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ABSTRACT

Previous investigations of the seismic stability of Sardis Dam indicated that the entire

central silt core and a weak clayey silt layer in the dam foundation are susceptible to

liquefaction which could result in large losses of shear strengths in these liquefied soils.

The post-liquefaction behaviour of Sardis Dam was evaluated using new flow deformation

analysis technique which was developed by Finn and Yogendrakumar(1989). The analysis

showed the potential for large displacements including a great loss of freeboard during the

design earthquake. A strategy of designing remedial measures to limit deformations to a

tolerable amount was adopted over the conventional factor of safety approach. Various

levels of remediations were investigated using TARA-3FL. The remediation procedure

adopted for field trials was anchoring the upstream slope to the foundation using rows

of rectangular prestressed reinforced concrete piles. Estimating post-liquefaction defor-

mations for this remediation scheme posed challenging problems in analysis.
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Chapter 1

INTRODUCTION

Sardis Dam is a hydraulic fill, flood control structure located in Northwestern Missis-

sippi. It has a length of 4600 m (15,000 ft) and a maximum height of 36 m (117 ft).

From previous seismic investigations, it has been determined that the central silt core of

the dam and a weak clayey silt layer in the dam foundation are susceptible to liquefac-

tion under the design earthquake. Liquefaction could result in large movements of the

upstream slope and a substantial loss of freeboard. The crucial problem of Sardis dam

is how to evaluate the post-liquefaction behaviour of the dam and how to select effective

remediation measures.

In general, there are two major problems confronting the soil engineers dealing with a

situation where soil liquefaction may occur. The first problem is determining the condi-

tions required to trigger soil liquefaction. This process is usually termed soil liquefaction

potential assessment. For sands, soil liquefaction potential may be evaluated by using

Seed's liquefaction assessment chart based on the in-situ Standard Penetration Tests

(SPT). For soils with plastic fines, soil liquefaction potential can be assessed by using

the criteria which was developed by Wang (1979). Evaluation of soil liquefaction poten-

tial has been described by Finn (1985), which is based on the level of the dynamic or

excess pore water pressure generated during an earthquake loading. The assessment of

soil liquefaction potential made during the previous seismic studies of Sardis Dam will

be presented in chapter 3.

1



Chapter 1. INTRODUCTION^ 2

The second problem dealing with soil liquefaction is determining the performance of

the soil structures after soil liquefaction. This process includes the determination of the

residual strengths of the liquefied soils and the assessment of overall stability of the soil

structures and the level of permanent deformations.

The residual strength of the liquefied soil plays a key role in the assessment of the

post-liquefaction behaviour (Seed,1987). Generally, two methods are used to evaluate the

residual strengths of liquefied soils. Poulos (1985) proposed that the residual strength be

determined from undrained triaxial tests on undisturbed samples with appropriate cor-

rections for differences between field and test void ratios. Seed (1988) recommended that

the residual strength be determined using a correlation between the residual strengths

and SPT blowcounts developed by analysis of case histories. The determination of resid-

ual strengths by the two methods is discussed in detail in Chapter 5.

The stability assessment of soil structures includes two approaches, static equilibrium

analysis and the estimation of permanent deformations. The static equilibrium approach

is based on the concept of an acceptable factor of safety. The deformation approach is

based on the concept of acceptable deformations.

The conventional method in assessing the stability of an earth structure involving soil

liquefaction is the static equilibrium method. In this method, the factor of safety against

a shear failure along a specified potential failure surface is determined by using residual

strengths in the liquefied soils as the mobilized shear strengths. The minimum value of

the factors of safety for all possible potential failure surfaces is used to define the stability
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of the soil structures under the earthquake loading. The purpose of the static equilib-

rium method is determining whether a shear failure will occur after soil liquefaction. In

earth structures zones of liquefied soils or zones of degraded strengths may lead to ac-

ceptable deformations although the factor of safety based on the original geometry of the

structure is less than what is normally considered acceptable and in some cases less than

unity. The use of deformation criteria can lead to substantial savings in remediation costs.

Therefore, for these reasons and in keeping with the concept of designing dams for

acceptable deformations proposed by Newmark (1965), there is a tendency to move away

from the factor of safety concept and to evaluate the extent of necessary remedial mea-

sures on the basis of a tolerable amount of deformation for the low probability event

specified by the design earthquake. This deformation approach requires a reliable method

of estimating post-liquefaction deformations.

A nonlinear finite element method for analyzing the post liquefaction response for

soil structures has been developed by Finn and Yogendrakumar (1989) which is incorpo-

rated in the computer program TARA-3FL. The program has the capability of computing

potential flow deformations. The basic methodology of this flow analysis method is to

simulate the sequence of shear strengths in liquefied soils. In the proposed flow analysis,

the soil structure is analyzed by using initial or pre-earthquake soil strengths and moduli

before applying a seismic loading. The stress-strain field prior to the seismic loading is

determined. When the seismic loading is applied, rises of dynamic porewater pressures

lead to reductions in shear strengths and shear moduli of saturated soils which cause

unbalanced shear stresses in the soil structure. As the unbalanced shear stresses are re-

distributed throughout the soil structure, a new stress-strain field is established and flow

deformations are obtained for this level of shear strengths. The process continues until
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all strengths reach either residual or minimum values for the level of shaking. For design

purposes it is more convenient to evaluate flow deformations using static analysis under

gravitational loads. If deformations under gravitational loading are acceptable then the

effects of seismic loading are evaluated.

The deformation analysis method described above is used for the post-earthquake

deformation analysis of Sardis Dam. The analysis showed that large deformations in

the upstream slope of the dam could occur under an earthquake loading for the normal

pool elevation. Remediation measures are proposed and their effectiveness in controlling

deformations and the loss of freeboard are evaluated by using TARA-3FL.

OUTLINE OF THESIS

Chapter 2 provides a brief description on Sardis dam .

Chapter 3 presents the previous seismic investigations on Sardis dam. Potential liq-

uefaction zones and critical zones are illustrated.

Chapter 4 presents the basic theory of static post-liquefaction deformation analysis.

A brief review of the development of earthquake induced deformation analysis and its

applications are described.

Chapter 5 describes the procedures for determining residual strengths based on lab-

oratory undrained triaxial tests or in-situ Standard Penetration Tests. The advantages

and disadvantages of these procedures are discussed.
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Chapter 6 presents post-liquefaction deformation analyses of Sardis dam. Finite el-

ement modelling, determination of strength and stiffness parameters and the results of

post liquefaction deformation analysis are given in the chapter.

Chapter 7 presents the results of remediation studies. The performances of Sardis

dam after soil liquefaction for different levels of remediation are compared.

The preferred remedial method for Sardis dam is anchoring the dam to the foundation

by driving large piles through the upstream slope. This procedure is discussed in chapter

8. A preliminary assessment of the effectiveness of this procedure is evaluated by using

TARA-3FL analysis.

Chapter 9 presents conclusions drawn from the studies in previous chapters and makes

some suggestions for further studies.



Chapter 2

DESCRIPTION OF SARDIS DAM

Sardis Dam, a hydraulic fill , flood control structure, is located in northwestern Missis-

sippi, approximately ten miles southeast of the town of Sardis on the little Tallahatchie

River, a tributary of the Yazoo River. Sardis along with three other dams (Arkabutla,

Enid and Grend) are the principal features of the Yazoo Basin Headwater project. The

purpose of the associated reservoirs is flood control, however, they also provide opportu-

nities for recreation and enhance local navigation on the Yazoo River.

The total length of Sardis Dam is approximately 4600 m ( 15,000 ft), with a maxi-

mum height of 36m ( 117 ft). The central portion of the dam, located in the floodplain

of the Little Tallahatchie River, ranges in height from 28 m (90 ft) to 36 m (117 ft), and

is approximately 2620 m (8500 ft) long. This central portion of the dam was constructed

by hydraulic filling, and consists of a predominantly silt core surrounded by a sand shell,

shown in Fig. 2.1.

The dam foundation consists of a 3 m (10ft) to 6 m (20 ft) thick zone of natural silty

clay, designated as the topstratum clay, Fig. 2.1, which extends approximately 370 m

( 1200 ft) upstream of the dam centerline. In the areas of the original streambed, the

top stratum clay was missing and a 3 m (10 ft) thick silty clay rolled fill was placed in

those areas. The topstratum clay is underlain by pervious alluvial sands (substratum

sands) which are approximately 12 m (40ft) thick and are underlain by Tertiary silts and

6
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Figure 2.1: Typical Section of Sardis Dam (Finn et al., 1990a)

clays. During dam construction , the topstratum clay was removed from beneath the

downstream portion of the dam to help control under seepage. The project was built in

the late 1930's.

Hydraulic studies indicate that the probable maximum flood (PMF) would result

in a reservoir level 3 m (10 ft) below the embankment crest. The limited discharge

capacity of the outlet works prevents maintaining a specified reservoir level during peri-

ods of even moderate rainfall. The difficulty in maintaining a constant reservoir level has

a significant impact on the feasibility of performing remedial work on the upstream slope.

Proximity of Sardis Dam , a hydraulic fill structure , to the New Madrid area, a re-

gion of significant historical seismicity , led to concern about the possibility of seismically

induced liquefaction of portions of the dam and foundation and the stability of the dam
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under seismic loading. The U. S. Army Corps of Engineers, Vicksburg District, under-

took several studies to evaluate the probable behaviour of the dam during and after an

earthquake . The results of these investigations indicated that some remedial measures

were necessary to improve the stability of Sardis Dam during seismic loading.



Chapter 3

PREVIOUS SEISMIC STUDIES

3.1 Previous Investigation

Using the results of field and laboratory testing, conventional seismic assessment proce-

dures (described in next chapter) were followed to predict the effects of the maximum

credible earthquake on the structure. In Sardis dam, many borings were drilled and stan-

dard penetration tests(SPT) were performed both in the dam and the foundation soils.

