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ABSTRACT 

This study is concerned with the minimum cost design of a multi-storey 

building. The building consists of rectangular steel plane frames which are 

evenly spaced and support identical floors and a roof. The frame spacing, the 

column positions within the frame, and the number of intermediate beams spanning 

between frames are optimized using Box's Complex method and the optimum solution 

verified by an exhaustive search procedure. Member sizes for the frame and 

floor system are determined by a fully-stressed design criterion, for the AISC 

code, within the limits of a discrete set of member properties. 

The optimum design for several frames with various widths and heights 

is determined and the influence of the above variables, and the effect of cost 

parameters on the optimum solution is illustrated and the results discussed. 
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Chapter 1 

INTRODUCTION 

Structural optimization has grown rapidly in the last 15 years. Two 
avenues of advancement have emerged: 

(1) analytical optimization; 
(2) mathematical programming techniques 

Automated analysis-design schemes utilizing stress ratio methods and 
energy criterion were used in analytical optimization. In the second method 
algorithms and numerical optimization methods were adapted to problems of 
structural synthesis. 

The purpose of this study is to examine rectangular plane frames. A 
design is defined by a set of parameters, some of which are preassigned while 
others are to be determined. Many designs are possible which will satisfy the 
constraints. The design giving the minimum objective function, while satisfying 
the constraints, is the design sought. 

The automation of a scheme to determine a good solution is demonstrated, 
though no guarantee of finding a local or global minimum is given. 

1.1 Brief Review of Structural Optimization 
Papers by Wasiutynski and Brandt (1), and Sheu and Prager (2) made a 

comprehensive survey of the state of the art up to 1968. References 3, 4 also 
provide excellent reviews. 

At the beginning of the century Michel! dealt with the development of an 
optimum configuration for "trusses" under certain loads (5). The optimum con
figuration consisted of an orthogonal network of tension and compression members. 

Later Cox (6) and Chan (7) applied the concept of "Michel 1 Structures" 
to many problems of design optimization. 
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Using a mode of simultaneous failure a degree of success was achieved 

in the optimization of structural components. Shanley (8) and Gerard (9) and 

other pioneers of structural optimization almost always formulated the problem 

in terms of equations. This implies that certain constraints will be critical 

at the optimum design. The fully stresses design is an extension of the sim

ultaneous failure approach (10), and assumes that in the optimum structure every 

component is subject to maximum allowable stress under at least one load con

dition. 

Klein (11) showed that some minimum weight structural design problems 

could be viewed as mathematical programming problems. Instead of equations, 

inequalities could be used directly. Schmit (12) demonstrated the feasibility 

of using together the methods of mathematical programming and matrix structural 

analysis to provide a continuous automatic process for minimum weight design. 

He (12) defined structural synthesis "as the rational directed evolution of a 

structural system which, in terms of a defined objective function, efficiently 

performs a set of specified functional purposes". 

A general class of structural synthesis problems can be defined in 

proper mathematical form: 

Given the preassigned parameters and a set of distinct load conditions, 

find the vector of design variables (x), such that the objective function f(7) 

is minimized (or maximized) subject to a collection of inequality constraints 

on the design variables 

h .(30 1 0 ; j = 1, 2, ..., m. 

J 

where the functions h.("x) are such that unsatisfactory behaviour of the structure 

is precluded. 

A large class of structural design optimization problems take the form 

of nonlinear mathematical problems. Moses (13) introduced the idea of sue-
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cessive linearizations. A wide variety of techniques are now being used in

cluding gradient projection methods, steepest descent methods and direct 

search methods. These methods have and are being successfully applied to a 

wide variety of practical structures under different load conditions. 

In recent years there has been a renewed interest in the analytical ap

proach to structural optimization. The derivation of optimality criterion for 

a variety of design conditions has been dealt with extensively (14,15,16). 

Sheu and Prager (2) point out that while mathematical programming methods 

have been successful, the optimal design of complex structures taxes the capacity 

of present digital computers. On the other hand the analytical treatment of 

simple problems provides an insight into the analytical nature of optimality 

criteria. 

1.2 Summary of Related Work 

In 1965 Brown and Ang (17) did an extensive study of the minimum weight 

design of planar truss and frame structures. The problem was formulated in a 

standard form as a nonlinear programming problem. 

The design variables considered were member section properties and were 

assumed to be continuous variables. After the optimization, standard structural 

shapes were selected. The objective function was taken as total weight of the 

structure. The A.I.S.C. code set limits on stress and displacement for a 

multiplicity of service load conditions. No configuration variables were con

sidered. They showed that the minimum weight design for a statically indeter

minate structure under several load conditions did not necessarily yield a 

fully stressed design; and suggested the design space was not necessarily con

vex. 

Nakamura and Cornell (18) used a method of successive linearizations to 

solve the problem of design optimization of rectangular plane frames. Member 

section properties and configuration were considered as variables. Total struc-
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ture weight was taken as the objective function. Constraints were typical 

A.I.S.C. stress limits. A single load condition only appears to have been 

used. The solution for the geometry variable converged to almost equal spacing 

of columns. A conclusion of the study was that the design space was convex. 

Cornell (4) pointed out that the accurate elastic analysis methods used 

by Nakamura and Cornell was time consuming and thus not wholly satisfactory. 

Soosaar (19) in his investigation of the cost optimization of topology 

and geometry for planar frames, used approximate frame design methods such as 

portal and cantilever methods for wind load, and an inflection point assumption 

for gravity loads. The frame was thus reduced to a set of statically deter

minate structures and so minimum weight members were fully stressed. A contin

uous set of member sizes were assumed, as well as functional relationships 

among member properties. Constraints on stress followed the A.I.S.C. code. 

Soosaar's objective function was total cost. The cost function included the 

cost of member existence (topology cost) and cost due to member weight. The 

design space was found to be irregular and proved to be sensitive to design 

changes near the optimum. 

A two stage solution technique was used in accordance with an established 

hierarchy of variables. The topology solution was found first by classical 

optimization followed by a quadratic programming algorithm to determine the 

geometry. For any value of topology and geometry variables, the corresponding 

member sizes were also determined. 

Soosaar did not include frame spacing as a variable and ignored the 

problem of floor system design. 

1.3 Plan of Development 

The structure studied is examined in detail in Chapter 2. Variables 

relating to the problem are identified and the constraints and objective func-
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tion are specified. Outlines of an automated solution and design criteria are 

presented. 

Chapter 3 indicates the various methods of solution of nonlinear con

strained optimization. The algorithm to be used is presented and modifications 

outlined. The studied problem is set up in mathematical programming terms. 

The results of the optimization procedure are presented in Chapter 4, 

and compared to an exhaustive search solution. 

Chapter 5 examines the results of design parameter data. 

Finally, Chapter 6 presents conclusions and recommendations relating to 

further research and development. 
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Chapter 2 

THE DESIGN PROBLEM 

2.1 Problem Description 

The problem studied is the design for minimum cost of a multi-storey 

building consisting of a number of evenly spaced rectangular plane frames which 

support identical floors and a roof. The frames are to be composed of wide 

flange steel beam and column sections. The same grade of steel is to be used 

throughout. The floor and roof systems consist of reinforced concrete slabs 

supported either directly on the frames, or on intermediate beams running between 

frames. 

The structure can be subjected to any one or several of the following 

load cases: 

(i) full live load and full dead load; 

(ii) checkerboard live load and full dead load; 

( i i i ) alternate checkerboard live load and full dead load; 

(iv) full deal load; 

(v) (i) + wind load; 

(vi) ( i i ) + wind load; 

(vii) ( i i i ) + wind load; 

(viii) (iv) + wind load. 

The members are designed by elastic theory in accordance with a slightly 

modified version of the A.I.S.C. 1969 code. 

The floor slabs are designed for maximum span and the slab depth is con

stant throughout the floor. 

2.2 Indentification of Variables 

The parameters necessary to define and design the structure must be either 
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(1) preassigned, or (2) determined. 

(1) Preassigned Parameters 

(i) Structure Configuration 

H, the total height of the structure; 

Ns, the number of storeys; 

h.j, the individual storey heights where i = l,...Ns; 

N^, the number of bays in the frame; 

L, the distance between outer columns in the frame; 

(ii) Material Properties 

F , yield stress of steel; 

E, the elastic modulus of the steel; 

( i i i ) Load conditions 

(iv) Unit cost parameter values. 

(2) Variables to be Determined 

(i) x-j, frame spacing; 

(ii) X g , the number of intermediate beams; one intermediate beam is 

placed at each column, and the others are evenly spaced between 

these; 

( i i i ) X g , . . . * j , column positions within the frame; 

(iv) x.+l, slab thickness; 

w 
(v) Xj+2,...xk, member sizes, 

2.3 Constraints on the Variables 

There are two types of constraints to be considered: geometric constraints 

and behavioural design constraints. 

Variables x - j , . . . X j are subject to geometric constraints, entered as upper 

and lower bounds. The remaining variables are governed by behavioural design 

constraints. These constraints - stress limits - are implicit, and cannot be 
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written as explicit functions of the design variables for this problem. 

2.4 Objectivej Function 
i 

The objective function represents a basis for choice between accept oie 

alternative designs, and is a measure of the optimality of the structure, ^mce 
i • 

weight is easily quantified i t is often taken as the objective function of 

j 
structural design optimization. In general, cost and not weight, is the measure 

of a good civil engineering design. 

i 
The total weight or cost of the frame itself is often taken as the o;-

i 

jective function (17,18,19). This type of objective function does not provide 

for a satisfactory comparison of structures with different configuration. A 

unit weight or junit cost as objective function does, and so the design of the 

floor system becomes a part of the problem. 

