THE USE OF OXIDATION-REDUCTION POTENTIAL (ORP) AS A

PROCESS CONTROL PARAMETER IN WASTEWATER

TREATMENT SYSTEMS

by

DAVID GERAINT WAREHAM

B.A.Sc.(Civil Engineering), The University of Waterloo, 1984 M.A.Sc.(Civil Engineering), The University of Waterloo, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Department of Civil Engineering)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

January 1992

© David Geraint Wareham, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

(Signature)

Department of Civil Engineering

The University of British Columbia Vancouver, Canada

Date January 27 1992

ABSTRACT

This research explored the use of Oxidation-Reduction Potential to control two lab-scale sequencing batch reactor (SBR) wastewater treatment processes. The treatment schemes investigated were the aerobic-anoxic digestion of activated sludge (AASD) and the excess biological phosphorus (Bio-P) removal process. Evaluation of each process consisted of a consideration of the reactor performances coupled with the control stability achieved using two different operating strategies.

The first strategy was known as "Fixed-Time Control" (FT), since it represents the "classical" management approach; control is based on conditions externally "fixed" by an operator. For the AASD set of experiments, the "fixed" variable was the ratio of air-on to air-off (3 hours each). For the Bio-P experiments, it was the time of addition of acetate to the reactor (1 hour 25 minutes into the non-aerated sequence).

The second strategy was known as "Real-Time Control" (RT), since it represents an optimization technique whereby control conditions are continuously evaluated as time progresses. The Real-Time aspect of control is derived from the fact that ORP measurements evaluate the reactor conditions on-line, by invoking a bacterial vision of the process scheme.

For the AASD experiments, this evaluation took the form of proportioning the ratio of air-on to air-off, based upon the bacterial "need" for sufficient time to reduce the nitrates completely to nitrogen gas (denitrification). Sufficient time is determined by the distinctive breakpoint (correlated to nitrate disappearance) occurring in the ORP-time profile.

The first experiment (AASD[#]1), therefore, had an air-on/airoff ratio of 3 hours air-on/nitrate-breakpoint-determined airoff. The second experiment (AASD[#]2) had the length of aeration time determined by a match to the previous length of time for denitrification, as determined by the breakpoint. In the Bio-P experiments, the ORP breakpoint was used to "trigger" the addition of acetate to the reactor, thus ensuring the maximum amount of carbon was available for storage by Bio-P organisms.

Comparisons between the two reactors revealed that for the AASD strategies, the Real-Time reactor had essentially the same solids degradation as the Fixed-Time reactor (14% - 21%), depending upon the strategy considered, the type of solids (TSS or VSS) and the method of mass balancing used. The RT reactor was observed to obtain marginally better nitrogen removal (up to 6 % in some cases) over the FT reactor.

Evaluation of the ORP parameter as a "response indicator", by subjecting the AASD reactors to unsteady process input conditions, revealed that the Real-Time reactor more readily accommodated disturbances to the system.

Neither reactor in the Bio-P experiment was particularly successful in consistently removing phosphorus. A potentially useful screening protocol was developed for evaluating reactor performances, based upon the time-of-occurrence of the nitrate breakpoint, assessed against whether it hindered or aided the purpose of acetate addition to a Bio-P SBR.

TABLE OF CONTENTS

Pac	ge
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES vi	ii
ACKNOWLEDGEMENTS	ii
GLOSSARY OF TERMS xi	ii
1 INTRODUCTION	1
1.1 Project Need 1.2 Research Approach and Objectives	1 4
2 OPERATING THEORY AND LITERATURE REVIEW	7
2.1 Oxidation-Reduction Potential (ORP)	$\begin{array}{c} 7 \\ 7 \\ 118 \\ 221 \\ 226 \\ 337 \\ 341 \end{array}$
3 EXPERIMENTAL METHODS AND ANALYTICAL TECHNIQUES 4	43
3.1 Source of Feed Sewage and Sludge	13 15 15 50 51
3.4 Operating Control Strategies	52 52 56 57

TABLE OF CONTENTS CONT'D

	3.5 Analytical and Sampling Techniques	? ? ? L L ? ? 1 1 5
4	AEROBIC-ANOXIC SLUDGE DIGESTION EXPERIMENTS	7
	 4.1 Review of Special Features of ORP Curves	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
5	BIOLOGICAL PHOSPHORUS REMOVAL EXPERIMENTS 149)
	5.1 Operating Characteristics and ORP Profiles)) ;
6	CONCLUSIONS AND RECOMMENDATIONS 195	;
	<pre>6.1 Conclusions</pre>	;
RE	EFERENCES	•
AF AF AF AF AF	PPENDIX A - Derivation of Nernst Equation	

LIST OF TABLES

<u>Table</u>	Page
2.1	Selected List of Electrode Half-Reactions and their Standard Electrode Potentials
3.1	Components of Experimental Apparatus
3.2	Subroutines and Functions in Each Experiment56
3.3	Timing of Phases in a Bio-P SBR68
3.4	Sample Preservation, Analysis and Storage Techniques
4.1	Selected List of Chemical Statistics: AASD [#] 1
4.2	Mass Balances for Fixed-Time Reactor: AASD ^{#1} 110
4.3	Mass Balances for Real-Time Reactor: AASD [#] 1 110
4.4	Particulars of Sodium Nitrate Spikes: AASD ^{#1114}
4.5	Particulars of Ammonium Chloride Spikes: AASD [#] 1 114
4.6	Particulars of Hydrogen Peroxide Spikes: AASD [#] 1 114
4.7	Failures Associated with FT Reactor Operation: AASD [#] 1
4.8	Failures Associated with RT Reactor Operation: AASD [#] 1
4.9	Selected List of Chemical Statistics: AASD [#] 2 133
4.10	Mass Balances for Fixed-Time Reactor: AASD [#] 2 139
4.11	Mass Balances for Real-Time Reactor: AASD [#] 2 139
4.12	Particulars of Sodium Nitrate Spike: AASD [#] 2 142
4.13	Particulars of Ammonium Chloride Spike: AASD [#] 2 142
4.14	Particulars of Hydrogen Peroxide Spike: AASD [#] 2 142
4.15	Failures Associated with FT Reactor Operation: AASD [#] 2
4.16	Failures Associated with RT Reactor Operation: AASD [#] 2
5.1	Solids, Nitrogen and Phosphorus Chemical Data: Bio-P [#] 1

LIST OF TABLES CONT'D

,

<u>Table</u>	Page
5.2	Solids, Nitrogen and Phosphorus Chemical Data: Bio-P [#] 2
5.3	Carbon, Oxygen, Alkalinity and pH Data: $Bio-P^{#}1172$
5.4	Carbon, Oxygen, Alkalinity and pH Data: $Bio-P^{#2}$ 172
5.5	Breakpoint Classification Categories: Bio-P [#] 1 193
5.6	Breakpoint Classification Categories: Bio-P [#] 2 193

vii

LIST OF FIGURES

Fiqu	re Page
2.1	Typical Bacterial Electron Transport Chain14
2.2	Diagram of ORP Electrode and Operation
2.3	Diagram of 5 Operating Periods of Bio-P SBRs40
3.1	UCT Bio-P Process 44
3.2	UBC Bio-P Process 44
3.3	Schematic of Experimental System
3.4	Schematic of AASD and Bio-P Sequencing Batch Reactors
3.5	Impedance Diagram of ORP-Amplifier Circuit
3.6	Illustration of Linear Ring-Buffer Concept
3.7	Illustration of BREAKPT Capture of Nitrate Knee 59
4.1	Fixed-Time ORP Profile Under AASD Conditions
4.2	Real-Time ORP Profile Under AASD [#] 1 Conditions
4.3	Effect of Relatively Fresh Feed on Reactor ORP Curves
4.4	Overlay of First-Difference and ORP-Time Profiles 84
4.5	Linear Diagram of Components Identifying Problem Areas
4.6	Reactor Interaction Effects Due to Improper Grounding
4.7	ORP Profile Affected by Intermittent Electrical Noise
4.8	Complete Deterioration of ORP Profile
4.9	Unusual Response Pattern: No Nitrate Breakpoint91
4.10	Unusual Response Pattern: No Diss. Oxygen Breakpoint91
4.11	"Switch Over Day": FT to RT Control - AASD [#] 1
4.12	Temporal Reproducibility of ORP Curves in RT Reactor94

L

viii

LIST OF FIGURES CONT'D

<u>Figur</u>	<u>.e</u>	Page
4.13	Spatial Reproducibility of 3 ORP Electrodes in Same Reactor	.96
4.14	Anoxic-Zone-Length: Cyclical Pattern Due to Daily Feed	. 97
4.15	Anoxic Periods Greater Than the 3 Hour Fixed-Time Limit	. 97
4.16	Daily Variation in Feed and Reactor TSS: AASD [#] 1	101
4.17	Parallel Plot: Feed Sludge AASD [#] 1 TSS/VSS Ratio	101
4.18	Fluctuations in Total Nitrogen Content: AASD ^{#1}	102
4.19	Fluctuations in Total Phosphorus Content: AASD ^{#1}	102
4.20	Fixed-Time Reactor: pH vs. Time for AASD#1	107
4.21	Real-Time Reactor: pH vs. Time for AASD ^{#1}	107
4.22	General Case of Mass-Balance Around Reactor	109
4.23	High Spike of Sodium Nitrate to FT Reactor: AASD [#] 1	115
4.24	High Spike of Sodium Nitrate to RT Reactor: AASD [#] 1	115
4.25	Low Spike of Ammonium Chloride to FT Reactor: AASD [#] 1	116
4.26	Low Spike of Ammonium Chloride to RT Reactor: AASD [#] 1	116
4.27	High Spike of Hydrogen Peroxide to FT Reactor: AASD [#] 1.	117
4.28	High Spike of Hydrogen Peroxide to RT Reactor: AASD [#] 1.	117
4.29	Typical "Incomplete Nitrification Failure"	119
4.30	"False-Knee" Failure in Real-Time ORP Profile	119
4.31	Fixed-Time Reactor Response to Missed Feed: AASD [#] 1	122
4.32	Real-Time Reactor Response to Missed Feed: AASD ^{#1}	122
4.33	"Switch Over Day": FT to RT Control - AASD [#] 2	126
4.34	Real-Time ORP Profile Under AASD [#] 2 Conditions	127
4.35	RT Profile AASD [#] 2 - Missed Feed Day Nov/11/90	128
4.36	RT Profile AASD [#] 2 - Missed Feed Day Nov/12/90	128

LIST OF FIGURES CONT'D

<u>Fiqu</u>	<u>re</u> <u>Page</u>
4.37	"Missed-Knee" Failure in Real-Time ORP Profile 130
4.38	Two "Missed-Knee" Failures During Single Day
4.39	Daily Variation in Feed and Reactor TSS: AASD [#] 2 135
4.40	Daily Variation in Feed and Reactor VSS: AASD [#] 2 135
4.41	Fluctuations in Total Nitrogen Content: AASD [#] 2 136
4.42	Fluctuations in Total Phosphorus Content: AASD [#] 2 136
4.43	Daily Variation in Feed and Reactor pH: AASD [#] 2138
4.44	Daily Variation in Alkalinity: AASD [#] 2
4.45	Spike of Sodium Nitrate to FT Reactor: AASD [#] 2 143
4.46	Spike of Sodium Nitrate to RT Reactor: AASD [#] 2 143
4.47	Spike of Ammonium Chloride to FT Reactor: AASD [#] 2 144
4.48	Spike of Ammonium Chloride to RT Reactor: AASD [#] 2 144
4.49	Spike of Hydrogen Peroxide to FT Reactor: AASD [#] 2 145
4.50	Spike of Hydrogen Peroxide to RT Reactor: AASD [#] 2 145
4.51	Spike of Potassium Cyanide to FT Reactor: AASD [#] 2 148
4.52	Spike of Potassium Cyanide to RT Reactor: AASD [#] 2 148
5.1	"Ideal" ORP Profile Under Bio-P Conditions 151
5.2	Software Failure Due to Rapid Denitrification151
5.3	Fixed-Time Reactor Track Study: Bio-P [#] 1 153
5.4	Real-Time Reactor Track Study: Bio-P [#] 1 153
5.5	VFA-Caused Breakpoints in Fixed-Time Reactor 155
5.6	VFA-Caused Breakpoints in Real-Time Reactor 155
5.7	Fixed-Time Reactor Track Study: Bio-P [#] 2 156
5.8	Real-Time Reactor Track Study: Bio-P [#] 2 158
5.9	Decline in Carbon Content: Stored in Cold Room 159

LIST OF FIGURES CONT'D

<u>Figure</u> <u>Page</u>
5.10 Decline in Carbon Content: Stored in Feed Bucket 159
5.11 Delay in Time of Nitrate Breakpoint Occurrence 161
5.12 Two Day Track of Delayed Nitrate Breakpoint
5.13 Variation in Feed and Effluent TSS: Bio-P [#] 1 164
5.14 Variation in Feed and Effluent TSS: Bio-P [#] 2 164
5.15 Variation in Reactor TSS: $Bio-P^{#}1166$
5.16 Variation in Reactor TSS: $Bio-P^{#}2$ 166
5.17 Reactor Plot of Percent N and P: Bio-P [#] 1 168
5.18 Reactor Plot of Percent N and P: Bio-P [#] 2 168
5.19 Track of Ortho-P Concentrations: Bio-P [#] 1 169
5.20 Track of Ortho-P Concentrations: Bio-P [#] 2 169
5.21 Variation in Feed and Reactor COD: Bio-P [#] 1 173
5.22 Variation in Feed and Reactor COD: Bio-P [#] 2 173
5.23 Carbon (TC, IC, TOC) Plots for Feed: Bio-P [#] 1 174
5.24 Carbon (TC, IC, TOC) Plots for Feed: Bio-P [#] 2 174
5.25 Carbon (TC, IC, TOC) Plots for FT RCTR: Bio-P [#] 1 176
5.26 Carbon (TC, IC, TOC) Plots for FT RCTR: Bio-P [#] 2 176
5.27 Variation in pH Feed, FT and RT RCTRS: Bio-P [#] 1 178
5.28 Variation in pH Feed, FT and RT RCTRS: Bio-P [#] 2 178
5.29 Breakpoints Classified According to Acetate Use 188
5.30 Nine Day Track of Denitrification Time
5.31 Disruption of Reactor Due to Solenoid Failure 190
5.32 Disruption of Reactor Due to Mixer Failure

xi

ACKNOWLEDGEMENTS

The interdisciplinary nature of this research is reflected in the variety of backgrounds, associated with the many individuals to whom I have become indebted, during the course of my stay at UBC.

Firstly, I would like to thank my supervisors, Drs. K. J. Hall and D. S. Mavinic for their patience and guidance during the difficult times of this research. Furthermore, I am indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support they provided via grants to my supervisors.

I would like to acknowledge both the excellent technical assistance and the moral support of Susan Liptak, Paula Parkinson, Romy So, and Jufang Zhou, who cheerfully demonstrated the use of the lab instruments and always co-operated to the fullest extent, making the lab a pleasant environment within which to work.

I am also grateful to Guy Kirsch, for his skilled modifications to the lab apparatus, to Paul Milligan, John Wong and Dr. Peter Lawrence for their advice and assistance in solving the electrical problems, to Rod Nussbaumer and Jim Greig for their software support and Fred Koch for his explanation of fundamentals.

Thanks are owed to my many fellow graduate students, among others, Yves Comeau, Kirk Morrison, Pat Coleman, Bruce Anderson, Fongsatitkul Prayoon, and Takis Elefsiniotis, all of whom provided their unique brand of advice, humour and comradery, making my UBC experience most enjoyable.

Special thanks are in order for Tim Ma for his companionship, availability and general willingness to discuss any of life's intricacies both inside and outside of the laboratory.

Also valued is the on-going interest and support of both my families in Ontario. Their many calls of encouragement were deeply appreciated.

Finally, I would like to thank my beloved wife Julia, whose constant love, encouragement and spiritual support has been a real boon to me, as together we have endeavoured to know Him who is the author of all knowledge.

GLOSSARY OF TERMS

General Terms

AASDAerobic-Anoxic Sludge Digestion ("1 and "2)
ATP/ADPAdenosine Triphosphate/Diphosphate
BardenphoBarnard Denitrification Phosphorus Removal Process
Bio-PBiological Phosphorus Removal (#1 and #2)
CODChemical Oxygen Demand
D.ODissolved Oxygen
F:MFood:Microorganism Ratio
HRTHydraulic Retention Time
MLSS/MLVSSMixed Liquor Suspended Solids/Volatile SS
N (%)Nitrogen
NAD/NADH [*] Nicotinamide Adenine Dinucleotide
ORPOxidation-Reduction Potential
P (%)Phosphorus
PHA/B/VPoly-B-hydroxyalkanoates/butyrates/valerates
RCTRReactor
SBRSequencing Batch Reactor
SCFAShort Chain Fatty Acids
SRTSludge (Solids) Retention Time
TC/TOC/ICTotal/Total Organic/Inorganic Carbon
TKN/TPTotal Kjeldahl Nitrogen/ Total Phosphorus
UBC/UCTUniversity of British Columbia/Cape Town
VFAVolatile Fatty Acid
4

Important Terms Specific to Program

AcetateAcetate not added to RT reactor yet
Baseaddr%The Base Address of the A//D Board (&H220)
Chan0%/15%Lower (0) and Upper (15) Bounds of channels
Delta2a/2b/2c.The Critical ORP Slope Difference (-1.25)
FlagdiffNo Preceding Point in First Difference SUB
FlagloopFor Breaking into and out of Scanning Loop
Flag.RTReal-Time Control Requested by User
FlagscrnFlag to Invoke Graphics Display
Ioadr*The Base Address of the Relay Board (&H330)
KY.ESCFor Escaping/Terminating Program
KY.LNFor <no> Decision Finished Viewing Probes</no>
KY.LYFor <yes> Decision to Select Other Probes</yes>
Max.AnoxFail-Safe Limit to Resupply the Air
MaxavoidVariable Safety Factor Before Search for Knee
NitrateFlag Signalling Nitrate Breakpoint Detected
Num.ChannelsNumber of Channels to be Scanned (16)
Num.PtsDimensioning of Screen Display (181)
NumringsThe number of Rings in the Buffer (5)
Num.ScansNumber of Scans/2 minute interval (60)
RealtimeFlag - Initially no Real-Time Control
RenewFlag to Clear/Reset Breakpoint Subroutine
RingsizeThe width of the BREAKPT Ring (5)
Scan.TimePolling interval for the probes (2 seconds).
VFAPassCounter to time the VFA Pump Operation
VFAPumpFlag to Signal VFA Pump On or Off

CHAPTER 1

INTRODUCTION

1.1 Project Need

The fundamental theories of wastewater treatment have been well understood for many years. In recent times however, the emphasis has moved towards acquiring better control of the unit processes, thereby treating a waste more efficiently. A greater ability to control inherently returns benefits in the form of less wasteful unit operations, since specific control parameters can be fine-tuned at will to optimize system performance.

Classical examples in wastewater treatment include matching aeration supply to oxygen demand (to avoid overaeration) and correlating food supply to microbial biomass. The escalating demand for better control has generated in its wake a demand for increased reliability and development of sensing instruments. At the forefront of this movement are instruments capable of making <u>in situ</u> measurements, a fact already attested to by the development of the on-line dissolved oxygen probe.

Even more recently the advent of the microcomputer has brought automation to the sewage treatment field. For example the International Association on Water Pollution Research and Control (IAWPRC) has sponsored a series of workshops (London and Paris (1973), London and Stockholm (1977), Munich and Rome (1981), Houston and Denver (1985), and Yokohama and Kyoto (1990)), specifically devoted to the interchange of technical information on instrumentation and control of water and wastewater treatment and transport systems. Instrumentation, control, and automation (ICA) is clearly an expanding field for research and development and interest in its application to wastewater treatment systems (and water supply in general) shows no signs of abatement.

In the very early years computers were employed simply as "plotters", recording operational data and doing elementary evaluations, such as printing maintenance lists (Lohmann, 1985) and/or tracking the number of occurrences in which data exceeded threshold limit values. In the eighties and now nineties, computers are moving beyond the data acquisition / process stage, to being increasingly used monitoring for more sophisticated wastewater treatment applications. Examples abound and range from complex forms of information management, linked through workstations (Williams et al., 1986), to process control (Vaccari et al., 1988). When coupled with reliable sensors they can provide rapid information, particularly with regards to real-time disturbances.

At the very least, computers commonly alert operators to problem area(s), while some computers possess enough sophistication to analyze both the problem scope and to implement remedial action. In addition a computer offers a major advantage over traditional hardwired systems (composed of timers and relays) due to the relative ease with which the sequencing logic can accommodate (through changes in either its format or time-base) improvements in the operating procedure.

As will be emphasized in Chapter 2, interest in Oxidation-Reduction Potential (ORP) has recently been renewed, partly as

a result of the search for new process control parameters to couple with the innovative technologies being developed. Earlier criticisms regarding the meaningfulness of ORP measurements in biological systems (Harrison, 1972) have been re-evaluated in light of the knowledge that the emphasis can be transferred from the absolute value of the ORP (which is admitted to having debateable usefulness (other than in the most general sense of an environment being oxidizing or reducing)) to the ORP variation with time. For example, there is no question that ORPtime profiles in acclimated sludges undergoing alternating aerobic-anoxic sequences, contain certain distinctive features which can be correlated with known physical and chemical events of theoretical and engineering interest (Peddie et al, 1988b).

One such feature is the nitrate breakpoint or "knee" associated with the disappearance of nitrates in the ORP-time profile. (Section 4.1). This phenomenon correlates to the bacterial transformation from respiratory to non-respiratory processes, and has been well documented (Koch and Oldham, 1985) in both aerobic-anoxic sludge digestion (Jenkins, 1988) and biological phosphorus removal (Comeau et al., 1987a) processes. The regular occurrence of this feature provides a powerful impetus for process control.

The major truth evident here is that although the ORP probe does not achieve a well-defined thermodynamically-reversible equilibrium value (suggesting a specific solution composition of speciated ions), this should not hinder its use as a process control parameter in wastewater treatment systems. As long as

the system is sufficiently electroactive to generate (at least at the electrode level) an observable biologically-meaningful response pattern, it reflects a reality which ultimately can be exploited for control purposes.

Thus this research addresses the need to re-evaluate the usefulness of the ORP probe as a process control parameter in light of the recent advances in computer and control technology. For example, the marked instability so often characteristic of past ORP measurements in biological wastewater and sludge treatment systems, can be easily smoothed out as part of the interfacing equipment before the signal is processed by the host computer. Elimination of these extreme fluctuations allows the computer to more readily control the process, based upon consistent detection of a real and reproducible feature in the ORP-time profile.

1.2 Research Approach and Objectives

The basic objective of this research is to demonstrate the usefulness of Oxidation-Reduction Potential, for automated control of Sequencing Batch Reactor (SBR) sewage treatment processes. More precisely, ORP-based process control is demonstrated in two specific wastewater treatment processes, the first accommodating the solids residuals generated from a sewage treatment plant (Aerobic-Anoxic Sludge Digestion (AASD)) and the second investigating bio-nutrient treatment of raw sewage (Biological Phosphorus (Bio-P) Removal). Control is based, in both cases, on the nitrate breakpoint phenomena which occurs in the ORP profile with time (Section 4.1).

Two operating strategies (more fully discussed in Chapter 3) are considered in the AASD set of experiments (Chapter 4). The first strategy (AASD[#]1 - Section 3.4.1) compares a control reactor (Fixed-Time Control) (operating with a "Fixed" 3 hour air-on, 3 hour air-off aerobic/anoxic sequence) to an experimental reactor (Real-Time Control) operating with a cycle partition of 3 hours air-on but a variable length of time for air-off, contingent upon computer detection of the nitrate knee.

The second strategy $(AASD^{#2} - Section 3.4.2)$ compares a control reactor operating as above (Fixed-Time mode), with an experimental reactor, now operating with the length of aeration time determined by a match to the previous time for air-off (i.e. the length of the preceding anoxic cycle). At the time this research was proposed, no information was available on whether an ORP-driven, 50/50 air-on/air-off mode of operation, would collapse in on itself due to the rapid on/off sequences. Conceivably, if the process showed stability (under what is likely a "stressful" operating strategy), there could be grounds for investigating an operating strategy which further shortened the cycle length, operating between an ORP-detected "nitrate knee" and an ORP-detected "dissolved oxygen elbow" (Section 4.1). This would essentially represent an oscillating balance between nitrification and denitrification, thus considerably saving the air supply associated with the dissolved oxygen plateau of the ORP-time curve (Section 4.1).

The Bio-P experiments (Chapter 5) compare a control reactor (operating with a "Fixed" time, (1 hour 25 minutes) for the

addition of volatile fatty acids to the anaerobic regime) to an experimental reactor using nitrate breakpoints, to time the addition of acetate to the anaerobic phase of the cycle.

In both sewage processes an attempt has been made to evaluate the effectiveness of ORP as a process control parameter. In the AASD experiments, this included detailing the stability and responsiveness of the ORP controlled system to several stresses, (both artificial and natural). In the Bio-P experiment, this involved categorizing the nitrate breakpoints according to whether or not their time of occurrence maximized the objective of VFA addition to the process. For example, some breakpoints occurred well after the addition of VFAs, meaning that some of the acetate was likely used by denitrifers to reduce nitrates, rather than being exclusively used by Bio-P organisms for carbon storage.

CHAPTER 2

OPERATING THEORY AND LITERATURE REVIEW

2.1 Oxidation-Reduction Potential (ORP)

2.1.1 Redox Theory

Many ubiquitous processes found in the natural world can be reduced to electro-chemical reactions involving the transfer of electrons from one species to another. A substance which gains electrons is said to be reduced (in a reduction reaction), while a substance which loses electrons is said to be oxidized (in an oxidizing reaction). Since some species gain or lose electrons more readily than others, (a function of the number of electrons in the outer shell and the size of the atom or ion (Westcott, 1976)), a table of Standard Electrode Potentials can be compiled and is to be found in any standard text on water chemistry (ex. Benefield et al., 1982).

To assign a Standard Electrode Potential to a substance, unit activities of its oxidized and reduced forms are connected via a platinum wire and salt bridge, to a hydrogen half-cell containing water (pH = 0, (1 M H⁺), T = 25 °C) and hydrogen gas at one atmosphere pressure. The electrode potential is the voltage that would have to be applied to prevent electrons flowing to or from the test half cell. By convention, a positive voltage means that the electrons are flowing from the hydrogen half-cell to the sample, while a negative voltage is defined when the electron flow is from the sample to the hydrogen half-cell.

Table 2.1 shows a selected subset of some of the half-reactions pertinent to this research (written as reduction equations). All of the equations shown are those substances which have a strong affinity for accepting electrons. They are allocated large positive potentials with respect to the hydrogen half-cell (arbitrarily assigned a zero volt potential), since the reaction as written has a strong tendency to proceed to the right. In contrast, those substances which lose electrons most easily (i.e. have the least tendency to exist in a reduced state), would be assigned more negative potentials with respect to the hydrogen half-cell.

As indicated, the reactions are half-reactions, that is, for every reduction equation there exists a complementary oxidation equation. Thus both the oxidized and reduced forms of a particular redox couple can concurrently exist in solution. Therefore, oxidation-reduction potential (ORP) is a measurement which establishes the ratio of oxidants to reductants prevailing within a solution of water or wastewater (ASTM, 1983).

In contrast to pH which measures a specific acid/base couple (in effect the hydrogen ion activity), the ORP measurement is non-specific (i.e. not a specific redox couple); instead, it senses the prevailing net direction of all electron transfers occurring, and thus the net solution potential is in effect the electron activity (Petersen, 1966).

Table 2.1 Selected List of Electrode Half-Reactions and their Standard Electrode Potentials

Reaction	E ^o (Volts)
$H^{+} + e^{-} <=> 1/2 H_{2(g)}$	0.00
$CO_{2(g)} + 8H^{+} + 8e^{-} <=> CH_{4(g)} + 2H_{2}O$	+0.17
$AgCl_{(s)} + e^{-} \iff Ag_{(s)} + Cl^{-}$	+0.22
$SO_4^{2-} + 9H^+ + 8e^- <=> HS^- + 4H_2O$	+0.24
Hg ₂ Cl _{2(s)} + 2e ⁻ <=> 2Hg ₍₁₎ + 2Cl ⁻	+0.27
SO_4^{2-} + 10H ⁺ + 8e ⁻ <=> H_2S _(g) + 4H_2O	+0.34
I _{2(aq)} + 2e ⁻ <=> 2I ⁻	+0.62
$NO_3^{+} + 2H^{+} + 2e^{-} <=> NO_2^{-} + H_2O$	+0.84
$NO_3^- + 10H^+ + 8e^- <=> NH_4^+ + 3H_2O$	+0.88
$NO_2^{-} + 8H^{+} + 6e^{-} <=> NH_4^{+} + 2H_2O$	+0.89
$2NO_3^+ + 12H^+ + 10e^- <=> N_{2(g)} + 6H_2O$	+1.24
$O_{2(aq)} + 4H^{+} + 4e^{-} <=> 2H_2O$	+1.27
$Cr_2O_7^{2-} + 14H^+ + 6e^- <=> 2Cr^{3+} + 7H_2O$	+1.33
Cl _{2(aq)} + 2e ⁻ <=> 2Cl ⁻	+1.39

- Note: (1) All reactions with respect to the hydrogen standard electrode and at $T = 25^{\circ}C$.
 - (2) List drawn from larger list presented in Snoeyink and Jenkins, 1980 Water Chemistry)

The ORP is expressed in mathematical form by the Nernst equation as shown below.

For the Reaction: $Ox + ne^{-} = Red$ (2.1) The Nernst Equation: $E_h = E^0 + \frac{RT}{nF} \ln\{Ox/Red\}$ (2.2) where:

Ox - Oxidized species.

Red - Reduced species.

n - number of electrons participating in the reaction.

 E_h - the voltage difference (V) between the oxidationreduction half cell and the standard hydrogen electrode.

 E° - the voltage difference occurring in a pure system (i.e. when the activities of all oxidants and reductants are unity and at 25 °C).

R - Universal Gas Constant (8.315 joules/ °K/mole).

- T temperature degrees Kelvin.
- F Faraday Constant (96,500 coulombs/equivalents).

{} - the activity of the oxidized and reduced species.

The derivation of the Nernst equation, arising from consideration of the interaction between the Gibbs Free energy equation and the Van't Hoff equation is included in Appendix A.

In practice, the gaseous hydrogen electrode is rarely used as the reference electrode, due to certain physical difficulties, such as bubbling hydrogen gas at 1 atmosphere pressure through a solution. The E_h however, can always be obtained by adding the measured potential to the potential of the reference electrode. The most common reference electrodes are the Ag/AgCl and the calomel electrode (Section 2.1.3).

2.1.2 Microbiological Aspects: Intracellular Redox

Molecular oxygen is the most powerful oxidizing agent found in natural water systems, since anything stronger would begin to react with the abundant surrounding water and liberate oxygen. Redox reactions initiated with oxygen as the oxidizing agent, should be quite slow based on theoretical considerations, since the solubility of oxygen in water is low (Henry's Law predicts 2×10^{-4} mol/L). Moreover, kinetic restraints arise since the synchronous transfer of 4 electrons (Table 2.1) to completely reduce oxygen to water is highly improbable, since most electron donors supply at best one or two electrons per molecule.

It is a well known fact however, that organic matter can be metabolized by living cells. Micro-organisms do not actually perform the chemical reactions, instead they catalyze them and use the material for purposes such as deriving energy for metabolic processes or as source materials for biosynthesis (Snoeyink and Jenkins, 1980). Thus the biochemical reduction of oxygen to water can take place extremely rapidly because biological systems have circumvented the need for multi-stage reduction (i.e. separate one or two electron steps) by using enzymes in which several electron donor centres are present in the same molecule and which ultimately provide all four electrons required (Eilbeck and Mattock, 1987). This fundamental principle is exploited in biological treatment systems designed to specifically oxidize the organic constituents in wastewater. A detailed description of the many and various

metabolic pathways, specific enzymes, energy balances and methods of phosphorylation etc. is beyond the needs of this research; however, any good text on microbiology (ex. Tortora et al. (1982)) can supply most of the necessary details. For the brief purpose of illustration however, the biochemical degradation of the energy-yielding carbohydrate glucose will be considered. Equation 2.3 describes the complete oxidation of this cellular fuel in the presence of oxygen to carbon dioxide and water.

 $C_6H_{12}O_6 + 6O_2 = -686 \text{ kcal/mole} (2.3)$

If a bacterial cell were to burn glucose in this manner (i.e. one step), it would literally burn itself up. Instead, the cell invokes a metabolic pathway that involves numerous stages, each catalyzed by its own specific enzyme and characterized by a free energy change that is rarely more than a few (ex. 10) kcal/mole (Dyson, 1974).

The first step usually involves the removal of two hydrogen atoms (with the accompanying two electrons) via the enzyme dehydrogenase. This is followed by several other sequential stages in which some of the intermediate products produced are broken down yet again. In terms of the specific route taken, numerous metabolic pathways exist (depending upon the physical environment and the ability of a specific organism to utilize a particular path); however, the most common pathway is the Tricarboxylic Acid (Krebs or TCA) Cycle (when respiration is occurring aerobically) and the Glycolytic (Embdon-Meyerhoff) Pathway (when non-respiratory processes such as fermentation are employed). The TCA cycle becomes an extension to the glycolytic pathway when oxygen or a combined form of it becomes available to an organism that can use this path.

At several points in the pathway the energy in the electrons is captured by one of a class of electron deficient carrier molecules such as nicotinamide adenine dinucleotide (NAD⁺), which is reduced to a high energy level compound NADH. Since NAD⁺ is generally in short supply in the cell, the rest of the cells efforts are directed towards regenerating the pool of NAD⁺ by one of several mechanisms.

Again if NAD⁺ was regenerated by directly combining with oxygen,

NADH + H^+ + 1/2 $O_2 ==> NAD^+ + H_2O$ $\Delta G^\circ = -53.8$ kcal/mole (2.4) the resulting free energy change of 53.8 kcal/mole (calculated in Appendix B), would still be too large to be captured by a single adenosine triphosphate (ATP) molecule (or its equivalent) and much of the energy would be lost as heat (Boyd, 1984). The most efficient way to regenerate NAD⁺ (i.e. maximizing the capture of energy) is to transfer the electrons from NADH to oxygen in a series of discrete steps via the electron transport chain.

The electron transport chain (Figure 2.1) located in the cytoplasmic membrane of prokaryotes, consists of a series of closely linked electron carrying species, such as flavins, quinones and certain proteins containing metal ions. The NADH passes its electrons to the first carrier molecule in the chain and in the process regenerates NAD⁺. Each couple then reduces the

Figure 2.1 Typical Bacterial Electron Transport Chain (Adapted from Tortora et al., (1982))

next in line until the terminal electron acceptor is reached and reduced to its final form.

Each of the electron carriers in the respiratory chain has its own characteristic ORP. Electrons gravitate from more negative carrier molecules to more positive ones and therefore this governs the structure of the chain. Moreover, there is a small decline in free energy between adjacent molecules in the chain. The magnitude of the energy release is directly proportional to the difference in magnitude of the intracellular redox potentials of adjacent molecules.

At certain strategic points (three when oxygen is the final electron acceptor), there is a sufficient drop in free energy that a high energy phosphate can be donated to adenosine diphosphate (ADP) to form ATP (a process known as oxidative phosphorylation). ATP is the most common energy reserve molecule or retrievable form of energy currency in which the microorganism stores energy; however, other energy reserve molecules do exist. The micro-organism can draw upon this energy bank by coupling ATP hydrolysis to unfavourable reactions that need to be driven such as some biosynthesis processes. It is estimated that for every mole of glucose oxidized aerobically to CO_2 and water (via the glycolytic pathway/TCA combination), 38 ATP-like molecules are formed (Boyd, 1984). As shown in Appendix B, this represents a 39-45 % capture of the original energy (686 cal/mole) stored in a mole of glucose molecules.

This can be compared with the mere 2 ATP molecules generated by the incomplete oxidation of glucose under anaerobic

ATP conditions (i.e. generation by substrate level phosphorylation) by organisms that halt at the end of the glycolytic pathway. Thus aerobic organisms grow much faster than anaerobic organisms because the potential for energy release during aerobic respiration is much greater than anaerobic conditions, since many electron pairs are released and shuttled down the chain to produce ATP. A facultative organism for example might require 48 hours of optimal growth conditions to produce a population of cells that, under aerobic conditions, could be established in 16 hours or less (Boyd, 1984).

Many micro-organisms possess the capability of using an alternate terminal electron acceptor in the electron transport chain, if their primary choice is unavailable. For example, <u>Pseudomonas</u> and <u>Bacillus</u> can use nitrates; however, they only utilize them when the concentration of dissolved oxygen is minute or nonexistent, since fundamentally they are unable to extract as much energy per mole out of doing so. Again, when nitrate is utilized, the reaction to produce N_2 (gas) is favoured over the reduction of NO_3^- through NO_2^- to NH_4^+ because it yields more useable energy to the micro-organism catalyzing it (using the enzyme nitrate reductase) (Snoeyink and Jenkins, 1980). Again, this is a function of the intracellular redox levels of the various reaction couples.

Other bacteria are restricted to the use of one electron acceptor such as <u>Desulfovibrio</u> which reduces sulphate (SO_4^{-2}) to hydrogen sulphide (H_2S) . Still others use carbonate (CO_3^{-2}) to form methane (CH_4) . A few microbes anaerobically use compounds such as fumaric acid as the final electron acceptor.

Depending upon the electron donor, the microorganism, the pathway chosen and the terminal electron acceptor, the number of ATP molecules generated from the chain may be only 1 or 2 rather than 3 when free oxygen is used. As mentioned, this essentially translates to the difference in the oxidation reduction potential between the donor (NADH) and the final electron acceptor.

In this general sense the intracellular redox level helps to determine the type of biological community that develops. The exact relationships between the intracellular redox level, the NADH level and the extracellular ORP probe measurement is subject to on-going research (Wang and Stephanopoulos (1987), Armiger et al. (1990)). Nicotinamide adenine nucleotides are known to be the coenzymes of a good fraction of the intracellular oxidation-reaction steps, and therefore by following the NADH/NAD⁺ level important process control strategies can be formulated. In fact, Armiger et al (1990) have already demonstrated how a fluorescence method (which measures the ratio of NADH to NAD⁺) can be used to provide a characteristic "fingerprint" of the optimal operation of a bionutrient removal process. This procedure is very similar to the method used in this research except that it assesses the reductive (rather than the oxidative) status of the sludge.

Whatever the exact relationship between intracellular and extracellular redox is, there is little question that the external ORP reading is a direct reflection of

the activity at the cellular level. This is not to imply that ORP is the sole governing mechanism that drives the community type. It can be appreciated that in a wastewater treatment system there is both a complex mix of micro-organisms and a virtual "cocktail" of organic wastes. Which reactions are used is still very much a function of the physical environment. However, whether a particular ORP value is the cause or effect of a given bacterial population is of secondary importance, for the correlation between the two is real enough (Whitfield, 1969) such that a link of this kind can be effectively exploited.

2.1.3 Physical Characteristics: Probe Operation

Electro-chemical theory suggests two kinds of electro-chemical cells. The electrolytic cell occurs when nonspontaneous reactions are forced to proceed by the external application of a voltage across the two electrodes. Thus. electrical energy is consumed during the reaction. Conversely, the Galvanic cell, of which type the ORP electrode is representative, is an electro-chemical cell in which the of electrode reactions spontaneous occurrence produces electrical energy.

The ORP electrode consists of a reference electrode (ex. silver/silver chloride or calomel) and an indicating electrode constructed of a highly noble metal (ex. platinum or gold). The reference electrode or cathode has a fixed potential since the concentration of the cation associated with the electrode metal is maintained through the solubility-product principle. The reference electrode is separated from the test

solution by a porous ceramic plug which allows charged ions to pass through to each solution preventing charge differentials building up and halting the reactions.

A highly noble (inert) metal is chosen as the anode primarily because its potential for oxidation is less than that of any oxidizable components in the test solution. The anode therefore ideally should not participate in any reaction, but rather just provide a surface for the oxidation of the solution constituents. The area of the noble metal in contact with the test solution should be approximately 1 cm² (ASTM 1983). A sketch of the ORP electrodes used throughout the duration of this research is shown in Figure 2.2.

In order to describe how the probe functions, it is assumed that initially the probe is immersed in a highly reducing environment, that is, one in which anaerobic respiration processes prevail (ex. sludge which has been unaerated for several hours). The organic materials in the sludge are continuously subjected to degradation by bacterial enzymes and thus a variety of numerous, successive and parallel biological reactions occur as electrons are shuttled back and forth between oxidized and reduced species.

Some of the electrons will naturally gravitate along the platinum wire to the cathode, since the Ag/AgCl reference electrode has a large positive electrode potential of +.22 volts (Table 2.1). The silver chloride paste will then undergo a reduction equation forming solid silver and free chloride ions as shown in Equation 2.5.

Figure 2.2 Diagram of ORP Electrode and Operation

 $AgCl_{(s)} + e^{-} = Ag_{(s)} + Cl^{-}$ (2.5) Again by convention, when the flow of the electrons is from the test solution to the reference electrode the ORP value recorded is negative.

Upon introducing a continuous supply of oxygen into the solution, many of the electrons normally travelling to the reference electrode will be enzymatically rerouted towards reducing the oxygen to water, since it has an even larger positive potential ($E^\circ = 1.27$ (Table 2.1)) than the reference Ag/AgCl electrode. As the number of electrons travelling along the platinum wire diminishes, so too will the ORP value become more positive. Eventually the flow of electrons will reverse itself, consistent with the definition that when the flow is from the reference electrode to the test solution the ORP is defined positively. Therefore, in any given water system, the variation of ORP potential with time may serve as a relative guide to the oxidizing or reducing conditions in that system (Bockris, 1972).

2.2 Applications of Oxidation-Reduction Potential

2.2.1 General Activated Sludge Processes

A survey of the relevant literature indicates that interest in ORP as applied to activated sludge processes, flourished for the most part during the middle years of this century. Researchers such as Rohlich (1948), Hood (1948), Eckenfelder and Hood (1951), and Nussberger (1953) investigated and debated the significance of ORP measurements, primarily in aerobic treatment processes. It quickly became evident that

exact potentials for aerobic and anaerobic regimes of a treatment process were questionable (Rohlich, 1948), since measurements varied widely both between plants and amongst probes inserted in the same tank within a given plant. However, Rohlich (1948) did maintain that the time-potential ORP curves could be used to maintain better operational control of a sewage treatment plant.

Despite initial optimism, a note of caution dictated that perhaps the most that could be said was that ORP showed promise, as a diagnostic tool to indicate whether aerobic or anaerobic conditions prevailed (Hood, 1948). Nussberger (1953) (in an effort to practically integrate ORP into the routine operation of a step-aeration sewage treatment plant) developed a series of characteristic ORP curves, which he proposed could be used as a guideline to indicate whether a plant was being under- or overloaded, and under- or overaerated.

The next spate of papers occurred roughly 10 years later, commencing with the research of Grune and Chueh (1958). This again involved investigating ORP variability in sewage treatment plants. Some of the research however began to concentrate more closely on the practical aspects of control such as aeration. For example, O'Rourke et al, (1963) used ORP to estimate the utilization of the aeration capacity of an aeration basin. Rudd et al., (1961) and Roberts and Rudd (1963) demonstrated that the diurnal rise in ORP (corresponding to the noonday decline in sewage throughput to the plant) could be used to scale back aeration on-line time, thus realizing significant
economic benefits.

In an interesting discussion to Grune and Chueh 's paper, Eckenfelder (1958), in commenting about his own work, notes that both the rate of change of the ORP potential and the ultimate ORP value reached is of importance. In several tests, inflection points (sharp breaks in the ORP profile with time) could be correlated to the disappearance of an oxidant or reductant such as oxygen or sulphate. This seems to be the earliest recorded reference to a breakpoint phenomena.

The wide fluctuations in ORP readings are partly a result of the fact that, in biological systems, the ORP is a mixed potential, that is, it is a potential that is derived from many concurrent electro-chemical reactions, none of which (in open systems) are in equilibrium. As Stumm (1966), and Morris and Stumm (1967) comment "... for a multi-redox component system, that is not in equilibrium.... the redox potential by conceptual and operational definition, (which is an equilibrium potential) becomes meaningless." Harrison (1972) concluded that the overall redox potential seemed to be of little value in studies of growing microbial cultures. Such criticisms coupled with the appearance of а reliable commercially-available dissolved oxygen probe (Koch and Oldham, 1985) tended to effectively dissipate the initial interest displayed in discovering the role ORP played in sewage treatment processes.

For the most part, ORP was all but forgotten for the next two decades except for some sporadic citations such as

Dickenson (1969). He sought to characterize the relative ease with which an aerated sludge could oxidize a substrate, based upon the recovery profile of the ORP-time curve, after the sludge had received a slug dose of the substrate of interest. Other notable exceptions were researchers such as Blanc and Molof continued to direct efforts (1973)who towards understanding the role ORP measurements played in anaerobic systems where, by definition, the D.O. probe was not applicable. In particular, in some anaerobic digestion studies, they were able to correlate specific ORP ranges (-450mv to -550mv, E) to good production of methane.

2.2.2 Fermentation Studies: ORP Control

The use of oxidation-reduction potential in fermentation research has been the focal point of several studies for a considerable period of time (Wimpenny, 1969, Wimpenny and Necklen, 1971, and Kjaergaard, 1976). Many aerobic microbial fermentation processes take place at concentrations of dissolved oxygen (D.O.), which are impossible to measure using commercial dissolved oxygen probes. It is important however, to have some tool which can effectively provide information about the degree of oxygen limitation to the culture (Kjaergaard, 1977). The useful operating range of the redox probe is much larger than the D.O. probe due to the availability of negative redox potentials. Thus, Shibai et al. (1974) was able to show a good correlation between E, and very low oxygen concentrations (as measured by an oxygen analyzer) in studying inosine fermentation processes.

In a review of several investigations into ORP values and microbial cultures, Kjaergaard (1977) noted special interest evidenced in the fluctuations in the ORP value as it the efficiency of production of related to particular metabolites. Their own work experimented with the regulated addition of glucose controlled by maintaining a constant redox potential in the medium. Upon depletion of the initial glucose media. the microbial oxygen consumption would decrease, reflected in an increase in both the oxygen level and ORP value. Since ORP is more readily measurable in the micro-aerophilic range than D.O., any change in its value could be easily detected and used to close a relay. This initiated a pump which delivered glucose until the redox potential returned to its original value. Since the additional glucose was used by the microorganism before a new pulse was added, the growth of the organism (and consequently the production of the metabolite) was also regulated.

The use of ORP setpoints in fermentation studies has continued to grow and further work (Kjaergaard and Joergensen, 1979, 1981) led to the proposition that ORP could be classed as a "state variable" in fermentation systems operating at minute dissolved oxygen levels.

Dahod (1982), investigating the production of penicillin, maintained that ORP was a much better parameter than dissolved oxygen for fermentation process control, primarily because D.O. measures only the oxidizing potential of the O_2 metabolic chain, while redox measures the oxidizing potential of

all the species formed in the broth (i.e. all oxidation chains). This can be critical when mass transfer limitations create a discrepancy between the oxygen concentration in the bulk phase and the actual oxygen availability (Wang and Stephanopoulos, 1987). This will cause other electron acceptors to be employed.

Radjai et al. (1984) searched for the best redox conditions to optimize the production of amino acids such as homoserine, valine and lysine. The flow of dissolved oxygen to the fermentation broth was varied by manipulating the agitator speed and the change in the ORP value was recorded. The specific ORP value corresponding to the optimum production rate of the amino acid was noted and this value was once again used as an ORP setpoint in further pure culture work.

2.2.3 ORP Control of Wastewater Treatment Processes

Interest in ORP and its applications to wastewater treatment systems has been rekindled as advances in automation have led to a search for reliable process control parameters. Burbank (1981), discusses several field experiences, in which operators examined the ORP fluctuations with time and made appropriate operating decisions for the plant. Many of their resolutions correspond to the type of observations and guidelines Nussberger had proposed almost 30 years earlier.

Poduska and Anderson (1981) discuss the use of ORP to control hydrogen sulphide odours, which develop during warm weather spells in lagoons storing aerobically digested sludge. Application of a local industry's wastestream (40 % NaNO₃) was shown to be effective in eliminating odours due to the preferential selection of electron acceptors (ie. NO_3^{-1} over SO_4^{-2}) in metabolism. A specific ORP setpoint was not used; however, a high positive ORP value (> +100 mv) was shown to be effective in controlling odours.

Eilbeck (1984) investigated breakpoint chlorination of free and metal complexed ammonia, in wastestreams originating from metal finishing and electronic industries. Redox titration curves were superimposed on the chlorine breakpoint curves and the sharp jump in redox when the residual chlorine broke through was noted. Prior to the breakpoint, the ORP remained constant as chloramine complexes were formed with hypochlorous acid. Thus the redox breakpoint, detecting when a residual became available, was of great assistance in ascertaining dosage rates.

Rimkus et al. (1985) used ORP to control raw sewage odours generated when low weather flows into the Chicago O'Hare Water Reclamation Plant (a combined sewer inlet) led to the production of hydrogen sulphide. A computer continuously analyzed ORP signal inputs and when the ORP dropped below +100 mv, sodium hypochlorite was added to increase the ORP.

Sekine et al., (1985) described an activated sludge process which used ORP as a supervisory index for nitrification. A circuit converted the ORP value into a nitrification rate (based on experimental observations) and made a time-series correction to the D.O. value to obtain good nitrification. Watanabe et al. (1985), in a series of lab experiments, used an ORP setpoint of approximately -150 mv to control the addition of an external carbon source (methanol) in order to ensure

denitrification. As the biomass exhausted the carbon, the ORP would rise above the setpoint and initiate methanol addition. In this way, ORP became a control index for methanol regulation and allowed consistent effluent NO_x-N levels of less than 1 mg/L.

Charpentier et al., (1987) discussed both laboratory and full scale applications of ORP control in France. In a low loaded activated sludge plant, various NH_4^+ and NO_3^- effluent concentrations were recorded along with the attendant variations in ORP. Subsequently, ORP values of -80 to +120 mv were targeted and air was cycled on and off to the aeration basin, at a rate just sufficient to keep the ORP between these limits. In this way, consistent effluent nitrogen levels were maintained. They concluded that with redox based control, electricity consumption could be more accurately determined, thanks to constant regulation of the aerators correlated to specific pollution levels.

Research into ORP continues to progress as investigators have recognized the potential ORP offers for <u>in</u> <u>situ</u> process control. Heduit and Theunot (1989) mention that the constants in the relationship between the D.O. concentration and ORP (of the form $E_h = a + b \log[O_2]$) depend upon the sludge loading, the aeration conditions, the sludge concentration and other redox species.

Charpentier et al., (1989) furthered this work by investigating relationships between effluent nitrogen and ORP. They found that targeting upper and lower ORP values in the aeration cycle, simultaneously optimized the effluent quality and electrical costs. De la Menardiere (1991) in a similar study, observed high removal levels for carbon, nitrogen and phosphorus as a function of targeting different ranges for the ORP values in the aeration basin. Both of these latter two studies make some poignant observations relating to ORP inflection points and nitrate disappearance. They comment about the possibility of new ORP applications using these inflection points in the control of biological nutrient removal processes. 2.3 ORP and Aerobic Anoxic Sludge Digestion (AASD)

One of the most significant expenditures associated with the construction and operation of a pollution control plant, is the cost of stabilization and disposal of the waste activated sludge solids. Estimates vary but are generally in the range of 40-50 % of the total cost (both capital and operating) of the wastewater treatment plant (Rich, (1982), Evans and Filman (1988)). For small plants (< 5 MGD) an attractive option is to aerobically digest the sludge, since this method is not as prone to process upsets, which can periodically afflict the anaerobic digesters in larger plants. Aerobic digestion is somewhat similar to extended aeration, except that there is assumed to be no influent source of carbon other than that derived through the auto-oxidation (endogenous respiration) of the bacterial protoplasm itself.

An obvious disadvantage of aerobically digesting sludge is the energy cost associated with a continuous supply of air. In addition, since aerobic digestion processes tend to consume alkalinity as shown in Equation 2.7 (the bacterial mass is assumed to be represented by the chemical formula $C_5H_7NO_2$ (Hoover et al., 1952)), there is an added chemical cost to maintain the pH in the neutral range.

 $C_{5}H_{7}NO_{2} + 7O_{2} = 5CO_{2} + 3H_{2}O + NO_{3}^{-} + H^{+}$ (2.7)

Currently, there are at least 20 digesters in B.C. aerobically treating waste activated sludge (Minister of Supply and Services Canada, 1981). Recently, a modified form of the conventional aerobic sludge digestion process has been proposed (Hashimoto et al., 1982). This involves an additional anoxic tank which receives the nitrate-rich effluent of the aerobic tank and denitrifies it according to the equation below.

 $C_5H_7NO_2 + 4NO_3^- ==> 5CO_2 + NH_3 + 2N_2 + 4OH^-$ (2.8) This not only reduces more volatile suspended solids but also acts to reduce the total nitrogen content generated in the sludge digestion process.

A more innovative design that appears to significantly offset the major disadvantages of aerobic digestion, is the practice of cycling the air in an on/off manner. This method intrinsically induces considerable savings in energy (air supplied) as well as reduces or even eliminates the extra chemical cost (since, during the anoxic portion, alkalinity is recovered (Equation 2.8)). Moreover there is no need for an additional tank as the previous solution (Hashimoto et al., (1982)) proposed.

The first published research into this sludge digestion method appears to be that of Warner et al., (1985). They discuss aerobic-anoxic theory as a subset of the general activated sludge model, originally developed by Dold, Ekama and Marais (1980) and extended by van Haandel, Ekama and Marais (1981). This model, based on steady state activated sludge theory, is flexible enough to incorporate nitrification-denitrification, variable influent conditions and series reactor configurations. It can predict COD removal, nitrification-denitrification, alkalinity changes, oxygen demand and volatile solids degradation.

this The major conclusions of research (from both theoretical considerations and lab scale experimental data) was that the incorporation of anoxic intervals in aerobic digestion of waste activated sludge, did not appear to adversely affect the degradation rate of the active bug mass, provided the anoxic portion of the cycle was not overly long. According to their observations the anoxic segment should not comprise more than 50 to 60 % of the total cycle length, nor should the duration of any single anoxic portion of the cycle be greater than 3 hours. It was also noticed that, for the digesters operating at a 50 % anoxic time, the nitrate generated by the nitrification reaction (during the aerobic portion of the cycle) was completely denitrified during the anoxic portion of the cycle. This meant that sufficient alkalinity was generated to keep the pH stable and in the neutral range. The balancing effect of alkalinity and pH resulting from an alternating aerobic-anoxic sequence has subsequently been well documented (Peddie et al., (1988a), (1988b), Jenkins, (1988)).

Matsuda et al., (1988) followed the transformation of

nitrogen and phosphorus in the solid and liquid phases, while comparing aerobic-anoxic vs. continuous aerobic sludge digestion. Some interesting profiles were presented; however, their major conclusion was that the reduction rate of sludge solids and the behaviour of nitrogen and phosphorus under intermittent aeration (controlled by a D.O. criteria) was substantially equivalent to that undergoing continuous aeration. Therefore, intermittent aeration could be considered a viable method of sludge digestion with its attendant economic benefits.

Jenkins and Mavinic (1989a) investigated the solids degradation obtained using three different sludge digestion operating strategies (aerobic/anoxic (2.5 air-on/ 3.5 air-off), aerobic with lime addition and straight aerobic). Further to this, when operating the digesters at 3 different SRTs (10, 15 and 20 days) and two different temperatures (10 °C and 20 °C), it appeared that cycling the air flow gave comparable results in terms of percent TVSS reduction, while using only 42 % of the air that continuous aeration would employ. In addition, aerobic/anoxic sludge digestion maintained a neutral mixed liquor pH at almost no extra cost.

They postulated that comparable results were attainable because the bacteria made more efficient use of the air, since prior to initiation of the air, the driving force would be quite high, (enabling greater oxygen transfer efficiency once air resupply commenced). Furthermore, during the anoxic portion of the cycle, endogenous respiration would still be in effect (with nitrates as the terminal electron acceptor), so that some

reduction in solids would continue to occur. Microbial degradation by nitrates and more efficient oxygen transfer efficiency was essentially the same rationale offered earlier by Ip et al., (1987), who investigated the savings in aeration energy costs encountered when air was cycled on and off (controlled by a D.O. probe) to a normal continuous flow activated sludge system.

In a subsequent paper, Jenkins and Mavinic, (1989b) detailed the benefits accrued from the AASD operating strategy in terms of improved supernatant quality (ex. reduction of nitrates through denitrification during the anoxic portion of the cycle). They also used ORP as a tool to monitor the aerobic/anoxic sludge digesters and clearly showed that the ORP profile with time was reproducible from cycle to cycle. Moreover, in developing an overall rating system to evaluate the performance of the three digestion modes, the potential for automation, based upon ORP, resulted in AASD receiving the highest ranking in this category (Jenkins 1988).

Finally, Kim and Hao (1990) investigated aerobic-anoxic sludge digestion, specifically focusing in on the kinetics of the anoxic phase and how it related VSS degradation to the endogenous nitrogen respiration (ENR) rate. They recognize that the in situ placement of an NO_3 probe could modify the duration of the cycle period in a SBR to accommodate the required nitrate consumption pattern. This is a very similar concept to the one explored in this research.

2.4 Biological Phosphorus (Bio-P) Removal and ORP

Perhaps of most significance in terms of rekindling interest in ORP, was the development of bio-nutrient removal processes (Koch and Oldham, 1985). These designs incorporate a non-aerated regime in the process train, a domain in which the dissolved oxygen probe is rendered inadequate but the ORP probe remains useful.

In conventional activated sludge systems, the typical phosphorus content (based on dry weight) is 1.5 to 2.0 percent (U.S. EPA, 1987). This is primarily composed of the phosphorus taken up by microbes for use in biomass synthesis (i.e. phospholipids, nucleotides, and nucleic acids etc.). In the late fifties and early sixties, researchers such as Levin and Shapiro, (1965) and Shapiro et al., (1967) reported that up to 80 % of the phosphorus in activated sludge could be removed by vigourous aeration, while much of this was re-released at the bottom of the secondary clarifier, under conditions of low or zero dissolved oxygen. It was apparent, therefore, that some microbes could take up phosphorus in excess of normal metabolic requirements, a phenomenon that eventually became known as excess biological phosphorus (Bio-P) removal.

As mentioned, the Bio-P process modifies the activated sludge process by including a non-aerated zone prior to the aerobic reactor. Addition of simple short-chain carbon substrates to this zone, (ex. volatile fatty acids such as acetate or propionate) result in a phosphorus release to the liquid, accompanied by a corresponding microbial carbon storage

in the form of either poly- β -hydroxybutyrate (PHB) or poly- β -hydroxyvalerate (PHV). Together, these carbon storage compounds are known generically as poly- β -hydroxyalkanoates (PHA) (Comeau et al., 1987b).

When the biomass is subsequently subjected to carbonlimiting, aerobic conditions, those bacteria which have previously sequestered carbon in reserves, seem to evidence a competitive advantage over other organisms. In fact, in the aerobic zone, the competition is restricted to that fraction of carbon which is not so readily biodegradable; thus, Bio-P organisms, drawing upon their exclusive access to the stored carbon, proliferate in greater numbers and, in doing so, take up not only the phosphorus they initially released in the anaerobic zone, but also much more than normal metabolism would dictate. A typical biological phosphorus removal plant might have up to 6-10 percent P in the sludge (U.S. EPA, 1987). This P seems to be complexed into polyphosphate reserves which the bacteria can break down and utilize for "maintenance/survival" energy, when again subjected to conditions in which there are no usable terminal electron acceptors available (i.e. anaerobic conditions).

In the early stages of Bio-P research, Shapiro et al., (1967) considered ORP significant enough to monitor and suggested it as a possible factor governing phosphate release. He observed that the rapid release of phosphorus in the anaerobic zone appeared to occur around an ORP value of -150 millivolts. However, Randall et al., (1970) concluded that phosphate release was not a function of, nor dependent upon, ORP since release often occurred before any significant change in the ORP level.

Countering this, Barnard (1976) proposed that ORP had potential in characterizing the degree of anaerobiosis at the front end of a Bio-P plant. He stated this because it appeared that a certain minimum level of ORP had to be reached to ensure good P removal. Barnard eventually developed a modification of his Bardenpho (<u>Barnard Denitrification Phosphorus</u>) nutrient removal process, titled the Phoredox process, because of the lower redox potentials that could be achieved in the anaerobic zone. However, Barnard later abandoned the theory of a minimum anaerobic stress level in favour of the availability of simple carbon substrates as being the prerequisite for good P release.

In a series of batch experiments Koch and Oldham, (1985) traced the ORP-time profile, in essence temporally modelling the spatial progress of a biomass/organic waste through a Bio-P plant. One important discovery was the existence of a reproducible nitrate breakpoint (or knee) in the ORP-time profile, corresponding to the transformation between respiratory and non-respiratory processes. This breakpoint also correlated to the onset of anaerobic phosphate release, a key phenomenon in biological phosphorus removal.

Koch and Oldham's experiments acted both to dispel some of the theoretical ambiguity in interpreting the ORP measurement and to counter the lack of enthusiasm which had plagued the use of ORP over the last several years. Further to these experiments, routine monitoring and visual inspection of ORP levels has become an integral part of recent biological nutrient removal research carried out at the University of British Columbia (Comeau et al., 1987a, 1987b, Zhou (1991)).

Additional work by Koch et al., (1988) sought correlations between ORP values and nitrate, ortho-phosphate and dissolved oxygen concentrations, in several biological regimes particular to the bio-nutrient removal process. Several equations were derived relating ORP to dissolved oxygen, nitrate and phosphate concentrations. Since these equations are all sludge specific, no attempt has been made to verify them in this research.

Furthermore, the sludge specificity of the equations makes the applicability of such equations questionable. The authors of the above research do acknowledge observed shifts over the course of the experiment, in the coefficients for regressions; therefore, there is certain to be variation in this research, done a few years later with a totally different sludge. This research, therefore, has elected to avoid regressions of this nature, abandoning them in favour of highlighting general behavioral trends, not only for the Bio-P experiments (Chapter 5) but also for the AASD set of experiments (Chapter 4).

2.5 Sequencing Batch Reactors (SBRs)

2.5.1 Overview of Operation

Sequencing batch reactors are in essence, modern day versions of the draw-and-fill systems used in the early days of sewage treatment (U.S. EPA, 1986). The original systems were fairly time intensive in nature, since they required an operator to manually feed and draw the reactors at appropriate times, and initiate the various sequences during the day. The use of drawand-fill reactors tended to fade naturally with the advent of modern continuous flow through systems (CFS); however, since the SBR system merely provides in time what the CFS provides in space, these latter systems were adopted primarily from operational considerations and not from any process-related weaknesses of the batch system (Arora et al., 1985).

Recent advances in technology such as the use of timer controlled pumps, solenoids, level sensors and microprocessors etc. have obviated the need for operator controlled functions and revived interest in SBR technology.

Following the convention adopted by the studies done at the University of Notre Dame, Indiana (Irvine and Busch, 1979) the operation of an SBR can be divided into 5 discrete operating periods entitled...

- (i) FILL the receiving of the raw waste;
- (ii) REACT the time to complete the desired reaction(s);
- (iv) DRAW the discharge of both the treated effluent and waste solids (if necessary) and;
- (v) IDLE the time after the effluent is discharged and before refilling.

One or more of these periods may be omitted depending upon the control strategy desired, however at the very least all tanks must contain the FILL and DRAW periods (as for example in an equalization tank). A sketch of the 5 periods during one cycle is shown in Figure 2.3.

Advantages of an SBR system are numerous and make it ideal for small communities which experience wide variations in influent flows and strength. Some of the more obvious benefits include (Arora et al., (1985)...

- Acting as an equalization tank during FILL it has an ability to balance peak flows and absorb shock loads;
- (ii) The effluent may be held until it meets specific objectives;
- (iii) The MLVSS cannot be washed out by hydraulic surges;
- (iv) There is no need for return activated sludge (RAS) pumping since the mixed liquor is always in the tank and;
- (v) Solid-liquid separation occurs under near ideal quiescent conditions since short circuiting is nonexistent during the settle period. Furthermore there is no need for an extra tank for clarification since the same tank can serve as both a biological reactor and a clarifier.

Probably the most readily apparent advantage is the SBR's flexibility of operation. Easy adjustment of the microprocessor timer settings, allows timed intervals to be changed to permit different modes of operation. For example, a portion of the REACT period can be reserved for aeration to allow for nitrification while another portion can be dedicated to the denitrification process. Biological phosphorus removal

Figure 2.3 Diagram of 5 Operating Periods of Bio-P SBRs

strategies can also be implemented in this way. Furthermore, a liquid level sensor could be adjusted to allow only a fraction of the tank capacity to be used during the early years of the design life, without wasting power through overaeration. Finally, if more than one tank is used in series, tanks can be put on or offline to allow for seasonal variation.

2.5.2 SBR Applications in Wastewater Treatment

Several recent studies at the University of Notre Dame (Alleman and Irvine (1980a, 1980b), Palis and Irvine (1985)), the University of California, Davis (Silverstein and Schroeder (1983), Abufayed and Schroeder (1986a, 1986b), and the University of Manitoba (Oleszkiewicz and Berquist (1988), McCartney and Oleszkiewicz (1988, 1990)) have investigated nitrification and denitrification in sequencing batch reactors. Primarily monitoring several SBR performance characteristics, most of the studies were able to consistently remove a very high percentage of the organic carbon and nitrogen in the wastewater.