Laboratory testing of undisturbed samples taken from the borings included classification

tests and static and cyclic triaxial tests.

From the previous investigations, it was concluded that the downstream stability of

the dam is adequate during and after the earthquake. However, previous investigators

found zones with the potential for liquefaction or significant strength loss which could

threaten the upstream stability of the dam. These zones include the hydraulically placed

silt core, and a discontinuous layer of weak clayey silt located in the foundation beneath

the upstream slope of a 310 m ( 1000 ft) long portion of the dam. Preliminary field ex-

ploration also indicated the possible existence of discontinuous layers of weak clayey silt

in other areas of the dam foundation. The upper 3 m (10 ft ) to 9 m (30 ft) of sand shell

along the lower portion of the upstream slope was also identified as having a potential

for liquefaction; however, loss of strength in this zone has a relatively small effect on the

stability of the dam.

9
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Figure 3.1: Longitudinal Section Showing Liquefiable Zones in Shell and Foundation
Sands 139 m(450 ft) Upstream from Centerline (Finn et al., 1990a)

Fig. 3.1 shows zones of potential liquefaction within the shell and substratum sands

where the predicted factor of safety against liquefaction is less than unity. This is a sec-

tion about 139 m (450 ft) upstream. There was some concern that unacceptable excess

porewater pressure might be generated in areas where the predicted factor of safety is

between 1.0 and 1.25, and these zones are shown with hatched vertical lines. The study

showed that liquefaction might occur in the upper portions of the upstream shell begin-

ning between 31 m ( 100 ft) and 77 m (250 ft) upstream of the centerline and extending

at least. 139 m ( 450 ft) upstream.

The factor of safety with respect to upstream stability of the dam would still be ade-

quate except in areas where the weak clayey silt layer occurs beneath the upstream slope
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within 77 m (250 ft) of the centerline, even though the silt core might liquefy along the

entire length of dam.

3.2 Potential for Liquefaction in Fine Grained Soils

Field data was evaluated and additional exploration and testing were conducted to locate

any other zones of weak clayey silt. Discontinuous layers of the weak clayey silt were

subsequently identified in two areas outside the original 310 m (1000 ft) long section.

Liquefaction potential of the weak clayey silt in the original investigation was deter-

mined using the Chinese criteria developed by Wang (1979). These criteria are :

• per cent finer than 0.005 mm < 20%

• liquid limit, LL < 35%

• natural water content > 0.9 LL

• liquidity index,/,„ < 0.75

Liquefaction or significant loss of shear strength will occur for soils which satisfy all four

criteria. In addition, any fine grained soils for which the standard penetration resistance

N < 4 were also assumed to liquefy or suffer significant strength loss whether they sat-

isfied the Chinese criteria or not. The Chinese criteria were applied strictly with no

account taken of uncertainties in the measurement of the parameters in the criteria. In

the later investigations these uncertainties are taken into account.
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In the original investigation, the residual strength of the weak clayey silt in the foun-

dation was established on the basis of judgement, the Seed's (1987) criterion, and lab-

oratory vane tests. Sample disturbance and subsequent reconsolidation prior to testing

resulted in higher values for the residual strengths determined by the laboratory vane

tests than would be expected in situ. A more elaborate procedure was adopted for the

later investigations involving use of cone penetration testing and field vane test data.

In the later investigation, Woodward Clyde consultants (1989) suggested that al-

lowances should be made for uncertainties in the measured values of the parameters in

the criteria. They recommended ignoring the liquidity index and making the following

changes in the measured soil properties before applying the criteria:

• decrease per cent fines by 15%

• decrease LL by 5%

• increase water content by 3%

These changes increased significantly the extent of the soils vulnerable to liquefac-

tion and strength loss so that almost the entire length of the dam required remediation.

Therefore, the Vicksburg District engineers reviewed reports on the scatter in measured

index properties in U.S. Corps of Engineers' laboratories over the last 30 years to de-

termine the likely range of variation in test data. In addition they conducted tests on

samples of standard soils of low to medium plasticity in their own laboratory to establish

the scatter in their data. These standard soils are used to check comparability of testing

procedures between different Corps of Engineers' laboratories and private laboratories.

As a result of these studies the following changes in measured properties were adopted
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before applying the Chinese criteria ( again ignoring the liquidity index) :

• decrease the fines content by 5%

• decrease the liquid limit by 2%

• increase the water content by 2%

This change reduced the length requiring remediation to about 1700 m (5500 ft).

The impact of the Chinese criteria on the extent of remediation necessary for stability

appeared to be so critical that an investigation of Chinese procedures was undertaken

by Koester (1990). The Chinese determine the liquid limit using a fall cone rather than

the Casagrande device generally used in North America. Using a standard Chinese fall

cone and following Chinese standard SD 128-007-84, Koester (1990) showed that the

fall cone gives a liquid limit about 3% or 4% greater than the Casagrande device. The

Koester study is not complete and findings relative to the liquid limit should be viewed

as tentative.

On the basis of all the above studies the following changes in measured index prop:

ertied were finally adopted to account for uncertainty before application of the Chinese

criteria:

• decrease the fines content by 5%

• increase the liquid limit by 1%

• increase the water content by 2%
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These changes reduced the length requiring remediation to about 926 m (3000 ft).

The zones in the topstratum clay vulnerable to strength loss based on the N<4 Rule

and the Chinese criteria and taking account of uncertainty are shown in plan, Fig. 3.2,

and in longitudinal section at a location 76 m ( 250 ft) upstream from the centerline of

the dam, Fig. 3.3. Those zones are designated as weak clayey silt layers found outside

the 1988 remediation berms.

3.3 Conclusions Drawn from Previous Seismic Study

1.) The silt core of the dam may liquefy along the entire length of the dam.

2.) The post-liquefation factor of safety with respect to the upstream stability of the

dam would still be adequate except in areas where the weak clayey silt layer occurring

beneath the upstream slope.

3.) The Chinese criteria for evaluating the potential for liquefaction or significant

strength loss in clayey soils, based on liquid limit, water content and per cent fines <

0.005 mm, can have a major impact on the extent of remedial measures necessary to

achieve stability in earth structures with potentially liquefiable fine grained materials.

4.) Before applying the Chinese criteria the uncertainties in the measured soil prop-

erties should be taken into account in a reasonably conservative manner. This may be

done by adjusting the measured water content, liquid limit, the fines content before ap-

plying the criteria. The amount of these adjustments should be based on the estimated
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variability in data appropriate for the laboratory conducting the tests. In the absence of

such specific information, the adjustments noted above of increasing the liquid limit by

1%, the water content by 2%, and decreasing the fines content by 5% may be considered.

These adjustments reflect conservative estimates of the variability to be expected from

very experienced personnel operating under high standards of quality control. Due note

should be taken of the possible sensitivity of the liquefaction assessment to minor changes

in the measured parameters.

5.) The zones of weak clayey silt vulnerable to strength loss are determined based on

the N<4 Rule and the Chinese criteria and taking account of uncertainty. Those zones

are found outside the 1988 remediation berms and need to be remediated.



Chapter 4

THEORY OF POST LIQUEFACTION ANALYSIS

4.1 Conventional Static Equilibrium Method

The static equilibrium method is widely used to assess the stability of an earth dam after

liquefaction in the dam or foundation. In this method, the factors of safety against shear

failures along all potential failure surfaces are determined based on the residual strengths

of the liquefied soils.

In the case of dams some deformations are acceptable although such deformationss

may indicate temporary factors of safety less than unity. Therefore, in accordance with

the concept of designing dams for acceptable deformations proposed by Newmark (1965),

there is a tendency to move away from the factor of safety concept and to evaluate the

extent of necessary remedial measures on the basis of a tolerable amount of deformation

for the low probability event specified by the design earthquake. This approach requires

a reliable method of estimating post-liquefaction deformations.

4.2 The Deformation Analysis Theory

Post-liquefaction deformations for soil structures can be computed by using a nonlinear

finite element code developed by Finn and Yogendrakumar (1989). This finite element

18
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code is incorporated in the computer program TARA-3FL. The program has the capa-

bility of computing potential flow deformations. This flow deformation analysis method

make it possible to assess the seismic behaviour of soil structures incorporating zones of

liquefiable soils.

When a saturated or partially saturated soil structure undergoes an earthquake load-

ing, the dynamic pore water pressures in the saturated soils increase, shear strengths

of the saturated soil decrease. As the dynamic porewater pressures increase more and

more, liquefaction may occur, and the shear strengths of the liquefied soils may reduce

to steady state strengths or residual strengths.

In the present preliminary study, it is assumed that the residual strengths will be

triggered in all soil elements that will liquefy according to the criteria developed by Seed

et al. (1985), and the analysis is concentrated on the post-liquefaction behaviour only.

In the deformation analysis involving soil liquefation, the first requirement is a triggering

criterion to switch the strength of any liquefiable soil in the dam to the residual strength

at the proper time during the dynamic analysis. Two criteria are available , the peak

strain criterion of Castro et al. (1989) and the stress ratio criterion of Vaid and Chern

(1985). These criteria are not used in the present analysis. This analysis simply focuses

on the fact that the residual strengths are reached but ignores when the residual strengths

will be reached.

In the proposed deformation analysis, the soil structure is analyzed using initial or

pre-earthquake soil strengths and moduli before applying a seismic loading. A stress-

strain field prior to the earthquake loading is thus determined. When the seismic loading
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is applied, increases in dynamic porewater pressures in saturated soils lead to reduc-

tions in shear strengths and shear moduli of the saturated soils which cause unbalanced

shear stresses in the soil structure. As the unbalanced shear stresses are redistributed

throughout the soil structure, a new stress-strain field is reached, and flow deformations

are obtained for this level of shear strengths.

