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THE LATERAL TORSIONAL BUCKLING OF OPEN THIN-WALLED BEAMS

ABSTRACT

This thesis is concerned with the development of a stiffness matrix for
the study of a large range of stability problems for beams of arbitrary,
open, thin-walled cross sections.

This is done by first developing, using a consistent set of common
engineering assumptions, a non-linear relation between the forces and the
displacements of the beam. These relations are then substituted into the
beam equilibrium equations to give a set of three differential equations of
equilibrium in terms of the displacements. These differential equations are
solved using an jteration technique. A member stiffness matrix is generated
when the iterated solution is used with the non-linear deflection relations.
The resulting fourteen by fourteen matrix includes the regular six forces
plus a bi-moment at each end. The matrix is tested against known solutions
and agreement is seen to be excellent in all cases. A1l the terms necessary

for the building of the matrix are given in the Appendices.
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CHAPTER 1
INTRODUCTION

The lateral torsional buckling of beams has been a subject of interest
for many years. The first formal investigation began in 1899 when Prandtl
and Michell independently developed the differential equations of lateral
torsional buék]ing of thin rectangular sections. A few years later
Timoshenko developed the equations for an I beam. From that time on, many
authors contributed to the field and expanded the scope of the equations.
Much work was done by Goodier, Timoshenko, Bleich and Vlassov [5], [7], [3],
[é]. The result of this work has been to develop, by various methods, the
dffferentia] equations of buckling for an arbitrary open cross section under
various loadings. Solutions to these equations have been found for selected
end conditions and loads but it was not until recently that Gallagher and
Barsoum [2] published a matrfx formulation based on ah assumed displacement
field and minimum potential energy. Barsoum [1] followed up with a dynamic
approach using the Hamiltonian as the stationary functional to determine the
parameters in the assumed displacement field, and this allowed the treatment
of non-conservative loads.

It is the purpose of this thesis to develop, by direct treatment of the
differential equations of equilibrium, a stiffness matrix to calculate the
buck]ing load of various thin wal]ed_open Cross séﬁtioned structures. The
differential equations will be developed under the application of a consis-
tent set of common engineering assumptions. The resulting matrix will be
valid under this range of assumptions.

The differential equations will be developed using equilibrium equations,
strain equations and constitutive laws. The restrictions placed on the |

development will be the material remains elastic, the cross section retains



its overall geometric shape, the rotations are small with respect to one,

and their squares small wi th respect to themselves. As the equations areA
developed the effect of smaller order terms will be studied and in Tight of

the restrictions on rotations, will be kept or diécarded.
The differential equations will then.be iterated to obtain a solution.
This solution will be used to constfuct a force deflection relation.
Several examples will then be treated and compared to known solutions. It
will be seen that agreement is very good in all tested cases.
The advantage of this approach lies in tﬁe increase in the number of
problems which become tractable. For instance, arbitrary boundary conditions,

varying section properties and arbitrary'loadings cease to be a problem and

are easily treated by the stiffness matrix approach.



CHAPTER 2

PRELIMINARIES FOR DEVELOPMENT OF DIFFERENTIAL EQUATIONS

The development of the differential equatiohs for the section will be
done employing equilibrium equations, elastic constitutive laws and strain-
displacement equations. |

First the displacement and strain-displacement equations will be written.
The relationship between strain and stress will then be examined. Finally
the equilibrium equations will all be written. These\separaté'sets of equa-
tions will all be assembled using suitable engineering approximations and
constraints to obtain the governing differential equations for the problem
of lateral torsional buckling. These differential equations will take the
form of the overall equilibrium equations of a displaced element of beam
length written in terms of displacement derivatives. For instance, the well-

known Euler equation for column buckling,

ET & + Pu’= O

is of this form.

The restrictions imposed by the assumed constraints will be studied to
outline the domain of validity of the equations.

The actual steps of the development are as follows: The displacements
will be used fo calculate the strains. Constitutive laws will then be used
to obtain the stresses in terms of the stréins; The stresses will be inte-
grated over.the crdss section to get the force resultants, which will now be
in terms of the strains and hence the displacements. Sdbstitution of these
resultants into the overall equilibrium equations gfves the desired result.

These steps require a detailed study of the displacements, stress-strain



and equilibrium equations. The first group to be studied will be the dis-

placement and strain equations.

" 1:1 Displacements

The main displacements involved are detailed in Figure 1, which shows
the beam segment undeformed and in its initial position. The segment has
constant physical dimensions along its length and carries no load between
its ends. The axes X, ¢, % are the global axes and are fixed along the
initial, undeformed position of the beam. The 3 axis lies along the length
of the beam and the ¢ and 29 axes define the co-ordinates of points on the
mid-thickness of the cross section. The displacements .«¢,v"are in the direc-
tions of 36;7» respectively and are the displacements of the point on the
cross section which lies on the 3 axis when undeformed. The displacement wv
is the displacement in the 3 direetion of a point on the cross section.
Since the cross section is assumed to retain its initial shape only one dis-
p]acement‘j3 is required to define its rotation about the 3/ axis.

The displacements .« , V™, W and _B are not all independent, as the
axial displacement W can be represented by At, V7, B and the cross section
properties. The next step is to develop this relation between ¢, V", /3
and W . This will be done subject to the conditions that the cross section
retains its shape and the shear strains at mid-thickness are zero. This does
not preclude out of plane warping of the cross section. Angular diép]acements
are assumed small with respect to one and so their broducts are taken to be
negligible compared to themselves. This é1lows the rotations to be treated
as vectors. The consequences of this assumption will be examined later.

A co-ordinate_system defining the position qf points on the cross

section is given in Figure 2. The axes X413 with the associated displace-



element viewed looking
towards (-) z

FIG.I UNDEFORMED BEAM SEGMENTIN x,y,z
CO-ORDINATE SYSTEM . : |



ment; A, N »Ac‘/xg is the fixed global system previously defined. The
co-ordinate S indicates distance along the centre-line of the cross section
from the origin of S . This origin is taken at any convenient free edge.
Figure 2a shows one possible origin and direction of s , while Figure 2b
gives an alternate origin and shows S running in the opposite direction.
The thickness t may vafy with S . Both the systems DC,gfénd S may be used
to locate points on the cross section. The distance I’ is the distance per-
pendicular to the tangent line of the point of interést to an arbitrary
origin, in this case thé origin OfJC,%n The distance I” has an associated
sign: positive if the swept area I ds is c1pckwise about the origin,
negative if anticlockwise. The distance I’ may be written in terms of X,

%& and the ang]é 9é and have the sign automatically accounted for if 5ﬁ
is defined the following way: The angle ¢ 1is taken to be the angle between
the positive directed x axis and fhe positive directed element ds and is
measured positive clockwise. _

This means @ is the angle between the vectors X and ds » where cls is

parallel to the tangent at s . Withlthis definition of @ , ' may be written

as.:

F o= Y cos(d) + x sin(¢)

Using these quantities, the displaced shape W can be found from the

fcllowing reasoning.
. {

If the quantity Q%gi were known, where w is a function of 5 , then W

wou]d'be:

3
W = W, + fé—x-vcls

o

' 3w
where \W, is the displacement of the point S=0. To find 35 » three
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and g}ﬁ must be considered.. First, consider a

du

d §
plane section rotation ;%‘: . This has a slope along § of -é‘"—; cCos ¢
Secondly, consider the plane section rotation e'{—'j-; . This has a slope along

S of 31‘3-" Sin ¢ . The third deflection is slightly more combh’cated.

A
displacements J‘%‘ >

Figure 3 shows a small strip of the beam ds in width deflected by a /5
varying with g/

ds
Z Az Z+/\z undeformed
o ——-ds

FIG.3 DEFLECTION DUE TO ROTATION B.

Clearly, the deflection at S due toﬁ is _B Y and in the direction
of the tangent at S. From this, the slope due to a _B deflection varying
with 2 is:

(B+aB8) — Br — JdB r

—

(yrag) - 3 4

Because of the limitations on the rotations, these three slopes may be

added to ob‘tain

Q§_<

a_y_v — —-A_._L_L‘cosg} + dv osing o+

ds f dF ¥

which is based on the shear strains being zero at mid-thickness.

|

o
g



Finally, this may be written as:

dw = ‘A/COS ¢ds + ' sinods r,est (1)

where dw is the di ffer‘entiaT change pf the displacement in the % direction
at any point § on the centre Tine of the cross section for any change ds
in the S co-ordinate. The primes denote differentiation with respect to 7.
Equation (1) is developed in several references. See for example [6] and
[9]. | |

The first tWo terms on the right-hand side of Equation (1) are the con-
tributions of bending with plane sections remaining plane. The third term
represents out of plane warping. It should be remembered that Equation (1)
is valid only if ferms such as _M;V'/are negligible compared to /u’, v R
thus allowing ,(,o:/u',l/@ to be treqted aé vecfors.

The deflection W can be obtained by integrati.on of (1) with respect
to S. | |

3 s .S
W = W, -—,u,'fcos¢c’s -f-/u—ljsmcsz +/8 fr cJS (2)
) ° o o
where W, 1is the displacement of the point s=o0.
It may be noted here that S=0 does not need to fall on the edge of the
cross section, it may be placed anywhere on the section. In this development, _
however, it will be left at any arbitrary edge.l

Equation (2) may be simplified by using the differential relations:

o..
ag
!

- sin ¢

l

(3)

Q-
w

Q_.
|
l

+ cos ¢

o
w
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from Figure 2. This gives:
W = W, -,u’“oc —/u"fé? +/5“’Js (4)
. ° ° o
using s
f f dx

Ldy = ¢ - 9o

Xo

i
o
|

(5)

where x4 and e, §o are the co-ordinates of the pbints 5 and S= O respect-
ively and definining

' 5

w = | rds (6)

allows Equation (4) to be written

W = W, +,3lw: + a0 (2 - 2¢) -bu"(y/c ~¢) (7)

Equation (7) describes the deformations along the 3 axis of the centre-
line of the cross section and can be used to get stfains and therefore
stresses. It should be remembered that terms of the order of «'v' and ﬁ/v"
were taken as negligible compared to terms such as /u',/v"in this development
in order to add the angles vectorially. Therefore Equation (7) as it stands
is purely linear. Since it is desired to treat a non-linear problem, terms
representing axial foreshortening due to ro’gations should be included, but
since this is a complicated procedure, and sfnce these terms will be shown
to be of no consequence for certain conditions, they will be introduced,
treated and discarded at a later stage.

In addition to the deflection W there are some secondary deformationé
across the thickness of the cross section. They represent the effect of

plate bending of the element of cross section 95 . These deformations are

due to deflections perpendicular to the direction of ds and produce plate
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bending stresses whereas the Y deflection produces membrane type stresses.
For most sections the p]ate bending stresses are ignored as their overall
effect is negligible compared to the effect of membrane stress. However, -
for sections with certain geometrical properties, the plate bending stress
may be the only stress available to resist applied load. For example, a
thin rectangular beam behaves 1ike a plate in the weak lateral direction.
For this reason the plate bending deformations will be studied and kept.

To obtain values for these deformations some new co-ordinate systems
will be introduced. In Figure 4, X,y and their associated deflections AL
£ are the fi'xed global system. The new system x,, % and the associ-
ated deflections .«,, ~7 are defined such that they are parallel to the
principal axes of a small element ds of the cross section and share the
same Qrigin as JC,?/. The system Xx,, Y also defines the position of
points on.the cross section, and ,(;,é,,/t/", represent deflections of the
origin in this system. The second axis system Xc,, %, and the associated
| deflections #{, , &; are defined to be the principal axes and the deflections
respectively of the small element d s of the cross section. Therefore, |

X4, vl and xz., v are parallel to each other but not to 3c,7 . It s
clear that since each element d5 of the cross section must be parallel to
the tangent to & at S, theﬁ Xy Y and Xz, g can be related to x,y/
by the angle ¢ » which the tangent makes with the X axis. The axes x, ,
g/‘, , and x;, %, always remain in the plane of X,y and do not displace
with the section. These axes suffice to determine the plate bending
deformation of interest, which is /CCZ The algebraic relation between the

axes are as follows:

x, ='»3c:sm¢ 4 ycos¢
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FIG.4 PRINCIPAL AXIS x,,y, OF ELEMENT ds OF
CROSS SECTION . | |
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- X cos g + g sin @

N
l

My = M sin g + ncos ¢ |
(8)
V= - cos g o+ a7sin @
It is clear that since the section retains its geometric shape, the
following relations Ho]d:
A, = /u,-ﬁyx, = U sing +rcos @ —/B(-fxcos¢+ lfslndJ)
(9)

AN = +_B X =-—,ucos¢+4rsm¢+_/8(x$ln¢+7,cos¢)

M= M= B , s = AT B

wfiere Al s, Vs are the displacements ih the U and o~ directions of the
point 5. | , ’

Derivatives of .4, and v are easily found by differentiating (9) with
respect to 3/ and remembering that ¢, 2, ¢4 are independenf of F4 for each
elemental sectidn.

This completes the development of the necessary displacements.
1:2 Strains

The strains necessary to calculate the required stresses can be found
by differentiation of the displacements in accordance with the strain tensor
chosen. Since this is a non-Tinear development, it would be wise to start
out with non-linear strains and make any approximations later.

Two common strain tensors are Green's tensor E;_; and Almansi's tensor
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@i; - See, for example, Fung, Chapter 4 [4]. Both these are finite strain
tensors and differ only in the co-ordinate system used to represent them.
Green's tensor is written in terms of the undeformed body co—brdinates,
A]ménsi's is written in terms of the deformed body co-ordinateé. For ex-
ample, the axial strain written in terms of the Green's tensor and using the

co-ordinate system 2, 7,, 3 defined previously becomes:

-t oy« (V- (%) ] o

where the squared terms containing ¢, , /% and \w in (10) can be evaluated

¥y

by differentiating the relations given in Equations (7) and (9). The tensor
used in this development will be the Almansi, as it relates to the actual
stress and, for reasons which will become apparent later, it is the actual
stress which will be desired. The Green's tensor was shown above merely to
give some idea of the form of the strain of interest, and because the Green's
tensor can be written in terms of co-ordinate systems already defined.

At this point, the strain and displacement equations are complete. The
principal defTected shape has been developed and, using equations similar to
(10), a1l the strains may be obtained. The secondary plate bending deform-

ations have been introduced and detailed in Figure 4.

1:3 Constitutive Laws

It is now of interest to obtain the relations between the stresses in
the cross section and the strains. Since the strains will be defined for
finite-deformation, the stress tensors will have to be defined to match. To
do this, Chapter 16, Fung [4], will be used to provide all the ﬁeéessary
definitions and relations. |

Two stress tensors, 53;3 ,» the Kirchoff stress, and CEG,
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the actual stress, are defined as related to the strain tensors E;J' and

e,-; by the following relations:

G’U - >\e“ gfi + aGelJ
| o, | , (1)
S = A B 5}3. + 2 G Ei;

! 1
where A,A , G, G are elastic constants. These two stress tensors are

related by the following transformation:
G?,,' = f 8 o o 8 X; 5 (12)

This expression is of course more complex than necessary for the problem.