Sequencing Batch reactors have also be used to remove phosphorus both chemically (Ketchum and Ping-Chao Liao (1979), Ketchum et al. (1987)) and biologically (Manning and Irvine (1985), Vlekke et al., (1988)). Again the inherent flexibility of an SBR system allows the proper mix of anoxic, anaerobic and aerobic conditions necessary for Bio-P removal. In particular a control strategy must be selected which at a minimum eliminates oxidized nitrogen and dissolved oxygen during the FILL (anaerobic) period and allows for aeration during the REACT period (Manning and Irvine, 1985). The increased interest in SBRs has been reflected in the number of studies done on full scale applications in recent years. Irvine et al., (1983, 1985, and 1987) have examined the operational performance of full scale SBRs at Culver, Indiana and Grundy Centre, Iowa under high and low loaded conditions and depending on the study have reported excellent effluent quality in terms of BOD_5 , SS, N and P removal despite varying influent conditions. Melcer et al., (1987) examined the conversion of small municipal wastewater treatment plants in Manitoba to sequencing batch reactors and reported that it was technically and economically feasible to convert the existing small-scale package plants and septic tanks to SBRs over the flow ranges studied (4 to 227 m³/d).

CHAPTER 3

EXPERIMENTAL METHODS AND ANALYTICAL TECHNIQUES

3.1 Source of Feed Sewage and Sludge

The University of British Columbia's Environmental Engineering Group manages a pilot-scale sewage treatment plant located about 2 kilometres south of the UBC campus. The facility, housed in a renovated tractor trailer unit, generally operates in a biological phosphorus removal mode. More specifically, it is a modified version of the well known University of Cape Town (UCT) process (Figure 3.1), routinely depicted in papers published by South African researchers (eg. Seibritz et al., 1983). This modified configuration will henceforth be referred to as the UBC version (Figure 3.2) to distinguish it from its UCT predecessor.

The process, treating primarily campus wastewater (and a small fraction of household domestic waste) is designed so that the operator can choose (by way of baffle insertion) the proper mix of alternating aerobic, anoxic and anaerobic sequences necessary to ensure good biological phosphorus removal. The sludge age is usually maintained at an average age of 20 days; however, flexibility in piping, valves and pumps, allows SRT variations as desired.

The pilot-plant facility has two process trains, labelled side "A" (the control) and side "B" (the experimental). Either raw sludge or raw sewage was collected from the pilot plant as the needs of the experiment dictated. For the AASD experiments, sludge was collected from the aeration basin of the control

("A") side in the manner which will be described in Section 3.3. The side "A" configuration includes a primary sludge fermenter to generate volatile fatty acids for later addition to the anaerobic portion of the process.

In addition, external equalization tanks, plus a primary clarifier, are merged into the process train so that the aerated sludge is fairly "clean" in the sense of being uniform in nature and having very little, if any, of the organic and inorganic "problem" materials that sometimes create difficulties for a sewage treatment plant. Thus, no pre-treatment of waste sludge was required. For the Bio-P set of experiments, raw sewage was obtained from the equalization tanks in the manner also described in Section 3.3.

3.2 Experimental Set-Up and Design

3.2.1 General Structural Configuration

A block diagram highlighting the major components of the research apparatus, is shown in Figure 3.3. Slightly different structural arrangements of the Sequencing Batch Reactors (SBRs) were used for the AASD and Bio-P experiments respectively, and these are illustrated in the schematic of Figure 3.4. Table 3.1 itemizes the particular model numbers of many of the experimental components.

In general, the reactors were made of plexiglass (Diameter = 12 cm., Volume = 5.4 litres) and filled to the 4.8 litre mark with either activated sludge and/or raw sewage depending upon the experiment. Spigots for sampling and solenoids for decanting etc. were placed at strategic heights

Note: In actual reactor all 6 probes (i.e 3/reactor) connect to computer

Figure 3.3 Schematic of Experimental System

EXPERIMENTAL COMPONENT	DESCRIPTION OF ITEM
Air Pressure Regulators - 2	Parker Model # 07R218AB
Air Solenoids - 2	MAC 113B-112CCAA
Air Flow Meters - 2	Cole-Parmer PR0034-FM32-15ST
Mixing Motors - 2	Dayton DC Model #47539A
ORP Probes - 3/Reactor	Broadley-James #P114101-10BC
Computer	Morse Shuttle 386-SX AT
Analog-to-Digital Card	Data Translation DT2814
Input/Output Control Card	Metrabyte Model PI012
Standby Power Supply	American Power Conv. UPS-SX

Table 3.1 Components of Experimental Apparatus

and utilized according to the operating strategy. Wasting and feeding of the sludge in the AASD experiments was done manually, while for the Bio-P experiments the liquids were pumped automatically, entering and exiting the reactors at appropriate levels.

Air for both experimental sets was supplied by an in-house compressor at 410 - 550 kPa (60 - 80 psi). Two pressure regulators, connected in series at the air supply outlet, subsequently reduced this pressure to approximately 100 kPa (15 psi). The airline was then split into two separate lines, with each line passing through an air solenoid (ON/OFF regulation controlled by computer) before continuing on through an adjustable air flow meter (rated range 55-165 mL/min). The lines then looped around below the reactor underside to flow through a diffusing stone before entering the reactor.

The AASD digesters (and Bio-P reactors when in nonquiescent conditions) were completely mixed by a stainless steel shaft with an appropriate blade design. Visually, complete horizontal and vertical mixing appeared to be achieved.

At three strategic points Broadley-James Corporation combination oxidation-reduction potential probes were inserted into each reactor. These probes use a Ag/AgCl reference electrode with a platinum band as the noble metal. The probes were affixed physically to one end of a piece of rigid plastic tubing which subsequently slid, with minimum resistance inside the sleeve of yet another plastic tube. This latter tube opened up through a ball valve into the interior of the reactor, acting

as a conduit to allow the ORP probe to slide, with some degree of ease, into and out of the reactor. An O-ring seal sandwiched between the two cylinder walls prevented liquid being forced by back-pressure from the reactor.

The three probes were labelled a, b, and c to denote the front, side and back of the reactor from the perspective of facing the experiment on the computer side of the research bench. Thus, in referring to the ORP probe in the front of the right reactor (labelled $RCTR^{#2}$ - Section 3.4.1) the nomenclature ORP2a would be used.

3.2.2 Electronic Hardware

In the experimental environs used in this research, the ORP probes generate a low-level voltage electrical signal in the range of -300 to +300 mV. Furthermore, the total electrode resistance is generally in the order of 10 Kohms (Petersen, 1966), thus an application of Ohm's law reveals that the current is quite small (around 30 microamps). Moreover, due to the physical construction of the probe, even larger resistances (in the order of Mohms) are possible. These subsequently produce extremely small currents, thus coaxial shielded cable was used from the probe to the computer to protect the signal from induced currents. Magnetic stirrers and water baths are among the commonest sources of noisy readings (Midgley and Torrence, 1978); however, all electric motors and any ancillary apparatus containing relay switches (ex. ovens and hotplates) were suspect.

The source impedance of the probe was measured and

observed to be greater than 15 Mohms (Milligan, 1989). The probes were therefore connected to a custom-built amplifier (having a large input impedance (100 Mohms)) in order to more accurately measure the voltage. Figure 3.5 indicates the theory behind this, by replacing the ORP probe with an ideal voltage source (0 internal resistance) in series with a resistor having the corresponding source impedance. The largest value of V_{in} will occur when the input impedance of the amplifier is much larger than the internal resistance of the source (Weber and Maclean, 1979).

Sporadic results (documented in Section 4.2.1) were initially obtained due to the lack of a common ground between the coaxial shield of the probe cable (left floating) and the amplifier chassis, whose differential inputs were also both floating. Furthermore, unshielded wire inside the amplifier resulted in rampant pick-up of electrical noise. Modifications to the amplifier and elimination of ground loops eventually corrected these problems, leading to reasonably stable ORP measurements.

As shown previously (Figure 3.3), the amplifier output connected to a junction box which relayed the signal through an electronic cable into the back of the computer. Inside the computer, an analog to digital (A/D) card (16 singleended input channels) converted the signal (via a 12-bit monolithic converter) into binary code which could be processed by the host computer. Working with a range of -500 mV to +500 mV (1 Volt) an ORP resolution (change) of 1000 mV/ $2^{12} = 0.25$ mV

difference was obtainable.

At various stages in the research, different computers were dedicated to the project; however, most of the preliminary work was performed on a Laser Turbo XT-2 computer operating at various times with a Central Point Software, Juko ST and finally Phoenix, BIOS on its motherboard. For the majority of the control runs a Morse 386-SX AT computer was used. To provide protection from brown-outs and power failures, an uninterruptible power supply (UPS) was purchased into which the computer and all power cords were plugged. When the input power line voltage dropped below an acceptable level (15 % below nominal), the UPS automatically transferred to battery operation (in less than 3 milliseconds) providing an output wave in the form of a sinewave approximation. During the course of this research, several momentary blackouts occurred and in all cases the UPS performed admirably and kept the process operating.

For control purposes, a commercial I/O control card was purchased which fitted into an expansion slot in the computer's motherboard. The interface card provided 24 TTL/DTL compatible digital I/O lines, split into three 8 bit ports (Metrabyte Corporation, 1989). The I/O lines were linked to a bank of solid state relays (16) mounted on the inside of the box housing the computer. These, in turn, were wired to two socket power bars (mounted on the outside of the computer box) which were modified so that each outlet could be controlled independently by a single solid state relay. The pumps and solenoids were plugged into this latter bank of sockets and thus control, originating from software switching bits (1 = ON, 0 = OFF), was finally established.

3.2.3 Computer Software

The successful implementation of a computer controlled system is very much an "evolutionary" process. This is most evident in the development of the computer software. For example, the AASD[#]1 control software (Section 3.4.1), underwent 7 major structural modifications (not including numerous small adaptive measures taken to refine the program) before arriving at its "final version" form.

The software was written using QUICKBASIC 4.5, a mature form of the original BASIC language developed at Dartmouth College over 25 years ago. Not only is it very popular (Shammas, 1988), it is much more powerful than its earlier predecessors due to the advent of callable subroutines, numeric and alpha-numeric labels (used to direct program flow), and powerful new decision making constructs (Microsoft, 1987a, 1987b, 1987c). The lone exception to the QUICKBASIC 4.5 language was the software used to access the A/D board which was written for expediency in Microsoft Assembler Language by an in-house UBC computer technician.

The prime advantage of QUICKBASIC 4.5 is that it can be written in a modular fashion. That is, a function or subroutine can be written, debugged and then installed as a separate module into any main program, written at various times and for different needs. Thus, the majority of subroutines and functions written for this research are common to both the AASD

experiments and the Bio-P experiments, with subtle differences reflected in the structural flow of the main control program and occasionally the order in which common subroutines are invoked. The Bio-P experiments also use separate controllers to operate some of the pumps and solenoids, in order to minimize the complexity of the main Bio-P control program. Table 3.2 catalogues the main control and subroutine/function modules incorporated into all three operating strategy programs.

Flowcharts of all subroutines, functions and main control programs have been relegated to Appendix C, while the associated software code can be found in Appendix D. A detailed description of the mechanics of the program is not necessary here; however, some general comments are offered below.

The structure of the main control programs (i.e. one for each AASD operating control strategy and one for the Bio-P experiment) is fairly sequential with the majority of control actions dictated by flag switches; these are set and reset to TRUE and FALSE respectively, in order to activate or deactivate specific relays. ORP data files are written to the hard disk with a nomenclature specifying the type of reactor (Fixed-Time (FT) or Real-Time (RT)) appended to the date (ex. 90-04-21.RT). Message files for both reactors coexist under an appropriately dated file (ex. 90-04-21.msg).

Due to some initial incompatibilities between the software and hardware, the programs are designed to alternate between graphics and text mode, rather than operating in continuous graphics mode. Thus, the user can periodically

Main Programs	AASD [#] 1 AASD [#] 2 BIO-P
Functions	Global.bi Typrobe\$ Jinkey% Getscanl%
Subroutines	Inform Filename Initrelays Relayswitch Refresh ORPscreen Axes Paxis Scans Diff Writing Transfer Plot Breakpt Layout Update

Table 3.2 Subroutines and Functions in Each Experiment

interact with the computer to graphically access recent historical plots of the ORP-time profile. When a plot is requested, the computer transfers the ORP data of the probe selected, to a common array, and after refreshing the screen, uses the PLOT subroutine to lay out the profile.

The ORP probes are scanned by accessing the ON TIMER (Scantime) event-trapping Quickbasic 4.5 feature, which directs program flow (every number of seconds equal to Scantime) to a READPROBE subroutine which further invokes a function GETSCAN1%. After a certain number of scans have elapsed, the computer interrupts this loop to "drop" through the rest of the program where it calculates first-differences, writes data to disk files, checks flags according to externally-timed conditions, searches for the breakpoint (if in the appropriate phase of the cycle), and scans the keyboard buffer for user requests.

The subroutine BREAKPT requires a more detailed explanation, since it is the cornerstone upon which control is based. BREAKPT operates as a "Linear Ring-Buffer", a term coined to describe the effect of a moving window along the slope of the ORP curve. BREAKPT is invoked when the computer registers (by way of a flag) that the air supply has ceased. After an initial delay to acquire stability (as air bleeds from the line), the computer begins to load the first Ring (5 points wide) with ORP first-difference points (i.e. the first-difference or slope between two adjacent ORP values) until the Ring is complete. When the Ring is complete, an average of all five firstdifferences in the Ring is calculated and assigned to Ring(1) which also receives the title "FirstRing" in the Ring-Buffer. (Note: The actual software variable names have the appropriate letter appendages, corresponding to the probe in question, ex. Ring2a(1) and FirstRing2A etc.)

The next first difference point drawn into the Ring-Buffer (i.e. Pt 6) becomes the last point of (i.e. completes) Ring(2), while Ring(2)'s first point corresponds to the second point already in the Buffer. An average first-difference for Ring(2) is now calculated based on points 2 to 6. In other words each succeeding point is admitted into the Buffer to complete the Ring formed by abandoning the point occurring 6 points earlier. Finally, the terminal Ring in the Ring-Buffer (Ring(5)) is reached and is assigned the title "LastRing" (Figure 3.6).

The value of LastRing is then compared to FirstRing and if it is substantially more negative (in this case DELTA is set to -1.25) the breakpoint is assumed to have occurred. The slope difference limit is somewhat arbitrary and is a function of the probe responsiveness. Preliminary testing, consisting of alternately tightening and loosening the knee constraint, indicated that a value of -1.25 for all probes was sufficient to detect the knee in the majority of cases (Figure 3.7).

In the event that the slope change between LastRing (Ring(5)) and FirstRing (Ring(1)) is less than DELTA (i.e. more positive), the entire Ring-Buffer shifts, with the next firstdifference point flowing in to complete Ring(6) (which now becomes LastRing). Concurrently, Ring(2) now receives the title FirstRing. The new slope difference is calculated and compared

Figure 3.6 Illustration of Linear Ring-Buffer Concept

Figure 3.7 Illustration of BREAKPT Capture of Nitrate Knee

to DELTA and again, if it is less (i.e. more positive), the Ring-Buffer continues to move in sequence. In this way, the Ring-Buffer functions as a moving window across the ORP profile until the knee is trapped by a difference in slope greater than DELTA (Figure 3.7).

It should be noted that there is a requirement that only two of the three probes detect a knee in order for control to be initiated. This serves as a protective measure should one probe suddenly become inoperative. It also permits the withdrawal (and disconnection from the amplifier) of one probe for cleaning purposes. Experience has shown that it is best to withdraw the probe during the aerobic portion of the cycle, since the computer during this time is merely recording values, rather than actively searching for a control-based feature. Moreover, reinsertion allows some time for the probe to acclimate to reactor conditions before measurements again become critical for control purposes.

The program also utilizes global variables in an INCLUDE file, so that both the size of the ring (RINGSIZE, currently set to 5), the width of the Ring-Buffer (NUMRINGS, currently set to 5) and the individual knee constraints (DELTA2A, DELTA2b, and DELTA2C, currently all set to -1.25) can be varied as a function of the operator experience with the ORP probes and the type of waste. Finally, should the knee not be detected for whatever reason (ex. all probes foul (become less responsive) to the point where the knee constraint becomes too severe) some intelligence in terms of a time-base is built into the program to initiate air resupply (in the AASD experiments) or to initiate acetate additions (in the Bio-P experiments), in order to keep the process respiring.

3.3 Raw Feed Collection Procedures

During the AASD set of experiments, the SBRs were operated in a semi-continuous mode, in the sense that they manually received feed in a batch manner (once/day). Thus, activated sludge was wasted diurnally from the pilot-plant aeration basin, by routing it to the sludge thickener, where after 20-30 minutes of gravity settling, the sludge blanket interface, (initially at a level of 100-110 litres (a function of the system SRT)) usually reached the 40-50 litre mark. The sludge was then drawn off by means of a control valve or pump and collected in a 4 litre milk container for transport to the UBC lab. Once there, it was allowed to gravity settle a second time where a visual sludge consistency inspection of the and settling characteristics, usually meant that about half the clarified supernatant would be decanted off and disposed of down the drain.

By systematically adhering to this two stage thickening process, the raw feed sludge consistently had a MLSS concentration roughly 3 times the aerobic basin of the pilot plant. Furthermore, for the most part, the feed MLSS was greater than that in the laboratory reactors. After wasting an appropriate amount from the reactors (Section 3.4.1) the feed sludge was then added (after shaking to ensure a uniform MLSS concentration) into the top of the reactor to maintain a constant reactor volume.

The remaining feed sludge was stored in a Bell-Par Industries environment chamber held at a constant temperature of 4 °C. For the most part this volume was stored purely for contingency purposes should fresh feed from the pilot plant suddenly become unavailable.

In the Biological Phosphorus (Bio-P) Removal experiments, raw sewage was obtained directly from the external equalization tanks located outside the pilot plant facility. After collection, it was transported in carboys to the lab to be stored at 4 °C, for up to a maximum of 12 days.

3.4 Operating Control Strategies

3.4.1 Aerobic-Anoxic Sludge Digestion [#]1 (AASD[#]1)

As mentioned in Section 1.2, the main objective of this research was to demonstrate the potential ORP has to control sequencing batch reactor wastewater treatment systems. Thus, operating strategies were formulated both to demonstrate control and to evaluate the effectiveness of ORP as a process control parameter.

The first such strategy involved aerobic-anoxic digestion of waste activated sludge. It was structured such that the Control Reactor (RCTR[#]1) was known as the Fixed-Time Control (FT) reactor, since the ON/OFF sequence was "fixed" at 3 hours of air-on and 3 hours of air-off. The ratio of air-on to air-off was arbitrary and other reasonable ratios consistent with the literature review comments (Section 2.3) could have been used.

In contrast, the Experimental Reactor (RCTR[#]2) was

labelled as the Real-Time Control (RT) reactor, since the on/off sequence consisted of a 3 hour air-on period (as before) but a variable length of time for air-off, contingent upon detection of the nitrate breakpoint. Reactor [#]2 exhibited Real-Time behaviour in the sense that it operated in an instantaneous online self-adjusting fashion. The rationale for adopting this control strategy is that theoretically, the Real-Time Control reactor should provide better treatment (in terms of solids degradation) since the bacteria are always ensured a ready supply of highly efficient electron acceptors (be they oxygen or nitrate). Thus, the different sequences of the reactor allow for effective organic carbon removal, and alternating nitrification and denitrification.

Both digesters were controlled on the basis of solids retention time (SRT), as this was convenient to use, has significant merits (Smith 1978), and can be related to solids loadings when variations in feed and digester TVSS are recorded as part of the daily solids inventory. Since the reactor volumes are constant (4.8 litres) and there is no recycle, the SRT equals the hydraulic retention time (HRT). The SRT chosen for the AASD[#]1 experimental runs (10 days) was admittedly on the low end of the scale (Metcalf and Eddy, (1979) recommends 10-20 days); however, a shorter SRT translates to a larger volume wasted according to the equation below.

On track-study sampling days, larger volumes were

necessary in order to accurately track parameters (such as NO_x and NH_3) which theoretically range from 0 to 100 % of their full value, throughout the course of one aerobic-anoxic cycle (assuming complete nitrification-denitrification). Thus, with a 4.8 litre liquid volume and a 10 day SRT, 480 mL of sludge was wasted on a daily basis and in due compensation, 480 mL of feed sludge was added to keep the reactor volume constant.

Other operational nuances included occasional scraping of the digester walls to return biomass accumulations to the system. Distilled water was also added on a sporadic basis to compensate for evaporative losses. Evaporation was not perceived to be a problem, as there was seldom an observable discrepancy between the liquid level in the reactors and the 4.8 litre reference mark on the cylinder walls.

Prior to start-up, the digester solids concentration was increased significantly by wasting (after a brief settling period), a clarified volume of supernatant (low MLSS) equal to that required to keep a constant SRT. The feed sludge (with a relatively high MLSS) was then added to artificially increase the solids level in the reactors, in an attempt to more closely simulate field digester conditions (> 30,000 mg/L).

Before each run, the reactors were drained, thoroughly cleaned and some of the tubing (most often the sampling ports and air supply lines) was replaced. The diffusing stones were also acid washed to remove accumulated microbial growth tending to blind off the air pores. The ORP probes were also cleaned as will be described in Section 3.5.4. The sludge from both reactors was then mixed, split into two, and reintroduced into the reactors, so that both reactors ostensibly had identical starting conditions in terms of biomass characteristics and concentrations.

Both reactors were then operated on a Fixed-Time basis for at least two days. If the ORP profile with time consistently produced the characteristic features described in Section 4.2.2. (i.e. In both reactors nitrate knees were present and dissolved oxygen levels during the plateau region of the ORP curve were between 2-4 mg/L (and roughly equivalent)), the decision to switch to Real-Time control of Reactor [#]2 was implemented. It must be noted however, that if the user requested real-time control, it was not until the next anoxic cycle that the computer switched over to this form of control. This circumvented the possibility that the user request could come during an anoxic sequence, in which the knee had already occurred.

In order to assess the ability of ORP to effectively maintain control under duress, and to evaluate ORP as a process control parameter, perturbations to the operating strategies were investigated. The first and most natural disturbance to the system involved interrupting the daily wastage and feed pattern, simulating a breakdown in supply (i.e. the waste pumps from the aeration basin). As available carbon for the denitrification reaction was exhausted, the time necessary to complete denitrification became elongated; thus, this strategy sought to demonstrate the flexibility of control based upon actual rather than fixed denitrification times.

Other aggravations included additions of strong oxidants (hydrogen peroxide and sodium nitrate), and ammonia chloride spikes, all designed to observe the stability of ORP under transient influent conditions. After each disturbance a recovery time period was allotted to allow conditions to normalize.

3.4.2 Aerobic-Anoxic Sludge Digestion [#]2 (AASD[#]2)

Much of the preceding discussion is applicable to the second sludge digestion experiment. It should be noted however that AASD[#]2 was operated at an SRT of 20 days. The control reactor again operated in a Fixed-Time fashion (3 hours air-on, 3 hours air-off), a practice which can also be described as operating in a 50/50 air on/off manner. In contrast to AASD[#]1, the Real-Time reactor also operated in a 50/50 fashion, by matching its length of aeration period to the previous time for denitrification. In otherwords, the preceding cycle's total time to eliminate the nitrates (as calculated from the moment the air supply terminated, to the nitrate breakpoint (assuming near instantaneous disappearance of D.O.)) was recalled from memory and allocated to be the length for the following cycle's aeration period. In this way a 50/50 strategy was maintained.

As mentioned in Chapter 1, it was suspected that an ORP-driven, 50/50 strategy might prove stressful for the organisms; in the sense that the strategy might collapse in on itself, with very rapid air on/off periods. However, if the bacteria seemed to readily accommodate this strategy, it might provide grounds for further investigating a control strategy which alternated extremely rapidly between denitrification and nitrification, as determined by the features on the ORP-time curve (Section 4.1). Such a strategy might induce considerably savings, through the discontinuing of overaeration during the nitrification portion of the curve.

3.4.3 Biological Phosphorus (Bio-P) Removal

In Bio-P removal, the SBRs model in time the plugflow treatment of a waste subjected to the right mix and sequence of aerobic, anoxic and anaerobic conditions. The operation of the two reactors differed in one aspect, that being, the timing for the addition to the reactor of volatile fatty acids (in this research acetate). The Fixed-Time reactor had the addition scheduled at 1 hour and 25 minutes (modelled after Comeau, 1989) into the anoxic period, while the Real-Time reactor had its timing triggered by the nitrate breakpoint.

The SBR operation during the Bio-P experiments was somewhat more complex and thus commercially-purchased Chrontrol timers were used to initiate and control most of the sequences during the cycle. For both reactors, the period lengths (Table 3.3) were modelled after Comeau (1989), with each cycle having a total length of 8 hours. During the FILL phase (10 minuteś), raw wastewater was pumped from an influent feed bucket to the reactor, where it underwent the first REACT (unaerated) period for 2 hours and 50 minutes. As indicated, approximately in the middle of the unaerated REACT period (after anoxic conditions had ended) acetate (30 mg per litre of raw influent) was pumped

SBR PHASE	CONTROL ACTION TIME ON (Hrs:Min)		RAM
FILL Period	Feed Pump (0:10)	<u> </u>	0:00
REACT (Unaerated)	(2:50)	ł	
Anoxic Period Anaerobic Period	(1:25) Acetate Pump (0:06) (1:19)	ļ	- 3:00
REACT (Aerated)			3.00
	Air Solenoids (4:00)		
	Waste Pump (0:10)	Ļ	
			7:00
SETTLE Period	(1:00)		
	Wastewater Mixers (Off)		7.50
DRAW/IDLE Period	Effluent Solenoids (0:10)		- 8:00

Table 3.3 Timing of Phases in a Bio-P SBR

for 6 minutes into the reactors. Subsequently, the following REACT (aerated) period lasted for 4 hours while the SETTLE period lasted for 1 hour and included a 10 minute DRAW/IDLE period.

Wasting normally occurs during the DRAW period, however, since the sludge settled well below the half-way decanting port, it was not possible to waste at this time. Thus, once/day, in the middle of the REACT (aerated) period, mixed liquor was wasted to control the sludge retention time at 20 days (a typical SRT for Bio-P plants). The practice of decanting one half of the reactor contents every 8 hours (i.e. clarified effluent only) made for a 16 hour hydraulic retention time.

3.5 Analytical and Sampling Techniques

3.5.1 General Procedures

As mentioned previously, the volume for a particular test was deducted from the total volume wasted. In all cases before extracting a sample, the sampling port was opened and allowed to run briefly, clearing the line of residual material not fully exposed to REACT conditions. This volume was returned to the reactor before reopening the port to obtain a representative sample. In addition, an appropriate volume of feed sludge or sewage was set-aside and reserved for later analysis.

Sampling, handling and preservation time before analysis was kept to a minimum, with the majority of tests conducted in accordance with Standard Methods, 15th Edition (A.P.H.A. et al., 1980). Exceptions and non-standard testing procedures are discussed in the following sections.

3.5.2 Suspended Solids Measurements

Due to the elevated concentration of suspended solids in both the AASD digesters and feed sludge (>5000 mg/L), the Gooch crucible method of solids determination was deemed impractical, as discussed by Anderson (1989). Instead, daily solids were determined by taking duplicate 25 mL aliquots of well mixed sludge or feed (measured in a graduated cylinder) and transferring them to 50 mL centrifuge tubes. These were then spun down at 2500 rpm in an IEC Clinical Centrifuge until solids capture was judged complete (about 10 minutes). The supernatant fraction was vacuum-filtered through a previously tare-weighted, Whatman 934AH glass microfibre filter (5.5 cm diameter), which had been removed from its aluminium storage dish. The sludge residual at the bottom of the centrifuge tube was then scraped out and washed on to the filter paper.

The aluminium dish (with the filter paper replaced inside) was then transferred to a Fisher Isotemp forced draft oven (Model 350), operating at a constant temperature of 104 °C, where it was left to dry overnight. Reweighing with a Mettler AC 100-S2 balance allowed calculation of the Total Suspended Solids (TSS) concentrations, with an average of the duplicate samples assumed to be representative. Total Volatile Suspended Solids (TVSS) was determined by weighing the cooled residue remaining after igniting the dish to 550 °C (for one hour) in a Lindberg muffle furnace (Type 51828).

3.5.3 pH, Alkalinity, Dissolved Oxygen and Temperature

All pH measurements used a Beckman @ 44 pH meter with automatic temperature compensation (ATC). Several different probes were used throughout the research; however, the meter was routinely calibrated using twin standard buffers (4.0 and 7.0 or 7.0 and 10.0) before being placed into 25 mL of unfiltered reactor and feed samples. Temperature measurements were made with a mercury thermometer. When dissolved oxygen readings were of interest a Yellow Springs Instrument (YSI) DO meter (model 54ARC) was used in combination with a YSI 5739 submersible probe. The membrane was changed on a regular basis to ensure effective D.O. transfer across the membrane. Samples for total alkalinity were titrated to an end point of pH of 4.5 with 0.02 N H₂SO₄ acid.

3.5.4 ORP Measurements

In keeping with the focus of this research, ORP measurements were recorded continuously using the probes described in Section 3.2.1. Probe responsiveness was tested prior to each run by immersion in a quinhydrone solution. Quinhydrone, an organic acid, sets up a well-defined equilibrium potential particular to a given pH and temperature.

Accordingly, 2 grams of quinhydrone were dissolved into 200 mL of pH = 4 and pH = 7 buffer solutions (ASTM (1983)) and each probe in turn was inserted into the solution. At a pH = 4 (T = 18 °C), an ORP probe (with a Ag/AgCl reference electrode) is expected to yield an ORP measurement of 270 millivolts. The corresponding value for a pH = 7 solution is 92 millivolts. In all cases, the ORP probes responded to within 5 to 20 millivolts of the expected value, although with varying degrees of speed (usually 2-15 minutes).

During this research it was seldom necessary to resort to some of the harsher cleaning methods described in the American Society for Testing Materials (ASTM) handbook. The relatively clean waste and the frequency of aerobic conditions seemed to prohibit the build-up of slime films on the platinum ring which sometimes impede the rate of electron transfer across the surface. Normally all that was necessary was a distilled water rinse followed by a perfunctory wipe with a kleenex tissue. If visual discoloration of the noble metal persisted, the probes were dipped into either a dilute HCl or chromic acid (1 g $K_2Cr_2O_7$ in 100 mL of concentrated H_2SO_4) cleaning solution, as recommended by the ASTM.

In some probes there was a slow movement of microbial growth (resembling a wetting front) up the ceramic porous plug which could have possibly reduced the ion transfer necessary to maintain electroneutrality. As this plug could not be physically accessed for cleaning, no remedial action was taken.

3.5.5 Nitrogen Analysis

Nitrate and ammonia samples were first filtered through Whatman No. 4 filters prior to analysis. Nitrate was analyzed in triplicate by the colorimetric automated cadmium reduction method (A.P.H.A., 1980), using a Technicon

72

AutoAnalyzer II Continuous Flow Analytical System (Industrial Method No. 100-70W). The cadmium granules advocated in this method were replaced with a cadmium wire. The strip chart recorder peak heights were compared with the heights from a series of standards of known concentrations. Ammonia Nitrogen was measured using the automated phenate method, with the intensity of the colour complex formed, determined by Industrial Method No. 98-70W on the AutoAnalyzer II.

Total Kjeldahl Nitrogen (TKN) (in the AASD experiments) was determined by digesting 2 mL of the sample (and an appropriate volume of the standard) on a BD-40 block digester (in the presence of concentrated H_2SO_4 and K_2SO_4) in order to liberate all organically bound nitrogen. Samples and standards were then analyzed colorimetrically in triplicate on the AutoAnalyzer II (Technicon Industrial Method No. 376-75W). Percent N in the Bio-P experiments was measured exactly the same way except, instead of a liquid sample, approximately .025 grams of dried solids sample was used.

3.5.6 Phosphorus Analysis

Ortho-phosphate (in the form of PO₄⁻³⁾ was determined on filtered samples using the automated ascorbic acid reduction method (Technicon Industrial Method No. 327-74W). In this method, ammonium molybdate and potassium antimonyl tartrate react with orthophosphate, to form an antimony-phosphomolybdate complex which yields an intense blue colour suitable for photometric measurement after reduction with ascorbic acid.

Samples for total Phosphorus (TP) and/or % P were

prepared and measured in the same way as TKN, with digestion on the block liberating all organically bound phosphorus. During the process, liberated phosphorus is oxidized to orthophosphate, the concentration of which can be determined by comparison to peak heights of known standards in the automated ascorbic acid reduction method described above.

3.5.7 Estimates of Carbon Content

In order to characterize the sludge (i.e. determine a C:N:P: ratio) particulate samples for COD analysis were analyzed using the dichromate reflux method outlined in Standard Methods (A.P.H.A., 1980). Fifty mL of the sludge was diluted to 500 mL (i.e. a 1/10 dilution) with 10 mL duplicate volumes withdrawn by wide mouth pipette and transferred to the reflux flasks.

Total Organic Carbon (TOC) was performed on the soluble fraction of the sludge using a 10 mL sample volume. The samples were run automatically on a Shimadzu Total Organic Carbon Analyzer (Model TOC-500) using a series of low and high standards. Combustion of the sample resulted in the production of a quantity of CO_2 proportionately equal to the amount of carbon in the sample.

3.6. Sample Preservation and Storage Techniques

Whenever possible, samples were analyzed promptly after collection and preparation. Table 3.4 summarizes sample preservation and storage techniques when expediency dictated later analysis.

Chemical Parameter	Sample Volume Preservative Storage Period	Analyzed by
COD	50 mL Frozen Indefinite	Dichromate Reflux Method
тос	10 mL Frozen Indefinite	Shimadzu TOC-500
NO _x -N	3 mL Phenol Mercuric Acetate 3 weeks @ 4°C	Autoanalyzer Colorimetric Automated Cadmium Reduction
NH3-N	3 mL Conc. H ₂ SO ₄ 3 weeks @ 4°C	Autoanalyzer Colorimetric Method
TKN %N	3 mL (TKN) 0.025 g (%N) Conc. H ₂ SO ₄ 3 weeks @ 4°C	Autoanalyzer Colorimetric Method
TP %P	3 mL (TP) 0.025 g (%P) Conc. H ₂ SO ₄ 3 weeks @ 4°C	Autoanalyzer Colorimetric Method
Ortho-P	3 mL Phenol Mercuric Acetate 3 weeks @ 4°C	Autoanalyzer Colorimetric Ascorbic Acid Reduction

,

Table 3.4 Sample Preservation, Analysis and Detection Limits

3.7 Statistical Techniques

Averages, standard deviations, maximum and minimum values were calculated using the software program Symphony (release 1.2) of Lotus Development Corporation (Cambridge MA).

CHAPTER 4

AEROBIC-ANOXIC SLUDGE DIGESTION EXPERIMENTS

4.1 Review of Special Features of ORP Curves

Before highlighting some of the mechanical and biological nuances particular to this research, it is necessary to describe in greater detail, the expected shape of an ORP-time profile, generated when activated sludge is subjected to alternating aerobic-anoxic conditions. Although the main feature of interest is the nitrate breakpoint (or knee (which it superficially resembles)), several other distinctive features exist, some of which may offer potential for control in later research. Since other investigators (Peddie et al., 1988, Jenkins and Mavinic, 1989b) have described these features in detail, only a brief review is presented here.

Figure 4.1 displays the classical form of an ORP-time curve produced from an AASD reactor experiencing Fixed-Time conditions (3 hours of air-on, 3 hours of air-off). It can be seen that the ORP probe responds to the influx of oxygen by rising rapidly (as air is supplied to the reactor), even though the dissolved oxygen curve (the dotted line) shows no measurable response. During this initial period it is presumed that oxygen is being consumed (as soon as it becomes available) by nitrifiers, oxidizing the ammonia built-up from the previous anoxic portion of the cycle. This is shown by a decrease in NH₃ (diamond marker) and an attendant increase in the nitrate concentration (triangular marker).

Once the majority of this reserve has been transformed to

Figure 4.1 Fixed-Time ORP Profile Under AASD Conditions

nitrates, the oxygen "breaks through" and becomes residual oxygen, measurable by a dissolved oxygen probe (the sudden jump in the dashed (D.O.) line). The ORP-time curve follows suit, making a sudden bend which due to its angular shape, is colloquially known as the "elbow" since it is reminiscent of the human equivalent. It is not yet clear whether this inflection point/elbow actually corresponds to a concentration of zero NH_{τ} or rather a point where the oxidation of NH, by O, is at equilibrium (in balance with) the production of NH, through hydrolysis of organic nitrogen. The latter explanation seems more likely since the NH, seems to be "levelling out" at some minimum (plateau) value, which may mean that beyond this inflection point, as fast as it is produced by hydrolysis, it is being converted into nitrates. It can be seen that the nitrate concentration continues to increase beyond this point for the remainder of the aeration period.

Eventually the ORP probe mimics the D.O. response, by reaching a plateau value, seemingly a function of numerous variables such as probe sensitivity, the rate of airflow and the biological dynamics involved. This plateau reflects an equilibrium relationship between the rate of air supply and the rate of air utilization by the biomass; again however, the specifics are not well understood at the present time.

Upon cessation of air and as free oxygen is quickly exhausted from the system, there comes a time when those bacteria whom are able to, switch over and use nitrates as a terminal electron acceptor in the electron transport chain. Some of the researchers mentioned previously have documented an inflection point related to the disappearance of oxygen; however, this has never been definitively observed during this research.

nitrate respiration continues and the nitrate As concentration declines, eventually the point of zero nitrate concentration (the inflection point in the ORP-time curve) is reached. As mentioned this point is known as the "nitrate knee" and it is this feature which is the focus of this research. Beyond this, as more negative potentials are established, a corresponding "anaerobic plateau" begins to develop and presumably it is here that less efficient solids degradation processes (such as sulfate reduction, methane production and fermentation) predominate.

Sampling at the very limit of anaerobiosis however (2 hours and 45 minutes of air off) yielded no production of sulfides. Moreover, even in the feed sludge which may have been stored for up to 8 hours, no measurable sulfides (detection limit of 0.1 ppm) were detected. It would seem that insufficient time is available for any anaerobic organisms (that managed to survive the aerobic phase of the cycle), to develop into a significant population. Thus, after the nitrate breakpoint, in theory, very little if any solids degradation is occurring because of the lack of highly efficient electron acceptors and the failure of other organisms to establish a significant presence.

For comparative purposes, Figure 4.2 portrays an ORP-time profile indigenous to the Real-Time Control (RT) reactor (3

80

Figure 4.2 Real-Time ORP Profile Under AASD[#]1 Conditions

hours of air-on, a variable length of time for the air-off). Again, clearly evident is the intersection between the ORP knee and the point of zero nitrate concentration. Consistent with the objectives of the Real-Time operating strategy, the profile does not proceed beyond this point; instead, it rises rapidly, as the ORP probe responds to the presence of oxygen immediately available after the computer detects the breakpoint and reinitiates the air supply.

Figure 4.2 shows a sharp drop in the ORP value (at approximately 2:30 pm) corresponding to the input of daily feed. Due to the daily mechanics involved in sludge collection, transport, and routine laboratory analyses, the feed sludge was frequently in a highly reduced state, at the time of feeding, as compared to the reactor contents. Thus, feeding in these circumstances was equivalent to suddenly increasing the concentration of reductants in the reactor, (an increase in the concentration of the reduced form of NAD⁺). Depending upon the relative difference between the feed and reactor ORPs, an ORP drop of up to 100 mV (depending upon the probe sensitivity) could occur. Of course, as the feed experienced oxidization, the ORP would begin to return to its prior value.

Since the addition of feed created the potential for a false knee to be induced in the Real-Time (RT) reactor curve, the practice of feeding the Real-Time reactor approximately half-way through the aeration cycle (after the D.O. measurement) was adopted. However, the reactors would frequently be out of phase; therefore, it was quite possible that the Fixed-Time (FT)

Figure 4.5 Linear Diagram of Components Identifying Problem Areas

Many of the mechanical problems were isolated and remedied in a diagnostic fashion, by sequentially disconnecting the system elements and linking them in various and tandem combinations until identification of the offending component(s). It is worthwhile to mention that a large portion of the difficulty was surmounted, when the experiment was redesigned with adequate knowledge of proper grounding techniques. For example, during one phase, all electrical components were connected (and apparently functioning properly); however, the ORP probes behaved erratically when immersed in the reactor solutions, despite near perfect readings when submerged in quinhydrone test solutions. An oscilloscope detected a stray current travelling down the motor armature, through the mixing shafts and into the reactor solutions, thereby swamping any biologically-induced signals. To remedy this problem, teflon connecters were designed in order to isolate the motors from the mixing shafts/biological liquids.

The existence of ground loops further complicated matters by producing an interaction effect between the two reactors, surfacing primarily when one reactor switched on (or off) an air solenoid. The effect manifested itself in the form of a sudden spike in the ORP profile of one reactor, when the air to the other reactor clicked on or off (and vice versa). This became critical in the Real-Time control reactor, since if the spike conformed to a sudden drop in the ORP profile, it quite realistically simulated a nitrate breakpoint, thus causing the computer to prematurely initiate air resupply. Figure 4.6

Figure 4.6 Reactor Interaction Effects Due to Improper Grounding

illustrates a typical example of the interaction effect between the two reactors.

Many of the problems were trivial in nature but quite time consuming to detect. For example, a loose ground pin in an electrical socket on a remote power bar, produced an intermittent problem whereby the curve form would be smooth for a period of time (Figure 4.7) and then suddenly degenerate into electrical noise. Eventually this problem worsened to the point where the ORP curves resembled a seismograph waveform (Figure 4.8).

An even more time consuming problem was the interaction effect between the suspected existence of an Quickbasic 4.5 language itself and the custom-built relay control board originally installed in the computer. In this case, the computer would run perfectly, from anywhere from 2 to 9 days, before suddenly "locking up" to the extent of requiring a power-down/ power-up reboot of the system. The locked condition of the computer usually meant that one reactor received air overnight while the other reactor went unaerated, a condition presumed to be highly detrimental to bacterial cultures having a life-span of 20-30 minutes. Moreover, after such a disturbance, any serious comparison between the two reactors was highly questionable. The purchase of a commercial relay-control board solved this problem.

Despite many such difficulties, only a few of which have been recounted here, it can be concluded that, provided sufficient attention to detail is observed, a robust design will

88

Figure 4.7 ORP Profile Affected by Intermittent Electrical Noise

Figure 4.8 Complete Deterioration of ORP Profile

eventually prevail. This attention to detail would be paramount in full-scale applications, where numerous electrical and other similar interferences would be commonplace readily negating any meaningful data monitoring and process control.

4.2.2 Experimental Pre-Run Conditions

Once the hardware and software irregularities were eliminated, attention could be focused on the biological conditions in the reactor. "Adequate running conditions" could be obtained by harmonizing readily adjustable parameters, such as air supply and solids concentrations. In certain cases, this would take several days as the biological elements within the reactor became accustomed to the dynamic interplay between solids levels and air supply.

Experimenting, until the right combination of these two parameters was achieved, led to the development of conditions deemed suitable for the commencement of an AASD run. These conditions consisted of "equivalency" in terms of ...

(i) Both reactors operating on a Fixed-Time basis,

 (ii) The consistent occurrence of the characteristic curve shape of the ORP profile under Fixed-Time conditions (with all attendant features);

(iii) A good range (at least -200 mV to +200 mV) between the minimum and maximum ORP values; and

(iv) A D.O. measurement during the plateau portion of the cycle between 2 and 4 mg/L.

Figures 4.9 and 4.10 consist of extreme examples of curves obtained during sporadic periods when the experiment

Figure 4.10 Unusual Response Pattern: No Diss. Oxygen Breakpoint

91

seemed to be mechanically sound but experiencing difficulties, as biological conditions inside the reactor adjusted to the balance between air supply and solids level. In the majority of cases, curves much less extreme were observed; however, whenever the micro-organisms were acclimating to pre-run conditions, the ORP curves took a few days to consistently arrive at all of the distinctive features of the "classic" ORP-time curve indigenous to Fixed-Time AASD conditions (Figure 4.1).

Once "equivalency" was achieved, the command to "switch over" to Real-Time control was issued (Figure 4.11). From then on the air was activated in the Real-Time reactor by the breakpoint occurring in the anoxic cycle.

4.3 Behavioral Trends: AASD[#]1 Experimental Conditions

4.3.1 Operating Characteristics and ORP Profiles

Several general observations can be made regarding the pattern of ORP curves generated during the first set of AASD experiments. Under this operating strategy, at least 4 cycles/day of aerobic-anoxic sequences (6 hours total for the air-on, air- off time period) occurred in the Fixed-Time reactor. The Real-Time reactor however would frequently be into its 5th cycle, since denitrification often occurred within 3 hours, making the total cycle length of the Real-Time reactor less than 6 hours. Over the course of a 24 hour period however, all probes in both reactors showed a remarkable consistency in the curve shape, from cycle to cycle as illustrated in Figure 4.12.

As mentioned earlier, critics of ORP often decry the

Figure 4.11 "Switch Over Day": FT to RT Control - AASD*1

Figure 4.12 Temporal Reproducibility of ORP Curves in RT Reactor

fact that ORP probes in the same sewage, frequently yield widely divergent results. This research, however, emphasized the relative change in ORP with time, with Figure 4.13 illustrating that all 3 probes in the same reactor simultaneously detected the breakpoints, despite widely diverging absolute values. Minor discrepancies in detection times are ascribed to differences in the individual probe sensitivities. Moreover, the particular example selected is an extreme example of differences in the absolute ORP values and is presented solely for clarity of illustration with regard to detection times. In the vast majority of cases, the actual absolute difference between probes in the same reactor was less than 20 millivolts.

The most distinctive characteristic evident in reactors operating under Real-Time AASD conditions, is the selfadjusting ability of the reactor to dynamically meet zeronitrate effluent quidelines. This is due to the reactor's ability to delay switching on the air until denitrification is complete. On a 24 hour basis (after feeding which raises the carbon level in the reactor), the overall available carbon level decreases, necessitating longer and longer denitrification times (i.e. There is an increase in the total elapsed time between the cessation of air and the nitrate breakpoint). The advent of the following day immediately feeding on shortens the denitrification time and the sequence repeats itself. Operating the reactors in this way generates the cyclical pattern illustrated in Figure 4.14 and 4.15, with the length of the anoxic zone a reflection of the amount of carbon available in

Figure 4.13 Spatial Reproducibility of 3 ORP Electrodes in Same Reactor

Figure 4.14 Anoxic-Zone-Length: Cyclical Pattern Due to Daily Feed

the system.

Further to this, Figure 4.15 illustrates the power of this approach since, in this snapshot, many of the anoxic periods extend beyond the 3 hour anoxic-limit constraint (time available for denitrification) arbitrarily imposed upon the Fixed-Time reactor. Especially noticeable are the two days in which the feeding process was omitted. On these days, the dearth of carbon available for denitrification would result (if decanting had occurred) in a release to the environment (from the Fixed-Time reactor) of an effluent containing nitrates. Again, if a water body had as a priority a ban on nitrates, these instances would represent periods of non-compliance with the stated objectives. In contrast, it can be seen that the Real-Time reactor ensured that all the nitrates were eliminated before release of the effluent.

4.3.2 General Observations: Chemical Parameters

Table 4.1 summarizes some selected chemical statistics of daily measurements performed on the Feed, Fixed-Time, and Real-Time reactors during AASD[#]1. A complete listing of chemical data for the entire 60 day run can be found in Appendix E.

Since no effort was made to regulate the solids loading to the digesters (other than maintaining a reasonably consistent sludge collection procedure), the daily variation in feed solids concentrations was quite large and is reflected in the large standard deviation (Table 4.1) relative to the means (i.e Std. Dev. approximately 20 % of the mean value) of the TSS

Chemical Parameter	Statistic	FEED	Fixed-Time Reactor	Real-Time Reactor
TSS (mg/L)	Maximum Mean Minimum Std.Dev.	13550 7841 5188 1626	7472 6569 5336 600	7404 6511 5288 610
VSS (mg/L)	Maximum Mean Minimum Std.Dev.	10794 6174 4158 1306	5812 5080 4154 442	5712 5005 4116 432
TKN (mg/L)	Maximum Mean Minimum Std.Dev.	953 546 331 111	493 436 265 47	500 428 323 44
NOX-N (mg/L)	Maximum Mean Minimum Std.Dev.	7.68 1.89 0.13 2.05	4.66 1.64 0.08 0.86	4.18 1.80 0.04 0.73
NH3-N (mg/L)	Maximum Mean Minimum Std.Dev.	16.60 3.00 0.06 4.27	0.99 0.23 0.04 0.29	0.92 0.16 0.07 0.18
TP (mg/L)	Maximum Mean Minimum Std.Dev.	472 306 164 64	385 300 164 49	385 302 199 53
Ortho-P (mg/L)	Maximum Mean Minimum Std.Dev.	31.70 8.40 0.00 9.27	61.54 45.85 23.82 7.59	56.23 42.39 25.00 6.79
Dissolved Oxygen (mg.L)	Maximum Mean Minimum Std.Dev.		5.30 3.20 1.40 0.93	5.20 3.31 1.40 0.88
рн	Maximum Mean Minimum Std.Dev.	7.30 6.79 6.37 0.20	7.36 6.76 6.37 0.22	7.39 6.77 6.39 0.21

 Table 4.1
 Selected List of Chemical Statistics: AASD[#]1

and VSS feed solids. It can also be seen that the feed solids concentration (both TSS and VSS) was approximately 1000 mg/L greater on average than the reactor solids levels. Less variation was expected in the reactor solids concentrations (Std. Dev. approximately 9 % of the mean). The different extent of these variations are shown in Figure 4.16. It is noted that full-scale digesters operate at much greater solids concentrations (approx. 3 % solids). The pilot plant facility however, is not able to produce this level of solids as influent feed to the laboratory digesters. The average ratios of VSS/TSS were 0.79, 0.77, and 0.77 for the Feed, FT, and RT reactors, respectively. The relatively constant nature of all of these ratios is illustrated by parallel plots of VSS and TSS for the feed sludge only (Figure 4.17).

The speciation of nitrogen forms (TKN, NH_3 , and NO_x) is very much a function of the sampling time (i.e whether the air is on or off); thus, the standard deviations (Table 4.1) for both the NH_3 and NO_x are quite large. Since the TKN parameter is almost all organic nitrogen, its variation is much less.

Figures 4.18 and 4.19 show the profiles with time of total nitrogen and total phosphorus. The feed nitrogen content fluctuated in accordance with the influent solids concentration; however, inside the reactors, the total nitrogen remained relatively constant. As nitrogen was removed from the system, it should have showed a gradual decrease over the course of digestion. It is suspected that experimental error masked this trend and therefore more precise laboratory techniques (such as

Figure 4.17 Parallel Plot: Feed Sludge AASD[#]1 TSS/VSS Ratio

Figure 4.18 Fluctuations in Total Nitrogen Content: AASD^{#1}

Figure 4.19 Fluctuations in Total Phosphorus Content: AASD^{#1}

pipetted dilutions) were implemented for subsequent runs.

The total phosphorus experienced an increase during the first half of the run, while subsequently levelling off during the latter portion of the run. It is not known why this occurred but it is suspected that the initial rising trend in the influent TP values slowly forced the reactor TP levels to follow suit (since the reactor values represent a trade-off between the relative difference between feed and wastage values).

With regards to soluble phosphorus, the variation in influent ortho-P was directly related to the freshness of feed. If routine operations dictated that the sludge be stored for several hours before being utilized as feed, then anaerobic conditions would prevail, releasing phosphorus into the bulk liquid. Thus, the standard deviation for the influent ortho-P was greater than 100% of the mean. On a cyclical basis, however, inside the reactor, the alternating aerobic-anoxic conditions would have caused an uptake followed by a release of phosphorus to the liquid. Due to an oversight, this trend was not verified.

Total CODs were done on all sludges for the first 20 days. When coupled with daily TKN (minus the ammonia) and TP (minus the ortho-P) measurements, average C:N:P ratios for the sludges could be estimated. They were calculated to be 100:5.1:2.7, 100:5.4:3.4, and 100:5.3:3.4 for the Feed, FT and RT sludges, respectively. In all cases, the ratios were slightly larger than the conventional ratio (100:5:1, Metcalf and Eddy (1979)), especially for the nitrogen to phosphorus proportion.

This is consistent with the pilot plant's operation as a bionutrient removal plant, as the sludges were expected to have a higher proportion of nutrients, especially phosphorus.

Sporadic measurements of soluble COD in the reactors revealed averages of 50 mg/L for the FT reactor, and 46 mg/L for the RT reactor, respectively. Both reactors had an average TOC concentration of 14 mg/L. The values for both these measurements are consistent with the sludge digestion process, as little soluble carbon was expected to be available, since the reactors operate with the primary source of carbon generated through endogenous metabolism. Carbon that does become available through cell lysis is immediately consumed by other bacteria.

From the outset of this research, dissolved oxygen measurements were considered less important than ORP, due to reactor dynamics at the lab scale. In other words, it was quickly evident that providing identical airflow rates to the two reactors, often produced different D.O. levels in the bulk liquids. Several possible reasons include;

- (i) Irregular pore sizes in the diffusing stones;
- (ii) Disparate fouling rates of these pores;
- (iii) Possible slight discrepancies in the internal diameters of the air tubing; and
- (iv) Variations in the solids levels between the reactors.

The above factors acted in concert to produce visually-discernable differences (in terms of bubble size) between the reactors. This translates directly into oxygen transfer efficiency. Furthermore, since bubble size control was beyond simple modifications to the experiment, it mitigated against using equal air flow rates to control air supply. Instead, air control was based upon preserving a relatively stable D.O. liquid level in the reactor (usually between 2 and 4 mg/L during the D.O. plateau portion of the cycle). As can be seen from Table 4.1, the relatively low standard deviation means that the majority of D.O. measurements fell within the required range.

Routine pH monitoring was incorporated as a matter of principle since pH (acting as a "master variable") often provides the first indication of critical disturbances to a system. In AASD research, pH is especially important, since a prime reason for favouring aerobic-anoxic over continuousaeration methods of treating sludge, is the fact that the consumption of approximately 7.2 mg/L of alkalinity (as CaCO₃) (Barnes and Bliss, (1983)), during the endogenous-respiration nitrification reaction ...

> $C_{5}H_{7}NO_{2} + 5O_{2} ==> 5CO_{2} + NH_{3} + 2H_{2}O$ (4.1) 2NH₃ + 3O₂ ==> 2NO₃⁻ + 6H⁺ (4.2)

 $H^{+} + HCO_{3}^{-} = H_{2}CO_{3}$ (4.3)

is balanced by alkalinity generated through denitrification reactions and reactions involving ammonification of organic nitrogen to NH_3 (Warner et al., (1985)).

Table 4.1 indicates that the pH of both reactors maintained a pH in and around the neutral range of 6.5 to 7.5. This is further shown by a plot of the daily variation in pH for the FT (Figure 4.20) and RT (Figure 4.21) reactors, respectively. There does seem to be a slight decrease with time in the pH of both reactors; however, the fairly small amount of fluctuations in the pH level indicate that the alkalinity produced during the anoxic portion of the cycle, was generally sufficient to balance the alkalinity consumed during the aerated portion of the cycle. As mentioned (Section 2.3), the absence of chemical additives to buffer pH is one of the more attractive cost-related features for considering aerobic-anoxic sludge digestion. If, however, the pH continued to decline, perhaps periodic chemical adjustments could be instituted.

In this research, all experiments were conducted at a relatively constant room temperature of 22 °C \pm 1 °C. The impetus for this originates from the Nernst equation, which includes temperature in the denominator of the term preceding the logarithm. If temperature is held relatively constant, then in theory, a measurable change in the ORP potential can be directly attributed to a specific alteration in the ratio of oxidized to reduced species, rather than to a fluctuation in temperature. In practice, the feed sludge was usually slightly cooler than the reactor sludges; however, there was no discernable temperature drop. Thus a decrease in ORP could be ascribed definitively to a change in the ratio of the oxidized to reduced species (in this case the addition of the reducing feed).

Figure 4.21 Real-Time Reactor: pH vs. Time for AASD*1

4.3.3 Mass Balances: Solids, Nitrogen and Phosphorus

One method of comparing the performance of the two reactors is from a mass balance perspective (Figure 4.22). Both reactors were designed to reduce solids; therefore, since TSS and VSS measurements were made on a daily basis (for both digesters plus feed) any missing solids can be presumed to be degraded by bacterial processes. Similarly, nitrogen (TKN, NO_x , NH_3) was measured daily (with the nitrogen forms both expressed as nitrogen); thus, TKN and NO_x were directly additive and were equal to the total nitrogen entering and exiting the system. Since the pH remained in the neutral range, it is assumed that no stripping of NH_3 occurred and any missing nitrogen is lost solely as nitrogen gas. Phosphorus (TP, Ortho-P) was also measured daily; however, phosphorous should theoretically be conserved since there is no biological mechanism for its removal.

Tables 4.2 and 4.3 summarize the results for each reactor based upon mass balances performed in two distinct manners. The actual calculations have been included in Appendix F. In the tables, the column entitled "Overall Mass Balance" refers to a summation period incorporating days 1 through 60, while the column entitled "Moving Average Balance" involves averaging the results from multiple balance periods, each equivalent in length to one 10-day SRT period (i.e. First SRT -Days 1-10, Second SRT - Days 2-11, etc.). As is evident in both tables, the two methods yield similar results for solids degradation (in terms of TSS and VSS) and nitrogen removal. The

V_F = Daily Volume of Feed Sludge

C_p = Concentration of Parameter in Reactor

V_R = Volume of Reactor

Cw= Concentration of Parameter in Waste

V_w= Volume Wasted per Day

 $\triangle (C_R \times V_R) = \text{ Change in Reactor Parameter Over Sampling Period}$ (+) ---> Increase ; (-) ---> Decrease

Mass Balance Parameter Percent Reduced	Moving Average Balance Wareham (1991)	Moving Average Balance Jenkins et al. (1989a)	Overall Mass Balance Wareham (1991)	Overall Mass Balance Jenkins et al. (1989a)
TSS	14.7 %	12.5 %	15.8 %	
VSS	16.8 %	14.0 %	17.7 %	14.6 %
Total N	17.5 %		17.9 %	12.5 %
Total P	-6.5 %		-6.2 %	1.4 %

Table 4.2 Mass Balances for Fixed-Time Reactor: AASD[#]1

Table 4.3 Mass Balances for Real-Time Reactor: AASD*1

Mass Balance Parameter Percent Reduced	Moving Average Balance Wareham (1991)	Moving Average Balance Jenkins et al. (1989a)	Overall Mass Balance Wareham (1991)	Overall Mass Balance Jenkins et al. (1989a)
TSS	15.2 %		15.7 %	
vss	18.0 %		18.3 %	
Total N	19.5 %		21.1 %	
Total P	-6.9 %		-5.8 %	

relatively low percentage removals for both solids and nitrogen were not unexpected, since the reactors were operated at such a short SRT.

For comparative purposes, the work of Jenkins and Mavinic (1989a) is also presented. In their study (comparing continuously aerated versus aerobic-anoxic digestion), one of the reactors was operated in a Fixed-Time fashion (albeit with a cycle partition of 2.5 hours air-on/3.5 hours air-off). The values quoted in Table 4.2 are those reported for the same SRT (10 days) and an equivalent temperature (20 °C). It is apparent that the removals obtained for both solids and nitrogen in the AASD[#]1 experiments, compare well with the study by Jenkins and Mavinic (1989a), being a few percentage points higher for both solids and nitrogen.

The phosphorus mass balance for this experiment recorded an apparent increase of 6 percent. The order of magnitude of this error is typical of the TP digestion technique used; since other researchers, (Jenkins (1988), Elefsiniotis (1992)) have reported similar difficulties with closing the phosphorus loop. It should be noted that the relatively small closing error that Jenkins and Mavinic (1989a) report for phosphorus, is more singular than characteristic of their results. As they acknowledge, all the phosphorus can be accounted for within experimental error, with a recovery range of 77-99 %. Thus, although one reactor closed within 1 % (coincidentally it is the aerobic-anoxic reactor considered in this comparison), the range quoted also means that one reactor closed

within 23 percent. In fact, of the 18 phosphorus mass balances presented in the original research (Jenkins 1988), only seven (40 %) closed with less than 6 percent. Thus, an average of all phosphorus mass balances presented in their work reveals a phosphorus closing error of 8.6 percent. This latter number more closely aligns itself with the order-of-magnitude phosphorus error arrived at in this study.

A comparison between Fixed-Time and Real-Time Control reactors indicates that both reactors performed essentially the same in terms of solids degradation (both TSS and VSS). Superficially, it seems that the Real-Time reactor performed slightly better in relation to nitrogen removal (up to % using the overall mass balance method); however, the 3 difference is not thought to be substantial enough to form any non-debatable conclusive statements.

Thus, as a criteria to evaluate the overall performance of the two reactors, the mass balances associated with solids, nitrogen and phosphorous do not convincingly reveal a distinguishable difference between the two reactors. Instead, this method indicates that both reactors were comparable in terms of their removal efficiencies, with the Real-Time Control reactor perhaps (but not definitely) performing marginally better in terms of nitrogen removal.

4.3.4 Evaluation: Unsteady Process Input Conditions

The second method of comparing the performance of the two reactors is to investigate the probe behaviour, when the reactor contents are subjected to transitory stresses. This concurrently evaluates the suitability of the ORP probe as a control parameter. Accordingly, the reactors received (on a mass basis) "low" and "high" spikes of sodium nitrate, ammonium chloride and hydrogen peroxide in order to simulate unsteady process input conditions.

Tables 4.4, 4.5 and 4.6 outline the timing and concentrations of the various spikes. Note that a "high" spike is defined as having 3 times the mass of chemical added as the "low" spike. Samples were removed from the reactors prior to, and immediately following the spikes, after allowing two to five minutes for adequate mixing and dispersion of the chemicals. Figures 4.23 through 4.28 show selected vignettes of the ORP response to the various spikes with some of the more pertinent statistics recorded on each figure.

These figures can best be explained by tabulating for each reactor, the number of deviations (over the entire run) from the ideal curve shapes indigenous to the Fixed-Time (Figure 4.1) and Real-Time (Figure 4.2) control operating strategies. Deviations from the "norm" can then be classified as "failures", since in the majority of instances, they represent a failure to complete a biological reaction.

For example, in this run, 3 major categories of failures exist, most of which can be linked to chemical spikes. The first class refers to "Incomplete Denitrification" and occurs when there is no discernable nitrate breakpoint in the ORP-time profile. No nitrate breakpoint means that insufficient time existed for the micro-organisms to fully eliminate the

Reactor	FT	RT	FT	RT
Date	July/11/90	July/11/90	Aug/6/90	Aug/6/90
Day Number	23	23	49	49
Sampled Nitrate	3:10 pm	5:10 pm	1:20 pm	10:00 am
Air On (Hr:Min)	2:05	1:30	1:35	1:30
Concentration	2.02 mg/L	1.50 mg/L	1.68 mg/L	2.34 mg/L
Time of Spike	3:25 pm	5:10 pm	1:20 pm	10:10 am
Amount ²	43.2 mg	43.2 mg	129.6 mg	129.6 mg
Sampling Time	3:30 pm	5:15 pm	1:25 pm	10:15 am
Concentration ¹	4.09 mg/L	3.46 mg/L	7.02 mg/L	8.09 mg/L

Table 4.4 Particulars of Sodium Nitrate Spikes: AASD^{#1}

 $^1\mathrm{Concentration}$ is measured as $\mathrm{NO_3-N}$ mg/L $^2\mathrm{Amount}$ is on a weight basis as Sodium Nitrate

Table 4.5	Particulars of	f Ammonium	Chloride S	pikes: AA	\SD [#] 1
-----------	----------------	------------	------------	-----------	--------------------

Reactor	FT	RT	FT	RT
Date	July/13/90	July/13/90	Aug/9/90	Aug/9/90
Day_Number	25	25	52	52
Sampled Ammonia	5:20 pm	2:55 pm	4:35 pm	2:40 pm
Air Off(Hr:Min)	0:55	0:55	1:25	1:25
Concentration	0.41 mg/L	0.39 mg/L	0.59 mg/L	0.56 mg/L
Time of Spike	5:25 pm	3:00 pm	4:40 pm	2:45 pm
Amount ²	43.2 mg	43.2 mg	129.6 mg	129.6 mg
Sampling Time	5:30 pm	3:05 pm	4:45 pm	2:50 pm
Concentration ¹	1.37 mg/L	1.27 mg/L	6.68 mg/L	6.43 mg/L

 $^1\mathrm{Concentration}$ is measured as $\mathrm{NH_3-N}$ mg/L $^2\mathrm{Amount}$ is on a weight basis as Ammonium Chloride

Table 4.6 Particula	rs of Hydrogen	Peroxide Spikes:	AASD [#] 1
---------------------	----------------	------------------	---------------------

Reactor	FT	RT	FT	RT
Date	Aug/12/90	Aug/12/90	Aug/15/90	Aug/15/90
Day Number	55	55	58	58
Sampled D.O.	2:00 pm	3:10 pm	2:15 pm	3:10 pm
Air On(Hr:Min)	1:30	1:30	1:30	1:30
Concentration	1.60 mg/L	1.40 mg/L	2.70 mg/L	3.75 mg/L
Feed	2:50 pm	3:40 pm	2:25 pm	3:15 pm
Sampled D.O.	3:15 pm	3:55 pm	2:45 pm	3:35 pm
Air On(Hr:Min)	2:45	2:15	2:00	1:55
Concentration	0.75 mg/L	0.80 mg/L	1.50 mg/L	2.20 mg/L
Time of Spike	3:15 pm	3:55 pm	2:45 pm	3:35 pm
Amount ²	1 mL	1 mL	3 mL	3 mL
Sampling Time	3:17 pm	3:57 pm	2:47 pm	3:37 pm
Concentration ¹	3.80 mg/L	3.70 mg/L	10.6 mg/L	10.8 mg/L

 $^1 \rm Concentration$ measured as Dissolved Oxygen (mg/L) $^2 \rm Amount$ is based on a volume of 3% weight/volume $\rm H_2O_2$

Figure 4.24 High Spike of Sodium Nitrate to RT Reactor: AASD[#]1

Figure 4.25 Low Spike of Ammonium Chloride to FT Reactor: AASD*1

Figure 4.26 Low Spike of Ammonium Chloride to RT Reactor: AASD*1

Figure 4.27 High Spike of Hydrogen Peroxide to FT Reactor: AASD*1

Figure 4.28 High Spike of Hydrogen Peroxide to RT Reactor: AASD[#]1

nitrates. These failures are characterized by the solid, triangular marks noted on the previous six figures. In Figures 4.23 and 4.24, the failures result from an elevated level of nitrate caused by the disassociation of sodium nitrate. In Figure 4.25, they are caused by the inability of the eliminate nitrates denitrifiers to the generated by nitrification of ammonia originally in the form of ammonium chloride. Note that the addition of a particular spike may cause failures in a number of subsequent cycles, as the reactor seeks to recover from the effect of the stress.