In any particular element in a dam, the shear stress-strain state which reflects pre-

earthquake conditions is specified by a point P on the stress-strain curve as shown in Fig.

4.1. When liquefaction is triggered, the strength will drop to the steady-state value. The

post-liquefaction stress-strain curve cannot now sustain the pre-earthquake stress-strain

condition, and the unbalanced shear stresses are redistributed throughout the dam. In

the liquefied elements, the stresses are adjusted according to the following equation,

Of  ,^Of ,
= ^ao-i + — cry^ (4.1)(9cr'„^(9-y

where T = f (c ,-y). This process leads to progressive deformation of dam until equi-

librium is reached at the state represented by P2.

For static preliminary studies of flow deformations the basic idea is simulating the

reduction sequence of the shear strengths in liquefied soils or non-liquefied soils by con-

ducting a series of static finite element analyses. For each subsequent step of the defor-

mation analysis, the previous shear strengths are reduced by a small percentage such as

5%. A final flow deformation configuration is determined as the final post-earthquake

shear strengths ( residual shear strengths ) are reached in all liquefied elements. Since the

deformation may become large, it is necessary to update progressively the finite element
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Figure 4.1: Adjusting Stress-Strain State to Post-Liquefaction Conditions (after Finn et
al., 1990b)
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mesh. Each calculation of incremental deformation is based on the current shape of the

dam, not the initial shape as in a conventional finite element analysis. If the resulting

flow deformations are not acceptable, the design must be not used. If they are acceptable,

then the dynamic form of the analysis is used to check the design.

To model the nonlinear stress-strain behaviour of the soil material, an incremental

elastic approach is used where the soil is assumed to be isotropic and elastic during the

load increment. The two-dimensional stress-strain relationship is determined by a pair

of elastic stiffness constants, tangent bulk modulus Bt and tangent shear modulus G t .

The bulk modulus can be expressed by:

cr
Bt = Kb • Pa" (m (4.2)

where

Kb = bulk modulus constant

Pa = atmospheric pressure

corn = effective mean normal stress

n = bulk modulus exponent

The constants Kb and n are determined by triaxial tests (Duncan and Chang, 1970).

The tangent shear modulus G t is determined by using a hyperbolic shear stress-strain

model based on the maximum shear modulus , the shear strength, and the shear strain

(Finn and Yogendrakumar, 1989). The maximum shear modulus Gmax may be input

directly if known or calculated by the program using the following equations (Seed and

Idriss, 1970):
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for sands,

Gmax = K2max • Pa • ( Cri4 ) 115

^
(4.3)

for clays,

Gmax = K, • Su^(4.4)

where Su is the undrained shear strength and K2max and K, are parameters to be

estimated or determined. The maximum shear modulus may be determined based on

laboratory tests or on the shear wave velocity from conventional seismic crosshole tests.

If direct data are not available, the maximum shear modulus of soil can be estimated

based on the relative density of sands or on the level of shear strain for clays (Seed and

Idriss, 1970).
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RESIDUAL SHEAR STRENGTH

5.1 Introduction

Liquefaction involves large unidirectional shear deformations. When the soil is strained

beyond the peak strength, the undrained strength drops to a value that is maintained

constant over a large range in strain, as illustrated by curve 1 in Fig. 5.1. The steady state

of deformation for any mass of particles is that state in which the mass is continuously

deforming at constant volume, constant normal effective stress, constant shear stress,

and constant rate of shear strain. The steady state is achieved only after the structure

is completely remolded and all particle orientation effects have reached a steady state

condition and after all particle breakage, if any, is complete. The steady state exists

only during deformation. The shear strength under steady state condition is called the

undrained steady state strength or residual strength.

If the driving shear stresses due to gravity on a potential slip surface through lique-

fied materials in an embankment are greater than the undrained steady state strength,

deformations will occur until the driving stresses are reduced to values compatible with

static equilibrium (Fig. 5.2). The more the driving stresses exceed the steady state

strength the greater the deformations to achieve equilibrium. The driving shear stresses

to be used in analyzing liquefaction are not the shear stresses resulting from placement

or consolidation of the soil, but rather are the minimum shear stresses that are necessary

24
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AXIAL STRAIN (%)
Figure 5.1 Types of Stress Strain Curve for Consolidated Undrained

Triaxial Tests on Clean Sand
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to maintain equilibrium of soil mass under external or body forces. The driving shear

stresses that should be compared to the steady state shear strength are shear stresses

which will continue to be applied to soil as deformation occur.

The residual strength is the crucial element controlling post- liquefaction deforma-

tions. Therefore available procedures in determining the residual strength are critically

discussed below.

5.2 Determination of Residual Strengths

5.2.1 Steady state concept

Casagrande (1936) in his classic paper discussed the significance of the critical void ratios

of cohesionless soils. In his paper, Casagrande pointed out that a sand with a void ratio

greater than the critical void ratio tends to contract upon monotonic shearing, whereas

a sand with a void ratio less than the critical value tends to expand. Thus, when a satu-

rated sand is sheared in an undrained state, positive pore pressures are developed if the

void ratio is greater than this critical value (loose sands). The development of positive

pore pressures leads to a reduction in the effective normal stress and consequently to

a reduction in shearing strength. It was found that the critical void ratio varied with

the effective confining pressure. The line describing such a relation on a critical void

ratio versus effective confining pressure plot is unique for a given sand and is called the

steady state line. The undrained steady state shearing strength is represented by the

strength corresponding to the effective confining pressure on the steady state line and

the associated void ratio.
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Since it is the steady state shear strength that is needed for a liquefaction analysis ,

it is convenient to plot the results of the undrained triaxial tests in terms of void ratio

versus undrained steady state strength on the failure plane, as shown in Fig. 5.4, rather

than in terms of u38 , as shown in Fig.5.3. The corresponding steady state, undrained

strength of the soil, Sus , can be determined from the Mohr diagram and expressed in the

following form:

sine' cos'
S„„ =   (5.1)

1 — sin01 cr 3s

where 0 1 is the effective friction angle , and u31 , the effective minor principle stress,

corresponding to the steady state condition.

The steady state strength of liquefied sands,Sus , generally can not be determined di-

rectly by undrained shear tests on undisturbed samples from the field . Such contractive

soils are very difficult to sample. They are likely to densify during sampling, transporta-

tion and the process of setting up the tests. Therefore the tests cannot be conducted at

the field void ratio. A procedure for dealing with this problem has been proposed by

Poulos et al. (1985). In the procedure the steady state strength of a good quality

undisturbed sample is determined at the laboratory void ratio after reconsolidation in the

laboratory. It is then assumed (1) that there is a unique relationship ( the steady state

line) between steady state strength and void ratio ; (2) that the slope of the steady state

line is the same for reconsitituted samples of that sand as for undisturbed samples; and

(3) that the slope of the steady state line in independent of the method by which samples

are reconstituted in the laboratory. Thus by performing tests on reconstituted samples,
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the slope of the steady state line for these samples can be established and used to pre-

dict the steady state strength of the undisturbed sample at the void ratio corresponding

to its in-situ condition. The procedure for the accomplishing this is illustrated in Fig. 5.5.

The steady state line in e - log Ssu space is obtained by tests on reconstituted samples

at different void ratios. Then S.,, is measured in undrained compression tests on good

quality undisturbed samples from the field. A representative value of this laboratory

steady state strength, (S.„)L is plotted in Fig. 5.5 at the void ratio at failure in the

laboratory, eL . A line is drawn through the point ((S.,,)L ,eL ) parallel to the line for

reconstituted samples and the strength corresponding to the field void ratio, e f , given

by this line, is taken as the steady state strength in the field, (58„)f

There are some difficulties with the use of this procedure. First the differences be-

tween the steady state lines of the field samples can be very wide. It is clear that selection

of a representative steady state strength poses significant problem for a designer or an-

alyst. Secondly there is controversy over whether the undrained steady state strength is

stress path dependent or not.

Castro et al. (1985) hold the view that steady state strength is independent of the

stress path. Vaid et al. (1990) conducted an extensive test program on Ottawa sand

and a tailings sand to investigate the effects of stress path on steady state strength using

extension and compression tests. They found that the steady state strength was greatest

in compression. In the case of loose Ottawa sand, the ratio of steady state strength in

compression to the strength in extension was 10:1; for the loose tailings sand, the ratio

was about 6:1. Furthermore the range in void ratios exhibiting contractive behaviour

in extension is much larger than in compression. These tests were conducted on water
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pluviated sands to simulate the depositional process in nature. Such sands are inherently

anisotropic and their response to loading depends on the orientation, 3, of the major

principal stress relative to the plane of deposition. The data strongly suggest that the

steady state or residual strength of soils in the field is a function of p (Vaid et al., 1990).

The dependence of S8  on has important practical implications. The angle varies

along the curved failure surface of an embankment from = 0 (compression loading) near

the crest to /3= 90 degree (extension loading) at the toe (Fig. 5.6). Therefore steady

state strength based on data from compression tests would appear to be applicable only

near the upper part of the failure surface. The strength should decrease and reach its

lowest value in extension near the toe. Thus the average steady state strength in the

liquefied zone of the lower San Fernando dam may be much less than that value mea-

sured in laboratory compression tests. Seed et al. (1988) have shown from back analysis

of the San Fernando dam that the average steady state strength in situ was substantially

less than the average strength measured in compression. tests.

Discrepancies between steady state strength in compression measured on undisturbed

samples and the average steady state strength computed by back analysis of the San Fer-

nando slide are credited almost entirely to densification. The quantitative effect of stress

path in steady state strength suggested by the work of Vaid et al. (1990) may account

for a substantial part of the difference noticed in the San Fernando dam studies. This

effect is also crucial to a reliable stability analysis.

