However, a solution may be obtained directly for

u.

» - l - 3 -
i w1thou§ actually knowing u; . This is accomplished

by assuming an approximation for the components of u; in

the form

£

T
L
.
o=, W T= 23 (5.21)

R=

where the set of functions {?*k} is complete in the F\A
space considered with respect to the nonhomogeneous boundary

"

- '
conditions. Then as the function u; + Y4 satisfies such
nonhomogeneous boundary conditions it follows that there

exist aTh such that

U

- (Epru) | >0 e LU == (5.22)

- - 1
Further the function u - (“L + u;) has homogeneous

forced boundary values and thus Eq. 5.22 implies
- | \ .

where 6, = ¢@,, s, , gsg. is an arbitrary function in
the space considered, with homogeneous forced boundary

values. Thus in particular

T= ‘1243
.
k= ly... L

I
@)

[ aT - (ar + uT ¢k ]
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or
[ ’4); ]A = [O,-ur, & ]-A. (5.24)
Eq. 5.19 can therefore be written
[dr, 4], = Tﬂf"h Lurs 4], (5.25)

Now from Eq. 5.17a

(74"’ <PJ B JPX - T 4"1’1

= J((JXT @]- Jle cﬁ,k)da +f0t'hnk¢;o{s

Using Egqs. 5.15 and the fact that ?; =0 on 5u gives
({,",Sf’f) _ Jpx l?;—o}‘kd?:),k)dsz +
JT4)AS +fC—cuT Chds
St ' Sm

Thus Egqs. 5.26 and 5.7 enable Eq. 5.25 to be written

Car &3, = (pXi 8]+ ETT"cﬂds + yc;cpgds (5.27)

Sm

(5.26)

which are the Galerkin equations that govern a solution

in HA when the boundary conditions are nonhomogeneous.
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Written out in full using Eq.. 5.7 these equations become

y&”#{’k ds + SCL—LTCHO‘S
s 5m

[prediin « [meds o [cgias oo

s

I

Sm
in which it has been required that the approximate solution

for u; given by Eq. 5.21 should satisfy the nonhomogeneous
forced boundary conditions and that the co-ordinate functions
¢; should satisfy homogeneous forced boundary conditions.

The forced boundary conditions are those occuring on S,.

In generating a finite element solution there ‘is
no necessity to introduce different approximations corre-
sponding to the '? and ¢ co-ordinate functions. For a
finite ejement approximation in HA the co-ordinate func-
tions associated with the degreesof freedom that do not
lie on Sy satisfy homogeneous conditions on- Sy . Egs.
5.28 are solved by first specifying the values of Ak
that 1ie on S, and eleminating these Q.. from the
equations. The remaining co-ordinate functions satisfy
homogeneous forced boundary conditions and thus only one
set of co-ordinate functionsAneed_be introduced.

A solution in H: can be achieved by choosing

co-ordinate functions that satisfy all the

nonhomogeneous boundary conditions and have continuous
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first derivatives. - In this case Eq. 5.28 may be written

T & de = Pk ¢JTdQ T=ha3 (5.29)
J 23 )

- =ty L

[a-. 971 = ({-.95) (5.30)

which is the same as Eq. 5.13a obtained for the homogen-
eous boundary condition problem.

It remains to demonstrate that the approximate
solution U, obtained from Eq. 5.28 converges to the

correct answer. Using Eq. 5.23 it is possible to write
- 1 )
- 5.31
[d,,6.1, = [& ' +u,6.], (5.31)
Also Eq. 5.16 may be used to write

[uL,GLJA = [u;+uf, BL]A (5.32)

Subtracting Eq. 5.31 from Eq. 5.32 gives
- i -
[ut'uc.ea]'\ = [u -a.,6.]

Using the Cauchy Bunyakovsky inequality gives

Lui-

C[;_", QL]A $ o bug -ug |
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Eq. 5.20 then implies

[ Uy —iIL’ al ]A — 0

But as &, 1is an arbitrary function with homogeneous
forced boundary values, it may be set equal to u;-u; .

Then

whence

| u; - a; )], —- o (5.33) -

i.e. the approximate solution to the nonhomogeneous boundary
condition problem converges in the norm of }{A to the
exact solution.

The equations governing a finite element solution

in HA may, on the basis of Eq. 5.27, be written as

- _ e eT. @& eT \& o IT o .&T T=l.2,3
Cad 470 = (ke 61+ 17474 +ICT¢J.C;SJ._,;._~£5.34>
52 se e=1,....
T M
in which 5: . 5; represent that portion of the boundary

of element &  that coincides with Sr, S., respectively.
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CHAPTER 6

BOUNDARY RESIDUAL CONCEPT AND VIRTUAL WORK"

In this chapter the equations generated by the
Galerkin procedure as have been presented herein are com-
pared with those obtained from the boundary residual
concept as applied to the Galerkin procedure and to those -

obtained using virtual work principles.

6.1 Boundary Residual Conéept

An alternate interpretation of the Galerkin
procedure that has been presented by Finlayson and Scriven
(4) considers that a boundary residual term is included
with the domain residual in the governing equation.

The unknown parameters are then determined such that the
sum of these two residuals is minimized. Specifically,

the boundary residual considered is that occuring on that
portion of the boundary on which the natura] boundary
conditions are specified. ,Thus if the equation and natural

boundary conditions are
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AiJ' UJ = _FL € S ’ L',.‘/-‘- ,2,3 (6.1a)
By = P € Sy o (6.1)

the required equations become

T=1,2,3 (6.2)
k=l,.. U

‘/ATJUJ - L) b da 4 J(BTJ | Pr)d}) ds =0,

SN

where the components of the approximate solution &i have

been assumed to be

™

arg P | (6.3)
|

_'Cl
Il
™

and this approximation satisfies the forced boundary
conditions.

It will be shown that such an approach leads
to the same equations as have been developed herein for
a solution 1in H; but that different equations are obtained
in HA if the forced boundary conditions are not
homogeneous.

Consider again the nonhomogeneous problem defined
by Eqs. 5.14. The equations obtained by the application

of the boundary residual concept are
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f(-&w -pXe) 9y da 4 J(ETJ y ~Tr) $r ds
SL 5r

(6.4)
+J(6-n-+ca -C°) Tds = O T=1,2,3
Sm K ' ! ¢k | ’ R =ty L

First consider the generation of a solution in
H; .. As was mentioned in Chapter 5 the co-ordinate
functions must then be such that the stresses are continuous
throughout the domain and all the boundary conditions are

satisfied. Under these conditions Eq. 6.4 reduces to
— T _
- L. - T
f Oroj ¢ dm = Jp X ¢, ds (6.5)
a2 2

which coincides with Eq. 5.29. Thus the boundary residual
concept gives the same equations as does the Galerkin
procedure if the solution is sought in H; .

If a solution is required 1in HA the required
equations derived on the basis of the boundary residual
concept can be obtained by applying Gauss' -theorem to

Eq. 6.4. This gives

L(%' 4’/;/' A X+ ¢kT)d52 ~ J;&rj n ‘P;: ds

St

+ [ (5yny 1) g ds [(3y5-co. - s 0
S5t
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Therefore

L&TJ #’j da  + jsc Ur 47; ds = L.F) X+ 6]5; ds

o | T o |T -
-+ JTT 4’; ds + j C; qbkals + far.n-uﬁ ds
5S¢ Sm Su.‘J'J
which corresponds to Eq. 5.28 only if the forced boundary

(6.7)

conditions are homogeneous.-

The bodndary residual concept, as presented
herein, would appear to be an attempt to express the
Galerkin equations in-a form in which co-ordinate functions
from HA are admissable by a more intuitive approach than
has been presented in this thesis. However the approach
is not entirely correct and should be modified somewhat.
The required modifications would be to express the assumed

solution in Eq. 6.2 in the form
. A

d, =7, 0 e (6.8)
k=1

This approximation is required to satisfy the nonhomogeneous
forced boundary.conditions, whereas the co-ordinate functions
%: should satisfy homogeneous forced boundary conditions.
Then integrating Eq. 6.2 by parts results in the correct
equation as given by Eq. 5.28. In this case-the physical
interpretation of Eq. 6.2 is that the domain residual plus

the residual on that portion of the boundary corresponding
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to the natural boundary conditions are made orthogonal
to a finite number of displacements that satisfy homogen-

eous forced boundary conditions.