The minimization of the cost per square foot of the total structural 

i 
system is the objective of this study. The cost per square foot is given by 

C =
 Dcjl£.

{ C
l

M
l

 +
 (

C
2

+C
3>

N
c

 +
 (

C
4

+C
9>

W
2
 + C

4
W
3 

+ ?C5(Ng+x2) + 2C6Hx] + C ^ N ^ 

i 

+ CgLx^ + C1Q(Nb+l)} (2.1) 
i j 

The costjparameters included in the objective function are: 

C-j, cost per lb. of column material; 

C2, cost per column for preparation; 

Cg, cost per column for splicing; 

i 

C^, cjost per lb. of beam material; 

Cg, qost per end for beam preparation; 

Cg, ĉ ost per sq. f t . of wall cladding; 

C7, cost per sq. f t . for formwork; 
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Cg, cost per sq. f t . per inch of thickness for in-situ reinforced 

concrete floors; 

Cg, cost per lb. of beam material for beam joints; 

C-jQ, cost per column footing. 

The other parameters included in the objective function are: 

W-|, weight of column material per frame; 

ŵ , weight of beam material per frame; 

W3, weight of beam material in floor system per bay. 

N c, the number of columns per frame; 

Ng, the number of beams per frame; 

D, the summation of slab depth over all floors per bay. 

The cost model chosen for this study reflects the most important cost 

items in a design, but the model is easily expanded to include other costs. 

It is not intended to be a model of present pricing methods. Cost functions 

including material costs and fabrication costs are difficult to obtain. The 

costs associated with design and construction are only part of the overall cost 

which would usually include maintenance costs, insurance costs and many others. 

Estimating costs for design and construction is diffic u l t . The cost of 

labour, job location and market conditions are but a few of the variables in

volved. Even with a final total cost for a structure i t is difficult to separate 

purely structural costs from electrical, mechanical and other costs. 

C.I.S.C. (20) in a recent publication points out that the structural frame 

of a building costs between 10-20% of the total construction costs; the mechanical 

and electrical sections vary between 20-50%; and so i f 10% more on the frame 

saves 10% of the mechanical the building is cheaper. 

2.5 Automated Solution 

The solution is divided into two parts; 



c 

V 
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(1) variables relating to geometry and topology are optimized using 

Box's Complex method; 

(2) variables relating to the frame and floor system are determined by a 

fully stressed design criterion, within the limits of a discrete set of member 

properties. 

A computer programme for the solution of the problem was developed. It 

was written in modular form and so any particular subroutine can be easily re

placed by another to solve a slightly different problem. The modular form also 

facilitates the solution of analysis-design problems. 

Figure 2.1 illustrates the main components of the programme. 

The number of independent geometry variables may be reduced by specifying 

geometric symmetry of the structure. Column positions to the left of centre 

are then included as independent variables while those to the right are mirrored 

in automatically. 

The analysis of a statically indeterminate structure requires that member 

properties - area, and moment of inertia - be known. In the automated scheme 

an initial structure is set up with all section properties for all members being 

equal - areas are arbitrarily set equal to 10 sq. in. and moments of inertia to 

30 i n
4
. 

The geometry and topology variables, determined in Box's Complex method, 

define a configuration for the structure. The structure is then analysed and 

designed for a fully stressed condition. Finally the procedure will yield a 

combination of geometry, topology, slab depths and member sizes which give 

an optimum cost. 

To evaluate the objective function a complete analysis and design is made. 

This is by far the most time consuming portion of the programme and so i t is 

desirable to reduce the number of function evaluations. This will be discussed 

in Chapter 4 in relation to the optimum number of analysis-design cycles. 



2.6 Design Criteria 
The design philosophy adopted is a deterministic one. Although used in 

common practice, Schmit (4) points out that in view of the uncertainties with 
respect to load levels and yield strengths, it would be more rational to treat 
these quantities as random variables. This implies the use of a probability 
based design philosophy. 

The reinforced concrete slabs are designed using ultimate strength design 
methods for full dead and live loads. Each floor is assumed to consist of a 
continuous one way slab of constant depth. A yield stress of 60,000 psi is used 
for the reinforcement and the cylinder strength of concrete at 28 days is taken 
as 3,000 psi. The percentage of main steel reinforcement is arbitrarily chosen 
as 0.67%. 

The frame members are designed by elastic analysis methods in accordance 
with the A.I.S.C. 1969 code, with the exception of the interaction formula for 
members subject to bending and compression. To simplify the automatic design 
process the interaction formula was taken as 

/ t p i l . O (2.2) 
a b 

where, f = axial compressive stress in member; a 
r = allowable compressive stress; a 
f^ = bending stress in member; 
Fb = allowable bending stress. 

Equation (2.2) is used in the code only when the ratio of axial to al
lowable compressive stress is less than, or equal to 0.15. When this ratio is 
exceeded the section chosen for the member must satisfy similar formulae, one 
of which includes an amplification factor. 

When the slab is supported directly by the frame intermediate beams are 
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acting as tie beams between the frames and are provided only at the columns. 
Their moments of inertia about the major axis are made equal to the moments 
of inertia about the minor axis of the columns immediately below them. When 
the slab is carried on the intermediate beams they are designed as simply 
supported bending members. 

The design is automated to handle members subject to any of the following: 
(i) tension; 

(ii) compression; 
(iii) bending; 
(iv) tension and bending; 
(v) compression and bending. 

The flow diagram for each of these conditions is given in Appendix A. 
For each of these conditions a member property is calculated and a section 

is chosen from a table. 
The table consists of wide flanged beam and column sections. A list of 

sections included is provided in Appendix B. 
The section property chosen will be equal to or greater than the property 

required. Because of this the tables are arranged in ascending order of values 
for area, section modulus and as far as possible moment of inertia. It follows 
from this that the tables are arranged in ascending order of weight also. There
fore the section whose property is equal to or greater than the calculated prop
erty is the section of least weight in the table capable of sustaining the forces 
applied. 

A binary search procedure is facilitated by this arrangement of the table. 
Figure 2.2 shows the flow diagram for the binary search method. Three iterations 
are permitted thus reducing by a factor of eight the number of sections to be ex
amined. 

It should be noted that member weight is not considered in the analysis. 
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Chapter 3 

OPTIMIZATION PROBLEM 

3.1 Optimization Solution Technique 

The type of optimization problem that presents itself in structural 

engineering is a nonlinear one. By nonlinear is meantthat the objective function 

or the constraints are nonlinear. Generally both are so in structures. 

Objective functions and constraints that are both linear give rise to 

what are called linear programming problems. A first approximation to a non

linear problem might be to apply successive linearizations. Kelley (21) and 

Moses (13) used this technique. Linear programming methods, which are well 

developed in operations research, can then be used. However in problems with 

pronounced nonlinearities these methods may or may not work well. 

Most numerical optimization techniques may be considered broadly as iter

ative methods. Such methods require an initial point to be specified. 

There are two kinds of iterative methods - iterative direct search methods 

and gradient methods. 

Iterative direct search methods do not require partial derivatives of the 

objective function with respect to the variables, but depend on previous values 

of the objective function and information from earlier iterations. There are 

two classes: (i) sequential; (ii) linear. Sequential methods use a set number 

of specified or random points in the space of the independent variables to 

locate an improved point. Box's Complex method falls into this category (22,23,24). 

Direction vectors are used in the linear method throughout the search. Having 

set out in one direction the results obtained will govern which way to go next 

(25,26). 

The other type of iterative method was the gradient method. This method 
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requires partial derivatives of the objective function with respect to the 

variables to be calculated. The partial derivatives are usually first order 

but may be of higher order i f desired. 

Box, Davies and Swann (22) point out that the use of numerical different

iation in the gradient method will result in the selection of a poorer direction 

than would be obtained using analytical differentiation; that gradient methods 

will require extra function evaluations near the current point; and they further 

suggest that such methods are inferior to the best direct search methods, with 

the exception of the method of Stewart, 1967 (27). Stewart used a modified 

steepest descent method with step sizes for differencing chosen to approximately 

balance off the effects of truncation error in the differential approximation 

and error due to cancellation of significant figures. 

There are also tabular direct search methods which divide the region 

between constraints into a grid and evaluate the objective function at each 

node. The coordinates of the node giving the least value of the objective 

function are then considered to be the variables necessary to produce a minimum. 

Instead of dividing the region into a grid, a random search could be used 

to examine a large number of points and the point which gives the least value 

is said to be the minimum (22). 

3.2 Box's Complex Method 

Spendley, Hext and Himsworth devised a "Simplex" method for unconstrained 

minimization in 1962(23). In 1965 M.J. Box modified the method to find con

strained minima. The modified method was called the "Complex" method. 

An illustration of how the simplex method works follows. Figures 3.1 

show how three equidistant initial points in a two variable space can, by re

placing the point with the worst value of the objective function by a point 

with a better value, eventually approach the minimum point "A". It should 

be noted that the three points in the complex are equidistant throughout the 
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procedure; thus the last three points 7, 9, 10 will rotate about "A", never 

actually hitting i t . This method indicates how an approach is made in a 

direct search procedure. 

The procedure for the complex method may be viewed as: 

• (i) choosing an initial point; 

(ii) generating a complex of points; 

( i i i ) successively replacing the worst point in the complex with a 

better point; 

(iv) applying a convergence criterion or criteria. 

A feasible initial point must be provided with n coordinates, where n 

is the number of explicit variables. 