There are clearly sharp differences between recent research finding and current prac-

tice in the determination of steady state strength from laboratory tests. The key assump-

tion underlying current practice that the steady state strength is a function of void ratio
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Figure 5.5 Poulos Procedure for Determining Steady State Strength
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only needs further investigation. More studies on the effects of stress path are needed to

establish a generally acceptable position on this very important problem.

5.2.2 A correction between residual strengths and SPT blowcounts

Seed (1987) developed an alternative approach to determining steady state strength. He

analyzed the stability of a number of field cases in which large deformations occurred

after liquefaction and developed a correlation between in situ steady state strength and

representative (N1 )60 values. This correlation was updated in 1987 by refining some of

the previous analyses and incorporating new data from embankment failures during the

Chilean earthquake of 1985 (De Alba, et al., 1987). The latest version of the correlation

is shown in Fig. 5.7.

There are two challenges for the designer in using this correlation. The first is related

to the range in strength at a given penetration resistance. At the low penetration resis-

tances associated with very contractive materials the range in strength is many times the

minimum value. This makes it very difficult to decide on an appropriate value for residual

strength at low penetration resistances. The second challenge relates to the selection of

a representative (N 1 )60 . The dispersion of (N 1 ) 60 values can be very wide in the field.

This dispersion can be particularly troubling when analyzing case histories to determine

steady state strengths. An excellent discussion of all the difficulties associated with the

analysis of case histories of flow deformation to determine steady state strength may be

found in Seed et al. (1988).



Chapter 5. RESIDUAL SHEAR STRENGTH^ 33

5.3 Evaluation of Residual Strength on Sardis Dam

The residual shear strength in the liquefied silt core in Sardis Dam was estimated to

be 5 kPa (100 psf) based on Seed's correlation between corrected standard penetration

resistance (N1 )60 and residual strength shown in Fig. 5.7; see Seed et al, 1988.

In the original investigation , the residual strength of the weak clayey silt in the

foundation was established on the basis of judgement, the Seed (1987) criterion , and

laboratory vane tests. Sample disturbance and subsequent reconsolidation prior to test-

ing resulting in higher values for the residual strengths determined by the laboratory vane

tests than would be expected in situ. In the later investigation, the peak and residual

in situ strength of the weak clayey silt were determined by field vane tests in the top-

stratum clay. These residual strength (Fig. 5.8) , however, were not used in the stability

assessment prior to 1988 because cone penetration tests in adjacent locations appeared

to indicate the presence of silt and sand lenses that might have allowed some drainage

during the vane tests. Such drainage would result in higher strength values. Woodward

clyde Consultants (1989) reviewed the results of classification tests conducted on samples

of the soils tested by the field vane and concluded that lenses of sand or silt sufficient to

cause significant internal drainage were not present. Furthermore, they concluded that

even if lenses small enough not to have been detected in the classification were present,

they were unlikely to have allowed significant drainage at the typical rates for conducting

the vane tests (about 6 degree per minute in the post-peak phase of the test).

The field vane tests were used to estimate the ratios of peak undrained strength, S u ,

and residual strength, S,,,, to the effective overburden pressure cry' 0 and the sensitivity

Su /5'8u . The peak undrained strength was also estimated from cone penetration test data
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using the equation developed by Robertson and Campanella (1983),

S,, = qc cv0

15
(5.2)

where qc = cone tip resistance and o-,,, = total overburden pressure. In addition,

estimates were obtained of the undrained strength required to give factor of safety in the

range of 1.5 to 2.0. This range in factor of safety was considered appropriate for the pre-

earthquake condition of the dam. A conservative assessment of all these results suggested

an average Su /u„„ ratio for the weak clays and silts of about 0.2 to 0.3 . Based on these

results for Sedcr„,,, the work of Pyles (1981) on the shearing resistance of cohesive soils at

large strains, the S../avo ratios and sensitivities from the field vane tests, a conservative

value of the residual strength for the weak clayey silt was estimated to be S./o-vi c, =0.075.

The residual shear strength of the non-liquefiable top stratum clay was estimated at

100 kPa (2000 psf) on the basis of undrained triaxial tests.



Chapter 6

LIQUEFACTION DEFORMATION ANALYSIS

6.1 Initial Stress Conditions in Dam and Foundation

The mechanical behaviour of Sardis dam is simulated by modelling the performance of

a typical cross section . The actual three dimensional problem is simplified as a two

dimensional plane strain problem. Both initial stresses after the construction and the de-

formations after liquefaction were computed by using the computer program TARA-3FL

( Finn and Yogendrakumar, 1989) described earlier. The basic theory has been reported

by Finn (1985,1990) and Finn et al. (1990).

6.1.1 Finite element mesh

For the purposes of simulating the initial stress conditions and the subsequent liquefac-

tion behaviour of the dam , a finite element mesh is constructed as shown in Fig. 6.1

and Fig. 6.2, which show the element and node numbers of the mesh. This finite element

mesh consists of 576 nodes and 502 quadrilateral elements.

The boundary conditions for analyzing the construction of dam and foundation are

defined along all boundaries. The surfaces of the dam and the free field are free to move

horizontally and vertically.

36
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Nodes on the base are fixed in both directions. At the two side boundaries the nodes

are free to move vertically but are fixed horizontally. Therefore , the two side boundaries

have to be far enough so that the building of the dam could not cause significant hori-

zontal movementE at the two side boundaries.

The rest of the nodes in the mesh are set free to move in both X and Y directions.

6.1.2 Soil material properties

Parameters defining material properties are assigned to each element to reflect realistic

strengths and moduli. Generally the elements are grouped to represent zones of different

materials. In each zone, the same material parameters are used. Fig. 6.3 shows the

distribution of these material zones.

The dam foundation consists of a 10 to 20-foot thick zone of natural silty clay , des-

ignated as top stratum clay and modelled as material #2 and #5 . The top stratum clay

is underlain by pervious alluvial sands , designated as substratum sands and modelled

as material #1, approximately 40-foot thick. The substratum sands are underlain by

tertiary silts.

Sardis Dam consists of a central silt core, constructed by hydraulic filling. The satu-

rated (liquefiable) and drained (above water table) parts of the silt core were modelled

as material #8 and #9 , respectively. The silt core is surrounded by a sand shell. The

drained part of the sand shell was modelled as material #10 . The saturated part of

the sand shell was modelled as material #6 ( non-liquefiable) and #7 ( liquefiable). The

crest of the dam consists of a compacted clay fill which was modelled as material #11.



Elevation (ft)

silt clay #5
weak silt clay #2

gu
'10
MF
4

P5

t'l
54

^305 ^tri
1'1

=.-
0

0

'70 b
tx.1

0

5 

P:1

ti3
0

4.-

4=.

K1-C
# I I

Foundation Sand #1

Fig. 6.3 Distribution of Soil Material Zones



Chapter 6. LIQUEFACTION DEFORMATION ANALYSIS^ 41

Table 6.1: Parameters of Strength and Stiffness Used in the Construction Analysis
Material# C (psf) Kb n Kc K2ma -y (pcf)

1 35 0 6182 0 61 125
2 0 2000 13230 0 1400 120
5 0 2000 13230 0 1400 120
6 35 0 6182 0 61 125
7 35 0 6182 0 61 125
8 20 300 4054 0 40 120
9 20 300 4054 0 40 120
10 35 0 5067 0 50 125
11 0 750 5150 0 1453 115

Materials:
#1 - foundation sand
#2 - weak clayey silt
#5 - clayey silt
#6 - sand shell (non-liquefiable)
#7 - sand shell ( liquefiable )
#8 - silt core (liquefiable)
#9 - silt core ( above water table)
#10 - sand shell (above water table)
#11 - rounded clay cap

In the program TARA-3FL, soil materials have been classified into two types : sands

and clays. For the construction sequence, drained strength and modulus parameters are

used for sands, and undrained strength and modulus parameters are used for clays. Af-

ter liquefaction, undrained strengths and moduli are used for all materials. Table 6.1

shows the soil parameters used in the construction sequence, which are obtained from

the previous study. The parameters used for the liquefaction analysis will be presented

in section where post-liquefaction analysis is considered.
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6.1.3 Pool water level and water force

The conservation level of the reservoir is at elevation 277 ft. In this thesis, the perfor-

mance of the dam after liquefaction was examined at this reservoir elevation. The dam

crest is at elevation 312 ft, for an initial freeboard of 35 ft. If the material is submerged

below the phreatic line ( Fig. 6.3), the buoyant unit weight is used in analyses.

The water forces acting on left side of the relatively impermeable silt core should be

included in the initial stress analysis of the construction. These forces shown in Fig. 6.3

are perpendicular to the core face. The distributed water forces are replaced by equivalent

concentrated normal forces at the nodes and then resolved in the vertical and horizontal

directions in an approximately representation of reservoir effects during liquefaction.

The construction of the foundation and the dam was modelled by a 13-layer construc-

tion sequence, where incremental stresses, strains and deformations were computed after

the placement of each new layer. Final results of static analysis during construction stage

were printed out by the program. In this way , the initial stress conditions in the dam

before liquefaction were determined.

6.2 Description of Liquefaction Analysis

6.2.1 Liquefiable materials

Previous investigators had determined the zones with potential liquefaction or significant

strength loss. These are :
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• Hydraulically placed silt core (saturated) - material #8;

• Upper 10 to 30-foot of sand shell along the upstream slope - material #7;

• Discontinuous layer of weak clayey silt 5 ft thick located approximately 7 ft into

top stratum clay - material #2.

The residual strength for the liquefied silt core is 100 psf, for the liquefied sand shell is

400 psf, and for the weak clayey silt is 0.075cr i,'„, where a  is the effective vertical stress.

Table 6.2 shows the variation of residual strengths in the weak clayey silt with locations

in the dam foundation, a minimum value of 100 psf of the residual strengths was used in

the analysis.