As with the strains, it will be discussed and reduced in a following section.

In Equation (12), the ¢ and @ are measured in the same cartesian co-

ordinate system, but OC is in terms of the deformed position and @ is in

terms of the undeformed position. The densities} and _ﬁ are the deformed

and undeformed densities respectively. |
The stress tensors are connected td the actual stress vectorc’T; by

the foj]owing relations:
g; ¢, 45 = dT;
| da;

S.if 7/:;; C}So = Q—D’C.‘.{ CJT.L |

where Z” and dS are the normal vector and area of the deformed element and

(13)

: 7/a and A Soare the normal vector and area of the undeformed element. Now
that the actual stress vectors have been given in terms of the strains and

hence indirectly the displacements, the sécondary stresses and their force
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displacement relationship can be discussed. These stresses, due to the
plate bending deformations, can be treated in a much more relaxed way than
the stresses defined above. It will be assumed that the plate bending

stresses produce a moment per unit 1ength'f\7 that is given by:

M=FEt 4
72 |

where &, was defined in Figure 4. The moment acting on the element takenv
from the cross section will be defined as fﬂ JS and will 1ie along the tan-
gent to S in the negative S direction i’n the disp]aced position.

This completes the discussion of stress-strain or force deformation
relations. Of the stresses defined above, only the actual stress Cﬁ} will
be used. Thfs will be due to certqin problems which will arise, necessitating
the writing of equilibrium equations in a displaced position, which require

the use of the actual stress.

1:4 Equilibrium Equations

There are several sets of separate equilibrium equations to be used in
the deve]opment. The main ones of interest are the equations relating the
forces on the face of an element to the overall force resultants on the beam
and the equations giving overall equi]ibrium of the beam segment in terms of
these resultants.

However, there is a problem that arisés from the displacements that mqst
be overcome before these sets of equilibrium equations can be used. Recall
that the aim of this development is to obtain the overall equilibrium equ-
ations in terms of the displacements and their derivatives. This will be
done by relating the force resultants on the beam to the stresses, which in

turn can be found from the strains. Unfortunately, the aSsumptions on the
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displaced shape are that the shear strains are zero. Thus, only the normal
stresses can be found from a stress-strain law and an alternative method
must be found to find the shears. This can be done by writing equilibrium
of a small displaced element of size d S by A;}/which.will give relations
between shear flows and normal forces. This will give the ;hears in tefms
of normal forces. A second set of equations will then be developed which
" will link the normal forces, and therefore indirectly, the shears, to the
norma’l stress in the beam. Since the normal stress can be written in terms
of the strains, this allows both the shear flows and normal forces to be
written in terms of the displacements. This procedure successfully circum-
vents the problem of directly writihg the shears in terms of the strains,
and it will be developed before the overall equilibrium equations for the
beam are developed.

To develop the equations between the shear and force flows, the small
element of cross section shown in Figure 5 will be used. The quantities
=E} =T;,-=r; are elemental force resu]tanf flows in the fixed axis

X2y Gy - They act on the cross section face. T. may be thought of
- as a normal force, :T; and =TZ as shears. The quantities 53%, 1, and
¢ are also force resultant flows, and they act along planes of the element
that were initially parallel to the 3 axis. These resultants are also
defined a]ohg the fixed elemental axes ., 371 = The resultant f”q is
taken as being along the tangent CJS in the deformed shape. This is the
secondary resultant due to plate bending effects. Any shears associated
with fV7 are automatically taken care of by :Tii and =T; .

Using the stress flows defined in Figure 5 and writing equilibrium

gives the following equations:



(a) - elemen'r of interest shown in the undisplaced
Cross - sectlon

(b) — enlarged view of element showing it undisplaced
and displaced with respect to the element

principal axis X,,Y2,2

FIG.5 ELEMENT TAKEN FROM CROSS-SECTION .
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v = O iﬁﬁ- = - ,a_:_

“— F3’ ds Y (15)
: v = / T l l

S M0 Tk -T - -meeo 08

i

2 My, = © fT/‘é; + T, +M - .8 = O (17)

There -are of course three other equilibrium equations, but they are not
necessary for the development and so are not given. The three given equa-
tions re]ate the normal and shear force flows on the element. However, they
do not as yet relate the force flows to the‘inteknal stresses and therefore
the strains. Since it is desired to get the flows as a function of the
strains, the following set of equationé will bevdeveloped relating 033 R

——

the actual stress in the ¥ direction and —T: » the force on the element in
the 3/ direction. The distinction between the two must be made as =TT is
acting on a skewed surface once the element is deflected, and therefore
need not cqincide.with 033 in value.

Using Figure 6, the axes X, #1, 7} are the fixed elemental principal
axes. The element is shown disp]aced,withla small corner.removed.

From equilibrium of the corner:

T = O;}‘t —_ ?ao,’/lf;_ : (]8)

/ I3 .
where /7 in the To 7 term arises from the ratio of areas of the little
corner element and 033 is the actual inferna] stress acting in the displaced
element in the direction of the original axes. In other words, it is the
normal stress in the X, Y cut plane of the corner element. Equation (18)

is similar to one of the equations in the well-known elasticity equation
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X»,Y2 plane

- (b)
(a) - element of interest shown in undisplaced and

displaced position with respect to the element

- principal axis XgY2,z. The xz,y2 plane is shown
cutting the displaced element near a corner.

(b)- free body diagram showing forces and stresses
of interest acting on the corner of the element
truncated by the x,,y» plane.

FIG.6 ELEMENT RELATING Tt AND Oz: .
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gt q,; = T; which gives the external stress vector I' in terms of the
internal stress 0% and the outward normal !];, . Equation (18) is enough
to establish the relationship between internal stress and external force
flows. Equation (18), along with Equations (15), (16) and (17) when coupled
with the stress-strain laws, allows both shear and normal force —T'_» Tz,
and T::, to be.written in terms of the strains.

Now that the problem of the zero she_ar strains is overcome, the next

step is to define overall stress resultants acting on the cross section.
Thése are shown ih-Figure 7 where \/are shears, P is an axial force, B M

are moments andT is a torque and all are defined in the direction of the

fixed axes. They are allowed to translate but must remain parallel to C,

7 3

: - BM2
| * /Bl\/h
\"
o Vi

P+AP T+AT
X,U - —
Vy,v
V2+AV2
V|+A;/|/ |
BMi*ABMI BM2+ ABM2

FIG.7 BEAM SECTION WITH RESULTANT FORCES .

Using equilibrium, the overall force resultants on the enfi re cross
section may be defined in terms of T, T,_ and 7—3 . It is first conven-
* 'ient to define the force flows T. ,.T,_ and T3 as béing analogous to

—

T.,Tz» and. -T—g but parallel to F,2¢,« respectively rather than
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¥, Xz, Yo - From equilibrium and the geometry of Figure 4,

I’;—E_smqﬁ'—‘—-cos(ﬁ (19)

R
{
1
0
o
-
+
ol
@
D
o

Now | fT. Js = P

Sog-Tj JS :h \\/z |
g:—(_r.n - Lw - M cos ¥ )c's = BM,

(20)

ig(“l—.€ *TZW + M sin }/‘545 = BM.,

C-Tn s Tf - Mo )ds = T

where ? ) n and Y are shown in Figure 8. They are an axis that translates

with tﬁe section but does not rotate. In the undeformed position‘ of the beam, -

?, N and X, ¢ are co-incident.
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. y
_ | X -
= — S=S A~ initial position
| 7"_;57\ ¢ 8 'iu /’S-O
£ =x-By - 'y
M=y +Bx deformed position

ny

FIG.8 DEFORMED AND UNDEFORMED CROSS SECTION .

A final set of equilibrium equations can now be written relating the
overall resultants BM,V,P ,T . Using Figure 7, the equilibrium equa-

tions about the displaced position are:

> F,=o0 —PrPrAP =0 P=0 (21)
> F,=0 -V, +\/,,I+AV,,=O VL' =0 | (22)

S Fe=0O V. eVraVe = O V,' =0 o (29)

¥ I\.’\3=c‘>‘ | T+ Vz;/ul—- V, _'= o (24)

| > M;O BM: +V, — Pu'= 0 ‘ (25)
- o (26)

ZMzczo" BMII =V, + P’
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There are now sufficient equations between the displacements, strains,'
constitutive laws and the equilibrium conditions to completely describe the
problem. The task now is to assemble all these equations into a useful set
. of differential eqﬁations which compactly and completely describe the prob-
lem. This will be done in the next sectibn where a number of simplifying

engineering assumptions will be employed and their effects studied.
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CHAPTER 3
ASSEMBLY OF DIFFERENTIAL EQUATIONS

The differential equations of buckling can now be developed by writing
the overall equilibrium equations in terms of the overall force resultants
which can be related to the displacements through the use of selected stress
and strain equations. This gives the overall equilibrium equations in terms
of displacements and their derivatives, and these will be taken as the gov-
erning differential equations.

This is easiest accomplished by working through the displacements, then
the strains, then the stress-strain equations, getiing the stress in terms
of displacements, then getting the force resultants from the stresses and
substituting them into the overall gross equilibrium equations. This can be
done using the ideas and equations presented in the previous chapter.

Using this approach, the displacement and strain equations will be dis-

cussed first.

3:1 Discussion of Displacement and Strain

The constraint placed on the displacement at this point is anar;Je are
small compared to one. This was used in the development of Equation (7) for
v . When it comes to evaluating the strains it would be convenient if /aﬂ

4({ etc. were small compared to the linear strains, as this would take
1 . 2 ' 2 1\ 2
E,,= 2z Loaw' + O+ () + (vs)™ ] (10)
and remove the squared terms from it. If this were the case, a condition for

the case of bending in the y/ plane would be:

2lw'l > (") | | (27)

But W' is of the order of 1r/% W' . Therefore (27) becomes:
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2| vy '] (v)* | (28)

To get some physical idea for the result, postulate a beam deflecting

in the following typical curve:

Therefore, : . T 3
= U3 T cos

e e (e

The maximum absolute values become:

v, = | v
o
vlo= T
" ot '
v, = T ‘

!
Substituting these into Equation (28) and taking the case of W, = O

gives:
2141 >> vl (29)

In other words, the width and depthiof the section must be large com-
pared to the deflection. Similar conclusions can be shown for deflections
« and 8.

This is undoubtedly satisfied by a great many actual cases, but unfort-
unately many problems of interest may violate Equation (29). A long thin
cantilever for iﬁstance may deflect several times its depth before buckling.

It is to be remembered that Equation (29) was developed under the conditions
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that the seﬁond order strain terms are small enough to be neglected. There
is always the possibility that the second order terms may be large compared
toW/ and still have no effect. For instance, the long thin cantilever

beam under end shear may deflect Severa] times its depth and yet the strains
are linear and the usual linear elastic aﬁa]ysis is adequate to obtain mom-

ents. It is worth pursuing this to see if it is possible to relax Equation

(29).
To do this, Equation (7) will first of all be re-examined. Equation (7)
! ! /
W =W, + 8w +_u (x.-2x) +/z/(tfo-7/3 (7)
‘ ! )
as it stands is linear in _w , - and_g . This means that it is incapable

of handling effects such as axial foreshortening, since this effect depends
on non-linear combinations of ¢’ 1/1/3 " . To include these effects, it
is convenient to define the quantity_v—v- » which is the axial displacement in
- the % direction of the point S and it includes such effects as axial fore-
shortening as well as the effect that continuity of the beam and boundary

conditions héve on axial foreshortening. Clearly W can be related to W

by the following equation.:
—_— ¥ N | ¥ 2
W=W—é£(/u5);]3‘25(11~;)c}} +1(3) (30)

where v is defined by Equation (7), the squared terms are the effects of
axial foreshortening if the rotations /(,L's, v; can be considered to take
place aas rigid body rotations qnd F(?\ -is the term which represents the
effect of constraints such as beam continuity or boundary conditions. For
example, if the supports at either end of the beam prevent motion of the

ends, then elongation takes place during lateral deflections and ‘F(}) is

to look after effects similar to this, as the axial foreshortening in this
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case cannot be regarded as due to rigid body rotations alone. If the axial
foreshortening can be treated as being due entirely to rigid body rotations
only, then 5:(3’) = (O . It should be noted that Equation (30) has meaning
even under the or1;g1'na1 constraints that ,a,’,tr') /311—' etc. are negligible
compared to /a,'ov' as in Equation (30) the squared terms will be 6f the
order Lx (' )2 whereas the terms in /u,’,ir’ in wv are of the order ',
1;4'7, » and ' ,c;',v' does not imply I_x(,(,y)Z K x#’)wr./ Using
the more precise value of W for w in Equation (10) for the strain E;; s
and using .« s and V7, from Equation (9) gives:

By = é"{_ 2w’ - (’U""‘,B,‘f)a"('lf’-r_,s‘x)z"’r(}) _+(vT/')Z+(u'-,s'y)z*r.('tf'w"x)zj

= w' i E(w) (30

In other words, the linear strain w'is adequate if f '(3') = O

as clearly (w)? KW' . This will occur if 1:"(%) = O , which is
the condition that the axial foreshortehing can be viewed solely as the
result of rigid body rotation foreshortening. It will now be discussed
when this occurs.

First of all, assume &5 V'= O and only 8% o . Then the
squared terms in Equation (30) for W are functions of /B' and X, gonly.
Sinceﬁ' is constant‘ across the cross section, the axial foreshortening
varies as X and Y . This cannot be accomplished by any rigid body motion
of the entir;e element cross section. This differential fores'hortening
means fhat, since adjacent fibres will be trying to chahge different lengths,
continuity conditions of the material will cause adjacent fibres to constrain
each other in some way. Because of this constraint, a rigid body movement is
ndt possible for each fibre for a _8 deflection, and therefore 1r'<})¢ o

~ Since F(}) -equals a constant is merely a rigid displacement in the 3%
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d1rect1on, ? (3;) will be some function of 3/ other than a constant. This
means that 'F C?) # O and therefore the hoped for result of Equation

(31)
/
E}}: \44

does not materialize. Therefore //3 will be constrained to values which
render (/3 DC) and (_/8 4f> small compared to v\/ . Some phys1ca1 idea
for this can be obtained by following a development similar to that of
Equation (29).
) 17 / _|_( ! )

The terms to be compared are _/[3 w, from W and 2 B
1 ? y _— :
2 (/3 T) from W and Equation (10). Writing the desired condition,

similar to Equation (28), gives:

li,ﬁw,‘>7(ﬂ,c (/5?/ (32)

——

' i /
Assuming _& = d/Bo Sin T? and placing the largest values for_j3.,
l .

B " into Equation (32) gives:
2w | >> Jﬁole) )/Bo%?'] (33)

The effect of the_/B that is being removed from the equations is eas-
iest visualized by examining a solid right circular cylinder as shown in
Figure 9. . In Figure 9a, the undeformed cylinder is shown. In Figure 9b,
the cylinder is shown with the fibres in the position they would assume
under an end rotation_/B if they were unconstrained. The axial fore-
shortening would be proportional to F{z, and therefore the surface would not
remain plane. Figure 9c shows the fibres as they actually éppear along with
the resulting stress. This final shape isAassumed because of the>constraint

placed on the fibres to behave as a continuum. Also note the lack of axial
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D (1

| C
STRESS STRESS W STRESS Q|T

(a) (b) (c)

FIG.9 CYLINDER UNDER END ROTATION .
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end restraint in this particular example. See Timoshenko [8], pp. 286-291.

