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ABSTRACT 

This thesis is concerned with the analysis of large offshore gravity 
structures used for oil exploration and recovery in the Beaufort Sea. 
Because of the high ice loads and the water depths involved, these struc-
tures comprise a large steel box infilled with a sand core for stability. 
One such structure was subjected to severe ice loading in April 1986 caus-
ing portions of the sand core to liquefy and bring the structure to a near 
failure condition. This structure was heavily monitored and thus serves as 
a case study against which the proposed analysis procedure can be checked. 

The behaviour of these soil-structure systems is highly complex 
depending upon the characteristics of the soil, the structural elements and 
the soil-structure interface. In this thesis a three-dimensional Finite 
Element computer program with soil, interface and structural elements is 
developed. 

Emphasis is placed on the three-dimensional stress-strain constitutive 
law both in terms of its ability to model observed laboratory response as 
well as the determination of the constitutive law parameters from in situ 
testing. 

The results obtained in terms of displacement, acceleration and zones 
of liquefaction by the analysis were then compared with the field measure-
ments obtained during the April 1986 ice load event. The good agreement 
obtained between predicted and observed response is a validation of the 
proposed procedure. 
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= area 
= accelerometer 
= peak acceleration at time t 
= direction cosines of the normal stress, Oĝ p, in relation to 

principal direction i, (i = 1,2,3) 
= (o1-o3)/(o1+o3) = sin(<J>13) 
= (bi)c^ = direction cosines of the shear stress tĝ p in 

relation to principal direction i, (i = 1,2,3) 
= direction cosines of the increment of plastic shear strain, 

Ar|MP, in relation to direction i, (i = 1,2,3) 
= b - value = (o2-o3)/(ax-o3) 
= bulk modulus 
= B u r = elastic or unload/reload bulk modulus 
= tangent bulk modulus 
= cohesion 
= cohesion (interface) 
= elastic constitutive matrix 
= elasto-plastic constitutive matrix 
= plastic constitutive matrix 
= compounded mobilized planes 
= cone penetration test 
= uniformity coefficient 
= displacement 
= relative density 
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D 1 0 = effective grain size 
D 5 0 = medium grain size 
E = Young's modulus 
Emax = m&ximum Young's modulus 
Ejj = normal modulus (interface) 
e = void ratio 
ec = consolidated void ratio (in situ) 
(ec)av = average consolidated void ratio (in situ) 
e0 = consolidated void ratio (laboratory) 
e s s = void ratio at steady state 
e c c = void ratio at steady state (defined at 1 kPa) 1 
{f)̂ g = nodal load vector for load shedding 
f0 = frequency 
FS = factor of safety 
G = shear modulus 
Gqjj = maximum shear modulus obtained from cross hole seismic 

tests 
Gj-jjj = maximum shear modulus obtained from down hole seismic tests 
Gjjjj = maximum shear modulus in the horizontal plane 
G^ = initial shear modulus (interface element) 
G0 = the initial slope of the hyperbolic relationship between 

a n d r z x 

Gp = plastic shear modulus parameter 
Gpt = tangent plastic shear modulus parameter 
Gp^ = initial slope of the hyperbolic relationship between 

(tSMP/0SMP) a n d ÎMP 
G_„„ = GQ = elastic or maximum shear modulus 
IuclX 6 
G„„„ . = maximum in situ shear modulus 
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G r c = maximum shear modulus from resonant column tests 
Gs = secant shear modulus (also used as specific gravity) 
Gt = tangent shear modulus 
Gyn = maximum shear modulus in the vertical plane 
G* = equivalent elastic shear modulus evaluated from 

unload/reload pressuremeter tests data 
H = height 

= principal stress invariants (i = 1,2,3) 
I„,I,r = moments of inertia x.  y 

k = earth pressure coefficient 
k0 = earth pressure coefficient 'at-rest' 
[K] = stiffness matrix 
K = modulus number 
KB (or Kb) = bulk modulus number 
KBe = KBur = elastic or unload/reload bulk modulus number 
Kc = a[/o\ 
KE (or Ke) = Young's modulus number 
KE m a x = maximum Young's modulus number 
KG = shear modulus number 
KGe = KG m a x = elastic or maximum shear modulus number 
(KGmax)av = average maximum shear modulus number 
KGp = plastic shear modulus parameter number 
Kj = stiffness number (interface element) 
Kjj = normal modulus number 
Kg£ = initial tangent stiffness (interface element) 
K g t = tangent stiffness (interface element) 
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= unload/reload modulus number 
= parameter to define G m a x (Chapter 6) 
= length 
= direction cosine of x-axis in relation to principal 

direction i(i = 1,2,3) 
= direction cosine of y-axis in relation to principal 

direction i(i = 1,2,3) 
= bulk shear modulus exponent 
= mobilized plane (2-D) 
= mobilized stress level 
= maximum mobilized stress level 
= direction cosine of z-axis in relation to principal 

direction i(i = 1,2,3) 
shear and Young's modulus exponent; also normal direction to 
interface. 