6.2 Virtual Work

The principle of virtual work states that for
any system in equi]ibriﬁm the internal and the external
work performed by the existing stress system as the body
moves through any compatible virtual displacement should
be equal. A compatible displacement is one that satisfies
homogeneous fofced boundary conditions and ensures con-
tinuity of the principal derivatives i.e. those derivatives
of order less than m if the governing equation has
derivatives of maximum order 2m . Such a displacement
function is allowable in HA , and further, as was presented
in Chapter 4.3, a set of such functions can be complete in
Hpa

Applying the virtual work principle to Egs. 5.14

gives

J;_IZVTJ(SuT,J+ duj,) da = L(JXT Squsz

(6.9)

+ JT.: SUT AS + U'TJ' n‘,' SUT dS T=123
S ,

T S



91"

where the body has been given a compatible virtual displace-
ment §u, whence it is continuous throughout the whole

domain and 8U;=0 on S, . In this equation o
sents the‘equi]ibrium stress field i.e. that stress field

repre-

that satisfies Eqs. 5.14. The principle of virtual work
states -that Eq. 6.9 must hold for any SuT

Note that as Uii is symmetric

f (UTJSuT, + 0 SU,T)JQ = j‘_‘l;-(O;.JSUT,j+O'U8UT'j)de

a2
Thus Eq. 6.9 can be written

[ (o Buny - p o) dm = | 7 unds

(6.10)
(-CUT+ CT°)SU1—JS - O
St

where the fact that the stress field satisfies Eq. 5.14d
has been used.

As SUT is arbitrary let
- T
\ ] T
éuT = ¢R ! k: l’;"' L

whence
) &
U - = :
T kq
-

and the 4% must be continuous and satisfy homogeneous
forced boundary conditions. If the co-ordinate functions
4;' k: h.”,c- represented all possible degrees of freedom

R
of the system then in Eq. 6.10 it would be allowable to
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replace the 5”7 with ?Z and the stress system would
still correspond to the exact one. However as the co-
ordinate functions in general do not represent all
possible degrees of freedom of the system an approximate

stress field O, is obtained which is defined by

)
\f &ﬂ ¢1ﬁ-<iﬂ. + JCZQT ¢; AS ==
52 S
(6.11)

JPXT 9p dn + JTT 9 ds +JC§Q5; ds T
7] St Sm St
This equation is the same as Eq. 5.28. Thus
for the type of equations considered the equations
developed by virtual work correspond to those generated

by the Galerkin procedure.
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CHAPTER 7

FINITE ELEMENT SOLUTION OF A NON-SYMMETRIC

PROBLEM:

The problem considered is that of panel flutter
as analysed by Olson (14) using finite elements. This
analysis was achieved using virtual work principles and
although no convergence proof was presented the accuracy
of the results was justified by the agreement obtained in
comparison with known solutions. The concepts' presented
herein enable the convergence of his analysis to be
proven, as will be demonstrated in the following dis-
cussion.

The problem concerns the behaviour of a panel
over which a supersonic air stream flows in the positive
9 direction. The specific question is that of determining
the conditions under which the motion of the panel becomes
unstable. The panel is assumed to be a stress free plate
and only one dimensional deformations are considered.

Neglecting the effect of the air entrapped below the panel
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the differential equation and boundary conditions governing

infinitesimal motion of a simply supported panel are (14)

By + BIY +BMa-2L + ml*PPY =0 (7.1a)
axt 9x Mi-1 U ot D at?
Y(o) = Y(i) = Y'(a) = Y'(1) = © (7.1b)
w
: . U
- - 2 >

where m is the panel mass per unit area, q the dynamic
préssure,‘U the freestream velocity, M, the freestream
Mach number, D the plate bending rigidity and Y= w/L,
x = nl.- 3 B=2q L3/D[,M£.-l)'/‘z “are the non dimensional
deflection, streamwise co-ordinate, and aerodynamic
parameter, respectively.

Assuming a solution in the form

Y = y(x) " (7.2)

where, in general, & is a complex number oc-‘-p-f-c'e

Eq. 7.1 becomes

1

hy S+ By’ ~>57 =0 (7.3a)
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y(e) = yl)=y'le)= y'01) = © (7.3b)

where A is an eigenvalue of the form

A=-B()l(Mi-2)/(Me-)Iat = (mZ)D)a®  (7.4)

Thus the problem reduces to the determination-
of the eigenvalues of ‘the non-symmetric Eqs. 7.3 using a
finite element approximation.

First consider the simplified equation that

is obtained if B=0 . Eqs. 7.3 then become
.L{"“' ~hy = o0 (7.5a)
Yle)= 401) = ilo) = y"(1) = 0 (7.5b)

In this case the operator A is given by

A = i‘*4 o (7.6)
d x

Using Eq. 7.5b in can readily be verified that

(Auv)=LCu,v]= f|u"v" de = [v,u] (7.7)
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whence the operator is symmetric. It is also positive
bounded below as can be seen from the following develop-

ment.

un) - u'le) = [ utfe) de

If X, € X . ,
(u'(x.) - u‘(xa))z = (f NLou'(e) dt )
Xa
< (Xu‘xz)JXI(U."(f))Edf < f'(u"(f))adf

Lf
The same inequality results if X £ X. . Thus

()% W) - 2 wix)u'lx) < f'u"(ffaf

(]

_ . |
fouwt®de - 2( [ut)ds) < dex.dxzfu”'(i)ad(:
As the function u is in Dy wule) = uf{1)=0 , whence

fo’2u'(x)adx < folu"(f)adt (7.8)

Now

ulx) = jxu'(t)dt

whence ‘
et = [ [Lwwde)

< xyxu‘(t)zdt < leu'(t)adt

[/
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Yo

| N

Pu(x)zdx < ,Lf u'(t)" dt (7.9)
“O 0

Eqs. 7.8 and 7.9 imply
V! ' | 2
f’u{x)adx < -j}- J u"(x)" dx
[e) [

'ad ! )2

Recall (u,u) = f‘i X and from Eq. 7.7 (Au,u)=‘Y(u.)dx
[} ]

Thus

(u,u) < e (Au,u)

and the operator is seen to be positive bounded below.

The equations governing a finite element solution
of Eqs. 7.5 are given by Eq. 4.29 if K is the identity
operator. For this problem they become

N ' 0 '
e ¢ i=1,...N
2 akf((#)k 4’0& A ‘#’k b )dx=0, j=hN (7.0
= =},..E
k=1 o 2=l
in which an approximate solution for % within each element

has been assumed to be

=

‘{ = ak ‘#’k (7.11)

~
i
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Eq. 7.10 corresponds to that developed in (14) using
virtual work principles. The required eigenvalues are
obtained by setting the coefficient matrix of Eq. 7.10
equal to zero.

From the results of Chapter 4 convergence of
the eigenvalues and eigenvectors in ’4A is ensured if the
co-ordinate functions are complete in HA . The energy
product in Hn is given by qu 7.7 and involves derivatives
of 6rder two. Thus functions in HA must have generalized
second derivatives and hence continuous first derivatives.
The finite element approximation must therefore ensure
slope continuity across element boundaries and be such
that the forced boundary conditions are satisfied. Such
elements will then give a solution that converges to the
~correct answer if they are complete in HA . A sufficient
condition fdr completeness (see Chapter 4) is that the
element approximations be based upon a complete polynomial
of order not less than two.

In the above mentioned paper these conditions
are all satisfied by choosing an element approximation

that is based upon

- Q e 1e 2 & 3
L,e = bo + EIX + £2x + bsx . (7.]2)
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and by choosing degrees of freedom that correspond to

deflections and rotations at each end of the element.

a, at
I )
v, |

<
a| | a;

Thus convergence in HA is ensured and the
results obtained illustrating the monotonic convergence
actually found are reproduced in Table 7.2. Such con-
vergence could have been predicted from the convergence
properties of the Rayleigh-Ritz procedure.

However in the case where the aerodynamic parameter
B is non-zero the operator in Eq. 7.3 becomes

A %44 + Baa_l (7.13)
X X

I

which is non-symmetric and the Rayleigh-Ritz procedure is
not applicable, whereas the Galerkin procedure may still
be used. In order to be ensured of convergence Eq. 7.3a
can be expressed in a form that corresponds to Eq. 3.43,
for which convergence criteria are known, in the following

manner.