Now that d/é?lef O has been treated, take the case of _/43 =
and ,LLC 1/',:¢= o . Since_/&;*v~/ are constant across the cross section,
the foreshortening of one fibre by Equation (30) is the same as all the
others. Therefore there is no differential movement axially to requirevany
constraint, as was the case with,/g l. However, if the beam is restrained
axially at the boundarys, this will prevent the beam from shortening axially,
as it tends to do if it has slopes anywhere. This would provide a constraint
on the fibres as they rotate and so once again {7(35) would have a value in
Equation (30) and ¥,(3;> would appear in the strain. But if this is not
the case, and the end is free to move axially fdr shortening due to rot-
ations, then f)(}y O and consequently 'F (&) O . This then allows
the desired result L 33 = =w’

Ihis“argument was based on the Green's tensor Eiij . This tensor is
easy‘to use combared to the Almansi strainﬁxensor €ij- ,.as the Almansi
strain is based on the co-ordinafe system defined by the diép]acéd shape.
However, the A]manéi strain is related to the actual stress, and since it
is the actual stress that will be.used later, the tensor €i; will be
examined. This tensor lacks the physical interpretation that can be
asédciated with the Green's tensor, so the Green's tensor~was discussed
first to provide some idea és t0 Why the non-]ihear strain terms fall out.

| The form of the strain tensor GiiJL Can be taken from Fung [4], Chapter
16, whefe the following relation between the displaced axis and the fixed

axis is defined as:
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Yo = ¢ + V3

Jo = I * W | (30

where once again W is given by Equation (30) and s , v
placements along the _<4Z, U~  directions at point S .

of s,V ,. can be found from Equation (9).

are the dis-

The linear form

/6(5:/6(/—}?"
| (9)

I

Vs v’ —_B8

Taking account of the change in /{,ZS) 'u/s due to shortening because of

slopes gives:

_/(és = _W —_/By + G, (oc,{f,;\

(35)
s = -‘/BQC t+ Gl (34’7,;\

where G, (x,?/,}y is of the order ~— 2 /éésmu) X
, I ) / 2
and G,_(:x.,-?,3) is of the order — 2 (’U’_g ".”“") ¥

The Almansi strain 633, may be written as:
aw  _Lf ( (). (d2Y ] (36)
eh = 37 a}o _ dFo 8}'0 :

Now, the following differential relations can be written:
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(37)

dus = s dx 4 due Jv , dus d2
3 %o dx 3y dy dFe  dz Ao
v - dw dx 4 Aw dy 4 4w 3%
d %o doc d7o dy d¥o d% d%o
dw - AW dx 4 3w It . AW 3
d %o o Jd¥oe ¢ I d% 330
38 - 38 dx 4 a8 3t , B I3
d %o dx. d%o ¢ Q7o dF d%»

These are all that is required to transfer portions of Equation (36) from

X, Yo, ¥o to o, 9, ¥ - This allows parts of Equation (36) to
be written in terms of previously evaluated functions.

*
Denoting differentiation with respect to , as & —- o

a %o
and using Equation (34), Equation (37) becomes:
X * x
(—,u,s) + 9As -v2) +,u,;(l——vv)
d ¢

c

K , *

12, = dvs (‘,Zza) +§_"£(”’5's) +1;’.5/(|—\’/’v)

v = AW (—a )+ 3w (%) +w-w)
x d
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(38)

4 4.8 (‘/Lz:) + @_J_g ("’j;) +_/81(1—%)

dx d¢
By using Equations (35), the terms o4 s a'“s, 373 etc. may be eval-
‘ Jd a? 3y
uated:
! 2 ' 2
_a__“i[’_é -~ "‘('/(’(‘Smex> ) _‘3_"5_ = -‘(_1}.}_'_“.5&)—
d oc - 2 d ¢ 2

- B —aIAL:ﬁftmx 30‘—tﬁ Zﬁftgx%ic

dus ~
Ay
Also,
dB — o dB = o
3 ay

Using these, Equations (38) become

"(,665..,,) (—_/és (_/B B(M ".,37)/8 )(-/‘f) +/“s (’ W)

/“ = mase
1/ = (+p-2(s' um),e )(,ua) (vsmy-/uﬁ s, (1—w)
Tz (39)
wo=aw (4 ~Aaw (-&) + WG -W)
4 3 3(}, .
* ¥
8= 8(1-W)

Since previously,. the rotations have been restricted to be at least as
/ etc. it is clear that those terms

. ¢ 7 Il 7
small as e K L y Bl L v
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containing three angles as a product can certainly be discarded compared to
¥
terms such as ,as/ 5 1/; in the equations for s, | —515

Therefore, Equations (39) reduce to (40):

K ’ ) _’l_-
=t B v o (1-wW)

* t *
’5’5 = ~Bu, *+ v, (1 =)
. (40)
* _ »
wo =W (1) + 35 (-5) v wh-w)
d x ((f'
¥ / *
B = pg(i-w)
Now, from Equations (30) and- (7):
Jdw ___.-,a,/%/e,aw. ja(/u- +_,63c)/6 43,
o RS ,
(41)

L I TR LY PRy PO P
f ok

* * :
Substitution of Equations (41) and the values for _<¢L,, vz  into the

: %
equation for W in Equation (39) gives:

o

! | ¥ i} | ! \ J >
= (“/461*'/3 %—% -~ f(v+/e‘oc)/3c13><‘,512 ) (l—w))
+ ("’V"’,B aw' J(M"_/B f(f),B 33)(*;8/%5 V(l W))

A 2] | | - (a2)
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“When this complicated expression is placed in Equation (36), the non-
linear terms do not fall out o% the strain equation. However, Equation (42)
‘has many small high order terms in it. By neglecting terms cbntaim’ng three
ang]e§ as products compared to terms such as ,a,/'z/’/) /(,A_I/‘}’ etc.,
realizing that g8  fis of the order 8/ and that Jdw:. = y

d o
and Jdw;, — ~, Equation (42) becomes:

3¢

Vt’ = () 0-W) + @ - + W (- (43)

When placed in Equation (36) for C—Z”, , and using

¥ * / XN ' X

My = B "'/ws(l-W) = ws(1-W)

* ~ '* . ! .—*—- D — / i

vy = T _Bug t ’l/’s(l"W> = s (l—W)
since g4 | g, <K _us , s » @,, becomes:

Cyy = (,MQZ(I—\%) * ('V‘sl)z('l-\%) + W (W)
-3 [\Tt =+ (,u.’)z(l-\%)z + (V')Z(lb—viv)zj

%
Since W «« | s then:

2 2 i 2
e, = (,u,'s) +(4f;)z+ ' - gl_ (,u,/) - Z(Af')

!

Bt W'E ow' - () -3(w) - Q)

/

Therefore e” = w + f (;)

. l
Once again, the conclusion has been reached that if f (3) = o,
then the linear approximation to the strain is adequate. Recalling the

previous discussion of fGz) , its assuming a zero value can be taken to
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‘ ] 2 ' 2 / . .
imply (A x) and (ﬁ 7) are small compared to Vv  and that there is no axial
restraint on the beam.
This discussion has dealt with the axial strains E‘” and €;; only.
The shear strains are not necessary as an alternative method for finding a

measure of the shear force was given in section 1:4 on Equilibrium Equations.

3:2 Stress-Strain Equations

Now that the strain-displacement relation has been decided upon, the

constitutive relation

md = )\ ea(.c SIJ + a G Ciy (1])

from section 1:3 can be used to relate stress and strain at point$. Using
the usual beam assumption of Poisson's ratio being zero and the results of

3:1 changes Equation (11) to

0Ty = E ey = Ew' = e
This gives T in terms of the disb1acement vV and Young's Modulus E
Notice that the actual stress 0" and the Almansi strain were used.b This
is because equilibrium equations were used which required actual stresses in
dfsp1aced shapes to get Equation (13) and that only U3; was required to do
this, Whereas the Kirchoff stress has no easy physical representation and to

write equilibrium using it would be difficult.

3:3 Relating Internal Stresses to External Stress Vectors

Now that the stresses have been related to displacements, the next step
, s

on the beam face, as it is these vectors that are needed to get the overall

Fa

is to relate the internal stresses to the external stress vectors =ﬁ,

beam resultants from Equation (20). This will require some‘manipulation,'as
these equations are full of non-linear high order terms that will be discard-

ed because of .the constraints on the rotations. The equations of interest
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from the section 154 on Equilibrium Equations are

3te . — 4T (15)
ds '_; 5

T - T, L ~(MB)' =0 e

A +M'-_‘Loﬁ:0 (7
= _ (18)
T =05t - v,

These equations give sufficient relations between T, T; :1:3 , Lo and
the one component G of the stress tensor that can be found from the strain ten-

sor to allow them all to be evaluated in terms of the displacements and their

derivatives. Rewriting Equations (16), (17) and (18) and integrating (15):

_T:: _)_\’V'z A

T =T, —M +1..8

=
I

G—{. - cLo vlz_
. s _ , (45)
10 = So - T, /45

The problem now is to reduce Equation (45) by removing all the terms ren-
dered negligible by the constraints on the angles.

, —
Obviously the term <o V3, is important forTu » but in the equations for

T,. and T; it can be hopefully shown to be small, both in Tv'z, T,u'zand
1o . Substituting for 1, in T,and T, gives:

T. =

' ’ /
Ctv, - Lovits - 1lo - (MB)

Ttu, —lov,auh +1op -M' (46)
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Now, the 1. terms can be written as %o (1f£‘vi ~ J) and
1o (A%;‘V{  f;B) . Previously, the equations were constrained to be
va]id.only where 4w’ were negligible compared to ‘Aéjwflor,B s or where
ALZ(f:/B could be discarded compared to one. Applying these conditions to
the o terms, it is obvious that %o 1fé.¢4;_ and ‘lo‘bﬁ:tﬁ; can

be discarded. Now,

S____/ : ) , /7
clo =:._S; _r;(JS = - S; ( G“{;'— io ) ) C)S
This is a complicated non-Tinear equation. It will hopefully be shown that

' i;1r£ is small when differentiated. When expanded, 1o becomes:
5 5 ) -
i ] ! ! "
L= - J(t)ds + § 2 ds « [ 107 ds (47)

Comparing the left-hand side of Equation (47) with the last term on the

right-hand side gives:

1,

5

L 1o ’UZ”‘ c)s

Now,

- > I 5 .
o(?_om‘“ } L Ci°max VZ max ‘JS > I-o 1o /U-'L/ CJ& 0 £« £)

" ' (48)
S

Therefore '
0( cllo max ci“’ max VZ.

max

In?oking the previously used shape

voo= 1, 5,.”1"2«

T
results in Equation (48) becoming:
Tias

, L
If v, € ioo , then Equation (48) finally becomes:
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Ts ~ =
X | JoolL oL
‘ !
If ,'OSLL < 2o » then it will be assumed that it can safely be

o L
discarded with respect to & . This leads to the condition S < Z.
This is a reasonable condition, and it will be inferred from this simple

example that if

L _ L -
Viax < 100 and s £ z then
}' 5 ) (J .
o lo V, d5 may be discarded.

It -should bé noted that this constr;aint tends to run counter to the con-
straints expressed in Equation (29). |

Treatment of the term io'flf,z is slightly more complicated,
because as it stands ‘i; would héve to be ccmparedvto 1o, which is not
very meaningful if done directly. Therefore, a discussion of Lo will be
helpful.

'i'he term To is caused by two effects: shears due to the forces \%
an.d shears due to the torque T . However, for the linear case, that part
of 7.° due to \/ is constant and therefore the associated qwl for the
linear case is zero. This means that for the non-linear part iol due to
\/ is second order and the prodijct cLol v’; is third and therefore can
be discarded. The 1., portion not due to" \/ is due to T and this has
previously been taken as small because of the restraints on the _B I terms,
and because the section is being taken to act as a beam, not a shaft. This
alone would imply that thé 1o due to T is small and therefore, since o
would be reasonably smooth with ¥ , that 1o’ is small. |

However, even granting this, it is possible to show the unimportance

‘ot _
of % V7.  from another argument.



41

The term 9. can once again be broken into two parts: the linear and
non-linear terms. The non-linear terms can be neglected, as they become

. [ ' .
third order terms in 1, 77, . This leaves the linear terms. They can

be taken as 1, = f,,s(o*t)"c,s

5
/ it
or (io = g (Woﬂ + W (xo—x) +1r”/(7,-}) +/3”Iw,)t cls

1 !
The terms to be compared are 1o and s V. . Invoking the approx-

imations used previously gives:

Tz

A= U, sm—[-
U = Ao sm"-f
T %

B = B, sin T
, .
An inequality between V7, .., and the ﬁ,,'\f;)/do terms can be written:

/

1 1T T
vy KT T T ALY

Rewriting the comparison using the above gives:

max

S
o S O ot T (om0 02 G (gumg) + 80w, T )b ds
(3 L 12\t ¢ L _

=

S
— a3 . 3
'(4};'% - *ﬂoﬁf) j(w‘,”f/u"%(x" -x)+4r°717.3(7,_7)

o

+_ﬁo%3w. )tc\s

Q
IN
X
IN

(49)
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/ . . . ..
Now, W, is equal to a constant in the linear case. For the remaining
terms, the comparison becomes similar to:

A Mo ™| o T o T
T2 L L3
or « Jp T OLK£) (50)
L&
. : z .
vl . . I
Clearly, —= will be in general negligible compared to < If
L
Vo { ioco - » Equation (50) becomes:
o« | T2 (51)
oo L
This is merely a statement of the fact
/ ' _ q
Lo is of the order "/l_
, _
vy is of the order i/ L
This allows Equation (15) to be written:
S
!
L = -L (ot) ds (52)

which is the linear equation for Clo . Therefore, under the assumptions of
o _ _
S %

and U, < ;-I;'o

for an assumed sine shape, Equations
(45) become:

T, = ctv, - 1. - (M8)
—T“,~ = (rt/u; -M + 1.8 _(53)

/
io ’U'Z

=
I

ot -



43

where 1o 1is given by Equation (52).

The limits 5A< % and  Vaax < f%:: presented above are not definite
1imits but are only given as a guide to indicate that around these values the
approxiﬁations are becoming doubtfu]! Remember that these were developed on
the basis of a simple sine curve deflection and the arbitrary decision to
discard terms of order 1/20 compared to values in the range of.zero to one.

Also, these appro*imations took no account of distribution over the
length of the.seﬁtion. For instance, some of the terms being compared were
modified by sine curves, others by cosine curves. In some circumstances,

this mighf allow a small term to dominate a Targer term because at a certain
point thé sine or cosine terms are zero. However, since this occurs at
certain points and the function is non-zero over large parts of the domain
elsewhere, it was felt that éomparison of maximum values was adequate.
These 1imits therefore are based ch possible orders of magnitude only and
very rough physical reasoﬁing and should not be construed as inviolable.
It is still felt though that, despite the roughness of the approx1mat1ons
1nvolved the conclusions drawn are satisfactory.