The second category of failure is the converse of the above and is associated with "Incomplete Nitrification" as depicted in Figure 4.29 (solid rectangular mark). This failure, caused by elevated levels of ammonia in the system, is reflected in the absence of the dissolved oxygen breakpoint in the ORPtime curve. There is no "breakthrough" of oxygen because insufficient time exists for the nitrifiers to reduce the ammonia to a low enough level to allow free residual oxygen to become present.

The final failure category (Figure 4.30), is particular to the Real-Time reactor alone and is a failure in the more conventional sense, since the software "failed" by detecting a false nitrate knee (Figure 4.30, solid circular mark). Daily fluctuations in the air supply rate and solids loading, sometimes resulted in excess air entering the system relative to the mass of solids present in the reactor. The resulting over-oxidation of the sludge was reflected in the slow

rate at which the ORP value declined, after the air supply was halted. If the rate was excessively slow, the MAXAVOID window (the variable used to delay the search for the breakpoint until air had bled from the line and stability had been achieved) was in essence, prematurely "used up" by little, if any, changes in the ORP value with time. This was especially common if the probe was dirty and/or unresponsive. Thus, by the time the true decline began, the RingBuffer was often partially filled with horizontal (i.e. zero ORP slope change) values. The sudden change, as the true descent commenced (i.e the reactor truly entered anoxic conditions), sometimes was sufficiently steep enough to exceed the DELTA limit, (registering a knee-like feature) and triggering the air solenoid.

It is evident that there are several ways to remedy this problem, most notably the mechanical methods such as cleaning the probes, attempting to better match the air supply to the solids loading (reduce the air/solids ratio) or deliberately thickening the feed sludge so that the ORP curve declines more rapidly (increasing the solids/air ratio). Controlling the air supply is at the best of times difficult at the lab scale, while increasing the solids loading is somewhat artificial and may not always be possible. Thus, these two methods were not seriously considered. Furthermore, cleaning the probes produced intermittent success depending on how much the fouling actually contributed to the lack of decline in the ORP curve.

The other two ways of reducing these types of

failures were software-based and involved tightening the knee constraint and/or expanding the window capacity of the variable MAXAVOID. Of the two options, expanding MAXAVOID represented a more certain means of success, since tightening the knee constraint would ideally involve some experimental trials, being a reactive rather than a proactive method of eliminating the problem. Currently, the program is not flexible enough to interactively shorten the length of the MAXAVOID window; however, the program was quickly recompiled (after the window was expanded from 16 to 30 minutes) and this eliminated the problem.

Regardless of the solution chosen, it is clear that these types of failures could be reduced or even circumvented with more sophisticated programming techniques and/or better detection algorithms.

In terms of some general comments, it is noted that "Incomplete Denitrification" was by far the most common failure. It is also evident that the hydrogen peroxide spikes produced no failures of any kind. Other stresses included the addition of "stale" feed which referred to a period of two consecutive days in which the same sludge was used to feed the reactors thus allowing NH_3 in the feed to build-up through hydrolysis of organic nitrogen. With regards to the period in which the feeding process was omitted (already alluded to in Figure 4.15), Figures 4.31 and 4.32 show the FT and RT reactor responses to this type of stress. The Fixed-Time reactor logged four "Incomplete Denitrification" failures, while the Real-Time

Figure 4.32 Real-Time Reactor Response to Missed Feed: AASD*1

reactor because of its flexibility, easily accommodated this disturbance.

Tables 4.7 and 4.8 summarize the number of occurrences, over the 60 day period, of each of the three categories of failures. The total number of cycles during the run was 231 for the Fixed-Time and 246 for the Real-Time Control reactors respectively. Thus, using the data from Tables 4.7 and 4.8, the Fixed-Time reactor failed 9.5 % of the time (22 failures) while the Real-Time reactor failed only 5.3 % of the time (13 failures). Furthermore as mentioned, many of the Real-Time reactor failures were software-based and could have been circumvented with more sophisticated detection algorithms.

Thus, a comparative evaluation based upon a "failures" criteria, indicates that the Real-Time reactor outperformed the Fixed-Time reactor during AASD[#]1 by more readily accommodating and recovering from the stresses considered in this research.

4.4 Behaviourial Trends: AASD[#]2 Experimental Conditions

4.4.1 Operating Characteristics and ORP Profiles

As mentioned in Section 3.4.2, the second AASD operating strategy consisted of comparing two reactors, both operating in a 50/50 air-on/air-off fashion. The Fixed-Time reactor retained its original ratio for each segment (i.e 3 hours for air-on, 3 hours for air-off); thus, there was a total of four, 6 hour cycles/day. Its characteristic profile was identical to that generated under AASD[#]1 operating conditions (i.e. Figure 4.1).

Type of Stress	Incomplete Denitrification Failure	Incomplete Nitrification Failure	False Nitrate Breakpoint Failure	Tctal Number
Normal Operation	3	1	0	4
Sodium Nitrate Spikes	4	0	o	4
Ammonia Chloride Spikes	7	1	0	8
Hydrogen Peroxide Spikes	0	0	o	o
Ommission of Daily Feed	4	0	0	4
Addition of Stale Feed	2	o	0	2
Total Number of Failures	20	2	0	22

Table 4.7 Failures Associated with FT Reactor Operation: AASD[#]1

Table 4.8 Failures Associated with RT Reactor Operation: AASD[#]1

Type of Stress	Incomplete Denitrification Failure	Incomplete Nitrification Failure	False Nitrate Breakpoint Failure	Total Number
Normal Operation	2	0	5	7
Sodium Nitrate Spikes	2	o	o	2
Ammonia Chloride Spikes	3	l	0	4
Hydrogen Peroxide Spikes	0	0	0	0
Ommission of Daily Feed	0	o	o	o
Addition of Stale Feed	o	0	0	0
Total Number of Failures	7	1	5	13

The Real-Time reactor's operation consisted of matching the time for aeration to the previous anoxic period length, as determined by the detection of the nitrate knee. Figure 4.33 portrays the "switch-over" day from Fixed-Time to Real-Time conditions, and depicts the rapid development of a distinctive pattern, reflecting the tendency of the Real-Time reactor to "collapse" in on itself, with very short on/off times for both the aerated and non-aerated portions of the cycle. Consequently, as Figure 4.34 illustrates, the characteristic profile associated with AASD[#]2 Real-Time conditions, consists of a vastly reduced total cycle time, (very brief air-on and airoff sequences), with the shortest sequence immediately after feeding, followed by a gradual lengthening throughout the day.

The fluctuations in the cycle length are better illustrated in Figures 4.35 and 4.36. These figures track the cycle over two days in which the feeding process was omitted. Figure 4.35 has 13 complete cycles, while the next day (Figure 4.36), is comprised of only 7 cycles. The expansion in the cycle length over the course of a day is directly attributable to a depletion in readily available carbon in the system. Concurrently, there is a gradual rise in the peak absolute ORP value associated with each cycle, and this is also due to exhaustion of carbon from the system.

The short cycle time made it difficult to accurately distinguish the "classic" features of the ORP-time curve, thus some interpretation has been necessary for this analysis. Moreover, the brevity of the cycle time (after feeding),

Figure 4.33 "Switch Over Day": FT to RT Control - AASD*2

Figure 4.34 Real-Time ORP Profile Under AASD[#]2 Conditions

eventually led to a new software-based "failure" category, in which the program "failed" to locate the breakpoint, by actually physically "missing" the nitrate knee (Figure 4.37). This stands in contradistinction to the AASD[#]1 "False-Knee" failure in which the computer "failed" by detecting a non-existent knee, attributable to the excessively slow decline in the ORP-time curve.

As Figure 4.37 illustrates, during the 6th cycle of the day, the steep gradient of the ORP-time curve means that the knee occurred almost immediately upon cessation of air . The computer therefore "missed" the knee entirely and the reactor proceeded into truly anaerobic conditions. After 4 hours, the "intelligence" built into the program reactivated the air supply, since the computer "assumed" the knee had been missed. Consequently, the next aeration period was also 4 hours as the computer adhered to its 50/50 operating strategy. Subsequent to this, the cycle lengths shortened once again, and eventually, a daily recursive pattern developed revolving around one "Missed-Knee" failure a day, with the occasional two such failures in a single day (Figure 4.38).

The rationale for this failure is the reverse of that proposed for the "False-Knee" failures of AASD[#]1. The rapid decline in the ORP curve means that the MAXAVOID variable, (which ordinarily is used to delay the search for the knee), is in reality, comprised of points which should be entering the Ring-Buffer for purposes of detecting the nitrate breakpoint. By the time the Ring-Buffer actually starts filling, the breakpoint

Figure 4.38 Two "Missed-Knee" Failures During Single Day
has already occurred and consequently the computer cannot capture the knee. In order to reduce the number of "Missed-Knee" failures, the variable MAXAVOID was shortened from 30 minutes to 10 minutes (instead of lengthening it, as was done in AASD#1). This remedy, however, was not entirely successful in eliminating all of the failures of this kind, since occasionally denitrification occurred extremely rapidly after cessation of air. Clearly evident however, from both figures, is the ability of the Real-Time reactor to rapidly recover from this kind of failure, in the sense of again developing the short-cycle pattern.

4.4.2 General Observations: Chemical Parameters

The chemical parameters measured during AASD[#]1 were also recorded for AASD[#]2 and the data has been relegated to Appendix E with a summary table depicted in Table 4.9. It should be noted that the reactors were spiked with potassium cyanide (56 mg/L) on the third last day of the run (after sampling); thus, the reactor statistics (Table 4.9) do not include the final and penultimate days, since certain variables were unduly influenced by the KCN spike. For example, for both reactors, the ortho-P suddenly increased by approximately 20 mg/L as the cells lysed, while the dissolved oxygen level rose by approximately 3 mg/L, as the demand for oxygen declined.

The majority of observations made about the AASD[#]1 chemical data set are equally applicable to the data obtained from AASD[#]2. For example, the stochastic nature of the influent feed TSS and VSS solids (as compared to the relatively stable

	1			
Chemical Parameter	Statistic	FEED	Fixed-Time Reactor	Real-Time Reactor
TSS (mg/L)	Maximum Mean Minimum Std.Dev.	10610 6547 4040 1372	6772 6039 4904 362	6820 5931 4942 470
VSS (mg/L)	Maximum Mean Minimum Std.Dev.	8466 5376 3362 1109	5350 4826 4122 281	5442 4748 3954 367
TKN (mg/L)	Maximum Mean Minimum Std.Dev.	734 480 294 92	528 441 352 38	530 430 336 41
NOX-N (mg/L)	Maximum Mean Minimum Std.Dev.	6.74 1.29 0.07 1.55	4.05 1.25 0.09 0.77	5.05 0.73 0.14 0.74
NH ₃ -N (mg/L)	Maximum Mean Minimum Std.Dev.	11.20 1.14 0.04 2.52	0.71 0.26 0.00 0.23	0.89 0.16 0.02 0.15
TP (mg/L)	Maximum Mean Minimum Std.Dev.	425 215 116 50	306 260 216 25	317 258 212 27
Ortho-P (mg/L)	Maximum Mean Minimum Std.Dev.	22.26 3.07 0.06 4.54	73.09 60.15 48.41 4.63	75.94 63.56 47.71 4.38
Dissolved Oxygen (mg.L)	Maximum Mean Minimum Std.Dev.		5.30 3.12 0.70 0.93	4.60 2.49 1.00 0.82
Alkalinity (mg/L) (as CaCO ₃)	Maximum Mean Minimum Std.Dev.	256 185 128 28	176 146 120 15	180 146 110 15
рН	Maximum Mean Minimum Std.Dev.	7.37 6.89 6.57 0.18	6.78 6.56 6.36 0.11	6.88 6.54 6.28 0.12

 Table 4.9
 Selected List of Chemical Statistics: AASD[#]2

reactor values (Figure 4.39 and 4.40)), the constant and parallel nature of the VSS/TSS ratio (averages of 0.82, 0.79, and 0.80, for the Feed, Fixed-Time, and Real-Time reactors were calculated), and the speciation and behaviour of the nitrogen forms (as a function of the air being on or off) were all similar in nature to the AASD[#]1 run. The C:N:P ratios for the Feed, Fixed-Time and Real-Time sludges were 100:5.66:2.41, 100:5.69:2.50, and 100:5.61:2.48, and again the comments made in discussing the results from AASD[#]1 are equally valid here.

Figures 4.41 and 4.42 show the profiles with time of total nitrogen, and total phosphorus. Inside the reactors, both parameters (nitrogen and phosphorus) show a decrease with time over the course of the digestion period. The TSS (and VSS by implication of its constant ratio) also exhibited this trend. The decline of the reactor solids and total nitrogen levels is logical in that there are biological mechanisms for removal of both parameters. Moreover, it is readily apparent from Figures 4.39 to 4.41 that the <u>feed</u> values for both solids and nitrogen are on the average consistently <u>larger</u> than the <u>reactor</u> values. This is also shown by the mean values quoted in Table 4.9. The relative difference between the means (i.e. the feed mean is greater than the reactor mean) is reflected by <u>positive</u> removals being calculated for both parameters (solids and nitrogen).

Conversely, as Figure 4.42 indicates, the phosphorus <u>feed</u> levels are consistently <u>lower</u> than the <u>reactor</u> values (on average) (also indicated in Table 4.9). Thus, although no biological mechanism for total phosphorus removal exists, Figure

Figure 4.39 Daily Variation in Feed and Reactor TSS: AASD[#]2

Figure 4.40 Daily Variation in Feed and Reactor VSS: AASD^{*}2

Figure 4.41 Fluctuations in Total Nitrogen Content: AASD[#]2

Figure 4.42 Fluctuations in Total Phosphorus Content: AASD[#]2

4.42 predicts that the mass balance calculation (Section 4.4.3) will yield a <u>negative</u> removal (i.e. an increase in phosphorus) similar in manner to the increase observed in AASD[#]1.

Figures 4.43 and 4.44 show profiles of the change in pH and alkalinity with time. The pH profile appears to show a slight increase with time; however, the vagaries inherent in the pH measuring apparatus can account for this and it is unlikely that any meaningful trend exists. It is visually discernable however that the feed alkalinity is (on the average) larger than the reactor value. This is also verified in Table 4.9. It is predicted therefore that a mass balance for alkalinity (Section 4.4.3) will show a net removal, despite hopes that the consumption of alkalinity during nitrification would be offset by the production of alkalinity during denitrification.

4.4.3 Mass Balance Perspective

As before, mass balances for solids (TSS and VSS), nitrogen (TKN + NOX), and phosphorus (TP) were performed around each reactor and these data have been compiled in Appendix F. Due to the KCN spike however, only 58 days of data (rather than the full 60) were used in the calculations. In addition, daily alkalinity measurements allowed a mass balance to be performed for this parameter as well.

Tables 4.10 and 4.11 represent a collation of the results, while for comparative purposes, the results from AASD[#]1 are also presented. As shown (Table 4.10), the Fixed-Time reactor removed essentially the same levels (TSS, VSS, nitrogen and phosphorus) for AASD[#]2 as for AASD[#]1. This was unexpected,

Figure 4.43 Daily Variation in Feed and Reactor pH: AASD*2

Figure 4.44 Daily Variation in Alkalinity: AASD[#]2

Mass Balance Parameter Percent Reduced	Moving Average Balance AASD [#] 1 10 Day SRT	Moving Average Balance AASD [#] 2 20 Day SRT	Overall Mass Balance AASD [#] 1 10 Day SRT	Overall Mass Balance AASD [#] 2 20 Day SRT
TSS	14.7 %	14.1 %	15.8 %	14.8 %
VSS	16.8 %	16.1 %	17.7 %	16.7 %
Total N	17.5 %	17.7 %	17.9 %	19.4 %
Total P	-6.5 %	-7.5 %	-6.2 %	-9.8 %
Alkalinity		13.8 %		15.5 %

Table 4.10 Mass Balances for Fixed-Time Reactor: AASD[#]2

Table 4.11 Mass Balances for Real-Time Reactor: AASD#2

Mass Balance Parameter Percent Reduced	Moving Average Balance AASD [#] 1 10 Day SRT	Moving Average Balance AASD [#] 2 20 Day SRT	Overall Mass Balance AASD [#] 1 10 Day SRT	Overall Mass Balance AASD [#] 2 20 Day SRT
TSS	15.2 %	18.5 %	15.7 %	19.9 %
VSS	18.0 %	20.2 %	18.3 %	21.5 %
Total N	19.5 %	20.6 %	21.1 %	25.9 %
Total P	-6.9 %	-5.0 %	-5.8 %	-5.3 %
Alkalinity		13.4 %		16.2 %

since AASD[#]2 operated at a 20 day SRT and the longer retention time was expected to produce significantly greater removals. No reason for this poor performance is readily apparent.

The Real-Time reactor (Table 4.11) did show a marginal increase (2 to 4 percentage points, depending upon the mass balance method used) in TSS, VSS, and nitrogen; however, again this removal level is surprisingly low for the long SRT used. Jenkins and Mavinic (1989a) reported overall mass balance removal levels of 21.9 % for TSS, 23.9 % for VSS, 22.7 % for nitrogen and 7.35 % for phosphorus, for an aerobic-anoxic run at a 20 day SRT (20 °C).

As predicted from Figure 4.44, the alkalinity mass balance showed a net removal of alkalinity, even though the pH remained in the neutral range. It is suspected, therefore, that if the run had been extended, periodic adjustments would have become necessary to buffer the pH. Alternatively, the aerated to non-aerated fraction of the cycle could be altered (incorporating longer non-aerated periods) to produce more alkalinity to offset any pH drop that occurred.

Due to the increase (relative to AASD[#]1) in the Real-Time reactor removals, small differences (up to 6 % depending upon the parameter and mass balance method used) exist in the performance of the two reactors. Again, it is not conclusive, but from a mass balance perspective, the Real-Time reactor may be removing (marginally) more than the Fixed-Time reactor (of the TSS, VSS and nitrogen). The lack of replication prevents a rigourous statement as to the statistical significance of these

differences.

4.4.4 Evaluation: Unsteady Process Input Conditions

During this run, the reactors were subjected to one spike each of sodium nitrate, ammonium chloride and hydrogen peroxide. All spikes were at a level equivalent to the "high" spikes detailed in AASD[#]1. The pertinent statistics are recorded in Tables 4.12, 4.13 and 4.14, while Figures 4.45 through 4.50 show vignettes of the reactor responses to each spike. The different failure categories are again highlighted on each figure. Both "Incomplete Denitrification" and "Incomplete Nitrification" failures were observed, as well as the "Missed-Knee" failure described earlier.

Figures 4.45 and 4.46 reveal that the Real-Time reactor accommodated the sodium nitrate stress better than the Fixed-Time reactor, producing no failures directly attributable to the spike. Figures 4.47 and 4.48 indicate that both reactors had trouble assimilating the ammonium chloride spike, while Figures 4.49 and 4.50 indicate that the hydrogen peroxide spike created problems only for the Fixed-Time reactor. This latter failure is contrasted to run AASD[#]1 in which the hydrogen peroxide spikes produced no failures of any kind in either reactor.

Tables 4.15 and 4.16 tabulate the number of failures for each reactor according to both the type of stress and category of failure. From the data, it is evident that the Fixed-Time reactor failed 11 times, while the Real-Time reactor failed 32 times. These values, however, must be normalized (for

Reactor	FT	RT
Date	Oct/30/90	Oct/30/90
Day Number	29	29
Sampled Nitrate	4:25 pm	4:00 pm
Air On (Hr:Min)	2:00	1:05
Concentration	1.64 mg/L	0.81 mg/L
Time of Spike	4:25 pm	4:00 pm
Amount ²	129.6 mg	129.6 mg
Sampling Time	4:30 pm	4:05 pm
Concentration ¹	6.16 mg/L	5.34 mg/L

Table 4.12 Particulars of Sodium Nitrate Spike: AASD[#]2

¹Concentration is measured as NO_3-N mg/L ²Amount is based on a weight of Sodium Nitrate

Table 4.13	Particulars	of /	Ammonium	Chloride	Spike:	AASD [#] 2
------------	-------------	------	----------	----------	--------	---------------------

Reactor	FT	RT
Date	Nov/5/90	Nov/5/90
Day Number	35	35
Sampled Ammonia	3:00 pm	2:40 pm
Air Off(Hr:Min)	0:45	0:30
Concentration	0.61 mg/L	0.17 mg/L
Time of Spike	3:00 pm	2:40 pm
Amount ²	129.6 mg	129.6 mg
Sampling Time	3:05 pm	2:45 pm
Concentration ¹	6.79 mg/L	6.43 mg/L

 $^1 \text{Concentration}$ is measured as NH_3-N mg/L $^2 \text{Amount}$ is based on a weight of Ammonium Chloride

Table 4.14 Particulars of Hydrogen Peroxide Spike: AASD[#]2

Reactor	FT	RT
Date	Nov/20/90	Nov/20/90
Day Number	50	50
Sampled D.O.	9:45 am	12:15 pm
Air On(Hr:Min)	2:30	1:00
Concentration	2.75 mg/L	3.20 mg/L
Time of Spike	9:45 am	12:15 pm
Amount ²	3 mL	3 mL
Sampling Time	9:47 am	12:17 pm
Concentration ¹	10.9 mg/L	11.2 mg/L

 $^1 Concentration$ is measured as Dissolved Oxygen (mg/L) $^2 Amount$ is on a volume basis of 3 % weight/volume ${\rm H_2O_2}$

Figure 4.45 Spike of Sodium Nitrate to FT Reactor: AASD[#]2

Figure 4.46 Spike of Sodium Nitrate to RT Reactor: AASD[#]2

Figure 4.47 Spike of Ammonium Chloride to FT Reactor: AASD#2

Figure 4.48 Spike of Ammonium Chloride to RT Reactor: AASD[#]2

Figure 4.49 Spike of Hydrogen Peroxide to FT Reactor: AASD[#]2

Figure 4.50 Spike of Hydrogen Peroxide to RT Reactor: AASD[#]2

Type of Stress	Incomplete Denitrification Failure	Incomplete Nitrification Failure	Missed Nitrate Breakpoint Failure	Total Number
Normal Operation	1	1	0	2
Sodium Nitrate Spike	3	0	0	3
Ammonia Chloride Spike	0	4	0	4
Hydrogen Peroxide Spike	1	0	0	1
Ommission of Daily Feed	1	0	0	1
Total Number of Failures	6	5	0	11

Table 4.15 Failures Associated with FT Reactor Operation: AASD[#]2

Table 4.16 Failures Associated with RT Reactor Operation: AASD[#]2

Type of Stress	Incomplete Denitrification Failure	Incomplete Nitrification Failure	Missed Nitrate Breakpoint Failure	Total Number
Normal Operation	0	1	25	26
Sodium Nitrate Spike	0	0	0	0
Ammonia Chloride Spike	0	4	0	4
Hydrogen Peroxide Spike	O	0	0	0
Ommission of Daily Feed	2	0	0	2
Total Number of Failures	2	5	25	32

each reactor) against the total number of cycles during the run. For example, the Real-Time reactor with its short cycle length had many more opportunities than the Fixed-Time reactor to fail. Accordingly, the Fixed-Time reactor sustained 217 cycles (a failure rate of 5.1 %), while the Real-Time reactor underwent 525 cycles (a failure rate of 6.1 %). Thus, from a "failures" perspective, both reactors performed essentially the same. Since the majority of the Real-Time failures were software-based, more sophisticated programming techniques may be able to reduce or even eliminate the "Missed-Knee" category of failure. If this occurs, there may be grounds for stating that the Real-Time AASD[#]2 operating strategy holds more promise of being better able to control the system; especially since it may have performed better than the Fixed-Time reactor in the mass balance category.

Finally, Figures 4.51 and 4.52 show the response of each reactor to the spike of 56 mg/L (0.5 millimoles/litre of potassium cyanide). This concentration is one half that suggested by the microbiological department at UBC, however it is clear that the KCN immediately affected the micro-organisms. Cyanide prevents the reaction of oxygen in the overall energyproducing process by binding with ferricytochrome oxidase, the last cytochrome in the oxidative phosphorylation pathway. In both reactors, the ORP gradually rose again as the concentration of dissolved oxygen increased in the reactor (to over 7 mg/L), due to the lack of bacterial demand for an electron acceptor.

Figure 4.51 Spike of Potassium Cyanide to FT Reactor: AASD*2

Figure 4.52 Spike of Potassium Cyanide to RT Reactor: AASD[#]2

CHAPTER 5

BIOLOGICAL PHOSPHORUS REMOVAL (BIO-P) EXPERIMENTS 5.1 Operating Characteristics and ORP Profiles

The biological phosphorus removal experiment was partitioned into two runs (Bio-P[#]1 and Bio-P[#]2), with each run being 2 SRTs (40 days) in length. The rationale for this segmentation was somewhat artificial, in that a solenoid malfunction drained one-half of the Real-Time reactor contents down the sink at the 40 day mark. It was felt however that the period was of sufficient length to extract useful data, and thus the second run was halted after a similar period of time.

During Bio-P[#]1, the raw feed was supplemented with inorganic phosphorus (Na_2HPO_4) to approximately a concentration of 7 mg/L ortho-P (calculated in Appendix G). However, the reactors failed to remove phosphorus during this run; therefore, this practice was discontinued when the reactors were restarted. Thus, during Bio-P[#]2, the feed to the reactors contained whatever ortho-P concentration naturally occurred in the pilot plant influent (usually around 2 mg/L). During both runs, the pilot plant strategy of adding alkalinity (NaHCO₃) to the raw sewage was continued in order to maintain the pH in the neutral range.

The reactors were operated at a 20 day SRT, since that reduced the need for acclimation time between the pilot plant and the reactor conditions. In theory, with a 20 day SRT, 240 mL of liquid should have been wasted on a daily basis. The solids level, however, declined dramatically over the run (Section 5.2) and therefore wasting was occasionally halted. The Fixed-Time reactor operated with a scheduled time (1 hr 25 min into the anoxic period), for the addition of 30 mg acetate/litre of influent (calculated in Appendix G). In contrast, the Real-Time reactor's acetate addition was triggered by the detection of the nitrate breakpoint.

Before discussing the performance of the reactors, it is useful to consider the "ideal" ORP curve shape, generated under SBR Bio-P conditions. Unlike the AASD experiments (which had a distinct "indigenous" curve, particular to each reactor's operation), the curve shown in Figure 5.1 was not ubiquitous enough to be considered as "characteristic" of normal Bio-P operation. The reasons for this will be explained later.

Clearly evident in Figure 5.1 are the three distinct zones of the Bio-P process, with a sharp, pronounced nitrate knee initiating the Real-Time addition of acetate. Figure 5.1 does not, by itself, imply perfect biological conditions for the removal of phosphorus; for even when this curve shape was obtained, the reactors seldom achieved consistent excess removal of phosphorus. As will be discussed at the end of Section 5.2, there is a host of biological and chemical parameters that must be in harmony in order to ensure good P removal.

For comparison, Figure 5.2 illustrates a frequent shape of the ORP curve, generated when the reactor denitrified immediately after the FILL period had finished. The curve's extremely rapid decline meant that the Real-Time reactor's software could not trap the knee in any of the 3 cycles that day. The major reason for this seems to be that the Bio-P

Figure 5.2 Software Failure Due to Rapid Denitrification

process is considered to be a highly-loaded carbon system, as compared to the AASD system which has very little soluble carbon available. Although not always the case in this experiment, in theory, a Bio-P system should have plenty of carbon available for denitrification, especially if relatively fresh feed has just been placed in the feed bucket. Since nitrate reduction is the first sequence in a Bio-P SBR, the denitrifying bacteria have few organisms competing with them for access to the substrate. Thus, they are easily (and apparently rapidly) able to eliminate the nitrates, causing the breakpoint to occur in the first several minutes.

A number of attempts were made during both runs to track the phosphorus and nitrate behaviour over the course of one complete cycle. Figures 5.3 and 5.4 show the best curves obtained during Bio-P#1. In the Fixed-Time reactor (Figure 5.3), the nitrate breakpoint occurs just prior to the addition of acetate, the impact of which, triggers the classical release/uptake phenomena necessary for Bio-P removal. As can be seen however, the reactor failed to take up excess phosphorus and thus the effluent was discharged from the reactor at essentially the same level at which it entered. Although acetate was measured during this track, it was utilised so quickly that none was detected on the gas chromatograph.

Figure 5.4 shows the behaviour of the Real-Time reactor. As has been illustrated earlier and as typified by this example, the nitrate disappeared almost immediately, causing true anaerobic conditions to develop. This was accompanied by a slow

Figure 5.4 Real-Time Reactor Track Study: Bio-P*1

release of phosphorus, further accentuated by the addition of acetate, 2 hours and 40 minutes into the cycle (just prior to aeration). The computer added the acetate as a "fail-safe" measure, since at that time it "assumed" that the breakpoint had been missed. Again, whatever phosphorus was released was subsequently taken back up during aeration; however, no "excess" removal was observed.

Another frequent observation was the addition of acetate actually causing the knee itself, as shown in Figures 5.5 and 5.6. The Fixed-Time reactor (Figure 5.5) depicts the knee occurring at precisely the same time (i.e. 1 hour 25 minutes) into all 3 cycles. Although not directly confirmed by NOx analysis, this implies that acetate is being used as a source of easily oxidizable carbon for denitrification purposes, rather than for carbon storage by Bio-P organisms. Similarly, the Real-Time reactor (Figure 5.6) shows the computer initiating the acetate addition (since the knee had not been detected) after 2 hours and 40 minutes. This carbon is sufficient to complete the denitrification reaction which causes the nitrate breakpoint just prior to the onset of aeration.

The <u>best</u> track studies available for Bio-P[#]2 also reflect this trend. Figure 5.7 shows the addition of acetate to the Fixed-Time reactor causing a sharp drop in the nitrate concentration, with the breakpoint occurring shortly thereafter. In this particular example, the phosphorus was removed to a very low level; therefore, it appeared that the acetate was being partitioned between being used for nitrate reduction by

Figure 5.6 VFA-Caused Breakpoints in Real-Time Reactor

Figure 5.7 Fixed-Time Reactor Track Study: Bio-P*2

denitrifiers and being used for carbon storage by Bio-P organisms. The Real-Time reactor's breakpoint (Figure 5.8) was again induced by the addition of acetate, at the last possible minute before aeration. This was followed by a quick release prior to aerated uptake of phosphorus.

One recurring phenomena was the way in which the shape of influenced by the operation of the ORP curve was the experimental system. In particular, a delay in the time of occurrence for the nitrate breakpoint was often observed as the feed sludge weakened with time. As has been mentioned, raw sewage was collected in carboys and stored in the cold room for up to 12 days. Since the feed bucket could hold up to 3 days worth of sewage, every 4th day the bucket was replenished with "fresh/stored" sewage from the cold room. However, not only was there a decline in the carbon content in the raw sewage stored in the cold room (Figure 5.9), but there was also a significant decline in the carbon content during the 3 days in between "fresh/stored" feed (Figure 5.10) (the data used to plot these graphs have been included in Appendix H).

This latter decline occurred because the feed bucket sewage was continuously mixed (albeit at a very slow rate) in order to keep the solids in suspension. Despite being covered to minimize air entrainment, it is evident that sufficient air must have entered the mixture to allow bacteria to utilize short-chain organic compounds generated from the conversion of complex organics in the raw sewage.

The decrease in carbon content was therefore reflected in

Figure 5.8 Real-Time Reactor Track Study: Bio-P*2

Figure 5.9 Decline in Carbon Content: Stored in Cold Room

a delay in the time that the knee occurred in any given cycle. This is illustrated in Figures 5.11 and 5.12. Figure 5.11 tracks the knee over the three cycles of the day and as pictured, there is no "average time" for denitrification, since it is constantly lengthening as a function of the strength of the incoming feed. Figure 5.12 continues Figure 5.11 into the next day, and illustrates how, during the last cycle before replenishment with fresh feed (from the cold room), the reactor "failed" to completely denitrify, in a manner reminiscent of the AASD set of experiments. The 6th cycle occurred after replenishment and consequently the time taken to completely denitrify was considerably shortened once again. The fact that the knee associated with cycle 6 occurs slightly later than the knee associated with the first cycle, may be indicative of the gradual decline in the carbon content of the feed stored in the cold room itself.

5.2 Chemical Characteristics of Bio-P Experiments

Tables 5.1 and 5.2 detail some selected statistics of the solids, nitrogen and phosphorus levels measured during both Bio- $P^{#1}$ and Bio- $P^{#2}$. The detailed chemical data have been presented in Appendix H.

In both experiments, the feed TSS level was approximately 100 mg/L (Figures 5.13 and 5.14). Bio- $P^{#2}$ however experienced a much larger standard deviation as indicated in Table 5.2. Figure 5.14 illustrates the major cause of this, as occurring between the 3rd and 4th data points on the graph. The first 3 points are from sewage stored in the cold room, but initially collected

Figure 5.11 Delay in Time of Nitrate Breakpoint Occurrence

Figure 5.12 Two Day Track of Delayed Nitrate Breakpoint

Chemical Parameter	Statistic	FEED	Fixed-Time RCTR Effl	Real-Time RCTR Effl
TSS (mg/L)	Maximum Mean Minimum Std.Dev.	121 100 77 15	2376 11 2124 4 1620 1 226 3	2612 5 2281 3 1890 1 205 1
VSS (mg/L)	Maximum Mean Minimum Std.Dev.	107 88 68 13	1834 11 1616 4 1280 1 196 3	2012 5 1727 3 1392 1 195 1
TKN - Feed (mg/L)	Maximum Mean Minimum Std.Dev.	30.3 28.4 26.8 1.4		
% N - RCTR (%)	Maximum Mean Minimum Std.Dev.	 	5.72 5.32 4.81 0.25	5.19 4.90 4.53 0.10
NOx-N (mg/L)	Maximum Mean Minimum Std.Dev.	0.35 0.14 0.00 0.09	9.43 7.97 6.31 0.94	12.89 7.70 2.69 2.40
NH3-N (mg/L)	Maximum Mean Minimum Std.Dev.	17.0 13.0 9.8 2.4	0.1 N/D N/D N/D	2.5 0.4 N/D 0.8
TP - Feed (mg/L) %P - RCTR (%P)	Maximum Mean Minimum Std.Dev.	9.7 9.5 9.1 0.4	3.56 3.25 2.92 0.25	4.07 3.20 2.53 0.40
Ortho-P (mg/L)	Maximum Mean Minimum Std.Dev.	7.64 6.44 4.91 0.87	10.70 6.38 3.26 2.17	8.80 5.60 2.51 1.70

Table 5.1 Solids, Nitrogen and Phosphorus Chemical Data: Bio-P*1

Chemical Parameter	Statistic	FEED	Fixed-Time RCTR Effl	Real-Time RCTR Effl
TSS (mg/L)	Maximum Mean Minimum Std.Dev.	181 107 65 41	3018 10 2194 6 1598 2 417 2	3026 10 2159 6 1630 2 439 3
VSS (mg/L)	Maximum Mean Minimum Std.Dev.	162 97 59 36	2648 10 1825 6 1266 2 410 2	2650 10 1791 6 1276 2 431 3
TKN - Feed (mg/L)	Maximum Mean Minimum Std.Dev.	41.2 31.0 24.0 7.4		
% N - RCTR (%)	Maximum Mean Minimum Std.Dev.		6.82 6.32 5.45 0.36	6.26 5.83 5.53 0.24
NOx-N (mg/L)	Maximum Mean Minimum Std.Dev.	0.30 0.16 0.04 0.06	9.71 8.49 7.19 0.65	10.68 9.00 7.40 0.88
NH ₃ -N (mg/L)	Maximum Mean Minimum Std.Dev.	13.8 12.4 11.6 0.6	N/D N/D N/D N/D	N/D N/D N/D N/D N/D
TP - Feed (mg/L) %P - RCTR (%P)	Maximum Mean Minimum Std.Dev.	6.3 4.7 3.7 1.1	3.36 2.50 1.12 0.71	3.52 2.54 1.22 0.71
Ortho-P (mg/L)	Maximum Mean Minimum Std.Dev.	3.18 2.19 1.60 0.36	2.07 0.52 0.00 0.78	1.92 0.52 0.01 0.59

Table 5.2 Solids, Nitrogen and Phosphorus Chemical Data: Bio-P*2

Figure 5.14 Variation in Feed and Effluent TSS: Bio-P*2

during a relatively dry weather spell. In contrast, subsequent data points are from feed collections made when the sewage had been diluted by the influx of water from several days of rain. This caused a significant drop in the feed TSS as depicted in Figure 5.14.

In both figures the reactor effluents for each run were generally less than 10 mg/L. Visual inspection of the sludge settling characteristics revealed a highly clarified effluent, produced by a sludge blanket interface settling well below the decanting solenoid port.

The solids variation inside the reactors is shown in Figures 5.15 and 5.16. In the latter experiment especially, the TSS level declined dramatically, with bacterial growth not being sufficient to counterbalance the loss in solids due to wastage. Wasting was halted several times (as reflected in occasional horizontal plateaus in the latter portion of the Bio-P[#]2 curve); however, it is evident that this was not practiced frequently enough to stem the decline in solids. This will be expanded upon in more detail later, when discussing the F:M ratio. Ultimately though this means that the actual SRT is substantially less than 20 days; a factor having major ramifications for the P removal performance.

The VSS/TSS ratio was greater in the Feed (Bio-P[#]1 - 0.88, Bio-P[#]2 - 0.90) than the Fixed-Time (Bio-P[#]1 - 0.76, Bio-P[#]2 - 0.83) and Real-Time (Bio-P[#]1 - 0.76, Bio-P[#]2 - 0.82) reactors, respectively. In both runs, the few effluent solids that were released as decanted supernatant (generally less than 10 mg/L

Figure 5.16 Variation in Reactor TSS: Bio-P*2

(Appendix H)) were essentially all volatile solids.

The feed sewage TKN was approximately 30 mg/L, with about 40 percent being in the form of ammonia. In almost all cases the ammonia was completely nitrified, with effluent NH_3 values below the detectable limit of 0.05 mg/L. Nitrate levels in the effluent were between 7 and 9 mg/L; these could not be denitrified, since a single SBR operating under this strategy cannot be optimized to obtain concurrent nitrogen and phosphorus removal. Manning and Irvine (1985), operating a similar system, also reported a highly nitrified effluent (> 27 mg/L NOx).

Due to inorganic P additions to the feed during Bio- $P^{#1}$, well over 68 % of the TP (average value of 9.5 mg/L) was in the form of soluble ortho-P. Bio- $P^{#2}$ however had 47 % of the TP (average value 4.7 mg/L) in soluble form.

Figures 5.17 and 5.18 track the progress of the % N and % P values for both reactors (both runs) and indicate that the second run had a slightly larger average % N value than the first run. This is verified in Tables 5.1 and 5.2. In both runs (especially Bio-P[#]2), there was a tendency for the % P to increase with time. In theory, this should occur as phosphorus is removed from the bulk liquid; however, the fact that little ortho-P removal was observed makes this observed trend more fortuitous than certain.

In fact, the ortho-P behaviour was less than ideal as illustrated in Figures 5.19 and 5.20. In Figure 5.19, the reactor's effluent phosphorus level oscillates around the influent feed phosphorus level; thus, on the average, whatever

Figure 5.18 Reactor Plot of Percent N and P: Bio-P*2

Figure 5.20 Track of Ortho-P Concentrations: Bio-P*2

-

entered the reactor was also released from the reactor. The parallel behaviour of both reactors (in terms of synchronous high/low oscillations) can be correlated with the decline in the carbon content in the feed bucket as elaborated below.

Ortho-P was measured every second day; thus, one sample would be taken relatively close to the day in which fresh sewage had been added to replenish the feed bucket. On such days the feed would be relatively rich in carbon, and therefore denitrification would proceed rapidly (Figure 5.2) and be followed by a good release of phosphorus when the acetate was added to the reactor. Subsequently, during the aerated sequence, the microorganisms would take up phosphorus and the effluent level would be below average, with some "excess" removal observed.

The next samples, however, would be taken just prior to replenishing the feed bucket; thus, they would be furthest from the previous "fresh/stored" feed day. Denitrification would therefore be delayed (perhaps even incomplete) and some (or all) of the acetate added would be used for denitrification purposes, rather than for carbon storage by Bio-P organisms. On such days, relatively large values of effluent P were observed, because aerated P uptake had been preceded by poor P release. This established the alternating high/low effluent ortho-P pattern shown in Figure 5.19.

The decline in the carbon content in the feed bucket and the lack of steady-state conditions are advocated as the major causes of the poor P removal observed during this research. This will be emphasized repeatedly in later sections of the analysis.

During Bio-P[#]2 (Figure 5.20), the raw sewage influent P values were much lower than $Bio-P^{#}1$, due to the absence of inorganic P supplements. Good P removal was observed only up to where the feed sewage had been subjected to several days of rain. The dilution of the carbon in the sewage (coupled with its subsequent decay), although producing an attendant drop in the influent P value, was evidently enough to push the P values into exhibiting the parallel high/low behaviour, as explained above.

Table 5.3 and 5.4 detail the carbon, oxygen, alkalinity and pH statistics for both runs. Figures 5.21 and 5.22 depict the soluble COD behaviour of the feed and reactors during each run. The effluent from both reactors was generally below 30 mg/L for Bio-P[#]1 and 20 mg/L for Bio-P[#]2. Using the mean values, this made for soluble COD removals of 81 % and 83 % for the FT and RT reactors (Bio-P[#]1) and 75 % and 79 % for the FT and RT reactors (Bio-P[#]2). As indicated however, significant removal was occurring inside the feed bucket, during the days in between replenishment. Figure 5.22 (Bio-P[#]2) reveals the sharp drop in feed COD from the dry spell to the wet period, commencing after the 3rd data point. Pilot plant data showed a drop in the influent total COD from over 400 mg/L to 230 mg/L, for these collection dates.

Figures 5.23 and 5.24 show carbon plots for the feed from both runs. During Bio-P[#]1 (Figure 5.23), both the inorganic and organic carbon comprise roughly equal amounts of the total carbon. This is substantiated in Table 5.3. During run Bio-P[#]2

Chemical	Statistic	FEED Fixed-Time		Real-Time	
Parameter		TC IC TOC TC IC TOC		TC IC TOC	
Carbon (mg/L)	Maximum Mean Minimum Std.Dev.	114 66 60 95 48 47 79 31 38 11 10 6	63 52 11 45 37 8 31 25 6 11 10 1	63 53 10 45 38 7 31 25 6 10 9 1	
COD (mg/L)	Maximum Mean Minimum Std.Dev.	155 143 118 13	29 27 20 3	28 25 15 4	
Dissolved Oxygen (mg.L)	Maximum Mean Minimum Std.Dev.		7.00 4.60 0.70 2.07	6.90 2.90 0.70 2.37	
Alkalinity	Maximum	320	310	312	
	Mean	237	254	253	
	Minimum	164	192	178	
	Std.Dev.	47	37	36	
рĦ	Maximum	7.56	7.37	7.38	
	Mean	7.28	7.12	7.15	
	Minimum	6.81	6.64	6.97	
	Std.Dev.	0.21	0.18	0.14	

Table 5.3 Carbon, Oxygen, Alkalinity and pH Data: Bio-P*1

Table 5.4 Carbon, Oxygen, Alkalinity and pH Data: Bio-P*2

Chemical	Statistic	FEED	Fixed-Time	Real-Time	
Parameter		TC IC TOC	TC IC TOC	TC IC TOC	
Carbon (mg/L)	Maximum Mean Minimum Std.Dev.	129 79 50 93 56 37 74 42 28 15 11 8	78 64 14 55 47 8 38 31 6 13 12 2	78 66 13 56 47 8 35 28 6 14 13 2	
COD (mg/L)	Maximum Mean Minimum Std.Dev.	72 53 42 11	20 13 10 3	18 11 4 3	
Dissolved Oxygen (mg.L)	Maximum Mean Minimum Std.Dev.		8.00 6.65 1.20 1.36	8.00 7.26 4.20 0.84	
Alkalinity	Maximum	360	392	390	
	Mean	265	277	282	
	Minimum	210	172	170	
	Std.Dev.	46	66	69	
рН	Maximum	7.59	7.86	7.97	
	Mean	7.38	7.54	7.66	
	Minimum	7.09	7.11	7.34	
	Std.Dev.	0.16	0.19	0.19	

Figure 5.24 Carbon (TC, IC, TOC) Plots for Feed: Bio-P#2

however, the percentage of inorganic carbon is larger than the organic carbon, another indication of the generally "weaker" sewage used during this run. The decline in feed TOC from the 3rd to 4th data points ($Bio-P^{#2}$) is not as marked as it was in the COD profile; however, it is still sufficiently pronounced, to be suggested as a partial reason for the sudden change in the P behaviour from generally stable low values to the fluctuating behaviour described earlier.

Figures 5.25 and 5.26 illustrate (for both runs) the behaviour of the carbon in the Fixed-Time reactor. As can be seen, the TOC was very low (\leq 10 mg/L) and fairly constant as indicated by the horizontal nature of the TOC plot and the relatively even distance separating the IC from the TC profile. The Real-Time reactor, if plotted, would show a similar trend.

The large standard deviations (Tables 5.3 and 5.4) for the reactor dissolved oxygen concentrations, are indicative of the lack of control achievable at the lab scale. Small adjustments to the needle flow control valves produced wide swings in the D.O measurement in the bulk liquid. A plot of these values would be essentially stochastic and of little value, especially since, in the Real-Time reactor (Bio-P[#]1), the standard deviation was almost as large as the mean. In run Bio-P[#]2 no attempt was made to control the oxygen supply and thus the D.O. level was often at a maximum, usually around 7 mg/L.

The alkalinity values were also random in nature, reflecting the casual manner in which two scoops of sodium bicarbonate were tossed into the feed bucket, every time it was

Figure 5.26 Carbon (TC, IC, TOC) Plots for FT RCTR: Bio-P*2

filled. Plots of the variation in pH with time are shown in Figures 5.27 and 5.28; since all pH measurements fall within the neutral range, it is clear that the alkalinity additions were more than sufficient to supply the consumptive needs of nitrification. Some unduly large pH values were recorded, and it is suspected that some CO_2 was being stripped from solution due to excessive aeration.

When all of the preceding observations are considered, it is evident that several key biological and chemical parameters must be in balance in order to consistently achieve good P removal. One such relationship is the TKN/COD ratio, which in effect quantifies the denitrification capacity of the influent sewage. Researchers have long recognized the importance of this ratio. For example, Ekama et al., (1984) critiqued the Modified Bardenpho (Phoredox) process and predicted it would experience complete nitrification/denitrification, only when the influent sewage possessed a TKN/COD ratio less than 0.07. (i.e. a COD/TKN ratio of greater than 14:1). TKN/COD ratios larger than 0.07 seemed to have difficulty in providing enough carbon for denitrification.

The need to accommodate lower strength sewages was one reason (among others) behind the development of the UCT process, reported to be able to cope with TKN/COD ratios of up to 0.14 (i.e. COD/TKN ratios as low as 7:1). Working within these ratios, Ekama et al., (1984) were able to guarantee enough carbon available (in most instances) to ensure that nitrates did not bleed through to the anaerobic reactor.

-

Barnard et al. (1985), however, showed that the Kelowna B.C., Bio-P process was able to achieve good P removal with ratios between 7:1 and 10:1, despite predictions that it would need a COD/TKN ratio of at least 14:1 in order to function effectively,

The pilot plant's TKN/COD ratio is usually between 0.06 and 0.08 (Comeau (1989)). Unfortunately, in this research, total COD values are only available for the feed collection days. Accordingly, the average total CODs for Bio-P[#]1 and Bio-P[#]2 were 261 mg/L and 292 mg/L, respectively.

Using the mean values for TKN (Tables 5.1 and 5.2), a TKN/COD ratio of 0.11 was calculated for both $\text{Bio-P}^{\#}1$ and $\text{Bio-P}^{\#}2$. As large as this ratio is, it is still lower than the actual ratio present on most days, since the COD values do not consider the decline in COD during the days in between replenishment of the feed bucket. Moreover, in this experiment, the ratio was unusually affected by the vagaries in local weather patterns, since one collection would influence the following 12 days.

The fact that the TKN/COD ratio on most days is quite large is somewhat overshadowed by the peculiarity of the SBR treatment method, in that it transposes the traditional (ex. UCT or UBC) order of zones, from anaerobic, anoxic, aerobic, to anoxic, anaerobic, aerobic. This has the effect of accentuating the concern about whether sufficient carbon is available for Bio-P organisms to predominate.

To illustrate, in the traditional sequence, the emphasis has not only been to ensure enough carbon enters the first (anaerobic) zone, but also that it enters in the right form (i.e. as rapidly biodegradable (RBD) carbon (Nicholls and Osborn (1979)). The RBD fraction of the carbon is understood to be that portion of the carbon that can easily pass through the cytoplasmic membrane of the cell by diffusion or osmotic pressure. RBD carbon is usually comprised of short-chain fatty acids (SCFA), such as acetate, propionate, butyrate etc., and much work has been done at UBC on processes designed to enhance the production of these substrates in the incoming sewage (Rabinowitz et al. (1986), (1987), Elefsiniotis (1992)). Seibritz, Ekama and Marais (1983) have established that there must be at least 25 mg/L of RBD COD available in the anaerobic zone to ensure good P release/carbon storage.

Further to this, there must be enough remaining carbon to reduce the nitrates in the second (anoxic) zone, as implied by the earlier comments about the TKN/COD ratio. If insufficient carbon is available, nitrates will bleed through (via the recycle line) into the anaerobic zone, inhibiting P release.

Current theories suggest that nitrates inhibit P release (as measured by bulk liquid orthophosphate concentrations) by providing an electron acceptor for facultative denitrifiers. Consequently, Bio-P organisms do not have exclusive access to all of the RBD substrate. There is, however, considerable evidence (Hascoet and Florentz (1985), Vlekke (1988) and Comeau (1989)), that at least a fraction of Bio-P bacteria are capable of assimilating polyphosphates in the presence of nitrates. Thus, the reason for poor P release (when nitrates are present in the anaerobic zone), becomes one of competition between Bio-P organisms (rather than inhibition by other organisms) and is a function of the relative mix of organisms in the wastewater (those releasing P and those accumulating P).

Although it is likely that a combination of the above reasons is responsible for P release not being as vigourous in the presence of nitrates, this research will explain its results from the first premise (i.e. nitrates provide electron acceptors for bacteria, which in the process of denitrifying, utilize some of the carbon which should have been stored by Bio-P bacteria).

The SBR trait however, of inverting the first two sequences, means that <u>all</u> of the carbon in the influent sewage is primarily available for denitrification. This includes all of the RBD COD, although it is appreciated that other than the first (and perhaps a portion of the second) day after fresh sewage has replenished the feed bucket, most of the RBD fraction of the sewage would have disappeared. Upon entering the reactor, unless there is a large amount of carbon (specifically RBD COD) available in the influent, practically all of it will be utilized by denitrifying bacteria and none will be available for storage by Bio-P organisms.

Several researchers have suggested different values of COD utilized / mg of nitrate reduced. Ekama et al. (1984) has estimated the amount of RBD in a sewage by assuming that every mg of nitrate reduced by RBD carbon, utilizes 8.6 mg of the carbon for synthesis and energy production (U.S. EPA (1987)). Rabinowitz (1985), in a series of acetate fed batch experiments derived a rate of 3.60 mg COD / mg NO_3 -N, a value less than one half of the value quoted above. In fact, this value is very close to the theoretical (stoichiometric) value for acetate (3.53 mg COD/mg NO_3 -N) as calculated by McCarty et al. (1969). Whichever method is used, it is apparent that a considerable fraction of the influent carbon would be utilized for denitrification just because of the order of sequences in the SBR.

At the full-scale level there is much less of a problem, since fresh feed is available on a daily basis. At the laboratory scale however, the SBR characteristic of inverting the two unaerated sequences (as it relates to the quantity and partitioning of carbon), can be accommodated in one of several ways.

Manning and Irvine (1985) have circumvented the difficulty by using synthetic feed (not seeded with microorganisms and therefore not subject to substantial COD decay), prepared <u>daily</u> at the desired COD/TKN ratio. In their case, using SBRs on a 8 hour cycle, they used a relatively low COD/TKN ratio of 7.5:1, but were still able to reduce the ortho-P from 13 mg/L to 0.5 mg/L.

The other method of ensuring enough RBD carbon, is the approach utilized in this research. As demonstrated, it involves artificially adding substrate when the denitrification reaction is suspected (Fixed-Time) or known (Real-Time) to be complete. This procedure operates from the premise that none of the influent carbon will be available for Bio-P carbon storage. 182

However, as already seen in this analysis, the fluctuation in the carbon content when using real sewage still influences the operation of the SBRs significantly. On days when there is fresh feed available, denitrification happens quickly, often foiling the attempt by the Real-Time reactor to trap the nitrate breakpoint. During subsequent cycles, when the influent carbon content is low, denitrification likely occurs using carbon generated through endogenous reactions, much like the AASD set of experiments. On these days, the delay in the nitrate breakpoint clashes with the reactor's addition of acetate (especially the Fixed-Time reactor). In such cases, the acetate is used partially for denitrification and partially for Bio-P carbon storage. Thus, poor P uptake in the aerobic zone is observed and, as mentioned, this often degenerates into an oscillating high/low behaviour exhibited by the effluent P.

A second critical parameter that must be in balance is the Food:Microorganism (F:M) ratio in the reactor. Many researchers consider the F:M ratio as having a major influence on the biological nutrient removal process (in terms of its operation and performance (Krichten et al. (1985), Tracy and Flammino (1987)). Of the SBR studies reviewed for this research, Manning and Irvine (1985) used an F:M ratio of 0.26 g COD/g VSS/d while Irvine et al. (1985) reported successful full-scale P removal at the Culver Indiana SBR, with F:M ratios of 0.16 and 0.42 kg BOD_s/kg MLVSS/d.

Maier et al. (1984), in a series of pilot plant experiments, observed that the rate of phosphorus uptake/unit of MLVSS decreased by a factor of 2.6, as the F:M ratio declined from 0.2 to 0.1 kg TBOD/kg MLVSS/day. Tracy and Flammino (1985) reported bench-scale results in which the TBOD:TP ratio was held constant at 16:1, while the F:M ratio was decreased from 0.44 to 0.24 TBOD/kg MLVSS/d. They observed that the rate of phosphorus uptake in the aerobic zone decreased by a factor of three. McCartney and Oleszkiewicz (1988) used synthetic feed in lab scale SBRs, but were unable to achieve excess P removal. They hypothesized that, among other reasons, their F:M ratio (not stated in the paper) was too low to get good P removal.

The lack of uniformity in both the way of reporting the F:M ratio and in the operation and type of Bio-P systems for which results are available, make comparisons with this research difficult. As evidenced by the preceding discussion however, there is little doubt that the F:M ratio is an important parameter and can considerably influence the propensity for P removal in a system.

Most wastewater treatment systems are designed to be operated at steady-state. In this research however, the mass of solids in the reactor declined dramatically over the course of the run. The lack of aeration control may have contributed to an over-oxidized biomass (loss in solids); however, since little solids were lost in the effluent, it is clear that the major cause of this was a lack of bacterial growth inside the reactor. Thus, insofar as the solids were concerned, steady-state conditions were not achieved.

Comeau (1989) operated SBRs in a similar manner using an

8 hour cycle and a 20 day SRT. His objective was to characterize the addition of various levels of acetate on PHA storage. The results for the 30 mg/l acetate addition were very similar to the results from this research, in that both release and uptake occurred to about the same levels observed in this study. No excess removal of phosphorus was observed for any of the acetate additions (0, 15, 30, 45 mg/L) and thus the effluent P levels were virtually the same as the influent values. He does comment however, both on the lack of aeration control and the lack of steady-state conditions; however, no time-series solids data is presented.

As is evident in this research, the F:M ratio was constantly changing with time due to fluctuations in both the carbon content in the feed bucket and the decline in the solids in the reactor; thus, no calculations are presented for this analysis. Using the averages for the total COD and the MLVSS is invalid, and it does not reflect the reality of the trends experienced in the reactor. It is suspected however, that the lack of steady-state conditions influencing the F:M ratio, also contributed to the lack of excess phosphorus removal observed during the course of this research.

5.3 Evaluation of Reactors: Breakpoint Categories

As is evident from the above analysis, during both runs the reactors failed to remove, for any reasonable length of time, a level of phosphorus that could be considered as "excess". Thus, the reactors cannot be compared on the basis of successful P removal. Moreover, the characteristic curve shape (i.e. the

185

ideal ORP-time profile depicted in Figure 5.1) was never achieved, for either reactor, for any significant period of time. Therefore, a tabulation of deviations from an "indigenous" profile (due to spikes or otherwise) is not possible (as was done for the AASD set of experiments). In fact, no spikes of any kind were performed, due to the general lack of stability (both phosphorus related and ORP related) in the reactor.

It is possible, however, to outline a protocol for evaluating the reactors, which could be followed in the event that excess biological phosphorus removal is regularly achieved. This is done by categorizing the nitrate breakpoints into distinct groupings and tabulating the number of occurrences of each kind.

For example, since a key criterion for successful Bio-P removal involves the elimination of nitrates from the anaerobic sequence, a reactor operating under Fixed-Time conditions may prematurely implement the addition of VFAs, before all nitrates have been reduced by denitrifying bacteria. Thus, a proportion (or all) of the acetate may be used to reduce nitrates, rather than being sequestered into carbon reserves by Bio-P organisms. This has already been observed in Figures 5.5 and 5.6. Partitioning of the acetate between denitrifiers and Bio-P microbes represents a "failure" category, since, in essence, the objective of VFA addition has been partially thwarted. Such a category can be recognized by a detailed examination of the time-of-occurrence of the breakpoints. If the nitrate breakpoint occurs either simultaneously with or after the acetate addition (i.e greater than or equal to), it defeats the purpose of VFA addition since all or a portion of the acetate is being used to reduce nitrates, rendering it unavailable for the exclusive use of micro-organisms capable of excess P removal.

Categorizing the nitrate breakpoints into different groupings is illustrated in Figures 5.29 and 5.30. Figure 5.29 shows a detailed snapshot over two days, itemizing the breakpoints into those that occurred before the addition of acetate (and thus the acetate was used solely for carbon storage), those that were directly attributable to (i.e induced by) the addition of acetate, and those that occurred after VFA addition and thus had a portion of (or all of) the acetate utilized for denitrification. As implied in the previous paragraph, the latter two categories can be considered as one category.

A longer snapshot in time is presented in Figure 5.30. This plots (over 8 days) the length of time taken to denitrify in the Fixed-Time reactor, as measured by the length of time from the end of the FILL period to the nitrate breakpoint. Similar to the AASD experiments, a cyclical pattern (on a larger scale) develops, this time a function of the carbon content in the feed bucket. The dotted line represents the point of Fixed-Time addition of acetate (i.e. 1 hour and 25 minutes into the anoxic zone). Thus, those cycles which possess denitrification times below the line are operating in true Bio-P fashion, that is, having acetate additions which comply with the stated objective (i.e. used solely for carbon storage). Those cycles greater than

Figure 5.30 Nine Day Track of Denitrification Time

or equal to the line are "failing" insofar as the purpose of acetate addition is concerned, since the acetate is not being exclusively stored in carbon reserves. As can be seen, in this particular period, for a full 44 % of the time, the acetate was not used solely for carbon storage.

Other breakpoint categories involve the Incomplete Denitrification failure previously shown in Figure 5.12. There did not seem to be a corresponding Incomplete Nitrification failure, as measured by the NH_3 level in the effluent. This is due to the large D.O. values observed during reactor aeration.

further "failure" category One is the "Rapid Denitrification" pattern previously documented in Figure 5.2 and which occurs when denitrification happens immediately after the FILL period has ended. This category is a "failure" insofar as the Real-Time reactor is concerned, since it is unable to detect the breakpoint, upon which proper acetate addition is contingent. It is not a "failure" from the Fixed-Time reactor perspective, however, since the acetate is added regardless of when the knee occurs.

Another "failure" particular to Real-Time control is "Curve Distortion" which makes the true knee impossible to ascertain. Since Real-Time control hinges upon clean reproducible curves, any time there is distortion, the software has difficulty in detecting the breakpoint. For example, Figure 5.31 depicts the curve generated when the decanting solenoid failed, by remaining open after the DRAW/IDLE period had terminated. Thus, during the next FILL period, the incoming sewage mixed with the settled

Figure 5.31 Disruption of Reactor Due to Solenoid Failure

reactor contents and then immediately exited the reactor, carrying half the solids with it. Thus, the ORP probes measured the contents of a reactor that was much diluted. In Figure 5.32, the profile is shown which results from a mixer dislodging (allowing the reactor contents to settle). In this particular figure, the ORP probe measured the value obtained in the clarified supernatant, rather than from a reactor that was uniformly mixed.

The final breakpoint categories can be considered as "success" categories, in the sense that the purpose of acetate addition (to an SBR operating in Bio-P fashion) is being realized. For the Fixed-Time reactor, this translates into the breakpoint occurring well before the addition of acetate (1 hour and 25 minutes). For the Real-Time reactor, it represents a sharp, detectable breakpoint which can be used to trigger the release of acetate to the bulk liquid.

Tables 5.5 and 5.6 tabulate the number of occurrences (for both runs) of each type of breakpoint category and tallies those considered to be failures for each reactor. The total number of cycles in each run should theoretically be 120 (i.e. 40 days x 3 cycles/day); however, a few days were disregarded in each run due to power failures (longer than the UPS back-up capability) and days in which the reactor operation was momentarily halted in order to download the data.

As can be seen, the tables indicate a rather high percentage (40-70 %) of failures for both reactors. No conclusions about the relative performance of the reactors can

Figure 5.32 Disruption of Reactor Due to Mixer Failure

Breakpoint Classification Category Bio-P [#] 1	<pre># of Cycles</pre>	ہ of Cycles
Fixed-Time Reactor		
Breakpoint < VFA Addition	51	43 %
Failure - Breakpoint \geq VFA Addition	56	48 %
Failure - Incomplete Denitrification	7	6 %
Rapid Denitrification - No Breakpoint	4	3 %
Fixed-Time Failure Percentage = 54 %	118	100 %
Real-Time Reactor		
Sharp Detectable Breakpoint	69	59 %
Failure - Breakpoint = VFA Addition	7	6 %
Failure - Incomplete Denitrification	11	9 %
Failure - Rapid Denitrification	25	21 %
Failure - Curve Distortion	6	5 %
Real-Time Failure Percentage = 41 %	118	100 %

Table 5.5 Breakpoint Classification Categories: Bio-P#1

Table 5.6 Breakpoint Classification Categories: Bio-P#2

Breakpoint Classification Category Bio-P [#] 2	<pre># of Cycles</pre>	<pre>% of Cycles</pre>
Fixed-Time Reactor		
Breakpoint < VFA Addition	7	6 %
Failure - Breakpoint \geq VFA Addition	67	58 %
Failure - Incomplete Denitrification	3	3 %
Rapid Denitrification - No Breakpoint	38	33 %
Fixed-Time Failure Percentage = 61 %	115	100 %
Real-Time Reactor		
Sharp Detectable Breakpoint	33	29 %
Failure - Breakpoint = VFA Addition	35	30 %
Failure - Incomplete Denitrification	4	4 %
Failure - Rapid Denitrification	37	32 %
Failure - Curve Distortion	6	5 %
Real-Time Failure Percentage = 71 %	115	100 %

be drawn from these results, since the purpose of this exercise was merely to illustrate one aspect of the protocol that would be followed in evaluating the performance of the reactors. Perhaps the only comment that can be made is a relativistic one, in terms of the difference between $\text{Bio-P}^{\#}1$ and $\text{Bio-P}^{\#}2$. The generally weaker sewage of $\text{Bio-P}^{\#}2$ is likely the major reason behind the greater number of failures (30%) in the "Breakpoint = VFA" category, as compared to $\text{Bio-P}^{\#}1$ (6 %). In this case it seems reasonable to suggest that weaker sewage directly caused a greater proportion of times that acetate was used to directly induce the breakpoint.

To summarize, the above method involves categorizing the breakpoints into distinct groupings based upon whether they assist or hinder the purpose of VFA addition in SBR Bio-P removal. This would be incorporated into a larger protocol for evaluating a system successfully removing phosphorus. That is, the above analysis could be considered in conjunction with measurements of effluent ortho-P (presented as a time-series analysis), from a successfully operating Bio-P system. Graphically depicting the differences in effluent quality between a functional process (one in which ortho-P levels were consistently low and constant) and a non-functional process (one with either high or erratic P levels) would assist in deciding which system was the preferred one in terms of control stability. It is hoped, of course, that an ORP-driven system would be recognizable as the better alternative; however, more research is needed to substantiate this.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Many of the traditional methods of controlling activated sludge plants (ex. F:M and SRT), use variables which are historical in nature, in the sense that they convey what has historically happened to the biomass. A system at steady-state can be effectively controlled by the proper application of such parameters. There exists a need however, to continue to investigate parameters which can rapidly assess the current status of the biomass, since, during transient conditions, the parameters mentioned above can not be evaluated rapidly enough.

This research, therefore, has addressed the need for a process control strategy for biological wastewater treatment systems to be founded on a bacterial vision of the process scheme. In particular, the bacterial correlation with the relative change with time in oxidation-reduction potential has been explored. Specific conclusions particular to the operating strategies considered in this research, include the following:

1) There is a clear, distinct breakpoint in the ORP-time curve which can be definitively correlated with the disappearance of nitrates and can therefore be assumed to represent the point of complete denitrification.