Constraints are also provided and are inequalities of the form 

l
-\ —

 x
i 1

 u
i » i = l ,2.. .m 

where m is the total number of variables, explicit and implicit; and a. and , 

the lower and upper bounds respectively for the ith variable, are either constants 

or functions of the explicit functions; and where the implicit variables 

x
n+l*

 x
n+2' '* *

,x
m 

are functions of the explicit variables 

X-| * *n.* 

The complex consist of k points where k >̂  n+l. The initial point is pro

vided and the remaining (k-1) points in the complex are generated so that each 

point has coordinates 

x
i
 = A

i
 + r

i (
u
i ~ V »

 1 = 1

»
2

>---
n 

where r. are psuedo-random deviates rectangularly distributed in the interval (0,1). 

This point must necessarily satisfy the explicit constraints but may not 

satisfy the implicit constraints. If an implicit constraint is violated, the 

centroid of all points generated so far is located and the point violating the 
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implicit constraint is moved halfway towards the centroid. By repeating this 

process a point is found inside all bounds. 

Finally all k points in the complex will be located. The objective func

tion is evaluated for each point and the point with the greatest value identified. 

The centroid of all other points is located and the worst point (one with great

est value) is replaced by a point which is on the produced line joining the cen

troid and the worst point, and which is a times as far from the centroid as the 

worst point. 

If the new point satisfies all the constraints then the objective function 

is evaluated there. However i f the new point does not satisfy an explicit con

straint, i t is placed inside the violated bound and the objective function eval

uated. If an implicit constraint is violated or i f the value of the objective 

function at the new point is not an improvement on the value at the replaced 

point, then the point is moved halfway to the centroid and the process repeated. 

This process of improving the complex continues, with the worst point 

being replaced by a better point each time. Eventually the method converges to 

an area of the complex in which further improvement is not possible. The method 

is then considered to have found a minimum - at least a local one. 

Box has suggested (28) that appropriate values for a and k might be 1.3 

and 2n respectively. When k >_ n+l, i t ensures the complex will not collapse 

prematurely into a subspace giving a local minimum. The over-reflection factor 

a greater than one provides the method with a system of expansion, while the 

move halfway towards the centroid allows for the complex to contract. 

The method for finding the initial complex ensures that the problem is 

scaled to the order of each variable, and the use of the psuedo-random numbers 

gives a set of points which are sufficiently different from each other. 

3.3 Modifications of the Complex Method 

The automated solution substantially follows the method proposed by Box, 



with a few minor modifications. 

(i) The choice of an alternate method of finding an initial complex is 

included. It is a non-random method proposed by Mitchell and Kaplan (29). The 

point P 2j is put equal to the initial point P-j, except for the j coordinate 

which is put equal to the lower bound; likewise the point P2J+1 1 S
 equal to P-j 

except at the j coordinate which equals the upper bound. 

If any point thus generated fails to satisfy the implicit constraints 

then the j coordinate is relocated halfway towards the initial coordinate. 

This process is repeated until ultimately the initial complex is formed. 

This method for generating an initial complex ensures a variety of points 

in different parts of the complex. They suggest that "a good initial point 

leads to a good initial complex" thus improving the rate of convergence to a 

minimum. 

It should be observed that the facility of changing the initial complex 

by changing the psuedo-random number initializer is removed and a good new 

initial point must be found in order to check out previous minima. 

For the problem studied the non-random method gave slightly worse results 

than the random method. 

(ii ) The other modification involves the reflected point. If this point 

does not satisfy all the implicit constraints or i f the value of the objective 

function has not improved then the point will be moved halfway towards the cen

troid three times, i f necessary. If the point is s t i l l unsatisfactory it is 

moved halfway to the centroid on the other side. This is done twice. Should 

the point s t i l l be unsatisfactory the centroid is used as the point. If this 

f a i l s , the best point is used as an initial point and a new complex generated, 

repeating the complete procedure. 

This allows the method to continue even though the complex may be stuck 

in a subspace. By keeping the best point as the initial point in the new com-
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plex, the possibility of improvement is greatly enhanced and the complex is 

once more well distributed throughout the design space. 

An upper and lower limit is specified for the ratio of standard deviation 

to the best point. If the ratio f a l l s between these bounds a restart is pos

sible; however i f a specified number of iteration has been completed there will 

be no new complex generated and the method will continue until some convergence 

criterion is reached. 

3.4 Convergence Criteria 

There are five suggested c r i t e r i a by which the complex method may terminate. 

Convergence is assumed i f : 

(i) the coordinates of the centroid do not change by some specified 

amount, five iterations in succession; or, 

( i i ) the function value of the centroid does not vary by some specified 

amount, five iterations in succession; or, 

( i i i ) the function value of the best point does not change by a specified 

percentage of the previous best point value, five iterations in a row; or, 

(iv) the standard deviation of the function values of a l l the points in 

the complex divided by the best value is less than or equal to a specified 

amount. 

(v) The method is arranged to terminate i f the maximum permitted number 

of iterations is reached. 

Box (22) recommended use of criterion ( i v ) . 

The f i r s t criterion generally governs when the curvature of the objective 

function is slight near the minimum. The design space studied in this problem 

is generally very f l a t and so this terminating criterion is l i k e l y . 

When the function value at the centroid does not change, the space con

sidered has, in general, pronounced curvature near the minimum. 
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The third criterion - failure to improve the function value of the 

best point - will occur when the design is locked into a subspace containing 

either a global or local minimum. A flat space will also keep this criterion 

active, while a highly irregular one is not likely to, except in the case of the 

method becoming trapped in a subspace. 

When the standard deviation criterion governs, the complex has contracted 

into one area of the space and is approaching a minimum, either local or global. 

The final criterion is the safety valve of the system, ensuring termina

tion when the method shows no sign of converging. 

The fourth criterion relating to the standard deviation is the most use

ful in that i t clearly indicates the rate of convergence and the regularity of 

the objective function. 

A different criterion will govern for different problems and there is no 

guarantee that any particular criterion will govern in any particular problem. 

All five criteria are possible terminating criteria for any problem, though the 

probability of any one terminating the procedure can be decreased by specifying 

a low value for the corresponding control parameter. 
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RESULTS 

4.1 Presentation of Results of Optimization Scheme 

Several problems were considered in this study to examine the following 

factors in the optimization scheme: (i) the influence of the number of analysis-

design cycles; (ii) the influence of the number and type of variables; ( i i i ) the 

uniqueness and convergence rate of the optimization solution; (iv) the effect 

of variation in the cost model; (v) the capabilities of the algorithm. 

Sixteen basic structures were used and are described in Table I. Figure 4.1 

shows the basic structure parameters. Optimization results are shown in Tables 

II and III. 

There were 49 optimization computer runs. All convergence criteria'were 

included. The standard deviation criterion was quite severe for structures 

1-15 (0.0005), but was relaxed to 0.005 for structure 16. Convergence was 

achieved 7 times - 5 for the standard deviation criterion, and twice because 

of failure to improve the objective function of the best point. It should be 

noted that 16 other runs would have "converged" i f the standard deviation 

criterion for structure 16 had been applied throughout. 

The solution given by the complex method for structure 1 is compared 

in Figure 4.2 to that found from an exhaustive search conducted in the design 

space with a coarse grid. 

Frame spacing variable, x^, was increased by an increment of 10 f t . from 

a lower bound of 10 f t . to an upper bound of 40 f t . The number of intermediate 

beams, was chosen for the grid so that beams were 5, 10 and 15 f t . apart. 

Later beams at 6 and 12 f t . centres were included, and a further set of values 

found for x-j = 25 f t . When the search indicated an area in which the minimum 

was located, a design was evaluated there for x, = 25 f t . and x, = 8. 
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TABLE I 

Problem Parameters 

btr. Load h loor Roof Yield ACTIVE VARIABLES 
REMARKS 

No. Width N
b 

Sym Ht. N
s X

l 
NLC Types L.L D.L L.L D.L Stress N

d x
l 

x
2 
x3 X

4 
x
5 

REMARKS 

1 60. 1 / 12. 1 - - 1 1 0.100 0.025 36 2 / / - - -
2 60. 1 / 24. 2 - - 1 1 0.100 0.025 0.100 0.025 36 2 / / - - -
3 60. 2 / 24. 2 - - 1 1 0.040 0.030 0.040 0.030 33 1 / / / - -
4 60. 3 / 12. T - - 2 1,2 0.100 0.025 36 - / / / - -
5 60. 2 / 12. 1 - - 2 1,2 0.060 0.030 36 3 / / - - -
6 60. 3 / 30. 2 - 7 3 1,2,3 0.060 0.030 0.060 0.030 36 3 / - / - -
7 60. - / 210. 17 - - 3 1,2,8 0.060 0.030 0.030 0.020 36 1 / / / Nb =1,2,3 

8 90. 3 / 24. 2 - - 2 1.5 0.075 0.040 0.040 0.020 33 1 / / / - -
9 90, 3 - 24. 2 - - 1 1 0.075 0.040 0.040 0.020 33 1 / / - - -
10 90. 3 - 24. 2 - 4 1 5 0.150 0.060 0.100 0.050 33 1 / - / -
11 90. 3 / 12. 1 - - 2 1,2 0.100 0.025 36 2 / / / - -

12 80. - / 42. 3 - - 3 1,2,8 0.060 0.030 0.030 0.020 36 1 / / / - Nb = 2,3,4 

13 80. 3 / 42. 3 - - 3 1,2,8 0.060 0.030 0.030 0.020 36 1 / / / - -

14 108. - / 78. 6 - - 3 1,2,8 0.060 0.030 0.030 0.020 36 1 / / / Nb = 3,4,5,...9 

15 60. 1 / 12. 1 - - 1 1 0.060 0.030 36 3 / / - - -

16 150. 5 / 15. 1 20 21 3 1,2,3 0.060 0.030 36 2 -

NOTE: Nb = No. of bays in frame; Ng = No. of storeys; NLC = No. of load conditions; Nd = No. of analysis-design cycles; 

L.L = live load; D.L. = dead load; Sym = symmetry. 