L{ — >\TL1 = O (7.14)
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where
[ d‘lL n Bd] B (7.15)

Further, in order to apply the results developed with
respect to Eq. 3.43 it is necessary to show that T is

completely continuous. To do this consider the equation

LU“.-f B ul - f (7.16)

under the boundary conditions 7.3b. f is some arbitrary

function of X .- Now if-

j' G(x, £) 7()(,f)df (7.17)

then G(X,€) is known as the Greén's function correspond-

ing to Eq. 7.16. If G(x,£) is such that

jljlé{x,e‘)edx df < eo (7.18)

then T s completely continuous in L,(s) (9) since

w = T-/ (7.19)

It will be demonstrated that Eq. 7.18 is valid and thus

that T is completely continuous.
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~The existence of a Greenfs function is ensured
if Eq. 7.16 has a unique solution for érbitrary f , which
is the case if the homogeneous equation has a unique
solution. The general solution of the homogeneous equation
can be found by assuming

mX
w = C, ¢ (7.20)

which when substituted into the equation gives

C, (m*+B)m = O
m=o, %(ut/’s'), -a , %[l—éﬁ)

where

Thus
~ax /s (1 + L V3)X afs (1-iv3)X
u=C+ Ce + C3e/a( + Ge

which may be written

U =D + Do + Daeax/acosﬁga_x + D+e°x’§:nﬁgag((7'2”
where the D's are constants and are combinations of the

C’s . Applying the boundary conditions leads to a set

of four simultaneous equations for the D , which was

shown numerically to have a unique solution for all B of

interest. Table 7.1 illustrates the relationship between



AERODYNAMIC PARAMETER

DETERMINANT VALUE

614.
.00
.87
.00
274 .
.00
166.
.00
12
64.

512
421
343

216

125
91

42
27

12

62

37

00

.87
.00
.00

1.00

A2

-69,121.
-41,487.
-24,690.
-14,573.
- 8,556.
- 5,034.
- 3,006.
1,850.
1,190.
- 800.
- 556.
- 388.
- 167.
- 42.
10.

TABLE 7.1

DETERMINANT VALUE VERSUS AERODYNAMIC

PARAMETER

102
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the determinant of the matrix and B . Thus Eq. 7.16 has
a unique solution for arbitrary f ; whence the Green's
function exists. Further the Green's function for the
problem is constructed, by definition, such that it

satisfies the following conditions.

%6 (x,e) + B o6(E) = o, o<x<e (7.

ax* X

Glo,£) = G"(0o,8) = O | (7.

%6(x€) + BIAGIE) = o, Ff<x<I (7.

ax 7 X

G(l,¢) = 6"(1,¢€) =0 (7.
Further G(x,£) , &'(x,€), &"(X,€) must be con-
tinuous at ¥x= & and

— 2%6/(x, )

lom [03 G(x: )

€E+o ox?3

E]
X=£+ € 9)(

=1 (7.
X=#-¢

The continuity of the general solution given in Eq. 7.21
and the above definitions ensure the continuity of the
Green's function for the problem. Therefore as a continuou
function defined on a closed bounded interval is bounded

it follows that Eq. 7.18 holds. Thus the operator T is

completely continuous in the space of functions that are

22a)

22b)

22c)

22d)

22¢)

S
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square summable over [0,1] , and thus it is completely
continuous in H,

Choosing co-ordinate functions that are complete
in H,, as0lson did, thus ensures the convergence of the
eigenvalues and eigenvectors of Eqs. 7.3 when the governing
equations are generated by the Galerkin or virtual work
procedures.

The solution of the problem is characterized
by the fact that the two Towest eigenvalues are real and
distinct for all values of B 1less than the critical value.
B.e which first causes flutter; but they approach each
other and coalesce to A,, when B= B, . Table 7.3
reproduces the results obtained and demonstrates the
convergence obtained for BcR and )CR . In this case
it is noted that the convergence is not monotonic.

The required Galerkin equations are obtained
directly from application of the procedure to Eq. 7.3a.

In terms of a finite element approximation the equations

are
|

N el (ol o' e e e
Z,: akJo( X qSJ + B O 4‘)’ -2 ¢, 43/-)4/x=0, k=l,..N (7.23)

e=|,..-.E

which correspond to those derived by Olson on the basis

of virtual work principles.
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Total . . .
Number First Eigenvalue Second Eigenvalue
of o o
Elements A % Error Az % Error
1 120.00 23.6 2520.00 61.5
2 98.18 0.79 1920.00 23.1
3 97.57 0.16 1595.61 2.38
4 97.46 0.05 1570.87 0.79
Exact
Value 97.41 1558.55
TABLE 7.2, EIGENVALUE RESULTS WHEN B=0
Total py
Number CR CR
of 0 0
Elements Ber - % Error AcRr % Error
1 453:.56 32.10 1320.00 25.50
2 398.54 16.07 1206.31 14.69
3 340.72 - 0.77 1027.85 - 2.28
4 342 .34 - 0.30 1043.46 - 0.79
Exact
Value 343.36 1051.80 .
TABLE 7.3, EIGENVALUE COALESCENCE RESULTS
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CHAPTER 8

A FINITE ELEMENT SOLUTION OF THE LINEAR

VISCOUS FLOW PROBLEM

In this chapter a finite element solution will
be developed for the two dimensional flow of an incompres-
sible viscous fluid in which inertial effects may be
neglected in comparison to viscous effects. The develop-
ment further illustrates the application of the Galerkin
procedure to problems involving more than one dependent
variable.

A programme is written that generates a solution
in the HA space, which is based upon minimum convefgence
requirements. Comparison with known solutions are presented

that illustrate the convergence obtained.

8.1 Generation of Equations Governing a Finite Element Solution

The equations governing the flow of an incompres-

sible viscous fluid are
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(i) Equilibrium
- 0. - _ , (8.1a)
U= pko-eds s a
Dt
% 1 = T € S (8.10)
(ii) Constitutive
3 = R .. (8.2)
OZJ 2,«4 dLJ PS‘-) £ 2
(iii) Compatibility
daj = %(V,-_,)- + VJ,.'.) € S (8.3a)
- Vi = 0 € $2 . (8.3b)
)¢

in which Vv, is the velocity,

tive, /o the density,‘dq

D/Dt the material deriva-

the strain rate tensor, f‘ the

coefficient of viscosity, P the hydrostatic pressure, and

S, that portion of the boundary
is specifies. Eq. 8.3b specifies
pressible.

Formu]éting the problem in

and pressure gives the well known

on which the velocity

that the flow be incom-

terms of the velocity

Navier-Stokes equations:-

_P(Ww t ﬁﬂj)+ R‘==ﬁXL“f’9§ (8.4)

Dt
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together with the constraint of incompressibility. If-
the ratio of the inertial forces to the viscous forces is
small compared to unity then the system of equations to

be solved can be reduced to

- . . : (8.5a)
V{v‘x_” +.\/Ju'j ) + Py = PX(. € $2

=V, = O e s2 (8.5b)

O nj = T, es, (850

v, =V eS, (8.5d)

A detailed discussion of the range of applicability of
these equations may be found in Schlichting (15).
Eqs. 8.5 may be placed into correspondence with

the general system of equations.

L w, w, , ws 7T = <\v,V: , P7T (8.7)

=
=
®
=
o
L
n

<ﬁ’ﬁ'ﬂ; =<fh/&,5; (8.8)

5 =
h

Throughtout this section repeated subscripts n ,m will be
summed 1, 2, 3 and repeated subscripts ¢ ,j will be summed

1, 2.
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Note that Eq. 8.5b is included as one of the
equations to which the Galerkin procedure is to be applied.
In this case the residual is a vector V@t with three com-

ponents which are

V.,

m

- 8.9
= Apn w, - /,,2 e /23 (8.9)

The Galerkin procedure then specifies that this residual

vector should be made orthogonal to arbitrary variations

of the assumed vector ¢54 . The required equations are
(Vs @m ) = (V,@,) + [V, 3:) + (vy,05) = O
where &in is arbitrary and therefore this equation may be

written

where W, 1is an arbitrary variation of the Tth component
of W,
Once again it is convenient not to interpret

A"mu% in terms of Egs. 8.5 but instead to use
T = 1,2 (8.1]3)

(8.11b)
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The energy product for this matrix of operators with respect

to homogeneous boundary conditions ig
A w s we) = | (oo v ol (8.12)
( ma a1 UM ﬂ( O—LJ,J v, P D:):)) dSZ

in which'og. is the stress tensor cokresponding to W, and

wa = <VL %L, PYT (8.13)

Rearranging, applying Gauss' theorem and making use of

the symmetry of O0; gives

gy ) = J(qj & ~p'y)ds -[q.).njugas

S

st
I ' |
- Jtavay s - oy - e

{Ahm w"" Wm)

Thus the operator is symmetric and therefore a variational
formulation exists, as has been developed by Johnson (5).
However the introduction of such a functional is unnecessary
as the following derivation illustrates.