6.2.2 Soil properties after liquefaction

The maximum shear modulus and bulk modulus for sands can be calculated by following

equations:

Gmax cri 0 5= 21 . 7K 2,,,x Pa (^)^ (6.1)

cri
B = KbPa(---; )n^(6.2)

where Pa is atmospheric pressure, 2117 psf; um is the mean normal stress. The other

constants are shown in Table 6.1.

Using the appropriate mean normal stress from the final results of the construction

analysis, we can calculate the maximum shear modulus Gm,„ and bulk modulus B at the

end of construction for the drained parameters. When drained strengths and moduli are

shifted into undrained parameters, undrained strengths and moduli are approximated by
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Table 6.2: Variations of Residual Strengths in the Weak Clayey Silt (psf)
Element WT277 model
241-255 100

256 100
257 109
258 121
259 133
260 147
261 160
262 173
263 186
264 211
265 246
266 287
267 342
268 398
269 449
270 504
271 549
272 597
273 621
274 671
275 728
276 766
277 742
278 687
279 610
280 551
281 515
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Table 6.3: Parameters of Strength and Stiffness after Liquefaction
Material# 0° C (psf) Kb n K° K2max 7(Pef )

1 35 0 6182 0 61 125
2 0 0.0750L 13230 0 1400 120
5 0 2000 13230 0 1400 120
6 35 0 6182 0 61 125
7 0 400 6182 0 3825 125
8 0 100 4054 0 1384 120
9 20 300 4054 0 40 120
10 35 0 5067 0 50 125
11 0 750 5150 0 1453 115

maintaining the same values of these parameters. For the liquefaction or undrained con-

dition, the bulk modulus exponent n is usually set to be zero and Kb adjusted accordingly.

The moduli expressions for undrained parameters are :

Gmax — Kc • Su

B = Kb • P.

The undrained equivalent shear modulus constant IC c and bulk modulus constant Kb

could easily be evaluated by using equations (6.3) and (6.4) given the initial undrained

values of Gmc,„ B, and undrained strength.

There are three potential zones of liquefaction which are grouped as materials #2,

#7 and #8. The soil parameters after liquefaction are shown in Table 6.3.

For Sardis Dam, the reduction of shear strengths and moduli of the liquefied weak

clayey silt in the top stratum clay (material #2) mainly controls the final deformations

(6.3)

(6.4)
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of the dam. The loss of strength and stiffness in the upstream sand shell after its lique-

faction has a relatively minor effect. The strengths of the liquefied soils were reduced by

5% for each step in the sequence of strength reduction from initial undrained strength to

residual strength. This led to a corresponding decrease in the undrained shear modulus.

When the residual strength in any zone is reached, the residual strength is used as the

shear strength in this zone for the subsequent steps of the analyses. For each new run,

the calculated finite element mesh and stresses from the previous run were taken as the

input data for the next run.

6.2.3 Results of liquefaction analyses

When the shear strength of the weak clayey silt decreases from 2000 psf to residual

strengths, large deformations are induced in the dam. The water level of the dam is

assumed to be at the elevation of 277 ft , and it is termed as the WT277 model. Fig. 6.4

shows the developement of the deformed shape of the dam as the shear strengths in the

weak clayey silt are reduced.

The variation of the loss of freeboard is illustrated in Fig. 6.5 for various levels of

minimum residual strength. The residual strengths of the weak clayey silt vary depending

on the initial effective stresses. The minimum value of these residual strengths in this

layer for the current liquefaction step is designated as the minimum residual strength.

The increase in the loss of freeboard is gradual with the decrease in the minimum residual

strength. For the WT277 model , the loss of freeboard begins to increase very rapidly

after the minimum residual strength drops to 400 psf. When the minimum residual

strength reaches 100 psf, a crest vertical displacement of 45.5 ft is predicted from the

analysis.
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Based on the original configuration of the dam for the WT277 model, the water level

of the dam is at elevation 277 ft and the dam crest at elevation 312 ft, for an initial free-

board of 35 ft. Again from Fig. 6.5, the dam is predicted to overtop at minimum residual

strength 120 psf of the weak clayey silt. Hence, remediation measures are required if an

adequate freeboard is to be maintained.

The variations of horizontal displacements at the midpoint of the upstream slope

(point A) are shown in Fig. 6.6 for various levels of minimum residual strengths. The

horizontal displacements increase dramatically when the minimum residual strength is

less than 400 psf. When the minimum residual strength drops to 100 psf, the horizontal

displacement of 100 ft is predicted.

Fig. 6.7 illustrates the variations of maximum ratios of the shear stress to the shear

strength in the weak clayey silt. This ratio increases constantly with the reduction of

the minimum residual strength and reaches the steady state value of 1.0 at the minimum

residual strength of 615 psf. This implies that the weak clayey silt fails before the mini-

mum residual strengths 100 psf are reached.

Tables 6.4 summarizes the final results from the liquefaction analysis. The overall

performance of the dam is very poor after liquefaction with its original configuration.

The loss of freeboard is 45.5 ft after liquefaction. The maximum horizontal displacement

of the dam is 100 ft. The dam will fail along the weak clayey silt layer under the upstream

slope. Therefore, remediation measures are required to maintain an adequate freeboard

of the dam. A zone of improved soil must be created in the dam to resist the upstream

movements after liquefaction. Certain requirements of strength and stiffness of this zone
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Table 6.4: Summary Results of Liquefaction Analysis (WT277 model)
Residual Strength (psf) Loss in Freeboard(ft) Horiz. Disp. (ft) Shear Stress / Su

1000 0.015 0.001 0.574
800 0.114 0.005 0.76
615 0.463 0.052 1.00
500 0.911 0.229 1.00
408 1.56 0.717 1.00
300 3.72 3.500 1.00
200 9.15 21.80 1.00
154 26.2 50.90 1.00
120 38.7 81.28 1.00
100 45.5 100.8 1.00

have to be met to keep an adequate freeboard of the dam and to prevent a shear failure

along the weak layer.
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Chapter 7

GENERAL REMEDIATION STUDY OF SARDIS DAM

7.1 General Remediation Schemes

The remediation must fulfil two functions. The remediated zone must have a sufficient

strength to prevent shear failure along the level of the weak clayey silt and also have

sufficient stiffness to prevent deformations that may lead to a significant loss of free-

board. If the remediated zone is not stiff enough, bending deformations, with or without

cracking, may allow significant crest settlements. Therefore the aim of the remedia-

tion study is to establish the average strength and stiffness combination of the proposed

remediation zone that will limit the loss of freeboard as economically as possible. The

analysis presented here is based on tolerable deformations rather than the factor of safety.

One of the key issues concerning the remediation is to select the best location to

perform the remediation. Fig. 7.1 shows the location of the zone to be remediated in the

cross section of the dam. Rip-rap protection exists on the upper part of the upstream

slope of the dam. To avoid both the rip-rap and the deep water in the constuction, the

zone to be remediated is selected to be adjacent to the slope break on the upstream slope,

which was controlled by the conservation level of the pool during construction.

As the location of the remediation zone was determined, studies were made to de-

termine general requirements of strength, stiffness and width of the remediated zone to

53



1
1 1

Chapter 7. GENERAL REMEDIATION STUDY OF SARDIS DAM^54

Figure 7.1: Finite Element Mesh Showing Location of Remedial Pile Plug
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provide enough resistance to flow deformations. For this purpose, the remediated zone is

idealized to be a zone of uniform material which has constant shear modulus and shear

strength. This idealized zone is called the remediated plug or plug. Fig. 7.2 shows the

distribution of the elements in the remediated zone and the size of the plug. The plug

penetrates 15 ft down into the foundation sand from the bottom of the weak clayey silt

layer. Note that the same finite element mesh used in the construction and the origi-

nal liquefaction analyses was used in the post-liquefaction analysis of the remediated dam.

The residual strengths for the liquefied soils have the same values as those used in the

previous liquefaction analysis. During shaking by the design earthquake , the saturated

portion of the core and the weak foundation clayey silt outside the remediated plug are

still expected to liquefy. The residual strength in the silt core is taken as 100 psf. The

residual strengths in the liquefied weak clayey silt are assumed to be 0.075o , where

o 0 is the initial effective vertical stress. A minimum value of 100 psf of the residual

strengths of this weak layer was adopted. The original strengths of this weak clayey silt

layer are estimated to be 2000 psf, with a shear modulus constant 1400 and therefore a

maximum shear modulus of 2800 tsf.

The amount of pore water pressure generated in the non-liquefiable sand shell during

earthquake shaking , the plug width (80ft or 120 ft) and the plug strength and stiffness

will have a significant effect on the performance of the dam during the earthquake shak-

ing. The comparison study of these key factors is summarized below and shown in Table

7.1.

• Effect of pore water pressure in the non-liquefiable (NL) sand shell - PWP effect.
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Table 7.1: Different Plug Remediation Schemes
PWP plug width plug strength(psf) plug modulus (psf)

No PWP 120 ft 3000 900,000
PWP 50% PWP 120 ft 3000 900,000

50% PWP 80 ft 3000 900,000
plug 50% PWP 120 ft 3000 900,000

width 50% PWP 80 ft 2000 600,000
50% PWP 120 ft 2000 600,000
50% PWP 120 ft 1000 300,000

plug 50% PWP 120 ft 2000 600,000
strength 50% PWP 120 ft 3000 900,000

50% PWP 120 ft 4000 1200,000
50% PWP 120 ft 8000 2400,000

Plug width 120 ft, plug strength 3000 psf, comparing a) No PWP with b) 50%

PWP.

• Plug width effect — for plug with strengths of 3000 psf and 2000 psf, 50% PWP in

the NL sand shell , comparing a) plug width 80 ft with b) plug width 120 ft. -

• Plug strength effect — plug width 120 ft, 50% PWP in the NL sand shell, comparing

the plug strengths of a) 1000 psf; b) 2000 psf; c) 3000 psf; d) 4000 psf; e) 8000 psf.