TABLE II 

Parameters for Optimum Problems 

(see bottom of table for definition of terms) 

Str. No. No. BOUNDS ON VARIABLES Objective 
No. Vari Points in framebp acmg.x-, No. of Interm. Beams,x0 Column Posn.,x^ Column Posn.,x„ Function REMARKS 

ables Complex L u
 1 

L u L u L u Type 

1 a 2 4 10. 40. 4 11 - - - - 1 R=2 

b 1 2 10. 40. - - - - - - 1 R=2 

2 a 2 4 10. 40. 4 11 - - - - R=2 

3 a 3 6 10. 30. 7 13 15. 45. - - 1 R=2 

4 a 3 6 10. 40. 4 11 10. 25. - - 1 R=2,Nd=2 

b 3 6 10. 40. 4 11 10. 25. - - 1 R=8,Nd=2 

c 3 6 10. 40. 4 11 10. 25. - - 1 R=2,Nd=l 

d 3 6 10. 40. 4 11 10. 25. - - 1 R=2,Nd=2 

e 3 6 10. 40. . . 4 . .11 10. 25. - - 1 R=2,Nd=3 

5 a 2 4 8. 50. 3 16 - - - - 1 R=2 

b 2 4 8. 50. 3 16 - - - - Non-Random 

6 a 2 4 8. 50. - - 5. 27.5 - - 1 Cost 

b 2 4 8. 50. - - 5. 27.5 - - Material Costs 

7 a 3 6 10. 40. 5 13 10. 25. - - 1 Nb=3 

b 2 4 10. 40. 5 13 - - - - 1 Nb=2 

c 2 4 10. 40. 5 13 - - - - Nb=l 

8 a 3 6 10. 25. 12 23 .15. 37.5 - . . . . . . 1 

9 a 4 8 10. 25. 12 23 15. 75 1 4 8 75 

ro cr, 



TABLE II (cont'd) 

Str. No. No. BOUNDS ON VARIABLES Objective 
No. Vari Points ir Frame Spacing,x., No. of Interm. Beams,x0 Column Posn. ,x̂  Column Posn. ,x„ Function REMARKS 

ables Complex L u ' L u L u L u
 1 

Type 

10 a 3 6 10. 25. - - 15. 75. . 3 4 interm. beams 

11 a 3 6 10. 40. 6 16 10. 40. - - 4 High Labour Costs 

b 3 6 10. 40. 6 16 10. 40. - - 5 Low Labour Costs 

c 3 6 10. 40. 6 16 10. 40. - - 6 Weight 

d 3 6 10. 40. 6 16 10. 40. - - 1 R=2, Nd=2 

e 3 6 10. 40. 6 16 10. 40. - - 1 R=8, Nd=2 

f 3 6 10. 40. 6 16 10. 40. - - 1 R=2, Nd=2 

g 3 6 10. 40. 6 16 10. 40. - - 1 R=2, Nd=l 

h 3 6 10. 40. 6 16 10. 40. - -
1 

R=2, Nd=3 

12 a 3 6 10. 40. 6 21 10. 30. - - 1 Nb=4, Nd-1 

b 3 6 10. 40. 6 21 10. 35. - - 1 Nb=3, Nd=l 

c 2 4 10. 40. 6 21 - - - - 1 
Nb=2, Nd=l 

13 a 1 4 - - - - 10. 35. - - 1 x^lO, x2=10 

b 3 6 10. 40. 6 21 10. 35. - - 1 

x^lO, x2=10 

c 2 4 - - 6 21 10. 35. - - 1 x1=20 

d 2 4 10. 40. - - 10. 35. - - 1 x2=10 

e 1 2 - - - - 10. 35. - - 1 x1=20, x2=10 

cont'd 

ro 



TABLE II (cont'd) 

Str. No. No. BOUNDS ON VARIABLES Objective 
No. Vari Points ir Frame Spacing,xn No. of Interm. Beams,x0 Column Posn. ,x0 Column Posn. ,Xy, Function REMARKS 

ables Complex L u ' L u L u L u
 1 

Type 

14 a 6 12 10. 40. 8 28 1 Nb=9, Nd=l 

b 5 10 10. 40. 8 28 1 Nb=8, Nd=l 

c 5 10 10. 40. 8 28 1 Nb=7, Nd-1 

d 4 8 10. 40. 8 28 1 Nb=6, Nd=l 

e 4 8 10. 40. 8 28 • 1 Nb=5, Nd=l 

f 3 6 10. 40. 8 28 1 Nb=4, Nd=l 

g 3 6 10. 40. 8 28 
1 

Nb=3, Nd=l 

15 a 2 4 8. 50. 3 16 - - - - 1 Nd=3 

b 2 4 8. 50. 3 16 - - - - Nd=3, 6 restarts 

16 a 2 4 - - - - 1 2 restarts 

b 2 4 - - - • - 1 3 restarts 

c 2 4 - - - - 1 2 restarts 

d 2 4 - - - - 1 1 restart 

e 2 4 - - - - 1 3 restarts 

Note: R = Random no. generator (=2, unless otherwise stated); 

Nd = no. of analysis-design cycles (=2, unless otherwise stated). 

L = lower bound; u = upper bound. 

ro 
CO 



TABLE III 

Results of Optimization Problems 

(see bottom of table for definition of terms) 

Str. INITIAL DESIGN FINAL DESIGN Time NI NE S.D. Terminat-
No. x

l 
x
2 x

3 x
4 

x
5 

Ubj.Fun. X
l 

x
3 x4 x

5 
Obj.Fun. (sec) Best Value Criterion 

1 a 11. 7 - - - 5.3266 22.086 9 - - - 4.5247 85 26 56 <0.0005 -<-

b 11. - - - - 5.3266 22.162 - - - - 4.7411 142 26 112 «-

2 a 11. 7 - - - 5.0255 33.23 10 . .-. . . . . . - . . 4.2220 149. 20 50 
II +-

3 a 25. 9 25. - - 3.6933 23.110 9 24.666 - - 3.6200 100 11 32 0.0030 GTE 

4 a 39.9 5 15. - - 4.5240 37.666 9 22.280 - - 3.8816 300 14 - 0.00157 GTE 

b 11. 7 20. - - 4.4969 30.770 8 16.962 - - 3.8957 300 18 27 0.0228 GTE 

c 11. 7 20. - - 4.4969 26.600 9 22.600 - - 3.8090 300 46 96 0.000777 GTE 

d 11. 7 20. - - 4.4969 24.998 9 22.638 - - 3.8535 300 18 26 0.0015 GTE 

e 11. 7 20. - - . 4.4969 26.170 9 23.318 - - 3.8689 300 14 - 0.0036 GTE 

5 a 10. 15 - - - 4.7431 21.637 9 - - - 3.7960 181 13 35 ^0.0005 •<-

b 10. 15 - - - 4.7431 26.277 14 - - - 3.8677 300 18 27 0.00161 GTE 

6 a 11. - 10. 4.8085 49.995 - 17.759 - - 3.8038 500 11 - 0.011 GTE 

b 11. - 10. 0.6834 13.781 - 19.137 - - 0.4501 500 8 - 0.074 GTE 

7 a 20. 7 20. 4.0633 28.200 9 14.567 •- - 4.0021 1200 5 13 0.0071 GTE 

b 20. 7 - 3.7226 21.035 8 - - - 3.6712 1200 9 11 0.0032 GTE 

c 20. 8 - 4.4586 19.264 9 - - - 4.4425 1200 11 34 0.0048 GTE 

8 a 15. 14 35. 3.4525 18.377 13 29.690 - 3.2785 750. 17 26 0.0055 GTE 

cont'd vo 



TABLE III (cont'd) 

Str. INITIAL DESIGN FINAL DESIGN Time NI NE S.D. Terminat-
No. X

l x2 x
3 X

4 
Obj.Fun. X

l x
2 

X
3 

x
4 X

5 
Obj.Fun. (sec) Best Value Cri tenon 

9 a 15. 15 35. 55. 3.4547 23.152 11 21.246 51.797 - 3.2761 450 19 19 0.0067 GTE 

10 a 15. - 20. 40. - 1.3540 21.480 - 29.081 59.810 - 1.1675 380 23 53 - U.K con
stant for 
5 iter. 

U.K con
stant for 
5 iter. 

11 a 11. 8 25. - - 7.0774 39.997 14 28.347 - - 5.2768 300 15 31 0.002 GTE 

b 11. 8 25. - - 2.9206 22.476 14 28.722 - - 2.5088 300 14 - 0.001 GTE 
c 11. 8 25. - - 7.9012 11.0934 8 25.515 - - 7.4355 300 15 31 0.0074 GTE 

d 11. 8 25. - - 4.3029 24.554 13 29.896 - - 3.4649 200 15 28 0.0107 GTE 

e 11. 8 25. - - 4.3029 28.996 14 26.980 - 3.4863 300 22 26 0.0099 GTE 

f 39.9 16 30. - - 3.6617 39.904 13 29.783 - - 3.5595 300 19 36 0.0064 GTE 

g 20. 10 40. - - 3.9048 22.073 13 30.014 - - 3.4312 300 40 52 0.0026 GTE 

h 11. 8 25. - - 4.3029 21.831 13 29.420 - 3.4590 300 15 30 0.0111 GTE 

12 a 20. 10 20. - - 3.4333 31.219 19 14.594 - - 3.3847 1200 23 47 0.00067 GTE 

b 20. 10 30. - - 3.5331 30.205 13 27.381 - - 3.3752 1200 32 60 0.0008 GTE 

c 20. 10 - - - 3.4780 39.999 15 - - - 3.4199 750 17 76 <0.0005 •4-

13 a - - 15. - - 4.8329 - - 24.354 - - 3.8824 300 12 - 0.0063 GTE 

b 15. 10 15. - - 3.8509 27.122 18 24.034 - - 3.4335 300 11 - 0.0052 GTE 

c - 10 15. - - 3.6727 - 15 23.087 - - 3.4447 300 11 - 0.0036 GTE 

d 15. - 15. - - 4.4695 13.173 - 23.824 - - 3.6567 300 14 0.0096 GTE 

e 15. 4.3091 •a 15. — 4.3091 290 7 23 - O.F. con
stant for 
5 iter. 

cont'd 



TABLE III (cont'd) 

Str. INITIAL DESIGN FINAL DESIG N Time NI NE S.D. Terminat-
No. X

l 
x
2 x

3 x
4 

x
5 

Obj.Fun. x
l 

x2 x
3 x

4 
X
5 

Obj.Fun. (sec) Best Value Criterion 

14 a 20. 19 13. 23. 37. 
47. 