From the symmetry proof the energy product of

the operator is
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[wnq wn‘JA= j(‘?f“d d FVJJ Flvj'j)dﬂ (8.14)

73

The appropriate finite element equations can be derived

from Eq. 5.27 by assuming that the approximate solution

within each element is

- -e ~-¢ —e - ~¢ -—eT
w: = < W, W, , Wy 7 =< V,e, V, 1 'Pe 7
where
- @ Ji e eT
v, = Z Ok dhz T =1,2. (8.15a)

P
e e3 (8.15b)
P = kz s CFk
=

Then using Eq. 8.14 it can be seen that

—91 (#: ]Al J'(f‘( T,) JqT ¢k’] - P 4)1?#) (8.162)

=l 2,
s¢

_ 3¢
e 4): ]A ) J‘_ _e 13 s (8.16b)

¥ Vi

The required equations, from Eq. 5.27, may be written

f(r‘ ‘71,} <P - B¢ 4):T>Asz = L{jXTﬁTJsufT:t}fAs (8.17a)

a Sy

=

-\

=1,....E

=|,....N

T e
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Convergence of the approximate solution generated by
Eqs. 8.17 is ensured if the co-ordinate functions are
complete 1in HA . From Eq. 8.14 it can be seen that the
energy product involves derivatives of v, and Vv, of order
one, and zero order derivatives of- P - Denote the
maximum order derivative of w,. (the T component of the
unknewn function w ), Qccuring in the energy product by
m,. > then m=m, =1 , my =0 . Oliveira's work
proves completeness if the elements ensure continuity of
the m,.-1| derivatives and the approximation for each com-
ponent within each element is based upon a complete poly-
nomial of degree not less thenm, . Thus it is sufficient
that the co-ordinate functions for w,=V, and w,=y, be
based upon a first order polynomial and énsure continuity
of . the velocity. The co-ordinate functions fqr‘u@:=F need
only be based upon a zero order polynomial. Thus the
pressure approximation within each element may be a con-
stant, and need not ensure any continuity between elements.
Further it can be noted that boundary conditions
that involve the pressure or first derivative of the velécity

are the natural boundary conditions. Hence the boundary
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condition on 5} is the only forced boundary condition.
The approximate solution Ejn , Or more precisely the
components Q and G; , must therefore satisfy this
forced boundary condition.

If a complete set of functions is chosen from

HO

A
the energy product in its symmetric form. In this case

then as in Chapter 5.2 it is not necessary to express

from Eq. 8.12 it can be seen

gt ! VA (8.18)
["‘)ﬂ’ Wa ]A = j('acj.J'VL'PVm)dﬂ
£ 13
whence
[(Dg. eT ]"-a _ 5_2 ¢QTASZ. T=12 (8.19a)
T2 TR A gT‘)’) k -
(13
—e e3¢l _ 1ed (8.19b)
LI N .
L&) 9, ]A L& Y]] ¢ d=
The required equations for a solution in H; are then
obtained from Eq. 5.30:
= ¢ et e’ T=1,2  (8.20a)
.. . dea = X d= ' -20a
j TJvJ ¢k J P T¢k Q:I,_,..E
¢ Qe h__,h.__N
= .20b)

- —.‘,_ &3 da ) e=l,...6 (8
f \OV 4% kr:-~P
=¢ !
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o
For a finite element solution in HA the elements must

ensure continuity of the pressure and of the first
derivatives of the velocity. The development of an

element to sqtisfy the pressure requirement presents no
problem; to derive an element that satisfies the velocity
requirements is somewhat more complicated but such an
element has been developed for use in the analysis of plate
bending problems (1). Thus the generation of a solution

is certaiﬁ]y feasible in this case. However such a

solution will not be generated in this thesis.

8.2 Development of a Finite Element Model

In this-section a finite element model is
developed in | HA assuming Zero body forces. The
required equations are given in Eqs. 8.17, omitting the
body force term.

The minimum conditions for completness presented

in the previous section are satisfied by assuming

-2 3 € e
V. = by, o+ brox o+ brsy T=1e (8.21a)
B = ¢ (const) (8.21b)

Which in the notation of Eqs. 8.15 is
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3 T

- e < € €

Vo =/, Vi § T= 1,2
k=1

]59 = —=n% [const)

where vfk is the velocity in direction T at node R and
Ae is the pressure in element € , assumed constant.

The required condition of continuity can then be satisfied

by assuming a triangular element with six degrees of

freedom for the velocity and one degree of freedom for

the pressure. This element is shown below.

Ve

23

Note that the location of the nodes and the
linearity of the assumed velocity field ensure that the
velocity is continuous across element boundaries and thus
throughout the whole domain as required.

Although the element would appear satisfactory,

it is in fact not suitable for problems in which a
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relatively large number of velocities are prescribed.
The difficulty stems from the incompressibf]ity condition
which constrains the nodal velocities in each element.
If the domain is subdivided into E elements there are
then E consfraintgequations for the 2(E+2) velocity degrees
of freedom. Thus there are E+4 degrees of freedom remain-
ing to satisfy the equilibrium condition. Therefore if
the number of prescribed velocities exceeds (E+4) no
solution can exist.:

Equivalently, the difficulty can be seen by
considering the equations that must be solved to obtain
the required nodal velocities. The assembled equations

are obtained from Eqs. 8.17 and they may be expressed in

the form
- 2L r— E—»
| o (R.\
| v’ R' |
[ X :
| \' R
' ! ! .
Kll ] K|2
[ .
| : =
' i
e v R
l N 0
l ! 3
e o |
I G
_ l . \>‘ 0
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[}
where the ‘R correspond to prescribed velocities and

are unknown. If F velocities must be prescribed to

satisfy the forced boundary conditions then this system

)[R
K\ K E {

|

|

|

| : ;
I : > (8.22)

I v [ \R
-

|

|

|

|

of equations may be reduced to

- B pa— b —p

<, 0 :i
i IR

where B = 2L-F. In ordéer for a unique solution to exist

for the nodal velocities and element pressures the matrix’

K defined by.

must have a non-zero determinant. Thus all 1fS’POWS mus t
be linearly independent, which means B 2 E i.e. 2L-F>E.
But L=E+2 whence E+42F becomes a necessary condition for

a unique solution to exist. Which of course is the same
conclusion that was obtained by the more physical argument

presented above.
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To avoid this difficulty it is advisable to
modify the element. To do this assume a velocity field

that is based upon a second order polynomial, i.e.
- e £ e JaT ‘
VT = z V'rh k T=|,2 (8.23)
k=1

and a triangular element with nodes at the mid point of the
sides and at the corners. The pressure assumption remains

unchanged.

In this case E elements result in 6(E+1) velocity degrees

of freedom and the number of prescribed velocities must
exceed 5E+1 for no solution to exist. Once again continuity
of velocity is ensured, as the three nodal velocities on
each side of the element uniquely determine the quadratic
distribution assumed, but continuity of ve]bcity‘gradient

is not obtained.
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The assumed velocity field is expressed directly
in.terms of area co-ordinates (3) which are characterized
by the property that they automatically satisfy Eq. 4.4.
Thus

¢: =<!‘{2£|"‘)7 45{3, 23(2f3_1)74f3[5’ fs((5")14{521> (8'24)

where
5:\ anbfs'xs‘h v Y3 Ys Xs-X5) !
534‘—' L Xs"fn— Xis 3 Ys= Y0 s Xi- Xs X (8.25)
2A
f5/ L_X‘lfs —X"(‘ln I P P XB-X.'__ ‘-/

in which A is the area of the triangle and (XN,qN) are the
co-ordinates of node N. Fig. 8.1 further defines these
co-ordinates.