In the liquefaction analysis with the remedial plug, the placement of the plug was mod-

elled during the construction sequence which is conservative. The remedial plugs have

the same shear modulus constant of 300 . Since the shear modulus is the product of the

shear modulus constant and the shear strength, the shear moduli of the plugs increase

as the strengths of the plugs increase.
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7.2 Effect of the Pore Water Pressure of the Non-Liquefiable Sand Shell

During shaking, dynamic pore water pressure wills be generated in the non-liquefiable

sand shell ( material #6). Recall Fig. 6.3 that shows the distribution of the soil material

zones. From previous seismic investigations, this sand shell was not identified as a liquefi-

able material, but it is expected to build up some amount of dynamic pore water pressure

during the earthquake. As the seismic pore water pressure increases by a ratio of r i, to

the initial effective vertical stress crvi o , i.e. r i, u/crt,'„, the shear resistance or the shear

strength is reduced to (1 — ru )cr,,' otan0 1 because of the reduction of the effective vertical

stress. An alternative way of reducing the shear strength would be keeping the effective

vertical stress unchanged and adjusting the friction angle of the soil. This assumption is

equivalent to using the initial effective vertical stress and a modified equivalent friction

angle, O'eq , where tan(Yeq = (1 —ru )tan0'. To investigate the influence of the PWP amount

in these areas on the performance of the darn during the shaking, the following cases are

examined:

• 50% PWP model: Assume a 50% pore water pressure ratio is generated during the

shaking, corresponding to an reduction of the friction angle from 35° to 19.2° in

the non-liquefiable (NL) sand shell;

• No PWP model: Assume no pore water pressure generated in the non-liquefiable

sand shell during the shaking. The friction angle of the non-liquefiable sand shell

keeps unchanged and has a value of 35°.
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7.2.1^Loss of freeboard

The loss of freeboard is a useful index of the overall performance of the dam after soil

liquefaction. The amount of vertical movement in the center point of the dam crest cor-

responding to Node 312 in the finite element mesh is designated as the loss of freeboard.

Comparison of the loss of freeboard with the minimum residual strength in the weak

clayey silt is plotted in Fig. 7.3. When the residual strengths drop to their appropriate

minimum values, the loss of freeboard for the 50% PWP model is 4.50 ft and for the No

PWP model is 2.36 ft. The loss of freeboard when 50% PWP is developed in the sand

shell is approximately double the loss of freeboard when there is no porewater pressure

development. Both models show losses of freeboard with the mobilization of the residual

strengths.

7.2.2 Horizontal pressures against the plug

The plug is expected to prevent the upstream slope from sliding due to soil liquefaction.

The horizontal pressures or stresses against the downstream face of the plug are much

greater than those against the upstream face of the plug. For the design purpose, the

difference between the horizontal stresses or pressures of the downstream face and the

upstream face would be used to estimate the necessary depth of penetration of the plug

into the foundation sand. The penetration of the plug should be deep enough to provide

a sufficient resistance to the plug rotation or translation. The greater the pressure differ-

ence, the deeper the plug needs to penetrate into the foundation sands. Fig. 7.4 shows

the horizontal stresses on the downstream side (side A) of the plug after liquefaction.
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Figure 7.3 Variation of Loss of Freeboard with Residual Strength (PWP effect)
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7.2.3 Ratio of shear stress to strength of the plug

One aim of the remediation study is to determine an appropriate combination of the

strength and stiffness which would provide sufficient strength at the level of the weak

clayey silt layer to prevent a shear failure along the plug. The ratio of the shear stress

occurring in the plug to the shear strength of the plug is an index of the possibility of a

shear failure of the plug. A value of unity or close to unity of this ratio indicates that the

shear stress induced inside the plug reaches the shear strength of the plug, and a shear

failure may occur. Fig. 7.6 shows the ratio of the shear stress to the shear strength in

the plug versus elevations as the minimum residual strength in the weak clayey silt drops

to 100 psf. It can be observed that the maximum value of 0.74 occurring at the elevation

of the weak clayey silt layer. This observation provides useful information for the design

of the plug section. The plug should have a strong section with a relatively high shear

strength and stiffness at the location around the weak clayey silt layer.

Since the maximum shear stress occurs at the downstream side of the weak clayey

silt layer, the ratio of the shear stress at this location ( element 265 in FE mesh ) to the

strength of the plug is designated as the maximum ratio of the shear stress to the shear

strength in the plug. Fig. 7.7 shows the development of the maximum ratio of the shear

stress to the shear strength in the plug for the variations of residual strengths. This ratio

increases dramatically when the minimum residual strength drops from 800 psf to 100 psf.

7.2.4 Horizontal displacement of the plug

The horizontal movement of the plug depends on both the shear strength and the stiff-

ness of the plug. A large displacement at the level of the weak clayey silt layer implies
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a shear failure of the plug. The displacement has to be limited for the design purpose.

Fig. 7.8 shows the horizontal displacements on the downstream side of the plug (side

A). The maximum displacement occurs around the weak clayey silt layer with maximum

values of 0.32 ft for the No PWP model and 0.24 ft for the 50% PWP model. Pore water

pressures in the non-liquefied sand shell significantly reduce the ability of the of the sand

shell to transfer loads to the plug; so the maximum displacement of the 50% PWP model

is less. Sharp curvature of the plug developed from the bottom to the top of the weak

zone indicates that a great internal moment is accumulated inside the plug. Gradual

increase of the horizontal displacement at the downstream edge of the plug was observed

as the shear strengths in the weak clayey silt decrease; see Fig. 7.9.

7.3 Effect of Plug Width

In this section, the effect of the plug width on the performance of the dam is studied by

calculating the displacements for plug widths of 80 ft and 120 ft using plug strengths of

3000 psf and 2000 psf.

7.3.1 Loss of freeboard

The loss of freeboard for different plug widths is plotted in Fig. 7.10. Essentially, the

two models have no difference in the loss of freeboard. The loss of freeboard is 4.50 ft as

the minimum residual strength drops to 100 psf.



260

240

50% PWP in NL sand shell

No PWP in NL sand shell

220

C
0
To>

W 200
weak clayey silt ....^------------------------------------

remediated zone

180

•
weak ieyey silt

width

plug strength 3000 psf

plug width 120 ft

0.05^0.1^0.15^0.2^0.25
Downstream Horizontal Displacement(ft) -- SIDE A

160 
0 0.3 0.35

50% PWP in NL sand shell

No PWP in NL sand shell

A
remediated zone

weak clayey silt
width

plug strength 3000 psf

plug width 120 ft

Chapter 7. GENERAL REMEDIATION STUDY OF SARDIS DAM^64

Figure 7.8 Distribution of Downstream Horizontal Movement of Remediated
Section (PWP effect)
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Figure 7.10 Variation of Loss of Freeboard with Residual Strength
(Plug width effect)
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7.3.2 Horizontal pressures against the plug

Fig. 7.11 and Fig. 7.12 shows the horizontal stresses on the remediation zone for between

the two different plug widths. The horizontal stresses against the downstream side (side

A) greatly increase after soil liquefaction, by a maximum increment of 9240 psf. The

horizontal stresses reach the maximum value around the weak clayey silt. It should be

noted that 80% or more of the total driving forces are carried by the plug section within

and close to the weak clayey silt zone. The very low strength and stiffness in the weak

zone causes a stress concentration in this area. For the plugs with same strengths, the

horizontal stresses against the downstream face are essentially the same regardless of the

plug width because the total loadings coming from the downstream of the dam is the

same as long as the plug is wide enough to prevent failure or large deformation.

7.3.3 Ratio of shear stress to strength of the plug

The plug width has little influence on the shear stresses in the plugs with same strengths.

Fig. 7.13 illustrates the ratio of the shear stress to the shear strength at the downstream

face of the plug after liquefaction. Because of the stress concentration in the weak clayey

silt zone, the shear stresses in this area increase very much. The ratios of the shear stress

to the shear strength increase rapidly with the decrease of elevation and reach their max-

imum value of 0.68 at the weak clayey silt layer.

The maximum ratio of the shear stress to the shear strength in the plug increases

as the residual strengths decrease from 800 psf to 300 psf, as shown in Fig. 7.14. As

the minimum residual strength in the weak clayey silt layer is greater than 800 psf, the

driving force is carried mainly by the soil. When the minimum residual strength of the



Plug Width 120 ft,3000psf Plug Width 80 ft ,3000psf after construction
O 0

Plug Width 120 ft,2000psf Plug Width 80 ft,2000psf

^

Chapter 7. GENERAL REMEDIATION STUDY OF SARDIS DAM^ 67

240 —^0^ A
remedisted zone

0

220 —

weak clayey silt
200

180
50% PWP In NL sand shell

0^2,000^4,000^6,000^8,000^10,000^12,000^14,000
Downstream Horizontal Stress (psf) -- SIDE A

Figure 7.11 Pressure Distribution on Downstream Face of Remediated Section
(Plug width effect)

width
weak lam silt

160

d t

weak clayey silt

F

r, 200

o^ t +

50% PWP In NL sand shell

Plug Width 120 ft,3000psf Plug Width 80 ft ,3000psf after construction
^ -o^

Plug Width 120 ft, 2000psf Plug Width 80 ft, 2000psf

160^I^ I^ I^1 

0^1,000^2,000^3,000^4,000^5,000
Upstream Horizontal Stress (psf) — SIDE B

Figure 7.12 Pressure Distribution on Upstream Face of Remediated Section
(Plug Width effect)

180

220

240

/// weak clayey sill
width

remeoleted zone
owe

•



leysy silt

fomented zone

width

50% PWP In NL sand shell

Plug Width 120 ft,3000psf Plug Width 80 ft ,3000pst
—a--

Plug Width 80 ft, 2000psf Plug Width 120 ft,2000psf

Plug Width 120 ft,3000psf
--- -8----

Plug Width 80 ft,3000psf
a

Plug Width 120 ft,2000psf
0

Plug Width 80 ft, 2000pst

B plug
 j■ remediated zone

/// weak !clayey silt
width

•

50% PWP In NL sand shell

Chapter 7. GENERAL REMEDIATION STUDY OF SARDIS DAM
250

68

240

230

220

2 210to>
81

200

190

180

170
0
^

0.2^0.4^0.6^0.8
^

1
Ratio of Shear Stress to Strength --- SIDE A

Figure 7.13 Distribution of Ratio of Shear Stress to Strength at Downstream
Face of Remediated Section (Plug width effect)

1

vl

S 0.8
.c

a)i-
C7)

0 0.6
(13
V3

P.
N

.c 0.4
U)
O
O

To'
Er 0.2

2

0
1,200^1,000^800^600^400

^
200
^

0
Minimum Residual Strength (psf)

Figure 7.14 Maximum Ratio of Shear Stress to Strength in Remediated
Section versus Residual Strength (Plug width effect)



Chapter 7. GENERAL REMEDIATION STUDY OF SARDIS DAM^69

weak clayey silt is less than 300 psf, almost all of the driving forces are carried by the

remedial plug section, and the curve goes flat.