From Equations (19), the stress vectors in the global fixed axes are:
T = T

—

T, = T, sind —-.Ts cos ¢ (19)

To= Tocosg +T, sms

Everything about Equations (19) is known except for VW, , the axial displace-
ment of the origin of S on the cross section. To evaluate wv,, equili-

brium along the 3, axis will be used.
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Recalling the first equation of (20), which is S:, T ds = P , and

using the last equation of (53) gives:
5 5 , | .
(T = L(ot-Tou)ds

This implies from Equations (44) and (7)

P =F{ (+{w +8%. + u"lre) e g ds +Fp)

where F(3) = - Ls 7,;’1)2' ds

Integrating with respect to S then ¥ and rearranging, gives:

» P} | e Fe3d |
Wo EA “_/BW —_U (360»‘36)—'/\/‘(7/0’7/)‘_ f—'E—TAJ + K

where i, 7, are the co-ordmates of the centroid in the oc, 7 co-ordinate
system, A 1is the area of the cross section, and = f t w, ds

Substitution of W. into Equation (7) gives:

W = j(w. w)+/u, (% - Jc)-l—/u— (7 ?) 5: + K - fF(;)J} (55)
EA

This has the unfortunate aspect of re-introducing the term . vz' , as it
appears in FC}). Therefore, since 0 = Ew' and
6. / s .

‘l,,=ff°_(c‘t)Js = o (eEw)t) ds -, the F(3) term appears,
in modified form in both ¢ and 1o. In 1o, it has the form

1 )’s f /CJ - . ) .

o ( 1o ’U'z) S which has already been shown to be negligible

under the constraints of the problem. Its appearance in 0 in the second and

third of Equations (53) can also be neglected as T~ appears in a second order
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term already, and so fq F7<3) becomes a third order contribution to these

equations. Therefore, for the purpose of evaluating T, , 13 and consequen-

tly T. , I3, w will be taken as:

w = B(w -3) + 'z =) +'1r(? ¢) * EZ + K (56)

At this point, the shears and normal flows T.,Tl,']} have been related to
the displacements and then derivatives. This has been done through the use
of stress-strain equations relating en,ﬂ’ and W and through equilibrium equa-
tions relating o, T R Tz, T3 and {o. A1l this was done by neglecting terms
in the equations which v;/ere rendered negligible by the conditions ,w'/v" can
be discarded compared to ,u,; 4/:/@ There is now enough information to de-

termine the resultant forces on the end of the section.

3:4 Relating the Surface Stress Vector to the Overall Beam Force Resultants

Using Equations (19), (20) and (53), the overall beam resultant can now -
be written in terms of 0 and 1, and therefore in terms of the displacements.

The resultants become:

S: T, ds = g:<:|=g SIN® - Tacos @ )ds (57)

—

Substitution of [, and T_q, gives:

Vi —‘.—Sf(smzp('r?.o} Frtul M) —cosp Clor by (M) ) ds (58)

Substitution for 9, , 0 and M , along with ,a;,ale and integrating gives:
. n v ' "
\/n.:' E[‘(-’Ke-K4+K$)/3 +(-§?¢—.KL)/JJJ' +("§x7c‘\<3>’lf

- B(KKs K p" + 8 (Bage K V" + BBtk )"+ £t

—)B,/B-"(K‘ “Ke + Ka) +ﬁi“4”<§z?<-'fK3) */B'AJ' (Q-x,c"K?) - g ‘I ] (59)



where the following equalities are defined:

Ct(w.-w.\Js = AG -Az.=0 | CLAS—_— A
S:JE(:Z —3()(43 = Ag}j -Az =0 Lgxcj/h/-\f :
LHG-ds = A7 -7 = o (Fydhng

gosfy(w.~a)Js = K, ftl‘f‘Jf’: icz, f{xljﬁ = i., ete.

Joty(z-x)ds = Agz -E., - % - B,

*Fcentroid

oty (G-¢)ds = Ag? -3, - -3, B

centvoid =

.
a.
ot

using the relations = } = =sin ,é, Z‘i =x = cos ¢

I

[+ 3
w

L cos ¢ Lt(w.-s.)c‘scjs =X le:(w.—c»'.)is ]:— S:x,t(w.-c,\) cl,s

=, o - jjac'}:(w.—a?-)cls = Ka

So cos ¢ Lt(az-x)clscls =X S:!:(a?.—od ds o "Sox{:(a_o—ac—):ls

| . =0 - S.:x{:(:i —e)ds =+ §?c

-

So cos ¢ g:t(g-?) cl,s JS =X g:t(‘g;—?)cl.s

g
o

- Lsxt(g-jhjs

= ®) -- S-osx,t(g -?)Js = .+3‘-;;r.7.¢
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gjsmgﬁ 5 Jc(w w)r.j Js = L (w.—a)cjs

= O + l’jyt(w.—s.us = K,

-

So _smd j:)l:(iﬁ)c)cgsc}s = ‘? Lsf(i—x)gs l:+ Lgf?t(gz—xﬁja

= O "‘Sj']"t(i-x)c;s = —§x.zc.

N S S s
S, sgn¢jot(§-<¢)c]scls = ¢

5 of- Yj}!:(j -?)J S

= o + Lgéy’c(g—y)c[s = 3
. Lg,i; sin” ¢ J.s | i . K.
TL ong cosd ds = X,
f: ,t; X sing cos¢ds | = K4
C f,—; ¢ sin®g ds = Ks
L cos®p ds = Ky
Sj,i‘; x cc;szcb ds =  Ks
gj‘%jj/smqﬁ cos ¢ ds =

- Ko

(60)
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Similarly

\/a = S°T3 ds = S; (Tz Cos ¢ +Tg sin ¢) ds (61)

By using similar operations as those used in \/, s \/,z becomes:

i

\/z ‘: E [.(K\_ Kgt K?)ﬂlll+(-§x?o~‘<3)/u1“ + ("i’xc."\<7 v
" _ at ul Pt
-ﬁ (K@*’Klp" ks)ﬁ - A (C-E}c+ Kz)/t —j)(§x70 *’Ks)'lf rEV _
'y ) y -
'}8/8 (K(, + Kq.‘ Kf) —_,8/1« /(§76+ K;_) _.,Biv—”(§x7<.+l<3) + 'Efﬁ L (62)
For the torque T
z :
1= So (_TA(‘?*ﬁx’) +7E(oc-,6y),"l\’|1f;)c]s (63)
Expanding in terms of 1., @7, M ,A; and /U‘z' gives:
. < : | |
1= L [?’(sm ¢ (‘ 1B~ 0”6,(1); + M')‘ cos ¢(‘io- U'va:_ + (M,e)"»
+/37'(cos @ (‘ Top —Ttu, *‘_M‘) +sin ¢ (‘Lo*o'fvzl +(MB) )
| +‘I (—- cos ¢("7-o} = 0'43,1/«; "MA') “sing (‘La‘ﬂ:Vzﬁ + (M,B)') ‘
82 (o~ 8-Th s +M') = cos g (to-ab 15 + (M) - Mart |ds
- (64)
By expanding, cancelling and throwing out terms of third order Equation

(64) simplifies considerably. Introduction of the values for ,é(.; and

Vi ! then reduce it to:
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-

T":_ 50 [Jlo (»fcos ¢ Toc sin ¢)+MI(‘$sm. ¢-Xx cos¢) —E,BIM (x sm $+ycos )

+ O/‘L (’,{LI? +/\f/x, +_/BI(7}+XI)> + M (/LL’COS ¢ +1/15|n¢5>]c}5

Introducing 1o, ™, G

(65)

and integrating and adding Cﬁ' for the
torque due to plate twisting gives:

T = E [( K13+ K:s—K‘-, K *K‘e)ﬁ ”I'f' (Km +Ks — Kg ),u,./”+ (K,s +KqKe )ru'”'

t C/B l.r/“ l ((- Kl +Ka' Kq‘)ﬁ "+ (éx?c.*KZ}/U/l/'f'(éxc "'K-,)’lf //— 'EE ? >
+4/I ((—Ka-— Kg —K,-)_/g,”+ (-§1'¢— Ka),u,” + (—Ex,?c_- Kz)’v’”v" _Eg 55)

+ﬁ’ ((2 K|o - K'I.O + KU —'K'za +K‘L4)ﬂu + (2. Ku -KIQ—Z Kq ) JL”

+(2Ke ~2Ke=Ku)v' * B2 | e
Cé,—(x‘+7‘§t(w.—o’6-)ds = K
fé”(x‘w‘)t(z—ad ds | = K,
-Lg'é(x‘*r%‘)t(?':ﬂcis = K,

Sjr Lst(w.-w‘.)cjs css = fsz S:Jt(w.—c?;.)clsf - Sj:(w‘-&')'-) LSY JS(JS

—

=0 - Lst((w.-w_'.)w. Js = - g:t (w.-GS.)ZJs =K‘3=-I7-
C =JG =

St. Venant's torsion constant
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5 r J[,(x—ths » :KM

Sosrgojﬁ(i“y)gs | ' | = Kis

So (xz*r%l))tcls | = Ip
3 t'3 |

g@, 1z X% sing cos @ ds = K
s

So s 4 ean’g ds =K
S s il? 2 2 —

o 72 X' cos’g ds = Ke
543

f. Z X sin“¢ ds : = K
§t3 :

L ry x* sing cose ds = K 2
§ 33

S z X4 sin ¢ ds = K,
5 3

So T Y cos"¢ ds = K.,

L “p d -

o 6 x% cos” @ ds K.a
3 t ‘

g ‘5‘1’ sing cosd ds = K,z

' o (67)

Summing up the stress vectors in the displaced position relative to the

defined resultants gives for the moments:

BM, = [ +52) ~Toww -Meosto-n)ds (60
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Recall that

T :-0“{_%01;2/

The term 9. 1r; was shown hopefully to havé no noticeable effect on
the equations for 'T;, ’T; and therefore on the shears and torques.
However, it is of consequence now in defining the moment, as at first glance
it is a term of importance because terms of similar magnitude have been kept
in previous equations. Therefore <. 1r2 will be kept in the equations

and examined after Equation (68) has been expanded. Equation (68) becomes:
5( ’
B Ml = go (0\‘{: - ‘LOVL )(gr +ﬁx> --I-;W - MC05 (d —ﬁ)

= U.-%(?-}—ﬁx) - io"f;?, - MCO5(¢"J3) - Tg A\VAVARRS cLo 'U:;,B x (69)

The last term on the righthand side of (69) can be neglected compared
to the second term because of the restriction on the angles.

Substituting for T, gives:

BM, = S:[O“{: (7},630) “101!;7, ‘W(cosqﬂ (0'{.,44,; ~M'+ u_ﬁ)

)

+sng (-1 + v “<Mﬁ)l) B MCOS(W})JJ& (70)

Since W is not of the order of _«, v~ but is of the order of ;1 /x

/ : / A
etc. and since ™M  and (Pﬂﬁ> are small, Equation (70) becomes:

5
- BM, = g;@'t(}bed =Ly f tow ang + M cos(0-8))ds ()

Examining the expanded form of the 1, terms in (71) gives:



52

5;[1mu%%cw¢—x5mw>"Eiofvgm¢ -*ioyﬂ; *imﬂw.mn¢

*lo'x sind + ‘LOV}OSI.M + lowe sin¢ ] Js (72)

This is of the form:

g:(?ﬂ_— <°<«u/,-/8';) - 5~'J_\/.‘;%r’ +dV.g'w,

PV (', + . v we) ) ds
LV o To ) (73)
where of €& Reql and dV, , 41  are very similar to the shears and

torques previously developed. When integrated, (73) will be of the form:

LT+ Viw L€ R (74)

Since the section is open, thin wa11¢d and behaving as a beam rather
than as a shaft, T will be small and therefore cijtbb' will be neg-
lected. This means that any form of shaft buckling due to pure torque has
been eliminated. The Vw term is significant with respect to the other
terms in (70) and shoufd be kept. However, when Equation (70) is placed in
Eqﬁation (25), the Viw term appears with Vi as V. £V,w'

Compared to \A ,/it is inconsequential. Therefore it also will be discarded
at thiscstage, even though its insignificance does not become apparent until
substitution of the force resultants into the overall equilibrium equations.

Therefore

BM' - L;<G‘£(‘&+/Bx> ~ Mcos (@-/3)) ds (75)

Integkation and substitution of previously defined constants gives:
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BMI - EL(K'—K8+K9).ﬁII +(—§°‘1‘_K3 /‘L”"'(’%u—Kv)M” + —g }—

“BUK+ K=K 8"+ Bre +K) " + (Buge + K" + -gi) ] (76)

Similarly, BM, = - LS(T, (x—,By)*- Msin(4-2)) ds

or:

E[(K YKy KS)/B +(§?°+Kz)/u +(§"-?o+K3)/u’ - )E-3

i y " P _
+_,B ((Ka‘Kg“'K?)ﬁ + (‘§x4‘.c'K3\)/tb +(§:co‘K7)’U’ + B ‘})] (77)

This completes the determination of the resultants to the order of
accuracy of the rotations being hegiigib1e with respect to one, the squares
of the rotations being negligible with respect to the aXia] strains if the
section is axially restrained, lj%le, Lji?a\ <{ 12 w, | if the section
is not axially restrained, .« and v~ being roughly < L/,00 and <L/, .

These force resultants are very complicated because of coupling between
the unknown displacements and their derivations. This is partly due to the
use of an arbitrary origin for the co-ordinate system. It can be shown,
however, that the use of a co-ordinate sygtem parallel to the principal axes
of the beam and with its origin at the shear centre will uncouple the equa-
tions in the linear terhs. This particular co-ordinate system will be used
for x,4,3 for the rest of the thesis. For example, see Vlassov [9] and
Bleich [3].

Rewriting the resultants in this new axis system gives:



\/' - —NZMW—N,,B’U'I” *‘PJLI _ P_/.B'gf— "‘N,,BI’V” |

V,= *Nv' =8N, s P’ +Pa's =N, gu"
BM, = +Nv" + Pg ~ N, S’ + Pz .8
BM,=+N,." =Pz + N, B8+~" + P55
CT- N, 8 +Ngp + Nsviu' »+N¢.,w”,<'r' - P u
*PD-C_,Af,-+,8I(N7ﬁ”+ Ny 4" + Ngar’ = P%B
were N, = EC-8e k) = -E L

N, = E(34 +KD = El.

N3 = E(Kus + ,ZKK’ =~ Ka -Kl;) 3 K =% '

N, = J6 =C
NS = E (§xc +K7) = E Ixc.
Ne = —E(JILIC +K1) = —E:[y-c.

N7 = E(ZK‘OHKZO—KU.‘K13+K14)

54

(78)
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N& :E<ZKII_V\|7—ZK93

N9 = E(ZKm —aKq —K1L3 (79)

and these are calculated in a co-ordinate system that is parallel to the -

principal axes and has its origin at the shear centre except Ixc and 170

which are still the values about the principal centroidal axis.