3.1615 22.505 20 12.927 26.022 34.886 
45.149 

3.1402 1200 5 - 0.0211 GTE 

b 20. 17 15. 28. 40. 3.0844 20. 17 15 28. 40, 3.0844 1200 5 16 0.019 GTE 

c 20. 19 13. 30. 42. 3.0973 27.057 17 13.959 27.309 46.076 3.0810 1200 7 16 0.013 GTE 

d 20. 19 23. 35. - 3.0783 31.793 17 12.377 31.974 - 3.0522 1200 6 18 0.010 GTE 

e 20. 17 28. 48. - 3.0207 20. 17 28. 48. - 3.0207 1200 5 17 0.035 GTE 

f 20. 17 34. - - 3.0570 28.200 15 24.134 - - 3.0191 1200 10 15 0.0196 GTE 

g 20. 17 40. - - 3.1067 24.296 19 35.868 - - 3.0787 1200 13 27 0.00054 GTE 

15 a 20. 7 - - - 4.5259 32.310 9 - - - 4.2779 114 18 45 <0.0005 -<-

b 20. 7 - - - 1.1300 21.131 9 - - -• 1.0728 300 41 116 0.00109 GTE 

16 a - - 30. 60. - 3.1356 - - 30. 60, - 3.1356 300 5 - - GTE 

b - - 22.5 60. - 3.1871 - - 27.239 60.301 - 3.1817 300 11 - 0.00917 GTE 

c - - 15. 60. - 3.2994 - - 27.239 60.301 - 3.1777 300 9 - 0.01794 GTE 

d - - 37.5 52.5 - 3.3061 - - 23.344 52.06 - 3.2183 300 6 - 0.05126 GTE 

e - - 45. 67.5 - 3.3018 . . .- - 22.171 56.528 3.1934 300 .9 - 0.00801 . . GTE 

NOTE; O.F. = Objective function; GTE = Global time exceeded on computer; 

NI = No. of iterations by Box routine; S.D.= Standard deviation; 

NE = No. of evaluations of objective function; BEST= Best O.F. value in complex. 

The standard deviation convergence criterion parameter equals 0.0005 for problems 1 to 15; and equals 
0.005 for problem 16. 
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The algorithm solution is verified by the exhaustive search for structure 

1(a) and 1(b). 

4.2 Influence of Analysis-Design Cycles 

Results from the analysis and design of several multi-storey frames under 

a multiplicity of loading conditions indicate that the design was almost stable 

after 3 or 4 analysis-design cycles. In some cases one or two member sizes a l 

ternated between subsequent cycles which meant that stress constraints were not 

satisfied. This is not serious and in engineering design practice is acceptable. 

When one analysis-design cycle is used the design may stabilize after several 

iterations in Box since one design only is stored. The analysis-design portion 

of the programme-is the most time consuming and so reduction of the number of 

function evaluations, or the number of analysis-design cycles would be desirable. 

By increasing the number of analysis-design cycles, stability of the de

sign is enhanced; but for a given computer time the number of function evaluations 

(and the number of iterations in Box) is reduced. This decreases the possibility 

of finding a lower value of the objective function. 

Structures 4(c)-(e) and ll(f)-(h) show the effect of the number of analysis-

design cycles. For each structure one analysis-design cycle gave the lowest 

optimum value of the objective function with approximately three times as many 

iterations in each case, and four times as many function evaluations for struc

ture 4 and approximately twice as many for structure 11. 

It is interesting to note that for structure 4(c)-(e) the method con

verged in each case to similar configurations; while for 11(g) and (h) the con

figurations are almost the same, but different for 11(f). 

4.3 The Number and Type of Variables 

For structure 1 the method converged faster with two variables than with 

one variable. This is shown in Figure 4.3. The large number of function evalu-
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ations required for the one-variable problem indicates that the rate of im

provement of the best value was slow. An initial complex was regenerated 6 

times without improvement of the best point which implies the design space is 

quite flat near the optimum. 

The influence of the number and type of variables was examined in struc

ture 13. Comparison of 13(a)-(e) shows that the inclusion of all variables 

did not significantly improve the best value of the objective function over 

13(c) and 13(d). In the case of 13(e) the two point complex collapsed onto 

the initial point and completed 7 iterations before ."converging". The complex 

"converged" because the number of analysis-design cycles was one; the design 

did not stabilize and though both points in the complex had the same coordinates 

two distinct structures were designed with correspondingly different objective 

function values. For structure 13(a) the number of points in the complex was 

4 and in 12 iterations the function value was reduced by approximately 25%. 

The conclusions to be drawn from this is that a problem with one variable should 

have a minimum complex size of 3 or 4, otherwise the method may break down. 

In 13(a)-(d) the optimum column positions were almost the same, which indicates 

that the objective function value variation is caused principally by x̂  and Xg. 

Column Positions: The results of problem 11 and 16 show that an arrangement of 

columns with equal or near equal spacing gives a good design cost. This is in 

agreement with Nakamura (18) and Soosaar (19). Soosaar showed that equal spacing 

of columns gave a cost within 5% of the optimum, regardless of the number of 

storeys. 

For the two tall structures considered, 7 and 14, with Nb = 3, the column 

positions at the termination of the optimization scheme were quite different. 

In structure 14 the columns were almost equally spaced, while in the taller 

structure, 7, the columns moved towards both ends. The influence of the wind 

loading causes this column concentration at the edges for structure 7, which has 
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a height to width ratio of 3.5. In structure 14 the almost equal spacing of 

columns reduces the bending moments due to vertical load, while the low height 

to width ratio of 0.72 provides adequate resistance to wind loads. 

Number of Intermediate Beams: If the structures are grouped according to width, 

the optimum number of intermediate beams per floor within each group is almost 

equal. The average spacing of intermediate beams within each group is shown 

below in Table IV. 

Width Average x 2 Average Spacing 

60' 9.35 7.20' 

80' 12.85 6.75' 

90' 12.60 7.75' 

108' 17.35 6.60' 

TABLE IV : Average Intermediate Beam Spacing 

These results show good agreement with the exhaustive search done for 

structure 1, where the optimum intermediate beam spacing is approximately 7 f t . 

(regardless of frame spacing), which corresponds to the minimum slab thickness 

permitted. 

Frame Spacing: The final design in several cases (4a, 6a, 11a, l l f , 12c) where 

cost was the criterion, yielded a frame spacing close to the upper bound. Where 

weight was the criterion of a good design (lie) the frame spacing for the final 

design was close to the lower bound. This is verified by results of the exhaustive 

search (see Figure 5.3). 

Only in one case however (12c) of the 7 runs that converged, did the algo

rithm converge to the upper bound or lower bound for frame spacing. 

Frame spacing influences the objective function more than the other variables. 



TABLE V 

Cost Function Parameters 

Objective 
Function 
Type 

C
l 

($ per 
lb.) 

C
2 

($) 

C
3 
($) 

C
4 

($ per 
lb.) 

C
5 

($) 

C
6 

($ per 
sq.ft.) 

C
7 

($ per 
sq.ft.) 

C
8 

($ per sq. 
ft . per in.) 

C
9 

($ per 
lb.) 

'
 C
10 

($) 
Remarks 

1 0.100 50.000 20.000 0.090 10.000 3.000 0.750 0.155 0.030 100.00 Normal costs 

2 0.100 - - 0.090 - - - - - - Material costs 

3 0.100 50.000 20.000 0.090 10.000 3.000 - - 25.000 
* 

100.00 

4 0.100 100.000 40.000 0.090 20.000 3.000 1.500 0.311 0.060 200.00 High labour 

5 0.100 25.000 10.000 0.090 5.000 3.000 0.380 0.078 0.015 50.000 Low labour 

6 1.000 - - 1.000 - - - - - - Weight 

* Cq is the cost per lb. .per end for beam joints except in type 3 where it is the cost per beam joint. 

cn 
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the degree of influence however seems to depend on the objective function 

chosen. 

4.4 Uniqueness and Rate of Convergence 

When a minimum has been found the only way of checking whether the 

minimum is local or global is to run the problem again with a new, and i f pos

sible, completely different initial point. If the method converges each of 

several times to the same point then i t is inferred that this is the global 

minimum. 

Such uniqueness of the optimum solution was checked for structures 4 

and ll(d-h). A unique solution did not emerge though maximum deviations from 

the best solutions obtained were 2.28% and 3.44% for 4 and 11, respectively. 

For 4c the complex was rapidly contracting - shown by the small value for 

standard deviation divided by the least value of the objective function in the 

complex - and was near convergence. 

Comparison of results for 12b and 13b (with = 3, for each) shows that 

with four times more running time the optimum solution is improved by only 1.73%. 