Eqs. 8.17 therefore take the form

(Vi g 4o o, 4 Y = [T ST oo
St

g=1,.-E
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(2,0,%) (0,%,"2)

2 3
,0) (Y2 ,72,0) 0

Fig.8.1 DEFINITION OF AREA COORDINATES.
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b .
f(z Vﬁ CVJ- ) da =0 e-1..e (8.26b)

Qe n=t{ n,J

e
in which the =\ has been cancelled from Eq. 8.26b.
Eqs. 8.26 may now be assembled and solved for the unknown
velocities and pressures. The programme used for this

is included in Appendix 1.

8.3 Comparison with Known Solutions

~Two problems are solved for which the exact
solutions are known and the convergence of the finite
element solution is illustrated. The first example
concerns the flow of a viscous fluid between parallel
stationary plates of infinite extent that are a distance
Zd apart and the second, that situation when one of the
plates is moving with fespect to the other at constant
velocity (Coueette flow). ~ The exact solution for both
these cases is presented by Schlichting (15) and these
solutions are summarized below. In both cases the motion
is such that the acceleration term in Eq. 8.4 is identically

Zero.
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(1) Parallel Flow.

W

2d

|

/

|

| e
T(i \\“
|

|

!

i
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I

|

I

|

|

I

|
7 / ///( ~ 7
l"——“““L————h

The boundary conditions are

plo.yl = P P(Lsy)l =Pz 2 vix,td) = o

The solution is

' = -~ L Pa-P (d*-¢*

vix.iy) 2 P_,E_ (d*- 4*)

d——E =0 CLP = P_?-,_:_P'
dy dx L

(ii) Couette Flow.
U
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I |
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f |
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' |
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' |
' |
b L
! }
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The boundary conditions are

Plo.y) =P,

V(X;'d) = 0

The solution is
vix,y) = Y y+ d) - L pe-py (dz"iz)

2d ?_rA L
dp - o dp . P.-P
d? dx L

In the example considered the following values

were used:
b= 20X 078 16 sec [{”
L = ed = 2ft
u = 5 {.P.s
2x 100% pos. .

bx10 % p s f P, =

The approximate solutions corresponding to three
The

P

different subdivisions of ‘the domain were calculated.

subdivisions employed are jllustrated in Fig. 8.2 and
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involve the use of -2, 8, and 32 elements. Figs. 8.3, 8.4,
and 8i5 show the results obtained for the parallel flow
prob}em for the different subdivisions of the domain.
The resulting velocities are compared with the exact
solution in Fig. 8.6. Two values of velocity are plotted
for each subdivision corresponding to the different values
obtained from nodes at the same hefght of the same
triangle. In each case it can be seen that these values
span the exact solution and with increasing number of
elements both values converge to.the exact solution.
Similar results were obtained for the Couette flow
problem and Fig. 8.7 illustrates the convekgence obtained.
In both cases the exact velocity solution is a
quadratic distribution. Thus as the assumed velocity field
within each element is quadratic it would be expected that
an accurate answer would be obtained. However, assuming
the pressure to be a constant within each element whereas
the exact solution is a Tinear distribution would appear
a more realistic test of the convéergence of the solution.
Fig. 8.8 compares the exact solution with the pressures
obtained on the assumption that the pressure acts at the
centroid of its triangle. The pressure distribution for

the parallel and  Couette. flow was found to be the same,
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and excellent agreement was obtained with the exact solution

even with the two element subdivision.



a) 2 Elements

b) 8

Elements

/|

¢) 32 Elements

Fig. 8.2 ASSUMED DOMAIN SUB-DIVISIONS .
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L L

¢— 5.56 Jr—» 5.56

T 7

Velocity in fps.
C:=Pressurein psf«10*

Fig.8.3 2 ELEMENT PARALLEL FLOW SOLUTION.
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L

o—=3.96

> 3.92

S S

Velocity in f. p.s
O-=Pressure  ps.f.x 10?

Fig. 8.4 8 ELEMENT PARALLEL FLOW SOLUTION.



129

¢
L L /P//

Velocity in f.p.s.

O=Pressure p.s.f. x 104

Fig.8.5 32 ELEMENT PARALLEL FLOW SOLUTION.
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CHAPTER 9
SUMMARY

A mathematical framework for the finite element
procedure has been presented that shows the method to be
a technique for generéting an approximate solution for a
~given equation in terms of known functions piece-wise
defined over the domain, and unknown parameters. The
unknown parameters, which are usually nodal values of the
required functions or one of its derivatives, may be solved
for in a number of different ways. Any technique that
~gives a solution that converges to the correct answer with
increasing number of elements is equally valid. The
Rayleigh-Ritz procedure and virtual work principles have
commonly been used to generate the required equations.
However, the Rayleigh-Ritz method is limited to those
problems whose solution corresponds to the stationary value
of a known functional and the virtual work approach does not
yield convergence criteria.

Using results obtained by Mikhlin (9), it has

been shown that the Galerkin procedure enables convergence

133
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criteria to be stated for a wide class of problems. For
those problems to which the Rayleigh-Ritz method is
applicable the Galerkin method coincides with the Rayleigh-
Ritz procedhre, but there exist many problems for which
Galerkin is applicable but Ray]eigh—Ritz is not.

It is often assumed that Galerkin's method.
requires-that the assumed co-ordinate functions satisfy
all the boundary conditions; however, it is shown that by
suitably formulating the problem it is often only necessary
to satisfy the principal boundary conditions.

The boundary residual concept has been shown to
lead to equations that are the same as those developed by
the Galerkin procedure if the forced boundary conditions
are homogeneous. If this condition is not satisfied the
concept leads to incorrect equations. A corrected version
of the boundary residual concept is presented which shows
it to be equivalent to app]ication of the virtual work
principle. It is further demonstrated that deriving the
equations governing the equilibrium configuration of a linear
continuum using virtual work leads to the same equations
as are obtained by solving the equilibrium equations using
Galerkin's method.

The convergence proof of Olson's (14) finite

element analysis of the panel flutter problem has been
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presented. This proof illustrates the application of the
Galerkin procedure to a problem for which the Rayleigh-
Ritz method is inapplicable. The application of the Galerkin
procedure to problems involving more than one dependent
variable has been illustrated by generating a finite element
solution for the linear viscous flow problem. The develop-
ment indicates that even if a variational formulation of
the problem does exist the Rayleigh-Ritz procedure is not"
necessarily the most advantageous way to develop the
required equations. Numerical results obtained show
excellent agreement with known solutions.

Attention in this thesis has been confined to
the consideration of conforming elements, however the
approach adopted eénables the study of non-conforming elements
to be undertaken in a systematic manner. ' Further, adopting
the point of view proposed.enables the convergence of a
finite element approximation to be investigated for a far
wider class of problems than have been considered herein.
For example, the work of applied mathematicians concerning
the convergence of Galerkin's method for non-linear equations
becomes of immediate interest to those concerned with the

finite element solution of non-linear problems.
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SIGNED ON AT 14:37:28 ON 08-18-71
ST *SOURCE™