3:5 The Differential Equations of Stability

Integration of the overall beam equilibrium equations (24), (25) and

(26), and substituting in the moment resultants from Equation (78) gives:
’ | | )
Nz,u,’ - Px +B= “N./.’mr”— Pl}ﬁ 'V.} + P

Nov' +P§ +D = Ny 8u"-P2s +Vig - P
' (80)
Nsﬁ”l*N4,8'+F :_Vz.ﬂ+V|1f'N5VZUo,"Ne/‘L”'V"+P€/1—I

-Pzv' = N;.8'8"- Nazw”/Sl“N.,af”/j’ + P%—"JBI

-where B, D and F are constants of integration.

These are the final equations governing the behaviour of the section.
Thgy have been obtained by placing the equations relating the resultants to
displacements into the ovefaH equilibrium equations for‘ the beam. Notice

that all of the non-linear terms are of the form of a force times a displace-

ment. For instance, in the first equation of (80) 'the term

-N,v' 8 = -BM, B

Also note that all the non-linearities are due to equilibrium being taken
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about a displaced position. Any non-linearities due to the strain equations
are assumed to be rendered negligible by the constraints on the‘ rotations
and axial boundary conditions. Equations similar to these are given in
Bleich [3], Timoshenko [7], Oden [6] and, in particular, Vlassov [9]. How-
ever, in this development, the domain of validity of the equations is out-
lined, and the equations are more general, as they include the effect of
coupling in a non-linear manner, whereas the above references give linear
differential equations.

Finally, note that the constants & .. , §1° , By and I, are de-

fined by integrals of the type

gog":}(i—x)cl,s = ﬁx;o

wheré the X,y terms are co-ordinates of the mid-thickness at point 5.
This ‘means that, although the @ have a form close to those of the moments
of inertia, they are missing the terms which account for the effects of the
moment of inertia of the element dS about its own centroidal axis at mid-
thickness. However, these effects are accounted for by the constants Kv,
K&, K:, due to secondary, or plate bending effects. Since they }a]ways
appear coupled with the § in the equations for force resultants, it was a
simple matter to define the values of Ixc,I;f. as lxc= §xo+ K etc. as
was done in Equations (79). |

However, the constant IP as defined lacks the necessary second order
effects to make it the usLa] Ip. This definition will be kept though, as
the nature of the sections considered renders the difference between the
usual I.p and the Ip defined here to be negligible. This is not always true
in the case for thé difference between Laxc and Excor I?,‘ and 3}10. Con-

sidering a thin rectangular section it is clear that about the weak axis
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$ =0 and I consists entirely of the second order, or plate bending
effects as represented by K, or K .

This is also a property of the constant N3 » as there ekist sectioné
such as thin rectangles where Kna (which is the negative of the warping
constant [? ) is zero, and the only warping restraint is found from second-

ary, or plate bending effects, as given by Ku,, K, th.
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CHAPTER 4
SOLUTION OF DIFFERENTIAL EQUATIONS

Now that the equations have been developed, it remains to relate them
to a matrix type formulation as this'representation is the main object of

the study. The desired form is:

K§ =f (8

The § are related to the deflections ., v, 8 etc. by the following

equations and to the beam section by Figure 10.

Sl:'wo 852—1}— Su —'_,B
S.= W, S-;: AL 5:12/3,
. /
63 = Vv . Sg= . $i3=_8 (82)
§ 4 -‘/v’l §9 = 1 P —,Bl
/

85‘ =V 810 =/£L

evaluated at respective ends.

Notice the presence of /8/ as a boundary condition at each end, making
seven conditions per end fo be satisfied. Their presence is ﬁecessary to
account for warping at the ends. Absence of these terms would constrain
plane sections to remain plane at the joints, obviously not the most general

condition.

Equations (82) allow the solution of the differential equations in terms
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FIG.I0 GENERALIZED DISPLACEMENTS FOR BEAM. =
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of the vector of boundary conditions ‘S. The end forces may be found by sub-
stituting back into the force resultant equations evaluated at the boundaries.

This will lead to an equation of the form:

{1} = Lo U6} (83)

where the matrix function K(§) will be taken as the stiffness matrix.
The differential equations will be solved using an iteration technique
that employs the linear solution as a first approximation to the deflected

shape. In more general terms, if

La=F(,¢,¢,--)

(84)
B.C.= 9
is the equation to be solved, the so]utiqn will be taken as:
1—'—‘- U, +%L+13+ ..... -, (85)
where 9, 1is given by:
1) =0
L(v) (56)
- Bc.=8§
and CL,\, n*1/ is given by:
» ' ' . M
L(q-n\ = P(%n-l, q.an-l, iv\-l, R )
(87)

8.c.= O

For this prob1em, only one iteration is used, so:

CL:: q“' 3 :q‘z ' ' | (88)
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To ease calculations and give some idea of the size and importance of
the terms, the differential equations (78) are non-dimensionalised by the

fo]]owing substitutions.

3=L3 = L. m%‘LfTr B=_A (89)

and
dF _ 43 2§ - F et
d3 d7 d3 L d3* L*

Equations (78) become:

B o= M.%"fw(MnMsﬁ),B + A3 +B
'L:Z: - M4/U- +(M5' +M61:;:>ﬁ + C"j'- + Dl (90)

—>\2/é.v = "/(j:(Mf{; *‘Ms)"" M1ﬁ —’1’}'(]\’],0,(5; +M”>

A
.7_’17"’/’5(’\".3}*!\/]44;2 +M15'{A}+M14)+El
where /\., B., Cl,, [),, and £, are arbitrary constants of integration

and

M= -PL/N, M.=- PLZ/N,
M3= Nz/N-- qu PLZ/Nz
Mo = ~PLg/N, Me = ~N./N,

M, = NeU'/Ny Me=-PU3/N,
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Mqe=-V, I'/N, M., =N, /N,

M

f

PzP/N, Ma=V, L*/Ns

My =N,/N, M = No L/N,

Mis = Ny L/N, M = PLL/AN,
N=-N,U/N, | (91)

To solve these equations, the iteration previously mentioned will be
employed.

Taking for the linear case

v, = O
Bc.= &
AL, = O

(92)
,g, “AEI = A;? -+ Bx_

where /Qz, B, are constants of integration.

The solutions are:

v, = a.’j’B + b3* +c3 +d,

~~

/{L,:_ e"j’3 + -F.'j"‘- +ﬁ,} + ‘1'
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1

In matrix form, Equations (93) become

V7, = ¢c,
A, = 0Ch
B = ec]

J, sm\w)j + k, cos%A}' s iy o+ om,

¢=(3°3231)

63

(93)

,.1-.
C}.=(b”,a,c.,é,)

Ciale, b5, h)  (94)

o= (swmh N3, cosh MY, 3, I)

=G, b )

Using Equations (82), (89) and (94) evaluated at the boundaries gives, in

matrix form,

$4
$s
e

Cs
1)

SIO _

Su
i
S'J
Sy

ocoooL
o o-l ©O
S LoLLL

-3 -2 -1 0

{l

»t

C ooL

ool o0

L L L L

1Y}
-

;a‘

o
Al

sinh)

Jdy
(o} llL 0 hl
C3
coshd 1 1 2, V
Acoshh X iy . o s ‘
L L »

| o |

(95)
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Clearly,

c* = [e] s (96)
c? =511 ¢
and therefore, from (94) and (96)
S = ec = oLal’f
Z, = oci = oL[ol's” (97)
B = ecC) = e[ev¢’

Equations (97) are the linear solution in terms of the boundary displace-
ments § . For the first jteration:

,-l
{t

M.’U'- +<M2+M3J§,)ﬁ~. +As}"’ 83

AL 2

!

Ma iz, + (M,.,- *Mc"ji-)ﬁv +Cy3 + D,

(98)
::- 2 <~ a:( = ~ r bad
,61 '")\./81 = - M7 v, +M8) + MQ/U/; - 4 (Mm,&(«:“’Mn)
“'Mu;r Q/j.(Mujé’. +P/'llji'l|+M15%}l‘ +>Ml0) t E‘)

B.c.=0

where A, B;, C, ’}D3 and E 5 are abitrary constants of integration.
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Some of the constants P4; in Equations (98) contain the‘shears V., V, |

and the axial force P . . According to Equations (21), (22) and (23), these
forces are constant with reshect to ¥. Therefore they will be left as is

in the solution of the differential equations. However, during the solution
of the stiffness matrix, they will be evaluated using the constitutive équa—
tions for forces previously developed.

Before Equation (98) can be solved for 1%, &, and _B, , the quantities

L, A, . must be replaced by the Tinear solution of Equation (97). This

leads to terms of the type

M, ¢L6] §elo)'§ (99)

_Since the integration of Equation (98) is the next step, the presence of
terms such as (99) are a difficulty. The separation of ¢ and &, the two
functions that depend on 3, make integration difficu]i unless multiplied out

in full. However, (99) can be viewed as:

M [otel's JLela17s]

where the tefms in large brackets are scalars. Therefore, transposing the
Targe brackets leaves the value unchanged. Doing this to the first bracket

changes (99) to:
| T U »
M: 153 (ta1") (0e [677{5] (100)
Using this reduction, and substituting (97) into (98) gives:

| 1 -1 a7 _ = -
o= M, oLe TS + Mol s34 M, ST L8 T 670 [G2TS + As G +B,
1 | 3
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F.o=M, 00675 + Ms 0Ldi1' s

PM, 16T 6T e 631757 +C33 + Dy
. . : ;T _,T,,T . _ v,
_/Bz. "A.»B-L = —M7 1) [5.'-.\ (0) CPECD.’] g

~Mg ¢ (61775 + M, 0032 ¢*

ML 66 (8 TS -My LTS M, 608 S

3f - "Tw'r o [ -q9 3 J.T -IT, R, LI |
~Mis €031 876 [0115° -Mu§ [0}] 6760215

T -lTo,T. L | . =3
~Ms S Lol @ 9[@?]5 - M el93l § + E3 e =0 (101)

Solving (101) for the particular integral and adding the homogeneous

solution gives:

~ 3 ~
Za= PV v e, T3 0T - by (102)

o~

B B '
B = 'F, ¢ +¥1Sl“’:fg3 v 5, smh AT vk coshA] + £1?+m1

where



67

—
ok
N

M, [0l (027"

_

£ . Mo (100 + M. S [T [T el 831"

y) T ==

! N ~! N7 =1
12 = M, (578106 - MaLa 108:T + M, Cod a1

-
to
i

X ' 2 2N
M, § DD‘] [ a)][cv] -M, [01L6:] + M., Lella:]

T =< T =

12 .M, € e (572187 - M, § Lot L 610537

T 47 .Q// -1 —
~Muis S (6T (8761063 -Mi [61Ld2]

o

¢] means ¥ integrated twice w.r.t. '3' and
N4

A4 -~ 20 7 =~ :
L¥] means B= L) satisfies _8 —A_B8 =L¥] . The

r

where the symbol
>,

integrated values are given in Appendix 2.
Using a dimilar procedure to that used to get Equation (95) allows the
boundary delfections, which are zero for this iteration, to be related to

AL 1, and G, by the following set of equations.



This can be simplified by rewriting as follows:

)l

I

flg s

Y

3

+ [®)])C)

+ [d2)C,

v [9;] i

o me., §'s Lﬁofs 1 }aL
| - ¥: os 2,0 ' 5 !
O ‘F , S 3 ‘F [ Q Z] bl
o L‘f'ﬂ. L¥1L§ J | Cy
(@] h'—g ;1,L Clz
o |L§nEeLing 1 e,
prgrege g Ly ., |
© = , + [CDL] b
o] s" '-S + 'gzus 2
o | FESHLE N
o ;l c:S fzog +'Fao ’ J
N AR ‘“1
(o) 'Fn.g 'Fz LS 'Fagg ‘F [d"i] lz
o [l ris’] ) .
and [ ¢;]= Lo!] Lé:]=[el] CHERC
'whef'e 'f?;o is 7 differentiated once w.r.t.3 and evaluated at
?{: o and ;:::L is P,f differentiated once and evaluated at
3=1 ( or 3= L) . Similar definitions hold for g.,e ) ‘F-,u’

68

etc.

-~ (104)
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1l

.
where f‘ L {:fo
- gxi

A~
L— ‘FI;L

!
- L

1 .
and ¥l , ¥? . { : , etc. are all similarly defined.\

From Equations (104)
c. = -tey (f5 +4i5°)
C;: = "[@ET‘(¥sz+¥ng) (105)

c? o= -t (ggregig w528

Writing _z., 45 , B2 as the sum of the particular and homo-
geneous solution, and using (105) for the constants in the homogeneous solu-

tion gives:
RN SR M oty (115" ¢ F15%)
a, = A5 ST e et (915702 87) aos)
VAR S S M SR SN CHR G ST o

This completes the first iteration. Since only one iteration is being
used in this study, Equations (106) and (97) may be added to give the values

of &, o~ and & that will be used.



70
7= @[ca..']"su P g P - eLa T (s 457
PR AR #T‘sﬂfff—cptm"(??sluf: §7) (107)
B=ol6s +¥f$1+¥f§'+¥fs3—e[@3]"(w‘?£1+HS'+¥3,53)

These equations for i, 47, & consiét of terms describing the linear

behaviour of the structure plus terms handling the non-linear behaviour.

A typical linear term is ¢ [G—).‘]—' S and it is of the form:
, B 7] Sy
3 2 Geometric ¥4
(3 3% 1) r |
: Ss
Se

The terms describing the non-linear behaviour may be linear in S or

non-linear in § . Some typical terms describing non-linear behaviour are:

§7s = B y
M;(SS(33, }1) 3/,]),}3) Geometric 545
— misY
and F;r S3= o . .
? 3t . Sh
Mz (“(3, ¢ 7, ’)clg\ Geometric .
T - Siu

Sy

' | | il\
. ' S
4 M3(§7) S, S, S'o‘) l}eometric :l ;(}3 Geometric ¢1s
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-1
The terms of the form @[ o] [ ‘EL § 3_] are quite a bit

more complicated and lengthy; however, they still follow the same general

pattern. ' | ;
L M‘Z (Geometm‘ c ) L@ometri{l Sl:z

| ! ' $
oC a7 [§:$]= S

T'
5, — Su
T M, SS: Geometric Eeometm‘i‘l Geometric ;"1

13

S

{ 810 —

. ) Su
M, ( Geometmc) Geometmc] 5

(33) 523 3 ) l ) GeomEtY"iCj] L‘ SSI::
' S Y -1 o

' $7 . ) $12

+M3 ‘SB Geometric Geometric Geometm‘il $ 12
1 .