The complex, at termination, has contracted about the minimum almost within the 

standard deviation convergence criterion limit. 

It can be concluded that any minimum cannot be verified as a global mini

mum; and the general slow rate of convergence shown throughout the problems 

indicates a flat design space which does not agree with Soosaar's conclusion of 

pronounced curvature of the objective function near the minimum. 

4.5 Cost Model Variation 

Six different objective functions v/ere formed by varying the cost para

meters as in Table V. The influence of the type of objective function used can 

be seen in the results for l l ( a - f ) . 

The frame spacing shows the most sensitivity to the objective function 
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type. The results for optimum frame spacing in structure 11 (a-f), concur 

with the trend established in the exhaustive search for structure 1 shown in 

Figures 4.4, 4.5 and 4.6. High labour costs move frame spacing to the'upper 

bound; medium labour costs show l i t t l e sensitivity to frame spacing away from 

the lower bound; and low labour costs tend to move frame spacing slightly to

wards the lower bound. In Figure 4.4 this is shown by the reversal of the 

position of x-| =20' relative to x-j =30' as the costs change. 

When weight or material cost is the objective function as in 6b, l i e and 

T5b, frame spacing moves to the lower bound. As the frame spacing decreases 

the weight per sq. f t . of frame increases slightly while the floor system 

weight reduces so much that the total weight per sq. f t . for the whole structure 

is decreased. This will be shown to be true in Chapter 5. 

Objective functions involving labour and topology indicate that frame 

spacing is a more critical variable than either the number of intermediate beams 

or the column positions. When weight is the. objective function the number of 

intermediate beams becomes more important than the frame spacing, which tends 

to the lower bound for an optimum design. 

4.6 Algorithm Performance and Capabilities 

Box's complex method in general performed quite adequately in spite of 

the severe standard deviation convergence criterion applied to most problems. 

However the overall optimization procedure became quite slow when large struc

tures (7,12,14) were optimized. The major share of the time was spent in the 

analysis-design portion of the scheme. The number of iterations in the complex 

method was reduced significantly rending the method ineffective. For structure 

12 the complex was close to convergence on termination in all cases; structure 

14 was far from convergence except in the case of 14g. 

This clearly indicates that the use of the optimization scheme is limited 

to small structures. The amount of time used in the design-analysis portion of 
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the program for structures 7, 12 and 14 would justify consideration of ap

proximate method of analysis for larger structures. 
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Chapter 5 

PARAMETER STUDY 

The influence of the following parameters on the cost and weight per 

sq. f t . of the structure is examined: (i) frame spacing; (ii) the number of 

intermediate beams; ( i i i ) the number of bays in the frame; (iv) the number of 

storeys; and (v) the roof system. 

An exhaustive search procedure was conducted for structure 1 for this 

purpose, and results from the optimization of structures 12 and 14 are also in

cluded. 

5.1 Influence of Frame Spacing (x^) and Number of Intermediate Beams (x2) 

Figure 4.2 shows that for a unit cost as objective function the optimum 

spacing of intermediate beams is approximately 7 f t . This span allows the 

slabs to be the minimum thickness permitted. Intermediate beam spacing below 

this results in the same slab thickness while the increased number of inter

mediate beams causes the objective function to increase. 

With weight per sq. f t . as the objective function the optimum spacing 

of intermediate beams decreases to approximately 5 f t . when x-j = 10'. The 

weight per sq. f t . of intermediate beams increases slightly in this case, but 

the frame weight is significantly reduced because the load applied by the inter

mediate beams to the frame is approaching a uniformly distributed load pattern 

which gives reduced bending moments in comparison to point loads. 

For a constant number of intermediate beams the unit cost in Figure 4.2 

shows very l i t t l e sensitivity to variation in the frame spacing away from ex

treme values. However the unit weight as shown in Figure 5.1 decreases signi

ficantly with decreased spacing. It should be noted that the difference in 

unit weight between x, = 30' and x, = 10' is most pronounced for small inter-
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mediate beam spacing. 

5.2 Influence of Topology on Objective Functions 

Number of bays: Figure 5.2 shows the effect of the number of bays and frame 

spacing on a unit cost objective function, when the intermediate beam spacing ( 

is constant at 10 f t . The objective function is insensitive to frame spacing 

away from the lower bound. A unit weight criterion showed in Figure 5.3 that 

the minimum frame spacing was the optimum, and increased rapidly with increas

ing frame spacing. 

When the number of bays was increased from 1 to 3, the axial force and 

bending moment per column and the moments per frame beam were reduced. This 

gave an 18% and 14% reduction in unit cost for x-j = 10' and x-j =40', respectively. 

With unit weight criterion the corresponding reductions were 65.6% and 41.6%. 

The final design costs from the optimization scheme for structures 12 

and 14 are plotted against the number of bays in Figures 5.4 and 5.5. The in

fluence of the number of bays is not significant. Maximum difference in cost 

is approximately 0.60% and 0.76% for structures 12 and 14 respectively. No 

figures are available for the influence of the number of bays on unit weight 

in this case. 

Number of Storeys: Structure 1, with Nb = 3, was used as the basic structure 

to study the influence of the number of storeys. Figures 5.6 and 5.7 show the 

influence of frame spacing and the number of bays on the objective functions, 

types 1 and 6. The optimum design tends to move to the upper and lower bounds 

for cost and weight criterion respectively. 

5.3 Influence of Roof System 

A breakdown of the costs and weight of the exhaustive search for struc

ture 1 is shown in Figures 5.8 and 5.9. The influence of the roof system is 
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particularly noticable when weight is the objective function. It causes the 

weight per sq. f t . of the total structure (see Fig. 5.1) to increase with in

creased spacing of frames. 
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Chapter 6 

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS 

(i) The f e a s i b i l i t y of an automated scheme for the optimum design of 

structures with rectangular plane frames, intermediate floor beams and concrete 

floors has been demonstrated. The method uses exact methods of analysis coupled 

with a modified AISC code for design and considers discrete member sizes. 

( i i ) The capabilities of the optimization scheme is limited by the amount 

of computer time available and computer storage capacity. 

( i i i ) It cannot be proven that the optimum design found by the complex 

method is a local or a global minimum, however exhaustive search techniques did 

not disclose any points with a better design. 

(iv) The floor system is an integral part of the structure and should be 

included in the optimization scheme. It has been shown by an exhaustive search 

procedure that the optimum frame spacing based on a unit weight criterion is 

significantly different when the floor system is included in the problem. 

(v) Regardless of the objective function used the design space near the 

minimum appears to be f l a t . Soosaar (30) found that the design space had a more 

pronounced curvature near the minimum for a cost objective function than for a 

weight criterion. However Soosaar considered only the frame and not the floor 

system and this may account for the difference in results. 

(vi) For structures with low height to width ratios equal column spacing 

gives objective function values very close to those for the optimum column posi

tion. For t a l l e r structures with a height to width ratio greater than 2 the in

terior columns tended to move towards the edges at optimum spacing. This shows 

agreement with the results of Nakamura (18). 

(vii ) The number of intermediate beams did not greatly effect the objective 
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function. In general i t was found that intermediate beams spaced to give mini

mum slab thickness gave optimum results. 

( v i i i ) The type of objective function used is important. It was demon

strated that a weight and a cost criterion lead to widely different optimum 

designs with the major difference occurring in frame spacing. For a weight 

value system the optimum frame spacing occurred at the lower bound; while a 

high labour cost objective function gave the upper bound as the optimum frame 

spacing. 

For future work in this area the following points are recommended: 

(i) To reduce computer run time, approximate methods of analysis and 

design checked by exact analysis-design procedures every 20th iteration say, 

or at termination, should be included. 

( i i ) The geometry variable relating to column positions should be re

placed by a topology variable related to the number of columns in the structure. 

( i i i ) The number of intermediate beams could be treated in a separate sub-

optimization scheme and when optimized entered into the main optimization 

procedure. 
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Procedure 



Calculate, dilatable, r<yv3iU stress, 

I 

c?{ ~Ten9i^i~i Member 

lc? ^ l l o c o . ferule, S^r-eSS 

(C^lcul^te <al|c5oocalpl<. Ccmpv^s iue 

• 

Choose Y-veui S e c t v c > v \ Choose Y-veui S e c t v c > v \ 

—». 

/ 



Calculate 6»ll<?u)<5ible. bending stress ; Ffc> 

I 

Secirck -ha(ale. £<s>v 

•appv-opyi^he section 

Check U€Jb a?mpctcf~r»ess 

Check, sh&ar Stress 

Nlewber Subject ' ^ P u r e ^bendm 



66 

G^lculcite &\\c*Ach\e> ber>d>iN3 stress. 