PROGRAM H2 FOR _SIOW VISCOUS FLOW OF INCOMPRESSIBLE NEWTONIAN FLUID

..... 1. C
2 C 1USING QUADRATIC DISPLACEMENT FIELD AND 6 NODE TRIANGULAR ELEMENTS
3 DIMENSION NP1{150),NP2(150),X{150),Y{150) ,NODEL(150),NODE2(150),NO
, 4 1DE3(150),NODE4(150),NODES(150),NODE6(150),TOA{100) sSE(13,13) ,SKI(90
5 1,250), S{90C0), VK{99),MU{100),MC{13)4DELTA(160),X1{150),X2{150), X
6 13(150)9X4(150),X5(150) 4X6(150),Y1{150),Y2(150),Y3(150)sY4(150),Y5I
7 1150) 2 Y6(150), NODET(150),A1{100),A5(100),A3(100),B1(100)4B3{100),85
8 11100) yR{100)yRK(300) yRK1{150) ,RK2{150)
"9 REAL MU
» 10 DOUBLE PRECISION S, DELTA,RAT10,SUM,DE
11 COMMON/ZDET/DENCN
12 COMMON/ZCON/COND
13 C WHEN NUMRERING _SRTUCTURE 1)FIRST OR L AST DEGREE OF FREEDOM SHOULD
14 C NOT CORRESPOND TO PRESSURE,2)PRESSURE DEGREE OF FREEDOM SHOULD NOT
* 15 ‘C BE THE SMALLEST NUMBER IN ITS TRIANGLE .GT. MFIX .BOTH LEAD TO A
» 16 C BLOW UP OF BANDI
17 C NODES NO. 123456 NOT 142536
18 e NO. FOR MIN. BAND WIDTH IGNORING FIXED DEGREES OF FREEDOM
19 C NEIX=NOoGF _PRESCRIBED VEL. NOT = TO ZERC+ANY PRESCRIBED PRESSURE
20 o NFIX0=NO. OF VELOCITIES PRESCRIBED= TO 0
21 o IF ND PRESCRIBED FORCES NFORCE=0,0THERWISE NFORCE=1.UNKNOWN FORCES
. 22 C READ IN AS ZERQO FORCES
23 READ(5,2 )NELEM,NNODE,NFIX,NFTX0,NFORCE
L 24 2 FORMAT{(5110)
25 WRITE{644)NELEN,NNODE yNFIX ,NFIXCyNFORCE
26 4 FORMAT('NELEM = %,110 ,'NNODE = *,110,'NFIX = ',I110," NFIXO ',110,
27 1'* NFGRCE ',110) ‘
. 28 DO6 1=1,NELEM
29 READ(S,S)NODEI(I)'NDDEZ(I)yNODEB(I),NODE4(I) NODES( 1) ,NODE6(1)4NCD
" 30 1E7(1)
_31._ 5 EORMAT (7.1.10)
32 6 CGNTINUE
33 c NODE 7 = PRESSURE IN ELEMENT (CANNOT BE SPECIFIED AS 1)
. 34 C SPECIFYING A NEGATIVE PRESSURE CORRESPGNDS TO A COMPRESSIVE STRESS
35 WRITE(6,8)
" 36 8 FORMAT('ELEMENT NO. NODE{1) NODE{2) NODE{(3) NODE(4) NODE(5)
37 LNODE (&), NODE7Z (1) *)
38 D010 I=1,NELEM
39 WRITE(6,9)I4NODEL(1),NODE2(1),NODE3(I),NODE4(I),NODES{1),NODEG(]I),
. 40 1NODE7 (1)
41 9 FORMAT(17,111,619)
42 10 CONT INUE
43 C ONLY INTEGER VELQCITIES ALLOWED o
44 D012 J=1,NNODE
45 READ(5,11) NPL{J)ZNP2{J) s X(J) 9 YU JI4RKLI{J)RK2{ D)
L 46 11 FORMAT(2110,2F10.3,2E15.4)
47 12 CONTINUE
¥ 48 C ONLY NEED SPECIFY X,Y FOR NODES 1,3,5 AS2y496 ARE MID POINTS
49 WRITE(6y14) , R
50 14 FORMAT(' NODE NO. NP1 NP2 X Y X-FO
51 1RCE Y-FORCE')

D016 J=1sNNGDE




53 WRITE(&s15)JsNPLIJYsNP2{J) s X (I} Y(J) 4RKLILJ)RK2( D)
54 15 FORMAT(I16411141114F842,F8.2y2E15:4) 139
55 16 CONTINUE
56 c IF NODE IS FIXED AT O NP=0, IF NODE VEL .=V NP=V,IF NODE IS FREE
» 57 C INP=1
> 58 c - FOR PRESSURE DEGREES OF FREEDOM NPl=1,NP2=-1
59 T MFIX=NFIXO+NFIX
60 N=0
61 NFIX1=NFIX+1 B
62 NU=NFIX+NFIX0O
¥ 63 NUU=NF I X0
i b4 D025 J=1,NNODE
65 IF(NPL(J).EQ.0IGDO TO 161
Y IF(NP1{J).EQ.1)G0 TO 18
. 67 - GO 10 163
" 68 161 N=N+1
" 69 VKINI=NP1(J)
» 70 NP1{J)=N
71 WRITE(6,162)J4N
T2 162 FORMAT(* NPL{'3I3,%)=%,14)
73 GO T0 20
74 163 NUU=NUU+1
> 75 VK(NUU)I=NP1(J)
s T6 : NP1 {J)=NUuU
77 WRITE(6417)JyNUU
* 78 17 FORMAT(* NP1(',13,')="',14)
79 GO.TQ 20
80 18 NU=NU+1
* 81 NP1 {J)=NU
\ 82 WRITE(64519)JyNU
83 19 FORMAT(?' NP1{",13,')=",14)
84 20 IF(NP2(J).EQ.~1) GO TO 25
. 85 IF(NP2(J).EQ.0)GC TO 201
86 . TF(NP2(J).EQ.11GO TQ 22
87 GO TQ 203
, 88 201 N=N+1
89 VK{N)=NP2(J)
90 NP2 {J)=N
91 WRITE(64202)JyN
92 202 FORMAT{* NP2(*,13,')=',14)
T 93 GO TO 25
. 94 203 . NUU=NUU+1
94 VKINUUI=NP2(J)
=Y NP2 {J)=NUU
. 97 WRITE(6,21) J,NUU
98 21 FORMAT{* NP2( 'y 13,')=1,14)
g GO TO 25
Jdog 22 NU=NU+1
101 NP2 (J)=NU
104  WRITE(64,23)J4NU
107 23 FORMAT(' NP2(*'913,%)=",14)
104 25 CONT INUE 4
105 IF(MFIX.EQ.0)GO TO 291
10¢ WRITE (6,27)
107 27 FORMAT (! VK ')
104 DO 29 K=1,NUU
109 WRITE(6,28)VKI(K)
11¢h 28 FORMAT(1X4F12.2)
111 29 CONTINUE
17 291 WRITE(6,30)NU




11 30 FORMAT(' TOTAL NO. OF DEGREES OF FREEDOM =1,16)

11 DO 301 J=1,90C00

11 S(J)=0 140
116 301  CONTINUE

117 DO 32 1=1,90

118 DO 31 J=1,250

119 SK{I,J)=0

120 31 CONT INUE

121 32 CONTINUE _

122  IF(MFIX-90)32%5,325,323

123 325  IF{NU-250)326,326,323

124 323 WRITE(645324) -

125 324  FORMAT( 'DIMENSION OF SK EXCEEDED ')

126 GO TO 70 .

127 326  CONTINUE .

128 C MBAND IS ASSUMED MAX. BAND WIDTH -IF EXCEEDED PROGRAM PRINTS OUT
129 C THE FACT AND STOPS

130 ' MBAND=50

131 FACTOR=.00001

132 C FACTOR= COEFF. OF VISCOSITY DIVIDED BY 2

13 DO50 1=1,NELEM »

134 MAX=0

13 MIN=1000

136 DO 322 L=1,13

137 D0 321 K=1,13

138 . SE(K,L)=0

139 321 CONTINUE

140 322  CONTINUE

141 X1{I)=X{NCDE1 (1))

142 X2{1)=X{(NODE2( 1))

143 X3 (1)=X(NODE3 (1))

144, X4(1)=X{NODE4{ 1))

145_ X5(13=XANODES (1))

146 X6(I1)=X{NODE6(T))

147 YI(I)=Y(NODEL(I))

148 Y2(I)=Y{(NODE2({1))

149 Y3(1)=Y(NODE3 (1))

150 Y4(1)=Y{(NCDE&4(1))

15 Y5 (1) =Y.(NCDES (1))

15% Y6(1)=Y(NCDE6(I))

153 AL(TI)=X5(1)=-X311)

154 | A3(1)=X1{1)=-X5(1)

155% AS(I)=X3(1)-X1(1)

15 BL(I)=Y3(I1)-Y5(1)

157 B3(1)=Y5(1)=-Y1 (1)

15¢ B5(I)=YL(1)-Y3(1)