G4

S0 -

L2
GIS
§ 1y

Sh
LMl (Geometric ) Geometric:l '
b

Sq
§io _—

$
S7 . . . b2
ot LM3 8| |Geometric Geometric || Geometric Gis

%1

— ‘.
M. (Geometric) Geometric |\ &,

S, 7 SS“

+ M3 S¢| |Geometric Geometric ||Geometric | { ¢ "
, . | B

{5 -
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A1l vthe geometric matrices are functions of O, /, L and perhaps
cos|n>\L, sinhal .« They result from various functions of 3 being
evaluated at either 32=0 oOr 3= L. |
Note that in some of the terms, the deflections appear twi'ce. This
makes the equations non-linear in § . Also notice that the constants
may have shears V. , V, and axial forces P in them. |
The presence of these non-linear forms will be taken care of during the
solution technique, where an iterative procedure will be used. During each

iteration, the S ,V % and P 25 will be evaluated and re-iterated.
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CHAPTER 5
FORCE DEFLECTION EQUATION

The displacements found in the previous chapter can now be placed in the
force resultant equations to give a relationship between the forces and the
boundary displacement . If the relationship is evaluated at the boundaries,
it gives the relations between the forces at the boundaries and the boundary

displacements. As previously mentioned, this can be written as:

SL” = [ k()] 18} - - (83)

It is to be noted at this point that & is a / x /4 vector and § is
| x 2 » as there are only six equilibrium equations at each end. However,

because the element is not a line element but has a finite cross-section, it
is possible to have a stress field éxisting that has no resultant but still
has a gross overall effect. As it happens, this is the case here. This/
system of stresses is called the bi-moment. See, for example, [6], [9]. It
is closely associated with warping and the rate of change of torsional angu-
lar displacement. Unfortunately, since the bi-moment has no resultant, it
failed to show up in the overall equilibrium equations, but this very property
allows it to be introduced now without any effect on the previous development.
Since preyious]y integrations of stress across the cross-section were per-
formed in developing the non-linear equations, the effect of the bi-moment is
already contained in the differential equations. It only remains to get some
measure of its value to give 14 force equations to correspond with the 14 de-
flections at the boundary.

Although the bi-moment has no resultant, it is still capable of doing
work under certain displacements. Because of this, the concept of generalized

forces and displacements will be used to develop the 'F, § relation rather
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than writing out the resultants as functions of the boundary displacements
directly. This change, while significant, is one of technique and development
.ohly. "It is introduced only to gain the measure of a stress field which has |
no resultant. It does not change the form of Equafion (83).

Generalized forces and disp1acements'are defined such that the work done
by the generalized force through the generalized displacement is equivalent.
to the work of the actual stresses through the actual displacements. For
this case, the generalized displacements will be taken as the 5 already
defined, and the generalized forces will be taken as acting at the displace-
ments S .

" The virtual work of generalized forces at 3= L ds:
{zASl*-{sAgs + 'Fquq*'&,Ag‘ r 'F;OAS]O "‘F;s bgl3 +'F,4Ag/1( . (]08)

where -Ag is a variation in g .

The virtual work of the actual external stresses is:

C(Toaw » Toau, + Toav + Maxh) e (109)

where &W, & Us, 25 and /—‘/U/’z are virtua]vdisplacements about
a displaced position as T,, Tp, T; and M are acting at the displaced
position. In order to relate 2Us, SN to 4, oam, a8,
which are the virtual displacements of the origin, the co-ordinates of
Figure.8 will be used. Also necessary will be the quantities given in
Fighfe 11, which shows a side view of the deflected shape W viewed along

the x axis:
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Y~

l

oy »' rundeformed xy plane

FIG.IIl BEAM SEGMENT AND DISPLACEMENT W.

It is clear that &4 Vg can be written as:

AY, = AV — 2A8F7 + &V W

where AV - 58% comes from the quantities defined in Figure 8 and
‘ A1)§,W comes from quantities in Figure 11. |
By using the same reasoning on 4/¢/s ', and using the relations
T = x-_B% ad #= g + B2 given in Figure 8, A4s and

AV can be written as:

i

_A_/g;s A/a,—A/B(?,»ﬁx) +W<A,¢/—A)Bl(7+,ex))

(110)

LYV AV 4+ Aﬁ(x~ﬁy) +W(A/V'+A,8'(Jc-}§/)>

A/L; = A,u,lsm(d)—.,&) +AAr'cos(4J-,é) —A,B'(~xcoscﬂ+?5mw)

where A,a,'z . comes from manipulating Equation (9).
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By analogy to Equation (2), AWV may be written as:

1 $ S [}
AW = AW, + A8 fo rds ~ a4 [ costo)ds +on §sim (0-0)ds (111)

Substituting Equations (110) and (111) into Equations (109) and using

!

cos(9-4) Cos@P cos B + sin@ sinB = cosd + By

sSin ((D-ﬂ) = 5ing cos B — cosP sin.B= sin® —_f3 cos¢
in selected instances and also using Equations (82), gives for the virtual
work:
_ ¢ -
V.Wo = Agz go T.Js + Agm fo CT.(‘\)\“'GA + Tl&_;- - M("DLCOS(P-#?S!Y)@)
+W<T3(Jc-,83) *Tz(unexﬂ)cjs

+af, fC‘T. (x-,eg,) ~T, (‘xo‘fﬁ‘fo\) rlaw + M sin(@<8)) ds

+ A S(o 5:(: T.(a}a,/gx) + T; (“’j, “‘ﬁxa) ~T3\/\/ —Mcos(‘?“ﬁ).)cls

5
o

T‘qu S l;_ (lS+ ASS (oETE! ClS + Ag:g S:C‘Tz'(‘r,ex)*“—r; (x-/g %)] clS

(112)

Using the previous definitions of V, M etc. given in the section on

equilibrium equations, Equation (112) becomes:
VW = ASJ_ P t ASI‘I[BW + PLT);] + Aglo[BMl + P(xo _?oﬁ)]

a6 [BM - Plqosd] +86Ve +a8eVe v 58 T | (113)
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where P BM,V etc. are evaluated at 3 = L and where BW is the new term,

the bi-moment, and is given by:

g o ' ) :
fo LT (o-a) =M(-xcoso vq sng) w Ty (se-89) -T,_(1,+}a<—)>] ds
The last term will be of the form Tw . Since T was previously constr-
ained to be small, and since w is small, this term will be discarded. The

bi-moment is then given by.
i (113)
) \:T.(w.-J-\) "M("xcoscp +%s:n¢§]és

Equating coefficients between Equations (113) and (108) gives\:
{:).: P ¥5=V2 ‘Fc,'_‘BM._P(ffo +ﬁxo)
'F‘i = Vl {:lo = BMz_ + P(xo-ﬁyo) 'Fl'3 = T (]]5)

n
+l4 = B\/\/ + P(-E|
Evaluating (114) in terms of previous constants gives:

(116)

BW= 8"0-K, +Kg +K., -2 Ki]

This will be the seventh "force" on the section and is a measure of the

stress necessary to maintain out of plane warping. A corresponding develop-

ment was done at 3 =0, giving fourteen measures of force, corresponding to

fourteen boundary deflections. This allows the c‘onnectiv.ity matrix K to be
square and to be the most general desch’ption of the prob1ém.

A11 of the forces but P have been found in terms of displacements which

can be written as functions of 8 . However, P and W, are related as follows:

Wo = PF — 83 _ ' (xe-%) v (4.-3) + P (54)
E E E = |
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By definition Weo = S, @ 3=o0 and wW.= &, @ 3= L . Using
this fact, and Equations (82), ¥' can be solved for and replaced and then P

can be found. The result of these manipulations yields:

P - AL_E; [(Sl‘gl)*—(g“}.—g'l) ey t (58 —S,o)(:TZ-JCo)'
+ (5, fg,,)(? -;.,)] | | (117)

It is now possible to write out the force deflection relationship by

utilizing Equations (117), (115), (107), (82), (78) and (89).
e A () (553 » 5 -8)(E 20 = (561
£ 280 (g0« (653, + (So-S)E-2)+ (563 - -4 ]
=N (G ETs o i e-3 m]"[a‘g‘ £.5°])
o, 5 (5 a5 E 5 T 8 -0 T T gt ])
+§,P -S. Pz
SN LG Tt g O - BT g 126
£, = NG5 a7 i '%i“.:s3-<°é:,w;1"£4.‘s' 4157])

S..N 1zt JM:tsﬂLos ot et R 57)

- P(‘Z‘-‘}’») - $. P(z-x.)



R A ORI P SRS M RN Vel )
suNZL(mmm g us AT ST S)
St Lo B e e e e e )
é‘g;P V5. Pz
fo=+ | (w (3'7gEm ' %LS N ACARIININS
SN, G T T T @ e 1)
+ P(3-4.) + S Pz
le[d) E@*]S AR g cp[w*] (st ]]
e (s frn s T e-4 i les g e ]]
fSu Nt (B cars s s Fst - fol Tes o1 1)

"gap + gll P“?

f=-NilE laTssns i O-alal e 0]

A RICA D SO SEA T AF NN T RTINSl

+P(-2.) - 60 Pl5-4.)
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f=N L@ @ e e e-dad e 1))
,maz_:? z.: RS ﬁ_rm el lns45)
SN2 (G GaTs g T gtaT [ 6]
+. §oP -Su P3
f, = zh_lr@r@:-_? P B G e s 1))
e5aN (@Gl B L -a T e 428°])
- P(z-x.) +5a PG -)

e NG s T e g e e 2o ])
"Ny So *85 P + 6, Pz + S fT

(Ns -5 N)E (7, E.E.t_;.m??E-.:;.ézv
CoN-sNE (.75 B0 s e B G tosT Lais o1 57)
-5, N5 caar's "+ Fagnin g A e T s e o)

fa= N, mﬁ. S e O s e e e 4 5°))

- Pg,
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Fo =N, L (8 002057 TA g g R 65 o Tag i eaie))
S P
+N4 gm - gw P% - g‘ Pao = gl‘f-/:\"IP
5N+ SN G TS o T8 T 0 @] [0 557])
RETTIAYN '—L(cblﬂa?.l]"sﬁf:‘;g W e el 1))
8N (G LaT e B B0 £ s e e 420 4 $*))
£ = N (e taTo i e 2o sl e 5"+ 435°))
+ P&, * | (118)

Equations (118) are Equations (83) expanded where (83) is

f=[ke)l§

| I
The matrix K(S) is given in Appendix I. The terms 19,, 'Fz) o etc. are

evaluated in the last part of Appendix II.
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CHAPTER 6
NUMERICAL EXAMPLES

Since P((’S) is non-linear in 6 as well as containing unknown forces
Vi, iy and P, it is difficult to solve the equations LK($)]§& =7

in a direct manner. To overcome this problem the matrix was divided into
two basic sub-matricés, one containing the linear structural behaviour, one
containing the non-linear structural behaviour. A load increment.procedure
was then employed to solve the equations.

First, the complete linear structure matrix was generated and a
found for a particular load level. This load level was then re-solved by
constructing and adding the non-linear poktion of K($) to the linear and
solving again. The nén-]inear portion was constructed using the just-
~calculated Tinear deflections as well as the forces \/,,\/1 and P
obtained by multiplying out the complete force deflection relation [k:(SY]S==¥
for the member. This procedure was repeated, each time constructing the non-
Tinear portion of the matrix from the last preVious-ca]cu]ated deflections

and forces.

This iteration at the given load level was terminated when & became
unchanged by any further iteration. This is a secant matrix approach. The
Toad level was then increased and re-iterated, and so on. When a zero
determinant for [-kf<5)3 was calculated, the structure was taken as buckled.
Determinant plots were used to determine the load at which this occurred.

Several types of beam were studied, and the results are presented in
the following sectioh. The theoretical results for the channel section
studied were taken from Vlassov [9], while all the others were taken from
Timoshenko [7]. 1In the following section, critical loads from Timoshenko.

are subscripted with a T , from Vlassov with a V , and the results of the
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program are subscripted with a P .

There were four cross-sectional types analysed: a thin rectangle, a

cruciform section, a wide flange and a channel.

Thin Rectangular Section

Ll

t 12t = E/G=3

I L=120t 3 elements were used in all cases.

1. A Cantilever Column

! R= 47 EI

D B BT

L
= __\L '. P= lLooz

2. Cantilever Beam Under End Shear, Warping Restrained At Wall

L = g
PR=g403VEICT /I

AN

P
The difference between Pp and PT arises because the program

assumed secondary warping restraint at the wall, whereas the Timoshenko solu-

tion ignored the warping effects entirely.
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3. Cantilever Beam Under End Shear, Warping Allowed At Wall

L ——= P.=<403VEIGT/I?

|

P

NN

Pp = IO/ PT

The program assumed no warping restrain at the wall, but kept the warp-

ing terms internally in the beam. As before, the Timoshenko solution ignored

the warping effects entirely.

Cruciform Section

I

2.6

S .
[_ 3 elements used.

4. Torsional Buckling Under Pure Axial Load, Simply Supported
In Both Planes ' S

o5 P
F% B 977 F%}L
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In the program, the ends were restrained from torsional rotation but
free to warp. The program took account of internal warping constraints.

The prbgram'critica1 load was compared to two classical solutions:

3
P = 8G6t/b
which ignores all warping restraint, and -

P-r,,|_= (-456 + bl ) sz Pr
41> 6(-v)

which is developed from plate theory, and consequently includes wakping as

well as other effects.

The Wide Flange Cross Section

L L=ssOt £ /c=2.7]

—

! P = ¥VETeT /12

> e 34t

L . l v L*TG/ET = 4
J

7 is found from tables against LlICr/E " for various boundary conditions

t

and Toads. Six elements were used in all cases, except where noted.
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5. Cantilever Beam Under End Shear,'Warping Restrained at Fixed End

But Unrestrained At Free End
’

) |
% _ F’,=‘7.761/r£13c:/Lz
z r o
Z

VP Pp=/.006P-r

6. Beam Simply Supported In Both Planes, Torsional Rotation Restrained
At Ends, Loaded At Centre, Warping Unrestrained At Ends

P.=3.9 VEleT /L‘

-—1—0
<

PP=I-OO4‘ PT

7. Same As Example (6), But Only Two Elements Used

P =1 o0e P

8. Same As Example (6), But Beam Fixed At Ends In Weak Lateral
Direction Only, With Warping Restrained At Ends

Pr= 88.8 VEIcT / ©

P, = .998 P~



9. Same As Example (6), But With A Uniformly Distributed Load 9 At The
Shear Centre

| (91). = 53 VETes /2

(L), = L 03 (L)

The Channel Cross Section

20t L = 480t

6 elements were used in all cases.
‘<—20t ——>|

For critical loads, see Vlassov [9].

10. Channel Beam Simply Supported In Both Planes, Each End, Torsional
Rotations Restrained At Ends, Warping Unrestrained, Uniformly
Distributed Load 1 At Shear Centre

NEIRNEEN

| l | ‘ip=;965‘lv

87
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11. Same As Example (10), But Load In Opposite Direction

U = LOI U

It is interesting to note that CLp for case 10 is 6.34 times that

for case 11.

12. Same As Example (10), But Loaded With End Moments M Rather Than
A Uniformly Distributed Load

u( om ]

M, = Lo0O7 My

13. Same As Example (12), But Moment M Reversed

M( DM | ]

M, = /l008 M,

It is interesting to note again that M, for case 12 is 19.3 times

that for case 13.