stress J[̂ >v Section j 

CWoose hejui section 

Caiculoile. cz>rnp/essn« Stress , -£s* 

Yes / ^ c h ^ n Wo 

R o u Di<flgr<arr> .-fear ^ygsic^n 



67 

APPENDIX B 



****************************************************************#****^ 

TABLE OF SECTIONS 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ 

HF BEAM SECTIONS 
* * * * * * * * * * * * * * * * 
S I Z E AREA DEPTH FLANGE WEB 

WIDTH THICK THICK 
SMALL 0. 1 1 0. 1 1 0. 1 1 1 0. 1 11 0. 111 
8JK6.b 1. 95 8. 00 2. 281 0. 189 0. 135 
10JR9 2. 64 10. 00 2. 688 0. 206 0. 155 
10B 1 1.5 3. 39 9. 87 3. 950 0. 204 0. 1 80 
12JR 11 3. 4 5 12. 00 3. 063 0. 225 0. 175 
12B 14 4. 14 1 1. 91 3. 970 0. 224 0. 200 
12B16.5 4. 86 12. 00 4. 000 0. 269 0. 230 
14B 17.2 5. 05 14. 00 4. 000 0. 272 0. 210 
1 2D 19 5. 62 12. 15 4. 0 10 0. 349 0. 240 
10WF21 6. 1 9 9. 90 5. 750 0. 340 0. 240 
12WF22 6. 4 7 12. 31 4. 0 30 0. 4 24 0. 260 
14B22 6. 48 13. 72 5. 000 0. 3 35 0. 230 
14B26 7. 65 13. 89 5. 025 0. 4 18 0. 255 
16U26 7. 66 15. 65 5. 50 0 0. 345 0. 250 
14WF30 8. 81 13. 86 6. 733 0. 38 3 0. 270 
1 4 W F 3 4 10. 00 14. 00 6. 750 0. 453 0. 287 
16WF36 10. 5 9 15. 85 6. 992 0. 428 0. 29 9 
16WF4 0 11. 7 7 16. 00 7. 000 0. 5 03 0. 30 7 
16WF45 13. 24 16. 12 7. 0 39 0. 563 0. 346 
16WF45 13. 25 17. 06 7. 477 0. 499 0. 355 
16WF50 14. 70 16. 25 7. 073 0. 628 0. 380 
18WF50 14. 71 18. 00 7. 500 0. 570 0. 358 
18WF55 16. 1 8 18. 12 7. 532 0. 6 30 0. 390 
2 1WF55 16. 1 9 20. 80 8. 215 0. 522 0. 375 
21WF6 2 18. 23 20. 9 9 3. 240 0. 6 15 0. 400 
2 1WF68 20. 00 21. 13 8. 2 70 0.680 0. 430 
24WF68 20. 01 23. 71 8. 961 0. 582 0. 416 

X-AXIS tf-AXIS WT/FT 
IX SX ' RX I¥ S Y R If 
0.1 0. 1 0. 1 1 0.1 0. 1 0.11 0. 1 

13.7 4. 7 3. 12 0. 3 0. 3 0.42 6. 5 
39.0 7. 8 3. 85 0.6 0. 5 0.43 9. 0 
51.9 10. 5 3. 92 2.0 1.0 0.77 11.5 
72.2 12. 0 4. 57 1.0 0. 6 0.53 11.8 
83.2 14. 8 '4 . 6 1 2. 3 1. 1 0.74 14. 0 

105. 3 17. 5 4. 65 2. 8 1.4 0.76 1 6. 5 
147.3 21. 0 5. 40 2. 7 1.3 0.72 1 7. 2 
130. 1 21.4 4. 81 3. 7 1. 8 0.3 1 1 9. 0 
105.3 21.5 4. 14 9.7 3.4 1.25 21.0 
155.0 2 5. 3 4. 91 4. 6 2. 3 9.85 22.0 
197.4 28. 8 5. 52 6. 4 2. 6 0.9 9 22.0 
242.6 34. 9 5. 6 3 8.3 3. 3 1.04 26.0 
298.1 38. 1 6. 24 8. 7 3. 2 1.07 26.0 
289.6 41.8 5. 73 17.5 5. 2 1.41 30.0 
339.2 48. 5 5. 83 21.3 6. 3 1.4 6 3 4.0 
445 .3 56. 3 6. 49 22. 1 6.3 1.45 36. 0 
515.5 64. 4 6. 62 2 6. 5 7. 6 1. 50 40. 0 
583. 3 72. 4 6. 64 3D. 5 8.7 1.52 4 5.0 
704.5 7 8. 9 7. 30 31.9 8. 5 1.55 45. 0 
655.4 80. 7 6. 68 34. 8 9. 8 1 . 54 50. 0 
800.5 89. 0 7. 38 37. 2 9. 9 1.59 50. 0 
889.9 98. 2 7. '4 1 42.0 1 1. 1 1.61 55. 0 

1 140.7 109. 7 8. 40 44.0 10. 7 1.65 55. 0 
1326.3 126. 4 8. 53 53. 1 12. 9 1.71 62. 0 
1473.3 139. 9 8. 59 60. 4 14. 6 1.74 68. 0 
1814.5 153. 1 9. 53 63. 8 14.2 1.79 6 8. 0 



CONT. 
WF BEAM SECTIONS 
**************** 
SIZE AREA DEPTH FLANGE WEB 

WIDTH THICK THICK 
2UWF76 22. 37 23. 91 8. 9 85 0. 682 0. 440 
24WF84 24. 71 24. 09 9. 015 0. 772 0. 470 
27WF84 24. 72 26. 6 9 9. 9 63 0. 636 0. 436 
24WF9 4 27. 63 24. 29 9. 061 0. 872 0. 51 6 
27WF94 27. 65 26. 9 1 9. 990 0. 747 0. 49 0 
30WF99 29. 1 1 29. 6 4 10. 458 0. 670 0. 522 
30WF108 31. 77 29. 82 13. 4 84 0. 760 0. 548 
30WF1 16 34. 13 30. 00 10. 500 0. 850 0. 564 
33WF118 34. 71 32. 86 11. 484 0. 735 0. 554 
33WF130 38. 26 3 3. 10 11. 510 0. 855 0. 580 
36WF135 39. 70 35. 55 11. 945 0. 794 0. 598 
33WF141 41. 51 33. 3 1 11. 535 0. 960 0. 605 
36WF150 44. 1 6 3 3. 84 11. 974 0. 940 0. 625 
36WF 160 47. 09 36. 00 12. 000 1. 020 0. 653 
36WF170 ' 49. 98 36. 16 12. 027 1. 100 0. 680 
36WF182 53. 54 36. 32 12. 072 1. 180 0. 725 
36WF194 57. 1 1 36. 4 8 12. 117 1. 260 0. 770 
33WF200 58. 7 9 33. 00 1 5. 750 1. 150 0. 71 5 
33WF220 64. 73 33. 25 15. 810 1. 275 0. 775 
36WF230 67. 73 35. 88 16. 475 1. 260 0. 765 
36WF245 72. 0 3 36. 06 16. 512 1. 350 0. 83 2 
36WF260 7 6. 56 36. 24 16. 555 1. 440 0. 845 
36WF280 82. 32 36. 5 0 16. 595 1. 570 0. 885 
36WF300 88. 1 7 36. 72 16. 655 1. 680 0. 945 
TOO BIG 99. 99 36. 99 20.000 1. 999 0. 999 

X-AXIS Y-AXIS WT/F r 
IX SX RX IY 5 Y RY 

2096.4 175. 4 9. 68 76. 5 17. 0 1. 35 76. 0 
2364.3 196. 3 9. 78 88.3 19. 6 1. 8 9 84. 0 
2 8 24.3 211.7 10. 69 95. 7 19. 2 1 . 97 84. 0 
2683.0 220. 9 9. 85 132. 2 22. 6 1. 92 94.0 
3 266.7 242. 8 10. 87 115. 1 23. 0 2. 0 4 94.0 
3 938.5 269. 1 11. 70 1 16. 9 22. 4 2. 00 9 9. 0 
446 1.0 299. 2 1 1. 85 1 3 5. 1 25. 8 2. 06 1 38. 0 
4 919.1 327. 9 12. 0 0 153.2 29. 2 2. 12 116.0 
5885.9 358. 3 13. 02 1 70. 3 29. 7 2. 2 2 118.0 
6 6 99.0 404. 8 13. 23 231. 4 35. 0 2. 29 1 30. 0 
7795. 1 438. 6 14. 01 207. 1 34. 7 2. 23 1 35. 9 
7442.2 446. 8 13. 3 9 229. 7 39. 8 2. 35 14 1.0 
9012.1 502. 9 14. 29 250.4 4 1. 8 2. 3 3 1 50. 0 
9738.3 541. 0 14. 3 8 2 7 5. 4 45. 9 2. 42 1 60. 0 

10470.3 579. 1 14. 47 300. 6 50. 0 2. 4 5 1 70. 0 
1 1281.5 621.2 14. 52 327. 7 54. 3 2. 4 7 1 82. 0 
12103.4 663. 6 14. 88 355. 4 58. 7 2. 49 19 4.0 
11048.2 669. 6 13. 71 59 1.7 87. 8 3. 43 200. 0 
12312.1 740. 6 13. 79 732. 4 99. 0 3. 4 3 2 2 0.0 
14 988.4 8 3 5. 5 14. 88 873 . 9 105. 7 3. 59 230.0 
16092.2 892. 5 14. 95 944. 7 114. 4 3. 62 2 4 5. 0 
17233.3 951. 1 15. 00 13 20.6 123. 3 3. 65 260. 0 
13819.3 1031.2 15. 12 1127.5 135. 9 3. 70 2 80.0 
20290.2 1 105. 1 15. 17 1225. 2 147. 1 3. 73 300.0 
99999.9 9999.9 20. 00 3300.0 300. 0 9. 99 800. 0 