7.3.4 Horizontal displacement of the plug

The maximum horizontal displacement occurs around the weak clayey silt layer. Fig.

7.15 illustrates the response of horizontal displacements on the downstream side of the

plug (side A). It is interesting to note that the horizontal movement of the plug along

the weak clayey silt is larger than the horizontal movements on the upper half of the plug.

Although a plug section with a large width could reduce the horizontal movement

by some extent, the shear strength of the plug has a stronger control on the horizontal

movement. A plug with a shear strength of 3000 psf and a width of 80 ft would provide

a much stronger resistance to the horizontal forces than a plug with a shear strength of

2000 psf and a width of 120 ft does. For plugs with the shear strength of 3000 psf, the

maximum horizontal displacements are 0.26ft and 0.24 ft for the plug width of 80 ft and

120 ft, respectively. For plugs with the shear strength of 2000 psf, the maximum horizon-

tal displacements are 0.52 ft and 0.48 ft for the plug width of 80 ft and 120 ft, respectively.

Fig.7.16 shows the development of the horizontal movement at the downstream edge

of the plug with the variation of the minimum residual strength. The horizontal displace-

ment increases at a constant rate after the minimum residual strength is less than 600 psf.
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7.4 Effect of Plug Strength

A parametric study is made to examine the effect of the strength of the plug on the

performance of Sardis Dam after the remediation. The plug width of 120 ft and the 50%

PWP in NL sand shell are kept unchanged during this comparison study. The strengths

of the plug are 1000 psf, 2000 psf, 3000 psf, 4000 psf and 8000 psf.

7.4.1 Loss of freeboard

The variation of the loss of freeboard with the minimum residual strength in the weak

clayey silt is illustrated in Fig. 7.17 for the five plug strengths chosen. The strength

models of 2000 psf , 3000 psf , 4000 psf and 8000 psf have a very close response in the

loss of freeboard. However, the stronger shear strength in the plug the smaller its drop

of the dam crest. The difference in the loss of freeboard is not significant because the

plugs of 120 ft width with strength greater than 2000 psf provide sufficient resistance

against driving forces from the downstream of the dam. The loss of freeboard is around

4.5 ft for these cases as the minimum residual strength drops to 100 psf. But when the

strength of the plug drops to 1000 psf, the loss of freeboard of the dam is 5.7 ft. The

average strength of 1000 psf in the remediation plug was not considered acceptable.

7.4.2 Horizontal pressures against the plug

Fig. 7.18 and Fig. 7.19 show the horizontal stress responses against the downstream

side ( side A) and the upstream side (side B). The horizontal stresses increase after soil

liquefaction compared to those before soil liquefaction at the elevations above the weak

clayey silt layer and decrease at the elevations below the weak clayey silt layer. The
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horizontal stresses show a triangular distribution along the downstream face of the plug

after liquefaction. The maximum horizontal stresses against the downstream faces of the

plugs occur just above the weak clayey silt layer. These maximum horizontal stresses are

9160, 10866, 11710, 12100, 12405 psf for the plugs with the shear strengths of 1000 psf,

2000 psf, 3000 psf, 4000 psf and 8000 psf, respectively.

The plug with a higher shear strength needs to penetrate deeper to provide sufficient

moment resistance. The pressures against the downstream face of the stronger plugs are

higher than those on the weaker plugs. The higher the plug strength is, the more the hori-

zontal stresses against the downstream face of the plug increase after liquefaction. On the

other hand, the pressures against the upstream face of the strong plug are less than those

of the weak plugs. Therefore, the overturning moments about the point at which the

plug intersects with the foundation sands are high for the plug with a high shear strength.

7.4.3 Ratio of shear stress to strength of the plug

A comparison of the ratios of the shear stress to the shear strength in the plugs for the

five different plug strengths is given in Fig. 7.20. The maximum ratios of the shear stress

to the shear strength in the plug decrease as the strengths of the plugs increase. Fig. 7.21

shows the relationship between these maximum ratios and the reduction of the minimum

residual shear strength of the weak clayey silt. These maximum ratios have the values

of 0.1 to 0.4 before liquefaction occurs, and they increase after liquefaction. When the

minimum residual strength is less than 300 psf , the curve goes flat and most of the shear

force is carried by the plug. The final maximum ratios of the shear stress to the shear

strength are 0.99 (failure) , 0.85, 0.68 ,0.55 and 0.29 for the plugs with strengths of 1000

psf, 2000 psf, 3000 psf ,4000 psf and 8000 psf, respectively.
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7.4.4 Horizontal displacement of the plug

Fig. 7.22 illustrates the distribution of the horizontal displacements in the plug with

elevation. Above the weak clayey silt which is located at the elevations between 200 ft

and 205 ft, the horizontal movements are essentially constant for the plugs with high

strength such as 4000 psf or 8000 psf. The plug with strength of 2000 psf deflects much

more than those plugs with the strengths of 3000 psf, 4000 psf and 8000 psf.

The increasing rate of horizontal movement becomes high when the plug strength is

less than 2000 psf; see Fig. 7.23. The maximum horizontal movements are 3.29ft, 0.48ft,

0.24ft, 0.16ft and 0.07 ft for the plugs with strengths of 1000 psf, 2000 psf, 3000 psf, 4000

psf and 8000 psf, respectively.

The large horizontal displaceMent and the rapid increase of the horizontal displac-

ment were observed for the plug with strength of 1000 psf.

7.5 Summary on General Remediation Studies

The results on the general remediation study are summarized in Table 7.2. Plug strength

1000 psf is too weak to provide enough resistance after liquefaction. This plug strength

results in a large horizontal displacement and a low factor of safety against a shear failure

of the plug. Plug strength 3000 psf may restrain the maximum horizontal displacement

of 0.24 ft and the maximum ratio of shear stress to strength of 0.68. Plug strength 3000

psf would be an appropriate strength of the remedial plug. On the other hand, plug
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Figure 7.22 Distribution of Downstream Horizontal Movement of Remediated
Section (Plug strength effect)

Figure 7.23 Horizontal Displacement at Downstream Edge with Residual Strength
(plug strength effec)
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Table 7.2: Summary Results of Plug Remediation Studies
plug

strength(psf)
loss of

Freeboard(ft)
Maximum Lr-8.
ratio in plug

1 Maximum Hori.
Displacement(ft)

width 120ft 1000 5.67 0.99 3.29
2000 4.56 0.85 0.48

50% PWP 3000 4.50 0.68 0.24
4000 4.49 0.55 0.16
8000 4.40 0.29 0.07

width 80ft 2000 4.56 0.86 0.52
50% PWP 3000 4.54 0.69 0.26
width 120ft

No PWP 3000 2.36 0.74 0.32

strength higher than 3000 psf is not necessary for the remediation of this dam.

From the variation of the loss of freeboard with plug strength, Fig. 7.24, plug strength

2000 psf is appropriate to control the loss of freeboard of the dam. Plug strength 2000

psf may cause the maximum ratio of the shear stress to strength of the plug as high as

0.85; see Fig. 7.25. Hence it is reasonable to select plug strength 3000 psf to limit this

ratio to a range of 0.70 which may be adequate for an engineering design. Fig. 7.26

shows the maximum horizontal displacement in the plug versus plug strength. When

the plug strength is less than 2000 psf, the maximum horizontal displacement in the

plug increases dramatically with the decrease of the plug strength. Again plug strength

of 3000 psf would be adequate to meet design requirements on the displacement of the

plug. Plug width 120 ft is reliable to meet all design purposes.

Therefore plug strength of 3000 psf (with modulus 900,000 psf) and plug width of

120 ft are selected to be the general requirements of the remediated zone of Sardis Dam

to provide a satisfactory control on both the loss of freeboard and the shear failure along
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Figure 7.25: Maximum Ratio of Shear Stress to Strength in Plug versus Plug Strength
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Figure 7.26: Maximum Horizontal Displacement in Plug Versus Plug Strength
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the weak layer.

The plug with strength of 3000 psf and width of 120 ft was adopted to remediate

Sardis Dam. The overall improvement on the performance of the dam after liquefaction

is evident; see Fig. 7.27. After remediation, the loss of freeboard is 4.50 ft, and the max-

imum horizontal displacement of the dam is 0.24 ft. Although the overall configuration

of the dam does not change very much, significant distortions in the liquefied silt core

are observed.
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Chapter 8

REMEDIATION STUDY OF PILE-REINFORCED SECTION

8.1 Equivalent Composite Material Properties of the Pile Reinforced Section

In practice, the remediation requirements of Sardis Dam can be met by driving piles

through the section to be remediated. The proposed layout of the remediation piles is

shown in Fig. 8.1 and Fig. 8.2. The width of the pile-reinforced zone is 120 feet. 24-inch

square prestressed concrete piles are arranged in the remediation zone with a center-to-

center spacing of 12 feet in two cross horizontal directions. The remediation piles need

to penetrate 15 feet into the foundation sand from the bottom of the weak clayey silt layer.