15 TOAC D) =YL I AXS5 (T I=X3 (1)) +Y3 (1) *(X1(I)=X5(T1))+YS{I)*(X3(1)=-X1(1))
166 _ MU{T)=FACTOR/TOA(T)

161 C MU = COEFF OF VISC. DIVIDED BY 4A

165 SE(1,1)=(2%B1L(T)**2+A1(1)%%2)%MU(T)

163 SE(1,.2)=A1 (1) *B1 (1) MU L)

164 SE(1,3)=44/3 % (2%BLII)*B3(I)+ALLTI*A3( 1) )*MULT)

165 SE(1,4)= ALITY*B3(1)*MU(L)*4. /3,

166 SE({1,5)= —(2%BLOI)*B3CII+AL(TIRASLI) )XMULT) %1 /3,
16% SE(1,6)= —AL(I)*B3{I)*MU{L)*1./3.

ii? SE(1+7)=0

1o% SE(1,8)=0

176 . SE{1,9)= —{2%BL(I)*BS{I)+AL(I)%AS(T1))*MU(T)*1./3,
171 SE(1,10)= —AL(I)*BS(I1AMULT )®1./ 3,

ll? SE(1,11)= (2%B1(1)%BS(1)+AL{TI*AS (1) I*MUIT)*4./3,
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17E SE(1,12)=  AL(I)%B5{I)#MU(I)*4./3, 141
17 SE(2,2) ={2%ALLT ) %%2+4B LT ) %%2)%kMULT) «
175 SE(243) = BLUTYXAB{I)*MULT)%4./3.
176 SE(244) = (2%ALLTIHA3(T) +BL(I)=B3 (1) )%MU(I)%4,/3,
177 SE(2,5) = ~A3(I)*B LI )*MU{T)*1./3
178 SE{2,46) = -(Z*AB(I)*A1(1)+B3(1)*81(I))*MU(I)*I./B.
179 SE(2,7) =0
180 SE{2,8) =0
181 SE(2,9) = A5 (11%B1(1)*MULT)*1./3.
182 SE{2,10)= Z{2%AL(1) ¥AS(1)+BL(1)*R5 (1) )*MULTI)*1./3.
183 SE(2411)= BLUT)I®AS(I)*MULT)%4./3.
1184 SE{2,12)= (2HAT(I)*AS(T) +BILI)*BS (1) )=MULTI*4 /3.
185 SE{3,3)= (2% (B3{T )% 24B1( I )%B3{ 1)+B1{ 1) **2)+A3( 1) %2+ A3{1 ) %A1 (]
186 1)+ALLT )%%k2) *MULT ) %8, /3.
187 SE{34+4) = (A3(I)*B3LI)+0.5%(ALLII*BI(I)+A(T)*BI(T)I+ALLI)*BLLI
188 1Y 1MU(T)%8./3, '
189 SE(345) = (2%B3(1)*BLIT)I+A3(TI%AL(T) IxMU(T )%4./3.
190 SE(3,6) = B3 (I VXALLI)%MUL T ) *4./3.
191 SE(3,71) = (2%(B3(1)*BS{I)+B3(1)#*%2+2%BL(1)*B5 (11+BL(1)%B3(1)1+
192 LA (I)*AS(I)+AB (I 4% 2+42% ALLTI)*AS( I)+ALI T )*A3( 1)) *MU(I ) %4, /3.,
193 SE{3,8) = (AB{I)*B5(1)+2%A1 (I )*BS(I)+A3(1)*B3(1)+A1{I)%*B3(I))*M
194 1U(1)%4./3, -
1195 SE(3,9) =0
196 SE(3,10)=0
197 SE(3,11)= (2% (2%B3(1)*BS(1)+BI{ 1 )*B5( 1 )+B1( 1)1 *B3(II+BL{ 1) %%2)+
‘198 12%A3(I1RASCI)+AL{IIHAS(I)+AL (I =A3 (I +AL LT ) %%2)%MULT ) %4,/ 3,
199 SE(3,12)= (2%A3(1)%B5(1)+A1(I)*BSIII+AZ(I)*BI(I)+ALLTI)*B1(T))*
200 1U(T)%4./3,
201 SE(4y4) = (2% (A3 #%2+4A LIV HAB(T)+A L T)%%2)+B3 (1) #%2+B3 (1) *B1{
202 11)+B1{I1)**2)%¥MU(1)%8./3,
203 SE(4,5) = AB(TI*BLII)*MU(T ) %4, /3,
204 SEl4,6) = (2% A3 (TI*AL(I)I+B3CI IR 1) )*MU( T ) *4, /3,
205 SE(4457) = (B3(I)*AS(1)+2%B1{I)*A5 (1) +A3CI)1*B3 (1) +B1(T1)*A3(1))%M
206 1ULT) %4 ./ 3,
207 SE(4,8) = (2% (A3 {T)%AS(I)+A3 (T )5#242% A1 (T )XAS(TI+AL(T)*A3(]) )+
208 1B3(1)*B5(1)+B3 (I )% 2+2*Bl(I)*BS{I)+BI(I)“8311)) MU(I)*4./3,
209 SE(4,9) =0
210 SE{4,10)=0
211 SE(4,11)= (2%B3(1)%AS(I)+B1(II*¥AS(I)+B3(TI*AILTI+AL (1I%B1(I) ) %M
212 1UCT) %4 /3.
213 SE{4,12)= (2% (2%AB () *ASII)+AL{T)I=AS( IV +AL (IDXA3(T)+AL(T)%%2)+
214 12%B3{1)%BS (I1)+BL{IV*BS(I)+B1(T)*B3(1)+B 10 T) %%2) *MU(T) *4. /3.
215 SE(5,5) =(2%B3(1)%%2+A3(1)*%2)%MU(I)
216 SE{5,6) =B3111%A3(T)*MU(T)
217 SE(5,7)= (2%B3{1)%B5{II+A3 (1) *¥AS (I I*MU(T) %4,/ 3,
21% SE{15,8)= A1) *BS{TY*MU(T ) *4./3.
21 SE(5,9) = —{2%B3(1)%*B5(1)+A3( 1)*A5(1))#MULT)*1./3.
$#24 SE(5410)= —A3(I1)*BS(I)*MU(T)*1./3.
22 SE(5,11)=0
22 SE(5,12)=0
223 SE(656) =(2%A3( I )¥%2+B3{I1)*%2)*MU(])
224 SE(6,7) = B3 (1) AS(I)*MU(I)*4 /3.
225 SE{6,8) = (2%A3LT)*AS(I)+B3(1)%B5( 1) )%MU(T)*4,./3,
224 SE1649)= SAS{I)*BILI)HMU(TII*1./3,
227 SE(6,10)=  —(2%A3(1)1*A5 (1) +B3(1)%B5(1))*MU(I1)*1./3,
228 SE(6,11)=0
229 SE{6,412)=0 ,
230 SE(7,7) = (2% {(BS(T)**2+B3(1)*BS (T )+B3(1)%%x2)+A5 {1 )%%2+A3()*A5(
23 TIV#AB (I #%2)%MU(1)%8./3.
SE(748) = (A5 (1)%B5 (1) +0.5% (A3 (1) *B5 (II+AS(II*B3{1))+A3(I)*B3(1




233 L))EMUCT) %8473,

234 SE(7,9) = (2%B3{1)%BS(I)+AS{I)*A3 () )*MU(I)*4./3. 142
235 SE{7,10)= BS(I)*A3({1)%MU{I)*4,. /3. ‘

236 SE{7,11)= (2~(85(1)**2+B3(I)*85(1)+31(1)°BS(I)+2*81(1)*83(1))+A
237 15¢( 1)k 2+ A3 (T ) #AS(III+AL(T I *AS{T)+2%AT LI ) A3 (I ) )IxMU(T )*4./3.

238 SE{7,12)= (BS5{II%AS(1)+B5(1)* A3(I)+BI(I)rA5(I)*2*81(1)*A3(I))*M
239 1ULT)*4./3,

240 SE(8,8) = (2% (AS (D) %%24A3 (T )*A5 (1) +A3(1)*%2)+B5(1)**%2+4B3( I )*B5(
241 LID+B3C I %2 ) kMU( T ) %8,/3, '

242 SE{849) = B3{IIXAS{I)*MU(T)I*4./3,

"243 SE(8,10)= {2%AS(T)*A3(I)+BS(I)%B3{T) )xMULI)%4./3,

1244 SE(8,11)= {AS5 (1)*BS(I)+A5(1)*B3( I)+A1(I)*BS{I)+A1(I)*B3(I)*2)%M
245 1U(I)*4,./3. : .

246 SE(8,12)= {24 {AS{T )% 2+A3( 1) *AS(I)+AL(T)IRAS{T)+2*%AL{ 1) *A3 (1)) +8
247 1501 ) %k2+R83 (1) %*RS (1) +BL(I)*B5(T)+2%B1 (1) *B3( T ) *MU(T)*4. /3,

248 SE(9+9) ={2%B5{1)%%x2+A5(T)*%%2)%MU(])

249 SE{9,10)=B5{1)%A5(1)*MUII)

1250 SE(9,11)= (2% BB(I)*BI(I)+A5(I)«A1(I))«MU(I)*é /3.

251 SE{9,12)= AS (T)%BL{IVEMU{I)*4./3,

252 SE110,10)=(2%A5(1)%%x2+B5(1)%*2)%*MU(I)

253 _ SE(10,11)= BS(I) %A L{T ) AMU( T )% 4. /3

254 SE{10,12)= (2%AS (T)XAL(I)+BS{TI)%BLII) ) *MU(1)%4./3,

*255 SE(1ll,11)= (2% (B5( 1) %24 B1L(T1)*B5(1)+BLIT)*%x2)+A5 (I )*:%2+A1 (1) *A5
1256 T{I)+AL (I)%*%2)%MU{13%8./3.