WF COLUMN SECTIONS 

S I Z E AREA DEPTH FLANGE 
WIDTH THICK 

SMALL 0. 1 1 0. 1 1 0. 1 1 1 0. 111 

6W12 3. 54 6. 00 4. 000 0. 279 

4W n 3. 82 4. 16 4. 060 0. 34 5 

8W17 5. 01 8. 00 5. 250 0. 308 

5W18.5 5. 4 3 5. 12 . 5. 025 0. 4 20 

6W20 5. 8 8 6. 20 6. 318 0. 367 

8W24 7.06 7. 93 6. 500 0. 398 

8W28 8. 23 8. 06 6. 54 0 0. 46 3 

8N32.6 9. 56 8. 00 7. 940 0. 459 

8W3 5 10.30 8. 12 3. 027 0. 49 3 

8W40 1 1.80 8. 25 8. 077 0. 558 

8W48 14. 10 8. 50 3. 117 0. 683 

12W53 1 5. 60 12. 06 10. 000 0. 576 

10W54 1 5. 90 10. 12 13. 028 0. 6 18 

10W60 17. 70 10. 25 10. 0 75 0. 683 

12W65 19. 10 12. 12 12. 000 0. 606 

12W72 21.20 12. 25 12. 040 0. 6 7 1 

1 U W 7 8 22.90 14. 06 12. 000 0. 7 18 

12W79 23.20 12. 38 12. 080 0. 736 

12W85 25.00 12. 50 12. 105 0. 796 

14W87 2 5 . 60 14. 00 14. 500 0. 688 

14W95 2 7 . 90 14. 1 2 14. 54 5 0. 748 

1 4 W 1 0 3 30 . 30 14. 25 14. 575 0. 8 13 

1 4 W 1 1 1 32 . 70 14. 3 7 14. 620 0. 87 3 

14W 1 19 3 5.00 14. 50 14. 650 0. 9 38 

WEB X-AXIS 
THICK IX SX' RX 

0.111 0.1 0. 1 0. 1 1 

0. 230 21.7 7. 3 2. 48 

0.280 11.3 5. 5 1. 72 

0. 233 56.5 14. 1 3. 36 

0. 2 65 25.4 9. 9 2. 15 

0. 258 4 1.5 13. 4 2. 66 

0.245 82.5 20. 8 3. 42 

0. 285 97.3 24. 3 3. 45 

0.315 114.0 2 8. 4 3. 44 

0. 315 125.3 31.1 3. 50 

0.365 145.3 35. 5 3. 53 

0. 43 5 184.0 43. 2 3. 6 1 

0.345 425 .0 70. 7 5. 23 

0. 368 305.0 60. 4 4. 39 

0.415 34 4.3 6 7. 1 4. 4 1 

0. 39 0 533.3 88 . 0 5. 28 

0. 430 59 7 .0 97. 5 5. 31 

0. 428 851.3 121.3 6. 09 

0. 470 663.0 107. 3 5. 34 

0. 495 723.0 1 16. 0 5. 38 

0. 420 967.0 138. 0 6. 13 

0. 465 1 060.0 151.0 6. 17 

0. 495 1 170.0 1 64. 0 6. 21 

0. 540 1270.3 176. 0 6. 23 

0. 570 1370.0 189. 3 6. 25 

Y-AXIS WT/FT 
IY 5 Y RY 

3. 1 0. 1 0. 1 1 0. 1 

2.9 1. 5 0. 92 12. 0 
3.8 1. 9 0. 99 13. 0 

7.4 2. 8 1. 22 1 7. 0 

8.9 3. 5 1. 23 1 8. 5 

13.3 4. 4 1. 51 2 0 . 0 

18.2 5. 6 1. 6 1 24. 0 
21.6 6. 6 1. 62 2 8. 0 

34. 1 8. 6 1. 89 32. (, 
42.5 10. 6 2. 03 35 . 0 

49.0 12. 1 2. 34 4 0 . 0 

60. 9 15. 0 2. 0 3 48. 0 
96. 1 19. 2 2. 43 5 3 . 0 

134.0 2 0 . 7 2. 56 54. 0 
116.0 2 3 . 1 2. 57 6 0 . 0 

1 75.0 2 9. 1 3. 01 65. 0 
195.0 32. 4 3. 34 72. 0 

207.0 34. 5 3. 00 78. 0 

216. 0 3 5. 8 3. 05 79. 0 

235.0 38 . 9 3. 07 85. 0 

353 .0 4 8 . 2 3. 70 87. 0 

384.0 5 2 . 8 3. 71 9 5. 0 
420.0 5 7 . 6 3. 72 1 0 3 . 0 

455.3 6 2 . 2 3. 7 3 111. 0 

492.0 67 . 1 3. 75 1 1 9 . 0 



CONT. 
WF COLUMN SECTIONS 

SIZE AREA DEPTH FLANGE WEB 
WIDTH THICK THICK 

14W127 37. 30 14. 62 14.690 0 .998 0. 610 
14W 1 36 a o . 00 14. 7 5 14. 740 1 .06 3 0. 6 60 
1UW 142 a i . 80 14. 75 15. 500 1 .063 0. 680 
m w 150 a a . 1 0 14. 8 8 15. 51 5 1 . 128 0.-695 
i a w 158 46. 50 15. 00 15. 550 1 . 188 0. 730 
law 167 49. 1 0 15. 12 15. 600 1 .248 0. 780 
law 176 51. 70 15. 25 1 5. 64 0 1 .3 13 0. 820 
law 18a 54. 1 0 15. 38 15. *>60 1 . 378 0. 840 
1 a w 19 3 56. 70 15. 50 15. 710 1 .438 0. 890 
law 202 59. 40 15. 63 15. 750 1 .503 0. 930 
iaw211 62. 10 15. 7 5 15. 800 1 .563 0. 980 
iaw219 64. 40 15. 87 15. 825 1 .623 1. 000 
iaw228 67. 10 16. 00 15. 865 1 .688 1. 040 
14W237 69. 7 0 16. 12 15. 910 1 .748 1. 030 
iaw2a6 72. 30 16. 25 15. 945 1 .8 13 1. 1 30 
iaW264 77. 60 16. 50 16. 025 1 .938 1. 210 
iaW287 84. 40 16. 81 16. 1 30 2 .093 1. 310 
i a w 3 i a 92. 30 17. 19 16. 235 2 . 283 1. 420 
14W320 94. 10 16. 81 16. 710 2 .093 1. 890 
14W342 101. 00 1 7. 56 16. 3 65 2 .468 1. 550 
14W370 109. 00 17. 94 16. 475 2 .6 58 1. 660 
14W398 117. 00 18. 31 16. 590 2 . 84 3 1. 770 
i a w a 2 6 12 5. 00 18. 69 16. 695 3 .0 33 1. 880 
i a w a 5 5 134. 0 0 19. 0 5 16. 82 8 3 .213 2. 0 10 
iaw500 147. 00 19. 6 3 17. 008 3 .501 2. 190 
iaw550 162. 00 20. 26 17. 206 3 . 8 18 2. 390 
iaw605 178. 00 20. 94 17. 418 4 . 157 2. 600 
14W655 196.00 2 1. 67 17. 64 6 4 .522 2. 830 
14W730 215.00 22. 44 1 7. 889 4 .9 10 3. 070 
TOO BIG 990. 90 35. 99 20. 000 5 . 999 0. 500 

X-AXIS Y-AXE S WT/F 
IX SK RX IY S Y R Y 

1480. 0 202. 0 6. 29 523. 0 7 1.8 3 .76 127. 0 
1590. 0 216. 0 6. 3 1 568. 0 77. 0 3 .77 1 36. 0 
1670. 0 227. 0 6. 32 660. 0 85. 2 3 .97 142. 0 
1790. 0 240. 0 6. 37 70 3. 0 90. 6 3 .9 9 1 50. 0 
1900. 0 2 53. 0 6. 40 745. 0 95. 8 4 .30 158. 0 
2 0 20. 0 267. 0 6. 42 790 . 0 10 1.0 4 .0 1 1 67. 0 
2 150. 0 282. 0 6. 45 7 38 . 0 107. 0 4 .32 1 76. 0 
2270. 0 29 6. 0 6. 49 78 3. 0 113.0 4 .04 1 B4. 0 
2400. 0 310.0 6. 5 1 3 33. 0 118.0 4 .05 193. 0 
2540. 0 325. 0 6. 54 380. 0 124.0 4 .06 202 . 0 
2670. 0 3 3 9.0 6. 55 1 3 33. 0 130.0 4 .07 21 1 . 0 
2 800. 0 353. 0 6. 59 1370. 0 13 6.0 4 .03 219. 0 
2940. 0 368. 0 6. 62 1123. 0 142.0 4 .10 2 2 8. 0 
3080. 0 38 2. 0 6. 65 1 170. 0 14 8. 0 4 . 1 1 2 3 7. 0 
3230. 0 392.0 6. 68 1 2 33 . 0 154. 0 4 . 1 2 246. 0 
3530. 0 427. 0 6. 74 1 330. 0 1 66. 0 a .14 2 64 . 0 
3910. 0 465. 0 6. 8 1 1 473. 0 1 82. 0 4 .17 287. 0 
4400. 0 512. 0 6. 90 16 30. 0 201. 0 4 . 20 314. 0 
4 14 0. 0 493. 0 6. 53 1 5 4 3 . 0 1 96. 0 4 . 17 320. 0 
4910. 0 559. 0 6. 99 1310. 0 22 1. 0 4 .24 3 42. 0 
5450. 0 638. 0 7. 08 1990. 0 24 1.0 4 .27 3 70. 0 
6010. 0 657. 0 7. 17 2173. 0 262. 0 4 . 31 3 9 8. 0 
6 6 10. 0 707. 0 7. 25 2 3 63. 0 283. 0 4 . 3 4 4 2 6. 0 
7220. 0 758. 0 7. 35 2560. 0 3 04 . 0 4 . 37 455. 0 
8250. 0 8 40.0 7. 4 9 2333. 0 3 3 9. 0 a .43 500. 0 
9450. 0 9 33. 0 7. 64 3260. 0 3 78. 0 4 .49 550. 0 

10900. 0 1040.0 7. 81 3633 . 0 4 23.0 a . 55 605. 0 
12500. 0 1150.0 7. 99 4170. 0 4 72. 0 4 .62 655. 0 
14400. 0 1280.0 8. 18 4723. 0 527. 0 a .69 730. 0 
99999. 9 9999.9 20. 00 9000. 0 900. 0 9 .99 80 0. 0 