2) The nitrate breakpoint has been observed to be reproducible from cycle to cycle, such that it can be reliably used for control purposes. In the majority of instances, it is sufficiently pronounced to be readily detected by a computer program, subject to proper instalment of the necessary interfacing equipment between the computer and the ORP probe.

3) For the AASD[#]1 operating strategy (FT - 3 hours air-on/3 hours air-off, RT - 3 hours air-on/nitrate-breakpoint-determined air-off) the reactors performed essentially the same in terms of solids degradation (15 * - 18 *), depending upon the mass balance method used and the solids (TSS or VSS) considered. The Real-Time reactor seemed to perform slightly better (up to 3 *) in relation to nitrogen removal; however, this difference was deemed to be insubstantial with regards to forming conclusions. The phosphorus recorded an apparent increase of 6 *, which was not considered excessive, as other researchers using the same TP digestion technique have encountered errors of the same magnitude.

4) For the AASD[#]1 operating strategy, the reactors were subjected to spikes of hydrogen peroxide, sodium nitrate and ammonium chloride. For each reactor, the number of deviations from the "indigenous" curve shape were tabulated and considered as "failures", since they predominantly represented a failure to complete a biological reaction (i.e. either nitrification or denitrification). The Fixed-Time reactor "failed" 9.5 % of the time while the Real-Time reactor failed 5.3 % of the time. Thus, the Real-Time reactor under this strategy was considered to more readily accommodate disturbances to the system.

5) The $AASD^{#2}$ operating strategy (FT - 3 hours each for airon/air-off, RT - air-on the same time as the air-off (determined by the nitrate breakpoint), seemed to perform marginally better

196

both in terms of solids removal (up to 4 %) and nitrogen removal (up to 6 %). Again, these results are subject to some interpretation since replicate experiments were not performed due to the prohibitive workload involved.

6) The AASD[#]2 operating strategy was subjected to the same spikes as AASD[#]1; however, in this case, the reactors accommodated the stresses in a similar manner, when normalization (in terms of the number of cycles that had potential for failure) was taken into account.

7) Under the Bio-P experimental conditions investigated in this research, excess biological phosphorus removal was not observed for any significant period of time. This was attributed primarily to the lack of steady-state conditions and the declining strength of the influent carbon.

8) A screening protocol was developed which could aid in evaluating a Bio-P SBR should excess P removal be observed. It consists of categorizing the time-of-occurrences of the nitrate breakpoints according to whether they hinder or assist the purpose of acetate addition to reactors operating in a Bio-P SBR fashion. An example of the application of this protocol was demonstrated.

9) In summary, the Fixed-Time and Real-Time strategies represent two antithetical management approaches. Fixed-Time control strategies are based on rapidly antiquated knowledge of the process dynamics. From the bacterial vantage point, this represents wasted treatment potential and/or inefficient reactor operation. Real-Time control strategies, however, evaluate the process dynamics vicariously, through the bacterial "eyes" of ORP. A process functioning at the micro-organism environmental level, in most cases, should be more versatile in its response to transient influent conditions, since it is operating more fully cognizant of the bacterial needs.

6.2 Recommendations

The results from this research indicate a number of areas worthy of consideration for further research. They include the following possibilities.

1) A critical analysis of the current algorithm (Lawrence 1991), reveals that the breakpoint algorithmn can be represented by the following general equation...

DELTA = $\{X_{i+9} - X_{i+5} - X_{i+4} - X_i\} / 5$ (6.1) where... X_i - any ORP value (i = 1 to 180).

In some applications, this may not be enough points to detect the knee, and in such instances attention would have to be directed to a more robust design.

2) Many post-denitrification strategies use external carbon sources (such as methanol) for denitrification. These are added on a continual basis with no feedback as to whether the carbon is actually needed for that particular cycle. The ORP nitrate breakpoint could be used to trigger the addition of the carbon source on an "as-needed" basis, reflecting the fact that some cycles would have sufficient carbon available generated through endogenous reactions. Considerable savings in terms of the cost of methanol may result from a strategy which always ensured complete elimination of NOX, either through carbon generated internally or carbon added externally.

3) None of the AASD strategies considered in this research examined vector reduction. Most digesters are subject to regulations which specify certain log kills (Class A, B, etc.) for pathogenic organism control. It would be worthwhile to compare aerobic digestion log kills with ORP controlled AASD log kills to see if there is a comparable reduction in pathogens.

4) As previously noted, the AASD ORP-time curve contains other distinctive features which show potential for control. In particular, the "dissolved oxygen breakpoint" seems to represent the point where the ammonia is reduced to a very low (if not zero) level. Thus, proceeding past this point may in effect be supplying air that is not needed (i.e. overaeration). A strategy could be formulated in which the air is cycled on and off according to detection of both breakpoints, one on other side of the cycle. A pulsating air strategy such as this may result in considerable savings of air while simultaneously ensuring nitrification / denitrification.

5) The AASD strategy could be used with different sludges, in particular high rate (short SRT) sludges, mixes of primary and secondary sludges, and industrial sludges to see if ORP control has a broader applicability.

6) Using the Bio-P screening protocol, acetate additions could be added on a sequential basis. If the nitrate breakpoint did not occur in a "reasonable" length of time, the acetate could be added in a two-stage process. The first (smaller) pulse could be used to eliminate any remaining nitrates and the second (larger) addition could be used solely for carbon storage by Bio-P bacteria. This would always ensure maximum carbon storage/P release in the anaerobic sequence of the SBR, even when using weaker strength sewages.

7) The Bio-P process should be investigated again, perhaps at a larger scale (pilot scale) and most certainly at steadystate. It is felt that the pilot scale level would reduce the effect of some of the variability that surfaced during the operation of these lab-scale reactors. Most notably, the lack of aeration control might matter less at a larger scale and/or be eliminated with a more sophisticated control apparatus. Secondly, the declining strength of the influent carbon could be circumvented by direct additions of influent from the sewer line.

is appreciated that there would be some unique It difficulties associated with this latter approach. Most noticeably a stronger sewage would increase the rapid denitrification "failures". In this research, the overwhelming majority of such failures occurred at the beginning of the Bio-P#2 run, when the sewage was the strongest. Unfortunately, the Real-time control software could not detect the breakpoint because it occurred too rapidly after the FILL period. As mentioned, this coincided with the best period of P removal. diluted with rain however, When the sewage was better breakpoints occurred but excess P removal was lost. Thus, a concession must be made between quality of effluent and quality of curves - a compromise that might be difficult to rationalize.

200

REFERENCES

- Abufayed, A.A. and E.D. Schroeder, 1986a. "Performance of SBR/ Denitrification with a Primary Sludge Carbon Source". Journal Water Pollution Control Federation, 58(5):387.
- Abufayed, A.A. and E.D. Schroeder, 1986b. "Kinetics and Stoichiometry of SBR/Denitrification with a Primary Sludge Carbon Source". <u>Journal Water Pollution Control</u> <u>Federation</u>, <u>58</u>(5):398.
- Alleman, J.E. and R.L. Irvine, 1980a. "Nitrification in the Sequencing Batch Biological Reactor". <u>Journal Water</u> <u>Pollution Control Federation</u>, <u>52</u>(11):2747.
- Alleman, J.E. and R.L. Irvine, 1980b. "Storage-Induced Denitrification using Sequencing Batch Reactor Operation". <u>Water Research</u>, <u>14</u>:1483.
- American Public Health Association (A.P.H.A.), 1980. <u>Standard</u> <u>Methods for the Examination of Water and Wastewater</u>. 15th Ed., Washington, D.C., 1134p.
- American Society for Testing and Materials (A.S.T.M.), 1983. <u>Section 11: Water and Environmental Technology</u>. Volume 11:01, Section D1498 Standard Practice for Oxidation-Reduction Potential of Water, p.233.
- Anderson, B.C., 1989. "Improvements in the Aerobic Digestion of Waste Activated Sludge through Chemical Control of Mixed Liquor pH: Pilot - Scale Investigations". Ph.D. Thesis, University of British Columbia, Vancouver, B.C. 418p.
- Armiger, W.B., Lee, G., Bordacs, K. and K.D. Tracy, 1990. "Automated On-Line Control Strategy for the Optimization of Nutrient Removal Processes". <u>Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems</u>, In <u>Proceedings of the 5th IAWPRC</u> <u>Workshop</u>, 26 July-3 August, Yokohama and Kyoto, Japan, p. 187.
- Arora, M.L., Barth, E.F. and M.B. Umphries, 1985. "Technology Evaluation of Sequencing Batch Reactors". Journal Water Pollution Control Federation, 57(8):867.
- Barnard, J.L., 1976. "A Review of Biological Phosphorus Removal in the Activated Sludge Process". <u>Water S.A.</u>, <u>2(3):136.</u>
- Barnard, J.L., Stevens, G.M. and P.J. Leslie, 1985. "Design Strategies for Nutrient Removal Plants". IAWPRC, Paris. <u>Water_Science_Technology</u>, <u>17</u>:233.

- Benefield, L.D., Judkins, J.F. and B.L. Weand, 1982. <u>Process</u> <u>Chemistry for Water and Wastewater Treatment</u>. Prentice -Hall Inc., Englewood Cliffs, N.J., 510p.
- Blanc, F.C. and A.H. Molof, 1973. "Electrode Potential Monitoring and Electrolytic Control in Anaerobic Digestion". Journal Water Pollution Control Federation, <u>45</u>(4):655.
- Bockris, J. O'M. (ed.), 1972. <u>Electrochemistry of Cleaner</u> <u>Environments</u>. Plenum Press, New York, N.Y., 296p.
- Boyd, R.F., 1984. <u>General Microbiology</u>. Times Mirror/Mosby College Publishing, 807p.
- Burbank, N.C. Jr., 1981. "ORP A Tool for Process Control?". In <u>Application of On-Line Analytical Instrumentation to</u> <u>Process Control</u> R.M. Arthur (ed.), p. 65.
- Charpentier, J., Florentz, M. and G. David, 1987. "Oxidation -Reduction Potential (ORP) Regulation: A Way to Optimize Pollution Removal and Energy Savings in the Low Load Activated Sludge Process". IAWPRC, Rio, <u>Water Science</u> <u>Technology</u>, <u>19</u>:645.
- Charpentier, J., Godart, H., Martin, G. and Y. Mogno, 1989. "Oxidation-Reduction Potential (ORP) Regulation as a Way to Optimize Aeration and C, N, and P Removal: Experimental Basis and Various Full-Scale Examples". IAWPRC, Brighton, <u>Water Science Technology</u>, <u>21</u>:1209.
- Comeau, Y., Rabinowitz, B., Hall, K.J. and W.K. Oldham, 1987a. Phosphate Release and Uptake in Enhanced Biological Phosphorus Removal from Wastewater". <u>Journal Water</u> <u>Pollution Control Federation</u>, <u>59</u>(7):707.
- Comeau, Y., Oldham, W.K. and K.J. Hall, 1987b. "Dynamics of Carbon Reserves in Biological Dephosphatation of Wastewaters". In <u>Advances in Water Pollution Control</u> <u>IAWPRC International Conference</u>, Rome, Italy, Sept. 28-30, p. 39.
- Comeau, Y., 1989. "The Role of Carbon Storage in Biological Phosphate Removal from Wastewater". Ph.D Thesis, University of British Columbia, Vancouver, B.C., 194p.
- Dahod, S.K., 1982. "Redox Potential as a Better Substitute for Dissolved Oxygen in Fermentation Process Control". In <u>Biotechnology and Bioengineering</u>, <u>9</u>, Gaden, E.L. Jr.(ed.), John Wiley and Sons Inc., p. 2123.
- DataTranslation Inc., 1988. <u>Users Manual for DT2814</u> Document UM-05198-B, 70p.

- De la Menardiere, M., Charpentier, J., Vachon, A. and G. Martin, 1991. "ORP as a Control Parameter in a Single Sludge Biological Nitrogen and Phosphorus Removal Activated Sludge System". <u>Water S.A.</u>, <u>17</u>(2):123.
- Dickinson, D., 1969. "Redox Measurement of Treatability by the Activated Sludge Process". <u>Water_Research</u>, <u>3</u>:955.
- Dold, P.L., Ekama, G.A. and G.v.R. Marais, 1980. "A General Model for the Activated Sludge Process". <u>Progress In</u> <u>Water Technology</u>, <u>12</u>:47.
- Dyson, R.D., 1974. <u>Cell Biology: A Molecular Approach</u>, Allyn and Bacon Inc., Boston, 701p.
- Eckenfelder, W.W. Jr. and J.W. Hood, 1951. "The Application of Oxidation-Reduction Potential to Biological Waste Treatment Process Control". In <u>Proceedings of the 6th</u> <u>Purdue Industrial Waste Conference</u>, Feb. 21-23 1951, Purdue University, West Lafayette, Indiana, p. 221.
- Eckenfelder, W.W. Jr., 1958. "A Discussion Redox Potentials in the Laboratory". <u>Sewage and Industrial Wastes</u>, <u>30(4):501.</u>
- Eilbeck, W.J., 1984. "Redox Control in Breakpoint Chlorination of Ammonia and Metal Ammine Complexes". <u>Water Research</u>, <u>18(1):21</u>.
- Eilbeck, W.J., and G. Mattock, 1987. <u>Chemical Processes in</u> <u>Wastewater Treatment</u>, John Wiley and Sons, Ellis Horwood Ltd., Chichester, England, 331p.
- Ekama, G.A., Marais, G.v.R. and I.P. Siebritz, 1984. "Chapter 7: Biological Excess Phosphorus Removal". In <u>Theory</u>, <u>Design and Operation of Nutrient Removal Activated Sludge</u> <u>Processes</u>, Water Research Commission, P.O. Box 824, Pretoria, 0001
- Elefsiniotis, P., 1992. "The Acid-Phase Fermentation in the Biological Phosphorus Removal Process". Ph.D. Thesis, University of British Columbia, Vancouver, B.C.
- Evans, B. and D. Filman, 1988. "Solids Handling Costs at Large Sewage Treatment Plants". In <u>Proceedings of Joint ASCE/</u> <u>CSCE Environmental Engineering Conference</u>, July 12-19, Vancouver, B.C., p.590.
- Grune, W.N. and Chun-Fei Chueh, 1958. "Redox Potentials in Waste Treatment - Laboratory Experiences and Applications". <u>Sewage and Industrial Wastes</u>, <u>30</u>(4):479.
- Harrison, D.E.F., 1972. "Physiological Effects of Dissolved Oxygen Tension and Redox Potential on Growing Populations of Microorganisms". Journal of Applied Chemistry and <u>Biotechnology</u>, <u>22</u>:417.
- Hascoet, M.C. and M. Florentz, 1985. "Influence of Nitrates on Biological Phosphorus Removal". <u>Water</u> <u>S.A.</u> <u>11</u>(1):1.
- Hashimoto, S., Fujita, M. and K. Terai, 1982. "Stabilization of Waste Activated Sludge through the Anoxic-Aerobic Digestion Process". <u>Biotechnology and Bioengineering</u>, <u>24</u>:1789.
- Heduit, A. and D.R. Thevenot, 1989. "Relation Between Redox Potential and Oxygen Levels in Activated-Sludge Reactors". IAWPRC, Brighton, <u>Water Science Technology</u>, <u>21</u>:947.
- Hood, J.W., 1948. "Measurement and Control of Sewage Treatment Process Efficiency by Oxidation-Reduction Potential". <u>Sewage Works Journal</u>, <u>20</u>(4):640.
- Hoover, S.R., Jasewicz L. and N. Porges, 1952. "Biochemical Oxidation of Dairy Wastes. IV. Endogenous Respiration and Stability of Aerated Dairy Sludge". <u>Sewage and</u> <u>Industrial Wastes</u>, <u>24</u>(9):1144.
- Ip, S.Y., Bridger, J.S. and N.F. Mills, 1987. "Effect of Alternating Aerobic and Anaerobic Conditions on the Economics of the Activated Sludge System". IAWPRC. Rio de Janerio. <u>Water Science Technology</u>, <u>19</u>:911.
- Irvine, R.L. and A.W. Busch, 1979. "Sequencing Batch Biological Reactors - An Overview". Journal Water Pollution Control Federation, 51(2):235.
- Irvine, R.L., Ketchum, L.H. Jr., Breyfogle, R. and E.F. Barth, 1983."Municipal Application of Sequencing Batch Treatment". Journal Water Pollution Control Federation, 55(5):484.
- Irvine, R.L., Ketchum, L.H. Jr., Arora, M.L. and E.F. Barth, 1985. "An Organic Loading Study of Full-Scale Sequencing Batch Reactors". Journal Water Pollution Control Federation, 57(8):847.
- Irvine, R.L., Murthy, D.V.S., Arora, M.L., Copeman, J.L. and J.A. Heidman, 1987. "Analysis of Full-Scale SBR Operation at Grundy Centre, Iowa". Journal Water Pollution Control Federation, 59(3):132.

- Jenkins, C.J., 1988. "Anoxic-Aerobic Digestion of Waste Activated Sludge: A Lab Scale Comparison to Aerobic Digestion With and Without Lime Addition". M.A.Sc. Thesis, University of British Columbia, Vancouver, B.C., 223p.
- Jenkins, C.J. and D.S. Mavinic, 1989a. "Anoxic-Aerobic Digestion of Waste Activated Sludge: Part I - Solids Reduction and Digested Sludge Characteristics". <u>Environmental Technology Letters</u>, <u>10</u>:355.
- Jenkins, C.J. and D.S. Mavinic, 1989b. "Anoxic-Aerobic Digestion of Waste Activated Sludge: Part II -Supernatant Characteristics, ORP Monitoring Results and Overall Rating System". Environmental Technology Letters, 10:371.
- Ketchum, L.H. Jr., and Ping-Chau Liao, 1979. "Tertiary Chemical Treatment for Phosphorus Reduction Using Sequencing Batch Reactors". <u>Journal Water Pollution</u> <u>Control Federation</u>, <u>51</u>(2):298.
- Ketchum, L.H. Jr., Irvine, R.L., Breyfogle, R.E. and J.F. Manning Jr., 1987. "A Comparison of Biological and Chemical Phosphorus Removals in Continuous and Sequencing Batch Reactors". Journal Water Pollution Control Federation, 59(1):13.
- Kim, M.H. and O.J. Hao, 1990. "Comparison of Activated Sludge Stabilization under Aerobic or Anoxic Conditions". <u>Research Journal of the Water Pollution Control</u> <u>Federation, 62</u>(2):160.
- Kjaergaard, L., 1976. "Influence of Redox Potential on the Glucose Catabolism of Chemostat Grown Bacillus licheniformis". <u>European Journal of Applied Microbiology</u>, <u>2</u>:215.
- Kjaergaard, L., 1977. "The Redox Potential: Its Use and Control in Biotechnology". In <u>Advances in Biochemical</u> <u>Engineering</u>, <u>7</u> Ghose, T.K., Fiechter, A. and N. Blakebrough (eds.), Springer - Verlag, Berlin, p. 131.
- Kjaergaard, L. and B.B. Joergensen, 1979. "Redox Potential as a State Variable in Fermentation Systems". In <u>Computer</u> <u>Applications in Fermentation Technology</u>, Arminger, W.B. (ed.), Biotechnology and Bioengineering Symposium No. 9 p. 85.
- Kjaergaard, L. and B.B. Joergensen, 1981. "The Redox Potential, A Hitherto Seldom Used Parameter in Fermentation Systems". In <u>Advances in Biotechnology Vol I</u> <u>- Scientific and Engineering Principles.</u> M. Moo-Young (ed.), Pergamon Press, p. 371.

- Koch, F.A. and W.K. Oldham, 1985. "Oxidation Reduction Potential - A Tool for Monitoring, Control and Optimization of Biological Nutrient Removal Systems". IAWPRC, Paris. Water Science Technology, 17:259.
- Koch, F.A., Oldham, W.K. and H.Z. Wang, 1988. "ORP as a Tool for Monitoring and Control in Bio-Nutrient Removal Systems". In <u>Proceedings of Joint ASCE/CSCE Environmental</u> <u>Engineering Conference</u>, July 12-19, Vancouver, B.C., p.162.
- Koers, D.A., 1979. "Studies of the Control and Operation of the Aerobic Digestion Process Applied to Waste Activated Sludges at Low Temperatures". Ph.D. Thesis, University of British Columbia, Vancouver, B.C., 288p.
- Krichten, D.J., Hong, S.N. and K.D. Tracy, 1985. "Applied Biological Phosphorus Removal Technologies for Municipal Wastewater Treatment by the A/O Process". In <u>Management</u> <u>Strategies for Phosphorus in the Environment</u>, R.Perry and M. Schmidtke (eds.). Selper Ltd. London, pg. 399

Lawrence, P.D., 1991. Personal Communications

- Lohmann, J., 1985. "State of Automation of Wastewater Treatment Plants in the F.G.R.". <u>Instrumentation and</u> <u>Control of Water and Wastewater Treatment and Transport</u> <u>Systems</u>, In <u>Proceedings 4th IAWPRC Workshop</u>, 27 April - 4 May, Houston and Denver, USA, p.9.
- Maier, W. et al., 1984. "Pilot Scale Studies on Enhanced Phosphorus Removal In a Single Sludge Activated Sludge Plant". In <u>Enhanced Biological Phosphorus Removal from</u> <u>Wastewater</u>, Vol (II), IAWPRC Post Conference Seminar, Paris, France, pg.51.
- Manning, J.F. and R.L. Irvine, 1985. "The Biological Removal of Phosphorus in a Sequencing Batch Reactor". <u>Journal</u> <u>Water Pollution Control Federation</u>, <u>57</u>(1):87.
- Matsuda, A., Ide, T., and S. Fujii, 1988. "Behaviour of Nitrogen and Phosphorus During Batch Aerobic Digestion of Waste Activated Sludge - Continuous Aeration and Intermittent Aeration by Control of D.O.". <u>Water</u> <u>Research</u>, <u>22</u>(12):1495.
- McCartney, D.M. and J.A. Oleszkiewicz, 1988. "Removal of C, N and P in a SBR at Low Temperatures". In <u>Proceedings of</u> <u>Joint ASCE/CSCE Environmental Engineering Conference</u>, July 12-19, Vancouver, B.C., p.320.
- McCartney, D.M. and J.A. Oleszkiewicz, 1990. "Carbon and Nutrient Removal in a Sequencing Batch Reactor at Low Temperatures". <u>Environmental Technology Letters</u>, <u>11</u>:99.

- McCarty,P.L., Beck, L. and P.St.Amat, 1969. "Biological Denitrification of Wastewaters by Addition of Organic Materials". <u>Proceedings of 24th Industrial Waste</u> <u>Conference</u>, Purdue University, West Lafayette, Indiana.
- Melcer, H., Bedford, W.K., Topnik, B.H. and N.W. Schmidtke. 1987. "Conversion of Small Municipal Wastewater Treatment Plants To Sequencing Batch Reactors". <u>Journal Water</u> <u>Pollution Control Federation</u>, <u>59</u>(2):79.
- Metcalf and Eddy Inc., 1979. Wastewater Engineering : <u>Treatment Disposal, Reuse</u>. Second Ed., McGraw-Hill Co., N.Y., 920p.
- MetraByte Corporation, 1989. <u>Data Acquisition and Control</u> <u>Catalogue</u>, <u>21</u>, p78.
- Microsoft Corporation, 1987a. <u>Microsoft QUICKBASIC 4.0:</u> Learning and Using Microsoft Quickbasic, 386p.
- Microsoft Corporation, 1987b. <u>Microsoft QUICKBASIC 4.0:</u> <u>Programming in Basic - Selected Topics</u>, 322p.
- Microsoft Corporation, 1987c. <u>Microsoft QUICKBASIC 4.0:</u> <u>BASIC Language Reference</u>, 530p.
- Midgley D. and K. Torrence, 1978. <u>Potentiometric Water</u> <u>Analysis</u>. John Wiley and Sons Inc., 409p.
- Milligan, P.A.T., 1989. Personal Communications.
- Minister of Supply and Services Canada, 1981. <u>National</u> <u>Inventory of Municipal Waterworks and Wastewater Systems</u> <u>in Canada</u>. Ottawa, Ontario, Canada.
- Morris, J.C. and W. Stumm, 1967. "Redox Equilibria and Measurements of Potentials in the Aquatic Environment". <u>Advances Chemistry Series</u>, No. 67, Article 13, p. 270.
- Nicholls H.A. and D.W. Osborn, 1979. "Bacterial Stress: A Prerequisite for Biological Removal of Phosphorus". Journal Water Pollution Control Federation, 51(3):557.
- Nussberger, F.E., 1953. "Applications of Oxidation-Reduction Potentials to the Control of Sewage Treatment Processes". <u>Sewage and Industrial Wastes</u>, <u>25</u>(9):1003.
- Oleszkiewicz, J.A. and S.A. Berquist, 1988. "Low Temperature Nitrogen Removal in Sequencing Batch Reactors". <u>Water</u> <u>Research</u>, <u>22</u>(9):1163.

- O'Rourke, J.T., Tomlinson, H.D. and N.C. Burbank, Jr., 1963. "Variation of ORP in An Activated Sludge Plant with Industrial Waste Load". <u>Industrial Water and Wastes</u>, <u>8(6):15.</u>
- Palis, J.C. and R.L. Irvine, 1985. "Nitrogen Removal in a Low Loaded Single Tank Sequencing Batch Reactor". <u>Journal</u> <u>Water_Pollution Control Federation</u>, <u>57</u>(1):82.
- Peddie. C.C. and D.S. Mavinic, 1988. "Preliminary Results of a Pilot Scale Evaluation of Aerobic/Anoxic Sludge Digestion".In <u>Proceedings Canadian Society of Civil</u> <u>Engineering Annual Conference</u>, 25-27 May 1988, Calgary, Alberta, p. 461.
- Peddie, C.C., Koch, F.A., Jenkins, C.J. and D.S. Mavinic, 1988. "ORP as a Tool for Monitoring and Control of SBR Systems for Aerobic Sludge Digestion". In <u>Proceedings of</u> <u>Joint ASCE/CSCE Environmental Engineering Conference</u>, July 12-19, Vancouver, B.C., p.171.
- Petersen, G.K., 1966. "Redox Measurements: Their Theory and Technique". <u>Radiometer A/S Emdrupvej72 DK 2400 Manual8</u>, Copenhagen, Denmark, 30p.
- Poduska, R.A. and B.D. Anderson, 1981. "Successful Storage Lagoon Odour Control". Journal Water Pollution Control Federation, 53(3):299.
- Rabinowitz, B., 1985. "The Role of Specific Substrates in Excess Biological Phosphorus Removal". Ph.D. Thesis, University of British Columbia, Vancouver, B.C.
- Rabinowitz, B. and W.K. Oldham, 1986. "Excess Biological Phosphorus Removal in the Activated Sludge Process Using Primary Sludge Fermentation". <u>Canadian Journal</u> of Civil Engineering, <u>13</u>:345.
- Rabinowitz, B., Koch, F.A., Vassos, T.D. and W.K. Oldham, 1987. "A Novel Operational Model for a Primary Sludge Fermenter for Use with the Enhanced Biological Phosphorus Removal Process". In <u>Proceedings of the</u> <u>IAWPRC Specialized Conference on Biological</u> <u>Phosphorus Removal from Wastewater</u>, Rome, pg. 349.
- Radjai M., Hatch R.T. and T.W. Cadman, 1984. "Optimization of Amino Acid Production by Automatic Self-tuning Digital control of Redox Potential". <u>Biotechnology and Bioengineering Symposium No. 14</u>, John Wiley and Sons, p. 657.

- Randall, C.W., Marshall, D.W. and P.H. King, 1970. "Phosphate Release in Activated Sludge Process". <u>Journal of the</u> <u>Sanitary Engineering Division</u>, In <u>Proceedings of the</u> <u>American Society of Civil Engineers</u>, SA 2, p.395.
- Rich, L.G., 1982. "A Cost-Effective System for the Aerobic Stabilization and Disposal of Waste Activated Sludge Solids". <u>Water Research</u>, <u>16</u>:535.
- Rimkus, R.R., Ziols, R. and A. Shaikh, 1985. "Computer Control of Raw Sewage Chlorination for Odour Control". <u>Instrumentation and Control in Water and Wastewater</u> <u>Treatment and Transport Systems</u>, In <u>Proceeding 4th IAWPRC</u> <u>Workshop</u>, 27 April-4 May, Houston and Denver, USA., p. 297.
- Roberts, F.W. and D.A. Rudd, 1963. "Applications of Oxidation Reduction Potential to Sewage Purification". <u>Journal of</u> <u>Instrumentation and Sewage Purification</u>. p. 227.
- Rohlich, G.A., 1948. "Measurement and Control of Sewage Treatment Process Efficiency by Oxidation-Reduction Potential - A Discussion". <u>Sewage Works Journal</u>, <u>20(4):650.</u>
- Rudd, D.A., Roberts, F.W. and D.E. Brooks, 1961. "Oxidation -Reduction Potential Measurements in Sewage Purification". <u>Instrument Engineer</u>, 3(3):61.
- Sekine, T., Iwahorik, K., Fujimoto, E. and Y. Inamori, 1985. "Advanced Control Strategies for the Activated Sludge Process". <u>Instrumentation and Control of Water and Wastewater Treatment and Transport Systems</u>, In <u>Proceedings 4th IAWPRC Workshop</u>, 27 April - 4 May, Houston and Denver, USA., p269.
- Shammas, N.M., 1988. "The BASIC Revival". <u>BYTE Magazine</u>, <u>13(9):295.</u>
- Shapiro, J., Levin, G.V. and Z.G. Humberto, 1967. "Anoxically Induced Release of Phosphate in Wastewater Treatment". Journal Water Pollution Control Federation, 39(11):1810.
- Shibai H., Ishizaki A., Kobayashi, K. and Y. Hirose, 1974. "Simultaneous Measurement of Dissolved Oxygen and Oxidation Reduction Potentials in the Aerobic Culture". Journal of Agricultural and Biological Chemistry, <u>38</u>(12):2407.
- Siebritz, I.P., Ekama, G.A. and G.v.R. Marais, 1983. " A Parametric Model for Biological Excess Phosphorus Removal". IAWPRC, Capetown, <u>Water Science Technology</u>, <u>15</u>:127.

- Silverstein, J. and E.D. Schroeder, 1983. "Performance of SBR Activated Sludge Processes with Nitrification Denitrification". <u>Journal Water Pollution Control</u> <u>Federation</u>, <u>55</u>(4):377.
- Smith, D., 1978. "Wastage Rates Determined by SRT Method". <u>Water and Sewage Works</u>, <u>125(9)</u>:68.
- Snoeyink, V.L. and D. Jenkins, 1980. <u>Water Chemistry</u>., John Wiley and Sons Inc., New York, N.Y., 463p.
- Stumm, W. 1966. "Redox Potential as an Environmental Parameter: Conceptual Significance and Operational Limitation". Advances in Water Pollution Research, Vol. 1, In, Proceedings of 3rd International Conference of Int. Ass. on Water Pollution Research., Munich, Germany, p. 283.
- Tortora, G.J., Funke, B.R. and C.L. Case, 1982. <u>Microbiology:</u> <u>An Introduction</u>, (2nd Ed.), Benjamin/Cummings Pub. Co. Inc. 772p.
- Tracy, K.D. and A. Flammino, 1985. "Kinetics of Biological Phosphorus Removal". Presented at the 58th Annual Water Pollution Control Federation Conference, Kansas City, Missouri.
- Tracy, K.D. and A. Flammino, 1987. "Biochemistry and Energetics of Biological Phosphorus Removal". In <u>Advances in Water Pollution Control</u>, R. Ramadori (ed.), Pergamon Press, London, pg. 15.
- U.S. Environmental Protection Agency, 1986. "Summary Report: Sequencing Batch Reactors". Report No. EPA-625-8-86-011, Office of Technology Transfer, Cincinatti, Ohio, 23p.
- U.S. Environmental Protection Agency, 1987. "Design Manual: Phosphorus Removal". Report No. EPA-625-1-87-001, Office of Technology Transfer, Cincinatti, Ohio, 116p.
- Vaccari, D.A., Cooper, A. and C. Christodoulatos, 1988. "Feedback Control of Activated Sludge Waste Rate". Journal Water Pollution Control Federation, 60(11):1979.
- Van Haandel, A.C., Ekama, G.A. and G.v.R. Marais, 1981. "The Activated Sludge Process Part 3 - Single Sludge Denitrification". <u>Water Research</u>, <u>15</u>:1135.
- Vlekke, G.J.F.M., Comeau, Y. and W.K. Oldham, 1988. "Biological Phosphate Removal from Wastewater with Oxygen or Nitrate in Sequencing Batch Reactors". <u>Environmental</u> <u>Technology Letters</u>, 9(8):791.

- Wang, N.S. and G.M. Stephanopoulos, 1987. "Computer Applications to Fermentation Processes". In <u>CRC Critical</u> <u>Reviews in Biotechnology</u>, <u>2</u>(1), p.30.
- Warner, A.P.C., Ekama, G.A. and G.v.R. Marais, 1985. "The Activated Sludge Process: Part 4 - Application of the the General Kinetic Model to Anoxic-Aerobic Digestion of Waste Activated Sludge". IAWPRC, Paris, <u>Water Science</u> <u>Technology</u>, <u>17</u>(8):1475.
- Watanabe, S., Baba, K. and S. Nogita, 1985. "Basic Studies of an ORP/External Carbon Source Control System for the Biological Denitrification Process". <u>Instrumentation and Control of Water and Wastewater Treatment and Transport Systems</u>, In <u>Proceedings 4th IAWPRC Workshop</u>, 27 April - 4 May, Houston and Denver, USA, p. 641.
- Weber, L.J. and D.I. McLean, 1979. <u>Electrical Measurement</u> <u>Systems for Biological and Physical Scientists</u>, Addison -Wesley Publishing Company, 399p.
- Westcott, C.C., 1976. "Oxidation-Reduction Potential with Beckman Metallic Electrodes". <u>Technical Information</u> <u>Bulletin</u>, No. 952-EC-76-GT, Scientific Instruments Division, Irvine, California 92713, p. 13.
- Whitfield, M., 1969. "Eh as an Operational Parameter in Estuarine Studies". <u>Limnology and Oceanography</u>, <u>14(4):547.</u>
- Williams, D.S., Burgarino, A.E. and J.R. Fernandez, 1986. "Process Control and Management Information Processing at a Municipal Wastewater Treatment Plant". <u>Journal Water</u> <u>Pollution Control Federation</u>, <u>58</u>(10):949.
- Wimpenny, J.W.T., 1969. "The Effect of Eh on Regulatory Processes in Facultative Anaerobes". <u>Biotechnology and</u> <u>Bioengineering</u>, <u>11</u>(4):623.
- Wimpenny, J.W.T. and D.K. Necklen, 1971. "The Redox Environment and Microbial Physiology: The Transition from Anaerobiosis to Aerobiosis in Continuous Cultures of Facultative Anaerobes". <u>Biochimica et Biophysica Acta</u>, <u>253</u>:352.
- Zhou, J., 1991. "Applicability Study of ORP Probes in the Biological Phosphorus Removal Process". M.A.Sc. Thesis University of British Columbia, Vancouver, B.C.

APPENDIX A

Derivation	of	the	Nernst	Equation	213

Page

APPENDIX A

Derivation of the Nernst Equation

For the general reaction..
$$aA + bB <=> cC + dD$$
 (1)

The Van't Hoff Equation.
$$\Delta G = \Delta G^{\circ} + RT \log \left[\frac{\{C\}^{\circ}\{D\}^{d}}{\{A\}^{a}\{B\}^{b}}\right]$$
 (2)

Thus for the equation
$$\dots$$
 ox + ne' <=> red (3)

The Van't Hoff Equation..
$$\Delta G = \Delta G^{\circ} + RT \log \left[\frac{\{red\}}{\{ox\}}\right]$$
 (4)

Now...

"The reduction of one mole of oxidant to its reduced form requires the passage of nF coulombs of electricity against a potential difference of E volts, so the electrical work done by the system at constant temperature and pressure is nEF joules. This is equal to the decrease in free energy of the system" (Eilbeck and Mattock, (1987)).

The Gibbs Free Energy Equation
$$\Delta G = -nEF$$
 (5)

at Standard State $\triangle G^{\circ} = -nE^{\circ}F$

Substituting (5) and (6) into (4)

Gives....
$$-nEF = -nE^{\circ}F + RT \log\left[\frac{\{red\}}{\{\sigma x\}}\right]$$
 (7)

Or...
$$E = E^{\circ} - \frac{RT}{nF} \log \left[\frac{\{red\}}{\{ox\}}\right]$$
 (8)

which is the Nernst Equation.

(6)

APPENDIX B

Page

Intracellular Redox and Energy Calculation...... 215

APPENDIX B

Intracellular Redox and Energy Calculation

<u>A Oxygen as a Terminal Electron Acceptor</u>

Consider the oxygen terminal electron acceptor with E° adjusted to an E value associated with a pH of 7.0, $T = 25^{\circ}C$). $O_{2(aq)} + 4H^{+} + 4e^{-} <=> 2H_{2}O E^{\circ} = +1.27$ (Snoeyink & Jenkins, 1980) $0 \text{ pH} = 7 \text{ E} = \text{E}^{\circ} + .0592 \log \{\text{H}^{+}\}^{4}$ $E = 1.27 + \frac{.0592}{4} \log \{10^{-7}\}^4$ E = 1.27 + (-.42) = 0.85 volts when coupled with... (Dyson, 1974, $T = 25^{\circ}C$) $NAD^{+} + H^{+} + 2e^{-} \le NADH$ $E^{\circ} = -0.32$ @ pH = 7 gives the equation $1/2 O_{2(aq)} + H^{+} + NADH <=> NAD^{+} + H_{2}O$ and since $\triangle G = -nEF$ $\Delta G = -2(23000 \text{ <u>calories})[(-0.32)-(0.85)]</u> volts$ volts $\Delta G = -46000 \times (-1.17) = -53,820 \text{ cal/mole} = -53.8 \text{ kcal/mole}$ **B** ATP The Free energy of hydrolysis of ATP is approximately - 7000 cal/mole and there are 3 ATP molecules generated in one pass of the ETC with oxygen as the terminal electron acceptor. Thus...

Efficiency = (3)(7000) x 100 % = 39 % capture. 53820

<u>C</u> Oxidative Phosphorylation

Generates 38 ATP and with potential glucose oxidation of 686,000 cal/mole.

Efficiency = <u>(38)(7000)</u> x 100 % = 39 % efficiency 686000

APPENDIX C

SOFTWARE FLOWCHARTS - AASD AND BIO-P

Figure

Page

C.1	AASD START-UP AND INITIALIZATION MODULE	217
C.2	AASD SCAN AND PLOTTING MODULE	217
C.3	AASD INTERACTIVE MODULE	218
C.4	AASD RESET MODULE - 1A - BOTH RCTRS FT - AIR ON	219
C.5	AASD RESET MODULE - 1B - BOTH RCTRS FT - AIR OFF	219
C.6	AASD RESET MODULE - 2A(i) - RT CONTROL - AIR ON FT	220
C.7	AASD RESET MODULE - 2A(ii) - RT CONTROL - AIR OFF FT.	220
C.8	AASD RESET MODULE - 2B(i) - RT CONTROL - AIR ON RT	221
C.9	AASD RESET MODULE - 2B(ii) - RT CONTROL - AIR OFF RT.	221
C.10	AASD CLOSURE STATEMENTS	222
c.11	AASD READPROBE MODULE	222
C.12	BIO-P START-UP AND INITIALIZATION MODULE	223
C.13	BIO-P SCAN AND PLOTTING MODULE	223
C.14	BIO-P INTERACTIVE MODULE	224
C.15	BIO-P VFA ADDITION TO REAL-TIME REACTOR MODULE	224
C.16	BREAKPOINT SUBROUTINE - MODULE 1	225
C.17	BREAKPOINT SUBROUTINE - MODULE 2	225
C.18	BREAKPOINT SUBROUTINE - MODULE 3	226
C.19	BREAKPOINT SUBROUTINE - MODULE 4	226

FIGURE C.1 AASD START-UP AND INITIALIZATION MODULE

FIGURE C.2 AASD SCAN AND PLOTTING MODULE

FIGURE C.3 AASD INTERACTIVE MODULE

FIGURE C.4 AASD RESET MODULE - 1A - BOTH RCTRS FT - AIR ON

FIGURE C.5 AASD RESET MODULE - 1B - BOTH RCTRS FT - AIR OFF

FIGURE C.6 AASD RESET MODULE - 2A(i) - RT CONTROL - AIR ON FT

FIGURE C.7 AASD RESET MODULE - 2A(ii) - RT CONTROL - AIR OFF FT

FIGURE C.8 AASD RESET MODULE - 2B(i) - RT CONTROL - AIR ON RT

FIGURE C.9 AASD RESET MODULE - 2B(ii) - RT CONTROL - AIR OFF RT

FIGURE C.11 AASD READPROBE MODULE

FIGURE C.12 BIO-P START-UP AND INITIALIZATION MODULE

FIGURE C.13 BIO-P SCAN AND PLOTTING MODULE

FIGURE C.19 BREAKPOINT SUBROUTINE - MODULE 4

APPENDIX D

SOFTWARE CODE - AASD[#]1, AASD[#]2 AND BIO-P

Program Name	age
GLOBAL.BI - AASD [#] 1, AASD [#] 2, BIO-P	228
AEROBIC-ANOXIC SLUDGE DIGESTION - Main Program	
Start-Up and Initialization Module Scan and Plotting Module Readprobe Module Interactive Module Reset Module: Part1 - Both RCTRS FT Reset Module: Part2 - 1 RCTR FT/ 1 RCTR RT -AASD [#] 1 Reset Module: Part2 - 1 RCTR FT/ 1 RCTR RT - AASD [#] 2 BIOLOGICAL PHOSPHORUS REMOVAL - Main Program	229 230 231 232 233 233 235
Start-Up and Initialization Module Scan and Plotting Module Interactive Module VFA Addition to RT RCTR Module ReadprobeModule	237 238 239 240 241
INFORM.BAS AASD [#] 1. AASD [#] 2. BIOP. FILENAME.BAS. REFRESH.BAS. INITREL.BAS. RELAY.BAS. AXES.BAS. PAXIS.BAS. DIFF. BAS.	242 242 243 243 244 244 245 245 245 245
AASD [#] 1/AASD [#] 2. BIO-P. ORPSCRN.BAS. WRITING.BAS. TRANSFER.BAS. PLOT.BAS.	247 247 248 248 249 249
AASD [#] 1/AASD [#] 2. BIO-P. UPDATE.BAS. TYPROBE.BAS. JINKEY.BAS. BREAKPT.BAS	250 250 251 251 251
AASD [#] 1/AASD [#] 2 BIO-P	252 255

DEFINT A-Z ______ -----Declaration of Subroutines------Declaration DECLARE SUB INFORM () DECLARE SUB RELAYSWITCH (Relaynum%) DECLARE SUB INITRELAYS () DECLARE SUB FILENAME (FTout\$, RTout\$, Commout\$, FTnum, RTnum, Commnum) DECLARE SUB REFRESH (Probe\$) DECLARE SUB ORPSCRN () DECLARE SUB AXES () DECLARE SUB PAXIS () DECLARE SUB PAXIS () DECLARE SUB SCANS (SCAN, Pt) DECLARE SUB DIFF (Flagdiff, Pt) DECLARE SUB WRITING (Pt, FTout\$, RTout\$, FTnum, RTnum) DECLARE SUB TRANSFER (ProbeID\$, Pt) DECLARE SUB PLOT (Pt) DECLARE SUB BREAKPT (Commnum, Pt, Nitrate, Renew) DECLARE SUB LAYOUT () DECLARE SUB UPDATE (Pt) -----Declaration of Functions-----Declaration DECLARE FUNCTION TYPROBES (ProbeS) DECLARE FUNCTION jinkey% () DECLARE FUNCTION getscanl% (iobase%, first%, last%, BYVAL segaddr%, BYVAL offaddr%) 'The scanning time is 2 seconds. CONST SCAN.TIME = 2CONST NUM. CHANNELS = 16 'The number of channels to be scanned. 'Number of scans in two minute interval. CONST NUM.SCANS = 60'For dimensioning purposes. 'Currently a Four Hours Maximum Anoxic Limit 'For <Yes> decision in selecting other probes. CONST NUM.PTS = 181 CONST MAX.ANOX = 14400CONST KY.LY = &H79 CONST KY.LN = &H6E CONST KY.ESC = &H1B 'For <No> decision finished viewing probes. 'For escaping from program. 'The first channel - lower bound. 'The last channel - upper bound. CONST chan0% = 0CONST chan15 = 15 'The base address of the A/D board. CONST baseaddr3 = &H220CONST ioaddr% = &H300 CONST FALSE = 0 'The base address of the relay board. 'Mostly used for flag settings. 'Mostly used for flag settings. 'The Width of the Ring. 'The number of Rings in the Buffer. CONST TRUE = 1 CONST RINGSIZE = 5 CONST NUMRINGS = 5 'The difference in slope between the first and last 'rings of the Ringbuffer for the Real Time CONST DELTA2A! = -1.25CONST DELTA2B! = -1.25'ORP Probes. CONST DELTA2C! = -1.25'Safety Factor to allow stability after air ceases. CONST MAXAVOID = 15 -----Dimensioning of Arrays------DIM MVolts(NUM.CHANNELS, NUM.SCANS) DIM ORPIa(NUM.PTS) AS SINGLE, ORPIb(NUM.PTS) AS SINGLE DIM ORPIc(NUM.PTS) AS SINGLE, ORP2a(NUM.PTS) AS SINGLE DIM ORP2b(NUM.PTS) AS SINGLE, ORP2c(NUM.PTS) AS SINGLE DIM DOX1(NUM.PTS) AS SINGLE, DOX2(NUM.PTS) AS SINGLE DIM ORP(NUM.PTS) DIM DORP1a(NUM.PTS) AS SINGLE, DORP1b(NUM.PTS) AS SINGLE DIM DORP1c(NUM.PTS) AS SINGLE, DORP2a(NUM.PTS) AS SINGLE DIM DORP2b(NUM.PTS) AS SINGLE, DORP2c(NUM.PTS) AS SINGLE DIM RING2a (NUM.PTS) AS SINGLE, RING2b (NUM.PTS) AS SINGLE DIM RING2c (NUM.PTS) AS SINGLE -----Variables shared between Modules------1----COMMON SHARED ORP1a() AS SINGLE, ORP1b() AS SINGLE, ORP1c() AS SINGLE COMMON SHARED ORP2a() AS SINGLE, ORP2b() AS SINGLE, ORP2c() AS SINGLE COMMON SHARED DOX1() AS SINGLE, DOX2() AS SINGLE COMMON SHARED ORP(), MVolts() COMMON SHARED DORP1a() AS SINGLE, DORP1b() AS SINGLE, DORP1c() AS SINGLE COMMON SHARED DORP1a() AS SINGLE, DORP1b() AS SINGLE, DORP1c() AS SINGLE COMMON SHARED DORP1a() AS SINGLE, DORP1b() AS SINGLE, DORP1c() AS SINGLE COMMON SHARED DORP2a() AS SINGLE, RING2b() AS SINGLE, RING2c() AS SINGLE COMMON SHARED Startpt, Endpt, ONOFFmap&, Digit01, Digit02, Digit21, Digit COMMON SHARED Startpt, Endpt, ONOFFmap&, Digit01, Digit02, Digit21, Digit22 COMMON SHARED Digit41, Digit42, Digit61, Digit52, Digit3, Digit4

'----- AASD1.BAS -----and '----- AASD2.BAS ------DEFINT A-Z STARTUP AND INITIALIZATION MODULE 'This module introduces the user to the mechanics of the program, initializes 'some parameters, and declares global parameters. 'SINCLUDE: 'GLOBAL.BI' CLS CALL INFORM 'Call the information for the program mechanics. CALL FILENAME (FTout\$, RTout\$, Commout\$, FTnum, RTnum, Commnum)'Set disk Files Runprompt: LOCATE 21, 15: INPUT ; "Do you want to run the program? (Y/N) ", RAns\$ RAns = UCASES(RAnsS) IF RAns\$ = "Y" THEN GOTO Initialize ELSEIF RAns\$ = "N" THEN GOTO Theend ELSE GOTO Runprompt END IF Initialize: SCAN = 0'Set the Scan counter to zero to start the scans. Scantime = SCAN.TIME 'The Scan time is currently every 2 seconds. OUT baseaddr%, &HO FOR x = 1 TO 100: NEXT x i = INP(baseaddr% + 1) i = INP(baseaddr% + 1) 'Initialize the DT2814 A/D Board 'as per the DT2814 manual on pg. 5-9 CALL INITRELAYS 'Initialize the relay board - set all relays off. 'Used to control the Scanning Loop 'Flag for breaking out of and into Scanning Loop. Startup = 0Flagloop = TRUE'Flag for breaking out of and into Scanning Loop. 'Flag to signify no preceeding point in Diff Sub. 'Initially no Real Time Control of Reactor # 2 'Real-time indicated - wait for anoxic cycle 'No Nitrate Breakpoint Detected as of yet. 'Flag used to clear/reset Breakpt Sub variables. 'Flag indicating whether graphics is invoked Flagdiff = TRUE Realtime = FALSE Flag.RT = FALSE Nitrate = FALSE Renew = FALSE Flagscrn = FALSE'Assign initial point of the start of cycle. 'Storage of initial Pt value. Pt = 1Startpt = 1'There are 180 points in a Six Hour Cycle. Endpt = 180'Layout the Text mode information. CALL LAYOUT CALL AXES 'Calculate the relevant time axis. /Air on for 3 hours of Aeration
Relaynum% = 0: CALL RELAYSWITCH(Relaynum%) 'Air.FT is switched on
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) 'Air.RT is switched on
StartAer.FT& = TIMER
Airon FT = TIMER AirOn.FT = TRUE OPEN Commout\$ FOR APPEND AS #Commnum 'Write to the comment file PRINT #Commnum, "AirFT On at "; TIME\$ PRINT #Commnum, "AirRT On at "; TIME\$

SCAN AND PLOTTING MODULE / ________ 'This module scans the ORP probes every 2 seconds and then every 2 minutes 'an average for each probe is calculated and plotted if graphics is invoked 'else an update is written to the screen in text mode. Scanning: ON TIMER(Scantime) GOSUB Readprobe 'Every 2 sec. go to the Readprobe Module TIMER ON 'Enable On Timer event-handling trapping routine DO 'Loop enclosing the entire program - to exit press < Escape> IF Flagloop = FALSE THEN 'Break out of the Scanning Loop TIMER STOP CALL DIFF(Flagdiff, Pt) 'Calculate the First Difference Flagdiff = FALSE'Now Preceeding Pts are available Datecheck = VAL(MID\$(DATE\$, 4, 2)) 'Perform Date check on the Data IF Datecheck <> FTnum THEN 'If past midnight (ie. new day) CLOSE #Commnum 'Close comment file - open data CALL FILENAME (FTout\$, RTout\$, Commout\$, FTnum, RTnum, Commnum) 'file OPEN Commout\$ FOR APPEND AS #Commnum 'Open new comment file END IF CALL WRITING(Pt, FTout\$, RTout\$, FTnum, RTnum) 'Write data to disk IF Flagscrn = FALSE THEN CALL UPDATE(Pt) 'Update the information screen IF Flagscrn = TRUE THEN CALL TRANSFER (ProbeIDS, Pt) 'Transfer the array of points CALL PLOT(Pt) 'Plot history of points to present END IF

CALL SCANS(SCAN, Pt) 'Call the SCAN Subroutine IF SCAN = NUM.SCANS THEN '60 Scans (2 min) elapsed SCAN = 0 Flagloop = FALSE 'Break out of scanning loop END IF

RETURN

INTERACTIVE MODULE /____ ______ 'This module allows the user to interact with the process allowing him to 'select any of the probes which he desires to observe on a real-time basis. kcode = jinkey* 'Test for Keystroke in the Keyboard buffer. IF kcode THEN 'Determine what the keystroke is. SELECT CASE kcode CASE KY.ESC EXIT DO CASE KY.LY GOTO Whichprobe 'Which probe has been selected. Whichprobe: LOCATE 23, 48: INPUT "Which Probe? (Letter)"; Probe\$ Probe\$ = UCASE\$(Probe\$) IF Probe\$ = "A" OR Probe\$ = "B" OR Probe\$ = "C" THEN GOTO RTprompt IF Probe\$ = "D" OR Probe\$ = "E" OR Probe\$ = "F" THEN GOTO RTprompt ELSE GOTO Whichprobe END IF RTprompt: Realtime = FALSE THEN 'Interested in Real Time Control? LOCATE 23, 48: INPUT "Real-time control RCTR 2? (Y)"; Ans.RT\$ Ans.RT\$ = UCASE\$(Ans.RT\$) IF Realtime = FALSE THEN IF Ans.RT\$ = "Y" THEN Realtime = TRUE END IF SCREEN 3 'For Hercules Graphics capabilities Flagscrn = TRUE'Do not overlay text mode on graphics 'Refresh the screen 'Identify the Selected probe 'Transfer the array of points CALL REFRESH(Probe\$) ProbeID\$ = TYPROBE\$(Probe\$) CALL TRANSFER(ProbeID\$, Pt) CALL PLOT(Pt) LIGHDIEL the array of points 'Plot history of points to present LOCATE 23, 27: PRINT "Scan Number - " CASE KY.LN SCREEN 0 'Turn off Hercules Graphics Flagscrn = FALSE'Invoke Text mode again CALL LAYOUT 'Layout the text information CALL UPDATE(Pt) 'Update the screen information CASE ELSE 'Do nothing END SELECT 'Closes Select Case kcode Structure. END IF 'Closes IF kcode Decision Block.

/ ==== RESET MODULE: Part 1 - Both Reactors Fixed time /-----'This module resets some flags to break out of loops at the appropriate 'times. 'Real time not implemented yet. IF Flag.RT = FALSE THEN '----- Part 1a Air On ------IF AirOn.FT = TRUE THEN 'Check for finish of 3 hr aeration period FinishAer.FT& = TIMER 'Poll the TIMER Function 'Check if 3 hr air on period overlaps into next day
IF FinishAer.FT& < 10920 AND StartAer.FT& >= 75480 THEN
FinishAer.FT& = FinishAer.FT& + 86400 END IF IF (FinishAer.FT& - StartAer.FT&) >= 10800 THEN
Relaynum% = 0: CALL RELAYSWITCH(Relaynum%)
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%)
StartAnox.FT& = TIMER
Dirop FT = FDUCF 'Aerated for 3 hours 'Air.FT is switched off 'Air.RT is switched off 'Poll the TIMER Function AirOn.FT = FALSE PRINT #Commnum, "AirFT Off at "; TIME\$ PRINT #Commnum, "AirRT Off at "; TIME\$ 'Write to the comment file IF Realtime = TRUE THEN 'User wants Realtime control 'Avoid Part 1 - no Real Time Flag.RT = TRUEStartAnox.RT& = TIMER 'Poll the TIMER Function AirOn.RT = FALSE PRINT #Commnum, "Real-Time started at "; TIME\$ END IF END IF 'Closes 3 Hour Aeration Block END IF 'Closes If AirOn.FT = TRUE Part 1a Decision Block '------ Part 1b Air Off ------IF AirOn.FT = FALSE THEN 'Check for Finish of 3 hours air off period FinishAnox.FT = TIMER'Poll the TIMER Function 'Check if 3 hour air off period overlaps into next day
IF FinishAnox.FT& < 10920 AND StartAnox.FT& >= 75480 THEN
FinishAnox.FT& = FinishAnox.FT& + 86400 END IF IF (FinishAnox.FT& - StartAnox.FT&) >= 10800 THEN 'Anoxic for 3 hours
Relaynum% = 0: CALL RELAYSWITCH(Relaynum%) 'Air.FT is switched on
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) 'Air.RT is switched on
'Air.RT is switched on (IIIIISHAHOX.FT& - STATTAHOX.FT&) >= 10800 '
Relaynum% = 0: CALL RELAYSWITCH(Relaynum%)
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%)
StartAer.FT& = TIMER 'Poll the TIMER Function AirOn.FT = TRUE PRINT #Commnum, "AirFT On at "; TIME\$ PRINT #Commnum, "AirRT On at "; TIME\$ 'Write to the comment file END IF 'Closes 3 hour Air Off Decision Block END IF 'Closes If AirOn.FT = FALSE Part 1b Decision Block

5

'Note: This is for the AASD#1 Program

RESET MODULE: Part 2 - 1 RCTR Fixed Time / 1 RCTR Real time **** , _______ ELSEIF Flag.RT = TRUE THEN 'Real Time Control Implemented '----- Part 2a(i) - Fixed Time Air On ------ Part 2a(i) - Fixed Time Air On 'Check for Finish of 3 hour aeration period IF AirOn.FT = TRUE THEN FinishAer.FT = TIMER'Poll the TIMER Function 'Check if 3 hr air on period overlaps into next day
IF FinishAer.FT& < 10920 AND StartAer.FT& >= 75480 THEN
FinishAer.FT& = FinishAer.FT& + 86400 ENDIF IF (FinishAer.FT& - StartAer.FT&) >= 10800 THEN 'Aerated for 3 hours Relaynum% = 0: CALL RELAYSWITCH(Relaynum%) 'Air.FT is switched off. StartAnox.FT& = TIMER 'Poll the TIMER Function AirOn.FT = FALSE PRINT #Commnum, "AirFT Off at "; TIME\$ 'Write to the comment file END IF 'Closes If AirOn.FT = TRUE Part 2a(i) Decision Block END IF '----- Part 2a(ii) - Fixed Time Air Off ------- Part 2a(ii) - Fixed Time Air Off --------IF AirOn.FT = FALSE THEN 'Check for finish of 3 hr air off period FinishAnox.FT& = TIMER 'Poll the TIMER Function 'Check if 3 hour air off period overlaps into next day
IF FinishAnox.FT& < 10920 AND StartAnox.FT& >= 75480 THEN
FinishAnox.FT& = FinishAnox.FT& + 86400 END IF IF (FinishAnox.FT& - StartAnox.FT&) >= 10800 THEN 'Anoxic for 3 hours Relaynum% = 0: CALL RELAYSWITCH(Relaynum%) StartAer.FT& = TIMER 'Air.FT is switched on. 'Poll the TIMER Function AirOn.FT = TRUE PRINT #Commnum, "AirFT On at "; TIME\$ 'Write to the comment file END IF END IF 'Closes If AirOn.FT = FALSE Part 2a(ii) Decision Block ' ----- Part 2b(i) - Real Time Air On ------IF AirOn.RT = TRUE THEN 'Check for finish of 3 hour air on period FinishAer.RT& = TIMER 'Poll the TIMER Function 'Check if 3 hour air on period overlaps into next day
IF FinishAer.RT& < 10920 AND StartAer.RT& >= 75480 THEN
FinishAer.RT& = FinishAer.RT& + 86400 END IF IF (FinishAer.RT& - StartAer.RT&) >= 10800 THEN
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%)
StartAnox.RT& = TIMER 'Aerated for 3 hours 'Air.RT is switched off. 'Poll the TIMER Function AirOn.RT = FALSE PRINT #Commnum, "AirRT Off at "; TIME\$ 'Write to the comment file END IF END IF 'Closes If AirOn.RT = TRUE Part 2b(i) Decision Block

'----- Part 2b(ii) - Real Time Air Off -----'Check for Finish of Air Off Period IF AirOn.RT = FALSE THEN FinishAnox.RT = TIMER'Poll the TIMER Function 'Check if Maximum Anoxic limit overlaps into next day
IF FinishAnox.RT& < MAX.ANOX AND StartAnox.RT& >= (86400 - MAX.ANOX) THEN
FinishAnox.RT& = FinishAnox.RT& + 86400 END IF IF (FinishAnox.RT& - StartAnox.RT&) >= MAX.ANOX THEN 'Anoxic limit exceeded Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) StartAer.RT& = TIMER 'Air.RT is switched on. 'Poll the TIMER Function Airon.RT = TRUE PRINT #Commnum, "Nitrate knee NOT detected on "; DATES; PRINT #Commnum, " AirRT activated at "; TIMES Renew = TRUE 'Reset Breakpoint Subroutine CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSE ELSE 'Search for Nitrate Breakpt CALL BREAKPT(Commnum, Pt, Nitrate, Renew) IF Nitrate = TRUE THEN
Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) 'Air.RT switched on.
StartAer.RT& = TIMER 'Poll the TIMER Function AirOn.RT = TRUE PRINT #Commnum, "Nitrate knee detected on "; DATE\$; PRINT #Commnum, " AirRT activated at "; TIME\$ Nitrate = FALSE Renew = TRUE 'Reset Breakpoint Subroutine CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSE END IF 'Closes If Nitrate = TRUE Decision Block END IF 'Closes If Anoxic limit is > MAX.ANOX Decision Block END IF 'Closes If AirOn.RT = FALSE Part 2b(ii) Decision Block END IF 'Closes IF Flag.RT = FALSE Block - RESET MODULE ------ Closure Statements -----TIMER ON 'Enable the On Timer trapping event-handling subroutine. Flagloop = TRUE 'Break back into the Scanning Loop. Pt = Pt + 1'Increment point. IF Pt = 181 THEN 'Start of next 6 Hour Cycle Pt = 1'Reset Pt to one CALL AXES 'Calculate the new time Axis 'Closes IF Pt = 181 Decision Block. END IF END IF 'Closes IF Flagloop = FALSE Block Scanning Loop LOOP WHILE Startup < 2 'Closes DO LOOP Structure. Theend: CLOSE #Commnum 'Close the Comment File 'When exiting the program 'turn off all the relay **ONOFFmap** = & HFFFF OUT (ioaddr%), ONOFFmap& OUT (ioaddr% + 1), ONOFFmap& 'switches at both ports A and B CIS END

RESET MODULE: Part 2 - 1 RCTR Fixed Time / 1 RCTR Real time ELSEIF Flag.RT = TRUE THEN 'Real Time Control Implemented '----- Part 2a(i) - Fixed Time Air On -----IF AirOn.FT = TRUE THEN 'Check for Finish of 3 hour aeration period $FinishAer.FT_{\&} = TIMER$ 'Poll the TIMER Function 'Check if 3 hr air on period overlaps into next day IF FinishAer.FT& < 10920 AND StartAer.FT& >= 75480 THEN FinishAer.FT& = FinishAer.FT& + 86400 END IF IF (FinishAer.FT& - StartAer.FT&) >= 10800 THEN 'Aerated for 3 hours
Relaynum% = 0: CALL RELAYSWITCH(Relaynum%)
StartAnox.FT& = TIMER
'Poll the TIMER Function
'Poll the TIMER Function' 'Air.FT is switched off. 'Poll the TIMER Function Airon.FT = FALSE PRINT #Commnum, "AirFT Off at "; TIME\$ 'Write to the comment file END IF END IF 'Closes If AirOn.FT = TRUE Part 2a(i) Decision Block '----- Part 2a(ii) - Fixed Time Air Off ------IF AirOn.FT = FALSE THEN 'Check for finish of 3 hr air off period $FinishAnox.FT_{2} = TIMER$ 'Poll the TIMER Function 'Check if 3 hour air off period overlaps into next day IF FinishAnox.FT& < 10920 AND StartAnox.FT& >= 75480 THEN FinishAnox.FT& = FinishAnox.FT& + 86400 END IF IF (FinishAnox.FT& - StartAnox.FT&) >= 10800 THEN 'Anoxic for 3 hours
Relavnum% = 0: CALL RELAYSWITCH(Relaynum%) 'Air.FT is switched on. Relaynum% = 0: CALL RELAYSWITCH(Relaynum%) StartAer.FT& = TIMER 'Poll the TIMER Function AirOn.FT = TRUE PRINT #Commnum, "AirFT On at "; TIME\$ 'Write to the comment file END IF END IF 'Closes If AirOn.FT = FALSE Part 2a(ii) Decision Block ' ----- Part 2b(i) - Real Time Air On ------IF AirOn.RT = TRUE THEN 'Check for finish of aeration period FinishAer.RT& = TIMER'Poll the TIMER Function 'Check if aeration period overlaps into next day IF FinishAer.RT& < 10920 AND StartAer.RT& >= 75480 THEN FinishAer.RT& = FinishAer.RT& + 86400 END IF AerPeriod.RT& = FinishAer.RT& - StartAer.RT& 'Calculate Aeration Period IF (AerPeriod.RT&) >= AerLength.RT& THEN
 Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) 'Aerated for anoxic period 'Air.RT is switched off. StartAnox.RT = TIMER'Poll the TIMER Function AirOn.RT = FALSE PRINT #Commnum, "AirRT Off at "; TIME\$ 'Write to PRINT #Commnum, "RT Aeration Period for "; AerPeriod.RT& 'Write to the comment file END IF END IF 'Closes If AirOn.RT = TRUE Part 2b(i) Decision Block