257 © SEl11,12)= (AS{I)*B5(I)+0. 5*(A1(I)*B5(I)+A5(I) BL{I))+A1(I)%B1(
258 LI))EMU(I)%8./3.

259 ... SE(12412)= (2% (AS (T ) %% 24 AL (T *AS{TI+AL (1) k%2 ) +BS( 1) *%2+4B1( 1) *BS
260 LOI)+BL( 11 %%2) %*MULT ) *8. /3.

261 C ASSEMBLE INCOMPRESSIBILITY CONDITION MULTIPLIED BY .00006

3262 A=.00001

263 SE(13,1)=B1(I)*A

264 SE{13,2)=A1(1)%A

_265_ SE(13,3)=4%(B1(T)+B3(1))1%A

266 SE(13,4)=4%{AL1(T)+A3{I))*A

267 SE(13,5)=B3(])%A

»268 SE{13,6)=A3(1)*A

269 SE(13,7)=4%{B3(1)+8B5(1))%A

270 SE(1348)=4% (A3{I)+A5(1) %A

271 SE{13,9)=B5 (] ) %A

272 SE{13,10)=AS{(131%A

273 SE{13,11)=4%({B1(I)+B5(1)) %A

274 SE(13,12)=4%(A1(1)+A5(1))

275 SE{13,13)=0

276 DO 33 K=1,12

277 SE{K+13)=SE(13,K)

278 33 CONTINUE

279 DO 35 K=1,12

280 DO 34 L=1,12

281 SE{LsK)=SE(K,L)

282 34 CONTINUE

283 35 CONTINUE

284 DO 341 K=1,13

28% MC(K1=0

286 341 CONT INUE

287 MC{1)=NP1{NODE1(1I))

288 MC(2)=NP2{NODEL(I))

289 MC(3)=NP1 (NODE21(1))

290 MCl4)=NP2(NODE2(1))

'29; MC(5)=NP1{NODE3(1))

:29 MC{6)=NP2 (NODE3 (1))




293 MC(7)Y=NPLINODE4( 1))
" 294 MC{8)=NP2(NODE4 (1)) 143
295 MC(9)=NP1(NODES(1))
296 MC{10)=NP2(NODES(1I))
> 297 MC{11)=NP1{NODE6(I))
, 298 MC(12)=NP2{NODE6(1))
299 MC(13)=NP1(NODET(I1)
"300 DO 37 K=1,13
301 IF{MC{K)=MFIX)37,437,351
302 351 DO 36 L=1,13
*'303 IF(MC(L)=-MFIX)36,36,352
5304 352 IF{MCIK)=MC(L))353,36,354
305 353 IF(MC(L) .GT JMAXIMAX=MCIL)
¥ 306 G0 TO 36
- 307 354 IF(MCIL) LT MINIMIN=MC (L)
308 36 CONT INUE
*309 37 CONTINUE
»310 NAND=MAX-MIN+1
311 IF(MBAND.GT .NAND) GOTO 372
Y312 WRITE({64371)1 yNAND
- 313 371 FORMAT (' BAND WIDTH EXCEEDED IN ELEMENT ',I4,' BAND WIDTH= *,14)
314 GO TO 70
*315 C GENERATE S{{NU-MFIX)*%2),SKIMFIX*[NU-NFIXQ)) .
+»316 372 DO 48 L=1,13
317 TF(MC{LI-NFIX0)48,48,38
*318 38 IF{MCIL)=MFIX)42,442,39
, 319 39 DO 41 K=1,13
320 IF(MCI{K)=MFIX)401,401,40
321 40 IF(MCIL).LT.MC(K)) GO TO 41
,322 KK=MC ( K) —MF IX
323 LL=MC{L)—-MF I X
324 M= {KK—1)*(MBAND=1)+LL
.325 S{M)=S{M)+SE(K,L)
326 GO TO 41
327 401 MCL=MC (L)-NF IXO
328 SK{MC{K) 4MCL) =SK{MC{K) s MCL)+SE(K,L)
329 41 CONTINUE .
33() GO TO 48
v 331 42 DO 44 K=1,13
339 IF{MCIKI-MFIX)43,43,44
"33% 43 MCL=MC(L)-NFIXO0
2334 SKIMC{K) yMCL) =SKIMC{K) yMCL)+SE(K,L)
33¢ 44 CONT INUE
3 34 48 CONT INUE
.33 50 CONTINUE
338 DO 49 I=1,300
339 RK(1)=0
€340 49 CONTINUE
J341 IF(NFORCE.EQ.0)GO TO 502
Y34 DO 501 J=1,NNODE
34P RKANPL (J))=RK1{J)
344, IF{NP2(J).EQ.-1) GO TO 501
34 TRKAINPZ2(J)I1=RK2(J)
34t 501 CONTINUE
347 DO 504 J=1,NU
TN WRITE (6,503 )RK(J)
v 349 504  CONTINUE
35¢ 503 FORMAT({1X,E16.7)
" 351 502 MFIX1=MFIX+1
352 NUFO=NU-NF [ X0



353 IF(MFIX.EQ.0)GO TO 541 :
354 IF(NFIX.EGQ.0)GO TO 541 144
355 DO 54 L=NFIX1,NUFO

356 SUM=0

"357 NFIXO1=NFI X0O+1

-358 DO 51 K=NFIXO1lsyMFIX

359 SUM=SUM 4+ SK(K,L)¥VK(K)

360 51 CONTINUE

361 p=L=NFIX

362 J=L+NFIXQ

"363 DELTA(M)=RK{J)-SUM

w364 54 CONT INUE

365 GO TO 544

"366 541 DO 543 J=1,NUFO

367 M=J+NF X0

368 DELTA(J)=RK(M)

*369 543 CONTINUE

+370 DO 546 K=1,NUFQO

371 WRITE(64545)DELTA(K)

372 545 FORMAT(1X,E16.7)

373 546 CONTINUE

374 544 NE T=NU-MF I X

"375 RATIO=1.E-6

»376 CALL CBANDI(S,DELTA,NET,MBAND, 1, RATIO)
377 - RNET=NET

378 C=COND/RNET

.379 WRITE(64551D

380 55 FORMAT( 'RATIO OF CONDITICN NO. TO ORDER OF § =',D16.7)
381 WRITE(6,56)DE,NCN

»382 56 FORMAT{ 'DETERMINANT='"D16.7,"'*1.E'13)
383 WRITE( 6,58) }

384 58 "FORMAT {* NODE VEL-PRESS. ')
.385 C [F _PRESSURE TERM =—A THEN ACTUAL PRESSURE IS V.0006%A COMPRESSIVE
386 D060 1=1,NET

387 L=MFIX+]I

,388 WRITE(6,59)LyDELTALI)

389 59 FORMAT(15,D18.8)

7390 60  CONTINUE

391 IF(MFIX.EQ.0)GO TO 70

392 DO 63 K=1,MFIX

393 SUM=0

,394 IFINFIX.EQ.0) G0 70 611

395 DO 61 L=1,NFIX

"396 M=L+NF IXQ

.397 SUM=SUM+ SK(K L) xVK(M)

398 61 CONTINUE

390 611 NFIX1I=NFIX+1

407 NETO=NU-NF1X0

401 DO 62 L=NFIX1,NETO

40 b M=L—NF IX

40B SUM=SUM+ SK{K, L) *DELTALM) _

404 62 CONT INUE

40% R(K)= SUM

4006 63 CONTINUE

407 WRITE(6,64)

408 64 FORMAT(* NODE FORCE ')

409 DO_66_ I=1,MFIX

410 WRITE(6465)I,R(1)

411 65 FORMAT(15,E18.8)

Ll2 £6 CONTINUE




413 70
414
D OF FILE

—~

-~

STOP
END

145
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