Since the reinforced pile group distributes loads in both horizontal and vertical di-

rections, the problem involves a three dimensional pile-soil interaction system. 3-D flow

analysis is not available yet, so 2-D plane strain analysis was employed to simulate the

pile-soil system. Again finite element code TARA was used, which contains 2-D plane

strain bilinear isoparametric elements. For this purpose equivalent composite material

properties are required for the pile-reinforced section.

Woodward-Clyde consultants (1991) conducted a 3-D analysis on a single pile, which

provided the composite stress strain curves for the pile-reinforced zone. In their study,

the 3-D nonlinearity finite element code, NONSAP, developed by Bath et al. (1974) was

84



1 0

2'

10
.

SOIL

200^400 f t

Geo Scale

0

1111^1111

I I
Figure 8.2: Plane View of Layout of Remediation Piles

I

2

Figure 8.1: Cross Section of Sardis Dam Showing Remediation Piles

, 2' ,^10'^2 :^10'^2',

Chapter 8. REMEDIATION STUDY OF PILE-REINFORCED SECTION^85



Chapter 8. REMEDIATION STUDY OF PILE-REINFORCED SECTION^86

used. Since the program does not have a beam element, the 3-D 8-node isoparametric el-

ement was chosen to model the pile and its surrounding soils. The single pile-soil system

consists of a 24-inch-square prestressed concrete pile embedded about 15 feet into the

dense foundation sand with a pile center-to-center spacing of 12 feet; see Fig. 8.3. This

single pile-soil system was loaded laterally. The lateral loads were assumed to distribute

triangularly along elevation; see Fig. 8.4. In their study the baseline load was defined to

be the shear force that can cause shear stresses of 230 psf in the weak clayey silt layer,

i.e, 33 kips for the single pile case ( 12 by 12 feet area ). Load levels were increased by

multiplying the baseline load by different integer numbers. The compression strength of

prestressed concrete was assumed to be 6000 psi in their analysis. After performing 3-D

analysis on the single pile-soil system with various load levels, they developed the shear

stress-strain relationships shown by the solid lines in Fig. 8.5 through Fig. 8.13 for use

in the finite element analysis of the global deformation of the dam.

The composite shear stress-strain curves obtained by Woodward-Clyde consultants

(1991) are used to represent the composite shear stress-strain characteristics of the pile-

reinforced zone of remediated soil. Since the hyperbolic stress-strain relationship is used

in TARA, those composite shear stress-strain curves were approximated by hyperbolic

curves. These hyperbolic curves are shown by the dashed lines in Fig. 8.5 through Fig.

8.13.

The shear strength and shear modulus (initial modulus) obtained from the hyperbolic

model are designated as the composite shear strength and the composite shear modulus.

Those composite strengths and moduli for different elevations of the reinforced zone are

shown in Table 8.1. Fig. 8.14 presents the variation of the composite shear strengths in

the pile-reinforced section versus elevations. The composite shear strengths vary from
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Figure 8.3: Finite Element Model of Single Pile-Soil System
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Figure 8.7: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
191 to 200 ft
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Figure 8.8: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
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Figure 8.9: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
205 to 215 ft
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Figure 8.10: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
215 to 220 ft
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Figure 8.11: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
220 to 230 ft
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Figure 8.12: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
230 to 240 ft
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Figure 8.13: Shear Stress - Strain Relationship for the Pile-Reinforced Section, Elevation
240 to 250 ft
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Figure 8.14: Variation of Shear Strength in Pile - Reinforced Section Versus Elevation
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Table 8.1: Composite Strengths and Moduli of the Pile-Reinforced Section
Elevation (ft) Composite Strength (psf) Composite Modulus (psf)

240-250 230 80,000
230-240 700 168,000
220-230 1600 176,000
215-220 2000 240,000
205-215 3300 396,000
200-205 3600 180,000
191-200 3100 1240,000
185-191 3600 540,000
173-185 4100 443,000

230 psf at elevation 245 ft to 4100 psf at elevation 180ft, with an average value of 2900psf.

8.2 Comparison of Results Between the Pile-Reinforced Section And the

Plug

As the composite shear strengths and moduli of the pile-reinforced section have been

determined, the post-liquefaction behaviour of Sardis Dam was reassessed with the pile-

reinforced remediation in place in the upstream slope as shown in Fig. 8.1. In the

analysis, 50% of pore water pressure is assumed to be generated in the non-liqufiable

sand shell.

8.2.1 Loss of freeboard

The results of the pile-reinforced section were compared with the results of the plug

model which has a constant shear strength of 3000 psf and a width of 120ft. When min-

imum residual strength in the weak clayey silt layer drops to its minimum value of 100
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psf, the loss of freeboard is 4.50 ft for the plug, and it is 4.74 ft for the pile-reinforced

section. Since the composite shear strengths of the upper part of the pile-reinforced

section , between the elevations of 215 ft and 240 feet, are less than those of the plug

model. Therefore, the pile-reinforced section has a little less resistance than plug model

to displacement in the upper section of the zone.

8.2.2 Horizontal pressures against the remediated zone

Fig. 8.15 presents the post-liquefaction pressure distribution against the downstream

face of the remediated section (side A). The maximum horizontal pressure against the

pile-reinforced section is about 10000 psf, compared with a horizontal pressure of 12000

psf against the uniform plug. But apart from the peak value near the weak layer, the

pressure distributions are very similar.

8.2.3 Ratio of shear stress to strength of the remediated zone

The ratio of the shear stress to the composite shear strength of the pile-reinforced section

is used to examine the shear resistance of the pile-reinforced section. Fig. 8.16 shows the

ratios of the shear stress to the shear strength in the remediated section versus elevations

when the minimum residual strength in the weak clayey silt is 100 psf. For the pile-

reinforced section, these ratios are high at elevations between 215 ft and 240 ft because

of the relatively low shear strengths there, and they are low at elevations below 215 ft

because of relatively high shear strengths. The maximum ratio of the shear stress to the

shear strength of the remediated zone occurs at the level of the weak clayey silt layer

with a value of 0.49. This relatively low ratio indicates a relatively high factor of safety
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Figure 8.15: Pressure Distribution on Downstream Face of Pile - Reinforced Section
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against a shear failure of the remediated zone.

8.2.4 Horizontal movement of the remediated zone

Fig. 8.17 illustrates the downstream horizontal movements of the remediated zone after

liquefaction. The pile-reinforced section shows a larger displacement at the top of the

remediated section because of the lower composite shear strengths and moduli in the up-

per regions. The maximum horizontal movement of the pile-reinforced section is about

0.49 ft, compared with the plug model of 0.24 ft. These values are within tolerable limits

It is clear that 24-inch square prestressed concrete piles at 12 ft centres arranged in

the remediated zone can provide sufficient strength and stiffness to control the deforma-

tions of Sardis Dam within tolerable limits provided they can be designed structurely to

carry individually the required moments and shears. This is the next stage in the design

process and will be carried out by structural engineers.
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Chapter 9

SUMMARY AND CONCLUSIONS

Sardis Dam is expected to suffer a great loss of shear strengths in the liquefied soils during

the design earthquake shaking. Studies have been made to examine the post-liquefaction

performance of the dam. First, post-liquefaction deformation analyses were conducted

on the initial configuration of the dam without remediation. Results of this analysis

show that a significant loss of freeboard and large horizontal displacements of the dam

will occur after liquefaction. Furthermore, necessary remedial measures were proposed,

and studies have been made to determine the general requirements of both the extent of

the remediation and the average properties of the proposed remediated section. Finally,

the studies show that remediation requirements can be met by driving 24-inch square

piles into the remediated section. The research performed for Sardis Dam leads to the

conclusions below:

1. For Sardis Dam without remediation, the overall performance of the dam is very

poor after liquefaction. The loss of freeboard of the dam is 45.5 ft after soil liq-

uefaction. The dam will fail along the weak clayey silt layer under the upstream

slope.

105
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2. The dam is to be stabilized by a 120ft wide remediated zone that crosses the weak

foundation layer and provides an adequate resistance to sliding or bending.

3. Parametric studies show that an average shear strength of 3000 psf and a shear

modulus of 900,000 psf are needed to supply the necessary resistance to shearing

and bending.

4. The remediation zone is to be located with its downstream face at the slope break

in the upstream slope near the conservation level of the pool.

5. Porewater pressures up to 50% of effective overburden pressures can be developed

in the sand shell without deformations exceeding tolerable levels.

6. The preferred method of meeting the strength and stiffness requirements of the

remediated section is to drive prestressed concrete piles across the weak clayey silt

layer. Preliminary studies show that 24-inch square prestressed concrete piles at

12 ft spacing would be adequate.

The above studies have indicated that the remediation requirements for the strength

and stiffness can be met by driving piles into the dam. Research piles have been driven

in a section in order to test the feasibility of driving piles into the foundation sands.

The studies have indicated that it is feasible to drive the 24-inch piles. In-situ tests

were performed to evaluate densification of the sand shell by the pile driving. Increasing

densification increases the ability of load transfer between the piles. These data are now

being analyzed. Studies have begun to determine the shear and moment both statically

and dynamically for which the individual piles must be designed structurely. The reliable
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determination of the shear and moment is a. difficult problem in analysis, and various

methods for analyzing the dynamic response of the piles are being evaluated to determine

which method of analysis may be best.
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