'----- Part 2b(ii) - Real Time Air Off ------IF AirOn.RT = FALSE THEN 'Check for Finish of Air Off Period 'Poll the TIMER Function FinishAnox.RT = TIMER'Check if Maximum Anoxic limit overlaps into next day IF FinishAnox.RT& < MAX.ANOX AND StartAnox.RT& >= (86400 - MAX.ANOX) THEN FinishAnox.RT& = FinishAnox.RT& + 86400 END IF AnoxPeriod.RT& = FinishAnox.RT& - StartAnox.RT& 'Air off length of time IF (AnoxPeriod.RT&) >= MAX.ANOX THEN
 Relaynum% = 1: CALL RELAYSWITCH(Relaynum%)
 StartAer.RT& = TIMER 'Anoxic limit exceeded 'Air.RT is switched on. 'Poll the TIMER Function AirOn.RT = TRUE AerLength.RT& = AnoxPeriod.RT& 'Assi PRINT #Commnum, "Nitrate knee NOT detected on "; DATE\$; PRINT #Commnum, " AirRT activated at "; TIME\$ 'Assign aeration time Renew = TRUE 'Reset Breakpoint Subroutine CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSEELSE 'Search for Nitrate Breakpt CALL BREAKPT (Commnum, Pt, Nitrate, Renew) IF Nitrate = TRUE THEN Relaynum% = 1: CALL RELAYSWITCH(Relaynum%) 'Air.RT switched on. StartAer.RT& = TIMER 'Poll the TIMER Function StartAer.RT& = TIMERAirOn.RT = TRUE AerLength.RT& = AnoxPeriod.RT& 'Assign PRINT #Commnum, "Nitrate knee detected on "; DATE\$; PRINT #Commnum, " AirRT activated at "; TIME\$ 'Assign aeration time Nitrate = FALSE Renew = TRUE 'Reset Breakpoint Subroutine CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSE TF 'Closes If Nitrate = TRUE Decision Block END IF END IF 'Closes If Anoxic limit is > MAX.ANOX Decision Block END IF 'Closes If AirOn.RT = FALSE Part 2b(ii) Decision Block END IF 'Closes IF Flag.RT = FALSE Block - RESET MODULE TIMER ON 'Enable the On Timer trapping event-handling subroutine. Flagloop = TRUE 'Break back into the Scanning Loop. Pt = Pt + 1'Increment point. IF Pt = 181 THEN 'Start of next 6 Hour Cycle 'Reset Pt to one Pt = 1'Calculate the new time Axis 'Closes IF Pt = 181 Decision Block. CALL AXES END IF END IF 'Closes IF Flagloop = FALSE Block Scanning Loop LOOP WHILE Startup < 2 'Closes DO LOOP Structure. Theend: CLOSE #Commnum 'Close the Comment File When exiting the program 'turn off all the relay **ONOFFmap** = & HFFFF OUT (ioaddr%), ONOFFmap& OUT (ioaddr% + 1), ONOFFmap& 'switches at both ports A and B CLS END

----- BIOP.BAS ------DEFINT A-Z وجود جفتنان کار بر جفت کار STARTUP AND INITIALIZATION MODULE 1----'This module introduces the user to the mechanics of the program, initializes 'some parameters, and declares global parameters. '\$INCLUDE: 'GLOBAL.BI' CLS CALL INFORM 'Display the information for the program mechanics. CALL FILENAME (FTout\$, RTout\$, Commout\$, FTnum, RTnum, Commnum)'Set disk Files Runprompt: LOCATE 23, 15: INPUT ; "Do you want to run the program? (Y/N) ", RAns\$ RANS\$ = UCASE\$(RANS\$) IF RAns\$ = "Y" THEN GOTO Setscreen ELSEIF RANSS = "N" THEN GOTO Theend ELSE GOTO Runprompt END IF Setscreen: CLS LOCATE 10, 14: PRINT "The reactors are not in an anoxic mode." LOCATE 11, 14: PRINT "Anoxic Sequence Starting Times are the" LOCATE 12, 14: PRINT "following ... 1:10 am, 9:10 am and 5:10 pm." Initialize: FOR x = 1 TO 5000 FOR y = 1 TO 100: NEXT y 'Delay to slow down the timer loop NEXT x Checktime& = TIMER 'Poll the timer function SCAN = 0'Set the Scan counter to zero to start the scans. 'The Scan time is currently every 2 seconds. Scantime = SCAN.TIME 'Used to control the Scanning Loop 'Flag for breaking out of and into Scanning Loop. 'Flag to signify no preceeding point in Diff Sub. 'No Nitrate Breakpoint Detected as of yet. 'Flag used to clear/reset Breakpt Sub variables. 'Flag indicating whether graphics is invoked Startup = 0Flagloop = TRUE Flagdiff = TRUE Nitrate = FALSE Renew = FALSE Flagscrn = FALSEVFAPass = 0'The VFA counter to time the pump operation. VFAPump = FALSE 'The RT Acetate Pump is off Acetate = FALSE 'Acetate not added to the RT reactor yet 'Assign initial point of the start of graph. 'Storage of initial Pt value. Pt = 1Startpt = 1 Endpt = 180 'There are 180 points in a Six Hour Graph.

```
IF Checktime& > 0 THEN AnoxStart& = 4200
                                                          'Time: 1:10 am
     Datecheck = VAL(MID$(DATE$, 4, 2))
                                                     'Perform Date check on the Data
        Datecheck <> FTnum THEN 'If past midnight (ie. new day)
CALL FILENAME(FTout$, RTout$, Commout$, FTnum, RTnum, Commnum) 'file
     IF Datecheck <> FTnum THEN
     END IF
IF Checktime& > 4200 THEN AnoxStart& = 33000 ' Time: 9:10 am
IF Checktime& > 33000 THEN AnoxStart& = 61800 ' Time: 5:10 pm
IF Checktime& > 61800 THEN GOTO Initialize
SamplingTime:
 Polltime& = TIMER
                                       'Poll the timer function
 IF Polltime& > AnoxStart& THEN 'The anoxic cycle commences
GOTO StartRecording 'Start Recording the ORP values
 ELSE
     GOTO SamplingTime
                                       'Return and poll the timer function again
 END IF
StartRecording:
 OUT baseaddr%, &H0
FOR x = 1 TO 100: NEXT x
                                 'Initialize the DT2814 A/D Board
  i = INP(baseaddr% + 1)
i = INP(baseaddr% + 1)
                                 'as per the DT2814 manual on pg. 5-9
 CALL INITRELAYS
                                 'Initialize the relay board - set all relays off.
 OPEN Commout$ FOR APPEND AS #Commnum
PRINT #Commnum, "Anoxic Period Started at "; TIME$
StartAnox& = Polltime&
                                                                     'Write to the
                                                                     'comment file
 Oper$ = "Acetate not added yet"
 CLS
 CALL LAYOUT
                                 'Layout the text information.
 CALL AXES
                                 'Calculate the relevant time axis.
/ _____
                                      ______
                              SCAN AND PLOTTING MODULE
'This module scans the ORP probes every 2 seconds and then every 2 minutes
'an average for each probe is calculated and plotted if graphics is invoked
'else an update is written to the screen in text mode.
Scanning:
ON TIMER (Scantime) GOSUB Readprobe 'Every 2 sec. go to the Readprobe Module
   TIMER ON
                      'Enable On Timer event-handling trapping routine
DO
                      'Loop enclosing the entire program - to exit press <Escape>
IF Flagloop = FALSE THEN
                                                     'Break out of the Scanning Loop
   TIMER STOP
   CALL DIFF(Flagdiff, Pt)
                                                     'Calculate the First Difference
    Flagdiff = FALSE
                                                     'Now Preceeding Pts are available
   CALL WRITING (Pt, FTout$, RTout$, FTnum, RTnum) 'Write data to disk
   IF Flagscrn = FALSE THEN
       CALL UPDATE (Pt)
                                                     'Update the information screen
      LOCATE 14, 46: PRINT Oper$
   END TF
   IF Flagscrn = TRUE THEN
       CALL TRANSFER (ProbeID$, Pt)
                                                    'Transfer the array of points
       CALL PLOT (Pt)
                                                    'Plot history of points to present
   END IF
```

, INTERACTIVE MODULE ′ === ______ 'This module allows the user to interact with the process allowing him to 'select any of the probes which he desires to observe on a real-time basis. kcode = jinkey% 'Test for Keystroke in the Keyboard buffer. IF kcode THEN 'Determine what the keystroke is. SELECT CASE kcode CASE KY.ESC EXIT DO 'Exit from the program CASE KY.LY GOTO Whichprobe 'Which probe has been selected. Whichprobe: LOCATE 23, 48: INPUT "Which Probe? (Letter)"; Probe\$ Probes = UCASES(Probes) IF Probe\$ = "A" OR Probe\$ = "B" OR Probe\$ = "C" THEN GOTO Startplot IF Probe\$ = "D" OR Probe\$ = "E" OR Probe\$ = "F" THEN GOTO Startplot ELSE GOTO Whichprobe END IF Startplot: SCREEN 3 'For Hercules Graphics capabilities Flagscrn = TRUE'Do not overlay text mode on graphics CALL REFRESH(Probe\$) 'Refresh the screen 'Identify the Selected probe 'Transfer the array of points ProbeIDS = TYPROBES(ProbeS) CALL TRANSFER(ProbeID\$, Pt) (CALL PLOT(Pt) (CALL PLOT(Pt) (CALL 23, 27: PRINT "Scan Number - " 'Plot history of points to present CASE KY.LN SCREEN 0 'Turn off Hercules Graphics Flagscrn = FALSE'Invoke Text mode again CALL LAYOUT 'Layout the text information LOCATE 14, 46: PRINT Oper\$ CALL UPDATE(Pt) 'Update the screen information CASE ELSE 'Do nothing END SELECT 'Closes Select Case kcode Structure. END IF 'Closes IF kcode Decision Block.
VFA ADDITION TO REAL-TIME REACTOR MODULE _____ 'Acetate not added as of yet IF Acetate = FALSE THEN VFAddtime& = TIMER 'Poll the TIMER Function IF VFAPump = FALSE THEN 'The pump is not currently on 'If nitrate knee was not detected - Acetate added after 2 hr 42 minutes '(ie. 6 minutes (3 passes) plus 2 minutes spare) prior to commencement 'of aeration period IF (VFAddtime& - StartAnox&) >= 9720 THEN 'Time is > than 2 hr 42 min. Relaynum% = 0 CALL RELAYSWITCH (Relaynum%) 'Acetate added to RT Reactor VFAPump = TRUE 'VFA RT pump is on PRINT #Commnum, "No Nitrate knee detected on "; DATES PRINT #Commnum, "Acetate pumped to RT reactor starting at "; TIMES OperS = "Acetate RT Feed Pump On" IF Flagscrn = FALSE THEN LOCATE 14, 46: PRINT OperS Renew = TRUE 'Clear/Reset Breakpoint Sub CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSEELSE 'Search for nitrate breakpoint CALL BREAKPT (Commnum, Pt, Nitrate, Renew) IF Nitrate = TRUE THEN Relaynum% = 0 CALL RELAYSWITCH(Relaynum%) 'Acetate added to RT Reactor VFA RT pump = TRUE /VFA RT pump is on PRINT #Commnum, "Nitrate knee detected at "; TIME\$ PRINT #Commnum, "Acetate started to RT reactor at "; TIME\$ Oper\$ = "Acetate RT Feed Pump On" IF Flagscrn = FALSE THEN LOCATE 14, 46: PRINT Oper\$ Renew = TRUE 'Clear/Reset the Breakpt Sub CALL BREAKPT (Commnum, Pt, Nitrate, Renew) Renew = FALSE END IF 'Closes IF Nitrate = TRUE Decision Block END IF 'Closes Real Time Acetate Addition Decision Block ELSE 'Since RT Acetate Pump is on VFAPass = VFAPass + 1 'Increment Pass Counter by 1 IF VFAPass > 2 THEN Relaynum% = 0 '6 min (3 passes) have elapsed CALL RELAYSWITCH (Relaynum%) 'Turn off RT Acetate pump 'Reset Pump Variable 'Reset Pass Counter 'Reset Acetate Variable VFAPump = FALSE VFAPass = 0Acetate = TRUE PRINT #Commnum, "Acetate finished to RT reactor at "; TIME\$ Oper\$ = "RT Acetate has finished pumping" IF Flagscrn = FALSE THEN LOCATE 14, 46: PRINT Oper\$ END IF END IF 'Closes IF VFAPump = FALSE Decision Block END IF 'Closes IF Acetate = FALSE Decision Block

```
'----- Closure Statements -----
                      'Enable the On Timer trapping event-handling subroutine.
   TIMER ON
   Flagloop = TRUE
                      'Break back into the Scanning Loop.
                      'Increment point.
   Pt = Pt + 1
END IF
                      'Closes IF Flagloop = FALSE Block Scanning Loop
   IF Pt = 181 THEN Startup = 3
                                                'Breakout of the Loop
                                                'Closes DO LOOP Structure.
LOOP WHILE Startup < 2
Theend:
      TIMER OFF
      CLOSE #Commnum
                                                'Close the Comment File
      ONOFFmap& = &HFFFF
OUT (ioaddr%), ONOFFmap&
OUT (ioaddr% + 1), ONOFFmap&
                                                'When exiting the program 'turn off all the relay
                                                'switches at both ports A and B
      CLS
IF Startup = 3 THEN GOTO Setscreen
END
                            READPROBE MODULE
'This module does the actual reading of the probes by calling the SCAN Sub
Readprobe:
        SCAN = SCAN + 1
                                               'Increment the SCAN Counter
        LOCATE 23, 42: PRINT USING "####"; SCAN
        segment% = VARSEG(MVolts(0, SCAN))
                                               'Produce the requisite FAR
        offset% = VARPTR(MVolts(0, SCAN))
                                               'Pointer to the data array
        'Call the function returning an error code
        errnum% = getscanl%(baseaddr%, chan0%, chan15%, segment%, offset%)
        IF errnum% <> 0 THEN
           PRINT #Commnum, "Getscan returned an error code at "; TIME$
           GOTO Theend
        END IF
           CALL SCANS(SCAN, Pt)
                                               'Call the SCAN Subroutine
        IF SCAN = NUM.SCANS THEN
                                               '60 Scans (2 min) elapsed
           SCAN = 0
           Flagloop = FALSE
                                               'Break out of scanning loop
        END IF
RETURN
```

----- INFORM. BAS -----'SINCLUDE: 'GLOBAL.BI' 'Note: This is for the AASD#1 Program _____ THIS SUBROUTINE DETAILS THE MECHANICS OF THE PROGRAM SUB INFORM STATIC LOCATE 2, 23: PRINT "COMPUTER CONTROLLED SLUDGE DIGESTION " LOCATE 3, 23: PRINT "USING OXIDATION-REDUCTION POTENTIAL" LOCATE 3, 23: PRINT "USING OXIDATION-REDUCTION POTENTIAL" LOCATE 5, 20: PRINT "This program allows the user to select and watch" LOCATE 5, 20: PRINT "This program allows the user to select and watch" LOCATE 6, 15: PRINT "each of the individual ORP probes associated with " LOCATE 7, 15: PRINT "both the Fixed-Time (#1) (3 hr air on / 3 hr air off) " LOCATE 8, 15: PRINT "and the Real-Time (#2) (3 hr air on / variable time air" LOCATE 9, 15: PRINT " off - depending upon nitrate breakpoint) Reactors. " LOCATE 10, 20: PRINT "for distinguishing purposes the ORP probes have been " LOCATE 11, 15: PRINT "for distinguishing purposes the ORP probes have been " LOCATE 12, 15: PRINT "given the appendages a, b, and c to denote the front," LOCATE 13, 15: PRINT "side and back probes respectively" LOCATE 15, 27: PRINT "ORP1A - A ORP2A - D " LOCATE 16, 27: PRINT "ORP1b - B ORP2b - E " LOCATE 17, 27: PRINT "ORP1c - C ORP2c - F " END SUB ----- INFORM.BAS ------/_____ 'SINCLUDE: 'GLOBAL.BI' 'Note: This is for the AASD#2 Program /___________ THIS SUBROUTINE DETAILS THE MECHANICS OF THE PROGRAM /-----SUB INFORM STATIC LOCATE 2, 23: PRINT "COMPUTER CONTROLLED SLUDGE DIGESTION " LOCATE 3, 23: PRINT "USING OXIDATION-REDUCTION POTENTIAL" LOCATE 5, 20: PRINT "This program allows the user to select and watch" LOCATE 5, 20: PRINT "This program allows the user to select and watch" LOCATE 6, 15: PRINT "each of the individual ORP probes associated with " LOCATE 7, 15: PRINT "both the Fixed- (#1) (3 hr air on / 3 hr air off) and " LOCATE 8, 15: PRINT "Real-Time (#2) (50/50 variable times of air on and" LOCATE 9, 15: PRINT " off, depending upon the nitrate breakpoint) Reactors. " LOCATE 10, 20: PRINT "Each probe has been assigned a capital letter and " LOCATE 11, 15: PRINT "for distinguishing purposes the ORP probes have been " LOCATE 12, 15: PRINT "given the appendages a, b, and c to denote the front," LOCATE 13, 15: PRINT "side and back probes respectively" LOCATE 15, 27: PRINT "ORP1A - A ORP2A - D " LOCATE 16, 27: PRINT "ORP1A - B ORP2b - E " LOCATE 17, 27: PRINT "ORP1C - C ORP2C - F " END SUB '----- INFORM.BAS ------'SINCLUDE: 'GLOBAL.BI' 'Note: This is for the BIO-P Program THIS SUBROUTINE DETAILS THE MECHANICS OF THE PROGRAM [▏]┲═╼╾╾╤╧╧**╔┇╕┙╔╔**┇┧┢╓┹╝╖╖╃╜╜╚╧╘╤╒╤╤╤╤╤╤╤┲╦┲┇╔┲╶╝╧╤╤┱┲┲┲╧╧<u>┲╒┲╓╓╓</u>┍╖╧╼╼╼ SUB INFORM STATIC LOCATE 1, 22: PRINT "EXCESS BIOLOGICAL PHOSPHORUS REMOVAL USING" LOCATE 2, 22: PRINT "OXIDATION REDUCTION POTENTIAL DETECTION OF" LOCATE 3, 27: PRINT "THE DISSAPPEARANCE OF NITRATES" LOCATE 5, 16: PRINT "This program demonstrates the use of ORP as a control" LOCATE 5, 16: PRINT "This program demonstrates the use of ORP as a control" LOCATE 5, 16: PRINT "parameter for bio-p processes in a sequencing batch " LOCATE 6, 14: PRINT "parameter for bio-p processes in a sequencing batch " LOCATE 7, 14: PRINT "reactor. Sodium Acetate is added to the Fixed Time " LOCATE 8, 14: PRINT "Reactor (nr. rt.) at a preset time during the anoxic" LOCATE 9, 14: PRINT "sequence, while the addition of VFAs to the Real Time" LOCATE 10, 14: PRINT "Reactor (far rt,) is governed by the detection of the" LOCATE 11, 14: PRINT "ORP breakpt. corresponding to nitrate disappearance." LOCATE 13, 16: PRINT "The user can select and watch any probe in the " LOCATE 14, 14: PRINT "FT (#1) or RT(#2) reactors where each probe has been" LOCATE 15, 14: PRINT "assigned a capitol letter and for distinguishing" LOCATE 16, 14: PRINT "side and back probes respectively" LOCATE 17, 14: PRINT "SORPLA - A ORP2A - D" LOCATE 20, 27: PRINT "ORPLA - A ORP2A - D" LOCATE 21, 27: PRINT "ORPLA - B ORP2A - F"

END SUB

```
----- FILENAME.BAS ------
 '$INCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
 A SUBROUTINE WHICH GENERATES THE FILENAMES FOR THE DATA FILES
 1
 1 ----
SUB FILENAME (FTout$, RTout$, Commout$, FTnum, RTnum, Commnum)
     Temp$ = DATE$
Year$ = RIGHT$(Temp$, 2)
Month$ = LEFT$(Temp$, 2)
      Day$ = MID$(Temp$, 4, 2)
      Composite$ = Year$ + "-" + Month$ + "-" + Day$
     FTout$ = Composite$ + ".FT"
RTout$ = Composite$ + ".RT"
                                                   'Fixed Time Filename
                                                   'Real Time Filename
     Commout$ = Composite$ + ".msg
                                                   'The Comments Filename"
     FTnum = VAL(Day$)
RTnum = FTnum + 100
Commnum = FTnum + 200
                                                   'Arbitrary numbering system
'Arbitrary numbering system
'Arbitrary numbering system
    OPEN FTout$ FOR APPEND AS #FTnum 'Print out file headings
      PRINT #FTnum, " TIME Seconds ORPla ORPlb ORPlc
PRINT #FTnum, " DOx1 DORPla DORPlb DORPlc"
PRINT #FTnum, ""
                                                                                         п;
    CLOSE #FTnum
    OPEN RTout$ FOR APPEND AS #RTnum 'Print out file headings
PRINT #RTnum, " TIME Seconds ORP2a ORP2b ORP2c
PRINT #RTnum, " DOX2 DORP2a DORP2b DORP2c"
PRINT #RTnum, ""
                                                                                         n;
                                                                              ORPŽC
    CLOSE #RTnum
END SUB
```

```
----- INITREL.BAS -----
  '$INCLUDE: 'GLOBAL.BI'
  'Note: This is for ALL Programs
  ' A SUBROUTINE WHICH INITIALIZES THE SOLID STATE RELAY CONTROL IO BOARD
  1 ---
                                        _____
  ' This subroutine is designed to output 16 bits of data to control the solid
  'state relays that are connected to Metrabyte's PIO-12 I/O Board for the
  'the IBM PC.
  'Port A Relays: 0 - 7
'Port B Relays: 8 - 15
                                  Relay Control Bits: 1 = OFF
  'Note: In setting up the port configuration it initializes all relays
' of ports A and B to OFF. To do this it leaves the global variable
' ONOFFmap& = &HFFFF with all 32 bits set to 1. The global constant
           ioaddr? is also used.
  SUB INITRELAYS STATIC
                                             'Sets up all ports (A,B,C) as output
'ports. Note: OUT (ioaddr% + 3), &H89
'would be used for inputs to port C
       OUT (ioaddr+ 3), &H80
      ONOFFmap& = &HFFFF 'Set global variables for all relays off
OUT (icaddr%), ONOFFmap& 'Set all port A relays off
OUT (icaddr% + 1), ONOFFmap& 'Set all port B relays off
 END SUB
                            '$INCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
 ' A SUBROUTINE WHICH FLIPS THE BIT TO CHANGE THE RELAY SWITCH STATUS
 ' Note: The subroutine scans the global variable ONOFFmap& which indicates
           the present relay status and uses it to turn Relaynum 0N if OFF, or OFF if ON. Again the Relay control bits are 1 = 0FF and 0 = 0N.
 г
 SUB RELAYSWITCH (Relaynum%)
      Smask = 0
      Rmask& = ONOFFmap&
                                                     'Get the present relay status
      Smask& = Smask& OR (2 ^ Relaynum%)
                                                     'Set relay bit Relaynum = 1
                                                    'Relay Relaynum% is OFF
'Flip the lower 16 bits
'Transfer the ON bit into the
      IF (ONOFFmap& AND Smask&) <> 0 THEN
         Smask& = Smask& XOR & HFFFF
Rmask& = Rmask& AND Smask&
                                                     'Present Relay Status Word
                                                     'Relay Relaynum% is ON
'Transfer the OFF bit into the
      ELSE
         Rmask& = Rmask& OR Smask&
                                                     'Present Relay Status Word
     END IF
      'Update the global relay status variable
     IF Rmask& = -65535 THEN Rmask& = 0
IF Rmask& = 65535 THEN Rmask& = &HFFFF
     ONOFFmap& = Rmask&
      'Output the Updated relay status word to I/O ports A and B
     OUT (ioaddr%), Rmask&
                                              'The lower byte to Port A
     Bmask<sup>*</sup> = Rmask<sup>&</sup>
     IF Bmask% < 0 THEN
                                              'Flip the bits
'Shift Hi-byte Pattern into the Low-byte
         Bmask<sup>*</sup> = Bmask<sup>*</sup> XOR & HFFFF
         Bmask<sup>*</sup> = (Bmask<sup>*</sup> \ &H100)
Bmask<sup>*</sup> = Bmask<sup>*</sup> XOR &HFFFF
                                              'Flip the bits back again
     ELSE
         Bmask = (Bmask \ &H100)
     END IF
     OUT (ioaddr% + 1), Bmask%
                                              'The higher byte to port B
END SUB
```

```
----- AXES.BAS -----
 '$INCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
                                                       ويحقي محمور ومعالية بالمحمد والمحمد والمحمد والمحمور ومحمد والمحمد و
 A SUBROUTINE WHICH CALCULATES THE RELEVANT TIME SCALE AXIS
 1 -----
                                                                                             _____
SUB AXES STATIC
                                                                                                     'Calculate the first two
'digits of the starting time.
'First digit 0 hour
   Seconds& = TIMER
  Houro = Seconds& \ 3600
Digit01 = Houro \ 10
Hourrem! = Seconds& / 3600
Digitrem1! = Houro / 10
Digit02 = ((Digitrem1! - Digit01) * 10)
                                                                                                    'Second digit 0 hour
                                                                                                    'Calc. third & fourth digits
  Mintrunc! = (Hourrem! - Hour0) * 60
  Digit3 = Mintrunc! \ 10
Digitrem2! = Mintrunc! / 10
Digit4 = ((Digitrem2! - Digit3) * 10) \ 1 'Fourth digit 0, 2, 4, 6 hours
                                                                                                    'Third digit 0, 2, 4, 6 hours
  Hour2 = Hour0 + 2
  Hour4 = Hour0 + 4
  Hour6 = Hour0 + 6
Hour6 = Hour0 + 6
IF Hour2 > 24 THEN Hour2 = Hour2 - 24
IF Hour4 > 24 THEN Hour4 = Hour4 - 24
IF Hour6 > 24 THEN Hour6 = Hour6 - 24
                                                                                                    'Check if time scale extends
                                                                                                    'into the next day.
 IF Hour6 > 24 THEN Hour6 = Hour6 - 24

Digit21 = Hour2 \ 10

Digit41 = Hour4 \ 10

Digit61 = Hour6 \ 10

Digit22 = ((Hour2 / 10) - Digit21) * 10

Digit42 = ((Hour4 / 10) - Digit41) * 10

Digit62 = ((Hour6 / 10) - Digit61) * 10
                                                                                                     'First digit 2 hour
                                                                                                     'First digit 4 hour
                                                                                                    'First digit 6 hour
                                                                                                    'Second digit 2 hour
                                                                                                    'Second digit 4 hour
                                                                                                    'Second digit 6 hour
END SUB
```

'----- SCANS.BAS -----'\$INCLUDE: 'GLOBAL.BI' 'Note: This is for all Programs ____ THIS SUBROUTINE SUMS AND AVERAGES THE PROBE READINGS == _____ SUB SCANS (SCAN, Pt) STATIC 'Sum the Scans MVoltsla& = MVoltsla& + MVolts(0, SCAN) MVolts1b& = MVolts1b& + MVolts(1, SCAN) MVolts1c& = MVolts1c& + MVolts(2, SCAN) MVolts2a& = MVolts2a& + MVolts(3, SCAN) MVolts22& = MVolts22& + MVolts(3, SCAN) MVolts22& = MVolts22& + MVolts(4, SCAN) MVolts2c& = MVolts2c& + MVolts(5, SCAN) MVoltD01& = MVoltD01& + MVolts(6, SCAN) MVoltD02& = MVoltD02& + MVolts(7, SCAN) IF SCAN = NUM.SCANS THEN '60 Scans therefore calculate 2 minute avg. reading for each probe ORP1a(Pt) = MVolts1a& / SCAN ORP1b(Pt) = MVolts1b& / SCAN ORP1c(Pt) = MVolts1c& / SCAN ORP2a(Pt) = MVolts2a& / SCAN ORP2b(Pt) = MVolts2b& / SCAN ORP2c(Pt) = MVolts2c& / SCAN DOx1(Pt) = MVoltD01& / SCAN D0x2(Pt) = MVoltD02& / SCAN 'Convert digital numbers to millivoltages 'Reset the millivoltage sum to zero MVoltsla& = 0: MVoltslb& = 0: MVoltslc& = 0 MVolts2a& = 0: MVolts2b& = 0: MVolts2c& = 0 MVoltD01& = 0: MVoltD02& = 0: END IF

DIFF.BAS '\$INCLUDE: 'GLOBAL.BI' 'Note: This is for AASD#1 and AASD#2 Programs A SUBROUTINE WHICH CALCULATES THE FIRST DIFFERENCE OF THE ORP PROFILES 1 ----_____ SUB DIFF (Flagdiff, Pt) Precpt = Pt - 1IF Flagdiff = TRUE THEN 'At start up of program the initial 'first difference point will be set ORP1a(Precpt) = ORP1a(Pt) ORP1b(Precpt) = ORP1b(Pt) ORP1c(Precpt) = ORP1c(Pt) 'equal to zero since there is no ORP2a(Precpt) = ORP2a(Pt) ORP2b(Precpt) = ORP2b(Pt) 'preceeding point. ORP2c(Precpt) = ORP2c(Pt). END IF IF Flagdiff = FALSE AND Pt = Startpt THEN 'Store last point so it becomes ORPla(Precpt) = ORPla(Endpt) ORP1b(Precpt) = ORP1b(Endpt) ORP1c(Precpt) = ORP1c(Endpt) 'first point of the next cycle. ORP2a(Precpt) = ORP2a(Endpt) ORP2b(Precpt) = ORP2b(Endpt) ORP2c(Precpt) = ORP2c(Endpt) END IF 'Calculate the First Difference of the ORP (2 minute intervals) DORPla(Pt) = (ORPla(Pt) - ORPla(Precpt)) / 2 DORPlb(Pt) = (ORPlb(Pt) - ORPlb(Precpt)) / 2 DORPlc(Pt) = (ORPlc(Pt) - ORPlc(Precpt)) / 2 DORP2a(Pt) = (ORP2a(Pt) - ORP2a(Precpt)) / 2 DORP2b(Pt) = (ORP2b(Pt) - ORP2b(Precpt)) / 2 DORP2c(Pt) = (ORP2c(Pt) - ORP2c(Precpt)) / 2 END SUB ----- DIFF.BAS -----'SINCLUDE: 'GLOBAL.BI' 'Note: This is for the BIO-P Program ' A SUBROUTINE WHICH CALCULATES THE FIRST DIFFERENCE OF THE ORP PROFILES SUB DIFF (Flagdiff, Pt) Precpt = Pt - 1IF Flagdiff = TRUE THEN 'At start up of program the initial 'first difference point will be set 'equal to zero since there is no ORP1a(Precpt) = ORP1a(Pt) ORP1a(Precpt) = ORP1a(Pt) ORP1b(Precpt) = ORP1b(Pt) ORP1c(Precpt) = ORP1c(Pt) ORP2a(Precpt) = ORP2a(Pt) ORP2b(Precpt) = ORP2b(Pt) ORP2c(Precpt) = ORP2c(Pt)'preceeding point. . END IF 'Calculate the First Difference of the ORP (2 minute intervals) DORP1a(Pt) = (ORP1a(Pt) - ORP1a(Precpt)) / 2 DORP1b(Pt) = (ORP1b(Pt) - ORP1b(Precpt)) / 2 DORPIC(Pt) = (ORPIC(Pt) - ORPIC(Precpt)) / 2 DORP2a(Pt) = (ORP2a(Pt) - ORP2a(Precpt)) / 2DORP2b(Pt) = (ORP2b(Pt) - ORP2b(Precpt)) / 2DORP2c(Pt) = (ORP2c(Pt) - ORP2c(Precpt)) / 2

```
'----- ORPSCRN. BAS -----
  'SINCLUDE: 'GLOBAL.BI'
  'Note: This is for ALL Programs
  A SUBROUTINE WHICH SETS UP THE ORP GRAPHING CO-ORDINATES
  _____
 SUB ORPSCRN STATIC
        CLS
  'Set up the Initial Boxes and Graph Dimensions
       t up the Initial Boxes and Grap.
LINE (0, 0)-(719, 335), , B
LINE (110, 10)-(590, 270), , B
LINE (110, 160)-(590, 160)
 'Put in the tick marks for the Time scale axis

Pixtime = 110

FOR i = 1 TO 9

PSET (Pixtime, 271)

PSET (Pixtime, 272)

Pixtime = Pixtime + 60
       NEXT i
 'Put in the tick marks for the ORP scale axis
       Pixorp = 10

FOR j = 1 TO 11

PSET (109, Pixorp)

PSET (108, Pixorp)

Pixorp = Pixorp + 25
       NEXT j
 'Print out the Time Scale Axis
       CALL PAXIS
       LOCATE 22, 35: PRINT "Time (hrs)"
 'Print out the ORP Scale Axis
LOCATE 2, 9: PRINT "300"
LOCATE 5, 9: PRINT "200"
LOCATE 8, 9: PRINT "100"
LOCATE 12, 9: PRINT " 0"
LOCATE 16, 8: PRINT "-100"
LOCATE 19, 8: PRINT "-100"
LOCATE 19, 8: PRINT "-200"
LOCATE 6, 2: PRINT " 0"
LOCATE 6, 2: PRINT " R"
LOCATE 8, 2: PRINT " P"
LOCATE 10, 2: PRINT " (mv)"
END SUB
 '----- WRITING.BAS ------
'SINCLUDE: 'GLOBAL.BI'
'Note: This is for ALL Programs
• _____
                                                                                                         _____
                 THIS SUBROUTINE WRITES THE DATA TO THE DISK FILE
1_____
SUB WRITING (Pt, FTout$, RTout$, FTnum, RTnum) STATIC
     'Write to the Fixed-Time Disk File
    OPEN FTOUL$ FOR APPEND AS FTNUM

PRINT #FTNUM, TIME$; " ";

PRINT #FTNUM, USING "#####.## "; TIMER;

PRINT #FTNUM, USING "+###.## "; ORP1a(Pt); ORP1b(Pt); ORP1c(Pt);

PRINT #FTNUM, USING " #.# "; DOX1(Pt);

PRINT #FTNUM, USING "+###.## "; DORP1a(Pt); DORP1b(Pt); DORP1c(Pt)
    CLOSE #FTnum
    'Write to the Real-Time Disk file
    OPEN RTout$ FOR APPEND AS RTnum
       PEN RTOUTS FOR AFFEND AS KINUM

PRINT #RTNUM, TIMES; ";

PRINT #RTNUM, USING "######## "; TIMER;

PRINT #RTNUM, USING "+###.## "; ORP2a(Pt); ORP2b(Pt); ORP2c(Pt);

PRINT #RTNUM, USING "#.# "; DORP2a(Pt); DORP2b(Pt); DORP2c(Pt)

OGE #UTUME
    CLOSE #RTnum
```

```
!----
                      ----- TRANSFER.BAS -----
 '$INCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
          _____
                                               A SUBROUTINE WHICH TRANSFERS THE PROBE READINGS TO A GENERAL ARRAY
 .
 .
                             READY FOR PLOTTING
 SUB TRANSFER (ProbeID$, Pt)
 SELECT CASE ProbeID$
        CASE "ORPla"
              FOR i = Startpt TO Pt
ORP(i) = ORPla(i)
NEXT i
        CASE "ORP1b"
              FOR i = Startpt TO Pt
ORP(i) = ORP1b(i)
NEXT i
        CASE "ORPIC"
              FOR i = Startpt TO Pt
ORP(i) = ORP1c(i)
NEXT i
        CASE "ORP2a"
              FOR i = Startpt TO Pt
ORP(i) = ORP2a(i)
              NEXT i
       CASE "ORP2b"
              FOR i = Startpt TO Pt
ORP(i) = ORP2b(i)
NEXT i
       CASE "ORP2c"
              FOR i = Startpt TO Pt
ORP(i) = ORP2c(i)
NEXT i
END SELECT
END SUB
                       ----- PLOT.BAS -----
'$INCLUDE: 'GLOBAL.BI'
'Note: This is for ALL Programs
           _____
' A SUBROUTINE WHICH PLOTS THE PROBE READINGS UP TO THE PRESENT POINT
1 -
SUB PLOT (Pt)
          FOR j = Startpt TO Pt
          'Proportion to transform ORP values to pixels
Mark1 = (ORP(j) / 50) * 25
Pixel1 = 160 - Mark1
'Plot the point
PSET (168 + 2 * j, Pixel1)
NETT i
          NEXT j
END SUB
```

----- LAYOUT.BAS -----'SINCLUDE: 'GLOBAL.BI' 'Note: This is for AASD#1 and AASD#2 Programs ¹ __________ THIS SUBROUTINE LAYS OUT THE TEXT INFORMATION SCREEN 1_____ _____ SUB LAYOUT STATIC CLS LOCATE 2, 23: PRINT "COMPUTER CONTROLLED SLUDGE DIGESTION " LOCATE 2, 23: PRINT "COMPUTER CONTROLLED SLUDGE DIGESTION " LOCATE 3, 23: PRINT "USING OXIDATION-REDUCTION POTENTIAL " LOCATE 5, 13: PRINT "RCTR #1 - FIXED TIME" LOCATE 5, 46: PRINT "RCTR #2 - REAL TIME" LOCATE 7, 13: PRINT "ORPIA - " LOCATE 7, 46: PRINT "ORP2a - 11 LOCATE 9, 13: PRINT "ORP1b LOCATE 9, 46: PRINT "ORP2b _ " _ n LOCATE 11, 13: PRINT "ORPIC - 19 LOCATE 11, 46: PRINT "ORP2C _ 11 LOCATE 11, 46: PRINT "ORP2c - " LOCATE 13, 13: PRINT "Time of Last Update - " LOCATE 13, 46: PRINT "Point Number - " LOCATE 15, 13: PRINT "Note: Hit <Y> - Yes - if desire to see ORP plots" LOCATE 16, 23: PRINT "<N> - No - when finished viewing plots" LOCATE 17, 23: PRINT "<ESC> - Escape - to exit program" LOCATE 19, 13: PRINT "Note: Time is updated every two minutes" LOCATE 20, 19: PRINT "There are 60 scans (at 2 sec intervals) in 2 min" LOCATE 21, 19: PRINT "There are 180 pts (2 min intervals) in a 6 hr cycle" LOCATE 23, 30: PRINT "Scan number - " END SUB ----- LAYOUT.BAS -----'\$INCLUDE: 'GLOBAL.BI' 'Note: This is for the BIO-P Program THIS SUBROUTINE LAYS OUT THE TEXT INFORMATION SCREEN 1_____ SUB LAYOUT STATIC CLS LOCATE 2, 15: PRINT "COMPUTER CONTROLLED ADDITION OF A VFA CARBON SOURCE" LOCATE 2, 15: PRINT "COMPUTER CONTROLLED ADDITION OF A VFA CARBON SOURCE" LOCATE 3, 17: PRINT "BASED ON THE ORP-TIME VARIATION IN A BIO-P PROCESS " LOCATE 5, 13: PRINT "RCTR #1 - FIXED TIME" LOCATE 5, 46: PRINT "RCTR #2 - REAL TIME" LOCATE 7, 13: PRINT "ORP1a LOCATE 7, 46: PRINT "ORP2a - - - It - 11 LOCATE 9, 13: PRINT "ORP1b LOCATE 9, 46: PRINT "ORP2b - H _ 17 LOCATE 11, 13: PRINT "ORP1C - " LOCATE 11, 46: PRINT "ORP2C - " LOCATE 13, 13: PRINT "Time of Last Update - " LOCATE 13, 13: PRINT "Time of Last Update - " LOCATE 13, 46: PRINT "Point Number - " LOCATE 14, 13: PRINT "Acetate Addition Status Report - " LOCATE 16, 13: PRINT "Note: Hit <Y> - Yes - if desire to see ORP plots" LOCATE 17, 23: PRINT "<N> - No - when finished viewing plots" LOCATE 18, 23: PRINT "<N> - No - when finished viewing plots" LOCATE 18, 23: PRINT "<ESC> - Escape - to exit program" LOCATE 19, 13: PRINT "Note: Time is updated every two minutes" LOCATE 20, 19: PRINT "There are 60 scans (at 2 sec intervals) in 2 min" LOCATE 21, 19: PRINT "There are 180 pts (2 min intervals) in a 6 hr cycle" LOCATE 23, 30: PRINT "Scan number - "

```
'$INCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
                                                                            _____
    THIS SUBROUTINE UPDATES THE SCREEN LAYOUT EVERY TWO MINUTES
 .
 1 -----
                                                               _____
 SUB UPDATE (Pt) STATIC
LOCATE 7, 25: PRINT USING "+###.#"; ORP1a(Pt)
LOCATE 7, 57: PRINT USING "+###.#"; ORP2a(Pt)
LOCATE 9, 25: PRINT USING "+###.#"; ORP1b(Pt)
LOCATE 9, 57: PRINT USING "+###.#"; ORP2b(Pt)
LOCATE 11, 25: PRINT USING "+###.#"; ORP1c(Pt)
LOCATE 11, 57: PRINT USING "+###.#"; ORP2c(Pt)
LOCATE 13, 35: PRINT TIME$
LOCATE 13, 62: PRINT USING "###"; Pt
 END SUB
                             ----- TYPROBE.BAS ------
 'SINCLUDE: 'GLOBAL.BI'
 'Note: This is for ALL Programs
 1 ----
                 A FUNCTION WHICH IDENTIFIES THE SELECTED PROBE
 r.
 1 =
FUNCTION TYPROBES (Probe$) STATIC
SELECT CASE Probe$
          CASE "A"
                     TYPROBE$ = "ORP1a"
          TYPROBES = "ORP1b"
CASE "C"
           CASE "B"
          TYPROBE$ = "ORPIC"
CASE "D"
          TYPROBE$ = "ORP2a"
CASE "E"
          TYPROBE$ = "ORP2b"
CASE "F"
          TYPROBE$ = "ORP2c"
CASE "G"
          TYPROBE$ = "D.O.#1"
CASE "H"
                    TYPROBES = "D.O. #2"
          CASE ELSE
                    TYPROBES = "No such probe"
END SELECT
END FUNCTION
                                      JINKEY FUNCTION
/ ....
'This function tests for a key stroke in the keyboard buffer.
FUNCTION jinkey*
          a\hat{s} = I\hat{N}KEY\hat{s}
          IF a$ = """ THEN jinkey$ = 0: EXIT FUNCTION 'Nothing there - exitIF LEN(a$) = 2 THEN 'Something there - obtjinkey$ = ASC(MID$(a$, 2, 1)) + &H100 'ASCII Code
                                                                   'Something there - obtain
          ELSE
          jinkey% = ASC(a$)
END IF
END FUNCTION
```

----- BREAKPT.BAS ------'SINCLUDE: 'GLOBAL.BI' 'Note: This is for AASD#1 and AASD#2 Programs THIS SUBROUTINE FINDS THE NITRATE BREAKPOINT (KNEE) / === ====== SUB BREAKPT (Commnum, Pt, Nitrate, Renew) STATIC IF Renew = FALSE THEN 'Drop through Subroutine instead of resetting Avoid = Avoid + 1 'Increment ORP stability counter after feeding IF Avoid > MAXAVOID THEN 'ORP should have stabilized by now Count = Count + 1'Increment internal Ring counter IF Pt <= RINGSIZE THEN 'In Subsequent cycles the Ring LowBound = Pt + 180 - RINGSIZE 'Buffer may straddle two cycles ELSE LowBound = Pt - RINGSIZE END IF IF Count <= RINGSIZE THEN 'Ring is not full SumA! = SumA! + DORP2a(Pt) SumB! = SumB! + DORP2b(Pt) SumC! = SumC! + DORP2c(Pt) 'Sum the First Difference values IF Count = RINGSIZE THEN 'The Ring is full Ringnum = 1'Assign Ring Number RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate the average 'Slope for the Ring FirstRingA! = RING2a(Ringnum)
FirstRingB! = RING2b(Ringnum) 'This becomes the first 'Ring of the Ring Buffer FirstRingC! = RING2c(Ringnum) END IF ELSEIF Count > RINGSIZE AND Search = FALSE THEN 'Start filling next ring Ringnum = Ringnum + 1 'Increment Ring Number SumA! = SumA! - DORP2a(LowBound) + DORP2a(Pt) 'Kick out First SumB! = SumB! - DORP2b(LowBound) + DORP2b(Pt) 'value and add in SumC! = SumC! - DORP2c(LowBound) + DORP2c(Pt) 'latest First Diff RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate avg 'First Diff of 'this new Ring IF Ringnum = NUMRINGS THEN 'The Ring Buffer is Full Search = TRUE 'Enable Search for Breakpoint LastRingA! = RING2a(Ringnum) LastRingB! = RING2b(Ringnum) LastRingC! = RING2c(Ringnum) 'The most recently calculated 'Ring becomes the last Ring 'in the Buffer DiffRingA! = LastRingA! - FirstRingA! 'Take the Diff between DiffRingB! = LastRingB! - FirstRingB! 'the first and last DiffRingC! = LastRingC! - FirstRingC! 'Rings in the Buffer END IF

```
END IF
```

'Search for the Nitrate Breakpoint IF Search = TRUE THEN IF KneeA = FALSE THEN 'Knee ORP2a not detected as of yet IF DiffRingA! <= DELTA2A! THEN 'Arbitrary Constraint KneeA = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeA detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeB = FALSE THEN 'Knee O IF DiffRingB! <= DELTA2B! THEN 'Knee ORP2b not detected as of yet KneeB = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeB detected on "; DATE\$; PRINT #Commnum, " at approximately "; TIME\$ END IF END IF IF KneeC = FALSE THEN 'Knee O IF DiffRingC! <= DELTA2C! THEN 'Knee ORP2c not detected as of yet KneeC = TRUE KneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeC detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeCount >= 2 THEN Nitrate = TRUE '>= Two knees detected END IF 'Closes If Search = TRUE Decision Block ELSEIF Count > RINGSIZE AND Search = TRUE THEN 'Ring Buffer moves along Ringnum = Ringnum + 1'Increment Ring Number SumA! = SumA! - DORP2a(LowBound) + DORP2a(Pt) 'Kick out First SumB! = SumB! - DORP2b(LowBound) + DORP2b(Pt) 'value and add in SumC! = SumC! - DORP2c(LowBound) + DORP2c(Pt) 'latest First Diff RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate the 'average slope 'for the Ring FirstRingA! = RING2a(Ringnum - RINGSIZE + 1) 'Assign the FirstRingE! = RING2b(Ringnum - RINGSIZE + 1) FirstRingC! = RING2c(Ringnum - RINGSIZE + 1) 'First Ring of 'the new Buffer LastRingA! = RING2a(Ringnum) 'The latest Ring LastRingB! = RING2b(Ringnum) 'becomes the last LastRingC! = RING2c(Ringnum) 'Ring of Buffer DiffRingA! = LastRingA! - FirstRingA! DiffRingB! = LastRingB! - FirstRingB! DiffRingC! = LastRingC! - FirstRingC! 'Calculate Diff 'between first 'and last Rings IF KneeA = FALSE THEN 'Knee ORP2a not detected as of yet IF DiffRingA! <= DELTA2A! THEN KneeA = TRUE KneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeA detected on "; DATE\$; PRINT #Commnum, " at approximately "; TIME\$ END IF END IF

'Knee ORP2b not detected as of yet IF KneeB = FALSE THEN IF DiffRingB! <= DELTA2B! THEN KneeB = TRUE KneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeB detected on "; DATE\$; PRINT #Commnum, " at approximately "; TIME\$ END IF END IF IF KneeC = FALSE THEN 'Knee OI IF DiffRingC! <= DELTA2C! THEN KneeC = TRUE 'Knee ORP2c not detected as of yet KneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeC detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeCount >= 2 THEN Nitrate = TRUE '>= Two knees detected 'Closes If Count <= Ringsize Decision Block 'Closes If Avoid > MaxAvoid Decision Block 'Clear and Reset all the Variables for next Cycle

END IF END IF

ELSE

KneeA = FALSE KneeB = FALSE KneeC = FALSEAvoid = 0Count = 0SumA! = 0SumB! = 0SumC! = 0Search = FALSE KneeCount = 0END IF 'Closes Renew = FALSE Decision Block

----- BREAKPT.BAS -----'SINCLUDE: 'GLOBAL.BI' 'Note: This is for the BIO-P Program / -----_____ THIS SUBROUTINE FINDS THE NITRATE BREAKPOINT (KNEE) SUB BREAKPT (Commnum, Pt, Nitrate, Renew) STATIC IF Renew = FALSE THEN 'Drop through Subroutine instead of resetting Avoid = Avoid + 1 'Increment ORP stability counter after feeding IF Avoid > MAXAVOID THEN 'ORP should have stabilized by now Count = Count + 1'Increment internal Ring counter LowBound = Pt - RINGSIZE'Calculate lower bound of the Ring IF Count <= RINGSIZE THEN 'Ring is not full SumA! = SumA! + DORP2a(Pt) SumB! = SumB! + DORP2b(Pt) SumC! = SumC! + DORP2c(Pt) 'Sum the First Difference values IF Count = RINGSIZE THEN 'The Ring is full Ringnum = 1'Assign Ring Number RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate the average 'Slope for the Ring FirstRingA! = RING2a(Ringnum)
FirstRingB! = RING2b(Ringnum)
FirstRingC! = RING2c(Ringnum) 'This becomes the first 'Ring of the Ring Buffer END IF ELSEIF Count > RINGSIZE AND Search = FALSE THEN 'Start filling next ring Ringnum = Ringnum + 1'Increment Ring Number SumA! = SumA! - DORP2a(LowBound) + DORP2a(Pt) 'Kick out First SumB! = SumB! - DORP2b(LowBound) + DORP2b(Pt) 'value and add in SumC! = SumC! - DORP2c(LowBound) + DORP2c(Pt) 'latest First Diff RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate avg 'First Diff of 'this new Ring IF Ringnum = NUMRINGS THEN 'The Ring Buffer is Full Search = TRUE'Enable Search for Breakpoint LastRingA! = RING2a(Ringnum) LastRingB! = RING2b(Ringnum) LastRingC! = RING2c(Ringnum) 'The most recently calculated 'Ring becomes the last Ring 'in the Buffer DiffRingA! = LastRingA! - FirstRingA! 'Take the Diff between DiffRingB! = LastRingB! - FirstRingB! 'the first and last DiffRingC! = LastRingC! - FirstRingC! 'Rings in the Buffer

END IF

'Search for the Nitrate Breakpoint IF Search = TRUE THEN IF KneeA = FALSE THEN 'Knee ORP2a not detected as of yet IF DiffRingA! <= DELTA2A! THEN 'Arbitrary Constraint KneeA = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeA detected on "; DATE\$; PRINT #Commnum, " at approximately "; TIME\$ END IF END IF IF KneeB = FALSE THEN 'Knee ORP2b not detected as of yet IF DiffRingB! <= DELTA2B! THEN KneeB = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeB detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeC = FALSE THEN 'Knee ORP2c not detected as of yet IF DiffRingC! <= DELTA2C! THEN KneeC = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeC detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeCount >= 2 THEN Nitrate = TRUE '>= Two knees detected END IF 'Closes If Search = TRUE Decision Block ELSEIF Count > RINGSIZE AND Search = TRUE THEN 'Ring Buffer moves along Ringnum = Ringnum + 1 'Increment Ring Number SumA! = SumA! - DORP2a(LowBound) + DORP2a(Pt) 'Kick out First SumB! = SumB! - DORP2b(LowBound) + DORP2b(Pt) 'value and add in SumC! = SumC! - DORP2c(LowBound) + DORP2c(Pt) 'latest First Diff RING2a(Ringnum) = SumA! / RINGSIZE RING2b(Ringnum) = SumB! / RINGSIZE RING2c(Ringnum) = SumC! / RINGSIZE 'Calculate the 'average slope 'for the Ring FirstRingA! = RING2a(Ringnum - RINGSIZE + 1)
FirstRingB! = RING2b(Ringnum - RINGSIZE + 1)
FirstRingC! = RING2c(Ringnum - RINGSIZE + 1) 'Assign the 'First Ring of 'the new Buffer LastRingA! = RING2a(Ringnum) LastRingB! = RING2b(Ringnum) LastRingC! = RING2c(Ringnum) 'The latest Ring 'becomes the last 'Ring of Buffer DiffRingA! = LastRingA! - FirstRingA! DiffRingB! = LastRingB! - FirstRingB! DiffRingC! = LastRingC! - FirstRingC! 'Calculate Diff 'between first 'and last Rings IF KneeA = FALSE THEN 'Knee O IF DiffRingA! <= DELTA2A! THEN 'Knee ORP2a not detected as of yet KneeA = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeA detected on "; DATE\$; PRINT #Commnum, " at approximately "; TIME\$ END IF END IF

IF KneeB = FALSE THEN 'Knee OF IF DiffRingB! <= DELTA2B! THEN 'Knee ORP2b not detected as of yet KneeB = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeB detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeC = FALSE THEN 'Knee O IF DiffRingC! <= DELTA2C! THEN 'Knee ORP2c not detected as of yet KneeC = TRUEKneeCount = KneeCount + 1 PRINT #Commnum, "Nitrate KneeC detected on "; DATES; PRINT #Commnum, " at approximately "; TIMES END IF END IF IF KneeCount >= 2 THEN Nitrate = TRUE '>= Two knees detected END IF 'Closes If Count <= Ringsize Decision Block END IF 'Closes If Avoid > MaxAvoid Decision Block ELSE KneeA = FALSE'Clear and Reset all the Variables for next Cycle KneeB = FALSE KneeC = FALSE Avoid = $\hat{0}$ Count = 0SumA! = 0SumB! = 0SumC! = 0Search = FALSE KneeCount = 0

END IF

'Closes Renew = FALSE Decision Block

APPENDIX E

CHEMICAL DATA - AASD[#]1

Chemical Parameter Page Suspended Solids (TSS and VSS) Feed (AASD[#]1 and AASD[#]2)..... 259 Fixed-Time Reactor (AASD#1 and AASD#2)...... 260 Nitrogen (TKN, NO, and NH₃) Phosphorus (TP and Ortho-P) Feed (AASD[#]1 and AASD[#]2)..... 265 Dissolved Oxygen Fixed-Time Reactor (AASD[#]1)..... 266 Fixed-Time Reactor (AASD[#]2)..... 267 pH, Temperature and Alkalinity Fixed-Time Reactor (AASD[#]1 and AASD[#]2)..... 268 Chemical Oxygen Demand Fixed-Time Reactor (AASD[#]1 and AASD[#]2)..... 269 Real-Time Reactor (AASD[#]1 and AASD[#]2)..... 269

	AASD#1	FEED SUSPENDE	D SOLID	CONCENTRA	VT LONS		AASD#2	FEED SUSPEND	ED SOLID	CONCENTRA	LIONS
DAY	DATE	Approximate Time of Raw Sludge Collection (Hr:Min)	(J/Guu) NL SS	(mg/lm)	SOL IDS RATIO	DAY	DATE	Approximate Time of Raw Sludge Collection Hr:Min	(J/GM) MLSS	(IJ/Ġu) SSAJW	SOL IDS RATIO
-	10/00	8.30 pm	7108	5716	0.80	•	0ct/02/90	9:00 am	10610	8466	0.80
- ~	20	8:30 am	7852	6308	0.80	5	50	9:00 am	9596	7818	0.81
m	5	8:30 am	5188	4158	0.80	M	2	8:30 am	1040	3362	0.83
4	22	8:30 am	6198	4982	0.80	4	S :	9:00 am	5986	4922	28.0
ŝ	ងរ	2:00 pm	5936	4740	8.0	Ś	80	10:42 am	4850	0244	20.0
0 1	2 X	12:00 Du	8104	878 878 878	2 2	• ~	80	und 00:6	8209	4958	0.82
- 00	3 23	8:30 am	1287	2 E E	60	. 00	8	8:00 am	7454	2609	0.82
0	27	12:00 pm	6370	5104	0.80	0	2	10:30 am	10356	8442	0.82
2	28	12:00 pm	9122	7214	21	₽;	=:	11:30 am	0126	015/	28.0
=;	62	8:30 am	7638	6056	۹ ۹ ۲	= 9	2 Ľ	me 00.11	7854	4704	0.82
йĘ	06/10/1nt		6454	5084	22	iΰ	14	1:00 pm	9562	7898	0.83
12	02	8:30 am	6698	5186	0.77	14	15	8:30 am	2190	4326	0.84
5	03	8:30 am	6850	5366	0.78	£;	5 5	10:30 am	6380	5282	
<u>8</u>	70	8:30 am	6106 8728	86/7	2°0	<u>•</u> •	- 8	10:00 am	4924 8634	7150	58.0
18	6	8:30 am	9268	2152	20	8	22	11:00 am	7826	64.62	0.83
0	20	12:00 pm	11866	9876	0.80	19	20	9:00 am	5962	4902	0.82
20	80	9:00 am	13550	10794	0.80	ខ្ល	5	12:00 pm	6436	5286	0.82
25	6	8:30 am	7216	<u>5</u>	2.6	58	25	me 00.111 me 00.01	862) 8003	6U28	3.5
3 K	2 5		7656	7719	0.80	3 23	32	10:00 am	35 15	6176	0.82
32	: 6	8:30 am	7308	5756	62.0	54	ß	10:00 am	6574	5436	0.83
ເ ນ	۲	8:30 am	7624	8209	0.80	ងរ	25	9:30 am	6114	5016 / 5/0	0.82
85	14 14	12:00 pm	2069	2742	2.0	9 2	2 8		0072	4040	0.82
282	<u>c</u> 4	und 00:21	6530	5170	2.2	58	38	9:30 am	2722	5874	0.81
38	12	10:00 am	10540	8308	6.0	5	ß	11:00 am	5632	4590	0.81
ខ្ល	18	8:30 am	9318	7396	6. ⁻ 0	8;	31	10:00 am	8450	6948 5578	0.82
۲	19/90 טכ 20					58	U4/10/VON 02	10:30 am 8:30 am	0000 6182	5154	0.83
4 M	21	10:00 am	8070	6386	0.79	12	18	10:00 am	5522	4560	0.83
ž	2	12:00 pm	11872	9568	0.81	21	25	9:30 am	6160	5060	0.82
5	រង	8:30 am	6514 4858	5228	0.80	3 ×	8 S	me 05:01 me 05:0	6982	5828	28.0
9 M	វ ស	12:00 Dm	6618	5230	32	3.5	20	11:00 am	6798	5650	0.83
38	58	12:00 pm	9594	7602	62.0	38	80	11:00 am	6868	5664	0.82
6	22	8:30 am	10068	7987	0.78	6 S	65	11:30 am	5170	8/27	
5 F	8 R	ma 00:4	7818	6168	22	35	2 =				;;;
42	200	7:00 am	8014	6288	0.78	27	12		:		
£1	31		8042	6328	2.0	Ω;	۲: ۲	9:30 am	6870	5630	0.82
4 4	Aug/01/90		8072 04 70	6372	و م 1	4 V 7 V	4 K	me 01:01	00200 016	2404 4018	0.82
3	50	8:30 am	7962	6214	0.78	9	5 2	10:00 am	6256	5130	0.82
47	3	12:00 pm	0769	5384	0.78	5	2:	11:30 am	6086 7	747	0.82
87	5 3	12:00 pm	9736	2010	22	8 D 7	<u>s</u> 5	me 02-01		4440	0.81
3 2	36	8:30 am	6114	4728		20	2	10:00 am	5498	4500	0.82
5	88	11:00 am	7814	6008	5	20	25	10:30 am	5604	4570	0.82
25	55	8:3U am	9207 0502	<pre> </pre>	0.78 0.78	22	32	10:30 am	0420 6632	5434	0.82
12	2=	me 00:6	5950	4556	0.75	21	5	11:30 am	6082	4920	0.81
52	2:	7:30 am	2464	4202	2.7	ς 3	× ۲	1:00 pm	5524	7777 7480	0.81
0 10	5 2	10-30 am	10Y0 64.87	7767	92 O	52	3 2	11:30 am	5560	4554	0.82
585	ţ	9:00 am	7936	6114	0.7	28	58	10:00 am	4714	3930	0.83
59	16	8:15 am	5726	4400	0.7	59	29	11:00 am	1300	3606	0.8
60	17	7:30 am	6848	5256	0.77	60	30	10:30 am	6118	5148	0.84
Maxim	Ę		13550	10794		Maxim Mean	Ę		10610	8466 5376	
Minim	Ę		5188	4158		Minim	5		4040	3362	
Std. (Jev.		1626	1306		Std. (Jev.		1372	1109	

AASD#	1 FIXED TI	ME REACTOR S	USPENDED	SOLID CO	NCENTRATIONS	AASD#	2 FIXED TIME	REACTOR SL	SPENDED	SOLID CON	CENTRATIONS
DAY	DATE	Sampling	22.1M	22V IM	SOLIDS	DAY	DATE	Sampling	MUSS	MLVSS	501 105
001	DATE	Time	(mg/L)	(mg/L)	RATIO		PAIL	Time	(mg/L)	(mg/L)	RATIO
		(Hr:Min)	-					Hr:Min			
•	lum (10 /00	12.00	5714	1104	0.70	,	0-+ (02/00	2,00	4772	5032	0.70
2	20	10.35 am	5598	4490	0.79	2	021/02/90	10:20 am	6678	5316	0.80
3	21	10:15 am	5790	4552	0.79	3	04	2:05 pm	6772	5350	0.80
4	22	1:30 pm	5524	4358	0.79	4	05	2:00 pm	6468	5148	0.80
5	23	6:00 pm	5436	4252	0.78	5	06	2:40 pm	6554	5204	0.79
0 7	24	5:30 pm	5356	4154	0.78	0 7	U7 08	2:15 pm 12:55 cm	6340	5052	0.79
8	26	11:10 am	5924	4778	0.78	8	09	11:25 am	6242	4912	0.79
9	27	1:50 pm	5866	4632	0.79	9	10	1:30 pm	6266	4930	0.79
10	28	2:00 pm	5712	4454	0.78	10	11	2:40 pm	6374	5060	0.79
11	29	2:15 pm	5938	4606	0.78	11	12	3:00 pm	6654	5268	0.79
12	30 101700	3:00 pm	5826	4510	0.77	12	13	4:25 pm 3:30 pm	6382	5096	0.80
14	02	3:50 pm	5854	4506	0.77	14	15	11:45 am	6502	5176	0.80
15	03	10:00 am	5826	4490	0.77	15	16	3:05 pm	6366	5092	0.80
16	04	9:10 am	5852	4508	0.77	16	17	12:55 pm	6394	5132	0.80
17	05	10:15 am	5878	4522	0.77	17	18	1:05 pm	6148	4934	0.80
18	06	11:50 am	5970	4602	0.77	18	19	3:20 pm	6046	4830	0.80
20	07	3:50 pm 3:40 pm	6726	4804 5204	0.77	20	20	3+20 nm	6240	4978	0.80
21	09	2:20 pm	6980	5416	0.76	21	22	2:20 pm	6168	4956	0.80
22	10	10:40 am	6818	5298	0.78	22	23	1:30 pm	6194	4982	0.80
23	11	3:10 pm	6774	5272	0.78	23	24	3:30 pm	6254	5018	0.80
24	12	9:35 am	6752	5236	0.78	24	25	1:35 pm	6154	4954	0.81
25	14	2.40 pm	6702	5202	0.78	25	20 27	2:55 pm 1-20 pm	6140	4900	0.80
27	15	3:05 pm	6568	5088	0.77	27	28	6:10 pm	5988	4784	0.80
28	16	10:15 am	6530	5046	0.77	28	29	1:10 pm	6066	4852	0.80
29	17	12:35 pm	6604	5084	0.77	29	30	2:05 pm	6064	4850	0.80
3U 31	18	3:15 pm 1-15 pm	6760	5388	0.78	30	31 Nov/01/00	1:10 pm ///5 pm	6034	4846	0.80
32	20	3:15 pm	6800	5240	0.77	32	02	7:40 pm	6104	4910	0.80
33	21	12:45 pm	6856	5284	0.77	33	03	4:40 pm	5972	4772	0.80
34	22	4:00 pm	6956	5370	0.77	34	04	5:50 pm	5916	4722	0.80
35	23	12:15 pm	7416	5718	0.77	35	05	2:50 pm	5856	4676	0.80
37	24	5 15 pm	7006	5420	0.76	20 77	07	1:05 pm 1:55 pm	5016	4802	0.80
38	26	3:55 pm	6954	5380	0.77	38	08	2:10 pm	6078	4864	0.80
39	27	10:30 am	7028	5424	0.77	39	09	12:45 pm	6038	4850	0.80
40	28	1:15 pm	7370	5702	0.77	40	10	1:10 pm	5890	4716	0.80
41	29	7:45 pm	7472	5812	0.78	41	11	10:30 am	5932	4762	0.80
42	31	1:25 pm 1:40 pm	7522	5668	0.77	42	12	1:15 pm / 150 pm	5940	4/04	0.80
44	Aug/01/90	12:35 pm	7140	5498	0.77	44	14	2:00 pm	6026	4834	0.80
45	02	4:50 pm	6792	5228	0.77	45	15	1:20 pm	5984	4796	0.80
46	03	4:00 pm	7052	5452	0.77	46	16	6:55 pm	5814	4664	0.80
47	04	1:30 pm	7252	5566	0.77	47	17	1:15 pm	5842	4682	0.80
40	06	1.20 pm	7456	5732	0.76	40 70	18	4:05 pm 1:20 pm	5050	4002	0.81
50	07	1:30 pm	7216	5538	0.77	50	20	3:15 pm	5760	4624	0.80
51	08	1:30 pm	6904	5274	0.76	51	21	1:30 pm	5760	4612	0.80
52	09	1:45 pm	6826	5266	0.77	52	22	2:05 pm	5588	4492	0.80
55	10	1:25 pm	7082	5456	0.77	53	23	9:30 pm	5288	4238	0.80
55	12	2:15 mm	6960	5304	0.77	54 55	24	3:45 pm 3.30	5350	4200	0.80
56	13	8:15 am	6756	5152	0.76	56	26	1:45 cm	5196	4122	0.79
57	14	1:30 pm	6628	5058	0.76	57	27	12:25 pm	5208	4146	0.80
58	15	2:20 pm	6516	4994	0.77	58	28	12:10 pm	5248	4208	0.80
59	16	9:30 am	6646	5090	0.77	59	29	12:15 pm	5036	4074	0.81
00	17	o:JU ami	02/0	4010	0.77	60	30	11:05 am	4904	4042	0.82
Mau !	_									.	
Maximu	n		14/2 6540	5812 5080		Maxim	m		6772	5350	
Minimu	m		5336	4154		Minim	JM.		4904	4122	
Std. D	ev.		600	442		Std. D	ev.		362	281	

.