These examples were run on an IBM-360-67 machine using MIS. The channel
section shown in example (10) was analysed using six Toad increments with"
three iteratioﬁs per load increment. The total time taken was twenty-eight
secbndé, of which seventeen seconds were CPU time.

As can be seen from the above examples, agreement is excellent in all



cases. Where there is some discrepancy it is in cases where the program
containé secondary warping and the classical solutions do not. In these
instances, fhe program should give higher results, which it ddes.

Good accuracy is also obtained even when a small number of elements
is used, as for example structure (7) which with two elements gives vehy
good agreement compared to the classical result.

A11 of the above tests are bifurcation type buckiing. There ié
another type of buckling called amp]ificatioh buckling and this occurs
when the loads tend to cause a displacement in ihe direction the section
wishes td buckle. This type of buckling is characterized by one or more

of the deflections becoming unbounded. Unfortunately, there exist few

classical solutions for amplification buckling and as a result no compar
ative tests were made. | |
However, a totaily unsymmetric shapé was studied for amplification:

buckling. " The section was analyzed as a cantilever under end load, with

the load being applied through the shear centre, and parallel to or at a

small angle Y to the strong principal plane. This had the effect of
causing displacements in the lateral and torsional modes, thus making the

problem one of amplification, not bifurcation. The cross section proper-

ties and a plot of critical load versus ¥ 1is shown below. 16,
. . .2
X, = —0-326 1IN, Y, = 0.7/ In, A= 0.0328 In
= -0.267in, § = o.2i® in, &,=-0.1295 in’

x
I.=0.483x07% in*
I} = 0.786 x107* in?

L,= o0.951x 10~% in?t |
K =~-F= -0.901 x10~ ¢ in6) J= 0.28 x10”°%in*
N7/E =0.193 x10 ¥ in® 3 Ng|E= 0.81x10° in®

N, JE = -0.218 x107% in® . ' ¢y

89

. 42'1
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Ve ibs
o— 451
—
4.0-
| ] 3.0 . [ | . J :
-11° -0.6° 0° 0.6° 1.1° 1.6° Y

For this particular example, the values of F , G and L are
E= 10x10° psi.

G
L

There‘are.severa1,poinfs of interest about the curve shown above. One

3.76 x10° psi.

8. § in.

is the unsymmetry of the critical load about the origin and the other fsAfhe
sensitivity of the critical load to the angle ¥ . The dependency.of the
critical load on the angle ¥ 1is not unexpected, as the channel seétion shown
previously has critical loads that depend upon which axis and directioh is
loaded. The example shown above however is very sensitive to ¥ , and this
may be due to its extreme flexibility in torsion.

In general the solution of [K(S)]S = 1C for én amplification problem
requires more iteration§ to converge to a 8 vector than a bifurcation type
problem. This maylcause difficulties if the section is very flexible and is
loaded near critical, as a large number of iterations may be'required to
arrive at a deflected shape. In some cases, particularly when one deflection
in the direction of bUck]ing becomes Targe, a study ofvboth deflections and
determfnants is required to determine a critical load. However, this is not

always the case, as there are many well behaved amplification problems.
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CHAPTER 7
DISCUSSION

There are several points of detail that should be discussed, but were
not mentioned in the main body of the thesis, as it was felt that intro-
duction at a previous stage would be a digression from the main purpose of

the thesis, that is, the assembly of a stiffness matrix.

7:1 Small Rotation Theory

If the assumptions that were applied in this thesis of ,Lbﬁv“ZZ/U" etc.
were ignored, then the rotations could not be treated as vectors. This
would have the result of introducing terms such as _4'x or /u,/’g? into
the equation for axial displacement W . These terms are non-linear in the
rotations and the way they appear in the equation for-\A/ depends upﬁn which
order the rotations are taken. This order dependancy could be removed by
changing the co-ordinate system to orie of Euler angles, but Euler angles are
not as straightforward to use as the system chosen. The end result would
be that no matter how the non-linear terms _.’3 ¢ etc. inw were treated,
they would complicate VWV and immensely complicate the strain-deflection
and-stress-strain equatidns. It is for this reason that the constraints on
thé angles were maintained, as it greatly reduces the complexity of the

resulting equations while 'still allowing a reasonably large field of validity.

7:2 Secondary Stresses

The secondary, or plate-bending stresses need only be considered for
sections of two certain types. The first type is typified by the thin rect-
angular section, as it requires the plate-bending stresses in order to have

any stiffness at all in the weak plane. The second type of cross-section
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is typified by the thin cruciform or angle section, where any warping resis-
tance must come from the secondary stresses. In this case, neglect of the_

secondary stresses does not cause a zero torsional stiffness, as plate
torsional resistance would still be in effect. However, the mathematical
solution technique uses the quantity /\Z which is the ratio ofA‘p'Ia_te torsion
stiffness to warping torsional stiffness. If the warping is taken as zero,
)\z becomes infinite and the equations break down.

Sections such as channels, wide flanges, etc. which have substantial
membrane stiffness contributions from all possible modes need not consider
the secondary stresses. It is therefore recommended for sections of this
type that the constants K, |, Ki, Ks, Ky, Ko, Ky K, Kis,

K, K 2ty Ku, K13, K14 be ommitted in order to ease calculations.

7:3 Constants

In the evaluation of the constants of Equations (78) there are several
points to be noted.

First, placement of the origin of 5 at any extremity gives a non-zero
o, constant. It is possible to place the origin of S at a point where
&, will equal zero. Doi}ng this allows Ky, or I’ » the warping vcons—
tant,bto be written as K, = §f w?* ds  rather than fog(w—:,.)z(ls
as done in this development. They both have the same numerical value if
their origin in the x,? plane is commbn. This means that tables listing
M (or K., ) may be used without having to consider the position of $S=0
as long as the origin of X,y is the shear centre.

The placement of S at an extremity in this development causes some

problems with axial loads. Since théy are assumed applied at WV, = g,
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or 8; , Which is taken to be at 5=0, any axial load automatically
“applies moments and bi-moments due to its eccentricity from the shear centre.
Therefore, if an aXia] load is to be applied at any other point on the cross-
section, compensating moments and bi-moments must be applied td place the
axial resultant in the required position.

Sécond]y, as was mentioned previously, the calculation of ifr JS
involvés a sign convention. It is considered positive if the swept area
Tc\s is clockwise, negative if counterclockwise. If I'=X5ing +¢cos¢@
is integrated instead, the signs are automatically accounted for. Defining
Y in terms of x, ¢ and ¢ also allows easier evaluation of ¥ in terms of
cross-section properties.

Thirdly, the section constants in Equations (79) were developed for a

‘cross-section which does not branch. In branched systems, a closer look

must be taken at the equilibrium equation:
S l o
To=4 T'ds - (s)

This was written for the element shown in Figure 5 wherein 9, acted
only on two edges. At a branch, there are three or more edges and a set of
2.7, » 7.0, ’ 7.01. s ‘t,‘,3 » etc. acting one to an edge. These %o)_,o
and their derivatives must be in equilibrium with =TT' and T, ,. Since
Equation (15) was not developed for this situation an extension is necessary

for general branched systems. This can be done by using a series of equa-

tions similar to Equation (15),
S —
Loi = <Lc:\.' + fs T JS
- B

where ©Loi 1is the shear flow between branches and Qe: is the shear flow

just past the branch at 5 . In this equation _?gu is unknown. When an
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equation such as this has been written for each element of § between branches,
they may be assembled and the unknown 9__0_.- evaluated using the following con-
ditions: B

(a)_ The 1oi must be in equilibrium at each. branch point.

(b) The %o.: must be zero at free édges.

These conditions then determine what value %si will be at any point

Having to use this approach has its effect on the constants, as they
were integrated over an unbranched system. This can be seen, for éxamp]e, in
some of the terms for the torque T . One of the contributing terms is

(*9.1d ing 1. gi ‘
o Lofds. Expanding 1. gives terms of the type

fr S:£ (w‘—u?.) Js Js = K\z

amongst others. The portion (2 t(w -a)ds represents part of 1o as
determined by 1o = S:T'd S » an equilibrium equation. This no longer
holds for a branched system. The other two integra]s involved in K3,
gog (‘loV)AS and w,= gosYASare geometric integrals and are unaffected by
branches. This means that constants Ki arising from consideration of the
shear flows 9. will have to be calculated using %o; = Lai + f;:'lz\' ds

and a stepwise integration procedure. This means that .
g s 1 [3 g § S
Koy = 01 Tt Comaddede = Tovds S tGo-adds |, = tload f, v dsds

= - sog'l'. (to. —G.)w.c‘ls = = gf.&(u‘_g,)zég

may not be valid for all sections, as it is based on an unbranched system.
However, for a two branched system, the following constants, I?G R

Toe > Kfla » which are a result of {, terms, can be shown to take the .
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same form as an unbranched system.

’The inclusion of I.fc and Ixc in the 1list of constants necessary-
to be investigated arises from the fact that there are two types of integrals
defining I.fc, and Ixc_ . The first type is due to the streéses J and

takes the form

f(;‘—g)fc ds = 3.

This integral is unaffected by branching in the cross-section, as it is based

on ¢, not {, . The second type is due to Lo terms and takes the form

gog Sin ¢ Yos'}.’.(‘?"?) ASC]S = “%xc.

for an unbranched section. Since the internal integral is a measure of 9,,
it must be modified to take account of equilibrium at branches. It is this
§x¢ that was investigated for branched systems. Of course, from know-
ledge of Tinear beam behaviour, it is known that the constant giving shear
values is Lxc , so it would be expected that no matter how branched the
system is, or what co-ordinate system is used, the value that should arise
from the integral is Exc . However, this is not immediately clear from

the integral
| g:sm¢ g:f(g-y) dsds

if it ‘is written in the.form necessary to handle branched systems. The impli-
cation of this discussion seems to be that the co-ordinate system S is not

a particularly good one for branched systems, and only leads to complications
| in the ca]culations_which in the end give an expected result.

It may be that a more judicious choice of co-ordinate system is possible

for the calculation of K,,; and the $ e , §?° due to 1o, once the
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nature of these constants is understood froh the development and role 9o
plays in calculating them. It might then be possible to see that in general,
no matter how many bfanches, the constants have the same form as the un-
branched system, as is most likely the case.

Fourthly, the :[;CC, ]:?c values shoﬁ]d be calculated about the centroi-
dal axis, all the others about the axis through the shear centre.

Finally, in some cases a general formula for some of the constants
should be derived first, as using numbers directly may result in accuracy

problems.
7:4 Loads

The lateral loads are assumed to act at the shear centre. The axial
loads are taken to act at the point on the cross-section 5=0 . If the
lateral loads are appTied.at any.othek position in the cross-section, for
example the top flange of an I beam, extra terms will have to be introduced
to account for this effect during deformation. This 1s not difficult to do,

but has not been done in this development.

7:5 Diffgrentia] Equations

If the differential equations (78) are compared to those of Oden,
Timoshenko, Vlassov, etc., it will be seen that Equations (78)_are much more
general, as they do not require the use of linear values of \/ 6 M etc. in
their evaluation. They are non-linear differential equations and they in-
clude the possibility that -V, M etc. may change‘due to deformed geometry.
This may be of importance, for instance, with the presence of axial forces
near critical in.one plane, as they may magnify the moments tendihg to cause
lateral buckling. This possibility is ignored in the usual linear differen-

tial equations of buckling.
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There are several methods of solving the differential equation using
approximate methods. A Galerkin method might be used, or any one of several
variations of an iteration technique. The iteration techniques differ as to

what is treated as the lefthand side of the equation and what is treated as

-the righthand side. In this development, the lefthand side was taken to be

the linear structure equations, as it was felt that this achieved the most

even handed treated of the non-linear structure terms and also kept the

".equations simple.. An alternative method is to place some of the non-linear

structure terms (which may be linear in the differential equation) on the

Jefthand side, but this has the effect of emphasizing some non-linear struct-

~ure terms compared to the others, and complicates the solution calculations.

Uhfortunate]y, the technique used in this thesis does not take full
advantage of the non-linearity of the equations, as using one iteration is
equivalent to using linear forces in the differehtia] equation solution.
Either two iterationé would be required, or one of the alterantive forms of
iteration uéed, to'adequStely cover the non-linear interactions in the equa-
tions. .

Finally, since the iteration technique only approximates the correct

solution of the equilibrium equations, there is no reason for the resulting

displacements to give equilibrium forces. Of course, the forces at a joint

will be in equilibrium, but an individual member may not be.

7:6 Symmetry and Conservativeness

The moments, when defined as maintaining their line of action, are non-
conservative when acting on free edge boundary conditions. This will prod-
uce a non-symmetfic member matrix, [10], as each member is developed under

free boundary condifions; However, when the individual matrices are added

\
™
~,

.
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up into a structure matrix, it is the boundary conditions on the structure
which determine the non-conservativeness, and in most cases they render the
system conservative‘and_the matrix symmetric. An example of an exception is
a cantilever under applied end moment, with the moment defined as in this
thesis as maintaining its direction of action. |

If any non-conservative problems are envisaged, the load vector may have
to be modified to become a function of the displacements. Of course, indi-
rectly the structure matrix is modified by taking the parts of the load vector
that become functions of & and transferring them to the other side of the
equation where they can be placed in the structure matrix. However, if the
loading is non-conservative, the approach used here is in general inadequate
as a dynamic approach is best for the most general solutions [10]. It is
interesting though that no mention_of conservétive-forces was necessary to
develop the equations in this work. The only limitations on these equations,
aside from the restrictions on rotations and torques, is the assumption of

a static, elastic solution.

7:7 Approximations for Small Terms

In some of the approximations used to neglect terms, the fact that the
length  of the beam was large compared to certain terms was utilized. How-
ever, the question of the validity of these approXimations for the elements
arises, since the element length may be quite short. This is not a real
problem, however, as the elements need only be able to duplicate the actual
stfucture. If, for example, the effects were inc]uded.in the element
because the approximafions about L wére invalid, it would make no difference
to fhe analysis of the large overall strudture as the new terms would all

fall out, because they are insignificant in affecting the behaviour of the
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of the large structure.

For instance, shear deflection behaviour is not usually included in
ordinary linear beam e1ement}stiffness matrices unless short sections of
beam were going to be studied. If shear behaviour was placed in these ele-
ments and a long thin beam analysed, it would be seen that these terms con-
tribute nothing to the analysis, as for a long thin beam, shear deflection
effects are trivial.

It can therefore be concluded that the elements need not be complete
in themselves, but dnly must be able to duplicate the required behaviour of

the actual physical problem.

7:8 Point of Action of Axial Load

In this development, the axial load is taken to act at the free edge of
the cross-section where S=0, whereas the shear forces and moments are
taken to act through and about an axis system through the shear centre.
This means there are two points of interest at each end of the section,
rather than the usual one point. While this is different to the usual beam
analysis where only one point serves to define all the deflections, it
should not be viewed with alarm. There are many instances where two or
more points of reference have an advantage over the usual one réference
point. For example, a doubly symmetric wide flange can be represented two
ways. The first and most usual method is to concentrate all the forces and
defiections at the centroid. The second method is to use two reference
points, one at the intersection of the fop flange and the web, one at the
intersection of the lower flange and the web. Using these two points of
reference, all the pertinent deflections of the section can be described.