Msp#1	REAL TIME	REACTOR SUS	PENDED S(DLID CONCE	NTRATIONS	WSD#	2] REAL TIME	REACTOR SUS	PENDED SC	DL ID CONCI	ENTRATIONS COLIDE
DAY	DATE	Sampling Time (Kr:Min)	(J/Gw)	(mg/L)	RATIO	L YO		Time Hr:Min	(mg/L)	(mg/L)	RATIO
- 0	Jun/19/90	12:10 pm	5640	4430 4386	62.0 0	- n	0ct/02/90 03	2:10 pm 10:10 am	6658 6820	5282 5442	0.79
4 M	32	10:25 am	5678	1460	R	i m	5	2:10 pm	6768	2392	0.80
4 1	25	2:00 pm	5470	4304		4 U	20 20	2:02 pm 2:50 pm	6580 6558	5238	
n vo	32	und 1:00	5288	4140	0.78	n •0	20	1 E	6374	5072	0.80
~	ŝ	1:30 pm	5370	4390	0.82	~	80	1:00 P	6222	4920	8.6
«) (25	10:45 am	2726	4526	2 8	× 0	8 E	ma 1:30 am	2019	7007	6. 0 0
, 5	28	md 02:2	2540	4328	0.78	• e	25	2:52 B	6402	5092	0.80
:=	18	und 50:7	5700	0177	0.77	:	12	3:05 pm	6612	5260	0.80
21	02 S	2:40 pm	6060	7697	5	1 1 1	۲: ۲	4:30 pm	6488	5178	0.80
21	Jul/01/90	9:40 pm	5658	4004	2.0	<u>5</u> 5	ī	11:50 am	24C0 99999	5334	0.80
ក្	38	10:10 am	6028	1645	0.7	\$	9 <u>6</u>	3:25 pm	7079	5122	0.80
16	8	8:55 am	5854	1498		2!	17	md 00:1	6414	5156	0.80
<u>}</u>	83	10:25 am	5674	4370		2 g	<u>8</u> 0		UC10	5068	0.80
<u>e</u> 6	86	3:25	6122	4740		2 2	50	11:10 am	6290	5036	0.80
20	80	2:00 pm	6680	5168	0.7	20	21	3:25 pm	6250	10667	0.80
5	6	2:25 pm	7502	2436	5	5	21	2:22 pm	6204	4992 7007	0.80
ន	2:	10:25 am	6900	5344	22	25	2	E 52:1	6504	5086	0.81
วร	= 2		00 10 79999	5152	2.0	32	3 2		6136	4932	0.80
នេ	រដ	12:50 pm	0729	2240	0.78	3	5 5	3:10 pm	5856	4706	0.80
56	14	2:20 pm	6554	5020	0.77	26	27	1:25 pm	2964	7.02	0.80
27	÷	2:35 pm	6448	6767	C-0	27	28	mc 00:9	5832	5777 7277	0.80
Ø Ø	<u>•</u> •		07C0 8578	1076	22.0	9 8	67 02	3:05 pm	5962		0.30
28	18	2:45 pm	6849	5288	0.7	ន	۲.	. Ed	5824	4680	0.80
Ē	Jul/19/90	5:00 pm	0702	5420	5.4	21	Nov/01/90	md 07:7	5938	4750	0.80
25	25		0708 6470	51/0	2.2	3 F	20	1:55 pm	5934	727	0.80
12	32	3:45 pm	6682 8682	5124	0.7	14	33	2:45 pm	5910	4714	0.80
35	ស	11:45 am	7200	5500	8.0	35	02	2:25 pm	2222	4626	0.80
% ?	25	12:50 pm	7138	5478	220	2 S	85		5818	6763	0.80
282	5 %	3:45 0	9176 6776	5196	0.7	28 2	80		5866	4708	0.80
6	27	10:05 am	7269	5340	0.7	39	60	1:00 pm	5768	4628	0.80
9	ខ្លួ	12:45 pm	704	5712	4.4	3:	<u></u> ;	1:20 pm	5678	4552	0.80
1 0	\$5	11:20 am	7274	5612		- 5	12	1:25 0	5592	474	0.80
13	1 Fr	1:30 pm	6896	5290	0.77	M4	ŭ	5:00 pm	5448	4384	0.80
44	Aug/01/90	12:05 pm	7186	5502	C.0	4	14	2:05 pm	5574	1486	0.80
\$?	88	5:05 pm	6862	5254		\$ 1	55	1:15 pm	5510	4538	0.82
9 L3	3 2	md (1:4	7010	5320	0.76	14	22	1:30 pm	5514	4430	0.80
87	5 23	11:05 pm	6992	5306	0.76	48	18	3:55 pm	2442	4362	0.80
67	8	10:00 am	7218	2498	0.76	67	19	1:35 pm	2406	4332	0.80
22	20	12:35 pm	6896 7804	9025	٥0 ۲	22	22	5:50 pa	7275	1444 1300	08.0
- 23	88	12:05 pm	7969	5282	0.76	- 23	22	2:20 D	5464	4398	0.80
2	; 2	1:55 Pa	7106	5388	0.76	5	ន	ud 07:6	5068	4068	0.80
21	=	11:30 am	222	5560	8.0 ¥	31	24	3:40 pm	5152	4126	0.80
2 %	25	8:30 mm	7 69999	4984	5 K	2 2	0 2		5068 5068	4034	0.80
52	14	2:30 pm	6774	5064	0.75	57	27	12:15 pm	5098	4060	0.80
28	ت :	3:15 pm	6482	4870	К #	58	28	12:05 pm	4942	3954	0.80
50 60	9 7 1	9:20 am	6706 6562	5008 4956	د.0 26.0	8 S	62 62	12:05 pm 10:50 am	49762	4028 3920	0.82
3	2		}			8	S		12		
Maximu	E		7404	5712		Maxim	Ę		6820	2775	
Mean			6511	5005		Mean	1		5931	4748	
Std. D			610	432		Std. C	Jev.		120	367	

	AASD#1	FEED NITROGE	N CONCE	NTRATIC	SNO		AASD#2	FEED NITROGE	EN CONCE	INTRAT IC	SNO
VAU	DATE	Elapsed Time Since Raw Sludge Collection (Hr:Min)	TKN (mg/L)	(J/Gm) NOX	NH3 (mg/L)	DAY	DATE	Elapsed Time Since Raw Sludge Collection (Hr:Min)	ТК И (mg/L)	NOX (mg/L)	NH3 (mg/L)
•	00.01.	7.00	Ļ	1		•	0c+ /02 /00	6.20	652	0,90	0.28
~ r	04/41/1mm			, K	9 c 9 t	· ~	03	1:50	72	1.48	0.10
4 1	3 5		101	2 2			2	6:35	536	0.08	10.57
n ~	2 5	22.7	577		00.4	-4	05	5:30	435	2.18	0.25
* u	3 5	27.7	1017	22	14.0	Ś	90	6:25	401	0.10	0.22
n v	3 %		4 Y Y		07.0	· •0	07	3:2	392	3.92	0.09
0 r	2 X	1.30	105	1	0.22	~	80	4:40	436	2.49	97-0
- e0	2	2:30	483	3.17	0.13	Ø	60	3:45	294	0.20	0.47
, o	22	2:00	407	2.54	0.24	•	10	3:40	979	1.48	0.26
, 01	, 2	1:25	674	0.61	0.15	₽	11	3:45	713	0.72	0.19
2 =	8	00:9	541	0.78	0.49	=	12	6:10	797	0.09	0.29
12	30	05:0	509	6.24	0.08	12	13	7:30	562	1.69	0.43
ũ	Jul/01/90	4:25	452	1.94	0.66	<u>ت</u>	2	2:40	687	1.07	0.12
14	8	7:30	439	0.24	0.40	21	2 ;	02:0	ž	* - 	N7.11
15	03	1:50	160	2.8	0.08	<u>2</u> :	<u>0</u> ;	07:0	0.4	12.7	00.0
2!	31	0:50	438	7.26	0.0	0 ₽		2017	100	; ; ; ;	0 42 72
2:	83	2:2	222	9 F	2.0	2 8	<u>0</u>) S	5.5	0.07	0.55
<u></u>	8 6	2:0		2 R	2 v 9 K	<u>: 9</u>	22	3:00	405	3.69	0.05
2	58	5:05	623	0-35	2.59	2	5	3:35	446	0.18	07.0
32	38	5:30	513	0.17	7.67	5	22	3:40	511	0.16	0.32
22	2	2:00	525	0.70	8.14	22	រ	3:35	426	0.18	0.32
ង	11	7:15	529	0.29	11.14	ង	54	5:35	553	1.24	0.93
24	12	1:35	559	0.91	9.66	2	8	6:20	<u>8</u>	2.10	- n
ß	13	4:55	570	0.51	12.66	ខ	82	8:00	555 500	14-0	14.0
20	14	2:30	222	0.58	5.7 1	9 ;	77			0.2	
27	5;	2:50	52	0.85	د.ه ۲	20	9 P		025	72.0	0.52
8	ōċ	01:55	747	07.0 20	<u>0</u> r 2 k	3 g	43 70 2	3:15	422	1.16	0.12
58	18	6:30	616	0.13	8.60	គ	5	3:10	631	0.57	0.16
5	Jul/19/90					Ē	Nov/01/90	6:15	533	0.57	0.07
32	20	:	:	:	:	R	02	11:15	12	0.31	0.38
ñ	21	2:50	541	0.24	12.95	នេះ	83	6:45	;;;	2.5	2.0
31	21	12.4	2:	22.0	10.01	\$ ¥	3 2	57.5		72.0	10 62
25	3 %		175	67.0 1 2 1	2.0	32	88	3:45	513	0.26	0.05
35	ς κ	5.20	732	0.55	0.80	25	07	3:00	510	0.30	0.05
88	3	3:50	617	0.39	0.36	38	80	3:30	486	0.30	0.28
6	22	2:20	629	5.93	0.11	39	8	1:30	394	6.74	0.05
40	28	4:05	498	0.58	0.07	4	10	2:30	456	1.39	0.15
41	53	1:35	548	1.81	5.0 1	. ;	=:		;		
9:	5	4:50		7.7	2/.0	4 4	2 t	27-75	517	CC 0	0 76
33	10 10/10/10/10/1	20:20		22.0	32	13	<u>14</u>	4:15	510	0.36	0.17
3	02	8:30	657	0.31	2.02	45	15	5:05	453	0.57	0.06
97	03	7:15	587	0.52	1.57	46	16	9:05	465	0.25	0.60
47	31	1:40	767	3:	0.12	1.9	29	01:2	401	2.0 2.0	50
ş ç	5 2	1:00	071	2.0	2.02	9 0 7	2 2	3.05 20.5	122	29-7	0.0
÷ 9	80	07:7	13	, 2 , 8	0.21	2	202	5:30	402	0.42	0.33
5	88	2:25	556	4.54	0.07	5	ភេះ	3:15	433	3.65	0.17
22	6	4:05	691	0.56	0.23 2	22	25	4:50	407	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	•7•0
ß :	₽:	4:35	5 <u>5</u>	2.20	0.48	22	ង	12:00	ŠĶ		9 7 7
1 K	: 0	8-15 8-15	197 197	2.48	0,10	3 7	នេ	2:30	433	3.35	0.04
22	: E	1:20	581	5.68	0.06	26	26	4:30	421	1.65	0.05
57	14	3:45	461	3.32	0.11	22	27	1:00	429	0.37	0.81
82	5 :	5:35	009	0.21	0.48	2 2	8 8	21:2	() / F	12.0	3,5
5	16	1:45	Ģ	2.68	0.07	62 6	67 6	<u>.</u>	015	ب ب ب	28
60	21	1:30	114	6. 26	10.0	8	20	0:1	463	17.0	r
				5 N			ſ		ž	12 4	11 20
Maximu	E		546 246	, . 89 1	10.0U 3.00	Mean	5		480	1.29	1.14
Minimu	E		15	0.13	0.06	Minia	5		294	0.07	0.04
Std. D	ev.		E	2.05	4.27	std.	Dev.		92	1.55	2.52

DATE DATE	리		REACTOR psed	NITROGEN	CONCENTR	SHU SHU	AS DAY	D#2 FIXED	TIME. Ela	REACTOR psed	NITROGEN TKN (ma/L)	CONCENTR NOX (md /L)	ATTONS NH3 (mg/L)
Time (mg/L) Since Air ON or OFF (Hr:Min)	Time (mg/L) Since Air ON or OFF (Hr:Min)	fime (mg/L) ce Air or OFF -:Min)	(mg/L)		(J/bm)	(mg/L)			CH	ime ce Air or OFF :Min)	(1/ɓw)	(mg/L,)	(mg/L)
Jun/19/90 On 1:15 345 20 Off 2:35 395 31 Oct 2:35 375	On 1:15 345 Off 2:35 395 Off 2:30 378	1:15 345 f 2:35 395 2:10 278	345 395 378		1.72	0.13 0.86	- 01 4	0ct/02/90 03 04	828	1:45 1:00	509 503 577	1.83 0.15	0.11
22 0n 2:10 388 23 0n 0:30 388	0n 2:15 364 0n 2:15 364	2:15 364 2:15 364 0:30 388	292 792 792		2.22	9.0 9.0	n -4 ⊮∩	888	5 8 8	1:10	512	2.5	0.16
24 0ff 2:50 265 25 0n 1:30 357	0ff 2:50 265 0n 1:30 757	f 2:50 265 1:30 357	265 357		0.08	0.99	~ ~	07 08	8 <u></u>	1:00 2:25	487 482	0.96 0.18	0.10 0.54
26 Off 2:10 384 (off 2:10 384	f 2:10 384	386	• •	3.	1.0	∞ 0	65	55	0:55	486 461	1.66 156	0.12
28 On 1:35 384 3	On 1:35 384	1:35 384	285		31.5	0.07	`₽:	;=:	588	0:30	187	0.82	0.08
20 On 2:10 398 2	0n 2:10 398	2:10 398 2:10 398	398		5.51 2015	9.08 0.08	= 2 :	; <u>۵</u> ۲	55	2:00 2:00	1 8 C	0,40	0.47
Jul/01/90 0ff 2:15 413 0 02 0n 2:35 376 2	0ff 2:15 413 0 0n 2:35 376 2	f 2:15 413 0 2:35 376 2	413 0 376 2	0 1	35	0.7 0.8	ñ 7	4 5	εş	2:45 3:00	469 451		0.08
03 On 2:40 373 2 04 On 1:45 409 1	0n 2:40 373 2 0n 1-45 400 1	2:40 373 2 1-45 400 1	373 2	~~~	.20	0.06	5 <u>5</u>	4 7	ç e	0:05 0:40	495 452	1.71 0.85	0.0 0.0
05 0n 2:30 406	0n 2:30 406 1	2:30 406	20 20 20 20 20 20 20 20 20 20 20 20 20 2		2	0.06	129	82 \$	58	0:35	445	0.78	0.08
06 011 0:50 402 1 07 0n 1:35 410 1	011 0:50 402 1 0n 1:35 410 1	1:35 410 1	410 1		9 F.	0.04	<u>5</u>	2 ₽	5,9	1:05	407 465	1.24	0.14
08 On 1:15 447 1	on 1:15 447	1:15 447	17	-	22	90.0	85	25	58	2:05	453 438	1.36	0.00
10 0ff 0:45 486 1	off 0:45 486 1	1 0:45 486 1	186		i ż	0.29	32	ង	Ę	2:45	446	0.17	0.55
11 0n 2:05 465 2 12 0n 2:20 453 2	0n 2:05 465 2 0n 2:20 453 2	2:20 453 2 2:20 453 2	465 2 453 2	20 20	8.0	0.06 0.06	ខង	ង	9 <u>2</u>	2:25 2:25	454 462	1.38	0.01
13 0ff 2:50 483 0	0ff 2:50 483 0	1.10 483 0	483 0	0 1	2 K	0.93	<u>ې</u> ۲	26 77	5,5	0:40 1:40	460 445	1.04	0.10
15 On 1:20 458 1	On 1:20 458	1:20 458	458	J	2 M	0-06	32	ន	off	1:15	443	1.69	0.16
16 On 2:30 464 1 17 Off 1:40 430 0	0n 2:30 464 1 0ff 1:40 430 0	2:30 464 1 1:40 430 0	464 1430 0	-0	. 22	0.45	5 58 73	ର ନ	011 011	2:45	424 478	0.20	0.63
18 0n 1:05 458 1 Jul/19/90 0ff 1:55 453 0	On 1:05 458 1 Off 1:55 453 0	1:05 458 1 1:55 453 0	458 1 453 0	- 0	8 N	0.06	85	31 Nov/01/90	59	1:35	472 472	2.13	0.03
20 On 0:45 475 1 21 046 1-05 475 1	0n 0:45 475 1 0ff 1:05 427	0:45 475	475		.15	0.10	85	20 20	<u>1</u>	1:35	457	0.62	0.42
22 On 1:20 453	00 1:20 453	1:20 453	÷23		12	0.05	125	38	53	2:15	421	99 - C	0.05
24 Off 1:05 471 1	off 1:05 471 1	1:05 471	12.4		9	0.32	28	88		0:02	t46	4.05	0.37
25 On 1:10 464 7 26 Off 2:45 458 (On 1:10 464 01 2:45 458 0	1:10 464 1 2:45 458 (407 728 728	-	67. 1.62	0.70	38 22	20	0ff	0:45 0:45	436	12.	0.19
27 On 0:15 474	On 0:15 474	0:15 474	21		50.1	0.10	6 0 M	8 9	58	2:05	424	1.89	0.05
29 ON 3:00 480 3	on 3:00 480 3	3:00 480 3	180		3 7	0.09	35	25	55	2:20	430	0.19	0.71
30 00 0:40 475 1 31 00 2:40 475 1	04 01 0140 475 1	0:40 475 2-40 475	5,4		1.67	0.08	7 7	5 t	5,5	1:50 2-45	401 406	2.25	0.06
Aug/01/90 On 1:35 471 1	on 1:35 471	1:35 471	124		85	0.07	3	12	5	2:10	431	2.15	0.06
02 On 1:00 4/6 03 Off 1:45 4/3	0n 1:00 476 0ff 1:45 473	1:45 473	8; 5;		1.15	0.56	ç 3	<u>ი</u> გ	ઠ ઠ	21:1 0:35	401	1.36	0.00
04 0n 2:05 463 5	On 2:05 463	2:05 463	463		2.26	0.08	5	1- 1-	58	0:45	398 208	1.45	0.06
06 00 1:35 493 1	On 1:35 493	1:35 493	267		. 8	0.07	9 9 9	<u>5</u>	5 8	0:15	410	12.0	0.37
07 On 1:40 449 2	On 1:40 449	1:40 449	677	10	5	0.06	ន្ល	ខ	5	1:55	410	6.1	0.06
08 0n 1:30 454 1 09 0n 1:35 462 1	0n 1:30 454 1 0n 1:35 462 1	1:30 454 1 1:35 462 1	454 1		28	0.00	2 23	5 22	011 011	0:55 0:55	3 %	0.09 2.48	0.17
10 On 1:10 492 4	On 1:10 492 4	1:10 492 4	4 267	4	3.8	0.10	(I2)	ង	off f	2:00	391	1.33	0.54
11 On 1:35 492 2	On 1:35 492 2	1:35 492 2	727 2 727	~ ~	<u>6</u> ;	0.09	25	24	110 110	2:00	366 786	1.24	0.45
12 UN 1243 4/4 2 13 ON 2245 458 2	UN 2:45 4/4 2	1:45 4/4 2 2:45 458 2	4/4		25	0.08	2 X	32	55	0:15 0:15	375	0.67	0.71
14 On 1:00 458	On 1:00 458	1:00 458	458		1.61	0.0	25	27	off	1:45	352	- , K ;	0.36
15 On 1:35 443 16 De 2-35 443	On 1:35 443 On 2-35 443	1:35 443	877 877		K 2	0.08	8 S	82 Q	55	1:20 1-10	374	2.23	77.0 72.0
17 0n 1:30 433	on 1:30 433	1:30 433	440	-	12. 12.	0.09	60	58	58	2:50	372	0.28	10.23
u (493	493	767	493	-	\$6.4	0.99	Maxim	Ę			528	4.05	0.71
436	436	436	436	• •	2:	0.23	Mean	i			441	1.25	0.26
ev. 200 0	n 607	0 27	0 42	00	8.8	0.29	Std. 1	e.			38	5.0	5.0

AAS	D#1 REAL T	IME REACTOR	ITROGEN (ONCENTRA	TIONS		ASD#2 REAL	L TIME REACTO	RNITROGE	N CONCEN	TRATIONS
DAY	DATE	Elapsed Time Since Air ON or OFF (Hr:Min)	TKN (mg/l)	N•Ox (mg/L)	NH3 (mg/L)	DAY	DATE	Elapsed Tíme Since Air ON or OFF (Hr:Min)	TKN (mg/L)	NOx (mg/L)	NH3 (mg/l)
1	Jun/19/90	0n 1:25	359	1.74	0.08	1	Oct/02/90	On 1:55	525	2.01	0.05
2	20	On 0:20	368	0.83	0.22	2	03	Off 1:35	473	0.19	0.35
3	21	Off 0:45	401	1.55	0.49	<u>5</u>	04	011 0:30	530	0.51	0.09
4	22	0n 2:45	323	1 74	0.92	5	06	On 1:25	470	0.91	0.29
6	24	Off 2:55	348	0.22	0.90	6	07	Off 1:15	462	0.16	0.26
7	25	On 2:15	350	2.27	0.13	7	08	On 1:55	478	0.37	0.10
8	26	0n 1:35	368	1.80	0.13	8	09	On 0:25	456	0.44	0.07
9	27	On 1:30	358	2.00	0.14	9	10	Off 1:15	455	0.19	0.24
10	28	0n 1:35	402	1.88	0.00	11	12	off 0.55	407	1 04	0.55
12	30	0n 2:10	387	2.38	0.07	12	13	On 0:35	461	0.61	0.03
13	Jul/01/90	0n 1:30	403	1.78	0.10	13	14	On 0:35	470	0.44	0.03
14	02	0n 0:20	414	1.12	0.13	14	15	On 1:20	475	0.96	0.03
15	03	0n 1:45	414	1.85	0.10	15	16	On 0:45	463	0.56	0.02
10	04	0n 2:00	346	2.03	0.11	17	18	0n 3:33	470	0.37	0.04
18	06	On 2:00	338	3.65	0.07	18	19	On 1:30	441	1.06	0.02
19	07	On 0:35	394	2.03	0.07	19	20	On 0:10	435	0.47	0.09
20	08	On 1:50	429	1.38	0.07	20	21	On 0:35	455	0.57	0.04
21	09	On 1:40	466	1.50	0.10	21	22	On 2:15	437	1.32	0.04
22	10	0n 1:40	438	1.50	0.10	23	23	On 1:05	444	0.20	0.04
24	12	On 1:50	460	1.74	0.09	24	25	Off 0:20	446	0.47	0.09
25	13	On 1:50	440	1.68	0.10	25	26	Off 1:00	437	0.35	0.27
26	14	On 1:40	424	1.45	0.11	26	27	On 0:30	439	0.57	0.06
27	15	On 2:35	451	1.78	0.13	27	28	On 1:00	452	0.94	0.08
20	17	On 1:55	408	1.43	0.09	29	30	Off 0:45	427	0.30	0.17
30	18	On 1:30	439	1.15	0.08	30	31	On 1:35	407	1.08	0.06
31	Jul/19/90	Off 0:40	450	1.59	0.20	31	Nov/01/90	On 0:30	446	0.50	0.05
32	20	Off 2:15	489	0.76	0.74	32	02	On 0:05	442	0.28	0.19
33	21	0n 1:15	447 445	1.12	0.08	32	05	0n 0:55 0n 0:05	429	0.75	0.05
35	23	On 2:00	476	2.17	0.09	35	05	Off 0:30	425	0.66	0.10
36	24	On 2:25	474	4.18	0.09	36	06	On 1:35	418	2.69	0.34
37	25	On 1:05	422	1.81	0.09	37	07	On 0:10	439	0.47	0.10
38	20	011 3:00	437	1 77	0.01	20	08	011 0:35	404	0.42	0.17
40	28	On 1:50	500	2.18	0.10	40	10	On 0:05	408	0.26	0.30
41	29	On 1:35	491	2.03	0.10	41	11	On 0:15	414	0.67	0.09
42	30	On 1:30	462	2.01	0.10	42	12	On 0:15	401	0.61	0.27
43	31	0n 1:30	434	2.00	0.09	43	13	On 0:05	395	0.99	0.89
44	nug/01/90	0n 1:15	450	1.59	0.11	45	15	Off 0:50	407	0.25	0.23
46	03	0n 1:40	473	0.04	0.10	46	16	On 0:15	376	0.81	0.08
47	04	On 1:20	483	1.60	0.11	47	17	On 0:05	411	0.34	0.16
48	05	On 1:20	475	1.98	0.11	48	18	On 0:10	402	0.38	0.23
49 50	00	0n 1:50	404	2.34	0.12	49 50	20	0n 0:05	390	0.27	0.32
51	08	On 2:00	430	2.39	0.11	51	21	Off 3:00	385	0.15	0.57
52	09	On 1:50	449	2.31	0.11	52	22	Off 0:30	386	0.60	0.15
53	10	On 1:35	440	3.20	0.11	53	23	Off 0:30	354	0.68	0.16
54	11	0n 1:40	495	2.54	0.12	54	24	Off 0:55	369	0.69	0.20
55 56	13	0n 1+40	440 440	2.30	0.12	55 56	25	0n 1:15 0n 0:25	308 350	0.96	0.07
57	14	On 1:05	432	1.75	0.11	57	27	On 0:10	364	0.49	0.22
58	15	On 1:35	448	1.91	0.10	58	28	On 0:15	336	1.28	0.07
59	16	On 2:30	432	2.55	0.11	59	29	On 0:35	345	0.15	4.99
60	17	0n 1:35	591	1.90	U.10	60	50	Utt 4:00	354	0.30	10.58
Maxim	um.		500	4.18	0.92	Maxim	.m.		530	5.05	0.89
Mean			428	1.80	0.16	Mean			430	0.73	0.16
Minim	um Deut		323	0.04	0.07	Minim	um Dev		336	0.14	0.02
sta.	vev.		44	0.15	0.10	31 0. L	JCY.		41	0.74	V.13

•

	(AASD#	1 PHOSPHO	DRUS	MEASUREME	NIS			N	SD#2	PHOSPHO	RUS M	EASUREME	ITS	
DAY	DATE	·	FEED	FIX	ED TIME EACTOR	RE	EAL TIME REACTOR	DAY	DATE		FEED	FIX R	ED TIME EACTOR	R	EAL TIME REACTOR
		TP	Ortho-P	TP	Ortho-P	TP	Ortho-P	,		TP	Ortho-P	TP	Ortho-P	TP	Ortho-P
1	Jun/19/90	220	8.47	186	23.82	199	25.00	1	Oct/02/90	287	7.40	297	48.41	306	47.71
2	20	241	0.20	218	28.43	205	28.80	2	03	322	0.22	301	51.02	286	52.51
3	21	164	0.53	211	39.46	225	33.02	3	04	257	18.14	300	49.89	317	56.20
4	22	214	5.60	210	35.90	199	46.18	4	05	171	2.30	202	52.24	204	20.18
Š	23	205	8.76	226	43.88	210	45.40	3	08	175	0.07	291	51.77	293	29.74
0	24	2/1	18.78	104	40.30	215	40.32	7	07	100	2 61	207	57 79	272	59 41
	23	201	0.20	210	41.30	219	40.00	, 2	00	17/	0.81	280	56.35	270	59.04
ŝ	20	250	0.20	224	47.JO	221	47.00 5/ 09	0	10	330	2 10	270	53 81	283	60.70
10	21	210	0.94	220	57 19	250	5/ 68	10	11	425	0 16	202	53.38	288	50 / 8
11	20	20%	12 46	265	57 78	251	56 23	11	12	201	1.13	278	60.21	201	60 45
12	29	274	0 45	200	56 33	247	51 08	12	13	245	9.64	281	57.40	283	61 36
13	Lul /01/00	259	10 23	277	55 18	264	55.10	13	14	301	0.17	289	59.55	286	60.62
14	02	246	11 64	260	54.33	254	53.30	14	15	165	8.88	278	58.23	287	61.44
15	03	259	0.28	258	50.73	258	51.58	15	16	203	4.82	296	60.78	283	61.35
16	04	246	0.28	263	50.00	275	51.93	16	17	151	0.92	273	59.63	285	61.85
17	05	308	0.45	269	48.53	255	48.78	17	18	264	5.45	273	59.13	271	62.76
18	06	354	5.07	270	47.23	252	49.38	18	19	243	7.79	287	61.03	273	62.93
19	07	410	27.18	259	48.90	254	48.65	19	20	184	0.07	279	59.79	268	61.44
20	08	472	30.85	277	48.53	265	46.40	20	21	206	0.48	274	60.21	274	63.83
21	09	252	18.94	297	46.40	289	45.08	21	22	225	0.18	267	59.88	269	63.59
22	10	262	0.45	292	45.55	279	44.00	22	23	193	0.19	270	61.61	267	63.09
23	11	261	25.13	292	49.13	298	48.90	23	24	242	8.91	275	62.10	273	63.83
24	12	276	0.36	286	48.05	293	46.28	24	25	222	4.29	281	59.96	272	63.50
25	13	292	17.96	309	46.27	280	44.06	25	26	202	3.82	267	60.95	267	62.16
26	14	263	7.45	287	44.59	274	44.27	26	27	185	0.07	271	61.21	273	62.16
27	15	301	1.77	289	44.90	288	41.96	27	28	256	8.25	271	63.20	274	64.84
28	16	246	2.11	292	43.33	271	39.75	28	29	242	0.25	263	60.26	270	63.20
29	17	413	2.03	311	43.22	326	37.23	29	30	198	0.14	274	61.47	267	64.93
30	18	366	18.76	341	40.70	341	36.28	30	31	297	0.07	2/2	61.15	267	64.06
31	Jul/19/90	•••		326	42.80	340	50.00	21	NOV/01/90	241	2.63	210	00.87	230	04.95
32	20	705	45 / 9	354	45.74	370	43.01	22	02	194	1 9/	230	41 /7	229	64.24
23	21	325	13.40	340	23.04	313	42.17	33	03	202	9.04	220	61.47 40 97	222	47.00
24	22	443	10 /5	242	40.09	339	40.40	74	05	238	8 04	220	67 36	222	65 71
74	23	201	0.45	305	41.00	369	35 07	35	20	223	0.04	228	50 02	218	63 20
37	25	270	4 14	344	40.33	331	36.96	37	07	221	0.08	231	57.50	226	63 37
38	26	385	4.06	334	38.75	351	51.68	38	08	210	2.75	223	59.97	215	60.96
39	27	429	0.00	343	35.07	350	40.11	39	09	169	0.09	218	59.35	223	62.47
40	28	330	0.00	353	35.38	376	38.85	40	10	193	0.09	223	59.44	212	62.92
41	29	345	0.00	358	36.01	385	38.54	41	11			248	58.10	242	62.38
42	30	320	4.48	321	33.49	320	37.38	42	12			244	63.99	241	68.81
43	31	340	16.26	325	34.22	309	37.48	43	13	224	9.53	245	73.09	245	75.94
44	Aug/01/90	344	23.40	329	32.96	320	37.48	44	14	222	0.35	254	65.86	244	70.87
45	02	399	23.04	329	44.53	334	37.77	45	15	200	0.12	242	61.22	237	68.63
46	03	361	12.19	333	43.65	338	37.66	46	16	208	8.18	244	63.10	228	65.77
47	04	301	0.64	323	41.91	338	36.14	47	17	204	0.08	240	60.87	238	65.06
48	05	332	27.88	328	47.36	351	39.52	48	18	185	0.07	240	62.56	237	64.97
49	06	332	0.38	347	44.53	341	35.48	49	19	201	0.06	245	61.58	237	67.91
50	07	276	0.00	328	44.51	350	33.96	50	20	180	0.99	245	61.22	235	65.95
51	08	547	0.64	329	47.47	328	36.90	51	21	190	0.10	248	64.97	249	67.65
52	09	415	3.78	332	49.21	343	33.10	57	22	277	22 24	240	04.17	243	67.09
22	10	222	0.00	240 750	57.07	772	33.33 76 19	54	26	777	1 07	240	66.40	222	66 70
54	17	203	11 50	722	55 0/	340	30.10	55	25	205	0.08	241	66 11	237	60.70 60 21
77	17	74/	0 00	770	53 07	340	30 74	56	26	194	0 12	243	65 28	272	70 29
57	14	204	6.50	3.57	60 43	363	40 83	57	27	185	0.09	235	66.70	260	70 74
58	15	375	11.94	332	59.50	361	42 68	58	28	134	2.49	243	65.75	231	67.17
59	16	253	0.00	346	57.55	348	42.68	59	29	116	0.31	231	78.30	227	79.34
60	17	295	0.00	338	61.54	333	44.08	60	30	152	0.57	231	88.68	222	90.76
															/ 4
M	_	/	71 70	705	11 51	705	51 77	Mayim-	-	1 75	22.24	704	77 00	717	75.01
Maximu		4/2	31.70	202	01.24	202	10.23	Mean	и	423 215	3 07	260	13.09 60 15	21/	13.94
Minim	-	14/	0.40	16/	43.03	100	25 00	Minimu	ה	116	0.06	216	48 61	217	47 71
Std. 1	ev.	64	9,27	40	7.59	53	6.79	Std. D	ev.	50	4.54	25	4.63	27	4.38

.

		AASD#1	OXYGEN ME	ASUREMENTS REACTOR	ŝ			AASD#1	OXYGEN ME. REAL TIME	ASUREMENT	<u>s</u>
DAY	DATE		Length	Airflow	Dissolved	DAY	DATE	Sampling	Length	Airflow	Dissolved
011	UNIC	Time	of Time of	Rate	Oxygen		DAIL	Time	of Time of	Rate	Oxygen
		(Hr:Min)	Aeration	(mL/min)	Concentration			(Hr:Min)	Aeration	(mL/min)	Concentration
			(Hr:Min)		(mg/L)				(Hr:Min)		(mg/L)
		47.15	2 00	451	2 50						
1	Jun/19/90	12:45 pm	2:00	154	2.50	1	Jun/19/90	12:45 pm	2:00	128	1.90
2	20	1:00 pm	2:00	154	2.00	2	20	12:30 pm	2:00	120	2.20
4	22	1:45 pm	2:30	161	2.30	2	22	11:00 am	2:30	128	2 00
5	23	7:00 om	1:30	154	2.60	5	23	7:25 cm	1:30	128	2.65
6	24	2:35 pm	3:00	154	2.85	6	24	2:30 pm	3:00	127	3.10
7	25	1:15 pm	1:30	151	2.70	7	25	1:15 pm	2:00	125	3.15
8	26	1:30 pm	1:30	154	1.75	8	26	10:45 am	1:30	128	3.35
9	27	1:40 pm	1:30	154	2.60	. 9	27	2:30 pm	1:30	125	3.00
10	28	2:00 pm	1:30	121	3.20	10	28	1:00 pm	1:50	125	3.33
12	30	2.00 pm	2:00	151	3.20	12	30	2:45 pm	2-15	123	3.80
13	Jul /01/90	2:50 cm	1:50	161	4.00	13	Jul /01/90	6:40 pm	1:50	125	3.70
14	02	10:05 am	2:50	154	4.20	14	02	12:35 pm	2:50	121	3.70
15	03	9:55 am	2:30	151	4.00	15	03	9:55 am	1:30	122	4.20
16	04	8:55 am	1:30	151	4.45	16	04	8:55 am	2:00	127	4.50
17	05	10:10 am	2:00	151	4.90	17	05	10:15 am	1:30	124	4.45
18	06	9:55 am	2:00	140	5.20	18	06	11:45 am	2:00	121	5.20
20	07	3:40 pm 3:50 pm	1:30	140	2.80	20	07	3:20 pm	1:30	117	4.40
21	09	2:15 cm	1:30	154	3.20	21	09	2:15 pm	1:30	121	2.30
22	10	9:55 am	3:00	146	3.20	22	10	10:15 am	1:30	132	3.30
23	11	10:00 am	3:00	146	3.10	23	11	1:15 pm	3:00	128	2.60
24	12	9:25 am	2:15	146	2.10	24	12	9:30 am	1:30	125	2.00
25	13	9:05 am	2:30	143	3.20	25	13	1:00 pm	2:00	125	3.15
26	14	2:35 pm	1:00	146	2.80	26	14	2:15 pm	1:30	124	3.70
27	15	2:35 pm	1:00	149	2.70	27	15	2:35 pm	2:30	128	3.90
20	17	9.45 am	1-45	143	4.45	20	17	12:20 pm	1-75	124	4.10
30	18	10:15 am	2:15	146	2.80	30	18	9-30 am	2-15	121	3.85
31	Jul/19/90	9:50 am	1:30	146	1.90	31	Jul/19/90	11:45 am	1:30	132	3.45
32	20	10:30 am	2:00	151	4.05	32	20	12:10 pm	2:00	138	3.90
33	21	10:30 am	1:75	146	3.80	33	21	1:15 pm	1:30	128	3.50
34	22	4:10 pm	1:30	149	2.20	34	22	3:55 pm	1:30	128	2.80
35	23	10:55 am	2:00	144	1.40	35	23	11:45 am	2:00	124	3.30
20 37	24	10:30 am 5:05 cm	1:50	140	2.00	30	24	8:25 am	1:30	121	4.55
38	26	11:40 am	1:30	151	5.30	37	25	11-20 an	1.00	127	4 50
39	27	5:50 pm	1:30	165	4.05	39	27	9:30 am	1:30	121	4.75
40	28	11:55 am	1:30	151	3.75	40	28	7:50 am	3:00	121	4.05
41	29	6:15 pm	1:30	165	3.80	41	29	7:45 pm	1:30	138	3.55
42	30	7:40 am	3:00	165	3.90	42	30	11:20 am	3:00	125	3.30
43	31	1:00 pm	2:00	151	4.40	43	31.	8:15 am	2:00	128	3.95
44	AUG/01/90	12:50 pm	1:30	121	4.40	44	AUG/01/90	11:55 am	1:30	122	4.35
46	03	12.45 pm	1:30	154	3 70	46	02	10-15 200	1:30	121	3 70
47	04	12:55 pm	1:30	154	3.05	47	04	1:55 cm	1:30	122	2.50
48	05	7:45 pm	2:00	151	2.40	48	05	11:15 pm	1:30	125	1,90
49	06	1:15 pm	1:30	158	2.85	49	06	10:00 am	1:30	121	1.75
50	07	1:25 pm	1:30	149	2.70	50	07	12:25 pm	1:30	121	2.40
51	08	1:30 pm	1:30	151	2.90	51	08	12:40 pm	1:30	121	2.70
52	09	1:40 pm	1:30	151	3.00	52	09	11:45 am	1:30	121	2.60
55	10	1:40 pm 1-50 pm	1.30	161	2.90	52	10	1:50 pm	1:30	124	2.00
55	12	2:00 pm	1:30	154	1.60	55	12	3-10 cm	1:30	125	1 40
56	13	8:00 am	1:30	154	2.15	56	13	8:20 am	1:30	122	3.15
57	14	9:00 am	2:30	151	2.40	57	14	9:00 am	2:45	122	3.30
58	15	2:15 pm	1:30	154	2.70	58	15	3:10 pm	1:30	124	3.75
59	16	9:15 am	2:20	149	2.70	59	16	9:15 am	2:15	117	3.85
60	17	8:30 am	1:30	154	3.05	60	17	8:15 am	1:30	119	4.05
Maxim	In				5.30	Maxim	um.				5.20
Mean					3.20	Mean					3.31
Minim	un .				1.40	Minim	um				1.40
Std. (Dev.				0.93	Std. (Dev.				0.88

		DISSOLVED FIXED TIM	OXYGEN ME	ASUREMENT	<u>s</u>		-	DISSOLVED REAL TIM	OXYGEN ME	ASUREMENTS	5
DAY	DATE	Sampling Time d	Length of Time of	Airflow Rate	Dissolved Oxygen	DAY	DATE	Sampling Time	Length of Time of	Airflow Rate	Dissolved Oxygen
		(Hr:Min)	Aeration (Hr:Min)	(mL/min)	Concentration (mg/L)			(Hr:Min)	Aeration (Hr:Min)	(mL/min)	Concentration (mg/L)
1	Oct/02/90	1:45 pm	1:30	37	1.90	1	Oct/02/90	1:50 pm	1:30	56	4.60
4	05	6:15 am	2:15	30	5.30	7	03	1.75	0.50	70	4.00
\$	04	2:45 pm	2:15	20	1.70	2	04	1:55 pm	0:50	30	2.75
4	05	12:20 pm	1:00	42	4.70	-	05	1:50 pm	1:00	57	1.75
5	06	2:30 pm	1:30	40	3.00	2	00	2:30 pm	1:00	40	4.20
6	07	2:45 pm	1:30	38	3.35	6	07	5:25 pm	1:00	34	2.80
7	08	9:30 am	2:10	35	3.60	7	08	10:00 am	0:50	32	2.00
8	09	10:00 am	2:30	37	3.80	8	09	10:00 am	1:00	33	2.40
9	10	9:15 am	1:15	36	3.40	9	10	9:15 am	1:00	31	2.75
10	11	10:00 am	1:50	35	3.30	10	11	10:00 am	3:00	31	3.30
11	12	12:35 cm	1:30	36	2.95	11	12	12:35 pm	1:30	32	1.40
12	13	6:25 pm	1:00	33	3.00	12	13	4:55 pm	1:00	35	2.25
13	14	2:00	2+15	30	3.15	13	14	2:45 00	0:45	30	1 60
14	15	2:40 00	3.00	33	2 75	14	15	1:30 00	3:00	30	1 70
15	16	0.00 pm	3-00	30	3 10	15	16	9.45 am	1 - 15	32	2 20
14	17	9.00 and	3.00	28	3 00	16	17	10.05 am	1.00	75	3 05
10	10	1.70	1.00	29	1 00	17	18	1.30	0.45	31	1 00
10	10	7:30 pm	2.00	24	1.00	18	10	3.55 m	2.00	30	1.00
10	20	2:40 pm	2:00	20	4.40	10	20	12:00 pm	1.00	30	2.05
20	20	7:35 am	3:00	25	7.45	20	21	3.35 pm	0-45	29	1.40
20	21	10:00 pm	2,15	20	7 70	21	27	2.40 pm	2.30	20	1.50
21-	22	0.70	2:30	70	2.70	22	22	12:40 pm	2:50	75	2 75
22	23	9:30 am	1:43	30	4.00	27	2/	10.15	1.00	35	2.33
23	24	10:00 am	2:00	20	3.30	23	24	2.50 em	1:00	33	2.70
24	23	5:50 pm	1:50	20	2.50	24	25	2:30 pm	1.00	22	2.30
25	20	4:15 pm	2:00	25	2.00	23	20	4:15 pm	1:00	32	2.00
20	27	4:40 pm	2:00	50	2.12	20	21	1:40 pm	0:45	36	5.00
21	28	4:40 pm	2:43	25	3.70	21	20	5:45 pm	0:45	50	2.50
28	29	10:25 am	2:15	25	2.75	20	29	10:20 am	1:00	50	2.00
29	30	4:25 pm	2:00	30	2.55	29	50	2:15 pm	0:45	30	2.10
30	51	10:50 80	2:20	25	2.40	20	31	1:00 pm	1:50	50	5.00
51	Nov/01/90	11:35 am	2:43	20	2.00	21	NOV/U1/90	3:15 pm	0:50	50	2.30
32	02	10:55 am	1:50	30	2.50	22	02	12:15 pm	0:45	25	1.20
22	0.5	4:45 pm	1:25	30	2.00	33	05	4:00 pm	1:00	34	3.40
34	04	5:40 pm	2:00	33	3.50	34	04	4:30 pm	0:50	33	2.50
22	05	12 00	1:50	33	2.50	22	05	12.55	0:45	30	2.20
30	00	12:00 pm	2:00	20	0.70	20	00	12:35 pm	1:50	33	1.00
57	07	11:35 am	1:50	20	5.10	79	07	12:50 pm	0:45	30	2.40
20	08	12:00 pm	1:50	23	2.50	20	00	12:00 pm	0:43	20	2.00
28	09	12:10 pm	1:50	30	3.00	70	10	10:23 am	1.00	20	1.60
40	10	1:10	2.00	20	2.13	40	11	12:00 pm	0./5	30	3.00
41	11	1:10 pm	2:00	20	3.20	41	11	3:45	1-05	30	2.20
42	12	1:25 pm	2:00	2/	3.23	42	17	2:15 pm	1:05	30	2.30
43	15	1:55 pm	2:00	20	4.50	43	14	1.55	2:30	20	3.60
44	14	1:35 pm	1.70	20	3.40	74	15	17.75 pm	1:30	20	2.40
43	15	2-30 pm	2.10	20	2.70	1.6	15	2:23 pm	1.50	50	1.20
40	10	2:50 pm	2:10	20	2.20	40	17	10.45 pm	0.70	20	1.00
41	10	0:00 am	1.50	22	2 30	41	18	(10:45 am	0:40	33	3.75
40	10	2:40 pm	2.75	20	2.50	40	10	4.30 pm	0:43	30	2.33
49	20	9:33 am	2:33	25	3.40	50	20	17:30 am	1-00	33	3.30
50	20	9:43 am	2:30	25	2.73	51	20	12:15 pm	1:00	34	3.20
21	21	9:50 am	2:20	30	2.90	57	21	10:15 am	1:15	57	3.75
57	22	1.15	2:50	20	7 90	57	22	10:35 pm	0:43	20	2.00
23	23	17:70 pm	2:50	30	2.50	5/	20	7:05 pm	1.00	21	7.10
24	24 25	1.50	7.60	20	3.30	25	24	2:55 pm	1:00	26 77	5.10
22	23	7./5 pm	2:30	20	4.20	54	22	2:33 pm	0:43	33	2.40
20	20	0./5	2:17	J4 77	4.20	57	20	0.35 pm	6:13	וכ דד	3.90
2/	21	7:42 80	2:03	70	4.JU 5 10	58	29	12,15 am	1.30	23 75	2.00
20	20	11.00	2:30	22	7 20	50	20	12.00	1.30	32	4.40
4C	29 30	⊥1.:∪ບ a∧n 10::05 ລm	2:42	30 30	7.35	60	30	10:00 pm	3.10	22 75	0.00 7 10
				20				uni	<i></i>		
Maxim	m				5.30 🕨	laximu	n				4.60
Mean					3,12 🕴	lean					2.49
Minim	m				0.70 🖡	linim	m.				1.00
Std. 0	ev.				0.93 \$	Std. D	ev.				0.82

DAY DATE FEED FIXED TIME REACTOR DATE FEED FIXED TIME REACTOR REACTOR pH Temp NI Temp PI Tem PI Tem PI Tem PI Tem PI Tem PI Tem PI		AASD#1	TEMPER	RATUR	RE AND	рни	EASURE	EMENTS	AASC	#2 TEMPE	ERATUR	E, pH	AND	ALKAL	<u>10177</u>	MEAS	UREME	NTS	
pi tero pi tero pi tero pi tero All <	DAY	DATE	FEI	Đ	FIXED	T I ME CTOR	REAL REA	TIME	DAY	DATE		FEED		FIX R	ED TI EACTO	ME R	RE. Ri	AL TI EACTO	ME SR
$ \begin{array}{c} 1 & Jury (19/9) \\ \textbf{a}, \textbf{b}, \textbf{b}, \textbf{b}, \textbf{c}, \textbf{c}$			рH	Temp •C	р н	Temp °C	рН	Temp °C			рH	Temp °C	Alk.	рН	Temp °C	Alk.	рH	Temp °C	Alk.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Jun/19/90	6.86	20	7.02	22	7.03	22	1 0	ct/02/90	6.83	20	204	6.54	20	136	6.55	20	140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	20	7.12	20	7.13	22	7.13	22	2	03	6.94	18	194	6.62	20	144	6.44	20	140
$ \begin{array}{c} 4 & 22 & 7.15 & 24 & 7.15 & 24 & 7.13 & 24 & 7.13 & 24 & 7.13 & 24 & 7.13 & 24 & 7.13 & 24 & 7.13 & 21 & 7.13 & 21 & 7.13 & 21 & 7.13 & 21 & 7.13 & 21 & 7.23 & 22 & 7.68 & 22 & 2 & 7.68 & 6.72 & 15 & 16.64 & 21 & 114 & 6.48 & 20 & 130 \\ \hline 2 & 6 & 6.80 & 21 & 6.83 & 22 & 6.86 & 22 & 8 & 99 & 6.67 & 18 & 136 & 6.42 & 21 & 124 & 6.52 & 20 & 124 \\ \hline 9 & 27 & 7.13 & 21 & 7.07 & 22 & 7.05 & 22 & 9 & 10 & 6.72 & 18 & 172 & 6.43 & 20 & 124 & 6.28 & 20 & 110 \\ \hline 11 & 29 & 7.02 & 21 & 7.68 & 22 & 7.30 & 22 & 11 & 12 & 6.55 & 20 & 180 & 6.36 & 20 & 124 & 6.28 & 20 & 110 \\ \hline 12 & 30 & 6.61 & 20 & 6.61 & 22 & 6.62 & 22 & 12 & 13 & 6.77 & 19 & 180 & 6.36 & 20 & 124 & 6.28 & 20 & 110 \\ \hline 13 & 02 & 6.61 & 20 & 6.61 & 22 & 6.63 & 22 & 15 & 17 & 7.09 & 18 & 172 & 6.44 & 20 & 128 & 6.40 & 20 & 131 \\ \hline 14 & 02 & 6.51 & 20 & 6.90 & 22 & 6.88 & 22 & 13 & 14 & 6.63 & 18 & 220 & 6.43 & 20 & 128 & 6.40 & 20 & 131 \\ \hline 16 & 03 & 6.61 & 20 & 6.90 & 22 & 6.88 & 22 & 15 & 17 & 7.09 & 18 & 172 & 6.44 & 20 & 132 & 6.40 & 21 & 131 \\ \hline 17 & 05 & 7.03 & 19 & 6.97 & 21 & 6.90 & 22 & 18 & 19 & 6.67 & 18 & 190 & 6.46 & 20 & 133 & 6.46 & 20 & 132 \\ \hline 17 & 05 & 7.03 & 19 & 6.94 & 20 & 6.92 & 20 & 18 & 19 & 6.67 & 18 & 190 & 6.46 & 20 & 134 & 6.41 &$	3	21	7.19	20	7.12	22	7.10	22	3	04	6.75	20	188	6.60	20	166	6.53	20	174
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	22	7.05	24	7.13	24	7.15	24	4	05	6.65	18	150	6.69	20	176	6.61	20	166
5 5 6 8 22 6.86 22 6.86 22 7 00 6.77 15 165 6.42 20 126 6.45 20 124 9 27 7.13 21 7.07 22 7.05 22 9 10 6.67 18 174 6.45 20 124 6.44 20 124 6.44 20 124 6.44 20 124 6.44 20 124 6.44 20 124 6.44 20 124 6.44 20 128 6.41 20 124 6.44 20 128 6.41 20 134 6.44 20 134 6.44 20 134 6.44 20 135 6.44 20 135 6.44 20 134 6.44 20 135 6.44 20 135 6.44 20 135 6.44 20 136 6.441 20 134 6.44<	2	25	6.71	23	7 0/	23	7 02	25	2	00	6.87	10	179	0.01	21	142	6.50	21	142
a 25 6.80 21 6.86 22 8 09 6.64 18 13.6 6.44 10 12.6 6.45 20 12.6 6.45 20 12.6 6.45 20 12.6 6.45 20 11.2 6.45 20 13.6 6.44 13.1 14.6 6.42 20 13.6 0.12 0.12 0.6 0.12 0.12 0.6 0.12 0.12 0.6 0.12 0.12 0.6 0.12 <td>7</td> <td>25</td> <td>6.84</td> <td>22</td> <td>6.84</td> <td>22</td> <td>6.84</td> <td>22</td> <td>7</td> <td>08</td> <td>6.72</td> <td>15</td> <td>165</td> <td>6 62</td> <td>20</td> <td>140</td> <td>6.48</td> <td>20</td> <td>140</td>	7	25	6.84	22	6.84	22	6.84	22	7	08	6.72	15	165	6 62	20	140	6.48	20	140
9 27 7.13 21 7.05 22 7.05 22 9 10 6.72 18 172 6.43 20 124 6.40 20 124 6.41 20 124 6.41 20 124 6.41 20 124 6.41 20 124 6.41 20 134 6.41 20 134 6.41 20 134 6.41 20 134 6.41 20 134 6.41 20 134 6.41 20 134 6.41 20 134 6.40 20 134 6.40 20 134 6.40 20 134 144 155 208 6.442 20 134 6.40 20 134 141 156 6.42 20 134 6.44 103 136 6.44 103 141 104 6.44 103 130 141 104 6.44 103 130 141 104 141 104	8	26	6.80	21	6.83	22	6.86	22	8	09	6.64	18	136	6.44	20	124	6.45	20	124
10 28 7,30 21 7,30 22 7,30 22 10 11 6,81 18 164 6,42 20 124 6,32 20 132 141 100 6,43 20 134 6,71 20 6,33 20 6,33 20 134 6,47 15 6,35 20 100 6,41 20 6,42 20 134 6,47 15 6,85 20 100 6,42 20 134 6,40 20 6,42 20 134 6,47 10 17 16 6,47 10 16 17 6,49 18 162 6,42 20 138 6,41 20 135 6,45 20 134 6,46 20 6,47 13 146 6,45 19 142 6,42 138 146 6,45 101 142 6,47 138 146 6,45 20 136 6,46 20 132 136 146 6,45 20 136 6,40 20 132 136 146 <td>9</td> <td>27</td> <td>7.13</td> <td>21</td> <td>7.07</td> <td>22</td> <td>7.05</td> <td>22</td> <td>9</td> <td>10</td> <td>6.72</td> <td>18</td> <td>172</td> <td>6.43</td> <td>20</td> <td>124</td> <td>6.40</td> <td>20</td> <td>124</td>	9	27	7.13	21	7.07	22	7.05	22	9	10	6.72	18	172	6.43	20	124	6.40	20	124
11 29 7.02 21 7.00 22 11 12 6.67 20 180 6.3.6 20 120 6.4.1 20 13.4 6.41 20 13.4 6.67 20 190 6.4.1 20 13.6 6.41 20 13.6 6.42 20 12.6 6.40 22 6.48 22 13 14 6.93 15 208 6.42 20 12.6 6.40 20 12.6 6.42 20 12.6 6.42 20 13.6 6.44 20 13.6 6.44 20 13.6 6.44 20 13.6 6.45 20 13.6 6.47 18 10.6 6.45 11.7 18 6.43 18.19 6.47 18 10.6 6.45 10.1 6.43 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.45 11.6 6.46 11.6 6.46 11.6 6.46 11.6 6.46 11.6	10	28	7.30	21	7.36	22	7.39	22	10	11	6.81	18	164	6.42	20	124	6.28	20	110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	29	7.02	21	7.08	22	7.00	22	11	12	6.85	20	180	6.36	20	120	6.38	20	126
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	30	6.61	20	6.61	22	6.62	22	12	13	6.77	20	190	6.41	20	134	6.41	20	128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	JUL/01/90	6.70	22	6.90	22	6.00	22	14	14	6.95	12	208	6.43	20	120	6.40	20	130
	15	03	6.65	20	6.66	22	6.63	22	15	16	7.01	19	178	6.40	20	142	6 41	20	130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	04	6.94	19	6.90	21	6.90	21	16	17	6.89	18	162	6.42	20	138	6.41	20	136
18 06 6.95 19 6.47 18 19 6.67 18 19 6.64 20 128 6.37 20 132 20 08 6.82 20 6.91 10 6.68 19 20 6.63 146 6.46 18 152 6.46 20 136 6.42 21 142 21 09 6.63 21 6.80 18 152 6.46 20 136 6.42 20 146 20 146 20 146 20 146 20 136 6.46 20 136 6.46 20 136 6.46 20 136 6.46 20 136 6.47 18 150 6.46 20 136 6.47 138 6.45 20 126 6.32 20 130 130 136 6.47 10 126 6.42 20 126 130 130 130 130 130 130 130 130 130 130 130 130 130 130	17	05	7.03	19	6.97	21	6.96	21	17	18	6.83	18	220	6.44	20	130	6.45	20	134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	06	6.95	19	6.94	20	6.92	20	18	19	6.67	18	190	6.46	20	128	6.37	20	132
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	07	6.77	20	6.91	20	6.88	20	19	20	6.83	14	166	6.45	19	142	6.47	19	138
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	08	6.82	20	6.91	20	6.07	20	20	21	6.69	18	152	6.46	20	138	6.46	20	142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	10	7.03	21	6.90	22	6.91	22	21	22	6 57	10	122	6 46	20	140	6.40	20	136
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	11	6.79	23	6.90	23	6.89	23	23	24	6.75	18	160	6.45	20	136	6.46	20	134
25 13 6.49 22 6.92 22 25 26 6.48 20 150 6.43 20 126 6.39 20 128 6.43 20 126 6.39 20 128 6.43 20 126 6.39 20 128 128 16 6.99 20 6.92 22 27 28 6.59 19 16 6.42 20 124 6.38 20 128 29 17 7.01 20 6.88 21 6.90 21 29 30 6.78 17 126 6.44 20 132 6.42 20 134 6.44 20 134 6.44 20 134 6.44 20 134 6.44 20 134 6.44 20 134 6.44 20 134 6.46 20 134 6.45 20 134 6.46 20 134 6.46 20 134 6.46 20 134 6.46 20 134 6.46 20 148 52 20	24	12	7.03	23	6.90	24	6.90	24	24	25	6.74	18	154	6.45	20	128	6.43	20	130
26 14 6.90 21 6.88 21 22 22 22 27 28 6.59 19 168 6.42 20 24 6.39 20 6.32 0124 6.32 0124 6.32 0124 6.32 0124 6.32 0124 6.32 0124 6.32 0124 6.32 0133 6.76 17 148 6.44 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.41 20 138 6.42 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20 146 6.51 20	25	13	6.89	22	6.91	22	6.92	22	25	26	6.68	20	150	6.40	20	126	6.39	20	128
27 15 6.88 22 6.89 22 27 28 6.59 19 168 6.42 20 124 6.43 20 124 6.42 20 124 6.42 20 124 6.42 20 132 29 17 7.01 20 6.88 21 6.90 21 29 30 6.76 17 148 6.42 20 134 6.47 20 134 6.47 20 138 6.41 20 132 6.74 18 152 6.55 25 6.57 25 6.60 24 32 02 6.64 18 170 6.53 20 154 6.55 20 154 6.55 20 154 6.55 20 148 6.77 21 6.82 20 176 6.82 20 148 6.57 20 146 6.54 20 146 6.54 20 148 6.55 20 150 148 148 142 148 142 148 142 148 142	26	14	6.90	21	6.88	21	6.88	21	26	27	6.75	16	138	6.43	20	134	6.73	20	128
29 17 7.01 20 6.80 21 29 30 6.78 17 164 6.41 20 134 6.40 20 134 30 18 6.77 20 6.82 20 6.84 20 30 31 6.76 17 184 6.42 20 134 6.41 20 134 6.41 20 134 6.47 17 182 6.45 20 134 6.47 20 134 6.47 20 132 6.46 20 132 20 6.44 16 192 6.48 20 152 6.42 20 176 6.48 20 176 6.48 20 176 6.53 20 156 5.5 25 6.67 23 6.60 25 34 04 6.80 18 170 6.53 20 148 6.54 20 180 36 24 6.57 21 6.81 22 6.61 23 6.67 20 154 6.56 20 154 6.55 20	27	15	6.88	22	6.86	22	6.92	22	27	Z8	6.59	19	168	6.42	20	124	6.38	20	128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	10	7 01	20	6.90	20	6.00	20	28	29	6.79	17	104	6.41	20	124	6.42	20	128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	18	6.70	20	6.82	20	6.84	žo	30	31	6.76	17	182	6 45	20	134	6 41	20	140
32 20 6.62 24 6.69 24 32 02 6.64 16 192 6.64 20 176 6.88 20 176 33 21 6.77 23 6.55 24 6.60 25 34 03 6.74 18 152 6.55 20 154 6.56 20 154 34 22 6.55 25 6.60 25 34 04 6.80 18 170 6.53 20 148 6.51 20 148 35 23 6.66 22 6.59 23 6.60 23 150 7.17 14 256 6.72 20 148 6.54 20 148 36 2.6 6.72 2 6.83 20 6.88 20 39 09 7.07 16 16 20 154 6.56 20 154 6.56 20 154 6.56 20 154 6.56 20 154 6.56 20 154 6.56	31	Jul/19/90			6.77	21	6.78	21	31 N	ov/01/90	6.76	16	186	6.48	20	152	6.42	20	142
33216.77236.55246.622433036.74181526.55201546.562015634226.55256.57256.602235057.17142566.72201706.652018835236.64226.59236.622335057.17142566.72201706.652018836246.76216.81226.842237077.05182486.58201486.542014838266.76216.81226.882039097.07161766.65201546.562015440286.71216.87236.592341116.70201586.6216443316.4066.56246.582443136.93181806.59201586.602015644Aug/01/906.4466.76226.772244147.01161966.62201586.602015643316.40226.53226.57224512170161966.6220158 <td>32</td> <td>20</td> <td></td> <td></td> <td>6.62</td> <td>24</td> <td>6.69</td> <td>24</td> <td>32</td> <td>02</td> <td>6.54</td> <td>16</td> <td>192</td> <td>6.68</td> <td>20</td> <td>176</td> <td>6.88</td> <td>20</td> <td>176</td>	32	20			6.62	24	6.69	24	32	02	6.54	16	192	6.68	20	176	6.88	20	176
34226.55256.57256.602534046.80181706.53201686.512016835236.6223355057.17142566.72201706.652016436246.70216.60226.592236067.01162046.54201446.542014837256.82226.83226.842237077.05182486.58201546.56201546.56201546.562016040286.71216.87226.852240107.12152006.66201546.562016041296.37236.59236.512342126.7021666.622116843316.4066.56246.582443136.93181806.59201586.60201546.562015444Aug/01/906.6466.76226.572245157.02161966.65201586.60201566.632015645026.67226.5522 </td <td>33</td> <td>21</td> <td>6.77</td> <td>23</td> <td>6.55</td> <td>24</td> <td>6.62</td> <td>24</td> <td>33</td> <td>03</td> <td>6.74</td> <td>18</td> <td>152</td> <td>6.55</td> <td>20</td> <td>154</td> <td>6.56</td> <td>20</td> <td>156</td>	33	21	6.77	23	6.55	24	6.62	24	33	03	6.74	18	152	6.55	20	154	6.56	20	156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 75	22	6.55	25	6.57	25	6.60	25	34	04	6.80	18	170	6.53	20	148	6.51	20	148
37256.83226.832237777077.01182046.34201486.542014838266.76216.81226.862238087.07161766.65201546.562015039276.88206.89206.882240107.12152006.66201546.56201546.562015841296.37236.59236.602342126.65211666.622116843316.4066.56246.582443136.93181806.59201586.562014444Aug/01/906.64666.67226.70226.672245157.02161966.65201586.602015645026.64226.552246166.98172086.61201566.632015646036.44226.5522421777.02181886.66201566.632015646056.65266.55266.562648187.1514192 <t< td=""><td>20</td><td>23</td><td>6.00</td><td>21</td><td>6.59</td><td>22</td><td>6.50</td><td>23</td><td>33</td><td>05</td><td>7.01</td><td>14</td><td>200</td><td>6./2 4 E/</td><td>20</td><td>170</td><td>0.65</td><td>20</td><td>180</td></t<>	20	23	6.00	21	6.59	22	6.50	23	33	05	7.01	14	200	6./2 4 E/	20	170	0.65	20	180
38266.76216.81226.862238087.0616206.59201546.562015039276.88206.89206.852240107.12152006.66201646.592015840286.71216.87226.852240107.12152006.66201646.592015841296.37236.592341116.70201666.642015042306.41226.592342126.57201666.642015043316.4066.56246.582443136.93181806.57201586.562014444Aug/01/906.64676226.672245157.02161966.65201586.602015645026.64226.53226.672245157.02161966.65201586.602015646036.44226.53266.562648187.15141926.63201566.66201666.66 <td>37</td> <td>25</td> <td>6.82</td> <td>22</td> <td>6.83</td> <td>22</td> <td>6.84</td> <td>22</td> <td>37</td> <td>07</td> <td>7.05</td> <td>18</td> <td>204</td> <td>6.58</td> <td>20</td> <td>144</td> <td>6.54</td> <td>20</td> <td>140</td>	37	25	6.82	22	6.83	22	6.84	22	37	07	7.05	18	204	6.58	20	144	6.54	20	140
39276.88206.89206.882039097.07161766.65201546.632015040286.71216.87226.592341116.70201666.622116642306.41226.59236.602342126.70201586.622116843316.4066.6762226.742243136.93181806.59201526.612015245026.62226.70226.672245157.02161966.65201526.612015246036.44226.53266.572245157.02161966.65201586.602015646036.44226.53266.572246166.98172086.61201566.632015648056.46266.53266.562248187.15141926.65201566.622115648056.46266.532648187.15141926.65201566.62	38	26	6.76	21	6.81	22	6.86	22	38	08	7.06	16	220	6.59	20	154	6.56	20	150
40286.71216.87226.852240107.12152006.66201646.592015841296.37236.59234116.70201666.642015042306.41226.592342126.70201666.642015043316.4066.56246.582443136.93181806.59201586.562014444Aug/01/906.6466.76226.772244147.01161966.62201586.602015645026.62226.67226.572246166.98172086.61201526.612015646036.44226.53226.642249197.021818886.66201566.632015647046.47226.65224.6421177.021818886.66201566.602015648056.46266.55246.56224.63227.05151866.63181501526.6120 <td>39</td> <td>27</td> <td>6.88</td> <td>20</td> <td>6.89</td> <td>20</td> <td>6.88</td> <td>20</td> <td>39</td> <td>09</td> <td>7.07</td> <td>16</td> <td>176</td> <td>6.65</td> <td>20</td> <td>154</td> <td>6.63</td> <td>20</td> <td>160</td>	39	27	6.88	20	6.89	20	6.88	20	39	09	7.07	16	176	6.65	20	154	6.63	20	160
4129 6.37 23 6.59 23 6.19 23 6.19 23 41 11 $$ $$ $$ 6.70 20166 6.64 201504230 6.41 22 6.59 23 6.60 23 42 12 $$ $$ 6.65 21166 6.62 211684331 6.40 6 6.56 24 6.58 24 43 13 6.93 18180 6.59 20158 6.56 2014444Aug/01/90 6.64 6 6.76 22 6.74 22 44 14 7.01 16190 6.62 20152 6.61 201504502 6.62 22 6.77 22 6.67 22 45 15 7.02 18180 6.66 20156 6.63 201564603 6.44 22 6.53 26 6.56 26 48 18 7.15 14192 6.62 19150 6.62 191504704 6.47 22 6.56 26 48 18 7.15 1486.6219150 6.62 191504805 6.46 26 6.55 24 6.54 245020 7.07 15186 6.64 181525007 6.95 24 6.54 245121 7.05	40	28	6.71	21	6.87	22	6.85	22	40	10	7.12	15	200	6.66	20	164	6.59	20	158
42 50 6.40 26 6.59 23 6.20 42 12 $1-1$ $1-1$ $1-1$ $1-1$ 6.65 21 166 6.62 21 168 43 31 6.40 6 6.56 22 6.57 22 6.74 22 44 14 7.01 16 190 6.62 20 152 6.61 20 154 45 02 6.64 22 6.53 22 6.57 22 45 15 7.02 16 196 6.65 20 158 6.60 20 156 46 03 6.44 22 6.53 22 6.51 23 47 17 7.02 18 188 6.66 20 156 6.61 20 156 46 03 6.44 22 6.53 22 6.51 23 47 17 7.02 18 188 6.65 20 156 6.61 20 156 46 05 6.46 26 6.53 22 6.51 23 47 17 7.02 18 188 6.62 20 156 6.61 20 156 47 04 6.47 22 6.45 22 6.55 22 6.51 23 6.62 19 160 49 06 6.55 23 6.55 24 6.54 23 52 27 7.07 15 186 6.63 </td <td>41</td> <td>29</td> <td>6.37</td> <td>23</td> <td>6.59</td> <td>23</td> <td>6.59</td> <td>23</td> <td>41</td> <td>11</td> <td></td> <td></td> <td>•••</td> <td>6.70</td> <td>20</td> <td>166</td> <td>6.64</td> <td>20</td> <td>150</td>	41	29	6.37	23	6.59	23	6.59	23	41	11			•••	6.70	20	166	6.64	20	150
44Aug/01/906.6466.73226.742244147.01161906.62201526.612015645026.62226.70226.672245157.02161906.62201526.612015646036.44226.53226.552246166.98172086.61201526.612015647046.47226.49236.512347177.02181886.66201566.632015648056.46266.53266.52266.522648187.15141926.63201506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62191506.62101506.62101506.62101506.62101506.62101506.62101506.62101506.62101506.6210	42	30 31	6.41	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.54	24	6.00	23	42	12	4 07	10	190	6.65	21	166	6.62	21	168
4502 6.62 22 6.77 22 6.67 224515 7.02 16196 6.65 20158 6.60 201564603 6.44 22 6.53 22 6.55 224616 6.98 17208 6.61 20152 6.61 201564704 6.47 22 6.49 23 6.51 234717 7.02 18188 6.66 20156 6.63 201564805 6.46 26 6.53 26 6.52 24 6.51 23 47 17 7.02 18188 6.66 20156 6.63 201564906 6.54 22 6.65 22 6.62 22 49 19 7.04 1218 46.62 19150 6.62 19150 6.62 19150 6.62 19150 6.62 19150 6.62 19150 6.62 191605108 6.65 23 6.65 24 6.57 24 6.52 26 6.73 26 6.64 23 5.66 20156 6.63 101005108 6.65 23 6.62 23 6.64 23 52 22 7.18 14190 6.78 20156 6.62 1011005108 6.65 2016.6220 <t< td=""><td>44</td><td>Aug/01/90</td><td>6.64</td><td>6</td><td>6.76</td><td>22</td><td>6.74</td><td>22</td><td>45</td><td>14</td><td>7.01</td><td>16</td><td>190</td><td>6 62</td><td>20</td><td>150</td><td>6.50</td><td>20</td><td>150</td></t<>	44	Aug/01/90	6.64	6	6.76	22	6.74	22	45	14	7.01	16	190	6 62	20	150	6.50	20	150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	02	6.62	22	6.70	22	6.67	22	45	15	7.02	16	196	6.65	20	158	6.60	20	156
4704 6.47 22 6.49 23 6.51 23 47 17 7.02 18 188 6.66 20 156 6.63 20 156 48 05 6.46 26 6.53 26 6.56 22 48 18 7.15 14 192 6.63 20 156 6.60 20 160 49 06 6.54 22 6.55 22 6.52 22 49 19 7.04 12 184 6.62 19 150 6.62 19 152 50 07 6.95 24 6.55 24 6.54 22 49 19 7.04 12 184 6.62 19 150 6.62 19 152 50 07 6.95 24 6.55 24 6.54 24 50 20 7.07 15 186 6.66 19 164 6.61 19 160 51 08 6.65 23 6.65 24 6.54 24 51 21 7.05 15 186 6.63 18 152 6.63 18 152 6.63 18 152 6.63 18 152 6.63 18 152 6.63 18 152 6.67 20 152 152 53 10 6.65 24 6.42 24 54 24 52 25 7.37 12 216 6.67 <	46	03	6.44	22	6.53	22	6.55	22	46	16	6.98	17	208	6.61	20	152	6.61	20	164
4805 6.46 26 6.53 26 6.56 264818 7.15 14192 6.62 20156 6.60 201604906 6.54 22 6.65 22 6.62 224919 7.04 12184 6.62 19150 6.62 191525007 6.95 24 6.55 24 6.54 245020 7.07 15196 6.66 19164 6.61 191605108 6.65 23 6.65 24 6.64 245121 7.05 15186 6.63 18152 6.63 181545209 6.79 23 6.62 23 6.64 235222 7.18 14190 6.78 20154 6.75 201585310 6.65 24 6.37 24 6.42 245323 6.81 16232 6.67 20152 6.62 201625411 6.68 24 6.47 24 6.47 2454247.2114218 6.68 18160 6.67 181625512 6.90 23 6.44 24 6.47 245626 7.17 12220 6.69 18158 6.72 181685613 6.69 23 6.42 23<	47	04	6.47	22	6.49	23	6.51	23	47	17	7.02	18	188	6.66	20	156	6.63	20	156
49066.34226.02226.022249197.04121846.62191506.621915250076.95246.55246.542450207.07151966.66191646.611916051086.65236.65246.642451217.05151866.63181526.631815452096.79236.62236.642352227.18141906.78201526.622015853106.65246.37246.422453236.81162326.67201526.622016254116.68246.472454247.21142186.68181606.671816255126.90266.40266.392655257.37122206.69181586.721816856136.81246.44246.442456267.12152386.71191646.721916257146.69236.422357277.27132386.71191646.73181	48	05	6.46	26	6.53	26	6.56	26	48	18	7.15	14	192	6.63	20	156	6.60	20	160
506161.552461.552461.5424512171.051519661.661916461.511918051086.67236.62236.6423522271.8141906.78201546.752015853106.65246.37246.422453236.81162326.67201526.622016254116.68246.44246.472454247.21142186.68181606.671816255126.90266.40266.392655257.37122206.69181586.721816856136.81246.44246.442456267.12152206.72191646.691916257146.69236.42236.482357277.27132386.71191646.731816659166.73216.442359296.99131606.98202066.942021860176.72206.47226.452260306.96122186.9818226 <td>49 50</td> <td>07</td> <td>6.04</td> <td>26</td> <td>6.00</td> <td>26</td> <td>6.02</td> <td>26</td> <td>49 50</td> <td>19</td> <td>7.04</td> <td>12</td> <td>184</td> <td>6.62</td> <td>19</td> <td>150</td> <td>6.62</td> <td>19</td> <td>152</td>	49 50	07	6.04	26	6.00	26	6.02	26	49 50	19	7.04	12	184	6.62	19	150	6.62	19	152
52 09 6.79 23 6.62 23 6.64 23 52 22 7.18 14 190 6.78 20 154 6.75 20 158 53 10 6.65 24 6.37 24 6.42 24 53 23 6.81 16 232 6.67 20 152 6.62 20 162 54 11 6.68 24 6.44 24 6.47 24 54 24 7.18 14 190 6.78 20 152 6.62 20 162 54 11 6.68 24 6.44 24 6.47 24 55 7.37 12 220 6.69 18 183 6.77 18 162 55 7.37 12 220 6.67 19 162 57 136 6.68 18 160 6.77 19 164 6.77 19 164 6.77 19 164	51	08	6.65	23	6.65	24	6.64	24	51	20	7 05	15	186	6.00	18	152	6.01	19	154
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	09	6.79	23	6.62	23	6.64	23	52	22	7.18	14	190	6.78	20	154	6.75	20	158
54 11 6.68 24 6.44 24 6.47 24 54 7.21 14 218 6.68 18 160 6.67 18 162 55 12 6.90 26 6.40 26 6.39 26 55 25 7.37 12 220 6.69 18 158 6.72 18 158 56 13 6.81 24 6.44 24 6.41 24 56 26 7.12 15 220 6.72 19 164 6.69 19 162 57 14 6.69 23 6.42 23 6.48 23 57 7.77 13 238 6.71 19 164 6.77 19 170 58 15 6.69 22 6.46 23 552 22 58 28 6.95 14 166 6.73 18 164 6.73 18 164 6.73 18 164 6.73 18 166 18	53	10	6.65	24	6.37	24	6.42	24	53	23	6.81	16	232	6.67	20	152	6.62	20	162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	11	6.68	24	6.44	24	6.47	24	54	24	7.21	14	218	6.68	18	160	6.67	18	162
36 13 6.41 24 6.41 24 56 26 7.12 15 220 6.72 19 164 6.69 19 162 57 14 6.69 23 6.42 23 6.48 23 57 27 7.27 13 238 6.71 19 164 6.72 19 170 58 15 6.69 22 6.46 22 6.52 22 58 28 6.95 14 166 6.73 18 164 6.73 18 164 6.73 18 164 6.73 18 164 6.73 18 164 6.73 18 166 6.73 18 164 6.73 18 166 17 18 166 17 18 166 17 12 18 6.98 18 226 18 18 226 18 18 226 6.98 18 222 222 18 19 164 6.73 18 166 6.73 18 166 18 226	55	12	6.90	26	6.40	26	6.39	26	55	25	7.37	12	220	6.69	18	158	6.72	18	158
Maximum 7.30 26 7.36 26 7.39 26 7.39 26 7.39 26 7.39 26 7.37 20 6.673 18 164 6.73 18 164 18	20 57	12	0.01 6 60	24	0.44 6 17	24	6 41	24 27	26 57	20	7.12	15	220	6.72	19	164	6.69	19	162
59 16 6.73 21 6.41 23 6.44 23 59 29 6.99 13 160 6.98 20 206 6.94 20 218 60 17 6.72 20 6.47 22 6.45 22 60 30 6.96 12 218 6.98 18 226 6.98 18 222 Maximum 7.30 26 7.36 26 7.39 26 Maximum 7.37 20 256 6.78 21 176 6.88 21 180 Mean 6.79 21 6.76 22 6.77 22 Mean 6.89 17 185 6.56 20 146 6.54 20 146 Minimum 6.37 6 6.37 20 6.39 20 Minimum 6.57 12 128 6.36 18 120 6.28 18 110 Std, Dev, 0.20 3.3 0.22 1.4 0.21 1.4 Std, Dev, 0.18 2 28 <t< td=""><td>58</td><td>15</td><td>6.69</td><td>22</td><td>6.46</td><td>22</td><td>6.52</td><td>22</td><td>58</td><td>21</td><td>1.21</td><td>14</td><td>200 166</td><td>0./1 6 73</td><td>19</td><td>164</td><td>0./2 6 77</td><td>19 19</td><td>1/0</td></t<>	58	15	6.69	22	6.46	22	6.52	22	58	21	1.21	14	200 166	0./1 6 73	19	164	0./2 6 77	19 19	1/0
60 17 6.72 20 6.47 22 6.45 22 60 30 6.96 12 218 6.98 18 226 6.98 18 222 Maximum 7.30 26 7.36 26 7.39 26 Maximum 7.37 20 256 6.78 21 176 6.88 21 180 Mean 6.79 21 6.76 22 6.77 22 Mean 6.89 17 185 6.56 20 146 6.54 20 146 Minimum 6.37 20 6.39 20 Minimum 6.57 12 128 6.36 18 120 6.28 18 110 Std, Dev. 0.20 3.3 0.22 1.4 0.21 1.4 Std, Dev. 0.18 2 28 0.11 1 15 0.12 1 15	59	16	6.73	21	6.41	23	6.44	23	59	29	6.99	13	160	6.98	20	206	6.94	20	218
Maximum 7.30 26 7.36 26 7.39 26 Maximum 7.37 20 256 6.78 21 176 6.88 21 180 Mean 6.79 21 6.76 22 6.77 22 Mean 6.89 17 185 6.56 20 146 6.54 20 146 Minimum 6.37 6 6.37 20 6.39 20 Minimum 6.57 12 128 6.36 18 120 6.28 18 110 Std. Dev. 0.20 3.3 0.22 1.4 0.21 1.4 Std. Dev. 0.18 2 8 0.11 1 15 0.12 1 15	60	17	6.72	20	6.47	22	6.45	22	60	30	6.96	12	218	6.98	18	226	6.98	18	222
Maximum 7.30 26 7.36 26 7.39 26 Maximum 7.37 20 256 6.78 21 176 6.88 21 180 Mean 6.79 21 6.76 22 6.77 22 Mean 6.89 17 185 6.56 20 146 6.54 20 146 Minimum 6.37 6 6.37 20 6.39 20 Minimum 6.57 12 128 6.36 18 120 6.28 18 110 Std. Dev. 0.20 3.3 0.22 1.4 0.21 1.4 Std. Dev. 0.18 2 28 0.11 1 15 0.12 1 15																			
Mean 0.19 21 0.16 22 0.17 28 6.56 20 146 6.54 20 146 Minimum 6.37 6 6.37 20 6.39 20 Minimum 6.57 12 128 6.36 18 120 6.28 18 110 Std. Dev. 0.20 3.3 0.22 1.4 0.21 1.4 Std. Dev. 0.18 2 8 0.11 1 15 0.12 1 15	Maxim	n.	7.30	26	7.36	26	7.39	26	Maximum		7.37	20	256	6.78	21	176	6.88	21	180
Std. Dev. 0.20 3.3 0.22 1.4 0.21 1.4 Std. Dev. 0.18 2 28 0.11 1 15 0.12 1 15	Hean	-	6.19	2 1	6.76	22	0.//	20	Mean		6.89	17	185	6.56	20	146	6.54	20	146
	Std. D	an)ev.	0.20	3.3	0.22	1.4	0.21	1.4	sinimum Std. Dev		0.18	2	28	0.30	10	120	0.28	18	110

	AASD#1	TOTAL COL	MEASUREME	NTS
DAY	DATE		Total COD	(mg/L)
		FEED	FT RCT	RT RCTR
1	Jun/19/90	6630	3148	3963
2	20	6704	4704	4280
3	21	3370	. 4417	4481
4	22	7444	3000	3074
5	23	7074	5222	3000
6	24	5963	4481	6333
7	25	10555	5888	5815
8	26	7132	7585	6113
9	27	7585	6642	7699
10	28	9585	7359	7397
11	29	9650	8321	12044
12	30	9172	8620	7628
13	Jul/01/90	8914	12500	5365
14	02	12597	8918	7518
15	03	13775	4776	9234
16	04	10019	7948	5037
17	05	18269	9888	8029
18	06	18343	9179	10949
19	.07	19374	8097	10402
20	08	14917	9888	13029
21	09	N/A	N/A	N/A
22	10	N/A	N/A	N/A
23	11	N/A	N/A	N/A
24	12	N/A	N/A	N/A
25	13	N/A	N/A	N/A
26	14	N/A	N/A	N/A
27	15	N/A	N/A	N/A
28	16	N/A	N/A	N/A
29	17	N/A	N/A	N/A
30	18	N/A	N/A	N/A
Maximu	м	19374	12500	13029
Mean		10354	7029	7070
Minim	m	3370	3000	3000
Std. D	ev.	4373	2458	2826

	AASD#2	and Maa		
LINENICAL UX	(mor/L)	INCIN MED	SUL EILS	
DATE	FEED	FT#1	RT#2	
Oct/12/90	8176	8257	8457	
Nov/9/90	7425	7176	7984	
Nov/23/90	8530	6882	6093	

APPENDIX F

VR G G	D			a a coto	
MASS	BALANCES	 AASD"1	and	AASD~2	

Chemical Parameter	Page
AASD [#] 1 - Fixed-	Time Reactor TSS
- Real-T	me Reactor TSS
AASD [#] 2 - Fixed-	Time Reactor TSS
- Real-T	me Reactor TSS

DAY FEED MLSS RCTR#1 SUMRCT1 (SUMFD- Day 2-10 Del TA RCT SOLIDS X SOLIDS (mg/L) (mg/L) X 0.48 X 0.48 *4.8 ColF-G ColH*10 1 7108 5716 *4.8 ColF-G ColH*100 Tool 2 5785 5598 Moving Average Mass Balance X Removed = 50lids Solids Solids 5 5936 5436 Day 1-59 Day 2-60 FD-FT Day 60-1 Reduced 6 8104 5336 224582 186451 38131 2659 35472 7 9244 5376 82454 5924 Solids 5376 6 8104 5336 224582 186451 38131 2659 35472 7 9244 5376 8244 5924 Solids 536 5376 84641 44.5 10 9122 5712 30376 24277 7408 2765 4644 44.5 11<765<		AASD#1	TOTAL S	USPENDED	SOLIDS M	SS BAL	ANCE - FIX	ED-TIME	REACTOR
(mg/L) (mg/L) X 0.48 X 0.48 *4.8 ColF-G ColH*100 1 7108 5716 ColD 2 7852 5578 Moving Average Mass Balance X Removed = Solids 14.70 3 5188 5790 Overall Mass Balance X Removed = Solids 15.79 4 6198 5524 Solids Solids 5 5936 5435 Day 1-59 Day 2-60 FD-FT Day 60-1 Reduced 6 8104 5336 224582 186451 38131 2659 35472 7 9244 5936 31343 24433 6910 1632 5278 16.8 12 7052 5826 31240 24427 7082 2755 4644 14.5 14 6698 5854 32258 24927 7331 2006 5324 16.5 15 6850 5826 32624 251371 6631 2285 4346 13.6 14 6698 5877 30969 25419 5550 499 5051 16.3 15 6886	DAY	FEED	RCTR#1 MLSS	SUMFEED Day 1-9	SUMRCT1 (Day 2-10	SUMFD-	DELTA RCT (Day10-1)	SOLIDS RED	% SOLIDS REDUCED
1 7108 5716 2 7852 5598 Moving Average Mass Balance X Removed = 501 ds 14.70 4 5188 5790 Overall Mass Balance X Removed = 501 ds Solids 5 5936 5435 Day 1-59 Day 2-60 F0-FT Day 60-1 Reduced 6 8104 5336 224582 186451 38131 2659 35472 7 9244 5376 5336 224582 186451 38131 2659 35472 7 9244 5376 5376 6107 -19 6126 20.2 11 7638 5712 30376 24270 6107 -19 6126 20.2 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5826 32624 25131 6631 2285 5167 15.7 16 6106 5825 32624 25131 6631 2285 4346<		(mg/l)	(mg/l)	X 0.48	X 0.48		*4.8	ColF-G	ColH*100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7444							ColD
$ \begin{array}{c} 1032 \\ 5 1036 \\ 5 100 \\ 6 100 \\ 5 100 \\ 6 100 \\ 7 100 $	1	7108	5716	Novina A	versde Nas	e Balar	ce Y Remov	ved =	14 70
4 6198 5524 Solids 5 5936 5436 Day 1-59 Day 2-60 FD-FT Day 60-1 Reduced 6 8104 5336 624582 186451 38131 2659 35472 7 9244 5376 38131 2659 35472 7 9244 5376 38131 2659 35472 7 9244 5376 38131 2659 35472 7 9244 5376 38131 2659 35472 7 9224 5376 6107 -19 6126 20.2 11 7638 5938 31343 24433 6910 1632 5278 16.8 12 7052 5826 31240 24451 7408 2765 4644 14.5 15 13 6454 6100 32135 24727 7308 2717 4096 15.7 16 6106 5852 32022 25391 6313 2717 4096 12.6 17216 6	3	5188	5790	Overall #	lass Balar		emoved =		15.79
5 5936 5436 Day 1-59 Day 2-60 FD-FT Day 60-1 Reduced 6 8104 5336 224582 186451 38131 2659 35472 7 9244 5376 5366 11 11 79 6126 20.2 11 7638 5938 31343 24433 6910 1632 5278 16.8 12 7052 5826 31240 24450 6790 173 6617 21.2 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5854 32258 24927 7331 2006 5324 16.5 15 6850 5826 32624 25163 7461 2285 4346 13.6 17 8228 5878 30516 25369 5147 -221 5367 17.6 19 11866 6278 32504 25691 6813 2717 4096 12.6 20 13550 6724 <td< td=""><td>4</td><td>6198</td><td>5524</td><td></td><td></td><td></td><td></td><td>Solids</td><td>L</td></td<>	4	6198	5524					Solids	L
6 8104 5336 224362 186451 36131 2659 35472 7 9224 5376 5866 5924 56131 2659 35472 10 9122 5712 30376 24270 6107 -19 6126 20.2 11 7638 5938 31343 24433 6910 1632 5278 16.8 12 7052 5826 31240 24450 6790 173 6617 21.2 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5824 3228 24927 7331 2006 5324 16.5 15 6850 5826 32022 25911 6311 2285 4346 13.6 17 8228 5878 30516 25350 499 5051 16.3 181866 6278 32504 25691 813 2717 409	5	5936	5436	Day 1-59	Day 2-60	FD-FT	Day 60-1	Reduced	
111 <th< td=""><td>0 7</td><td>8104 9244</td><td>2220 5376</td><td>224782</td><td>180431</td><td>20121</td><td>2034</td><td>33472</td><td></td></th<>	0 7	8104 9244	2220 5376	224782	180431	20121	2034	33472	
9 6370 5866 109122 5712 30376 24270 6107 -19 6126 20.2 11 7638 5938 31343 24433 6910 1632 5278 16.8 12 7052 5826 31240 24450 6790 173 6617 21.2 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5854 32258 24927 7331 2006 5324 16.5 15 6850 5826 32624 25163 7461 2352 5109 15.7 16 6106 5852 32022 25391 6631 2285 4346 13.6 17 8228 5878 30516 25369 5147 -221 5367 17.6 18 9568 5970 30969 25419 5550 499 5051 16.3 19 11866 6278 32504 25691 6813 2717 4096 12.6 20 13550 6724 33821 26068 7753 3773 3800 11.8 21 7216 6980 36659 27852 9744 4445 5313 14.3 24 7308 6752 37596 27852 9773 3907 5666 15.0 25 6624 6374 37137 27408 9729 4416 5313 14.3 <tr< td=""><td>8</td><td>7284</td><td>5924</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	8	7284	5924						
109122 5712 30376 24270 6107 -19 6126 20.2 117638 5938 31343 24433 6910 1632 5278 16.8 127052 5826 31240 24430 6910 1632 5278 16.8 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5854 32258 24927 7331 2006 5324 16.5 15 6850 5826 32624 25163 7461 2352 5109 15.7 16 6106 5852 32022 25391 6631 2285 4346 13.6 17 8228 5878 30516 25369 5147 -221 5367 17.6 18 9568 5970 30969 25419 5550 499 5051 16.3 19 11866 6278 32504 25691 6813 2717 4096 12.6 20 13550 6724 33821 26068 7713 3773 3980 11.8 21 7216 6980 36659 26622 10037 5539 4498 12.3 22 7286 6818 36737 26966 9771 3446 5313 14.3 24 7308 6752 37596 27852 9744 44455 5299 14.1 25 7624 6666 379	9	6370	5866						
117638593851343 24433 6910 1632 2278 16.8127052582631240 24450 6970 173 6617 21.2 13 6454 6100 32135 24727 7408 2765 4644 14.5 14 6698 5826 32228 24927 7331 2006 5324 16.5 15 6850 5826 32624 25163 7461 2352 5109 15.7 16 6106 5852 32022 25391 6631 2285 4346 13.6 17 8228 5878 30516 25369 5147 -221 5367 17.6 18 9568 5970 30969 25419 5550 499 5051 16.3 19 11866 6278 32504 25691 6813 2717 4096 12.6 20 13550 6724 33821 26068 7773 37800 11.8 21 7216 6980 36659 26622 10037 5539 4498 12.3 22 7656 6774 37137 27408 9729 4416 5313 14.3 24 7308 6752 37596 27852 9774 44455 5299 14.1 25 7624 6664 37816 28243 9573 3907 5666 15.0 26 6902 6702 38542 28639 9	10	9122	5712	30376	24270	6107	- 19	6126	20.2
12 6454 6100 321230 224727 7408 2765 4644 14.5 14 6698 5854 32258 24927 7331 2006 5324 16.5 15 6850 5826 32624 25163 7461 2352 5109 15.7 16 6106 5852 32022 25391 6631 2285 4346 13.6 17 8228 5878 30516 25369 5147 -221 5367 17.6 18 9568 5970 30969 25419 5550 499 5051 16.3 19 11866 6278 32504 25691 6813 2717 4096 12.6 20 13550 6724 33821 26068 7753 3773 3980 11.8 21 7216 6980 36659 26622 10037 5539 4498 12.3 22 7286 6818 36737 26966 9771 3446 6324 17.2 23 7656 6774 37137 27408 9729 4416 5313 14.3 24 7308 6752 37596 27852 9744 4445 5299 14.1 25 7624 6666 37816 28243 9573 3907 5666 15.0 26 6902 6702 38545 28639 9906 3955 5951 15.4 27 8034 6568	12	7052	5826	31343	24433	6710	1032	52/8 6617	21 2
14669858543225824927 7331 2006532416.515685058263262425163 7461 2352510915.71661065852320222539166312285434613.617828587830516253695147-221536717.6189568597030969254195550499505116.319118666278325042569168132717409612.620135506724338212606877533773398011.821721669803665926622100375539449812.32272866818367372696697713446632417.22376566774371372740897294416531314.32473086752375962785297444445529914.12576246666378162824395733907566615.02669026702385452863999063955595115.42780346568379082892689832870611216.128653033166289804187-96428312.9310698034175290575118778434012.73206800<	13	6454	6100	32135	24727	7408	2765	4644	14.5
1568505826326242516374612352510915.71661065852320222539166312285434613.6178228587830516253695147-221536717.6189568597030969254195550499505116.319118666278325042569168132717409612.620135506724338212606877533773398011.821721669803665926622100375539449812.32272866818367372696697713446632417.22376566774371372740897294416531314.32473086752375962785297444445529914.12576246666378162824395733907566615.02669026702385452863999063955595115.42780346583371722904781251210691618.62910540660434617290575118778434012.732068003067829070160812514834.833807068562700329120-2117499-2616-9.7341187	14	6698	5854	32258	24927	7331	2006	5324	16.5
1661065852320222539166312285434613.6178228587830516253695147 -221 536717.6189568597030969254195550499505116.319118666278325042569168132717409612.620135506724338212606877533773398011.821721669803665926622100375539449812.32272866818367372696697713446632417.22376566774371372740897294416531314.32473086752375962785297444445529914.12576246666378162824395733007566615.02669026702385452863999063955595115.42780346530371722904781251210691618.62910540660434611289895622 -576 619817.9309318696033166289804187 -96 428312.9310698034175290575118778434012.732068003067829070160812514834.833807	15	6850	5826	32624	25163	7461	2352	5109	15.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6106	5852	32022	25391	6631	2285	4346	13.6
19118666278325042569168132717409612.620135506724338212606877533773398011.821721669803665926622100375539449812.32272866818367372696697713446632417.22376566774371372740897294416531314.32473086752375962785297444445529914.12576246666378162824395733907566615.02669026702385452863999063955595115.42780346568379082892689832870611216.12865306510371722904781251210691618.62910540660434611289895622-576619817.9309318696033166289804187-96428312.9310698034175290575118778434012.732068063067829070160812514834.833807068562700329120-2117499-2616-9.7341187269563124229259198313925911.9356514 <td>18</td> <td>9568</td> <td>5970</td> <td>30969</td> <td>25309</td> <td>5550</td> <td>- 22 1</td> <td>5051</td> <td>16.3</td>	18	9568	5970	30969	25309	5550	- 22 1	5051	16.3
20 13550 6724 33821 26068 7753 3773 3980 11.8 21 7216 6980 36659 26622 10037 5539 4498 12.3 22 7286 6818 36737 26966 9771 3446 6324 17.2 23 7656 6774 37137 27408 9729 4416 5313 14.3 24 7308 6752 37596 27852 9744 4445 5299 14.1 25 7624 6666 37816 28243 9573 3907 5666 15.0 26 6902 6702 38545 28639 9906 3955 5951 15.4 27 8034 6568 37908 28926 8983 2870 6112 16.1 28 6530 6530 37172 29047 8125 1210 6916 18.6 29 10540 6604 34175 29057 5118 778 4340 12.7 32 0 <td>19</td> <td>11866</td> <td>6278</td> <td>32504</td> <td>25691</td> <td>6813</td> <td>2717</td> <td>4096</td> <td>12.6</td>	19	11866	6278	32504	25691	6813	2717	4096	12.6
21 7216 6980 36659 26622 10037 5539 4498 12.3 22 7286 6818 36737 26966 9771 3446 6324 17.2 23 7656 6774 37137 27408 9729 4416 5313 14.3 24 7308 6752 37596 27852 9744 4445 5299 14.1 25 7624 6666 37816 28243 9573 3907 5666 15.0 26 6902 6702 38545 28639 9906 3955 5951 15.4 27 8034 6568 37908 28926 8983 2870 6112 16.1 28 6530 6530 37172 29047 8125 1210 6916 18.6 29 10540 6604 34611 28980 4187 -96 4283 12.7 30 9318 6960 33166 289070 1608 125 1483 4.8 33 8070 <td>20</td> <td>13550</td> <td>6724</td> <td>33821</td> <td>26068</td> <td>7753</td> <td>3773</td> <td>3980</td> <td>11.8</td>	20	13550	6724	33821	26068	7753	3773	3980	11.8
22 7280 6818 36737 20966 9771 3446 6324 17.2 23 7656 6774 37137 27408 9729 4416 5313 14.3 24 7308 6752 37596 27852 9744 4445 5299 14.1 25 7624 6666 37816 28243 9573 3907 5666 15.0 26 6902 6702 38545 28639 9906 3955 5951 15.4 27 8034 6568 37908 28926 8983 2870 6112 16.1 28 6530 6530 37172 29047 8125 1210 6916 18.6 29 10540 6604 34611 28989 5622 -576 6198 17.9 30 9318 6960 33166 28980 4187 -96 4283 12.7 32 0 6800 30678 29070 1608 125 1483 4.8 33 8070 6856 27003 29120 -2117 499 -2616 -9.7 34 11872 6956 31242 29259 1983 1392 591 1.9 35 6514 7416 38980 29602 9378 3427 5951 15.3 36 6858 7172 38794 29892 8902 2899 6003 15.5 37 6618	21	7216	6980	36659	26622	10037	5539	4498	12.3
247308 6752 37596 27852 9744 4445 5299 14.1 257624 6666 37816 28243 9573 3907 5666 15.0 26 6902 6702 38545 28639 9906 3955 5951 15.4 27 8034 6568 37908 28926 8983 2870 6112 16.1 28 6530 6530 37172 29047 8125 1210 6916 18.6 29 10540 6604 34611 28989 5622 -576 6198 17.9 30 9318 6960 33166 28980 4187 -96 4283 12.7 320 6800 30678 29070 1608 125 1483 4.8 33 8070 6856 27003 29120 -2117 499 -2616 -9.7 34 11872 6956 31242 29259 1983 1392 591 1.9 35 6514 7416 38980 29602 9378 3427 5951 15.3 36 6858 7172 38794 29892 8902 2899 6003 15.5 37 6618 7006 38229 30120 8109 2285 5824 15.2 38 9594 6954 38271 30288 7983 1680 6303 16.5 39 10068 7028 37817 <td>22</td> <td>7656</td> <td>6774</td> <td>30/3/</td> <td>20900</td> <td>9771</td> <td>2440 4416</td> <td>5313</td> <td>17.2</td>	22	7656	6774	30/3/	20900	9771	2440 4416	5313	17.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	7308	6752	37596	27852	9744	4445	5299	14.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	7624	6666	37816	28243	9573	3907	5666	15.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6902	6702	38545	28639	9906	3955	5951	15.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	8034	6568	37908	28926	8783	2870	6112	16.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	10540	6604	34611	28989	5622	-576	6198	17.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	9318	6960	33166	28980	4187	-96	4283	12.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	0	6980	34175	29057	5118	778	4340	12.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	0 8070	6800	30678	29070	1608	125	1485	4.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	11872	6956	31242	29259	1983	1392	591	1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	6514	7416	38980	29602	9378	3427	5951	15.3
37 6618 7006 38229 30120 8109 2285 5824 15.2 38 9594 6954 38271 30288 7983 1680 6303 16.5 39 10068 7028 37817 30321 7497 326 7170 19.0 40 7818 7370 38177 30508 7669 1872 5797 15.2 41 7818 7472 41930 30830 11100 3226 7874 18.8 42 8014 7322 45683 31054 14628 2237 12392 27.1 43 8042 7084 41782 31116 10667 614 10052 24.1 44 8072 7140 34245 30983 3262 -1325 4587 13.4 45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 69	36	6858	7172	38794	29892	8902	2899	6003	15.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	6618	7006	38229	30120	8109	2285	5824	15.2
40 7818 7370 38177 30508 7669 1872 5797 15.2 41 7818 7472 41930 30830 11100 3226 7874 18.8 42 8014 7322 45683 31054 14628 2237 12392 27.1 43 8042 7084 41782 31116 10667 614 10052 24.1 44 8072 7140 34245 30983 3262 -1325 4587 13.4 45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	30	10068	7028	37817	30200	7497	326	7170	10.5
41 7818 7472 41930 30830 11100 3226 7874 18.8 42 8014 7322 45683 31054 14628 2237 12392 27.1 43 8042 7084 41782 31116 10667 614 10052 24.1 44 8072 7140 34245 30983 3262 -1325 4587 13.4 45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	40	7818	7370	38177	30508	7669	1872	5797	15.2
42 8014 7322 45683 31054 14628 2237 12392 27.1 43 8042 7084 41782 31116 10667 614 10052 24.1 44 8072 7140 34245 30983 3262 -1325 4587 13.4 45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	41	7818	7472	41930	30830	11100	3226	7874	18.8
43 8042 7064 41782 31116 10687 814 10052 24.1 44 8072 7140 34245 30983 3262 -1325 4587 13.4 45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	42	8014	7322	45683	31054	14628	2237	12392	27.1
45 9430 6792 34993 30801 4192 -1824 6016 17.2 46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	43	8072	7140	34745	30983	3262	- 1325	4587	13 4
46 7964 7052 36228 30823 5405 221 5184 14.3 47 6940 7252 36874 30966 5908 1430 4477 12.1	45	9430	6792	34993	30801	4192	- 1824	6016	17.2
47 6940 7252 36874 30966 5908 1430 4477 12.1	46	7964	7052	36228	30823	5405	221	5184	14.3
	47	6940 0777 (7252	36874	30966	5908	1430	4477	12.1
48 9736 7088 35600 30995 4605 288 4317 12.1 49 7642 7456 35440 31036 4404 413 3992 11 3	48 49	9756	7088	35600	30995	4605	288	4317	12.1
50 6114 7216 35356 30913 4443 -1229 5672 16.0	50	6114	7216	35356	30913	4404	-1229	5672	16.0
51 7814 6904 34538 30712 3826 -2006 5832 16.9	51	7814	6904	34538	30712	3826	-2006	5832	16.9
52 9264 6826 34442 30588 3853 -1238 5092 14.8	52	9264	6826	34442	30588	3853	-1238	5092	14.8
>5 >57 7082 35028 30561 4468 -278 4746 13.5 54 5050 7378 35758 20704 1044 3777 3474 1	53	9592	7082	35028	30561	4468	-278	4746	13.5
55 5464 6960 34088 30750 3338 -442 3780 11 1	55	5450 5464	1210	32720 34088	30750	4704 3338	-447	2021 3780	11.1
56 7696 6756 32888 30512 2376 -2381 4757 14.5	56	7696	6756	32888	30512	2376	-2381	4757	14.5
57 6482 6628 33251 30291 2960 -2208 5168 15.5	57	6482	6628	33251	30291	2960	-2208	5168	15.5
58 7936 6516 31689 29840 1849 -4512 6361 20.1	58	7936	6516	31689	29840	1849	-4512	6361	20.1
60 6848 6270 31644 29262 2382 -3043 5425 17-1	59 60	5720 6848	6270	31644	29262	2204 2382	-2130 -3043	5425	17.1

-

AASD#1 VOLATILE SUSPENDED SOLIDS MASS BALANCE - FIXED-TIME REACTOR

DAY FEED RCTR#1 SUMFEED SUMRCT1 (SUMFD- DELTA RCT SOLIDS % SOLIDS MLVSS MLVSS Day 1-9 Day 2-10 SUMFT) (Day10-1) RED REDUCED (mg/L) (mg/L) X 0.48 X 0.48 *4.8 ColF-G ColH*100

	5744	1104						ColD
2	6308	4490	Moving A	verage Mas	s Balan	ice % Remov	ved =	16.79
3	4158	4552	Overall M	lass Balan	ce % Re	moved =	0.1.1.1.1	17.70
4	4982	4358					Solids	
2	4740	4252	Day 1-59	Day 2-00	70070	Uay 60-1	Keduced	
6	6438	4154	177010	144132	32878	1540	21222	
7	7318	4216						
8	5772	4728						
9	5104	4632						
10	7214	4454	24257	19084	5173	-202	5375	22.2
11	6056	4606	24976	19177	5799	931	4868	19.5
12	5550	4510	24855	19157	5699	-202	5900	23.7
13	5084	4704	25524	19323	6201	1661	4540	17.8
14	5186	4506	25572	19445	6128	1219	4908	19.2
15	5366	4490	25787	19606	6180	1613	4568	17.7
16	4798	4508	25272	19746	5526	1402	4124	16.3
17	6442	4522	24062	19647	4415	-989	5404	22.5
18	7516	4602	24384	19633	4751	- 144	4895	20.1
19	9486	4864	25542	19830	5712	1968	3744	14.7
20	10794	5204	26632	20117	6516	2870	3645	13.7
21	5736	5416	28907	20552	8355	4349	4006	13.9
22	5772	5298	28996	20837	8159	2851	5308	18.3
23	6144	5272	29326	21204	8122	3677	4445	15.2
24	5756	5236	29786	21563	8223	3581	4643	15.6
25	6078	5102	20073	21891	8082	3283	4799	16.0
26	5472	5202	30588	22217	8370	3264	5106	16.7
27	63/2	5088	30122	22451	7671	2777	5330	17 7
20	5170	5066	20559	22538	7020	874	6167	20.8
20	9709	5090	27330	22/80	5006	-576	5582	20.0
27	7704	5/00	24207	22400	3921	- 77	3902	1/ 2
20	0961	5400	20273	22473	1576	177	/1/2	15 7
21 77	0	5300	2/090	22310	43/4	432	1077	0.1
32	(70)	5240	24320	22500	1157	-134	17/3	-4 5
22	0500	5204	21371	22324	-1133	230	- 1303	-0.5
34	9200	22/0	24/30	22009	2129	034	12/3	2.2
55	5228	5/18	31006	22857	8149	24//	2073	10.3
36	5462	5428	30889	23020	/869	1632	6237	20.2
37	5230	5406	30467	23193	7274	1/28	5546	18.2
38	7602	5380	30495	23335	7161	1421	5740	18.8
39	7864	5424	30156	23346	6810	115	6695	22.2
40	6114	5702	30381	23497	6884	1507	5377	17.7
41	6168	5812	33316	23772	9544	2746	6799	20.4
42	6288	5692	36276	23967	12309	1958	10351	28.5
43	6328	5468	33164	24014	9150	470	8679	26.2
44	6372	5498	27016	23909	3108	-1056	4164	15.4
45	7344	5228	27565	23813	3753	-960	4713	17.1
46	6214	5452	28469	23835	4634	221	4413	15.5
47	5384	5566	28941	23924	5017	893	4124	14.3
48	7608	5418	27876	23921	3955	-29	3984	14.3
49	5912	5732	27754	23936	3818	144	3674	13.2
50	4728	5538	27657	23804	3852	-1315	5168	18.7
51	6008	5274	26965	23604	3362	-2006	5368	19.9
52	7168	5266	26831	23507	3324	-970	4294	16.0
53	7512	5456	27234	23486	3748	- 202	3040	14 5
56	4554	558%	27781	23457	4174	1700	2415	87
55	4000	5770	2//01	23500	38//	-594	2413	17 0
56	5010	5150	20443	23377	2044	-1097	7420	14.0
50	1011	2122	23411	23400	2011	- 170/	4007	14 /
J/ 50	4744	2020	22720	23221	2000	-1/20	44231	10.4
50	0114	4994	24451	22013	12/8	-3542	2121	20.9
59	4400	5090	24548	22658	1890	-2150	4041	10.5
6Ü	5256	4818	24391	22439	1952	-2189	4140	17.0

.

..

AASD#1 NITROGEN MASS BALANCE - FIXED-TIME REACTO	R
DAY FEED RCTR#1 SUMFEED SUMRCT1 (SUMED- DELTA-N Nitrog	en %N
(TKN + (TKN + Day 1-9 Day 2-10 SUMFT) RCTR#1 Lost	Lost
NOX) NOX) N IN N Out (Day10-1)	ColH*100
(mg/L) (mg/L) X 0.48 X 0.48 X 4.8 ColF-G	
	ColD
1 4/8.43 340.72 2 510 75 305 15 Moving Average Mass Ralance % Removed =	17.47
3 334.05 378.19 Overalt Mass Balance % Removed =	17.86
4 445.53 366.92 Nitro	gen
5 410.45 389.77 Day 1-59 Day 2-60 FD-FT Day 60-1 Remov	ed
6 552.71 265.08 15652 12434 3218 422 279	6
7 599.72 558.94 8 /84 17 38/ 40	
9 409.54 362.22	
10 674.61 386.11 2029 1578 451 189 26	2 12.9
11 541.78 397.09 2123 1579 545 9 53	5 25.2
12 515.24 400.51 2138 1589 549 107 44	2 20.7
13 453.94 413.52 2225 1612 613 224 39	U 17.5
14 439.24 578.39 2229 1000 025 °55 07 15 445 84 375 20 2243 1459 584 529 5	5 2.5
16 445.26 410.81 2201 1684 517 249 26	8 12.2
17 535.46 407.72 2127 1695 432 111 32	1 15.1
18 630.32 403.69 2151 1715 436 199 23	7 11.0
19 807.79 411.31 2257 1727 530 121 40	9 18.1
20 953.35 448.22 2321 1752 569 245 32	4 1 5.9 6 16 1
22 525 70 487 54 2517 1825 693 355 33	7 13.4
23 529.29 467.02 2552 1867 685 425 25	9 10.2
24 559.91 455.09 2595 1905 690 383 30	6 11.8
25 570.51 483.14 2640 1940 700 347 35	3 13.4
	2 16.7
27 37 1.03 439.30 2090 1993 702 207 43	7 14.5
29 713.93 430.92 2519 2013 507 -83 59	0 23.4
30 616.13 459.05 2404 2003 401 -92 49	3 20.5
31 0.00 453.21 2454 1987 467 -165 63	2 25.7
32 0.00 476.15 2202 1991 210 44 16	6 7.6
33 541.24 448.95 1947 1988 -41 -50 -1 37 770 53 757 15 5168 1077 527 -139 36	3 16 5
35 441 39 482 96 2664 1983 681 81 60	22.5
36 442.50 472.40 2623 1989 634 63 57	1 21.8
37 432.55 465.65 2560 1989 572 0 57	1 22.3
38 617.39 458.24 2529 2002 527 131 39	6 15.7
39 684.93 475.05 2483 2010 473 77 39 70 708 58 77 87 3514 3030 704 107 30	/ 16.U
40 498.36 474.65 2376 2020 496 104 37	8 25.3
42 547.57 476.67 3019 2037 983 133 84	28.1
43 584.22 478.97 2762 2049 714 119 59	5 21.5
44 589.22 472.82 2303 2044 260 -49 304	8 13.4
45 657.31 476.35 2374 2046 329 19 31	J 13.0
40 201.22 414.12 2418 2020 420 41 30 47 404 84 445 24 2552 2053 400 34 44	5 18 2
48 691.52 347.13 2493 1992 501 -614 111	5 44.7
49 539.23 494.68 2496 2001 495 95 40	0 16.0
50 446.95 451.55 2516 1986 530 -152 68	1 27.1
51 560.54 455.71 2466 1976 490 -101 59	1 24.0
52 691.56 463.83 2473 1969 504 -73 57 57 707 20 /04 44 252/ 1000 5// 11/ /2/	7 23.3
52 (07.20 490.00 2024 1980 044 114 40 52 235 02 292 19 2581 1080 502 84 50	5 17.U 5 19.K
55 407.48 476.20 2474 1990 484 10 47	5 19.2
56 586.68 460.11 2388 1987 400 -25 42	5 17.8
57 464.32 459.61 2432 2041 391 540 -149	-6.1
57 464.32 459.61 2432 2041 391 540 -144 58 600.21 444.75 2323 2017 305 -240 54 50 /10 49 (50 32 275 2017 375 -240 54)	-6.1 5 23.5

۰.

AASD#1	PHOSPHORUS	MASS	BALANCE	-	FIXED-TIME	REACTOR

DAY	FEED	RCTR#1	SUMFEED	SUMRCT1	(SUMFD-	DELTA RCI	TOTAL	% P
	TP (mg/l)	TP (ma/l)	Day 1-9 x 0.48	Day 2-10 X 0.48	SUMFT)	(Day10-1) *4.8) P Lost ColF-G	Lost ColH*100
	(113) - 7	(1197.27	A 0.40	X 0140				
								ColD
2	220	186	Moving A	erane Ma	es Ralar	nce % Pemr	wed =	-6 48
3	164	211	Overall A	lass Bala	nce % Re	moved =		-6.18
4	214	210					Phospho	orus
5	205	226	Day 1-59	Day 2-60	FD-FT	Day 60-1	Reduced	ł
2	2/1	164 216	8/50	8202	189	750	-541	
8	250	234						
9	216	230						
10	352	261	1002	946	57	360	-303	-30.3
11	294	265	1066	968	100	226	- 128	-12.0
13	259	277	1146	1023	123	322	-199	-17.3
14	246	260	1168	1040	128	163	-35	-3.0
15	259	258	1188	1085	103	451	-348	-29.3
16 17	246	263	1182	1107	74 28	226	-151	-12.8
18	354	270	1180	1143	37	192	- 155	-13.1
19	410	259	1247	1142	104	-10	114	9.1
20	472	277	1274	1148	126	58	69	5.4
21	252	297	1360	1166	193	182	11	0.8
22	202	292	1347	1189	175	154	6	0.4
24	276	286	1356	1202	153	134	19	1.4
25	292	309	1364	1224	139	221	-82	-6.0
26	263	287	1386	1233	153	86	66	4.8
27	246	289	1304	1242	81	158	-78	-5.8
29	413	311	1260	1274	-14	163	-178	-14.1
30	366	341	1232	1296	-64	211	-275	-22.3
31	0	326	1286	1312	-25	163	- 189	-14.7
32 33	U 325	354 366	1101	1342	-181	298	-479 -673	-41.2
34	445	342	1215	1386	-171	158	-330	-27.1
35	261	385	1502	1433	69	470	-402	-26.7
36	271	344	1501	1460	41	264	-223	-14.8
31	279	344	1487	1485	2	250	-248	-16.7
39	429	343	1489	1497	-8	10	-17	-1.2
40	330	353	1519	1510	10	130	-120	-7.9
41	345	358	1678	1512	166	19	147	8.8
42	320	321	1843	1500	344	-120	464	25.2
45	340	329	1605	1451	-44	-269	275	15.8
45	399	329	1461	1457	3	-72	75	5.2
46	361	333	1522	1452	70	-53	123	8.1
47	301	323	1561	1447	115	-53	168	10.7
48 49	332	328 347	1521	1440	38	-72	154 67	10.1
50	276	328	1476	1422	53	- 144	197	13.4
51	347	329	1442	1426	16	38	-22	-1.5
52	415	332	1455	1429	26	34	-8	-0.5
55 54	265 265	348 350	1491	1453	55 28	91 144	- 58 - 116	-2.0 -7 R
55	250	355	1417	1464	-47	106	- 152	-10.7
56	364	339	1364	1471	- 108	77	- 184	-13.5
57	294	344	1394	1479	-85	77	-162	-11.6
20 50	2/2 253	322 344	13/0	14/ <i>2</i> 1480	- 70 - 84	-12 86	- 24 - 170	-12 2
60	295	338	1385	1485	- 99	43	-143	-10.3

•••

	AASD#1	TOTAL :	SUSPENDED	SOLIDS M	ASS BAL	ANCE - REA	L-TIME P	REACTOR
DAY	FEED	RCTR#2		SUMRCT2	(SUMFD-	DELTA RCT	SOLIDS	X SOLIDS
	MLSS	MLSS	Day 1-9	Day 2-10	SUMRT)	(Day10-1)	RED	REDUCED
	(mg/L)	(mg/L)) X 0.48	X 0.48		*4.8	ColF-G	ColH*100
								ColD
1	7108	5640						
2	7852	5574	Moving A	verage Mas	ss Balar	nce % Remo	ved =	15.18
3	5188	5678	Overall N	lass Balar	nce % Re	emoved =	Salida	15.74
- 5	5936	5308	Day 1-59	Day 2-60	FD-FT	Day 60-1	Reduced	4
6	8104	5288	224582	184813	39769	4426	35344	•
7	9244	5370						
8	7284	5756						
9	6370	5736	70776	27944	4511	- / 90	6001	27.0
11	7638	5700	30370	23000	7617	-460	6812	23.0
12	7052	6060	31240	24109	7131	1834	5297	17.0
13	6454	6054	32135	24390	7745	2803	4942	15.4
14	6698	5658	32258	24558	7700	1680	6020	18.7
15	6850	6028	32624	24913	7711	3552	4159	12.7
16	6106	5854	32022	25145	6876	2323	4553	14.2
17	8228 0548	5658	30516	25106	5410	- 394 - 374	5805	19.0
19	11866	6122	32504	25348	7156	2794	4362	13.4
20	13550	6680	33821	25818	8003	4704	3299	9.8
21	7216	7054	36659	26295	10363	4771	5592	15.3
22	7286	6900	36737	26701	10036	4061	5975	16.3
23	7656	6810	37137	27254	9882	5530	4353	11.7
24	7508	6004	3/370	27095	10037	5055	0984 5570	18.6
26	6902	6554	38545	28407	10138	4233	5914	14.0
27	8034	6448	37908	28787	9122	3792	5330	14.1
28	6530	6378	37172	28909	8263	1229	7034	18.9
29	10540	6528	34611	28836	5774	-730	6504	18.8
30	9318	6849	33166	28738	4428	-984	5412	16.3
31	0	7040 67/.8	34175	28805	1002	- 208	4098 2200	13.7
33	8070	6930	27003	28903	- 1900	1277	-3177	-11.8
34	11872	6682	31242	28875	2367	-278	2645	8.5
35	6514	7200	38980	29185	9794	3101	6694	17.2
36	6858	7138	38794	29517	9277	3312	5965	15.4
37	6618	6828	38229	29733	8496	2160	6336	16.6
38	9594 10068	6116	382/1	29852	8420	1190	7204	18.9
40	7818	7404	38177	30086	8091	1747	6344	19.5
41	7818	7328	41930	30365	11565	2784	8781	20.9
42	8014	7274	45683	30530	15153	1651	13501	29.6
43	8042	6896	41782	30633	11149	1027	10122	24.2
44 / E	8072	/186	34245	30626	3619	-67	3686	10.8
45	7964	7182	36228	30493	4300 5564	- 1325	3865	10.0
47	6940	7010	36874	30776	6098	1123	4975	13.5
48	9736	6992	35600	30784	4815	86	4729	13.3
49	7642	7218	35440	30695	4745	-893	5638	15.9
50	6114	6856	35356	30468	4887	-2266	7153	20.2
52	1014	6984	54538	50529	4209	-1392	5601	16.2
53	9502	7106	34442	30302	4080	02C 187-	5754 5080	10.9
54	5950	7274	35758	30521	5237	1978	3259	9.1
55	5464	6852	34088	30363	3725	-1584	5309	15.6
56	7696	6666	32888	30198	2690	- 165 1	4341	13.2
57	6482	6774	33251	30093	3157	-1046	4204	12.6
50 50	1956 5774	648Z	51689	29740	1949	-3533	5482	17.3
60	6848	6562	31644	29465	2178	-2026	4204	13.3

.

••
	AASD#1	VOLATIL	E SUSPEN	DED SOLID	S MASS I	BALANCE -	REAL-TIN	E REACTO
DAY	FEED	RCTR#2	SUMFEED	SUMRCT2	(SUMFD-	DELTA RCT	SOLIDS	X SOLIDS
	MLVSS	MLVSS	Day 1-9	Day 2-10	SUMRT)	(Day10-1)	RED	REDUCED
	(mg/l)	(mg/l)	X 0.48	X 0.48		*4.8	COLF-G	COLH#100
								ColD
1	5716	4430						
2	6308	4386	Moving A	verage Ma	<u>ss Balar</u>	nce % Remo	ved =	17.99
3	4158	4460	<u>Overall</u>	lass_Bala	nce % Re	emoved =	Salida	18.34
- 4 5	4902 4740	4304	Day 1-59	Day 2-60	FD-RT	Day 60-1	Reduced	4
6	6438	4116	177010	142019	34991	2525	32466	•
7	7318	4390						
8	5772	4526						
9	5104	4528						
10	7214	4328	24257	18809	5448	-490	5938	24.5
11	5550	441U 7407	24970	18821	5022	1123	6040	24.2
13	5084	4074	25524	19106	6418	1728	4690	18.4
14	5186	4346	25572	19201	6372	950	5421	21.2
15	5366	4645	25787	19455	6332	2539	3792	14.7
16	4798	4498	25272	19507	5765	518	5247	20.8
17	6442	4370	24062	19432	4631	-749	5379	22.4
18	7516	4356	24384	19349	5035	-826	5860	24.0
19	9486	4740	25542	19547	5995	1978	4017	15.7
20	5774	5/74	20032	20267	8440	3030	5078	17.6
27	5772	5344	28996	20207	8402	3264	5138	17.7
23	6144	5256	29326	21030	8296	4368	3928	13.4
24	5756	5152	29786	21274	8512	2434	6079	20.4
25	6078	5240	29973	21630	8343	3562	4782	16.0
26	5472	5020	30588	21942	8646	3120	5526	18.1
27	6342	4970	30122	22236	7885	2947	4938	16.4
28	21/0	4848 5024	29338	22200	5267	518 -482	0/J2 50/9	22.0
30	7396	5288	26293	22149	4144	-710	4855	18.5
31	0	5420	27090	22186	4905	365	4540	16.8
32	Ō	5178	24320	22148	2172	-374	2546	10.5
33	6386	5308	21371	22223	-852	749	-1601	-7.5
34	9568	5124	24738	22167	2571	-557	3128	12.6
35	5228	5500	31006	22398	8608	2304	6304	20.3
56	5462	5478	50889	22642	8247	2458	5809	18.8
) כ אד	7602	5106	30401	22020 22008	7588	816	6772	27 2
39	7864	5340	30156	22932	7224	250	6974	23.1
40	6114	5712	30381	23073	7308	1402	5907	19.4
41	6168	5640	33316	23294	10021	2218	7804	23.4
42	6288	5612	36276	23440	12836	1459	11377	31.4
43	6328	5290	33164	23520	9644	797	8847	26.7
44	6372	5502	27016	23521	3495	10	5486	12.9
45	6214	5602	2/202	23413	4152	- 10/5	761	12 9
40	5384	5320	289407	23241	4720 5320	505	4745	16.4
48	7608	5306	27876	23584	4292	- 163	4455	16.0
49	5912	5498	27754	23482	4272	-1027	5299	19.1
50	4728	5200	27657	23270	4386	-2112	6498	23.5
51	6008	5326	26965	23133	3832	- 1373	5205	19.3
52	7168	5282	26831	23129	3702	-38	3740	13.9
53	7512	5388	27234	23075	4160	-547	4707	17.3
54	4556	5560	2/781	25221	4560	1469	5091	11.1
55 54	4202 5010	2170	20443	22004	2575	-12/4	4774 188	16./
57	4944	5064	25730	22787	2963	-1162	4105	16.0
58	6114	4870	24451	22485	1966	-3014	4980	20.4
59	4400	5008	24548	22393	2155	-922	3077	12.5
60	5256	4956	24391	22215	2175	- 1776	3951	16.2

.

..