However, an important advantage has.been gained. It is now possible to
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specify separate boundary conditions for each flange, Which is not possible
using the centroid as the reference point. It can therefore be stated that
the use of two reference points Qreat]y enlarges the type of boundary con-
ditions which may bé easily handled. This discussfon was introduced only to
indicate that while twb reference points for a beam may not be common, they
may sometimes be easily introduced with significant advantage.

In this thesis there are reasons other than increased usefulness for
using two reference points. Some physical feel for these reasons can be‘
gained from the following example.

Postulate a wide flange beam with an akia1 load acting at a point A,
which is Tocated along a 1line perpendicular to the web and passing through

the centroid and shear centre. This is illustrated in Figure 12.

-~ Ceg—0 =— CQ

y S y

(@) (k) - (c)

FIG. 12 THREE METHODS OF CONNECTION FOR
- ECCENTRIC AXIAL LOAD FOR I SECTION.
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Three different types of connection are illustrated in Figure 12. In
Figure 12a, the load is passed to the section from A by a rigid arm connec-
ted to the Web. Figure 12b and 12c show rigid connections to the dpper and
1ower flanges réspective]y. |

Now, for translations and rotations where plane sections remain p1ene,
the work done by the axial force at A is the same for the three connections
shown. However, for a pure warping deformation, which is characterized by
~ the flanges rotating about the 4 axis but in opposite directions, the work
done by an axial load at A is different for all three cases. In Figure 12a,
the work is zero, and in Figure 12b, the work is non-zero and of opposite
sign to the work of Figure 12c.

Recalling that the work done by the applied loads during a warping dis-
placement is defined as the bi-moment, it can be clearly seen that the axial
force at A exerts three different bi-moments on the section in Figure 12,
depending on how it is connected. This implies that it is not enough to
specify'the position of the axial load; 1its method of connection to the
cross-section must also be specified. This means that placing the axial
point of reference at the shear centre would be almost meaningless because
any eccentric loads would be referenced to the method and point of connection,
not to the shear centre. For the general case, where the shear centre may
not even be in the cross-section, it becomes totally meaningless to specify
the shear centre as the point of reference for axial load and deflection,
as the first thing that must be done is to specify some kind of connection
from_the axial load to the beam, which implies corrective bi-moments. It is
for these reasons that the point of reference for axial terms was taken to
be the arbitrary point $=0 . This also gives some computational advantages.

If the axial load is not at S=O , then moments must be applied to
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correct the restﬂ tant, and these méments are calculated by the eccentricity

of the axial load frorﬁ S5=0 , not from the shear centre. This is because

the matrix takes into account and expects that .the axial load is at the

point 5=0 . These corrective moments may be functions of B , the torsional
rotation, since the B rotations affect the eccentricity of the axial Toad
about 5=0 , unless the joint at which the axial load is applied is restrained
torsionally.

The calculation of the corrective bi-moment for an eccentric axial load
cannot be done using equivalent force resultants, as the bi-moment has no
resultant. Instead, the corrective value must be found using energy. For
instance, the extra work of warping Q@ due to the eccentric load may be

found by
Q = Pw,

where Wy 1is the axial displacement due to warping only of the point of
action of P with respect to the axial displacement of S=0 . The term
W' 1is found from Equation (7) when all deflections other than g’ are

zero. This gives

S

! o
Wﬁv =JBLF = B w,

Clearly, the correc_:tive bi-moment is

P w,

Once again, since w, is only meaningful for points on the cross-
section, it illustrates that P must in some way be connected to some point
on the cross-section.

The value of w. in Pw, is calculated by integrating to the point S

at which P is connected to the cross-section. The connection itself may
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cause p to be above or below the point of connection to the cross-section.
If this is the case, then extra terms accounting for this will have to be
added to Pw, . These terms will depend on the type of connection used.

1f P is eccentric but on the cross-section, then P, is the only cbrrec-

tive term needed.
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CHAPTER 8
CONCLUSIONS

In this thesis, a set of non-linear force deflection relations were dev-
eloped using a set of common engineering assumptions consistently applied.

A discussion of the size of the terms that were discarded on the basis of
these assumptions is given. These force-deflection equations,_whgn.placed
in the overall beam equations of equilibrium, yield a set of differential
equations of equilibrium in terms of the displacements. These equations are
similar in form to those developed in Timoshenko and Gere [7], Bleich [3],
Oden [6] and Vlassov [9], except that the equations herein are coupled non-
linear equations, and so more genera]L In this sense, the equations are new.

The solution of the differential equations was attained by employing an
iteration, or successive approximation method. This produces a solution to
~ the differential equations, in terms of the boundary conditions, which must
be blaced back into the non-linear force-deflection relations and evaluated
at the boundaries to yield a stiffness matrix.

In this sense, the matrix is new, as it is the solution of a more gene-
ral set of non-linear differential equations than usual and has been developed
using an alternative and quite different method than the more common and well
developed energy methods.

This stiffness matrix is non-linear in the S terms and is difficult to
solve directly. A'secant matrix approach involving several iterations was
used, although there are other alternative methods of solving non-linear equ-
ations which could be used. The matrix was used to analyse several classical
problems and the agreement was good in all cases.

Once the matrix has been derived for a member, it is possible to apply

various transformations which allow the member matrix to handle eccentric
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connections and eccentric Toads. This in turn allows the building of arbit-
rary space structures with unusual joint and load conditions. This step,
however, was not taken in this thesis. "

There are several areas of investigation that are open for future work.

First, alternative solutions of the differential equation may be looked
at. The Galerkin method could be used, or several alternative iteration
~techniques could be employed. |

Secondly, the differentia} equations could be extended to include the
effect of shaft buckling, which was neglected in this thesis.

Thirdly, a better technique than the secant matrix approach for the sol-
ution of K&=1 might be employed.

Finally, the relative effects of the various physical constants on the

critical Toad might be studied.
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APPENDIX I
THE MATRIX

Since Equations (118) are non-linear in 5 , there are several ways of
removing a & vector to form the equation Ck(®I6=1 .

[ !
For instance, the term N_e "2 may be grouped as

1

(N&") v

or (N4 )"

The former grouping is of the form [V v’, and is the form that would
have been obtained if the equations were linear differential equations in-
volving Tinear values of [V, V, P in the co-éfficients. This method of
grouping will be used, and this will be used as the rule to factor out the
S . For example, in N,u”/tf’s the § associated with 1/‘, will be taken
outside as & .

Once this has been decided, it is next convenient to represent the
matrix as a sum of four sub-matrices K= K, + K, +K, + K,

The Tinear structure terms are K, and K, , whereas K3 and K, are the
non-linear terms. Expansion of Equations (124) under these conditions yields

the following:
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The addition of K., K, K, and K, gives the K matrix in

11 = DreIAs)

There are a few relations which ease the calculations of K . For

instance
[6 =L
[6:]" = (411"
[§:) = Loz
ATso, Co:1T] = Ca:il”
where [1]1-071 = /

Many of the terms are repetitive, so that one calculation suffices to
handle several terms. This still leaves a formidable amount of work in

assembling K . Appendix II, however, can be used to ease the calculation

of the individual terms.



APPENDIX II
TERMS NEEDED IN MEMBER MATRIX

This appendix contains the particular solutions to the first iteration
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of the differentia] equations, as well as the evaluated terms necessary to

construct the matrix. The particular solution follows.

2 Nq- LZ

No= -
(o] = L3%o, %z, 76, %]

——

Wl

[e] = [ sinh A%, X coshAz, 376, j1/2]

&(3 -2 z) (3
,\('3\‘51"}\)3 —Pcosh/\g)’ )\({-cos%)\f—)—‘%S’nl"A?),
2 e | 2 3
2, sinh A3 , 5 cosh A3 )
O F A) % ?
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[576) =
o2 5| L (T-) B o
6(-5- %) 7’(‘5{15 L 2(E) o
o , o, o , ©
B O ) o o , o
(5] = [a(-2.- 2, 25D ,-4 o]
- (G- %) (525 1)

3 2

A (gl;\z sinh )\5)
YR

A ((u\’ sinhAZ cosh)}

o

O

3 . - 3
L h)jcoshag+= )
Sih 2 \*

§ 3 ] 2 -
ol A (Zx.smln A3 )
? o ?
’ © ’

}\z (z.lf 3COSM§> %
) ?

2| x -
)\(2#351\";%)‘3)) o
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[o7e] =

é)\(’ 3 cosh)\g -'3 3$lnln)\3) G)\( 35ml«)‘3 ‘.- }cosh;\}) é(
4

jx) o

Ex(zxigcosL\Xg} ) Z)\(Z—l,\zgsmhkg\) ) Z(—-%) y ©
O ) @) ) o .2 O
O | ) @ | : ) Ob ) O

g

[9 [)\( 5(,05‘!\/\3\) )\(ZAz5sml'|/\g) ‘5/)\1,‘ Oj
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The remaining terms are those necessary to build the matrix K .

[6:1-[&:] = o o | o -
o o ‘_, o
L L L L
-3 -2 -1 0
ERECHE o | o o ]
[ o 0 / o
L L L L
3 2 / O
[o:l=lezl= | o , o /
T O I o]
sinh X | cosh ) / S
(Meosh) (M inha | }/L 0
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= (6, 0,0, 0)

Qo = (0)2,0,03

= (¢, 0,0,0)

= (6,2,0,0)

"

(X, 00,0)

(o, A, 0,0)

= ()xscosm, NsmhA, 0, o)
= (Nomha, Neoshy, 0,0 )
M. (o, 0,1,0) (31
=M, (o, 0,0, r)t@_:]"

= M. (3, 2,1, Y[ 3]

=M (L1, NEe

W

M, (o, o0, 1,0)[571—'

— ol
- MH- (O) O) 0, /)Em%] |



il enY
ol S o

. r - &
{ |

e
2,0

+M, L1 (ca1™)"

ar
'F:L,O

+ M, (7 (ca:1)"

- M4(3> Z) ))O) [5,11‘1

- ‘M‘{- (‘) ,) ’) !) [:(511]~

M, (0,1, 0, 1)[«3,’1-’

M, ()\)O) ’)0) [CB?]—'

O
2 )
o
o

far = MyGicoshh, Asinh d 1, 0)CaH]™

M, s ()

GAcoshh + bsimh) ) EAsinha +6cosh) , 12 ¢

2Acosh A

)

2Asinh A ,Z’ , O
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oo = Mz(s;nhx,‘cosh N L) [5?]—'

. T T r ~!
tM,L8T([aT) |6 smhd 6 coshh , ¢ , 6 | (8]

2 sinh A 7'ZCOSL1>\ , 2, 2

0 ’ c , O, O
O y O)0,0

fe= M, (xo, 100521

T T T —
+M, (51 (i) o 6,0, 6 | L&
2N, 0 2 o
©,0,0,0
0O ,0 ,0,0
Foo=Ms Co,10,1) (3107
M L1 (e1") {0, 0 o o o
" o, 2,0 ,2
6 , o ,0, ©
o ,o0 ,0,o0
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Fa

M (o)

2\ cosh A

Me (s.nhx, coshA, |,

6 sinh A

+M, [T (car”)

2 sinhA

. 2hsmh )

= Ms ()\cosl’\}\, Asinh A, 1, 0) [5?]" |

6Acosh) +6351nh) | CAsinhh +6cosh) ,'.IZ

)

2 )
) o » 9
) o ©
DICHE
6c?s-h>\ > 6 );—_
, ZcoshA 2 2
, ] , O . O
o, 0. 0
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£ = M (=¥, 0,0,0)3"]

+ M, (o, ¥, 0,0)d7]

) _‘T [ ———
~M, [s7(&T) | o , 24/¥ | o o
-3 o o o
) )
o , O o o
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0 0) O o
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s ” e
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T AT - I
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O ) O ) O ] O
onojj 3 B C_Q/Z | _ -1
foo = Ma N, 0,0 0)062]

+M, (=%, -%x0,0) L6717

-M, L¢7(a7)

~108 /4>
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O.

O

e
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ff‘L = —M, (=% ‘Z/A‘, 0, 0 )'[@.‘]"

' ' -
M, (=3 =% -, -, 0) [a2]

T — —— )
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8 ' R
fro = =M, (=% 0,0, 0) (8]
_ -1
+MIZ( O) -—2-//\1) O) O)[q):]
A ] -
“MoL¢7(s") o , ", o, ol 57"
_/Z/,\z , O , 0, 0
o , 0 ,0,0
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N
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- Mls [ S'JT([ (-f,' ]—')T
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' ' 2 ) L
The ¥, , {2, {a etc. are 4x 4 matrices. Since each row of
these matrices may be a very complicated expression, it will be convenient
to break them up. 1n the following pages the “., ‘2) N etc. will be

written in the form
Fo= F1O) fr=4201)
r(2) | £2(2)
etc.

nae | £3 (3)

£1(4) P (4)

L
th

) .
where - {?z_ (1) indicates the | row of the TE:_ matrix.



F = tM(0,0,0,0)(8!]"

ﬁc.' (2)= -M.(0,0,0,0)[3!1"

1C:(33 = LM.(’/zo, Mz e, ’/1)£(T>.‘]_,

PUle) = =M (e, s iy, 1) La

£l

+ LM, 05 ()

- M, L@

O
O

)

£20)= LM, Co, 1t 0,0)052]

o .o ,o|

., 0 o

© o o

o 0,0

-¢ o o CHE
o o o
O',o’o
o o, o0
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Fra)= LMo (5, <o e 1) (53]

sinha

VAN 1ah) 2coshd) ¢ (coshy z3inhd /
+LM3[§‘](W?]) 'fi"( 1y N ) ,K( AN ) ) 2

Zsmhk/z\l
e

o

{"'z(‘l‘) = -M, (coslr\k/)\

MeT o) (-2 (), s
2coshA /A, zsimha/h o, , 2
o : e L O, 0
o . o , 0,
- : 9

o

. 2cosM//\2v , s,

: o , 0,0

’ O y O, 0
/n, V2, 1) L@
sinhA/n, T2, | [o}]

£i0y= LM, (0,0, 0, o) 3]

f1G) = —M4 (0,0, 0, 0) (¢

fr(3)= L My ([/10, 12, e, '2) (67

SRR

fli4)= 41\’14(//4, I/z, /1, ﬂ[@f]‘,
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A study of the terms in the appendices reveals that there are many rep-
etitive matrices involved in the calculations. In many cases, only the
insertion of a different constant and & makes one large group of matrices
different from another. This can be used to advantage in construction of
the member matrix. |

First of all, construct sub-routines which can handle the matrix oper-

ations which are constantly repeating, such as

matrix X matrix
matrix X vector
vector X matrix

etc.

Using these sub-routines, thoge matrix products which are constant
throughout thé solution can be evaluated and stored.

Once into the iteratidn téchnique, the sub-routines can be re-used to
evaluate the required terms using the deflections 5 and the stored constant
matrix.

This technique allows the computer to do all the multiplications of the

matrices involved.