	A	asd#1 <u>n</u>	ITROGEN M	SS BALAN	<u>ce - Re</u> /	AL-TIME R	EACTOR	
DAY	FEED (TKN +	RCTR# (TKN +	2 SUMFEED Day 1-9	SUMRCT2 Day 2-10	(SUMFD- SUMRT)	DELTA-N I RCTR#2	Nitrogen Lost	X N Lost
	NOX)	NOx)	N In	N Out	((Day10-1)		ColH*100
	(mg/L)	(mg/l)	X U.40	X U.40		X 4.0	LOLF-G	ColD
1	478.45	360.74	Marrian Ar		na Dala			10 51
3	334.05	402.55	Overall N	lass Balar	nce % Re	enoved =	oved =	21.07
4	445.53	323.14					Nitroge	n
5	410.45	352.74	Day 1-59 15652	Day 2-60 12199	FD-RT 3452	Day 60-1 154	Removed 3298	
7	599.72	352.27				10-1		
8	486.17	369.80						
10	674.61	404.11	2029	1575	454	208	246	12.1
11	541.78	403.88	2123	1592	531	168	363	17.1
12	212.24	389.38	2138	1586	552 600	-0-) 392	208	28.8
14	439.24	415.12	2229	1655	574	299	275	12.3
15	465.84	415.85	2243	1687	556	325	231	10.3
17	535.46	348.59	2201	1689	438	- 102	540	25.4
18	630.32	341.65	2151	1681	470	-88	558	26.0
19	807.79	396.03	2257	1677	580	-39	619 504	27.4
20	513.17	430.38	2518	1727	791	375	416	16.5
22	525.70	439.50	2517	1744	774	167	607	24.1
23	529.29	474.50	2552	1772	780	285	495	19.4
25	570.51	441.68	2640	1825	815	306	510	19.3
26	527.58	425.45	2700	1862	839	369	470	17.4
27	571.85	452.78	2696	1915	781 739	533 145	248 594	9.2
29	713.93	409.43	2519	1919	600	- 101	700	27.8
30	616.13	440.15	2404	1906	498	-131	629	26.2
32	0.00	451.59	2454	1912	242 282	58 73	484 209	19.7
33	541.24	448.22	1947	1913	35	-65	99	5.1
34	770.23	446.12	2198	1915	283	21	262	11.9
36	441.59	478.18	2604	1940	670	122	470 548	20.9
37	432.55	423.81	2560	1951	609	-12	621	24.3
38	617.39	457.17	2529	1974	555 407	229	326	12.9
40	498.58	502.18	2516	2014	502	243	259	10.3
41	549.81	493.03	2755	2016	740	16	724	26.3
42	547.57	464.01	3019 2762	2023	996 744	76 - 49	920 703	30.5 28 7
44	589.22	452.12	2303	2006	297	-125	422	18.3
45	657.31	465.59	2374	2000	374	-60	435	18.3
40 47	587.52	473.04	2478	2024	454 515	236	218 383	8.8 15.0
48	691.52	476.98	2493	2039	454	20	434	17.4
49	539.23	466.34	2496	2022	475	-172	647 507	25.9
50	560.54	474.22	2310	1997	469	- 152	621	25.0
52	691.56	451.31	2473	2005	468	73	394	16.0
53 54	707.20	443.20	2524	2000	524 565	-43 157	567 (12	22.4
55	407.48	450.36	2474	2005	469	-109	578	23.4
56	586.68	451.32	2388	1989	399	- 160	558	23.4
57 · 58 ·	464.32	433.75	2432	1968 1940	464 362	-208	671 441	27.6 10 n
59	410.68	434.55	2352	1941	411	- 190	601	25.6
60	483.56	392.90	2335	1922	412	- 190	602	25.8

AASD#1 PHOSPHORUS MASS BALANCE - REAL-TIME REACTOR

DAY	FEED	RCTR#2	SUMFEED	SUMRCT2	(SUMFD-	DELTA RCT	TOTAL	XP
	TP	TP	Day 1-9	Day 2-10	SUMRT)	(Day10-1)	P Lost	Lost
	(mg/L)	(mg/L)	X U.48	X U.48		~4.0	COLF-G	COLM-100
								ColD
1	220	199						
2	241	205 1	Moving Av	<u>verage Ma</u>	<u>ss Balar</u>	nce % Remo	ved =	-6.90
3 4	214	199	overall	ass bald	ILE A R		Phospho	
5	205	216	Day 1-59	Day 2-60	FD-RT	Day 60-1	Reduced	1
6	271	215	8750	8617	133	643	-510	
7	307	219						
ő	250	230						
10	352	256	1002	958	44	274	-229	-22.9
11	294	251	1066	980	85	221	- 135	-12.7
12	279	247	1091	991	100	106	-5	-0.5
15	259	264	1146	1022	124	512 182	- 188	-10.4
15	259	258	1188	1040	127	206	-80	-6.7
16	246	275	1182	1088	94	269	-175	-14.8
17	308	255	1152	1099	53	115	-62	-5.4
18	354	252	1180	1110	179	106	-35	-3.0
19	410	204	1247	1109	150	- 10	97	7.2
21	252	289	1360	1136	224	202	23	1.7
22	262	279	1347	1143	204	72	132	9.8
23	261	298	1348	1164	184	211	-27	-2.0
24	276	293	1356	1181	175	168	154	0.5
26	263	274	1386	1192	193	91	102	7.4
27	301	288	1364	1210	155	173	-18	-1.3
28	246	271	1339	1218	121	82	39	2.9
29	413	326	1260	1247	13	293	-280	-22.2
30	366	341 344	1252	12/2	-40	200	- 290	-23.3
32	ŏ	370	1161	1339	- 178	346	-524	-45.1
33	325	373	1035	1377	-342	384	-726	-70.1
34	445	359	1215	1415	-200	379	-579	-47.7
35	261	369	1502	1461	41	456	-415	-27.6
30 37	271	301	1487	1490	כ אד-	288	-326	-23.0
38	385	351	1502	1536	-34	120	-154	-10.3
39	429	350	1489	1541	-52	43	-95	-6.4
40	330	376	1519	1555	-36	144	- 180	-11.8
41	345	385	1678	1562	115	72	43	2.6
42	320	320	1645	1557	172	-254	201 412	26.4
44	344	320	1421	1489	-69	-235	167	11.7
45	399	334	1461	1476	- 16	- 130	114	7.8
46	361	338	1522	1480	42	34	9	0.6
47	301	338	1561	1474	88	-62	150	9.6
40	332	351	1475	1474	17	- 168	42 185	12.6
50	276	350	1476	1440	35	-168	203	13.8
51	347	328	1442	1444	-2	38	-40	-2.8
52	415	343	1455	1461	-5	163	- 168	-11.6
53	323	333	1491	1467	24	62	-38	-2.5
74 55	200	304 3/0	1401	1401	-70	144	- 144 - 122	-y.(-8 6
56	364	349	1364	1492	-128	53	-181	-13.3
57	294	363	1394	1498	- 104	58	- 161	-11.6
58	375	361	1376	1507	- 132	96	-228	-16.5
59	253	348	1396	1506	-110	- 10	-100	-7.2
00	272	ددد	1282	1203	- 123	24	- 147	-10.0

~+

AASD#2 TOTAL SUSPENDED SOLIDS MASS BALANCE - FIXED-TIME REACTOR

X SOLIDS REDUCED ColH*100 ColD	14.14 14.77		13.4 16.7 16.7 16.8 14.7 13.7	15.0 8.21 8.21 2.8 8.21	16.1 17.0 13.2 11.5 12.3 12.3 12.3 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	12.6 17.2 17.1 18.7 19.5 21.0 23.9
SOL IDS RED Col F - G	<u>ved =</u> Solids Reduced		4399 5315 5229 4073 4772 44772	5077 4853 4708 5486 4976	4874 4678 4678 4678 3500 3486 3684 4023 3691 2476	828 1597 3771 3771 3771 4524 4524 4524 3790 3790 3753 3753	3599 4900 4850 4853 4853 4853 4853 4853 5824 5316 53719 53719 5399
DELTA RCT (Day20-1) *4.8	ce % Remo moved = Day 58-1		-653 -2448 -2774 -1027 -1027 -931 -931 -538	-1219 -960 -1488 -2976 -1805 -1757	-2544 -2160 -2582 -854 -854 -816 -1534 -158 -1478	-1555 -576 -1094 -1075 -1987 -121 -121 -1651	-1843 -3014 -2525 -3456 -3456 -4176 -4176 -4099
(SUMFD- SUMFT)	<u>ss Balan</u> nce <u>X Rei</u> (FD-FT) 8196		3746 2867 2454 3046 3508 3840 3840	3858 3893 3220 3220 3171 3171 3014	2330 2518 2518 3241 3241 2670 2688 2688 2688 2634 2634 2637	-728 1021 2791 2715 2537 2559 2569 2640 1802	1755 1886 1755 1756 1766 1524 1524 1620
SUMRCT1 Day 2-20 X 0.24	erage Ma ass Bala Day 2-58 82550		29142 29019 28881 28829 28829 28687 28687 28687 28660	28599 28551 28476 28476 28328 28328 28237 28237 28150	28022 27914 27713 27711 27711 27671 27671 27633 27566 27566 27566	27351 27353 27328 27728 27172 27172 27172 27073 26943 26943 26860	26768 26617 26617 26491 26347 26174 26174 25571 25571 25571 25571
SUMFEED Day1-19 X 0.24	<u>oving Av</u> <u>overall M</u> Jay 1-57 90746		32888 31886 31875 31875 32242 32527 32527	32457 32444 31697 30838 31408 31408 31164	30353 30432 30432 30984 30984 30588 30558 30558 30558 30558 30554 20554 28427	26624 28344 30059 30162 29887 29610 29610 29571 28662 28662	28524 28503 28617 28617 28617 28617 28617 27613 27613 27190 27190 27788
RCTR#1 MLSS (mg/L)	6332 66772 66772 66772 6574 6554 63240 63224 63224	6268 6268 6374 6374 6376 6376 6376 6376 6376 6478 6473 6478 6478 6478 6478 6478 6478 6478 6478	6196 6196 6194 6154 6154 6146 6212	5988 6066 6034 6006 6006 6104	5972 5976 5976 5976 5976 5976 5976 5938 5932 5932	5830 6026 5844 5842 5842 5842 5842 5760 5738 5760	5288 5330 5388 5388 5388 5388 5388 5388 53
FEED MLSS (mg/L)	10610 9596 5986 5986 5986 5914 6078	10356 9210 6074 6074 5156 5190 5356 5190 5952 78534 78534 78534 78534	5574 5574 5574 5574 5574 5586	7400 7242 5632 8450 6836 6182	5522 6160 6180 6982 6982 6868 5974 5974 0 0	68370 66330 66330 6036 6036 5472 5472 5472 5498 5498	5438 6632 6632 6082 5524 5524 5526 5560 6118 6118
DAY	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	。。622525255555555	222222222	2282855 2282855	6 4 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2204846684	8 2 8 2 8 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2

AASD#2 VOLATILE SUSPENDED SOLIDS MASS BALANCE - FIXED-TIME REACTOR

DAY	FEED	RCTR#1	SUMFEED	SUMRCT1	SUMET	DELTA RCT	SOLIDS	% SOLIDS
	(mg/L)	(mg/L)	X 0.24	X 0.24	SOMP ()	*4.8	ColF-G	ColH*100
								ColD
1	8466	5032				. -		
2	7818	5316	Moving A	verage Ma	ss Balar	ice % Remov	ved =	16.08
5 (3302	51/8	<u>Overall</u>	lass Bala	nce & Ke	= Devom		10./1
5	4722	5204						
6	4832	5032					Solids	
7	4958	4966	Day 1-57	Day 2-58	(FD-FT)	Day 58-1	Reduced	i i
8	6092	4912	74452	65968	8484	-3955	12439	
9	8442	4930						
10	/510	5060						
12	4704 6476	5096						
13	7898	5162						
14	4326	5176						
15	5282	5092						
16	4120	5132						
17	7150	4934						
18	0402	4830						
20	5286	4770	26986	23169	3816	-384	4200	15.6
21	6028	4956	26222	23083	3140	-1728	4868	18.6
22	5212	4982	25793	22994	2798	-1766	4565	17.7
23	6176	5018	26237	22963	3274	-624	3898	14.9
24	5436	4954	26538	22903	3635	-1200	4835	18.2
25	5016	4906	26777	22873	3904	-605	4509	16.8
20	4079	4988	20021	228/8	3943	-616	2020	14.5
28	5874	4/04	26708	22829	3879	-374	4254	15.9
29	4590	4850	26092	22778	3313	- 1008	4321	16.6
30	6948	4846	25391	22677	2714	-2026	4740	18.7
31	5578	4802	25862	22607	3256	-1411	4667	18.0
32	5154	4910	25647	22546	3101	-1210	4310	16.8
33	4560	4772	24988	22449	2539	- 1939	4478	17.9
24 75	5000	4122	2/001	22251	2004	-2189	4400	19.7
36	5828	4802	25481	22219	3262	-634	3895	15.3
37	5650	4760	25164	22202	2961	-336	3297	13.1
38	5664	4864	24969	22175	2794	-547	3341	13.4
39	4278	4850	25152	22151	3001	-490	3491	13.9
40	4928	4716	24910	22093	2817	-1152	3969	15.9
41	0	4762	24646	22040	2605	-1056	3661	14.9
42	5630	4704	23393	21979	-1	-1315	1314	6.0
44	5434	4834	23310	21896	1414	-346	1760	7.5
45	4918	4796	24715	21850	2865	-922	3786	15.3
46	5130	4664	24805	21821	2984	-576	3560	14.4
47	4972	4682	24588	21780	2807	-816	3623	14.7
48	4446	4562	24371	21711	2660	- 1382	4042	16.6
49	4880	4581	24336	21648	2689	-1272	3961	16.5
50	4500	4024	23040	21000	2233	- 1634	3090	16.8
52	4370	4012	23661	21466	1975	-1344	3319	14.2
53	5434	4238	23412	21350	2062	-2323	4385	18.7
54	4920	4266	23502	21252	2250	- 1968	4218	17.9
55	4480	4284	23204	21127	2077	-2486	4563	19.7
56	4402	4122	22881	20974	1906	-3062	4969	21.7
57	4554	4146	22581	20802	1779	-3446	5226	23.1
58	3930	4208	22315	20648	1667	- 5082	4748	21.3
29 60	5000	4074	22251	20494	1/3/	-3456	4019 5040	21./
00	J 140	4V46	E1714		1273	3730	JU77	

AASD#2 NITROGEN MASS BALANCE - FIXED-TIME REACTOR

DAY	FEED	RCTR#	SUMFEED	SUMRCT1	(SUMFD-	DELTA-N	Nitrogen	% N
	(NOX +	(TKN +	Day1-19	Day 2-20	SUMFT)	RCTR#1	Lost	Lost
	NOx)	NOX)	N In	N Out		(Day20-1)	ColF-G	ColH*100
	(mg/L)) (mg/l)) X 0.24	X 0.24		X 4.8		
								ColD
1	652.90	510.83						
2	735.48	503.15	Moving A	verage Ma	<u>ss Balan</u>	ce % Remo	ved =	17.67
- 3	536.08	523.23	Overall M	<u>lass Bala</u>	nce % Re	moved =		19.43
- 4	437.18	529.10						
5	401.10	513.20						
6	395.92	487.96					Nitrogen	
7	438.49	482.18	Day 1-57	Day 2-58	(FD-FT)	Day 58-1	Removed	
8	294.20	487.66	6688	6035	653	-646	1299	
9	647.48	461.16						
10	/13./2	480.82						
11	464.09	455.41						
12	563.69	448.40						
15	688.07	470.60						
14	397.14	431.10						
15	4/3.21	496.71						
10	333.23	472.07						
10	010.33	442.10						
10	222.07	400,00						
20	400.09	400.24	37/4	2170	147	- 771	/ 79	19 7
21	511 16	/78 07	2240	2163	177	-308	441	10.7
22	626 18	4.6. 17	22,0	2165	97	-370	447	20.8
27	554 74	440.17	2216	2145	80	-354	447	20.0
24	508 10	462 14	2210	2115	120	-245	374	16 7
25	453 41	461 04	2269	2108	161	-129	290	12.8
26	414.25	445.51	2283	2100	184	-176	360	15.7
27	559.24	444 69	2277	2089	188	-206	394	17.3
28	520.34	429.60	2341	2082	259	-151	411	17.5
29	423.16	448.20	2311	2074	237	-157	393	17.0
30	631.57	447.13	2241	2072	169	-40	209	9.3
31	533.57	435.61	2281	2069	212	-61	274	12.0
32	472.31	457.62	2274	2066	208	-63	271	11.9
33	423.23	452.27	2222	2066	156	6	150	6.8
34	450.30	422.66	2228	2048	180	-355	535	24.0
35	556.24	440.09	2222	2045	177	-61	238	10.7
36	513.26	450.05	2271	2046	224	20	204	9.0
37	510.30	452.84	2246	2043	203	-75	278	12.4
38	486.30	437.70	2236	2036	200	-137	337	15.1
39	400.74	425.89	2254	2029	226	- 137	362	16.1
40	457.39	438.17	2243	2029	215	-4	218	9.7
41	0.00	430.19	2231	2025	206	-77	282	12.7
42	0.00	403.25	2128	2012	116	-250	366	17.2
43	517.22	407.05	1995	1999	-4	-264	261	13.1
44	510.36	433.15	2122	1992	129	-134	263	12.4
45	453.57	402.70	2258	1982	276	-205	481	21.3
46	465.25	408.36	2267	1973	294	- 174	468	20.7
47	470.04	399.45	2245	1966	278	-145	423	18.9
48	422.56	410.46	2233	1957	275	- 181	457	20.5
49	456.62	410.70	2232	1948	284	-175	459	20.6
50	402.42	411.99	2190	1943	248	-113	361	16.5
51	436.65	403.09	2159	1930	229	-262	491	22.7
52	408.88	401.48	2150	1917	233	-244	477	22.2
53	509.15	392.33	2147	1910	237	- 146	382	17.8
54	475.21	367.24	2161	1893	268	-350	618	28.6
55	436.35	387.64	2142	1878	264	-300	564	26.3
56	422.65	377.67	2123	1860	264	-361	624	29.4
57	429.37	353.75	2102	1839	263	-403	666	31.7
58	555.27	5/6.23	2088	1828	261	-238	499	23.9
59	516.31	561.19	2072	1809	263	-370	633	30.5
60 -	429.21	572.28	2038	1795	243	-278	521	25.6

AASD#2 PHOSPHORUS MASS BALANCE - FIXED-TIME REACTOR

DAY	FEED	RCTR#1	SUMFEED	SUMRCT1	(SUMFD-	DELTA-P	Total P	% P
	TP	TP	Day1-19	Day 2-20	SUMFT)	RCTR#1	Lost	Lost
	(mg/L)	(mg/L)	Y 0 24	Y 0 24		(Day20-1)	LOIF-6	
			A 0.24	X 0.24		A 4.0		ColD
1	287	297						
2	322	301	Moving A	verage Ma	ss Balan	ce % Remo	ved =	-7.50
3	237	306	<u>Overall I</u>	lass Bala	nce % Re	moved =		-9.83
4	191	306						
2	175	297					Phoenhor	
7	100	207	Nav 1-57	Day 2-58	(FD-FT)	Day 58-1	Removed	us i
Ŕ	134	289	2000	3553	-554	-259	-295	•
ğ	330	279						
10	425	292						
11	201	278						
12	245	281						
13	301	289						
14	165	278						
15	203	296						
10	121	2/3						
18	204	2/5						
10	184	279						
20	206	274	1064	1309	-245	-110	- 135	-12.7
21	225	267	1045	1301	-256	- 163	-93	-8.9
22	193	270	1021	1292	-271	-173	-98	-9.6
23	242	275	1011	1285	- 274	- 149	- 125	-12.4
24	222	281	1023	1281	-258	-77	- 181	-17.7
25	202	267	1034	1276	-242	-96	-146	-14.2
26	185	271	1040	1272	-231	-91	- 140	-13.5
27	256	2/1	1057	1267	-230	- 86	- 144	-13.9
20	242	203	1000	1204	- 197	-11	- 120	-12.2
30	207	279	001	1258	-214	-20	-238	-76 1
31	241	216	1014	1242	-228	-312	84	8.2
32	210	230	1013	1228	-215	-283	68	6.7
33	186	227	991	1216	-225	-245	20	2.0
34	202	220	996	1198	-202	-365	163	16.4
35	238	226	996	1186	- 191	-226	35	3.5
36	223	228	1017	1176	- 159	-216	57	5.6
37	221	231	1007	1162	-155	-269	114	11.3
38	210	223	1002	1149	-147	-269	122	12.1
39	169	218	1008	1125	-127	-269	141	14.0
40	195	223	999	1125	- 120	-211	-22	-23
42	ň	240	945	1112	- 167	- 140	-18	-1.9
43	224	245	887	1103	-216	-173	-44	-4.9
44	222	254	941	1100	- 159	-62	-97	-10.3
45	200	242	999	1093	-94	- 139	45	4.5
46	208	244	1003	1087	- 84	-130	46	4.5
47	204	240	991	1081	-90	-110	20	2.1
48	185	240	982	1073	-91	- 163	72	7.4
49	201	245	979	1067	-88	- 130	42	4.3
5U ≊4	100	243	956	1074	-178	159	-257	-20.9
21 52	190	240 2/.4	941 079	10/0	-137	00 01	-223	-25.1
57	237	240 248	7-50 070	1082	- 144	174	-233	-30 4
54	223	241	947	1093	-146	72	-218	-23_0
55	205	245	943	1097	-153	82	-235	-24.9
56	196	243	939	1100	-161	58	-218	-23.2
57	185	235	933	1103	- 169	58	-227	-24.3
58	134	243	927	1109	- 181	120	-301	-32.5
59	116	231	919	1110	- 192	38	-230	-25.1
60	152	231	900	1106	-206	-82	- 125	-13.8

AASD#2 ALKALINITY MASS BALANCE - FIXED-TIME REACTOR

DAY	FEED ALK (mg/L)	RCTR#1 S ALK D (mg/L) A	UMFEED ay1-19 LK In X 0.24	SUMRCT1 Day 2-20 ALK Out X 0.24	(SUMFD- SUMFT)	DELTA-A RCTR#1 (Day20-1) X 4.8	ALK Lost ColF-G	% ALK Lost ColH*100
								ColD
1	204	136 144 Mo	ving A	versde Ma	e Balan	ca Y Perro	veri =	13 82
3	188	166 Ov	erall	lass Balar	nce % Re	moved =	ved -	15.49
4	150	176	<u></u>					ليسبيها
5	180	145					Albalim	
7	165	122 140 Da	v 1-57	Day 2-58	(FD-FT)	Day 58-1	Remove	i cy
8	136	124	2533	2006	527	134	392	-
9	172	124						
10	164	124						
12	190	134						
13	208	128						
14	220	132						
15	162	142						
17	220	130						
18	190	128						
19 20	166	142	827	671	106	10	186	22 5
21	152	140	814	630	184	- 19	203	25.0
22	128	134	804	623	182	- 154	335	41.7
23	160	136	790	613	177	- 192	369	46.7
24 25	154	126	786	602	184	-139	323	41.1
26	138	134	779	600	179	-29	208	26.6
27	168	124	773	600	172	0	172	22.3
28	164	124	780	600 603	180	0 4 A	180	23.1
30	140	134	775	607	168	86	81	10.4
31	186	152	775	612	164	86	77	10.0
32	192	176	774	623	151	230	-79	-10.2
دد ۲۵	152	154	770	628 630	142	29	0C 96	4.7
35	256	170	752	637	115	154	-39	-5.2
36	204	144	775	641	134	67	67	8.6
37	248	148	771	646	125	96	29	3.8
39	176	154	798	652	145	77	69	8.6
40	200	164	804	658	145	115	30	3.8
41	0	166	815	666	149	154	-4	-0.5
42	180	166	746	673 680		144	-33 -78	-4.2
44	190	152	795	686	109	125	-16	-2.0
45	196	158	851	692	158	115	43	5.1
46	208	152	864	699 707	166	134	31	3.6
47 48	192	156	880	707	168	106	62	7.1
49	184	150	890	715	176	58	118	13.3
50	196	164	891	718	173	58	116	13.0
51	186 100	152	893	712	181	-115	297	33.2
53	232	152	901	713	188	19	169	18.8
54	218	160	916	710	205	-48	253	27.7
55	220	158	907	714	193	67	126	13.9
50 57	220 238	164	911 004	718 720	195	/ / 48	116	12.8
58	166	164	908	722	186	48	138	15.2
59	160	206	906	732	173	202	-28	-3.1
60	218	226	896	747	149	288	-139	-15.5

AASD#2 TOTAL SUSPENDED SOLIDS MASS BALANCE - REAL-TIME REACTOR

DAY	FEED MLSS (mg/l)	RCTR#2 MLSS (mg/L)	2 SUMFEED Day1-19) X 0.24	SUMRCT2 Day 2-20 X 0.24	(SUMFD- SUMRT)	DELTA RC1 (Day20-1) *4.8	SOLIDS RED Colf-G	% SOLIDS REDUCED ColH*100
_								ColD
1	10610 9596	6658 6820	Moving A	verage Ma	ss Balar	nce % Remo	ved =	18.49
3	4040	6768	Overall !	lass Bala	nce % Re	moved =		19.87
4	5986	6580						
6	5914	6374					Solids	
7	6078	6222	Day 1-57	Day 2-58	(FD-RT)	Day 58-1	Reduced	i
8	7454	6132	90746	80948	9798	-8237	18034	
10	9210	6208						
11	6074	6612						
12	7854	6488						
13	9562	6392						
15	6380	6404						
16	4924	6414						
17	8634	6150						
18 10	7826 5062	6338						
20	6436	6250	32888	29295	3593	- 1958	5552	16.9
21	7298	6204	31886	29147	2739	-2957	5696	17.9
22	6292	6304	31335	29036	2299	-2227	4526	14.4
23	7512 6576	6222	318/5	28950	2926	-1718	4644 5410	14.6
25	6114	5856	32527	28724	3803	-2486	6289	19.3
26	5586	5964	32575	28662	3913	-1238	5151	15.8
27	7400	5832	32457	28590	3867	-1440	5307	16.4
28	7242	5062	32444	28494	3950	- 1930	5880	18.1
30	8450	5824	30838	28199	2639	-3782	6421	20.8
31	6836	5938	31408	28067	3341	-2640	5981	19.0
32	6182	5860	31164	27939	3225	-2554	5778	18.5
33 34	5522	5910	30222	27647	2786	- 3483 - 2371	5157	20.0
35	7442	5794	30380	27498	2882	-2976	5858	19.3
36	6982	5818	30984	27418	3566	- 1594	5160	16.7
37	6798	5812	30588	27292	3296	-2525	5820	19.0
20 30	0000 5170	5768	30541	27190	3686	-2055	5797	17.1
40	5974	5678	30254	26948	3306	-2525	5831	19.3
41	0	5630	29937	26786	3150	-3235	6385	21.3
42	0	5592	28427	26635	1791	-3024	4815	16.9
43	6630	5574	28344	26402	1941	- 1354	3430	11.6
45	6016	5510	30059	26293	3765	-2179	5944	19.8
46	6256	5651	30162	26250	3912	-869	4781	15.8
47	6086 5772	5514	29887	26180	3707	-1402	5109	17.1
49	6000	5406	29571	25955	3617	-2490	5623	19.0
50	5498	5530	28983	25857	3126	- 1958	5085	17.5
51	5604	5454	28662	25759	2903	- 1949	4852	16.9
52	5438 6622	5464	28524	25647	2877	-2256	5133	18.0
54	6082	5152	28617	25290	3326	-4042	6408	24.9
55	5524	5192	28290	25140	3150	-3005	6155	21.8
56	5436	5068	27940	24962	2979	-3571	6550	23.4
57 58	5560 4714	2028	27300	24777 26570	2836	-3686	6522 6685	23.6
59	4300	4976	27190	24411	2779	-3370	6149	29.5
60	6118	4762	26788	24202	2586	-4166	6752	25.2

AASD#2 VOLATILE SUSPENDED SOLIDS MASS BALANCE - REAL-TIME REACTOR

¢ SOLIDS tEDUCED ColH*100	ColD 20.16 21.50											18.7	19.0	15.8	18.4	20.8	16.8	D ~ 0	18.7	21.9	20.9	22.4	19.3	21.9 8 8 1	20.6	19.0	21.7	23.9	20-0	13.7	19.5	18.7	22.2	21.2	18.7	18.9	25.8	23.7 7 7	22.72 22.72	22.6	23.1 8	24.2
SOLIDS %	ed =	J	Sol ids Reduced	16004								5035	5158	4021	4890	5572	4505	4240 5118	4882	5559	5403	5593	4825	5485	5174	4732	2403	5889	4684 3324	3200	4829	4591	5399	5160	4220	4438	6052	5561	5881	5785	5127	5309
DELTA RCT (Day20-1) *4.8 C	ce % Remov		Day 58-1	-6374								- 1402	-2160	- 1027	-1402	-1757	-614	124-	- 1546	-2784	-2054	-2880	-1958	- 2544	- 1901	-1574	-2112	-2726	-2640	-1056	-1219	-1032	-1958	-1670	- 1409	-1613	-3101	-2400	-3062	-3110	-2515	-2870
SUMFD- [SUMRT)	<u>is Balanc</u> ice % Ren		(FD-RT)	9630								3633	2978	2022	3488	3816	3890	2820 7875	3336	2775	3349	2713	2867	2941	3273	3157	3291	3163	2044	2144	3609	3559	3441	3490	2885	2825	2951	3161 2080	2818	2674	2612 2612	2438
SUMRCT2 (Day 2-20 X 0.24	erage Mas lass Batar		Dav 2-58	64822								23352	23244		23050	22962	22931	228922	22756	22616	22514	22276	22178	22050	21890	21811	27/12 21619	21483	21351	21166	21105	21028	20930	20847	20402	20616	20461	20341	20062	19907	19/45 19619	19476
SUMFEED Day1-19 X 0.24	<u>loving Av</u> Verall M		lav 1-57	74452								26986	26222	26725	26538	26777	26821	26721	26092	25391	25862	24988	25044	24991	25164	24969	26162	24646	23395	23310	24715	24588	24371	24336	235840	23441	23412	23502	22881	22581	22231 22231	21914
RCTR#2 MLVSS (mg/L)	5282 5442 <u>1</u> 5392 0	5238 ⁻ 5224	5072 4920 [4824	5092	5178	5100	5122	5156	4950 5068	5036	4990	4992	5026	1207	4706	4792	4674		4680	4750	4 <u>7</u> 74	4174	4626	4672	4708	4628	4518	7474	9877	4538	1964	4362	4332	4444 4300	4398	4068	4126	4034	4060	5954 4028	3920
FEED MLVSS (mg/L)	8466 7818 3362	4922 4438	4832	6092	10157	476 6476	7898	4,5,20 5,282	4120	0617	4902	5286	6028	5212	2736	5016	4540	6038 587/	4590	6948	5578	4260	5060	6160 5220	5650	5664	4278 4028	0	0	5434	4918	0515	9777	4880	4500 4570	4438	5434	4920	4402	4554	395U 3606	5148
DAY	⊷ 0 M	4 เก	~ ~	000	2:	= 2	₽;	<u>4</u> ñ	2 5	2 8	2 <u>6</u>	20	56	ßĸ	3 %	នេ	26	27	38	30	ž	ž	M M	82	o h	88 8	50 Q	5	34	13	\$? \$	55	18	65	25	22	23	7 2	2 N	22	2 2	99

AASD#2 NITROGEN MASS BALANCE - REAL-TIME REACTOR

DAY	FEED	RCTR#2	2 SUMFEED	SUMRCT2	SUMFD-	DELTA-N	Nitrogen	% N
	(NOX +	(TKN +	Day1-19	Day 2-20	SUMRT)	RCTR#2	LOST	LOST
	(ma/L)	(ma/L)	X 0.24	X 0.24		X 4.8	COLL-0	
	(/ (mg/ e						ColD
1	652.90	527.01	_					
2	735.48	473.19	Moving A	verage Mas	<u>ss Balan</u>	ce % Remo	ved =	20.59
<u>د</u>	530.08	230.51	Overall	lass Bala	nce % Ke	moved =		25.87
5	437.10	470.17						
6	395.92	462.16					Nitrogen	
7	438.49	478.37	Day 1-57	Day 2-58	(FD-RT)	Day 58-1	Removed	
8	294.20	456.44	6688	5869	819	-911	1730	
9	647.48	455.19						
10	713.72	472.05						
11	464.09	480.04						
12	202.09 688 07	401.01						
14	397.14	475.96						
15	475.21	463.56						
16	355.23	470.6						
17	616.35	432.37						
18	552.07	442.06						
19	408.69	435.47	77//	2477	347	7/7	554	77 7
20	440.18	433.31	2040	2133	213	- 243	220	23.7
22	426 18	430.32	2290	2104	138	-414	552	24.6
23	554.24	446.37	2216	2091	124	-249	373	16.8
24	508.10	446.47	2244	2085	159	-127	286	12.7
25	453.41	437.35	2269	2079	190	-119	310	13.6
26	414.25	439.57	2283	2070	214	-186	400	17.5
27	559.24	452.94	2277	2069	209	-17	225	9.9
28	520.34	438.59	2341	2065	2/6	-80	356	15.2
29	423.10	421.3	2011	2034	200	-213	4/1 5/0	20.4
31	533.57	400.00	2281	2033	248	-73	320	14.0
32	472.31	442.28	2274	2026	247	-135	382	16.8
33	423.23	429.75	2222	2015	207	-222	428	19.3
34	450.30	429.31	2228	2007	221	-164	386	17.3
35	556.24	425.66	2222	1996	226	-216	442	19.9
36	513.26	420.69	22/1	1994	2//	- 20	333	14.7
21	/86 30	437.47	2240	1086	253	-149	203	17 0
70	400.00	430.14	2254	1970	275	- 122	397	17.6
40	457.39	408.26	2243	1972	271	- 144	416	18.5
41	0.00	414.67	2231	1965	266	- 142	408	18.3
42	0.00	401.61	2128	1954	174	-215	389	18.3
43	517.22	395.99	1995	1942	53	-242	295	14.8
44	510.36	410.74	2122	1936	186	-128	514	14.8
45	455.57	402.25	2258	1927	250	- 1/9	510 726	22.0
40	403.23	411 34	2207	1907	343	-131	473	21.1
48	422.56	402.38	2233	1896	336	- 120	456	20.4
49	456.62	396.27	2232	1893	339	-57	396	17.7
50	402.42	391.57	2190	1880	310	-264	574	26.2
51	436.65	385.15	2159	1866	293	-274	567	26.3
52	408.88	386.6	2150	1856	294	-207	502	23.3
55	209.15	224.68	2147	1050	309	- 308	00/ 605	28.0
54	413.21	350 22	2101	1810	0CC 777	-207	605	20.0
56	422.65	350.96	2123	1789	335	-425	759	35.8
57	429.37	364.49	2102	1779	323	- 192	515	24.5
58	333.27	337.28	2088	1757	332	-446	777	37.2
59	316.31	345.15	2072	1742	331	-303	634	30.6
60	429.21	354.3	2038	1727	311	-290	601	29.5

AASD#2 PHOSPHORUS MASS BALANCE - REAL-TIME REACTOR

Note: Mass Balance has used 58 days of data.

0 1				
% P Lost ColH*10	ColD 	8-5	990 990 101 101 101 101 101 101 101 101	-28.5 -28.5 -25.9
otal P Lost Colf-G	ed = thosphor -158 -158		72 22 22 22 22 22 22 22 22 22 22 22 22 2	-266 -192 -238 -238
DELTA-P 1 RCTR#2 (Day20-1)C X 4.8	te % Remov Roved _= Day 58-1 -360	-154 -154 -120 -120 -120 -120 -120 -122 -224 -224 -224		120 38 82 82 82 96
SUMFD- SUMRT)	is Baland ice X Ren (FD-RT) -518	- 242 - 257 - 255 - 255 - 255 - 255 - 211 - 255 - 255 - 255 - 255 - 211	-217 -198 -198 -150 -150 -170 -121 -122 -125 -125 -125 -125 -125 -125	-154 -154 -180
SUMRCT2 (SumrcT2 (Day 2-20 P Out X 0.24	erage Mas ass Balar bay 2-58 3517	1306 1306 1290 1283 1266 1266 1266 1266 1256 1256 1256	1208 1194 1179 1167 11167 1117 1117 1117 1117 111	1079 1081 1085 1080
SUMFEED S Day1-19 [P In X 0.24	oving Ave verall Hi ay 1-57 [1066 1023 1023 1023 1023 1023 1024 1014 1014 1015 1015	991 996 996 997 997 997 997 997 997 997 997	933 927 919 900
RCTR#2 TP (mg/L)	0 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	223 223 223 223 223 223 223 223 223 223	555 555 555 555 555 555 555 555 555 55	222 223 223 223 223 223 223
FEED TP (mg/L)	287 287 287 287 287 287 287 287 287 287	225 225 225 225 225 225 225 225 225 225	186 223 223 223 223 223 223 223 223 223 22	134 134 152
DAY	-0w4w9r806166466	22222222222222222222222222222222222222	848868889533333586888888888888888888888888	558299 568299

;

AASD#2 ALKALINITY MASS BALANCE - REAL-TIME REACTOR

Note: Mass Balance has used 58 days of data.

1 204 140 2 194 140 Moving Average Mass Balance X Removed = 13.41 3 188 174 Overall Mass Balance X Removed = 13.41 4 150 166 180 142 6 178 138 Alkalinity 7 165 140 Day 1-57 Day 2-58 (FD-RT) Day 58-1 Removed 8 136 124 2533 1998 535 125 410 9 172 124 10 164 110 11 180 126 188 130 14 220 128 130 142 136 142 142 140 132 140 140 140 150 150 140 150 120 141 150 120 142 130 120 141 143 </th <th>DAY</th> <th>FEED ALK (mg/L)</th> <th>RCTR#2 5 ALK [(mg/L) /</th> <th>SUMFEED Day1-19 ALK In X 0.24</th> <th>SUMRCT2 Day 2-20 ALK Out X 0.24</th> <th>(SUMFD- SUMRT)</th> <th>DELTA-A RCTR#2 (Day20-1)(X 4.8</th> <th>ALK Lost ColF-G</th> <th>% ALK Lost ColH*100 ColD</th>	DAY	FEED ALK (mg/L)	RCTR#2 5 ALK [(mg/L) /	SUMFEED Day1-19 ALK In X 0.24	SUMRCT2 Day 2-20 ALK Out X 0.24	(SUMFD- SUMRT)	DELTA-A RCTR#2 (Day20-1)(X 4.8	ALK Lost ColF-G	% ALK Lost ColH*100 ColD
2194140Moving Average Mass Balance % Removed = Overall Mass Balance % Removed =13.413188174Overall Mass Balance % Removed = Nemoved =16.19415016616651801421656178138Alkalinity7165140Day 1-57Day 2-58 (FD-RT) Day 58-1 Removed81361242533199853512541016411011180126121901281320813014220128151781301616213617220134181901321916613820152142814211521428146201941018522.72212813480461119423160134241541302515012826138128277959518525150128786597184261312716812828779595185-5824231.12716828779291483277950516957102<	1	204	140						
3 180 174 Overall (Mass Balance & Removed = 16.19 4 150 166 178 138 Alkalinity 7 165 140 Day 1-57 Day 2-58 (FD-RT) Day 58-1 Removed 8 136 124 2533 1998 535 125 410 9 172 124 10 164 110 11 180 126 125 410 11 180 126 12 190 128 130 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 143 142 143 143 143 143 143 144 144 144 144 144 144 144 145 144 144 144 144 145 144 144 144 144 145 145 145 144 145 144 145 145 145 145 145 146 144 144 144 144 145 144 145	2	194	140 Mc	oving A	verage Ma	ss Balan	ce % Remov	/ed =	13.41
5 130 142 Alkalinity 7 165 140 Day 1-57 Day 2-58 (FD-RT) Day 58-1 Removed 8 136 124 2533 1998 535 125 410 9 172 124 10 164 110 111 180 126 12 190 128 13 208 130 14 220 128 13 208 130 14 220 128 14 10 188 190 14 220 128 13 208 130 14 10 188 220 128 15 178 130 16 162 136 17 220 134 18 190 132 19 166 138 22.7 20 152 142 814 620 194 10 185 2.7 21 152 142 814 620 194 10 185 2.7 22 128 134 804 611 194 <	2 4	166	1/4 U 166	/erall #	lass Bala	nce % ke	moved =		10.19
6 178 138 Alkalinity 7 165 140 Day 1-57 Day 2-58 (FD-RT) Day 58-1 Removed 8 136 124 2533 1998 535 125 410 9 172 124 10 164 110 11 180 125 410 10 164 110 14 220 128 13 208 130 14 220 128 136 12 190 128 13 15 178 130 16 162 136 14 16 162 136 17 220 134 18 190 132 19 166 138 22.7 22.0 134 18 190 185 22.7 21 152 142 814 620 194 10 185 22.7 22 128 134 804 611 194 192 386 48.0 23 160 134 790 603 187 -154 341	5	180	142						
7 165 140 Day 1-57 Day 2-58 (FD-RT) Day 58-1 Removed 8 136 124 2533 1998 535 125 410 9 172 124 10 164 110 11 180 126 12 190 128 13 208 130 14 220 128 13 208 130 14 220 128 14 10 185 23.9 14 220 128 136 14 10 185 22.7 19 166 138 10 185 22.7 22 128 134 804 611 194 -192 386 48.0 23 160 134 790 603 187 -154 341 43.1 24 154 130 792 600 192 -58 250 31.5 25 150 128 786 598 188 -48 236 30.1	6	178	138				ļ	lkalin	ity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	165	140 Da	ay 1-57	Day 2-58	(FD-RT)	Day 58-1	Removed	i i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	136	124	2533	1998	535	125	410	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	164	110						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	180	126						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	190	128						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	208	130						
16162136172201341819013219166138201521428276202071019823.9211521428146201941018522.722128134804611194-19238648.023160134790603187-15434143.124154130792600192-5825031.525150128786598188-4823630.126138128779595185-5824231.1271681287735961771915820.4281641287805971841916521.129148132779602177106719.1301821407756051696710213.231186142775609167679912.832192176774620155221-66-8.633152156770626144134101.234170148754631123863744	15	178	120						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	162	136						
1819013219166138201521428276202071019823.9211521428146201941018522.722128134804611194-19238648.023160134790603187-15434143.124154130792600192-5825031.525150128786598188-4823630.126138128779595185-5824231.1271681287735961771915820.4281641287805971841916521.129148132779602177106719.1301821407756051696710213.231186142775609167679912.832192176774620155221-66-8.633152156770626144134101.23417014875463112386374<0	17	220	134						
17 160 136 20 152 142 827 620 207 10 198 23.9 21 152 142 814 620 194 10 185 22.7 22 128 134 804 611 194 -192 386 48.0 23 160 134 790 603 187 -154 341 43.1 24 154 130 792 600 192 -58 250 31.5 25 150 128 786 598 188 -48 236 30.1 26 138 128 779 595 185 -58 242 31.1 27 168 128 773 596 177 19 158 20.4 28 164 128 780 597 184 19 165 21.1 29 148 132 779 602 177 106 71 9.1 30 182 140 775 605 169 67 102 13.2 31 186 142 776 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 86 3	18	190	132						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	152	138	827	620	207	10	198	27 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	152	142	814	620	194	10	185	22.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	128	134	804	611	194	- 192	386	48.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	160	134	790	603	187	-154	341	43.1
26 138 128 779 595 185 -58 242 31.1 27 168 128 773 596 177 19 158 20.4 28 164 128 780 597 184 19 165 21.1 29 148 132 779 602 177 106 71 9.1 30 182 140 775 605 169 67 102 13.2 31 186 142 775 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 756 631 123 86 37 4.9	24	154	128	786	598	188	-36 -48	230	31.5
27 168 128 773 596 177 19 158 20.4 28 164 128 780 597 184 19 165 21.1 29 148 132 779 602 177 106 71 9.1 30 182 140 775 605 169 67 102 13.2 31 186 142 775 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 86 37 4.9	26	138	128	779	595	185	-58	242	31.1
28 164 128 780 597 184 19 165 21.1 29 148 132 779 602 177 106 71 9.1 30 182 140 775 605 169 67 102 13.2 31 186 142 775 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 756 631 123 86 37 4.9	27	168	128	773	596	177	19	158	20.4
29 148 132 779 602 177 106 71 9.1 30 182 140 775 605 169 67 102 13.2 31 186 142 775 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 86 37 4 9	28	164	128	780	597	184	19	165	21.1
31 186 142 775 609 167 67 99 12.8 32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 86 37 4.9	29 30	146	132	775	602	169	67	102	13 2
32 192 176 774 620 155 221 -66 -8.6 33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 86 37 4 9	31	186	142	775	609	167	67	99	12.8
33 152 156 770 626 144 134 10 1.2 34 170 148 754 631 123 84 37 4.0	32	192	176	774	620	155	221	-66	-8.6
	33	152	156	770	626	144	134	10	1.2
35 256 180 752 641 111 211 -100 -13 3	24 35	256	148	752	641	125	00 211	-100	4.9
36 204 148 775 645 130 67 63 8.1	36	204	148	775	645	130	67	63	8.1
37 248 148 771 648 122 77 46 5,9	37	248	148	771	648	122	77	46	5.9
38 220 150 785 651 133 58 76 9.7	38	220	150	785	651	133	58	76	9.7
59 176 160 798 656 142 86 56 7.0 40 200 158 804 640 144 77 67 8.4	39 40	176 200	160	798 804	626 660	142	86 77	56	. 7.0
41 0 150 815 663 152 77 75 9.2	41	0	150	815	663	152	77	75	9.2
42 0 168 784 672 113 163 -50 -6.4	42	Ō	168	784	672	113	163	-50	-6.4
43 180 144 746 675 71 67 4 0.5	43	180	144	746	675	71	67	4	0.5
44 190 150 795 680 115 106 10 1.2 45 196 156 851 687 166 136 20 3.6	44 45	190	150	795 851	68U 687	115	106 13/	10	1.2
46 208 164 864 696 169 173 -4 -0.4	46	208	164	864	696	169	173	-4	-0.4
47 188 156 874 702 172 134 37 4.3	47	188	156	874	702	172	134	37	4.3
48 192 160 880 709 171 134 36 4.1	48	192	160	880	709	171	134	36	4.1
49 184 152 890 712 179 58 121 13.6 50 194 140 891 714 175 84 88 0.0	49 50	184	152	890	712	179	58	121	13.6
51 186 154 893 711 182 -106 288 32.2	51	186	154	893	710	182	-106	288	32.2
52 190 158 892 711 180 10 171 19.2	52	190	158	892	711	180	10	171	19.2
53 232 162 901 715 186 67 119 13.2	53	232	162	901	715	186	67	119	13.2
54 218 162 916 710 205 -86 292 31.9 55 220 158 907 713 10/ // 1//	54	218	162	916	710	205	-86	292	31.9
56 220 162 911 716 194 40 146 16.1	56	220	162	911	716	194	40 67	140	10.1
57 238 170 904 721 183 96 87 9.6	57	238	170	904	721	183	96	87	9.6
58 166 166 908 722 186 29 157 17.3	58	166	166	908	722	186	29	157	17.3
>y 160 218 906 737 169 288 -119 -13.1 60 218 222 896 754 142 346 -204 -22.7	59 60	160 218	218 222	906 804	737	169 142	288 344	-119	-13.1

••

APPENDIX G

SOME BIO-P CALCULATIONS

	I	Page
<u>A</u>	Inorganic P Additions to Bio-P [#] 1	290
<u>B</u>	Acetate Additions	290

APPENDIX G

SOME BIO-P CALCULATIONS

<u>A</u> Inorganic P Additions

Adding Na_2HPO_4 M.W. = 142 gms/mole contains 31 gms/mole of P. Since target is around 7 mg/L P in the Feed Bucket...

Thus, need $142 \times 7 = 32 \text{ mg Na}_2\text{HPO}_4/\text{Litre of Influent}$.

Feed Bucket contains approximately 3 Carboys (approx. 48 L)...

Add 32 mg x 48 L x $1 \text{ gm}_{}$ = 1.5 gms Na₂HPO₄/Feed Bucket Fill L 1000 mg

B Sodium Acetate Additions

Calculate COD equivalent of Acetate... (Assume complete oxidation)

 $NaCH_{3}COO + 2 O_{2} \iff NaHCO_{3} + CO_{2} + H_{2}O$

82 gms 64 gms 84 gms 44 gms 18 gms

If assumed to add 30 mg/L RBD COD (must be ≥ 25 mg/L)

 $\underline{82} \times 30 = 38 \text{ mg of NaAc} / \text{L of influent must be added}$

Each Influent Feed is 2.4 L; Acetate Pump delivers 30 mL/6 min.

Thus.. 38 mg x 2.4 L x <u>1</u> x <u>1000 mL</u> x <u>1 gm</u> 30 mL L 1000 mg

= 3.04 gms/L Acetate Solution must be made up in volumetric flask

APPENDIX H

CHEMICAL DATA - BIO-P

Solids Concentrations

Day	Date		FEED		FT R	CTR SC	LIDS	FT EFF	LUENT	SOLIDS	RT	RCTR S	OLIDS	RT EFF	LUENT	SOLIDS
of		TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio
Run		mg/L	mg∕L	mg/L	mg/L	mg/L	mg∕L	mg/l	mg∕L	mg∕l	mg/l	mg∕l	mg/L	mg/L	mg/L	mg/L
1 2	Feb/19/91 /20/	99	89	0.90	2212	1722	0.78	2	2	1.00	2366	1880	0.79	3	3	1.00
3	/21/	••••					••••						••••			••••
5	/23/	80	69	0.86	2352	1804	0.77	2	2	1.00	2612	2012	0.77	2	2	1.00
7	/25/															
9 10	/20/ /27/	77	68	0.88	2128	1632	0.77	11	11	1.00	2384	1822	0.76	3	3	1.00
11	Mar/01/91			••••				••••				••••		••••	••••	••••
13	/02/	116	105	0.91	2376	1834	0.77	2	2	1.00	2466	1892	0.77	1	1	1.00
15	/05/									••••					•	
17	/07/	9 7	87	0.90	2342	1826	0.78	4	4	1.00	2404	1870	0.78	2	2	1.00
19	/09/		••••							••••						
21	/11/	105	93	0.89	2014	1542	0.77	5	5	1.00	2156	1636	0.76	5	5	1.00
23	/13/										••••				••••	
25	/15/	113	94	0.83	1620	1208	0.75	5	5	1.00	1890	1392	0.74	4	4	1.00
27	/17/		••••				••••					••••			•	
29	/19/	107	96	0.90	1860	1344	0.73	5	5	1.00	2012	1428	0.71	5	5	1.00
31 32	/21/	••••	••••	••••				••••								
33 34	/23/	121	107	0.89	2170	1618	0.75	5	5	1.00	2252	1646	0.73	4	4	1.00
35	/25/		••••	••••			••••									
37 38	/27/	85	75	0.88	2166	1625	0.75	1	1	1.00	2272	1696	0.75	2	2	1.00
39 40	/29/ /30/			••••	••••									••••		
Maxi	mum	121	107	0.91	2376	1834	0.78	11	11	1.00	2612	2012	0.79	5	5	1.00
Mear Mi_∸) 	100	88 ∡∘	0.88	2124	1616	0.76	4	4	1.00	2281	1727	0.76	3	3	1.00
Std.	Dev.	15	13	0.02	226	196	0.02	3	3	0.00	205	195	0.02	1	1	1.00 0.00

.

BIO-P	#2

Apr/22/91-May/31/91

Solids Concentrations

Day	Date		FEED		FT R	CTR SC	LIDS	FT EFF	LUENT	SOLIDS	RT	RCTR S	OLIDS	RT EFF	LUENT	SOLIDS
of		TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio	TSS	VSS	Ratio
Run		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l
1	Apr/22/91	174	158	0.91	3018	2648	0.88	10	10	1.00	3026	2650	0.88	10	10	1.00
4	/25/															
2	/24/				• • • •											
4 E	/25/	101	147	0 00	7579	2222	0.94	•	2	1 00	2592	2214	0.94	2	2	1 00
	/20/	101	102	0.90	2210	2222	0.00	2	2	1.00	2002	2210	0.00	2	2	1.00
7	/21/															
8	/20/															
ä	/30/	146	120	0.88	2640	2082	0.85	4	4	1.00	2460	2106	0.86	4	4	1 00
10	May/01/91	140	167	0.00	2440	LUOL	0.05	-	-	1100	2,00	2100	0.00	-	-	1.00
11	/02/															
12	/03/															
13	/04/	70	71	0.90	2486	2074	0.83	10	10	1.00	2494	2066	0.83	8	8	1.00
14	/05/	.,	• •	0.70	2400		0.00				2	2000	0.05			1.00
15.	/06/															
16	/07/															
17	/08/	86	79	0.92	2084	1722	0.83	6	6	1.00	2108	1732	0.82	6	6	1.00
18	/09/		.,	••••				•	-					•	-	
19	/10/															
20	/11/															
21	/12/	78	73	0.94	2128	1756	0.83	6	6	1.00	2010	1664	0.83	7	7	1.00
22	/13/							-	-					•	•	
23	/14/															
24	/15/															
25	/16/	65	59	0.91	1998	1616	0.81	6	6	1.00	1824	1484	0.81	8	8	1.00
26	/17/															
27	/18/															
28	/19/															
29	/20/	78	70	0.90	1986	1568	0.79	4	4	1.00	1806	1428	0.79	4	4	1.00
30	/21/															
31	/22/													••••		
32	/23/															
33	/24/	86	78	0.91	1598	1266	0.79	8	8	1.00	1630	1276	0.78	7	7	1.00
34	/25/															
35	/26/									••••						
36	/27/															
37	/28/	99	88	0.89	1628	1297	0.80	5	5	1.00	1656	1290	0.78	2	2	1.00
38	/29/															
39	/30/															
40	/31/															
Maxi	່າດເຫ	181	162	0.94	3018	2648	0.88	10	10	1,00	3026	2650	0.88	10	10	1.00
Mear)	107	97	0.90	1825	1825	0.83	6	6	1.00	2159	1791	0.82	6	6	1.00
Mini	mum	65	59	0.88	1266	1266	0.79	ž	2	1.00	1630	1276	0.79	2	ž	1.00
Std.	Dev.	41	36	0.01	410	410	0.03	ž	ž	0.00	439	431	0.03	3	3	0.00
								-	-		-			-	2	

	·								-				
	B10-P 1	#1 Fet	0/19/91	-Mar/3	0/91	FEED		B10-P	#2 <u>Ap</u>	/22/9	l-May/	31/91	FEED
	Ni	trogen	and Ph	osphor	us			<u>Ni</u>	trogen	and Pl	iospho	rus	
Day of	Date	Ortho -P	TP	NOx	NH3	TKN	Day of	Date	Ortho -P	TP	NOx	NH3	TKN
Run		mg/L	mg/L	mg∕l	mg/L	mg/L	Run		mg/L	mg/L	mg∕L	mg/L	mg/L
1	Feb/19/91	7.42	9.9	0.09	17.0	28.2	1	Apr/22/9 /23/	1 2.41	6.3	0.16	11.95	41.2
3	/21/ /22/				••••	••••	3	/24/ /25/	2.61		0.30		
5	/23/ /24/	7.64		0.14	17.0	••••	5 6	/26/ /27/	2.45		0.04	12.59	••••
78	/25/ /26/					••••	7 8	/28/ /29/	2.53		0.08		
9 10	/27/ /28/	4.91		0.18			9 10	/30/ May/01/9	2.56		0.17	11.97	••••
11 12	Mar/01/91 /02/						11 12	/02/ /03/	3.18		0.10		
13 14	/03/ /04/	7.43	9.1	0.00	12.5	26.8	13 14	/04/ /05/	1.60	3.7	0.14	11.64	24.0
15 16	/05/ /06/		••••				15 16	/06/ /07/	1.69		0.09		
17 18	/07/ /08/	6.21		0.11	11.3	••	17 18	/08/ /09/	1.72		0.20	12.04	••••
19 20	/09/ /10/						19 20	/10/ /11/	1.95		0.22		
21 22	/11/ /12/	6.21		0.06	13.0		21 22	/12/ /13/	2.04		0.10	12.54	
23 24	/13/ /14/	****					23 24	/14/ /15/	2.04	••••	0.22		
25 26	/15/ /16/	5.55		0.35	13.8	••••	25 26	/16/ /17/	2.13		0.19	13.78	
27 28	/17/ /18/		••••		••••		27 28	/18/ /19/	2.15	4.1	0.14		27.7
29 30	/19/ /20/	6.72	9.7	0.06	9.8	30.3	29 30	/20/ /21/	1.99		0.19	12.00	
31 32	/21/ /22/	****	• • • •				31 32	/22/ /23/	2.03	••••	0.11		••••
33 34	/23/ /24/	6.80		0.21	10.7	••••	33 34	/24/ /25/	2.14		0.19	12.33	••••
35 36	/25/ /26/	••••					35 36	/26/ /27/	2.17		0.19	••••	
37 38	/27/ /28/	5.53	••••	0.17	12.0		37 38	/28/ /29/	2.14		0.27	12.98	••••
39 40	/29/ /30/						39 40	/30/ /31/	2.29		0.18		••••
Maxi	mum	7.64	9.7	0.35	17.0	30.3	Maxi	num	3.18	6.3	0.30	13.78	41.2
Mean		6.44	9.5	0.14	13.0	28.4	Mean		2.19	4.7	0.16	12.38	31.0
Mini	mum	4.91	9.1	0.00	9.8	26.8	Minit	num	1.60	3.7	0.04	11.64	24.0
Std.	Dev.	0.87	0.4	0.09	2.4	1.4	Std.	Dev.	0.36	1.1	0.06	0.60	7.4

[B10-D #1	Eab/10	0/01-Nor	/30/01	ET DI			RTO-P #2	Apr/2	2/01-Mav	/31/91	FT 00	TP
	B10-P #1	reb/ i	7/71-mai		<u></u>			BIO 7 #2	<u></u>		<u></u>		
		NITRO	aen and	rnospn	orus			-	NITFO	gen and i	nospn	orus	
Day	Date	Ortho -P	Percent	NOX	NH3	Percent N	Day of	Date	Ortho -P	Percent	NOx	NH3	Percent N
Run		mg/L	(%)	mg∕l	mg/l	(%)	Run		mg/L	(%)	mg/L	mg/L	(%)
1	Feb/19/91	3.39	2.95	7.79	0.1	4.81	1	Apr/22/91	0.03	1.12	7.68	N/D	5.45
3	/21/						3	/24/	0.02		9.18		••••
5	/22/ /23/	7.46	2.92	8.22		5.04	5	/25/ /26/	0.02	1.48	9.71	N/D	6.27
7	/24/ /25/	4.93	••••	8.21			7	/28/	0.02		8.33		
8 9	/20/ /27/	8.27	3,23	9.22		5.32	9	/29/ /30/	0.03	2.06	8.96	N/D	6.41
10	/28/ Mar/01/91						10	May/01/91 /02/	0.03		9.22		• • • • •
12	/02/ /03/	4.60	3.10	7.48	N/D	5.31	13	/03/ /04/	0.00	2.29	9.16	N/D	6.75
14	/04/ /05/	5.87		7.61	••••		14	/05/	0.02		7.47		
16	/06/ /07/	8.10	2.92	8.05	N/D	5.42	10	/07/ /08/	0.33	2.75	7.19	N/D	6.82
18	/08/	4.76		8.44	••••		19	/10/	0.12		7.38		
20	/10/	9.30	3.35	9.26	N/D	5.50	20	/12/	2.07	2.57	8.41	N/D	6.50
22	/12/ /13/	5.29		8.09			22	/13/	0.16		8.24	•	
24 25	/14/	9.60	3.50	8.24	N/D	5.35	24	/15/	2.07	3.05	8.66	N/D	6.37
20	/10/ /17/	3.26	••••	8.35			20	/18/	0.12		8.62	••••	••••
29	/19/	10.70	3.56	8.97	N/D	5.16	20	/20/	1.73	3.13	8.21	N/D	6.15
31	/21/	5.88	**	6.44	~···		31	/22/	0.11		8.52	••••	
33	/23/	7.71	3.45	6.64	N/D	5.53	33	/24/	1.90	3.15	8.73	N/D	6.11
35	/24/ /25/	3.89	****	6.31	••••	••••	35	/26/	0.11		8.71	••••	
37 37	/27/	7.12	3.52	6.68	N/D	5.72	30 37 70	/28/	1.51	3.36	8.95	N/D	6.35
39 40	/29/ /30/	4.78		9.43	••••	••••	39 40	/30/ /31/	0.09		8.53		
Max	imum	10.70	3.56	9.43	0.1	5.72	Max	imum	2,07	3,36	9.71	N/D	6.82
Mea	n	6.38	3.25	7.97	N/D	5.32	Mea	n	0,52	2.50	8.49	N/D	6.32
Min	imum	3.26	2.92	6.31	N/D	4.81	Min	imum	0.00	1.12	7.19	N/D	5.45
Std	. Dev.	2.17	0.25	0.94	N/D	0.25	Std	. Dev.	0.78	0.71	0.65	N/D	0.36

Note: N/D - Not Detectable Less than lowest standard 0.05 mg/L

		1				
	BIO-P	#1 <u>Feb</u>	0/19/91-	Mar/30	/91 R1	RCTR
	•	Nitrog	en and	Phosph	orus	
Day of	Date	Ortho -P	Percent	NOx	NH3	Percent
Run		mg/L	(%)	mg/L	mg/L	(%)
1	Feb/19/91	5.10	2.53	7.83	0.2	4.53
3	/21/			••••	••••	
4 5 6	/22/ /23/ /24/	5.30	2.63	8.07		4.78
7	/25/	4.20	••••	8.08		
9 10	/20/ /27/ /28/	6.90	3.06	8.75		4.93
11	Mar/01/91			••••		
13	/02/	4.37	3.27	5.91	N/D	5.19
15	/04/	5.21		6.57		
16 17	/06/ /07/	7.00	2.73	7.13	N/D	4.87
18 19	/08/ /09/	5.13		3.89		
20 21	/10/	8-01	3.28	8.30	N/D	5.02
22	/12/	4.05		5.51		
24	/14/	8 / 0	7 76	12 30	0 1	/ 0 /
26	/16/	0.47	5.50	7 /4	0.1	4.74
27 28	/1// /18/	2.51		7.61		
29 30	/19/ /20/	8.80	4.07	12.89	N/D	5.07
31 32	/21/ /22/	4.49		8.65	••••	
33 34	/23/	7.32	3.69	9.19	N/D	5.00
35	/25/	5.72		2.69		••••
37	/20/ /27/	5.51	3.68	8,85	2.5	5.18
38 39	/28/ /29/	3.01	••••	6.69	••••	••••
40	/30/					
Maxi	mum	8.80	4.07	12.89	2.5	5.19
Mean	1	5.60	3.20	7.70	0.4	4.90
Mini	mum	2.51	2.53	2.69	N/D	4.53
Std.	Dev.	1.70	0.40	2.40	0.8	0.10

	BIO-P #2	Apr/2	2/91-M	ay/31/9 [.]	RTR	CIR
		Nitro	gen an	d <u>Phosp</u> i	orus	
Day of	Date	Ortho -P	Percer	nt NOx	NH3	Percent
Run		mg/L	(%)	mg/L	mg/L	(%)
1	Apr/22/91	0.03	1.22	7.46	N/D	5.53
3	/24/	0.03		9.14		
5	/26/	0.03	1.55	8,99	N/D	6.02
7	/28/	0.02		10.58		
9 10	/30/ Mav/01/91	0.02	2.09	8.96	N/D	5.81
11 12	/02/ /03/	0.03		9.02	••••	
13 14	/04/ /05/	0.01	2.38	9.23	N/D	6.26
15 16	/06/ /07/	0.02		7.69		
17 18	/08/ /09/	1.59	2.58	9.28	N/D	6.09
19 20	/10/	0.50		7.40		
21 22	/12/ /13/	1.92	2.76	9.44	N/D	6.05
23 24	/14/ /15/	0.72		8.30		
25 26	/16/ /17/	1.36	2.86	9.21	N/D	5.68
27 28	/18/ /19/	0.20		8.46		••••
29 30	/20/ /21/	0.95	3.12	9.97	N/D	5.58
31 32	/22/ /23/	0.15		8.53	••••	••••
33 34	/24/ /25/	0.86	3.30	9.87	N/D	5.68
35 36	/26/ /27/	0.76		10.68		
37 38	/28/ /29/	1.13	3.52	9.38	N/D	5.63
39 40	/30/ /31/	0.12	• • • •	8.48		
Maxim	num	1.92	3.52	10 68	N/D	6 26
Mean		0.52	2.54	9.00	N/D	5.83
Minis	num	0.01	1.22	7.40	N/D	5.53
Std.	Dev.	0.59	0.71	0.88	N/D	0.24

Note: N/D - Not Detectable Less than lowest standard 0.05 mg/L BIO-P #1 Feb/19/91-Mar/30/91

				FEED pH	/Alkali	inity/Ca	rbon			FT	RCTR pH	/Alkal	inity/Ca	rbon	
Day of Run	Date	рH	Alk. mg/L as CaCO ₃	Diss. Oxygen mg/L a3:30pm	FEED TC mg/L	FEED IC mg/L	FEED TOC mg/L	FEED COD mg/L	рH	Aik. mg/L as CaCO ₃	Diss. Oxygen mg/L a3:30pm	RCTR EFFL TC mg/L	RCTR EFFL IC mg/L	RCTR EFFL TOC mg/L	RCTR EFFL COD mg/L
1 2 3	Feb/19/91 /20/ /21/	7.49	320		108	66	42	131	7.16	270	0.70 0.80	55	46	9	29
4 5 6 7	/22/ /23/ /24/ /25/	7.34	298		103	61	42	••	7.02	284	6.40 5.50	63	52	11	
8 9 10 11	/26/ /27/ /28/ Mar/01/91	7.37	222		82	44	38	118	7.37	288	6.90 7.00	58	48	10	27
12 13 14 15	/02/ /03/ /04/ /05/	7.56	228		90	42	48	141	7.12	192	7.00 7.00 4.70	32	25	7	29
16 17 18 19	/06/ /07/ /08/ /09/	7.18	206		92	44	48		6.90	212	4.10 5.30 1.10	31	25	6	
20 21 22 23	/10/ /11/ /12/ /13/	7.13	164		97	49	48		7.37	260	6.50 3.30 5.60	34	27	7	
24 25 26 27	/14/ /15/ /16/ /17/	7.27	278		114	54	60	155	7.03	266	5.50 6.80	46	39	7	28
28 29 30 31	/18/ /19/ /20/ /21/	7.50	248		98	48	50	155	7.28	310	5.20 6.50 4.00	54	46	8	28
32 33 34 35	/22/ /23/ /24/ /25/	6.81	186		89	43	46	147	6.84	222	6.00 1.45	44	36	8	20
36 37 38 39 40	/26/ /27/ /28/ /29/ /30/	7.15	224		79	31	48	151	7.13	250	2.60 5.50 1.80 3.30	42	35	8	28
Maxi Mean Mini Std.	mum mum Dev.	7.56 7.28 6.81 0.21	320 237 164 47		114 95 79 11	66 48 31 10	60 47 38 6	155 143 118 13	7.37 7.12 6.84 0.18	310 254 192 37	7.00 4.60 0.70 2.07	63 45 31 11	52 37 25 10	11 8 6 1	29 27 20 3

B10-	P #1	Feb	/19/9	-Mar/	30/91 R1	RCTR	pH/Alka	alinity,	/Carbon
Day	Dat	e	рH	Alk.	Diss.	RCTR	RCTR	RCTR	RCTR
of			•	mg/L	Oxygen	EFFL	EFFL	EFFL	EFFL
Run				as	mg/L	TC	IC	TOC	COD
				CaCO3	a3:30pm	mg/L	mg/L	mg/L	mg/L
1	Feb/1	9/91	7.10	252	0.70	53	44	9	27
2	/2	0/			0,80			•	
3	/2	1/			••••				
4	/2	2/							
5	/2	3/	7.08	282	5.40	63	53	10	
6	/2	4/							
(/2	5/			0.70				
Š	14	6/	7 77	200	1.00	5/		•	45
10	/2	1/	1.52	270	0.30	20	41	У	12
10	/ 2 Mar / 0	0/							
12	۳ar/0 ۸/	21							
13	/0	3/	7.05	178	6.40	34	28	6	27
14	/0	4/	1.05		6.00	24	20		E1
15	/0	5/			0.80				
16	/0	6/			4.70				
17	/0	7/	6.97	220	2.70	31	25	6	
18	/0	8/			1.00			-	
19	/0	9/							
20	/1	0/							
21	/1	1/	7.38	258	6.90	36	30	6	
22	/1	2/			0.70				
23	/1	3/			0.80				
24	/1	4/			4.20			_	
25	/1	5/	7.06	268	6.90	47	39	8	28
26	/1	6/							
27	/1	(/							
28	/1	8/ 0/		740	0.80			-	20
29	/1	۲/ ۵/	1.54	212	5.10	52	45	7	28
20	/2	1/			0.00				
21	12	1/			0.90				
32 77	12	6/ 3/	7 02	222	5 80	66	79	4	28
34	12	<i>L</i> /	1.02	206				0	20
35	/2	5/			1.00				
36	12	6/			1.10				
37	/2	7/	7.21	242	1.50	37	30	7	24
38	/2	8/			1.50			•	
39	/2	9/			1.60				
40	/3	0/							
Maxin	num		7.38	312	6.90	63	53	10	28
Mean			7.15	253	2.90	45	38	7	25
Minia	num		6.97	178	0.70	31	25	6	15
Std.	Dev.		0.14	36	2.37	10	9	1	4

.

				FEED F	Carbon	n FT RCTR pH/Alkalinity/Carbon									
Day of	Date	рH	Alk. mg/L	Diss. Oxygen	FEED	FEED	FEED	FEED	рH	Aik. mg/L	Diss. Oxygen	RCTR	RCTR EFFL	RCTR EFFL	RCTR EFFL
kun			as CaCO ₃	mg/L a3:30pm	ng/L	nc mg/L	mg/L	mg/L		as CaCO	mg/L a3:30pm	TC mg/L	IC mg/L	TOC mg/L	COD mg/L
1	Apr/22/91	7.54	360		129	79	50	72	7.80	392	6.90	78	64	14	20
3	/24/										7.30				
5	/26/	7.29	276		101	54	47	66	7.86	352	8.00	70	61	9	12
7	/28/														
9	/30/	7.11	220		93	43	50	71	7.58	310	5.90 6.30	49	40	9	14
11	/02/										1.20				
13	/03/	7.43	210		74	42	32	44	7.56	196	7.30	41	33	8	10
14	/05/										7.20				
10	/08/	7.39	212		75	43	32	47	7.49	220	7.80	38	31	7	12
19	/10/										6.80				
20	/12/	7.59	268	••••	92	59	33	42	7.51	172	7.10	40	31	9	14
23	/14/										6.70				
25	/16/	7.43	264		82	54	28	44	7.51	296	7.10	59	53	6	12
27	/18/														
29	/20/	7.47	292		97	63	34	50	7.11	240	7.40	53	47	6	11
31	/22/										7.00				
33 34	/24/	7.43	312		102	68	34	46	7.48	290	6.60	59	52	7	11
35 36	/26/										7.20				
37 38	/28/	7.09	232	••••	85	51	34	49	7.46	306	6.30	63	55	8	12
39 40	/30/ /31/										6.80				
Maxi	mum	7.59	360		129	79	50	72	7.86	392	8.00	78	64	14	20
Mean Mini	mum	7.38 7.09	265 210	••••	93 74	56 42	37 28	53 42	7.54	277 172	6.65	55 38	47 31	8	13
Std.	Dev.	0.16	46		15	11	8	11	0.19	66	1.36	13	12	ž	3

BIO-P #2 Apr/22/91-May/31/91

B10	-P #2	Apr/	22/91	-May/3	<u>31/91 R</u>	T RCTR	pH/Alka	alinity,	Carbon
Day of Run	Dat	e	рH	Alk. mg/L as CaCO ₃	Diss. Oxygen mg/L a3:30pm	RCTR EFFL TC mg/L	RCTR EFFL IC mg/L	RCTR EFFL TOC mg/L	RCTR EFFL COD mg/L
1 2 3	Apr/2 /2 /2	2/91 3/ 4/	7.86	390	8.00 7.80	78	65	13	18
4 5 6 7	/2 /2 /2 /2	5/ 6/ 7/ 8/	7.97	343	8.00	75	66	9	4
8 9 10 11	/2 /3 May/0	9/ 0/ 1/91	7.69	330	7.60 7.90	56	45	11	14
12 13 14	/0 /0 /0	3/ 4/ 5/	7.92	200	7.60	41	33	8	10
15 16 17 18	/0 /0 /0 /0	6/ 7/ 8/ 9/	7.61	218	7.80	35	28	7	10
19 20 21 22	/1 /1 /1 /1	0/ 1/ 2/ : 3/	7.57	170	6.60 7.20	40	32	8	12
23 24 25 26	/1/ /1! /1(4/ 5/ 6/ 7	7.61	290	6.80 7.30	60	53	7	14
27 28 29	/14 /19 /20	8/ 9/ 0/ 1	7.34	230	 7.60	51	45	6	9
30 31 32 33	/2 /2 /2 /2	1/ 2/ 3/ 4/ 7	7.50	306	7.20	58	51	7	11
34 35 36 37	/25 /20 /27	5/ 5/ 7/	7 49	340	6.30	61	57	8	11
38 39 40	/29 /30 /31	9/ 9/ 1/		J+U	7.50	01	در	U	
Maxi Mean Mini Std-	mum Mum Dev.	7	7.97 7.66 7.34	390 282 170 69	8.00 7.26 4.20 0.84	78 56 35 14	66 47 28 13	13 8 6 2	18 11 4 3

r.

-

Carbon Decay in Cold Room Raw Influent Sewage

Day	COD	TC	TIC	TOC
1	128	62.4	21.2	41.2
2	137	60.4	21.4	39.0
3	120	56.8	22.0	34.8
4	110	55.1	20.8	34.3
5	110	56.1	22.9	33.2
6	110	52.8	22.2	30.6
7	101	52.3	22.4	29.9
8	82	45.0	19.4	25.6
10	73	49.9	23.0	26.9
11	92	46.9	21.3	25.7
12	64	49.7	26.0	23.7
13	64	46.7	24.7	22.0
14	73	43.2	23.3	19.9
15	55	44.6	25.2	19.4
16	46	44.7	25.0	19.7

Carbon Decay in Feed Bucket Raw Influent Sewage

Day	COD	TC	TIC	TOC
1	110	62.5	21.5	41.0
2	70	54.1	21.8	32.3
3	64	48.1	21.3	26.8
4	64	46.6	21.2	25.4