= plastic shear modulus parameter exponent 
= standard penetration resistance; also number of cycles; also 

yield stress ratio (a1/a3) 
= standard penetration resistance (hammer energy = 60%) 
= normalized standard penetration resistance 
= number of cycles to liquefaction 
= earth pressure 
= initial earth pressure 'at-rest' 
= atmospheric pressure 
= cone penetration test end bearing 
= normalized (or modified) cone end bearing 
= radial distance 
= interface shear direction: 



f̂ace = current pressuremeter radius 
R0 = initial pressuremeter radius 
Rp = plastic radius 
Rp = failure ratio 
s = (oj+o,)/2; also interface shear direction 
SBP = self-boring pressuremeter 
SMP = Spatial Mobilized Plane 
SL = stress level 
SRL = stress ratio level 
s u = residual shear strength 
t = (O1-O3)/2; also interface thickness 
U = displacement; also static pore pressure 
Ug = generated porewater pressure 
U_ = displacement at the boundary between plastic and elastic 

zones 
Ur = relative displacement 
X(t) = the amplitude of the static displacement at time t 

correspondent to one-half cycle of load/unload 
a = angle between the o3 direction and the horizontal direction 
a^ = anisotropic factor 
dp = disturbancy factor 
aD = G*/G P ' max 
P = angle between the direction and the horizontal direction 
y = ex-e3 = maximum shear strain 
fjjp = shear strain on the Mobilized Plane (2-D) 

= plastic shear strain at which ê p is a minimum 
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= octahedral shear strain 
= shear strain on the Spatial Mobilized Plane (3-D) 
= unit weight of soil 
= unit weight of submerged soil 
= unit weight of dry soil 
= unit weight of saturated soil 
= unit weight of water 

interface friction angle 
= increment 
= (bi) - (bi) AeP 
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= increment of the angle of rotation of the principal axes, i, 
(i = 1,2,3) with x-axis 

= increment of the angle of rotation of the principal axes, i, 
(i = 1,2,3) with y-axis 

= increment of the angle of rotation of the principal axes, i, 
(i = 1,2,3) with z-axis 
cyclic developed porewater pressure 

= increment of plastic shear strain on the Mobilized Plane 
(2-D) 

= increment of plastic shear strain on the Spatial Mobilized 
Plane 

= increment of plastic normal strain on the Mobilized Plane 
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= increment of plastic normal strain on the Spatial Mobilized 
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= load shedding stress vector 
= cyclic variation in total mean normal stress 
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decrease in friction angle for a 10 fold increase in o, 
strain 
principal strain in direction i, (i = 1,2,3) 
elastic principal strain in direction i, (i = 1,2,3) 
plastic principal strain in direction i, (i = 1,2,3) 
strain vector 
elastic strain vector 
plastic strain vector 
normal strain on the Mobilized Plane (2-D) 
normal strain on the Spatial Mobilized Plane (3-D) 
radial strain 
radial strain at the face of the pressuremeter 
circumferential strain 
circumferential strain at the face of the pressuremeter 
volumetric strain 
volumetric strain associated with 400 cycles of load 
angle defined by the vertical direction and the direction of 
the major principal strain increment, Aej 
slope of Matsuoka's flow rule, and 1st hardening rule 
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All o stresses below are considered to be effective) 
= stress 
= principal stress in direction i, (i = 1,2,3) 
= stress vector 
= normal stress in direction of wave propagation 
=  (o;  +  op/2 

= boundary radial chamber stress 
= confining stress 
= o,-o, 
= mean normal stress 
= initial mean normal stress 
= normal stress on the Mobilized Plane (2-D) 
= normal stress to interface 
= initial pressuremeter radial stress 
= normal stress in direction of particle vibration 
= radial stress 
= radial stress at the face of the pressuremeter 
= radial stress at the outer radius of the plastic zone 
= normal stress on the spatial mobilized plane (3-D) 
= normal stress on the spatial mobilized plane at failure 
= initial cartesian stress in the x-direction (simple shear 

test) 
= vertical stress 
= in situ vertical stress 
= failure stress ratio 
= maximum shear stress = (o1-o3)/2 

max 

•(Tav/o^0) or (xcy/o^0) or (Tea/o^0) = cyclic stress ratio causing eq' "vo liquefaction 
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Tf = failure shear stress 
x^ = shear stress prior to unloading 
Tjjj = mobilized shear stress 
T̂jp = shear stress on the Mobilized Plane (2-D) 
(xMp/oMp) = stress ratio on the Mobilized Plane (2-D) 
T̂Mp/°MP^ult = asymptotic value of the stress ratio on the Mobilized 

Plane (2-D) 
(Tmp/Omp)f = failure stress ratio on the Mobilized Plane (2--D) 
tN shear stress to cause liquefaction in N cycles 
Toct octahedral shear stress 
tSMP shear stress on the Spatial Mobilized Plane (3--D) 
(tsmp/Osmp) = stress ratio on the Spatial Mobilized Plane (3--D) 
T̂SMP^°SMP^ult = asymptotic value of the stress ratio on the Spatial 

Mobilized Plane 
T̂SMP/°SMP^F = failure stress ration on the Spatial Mobilized Plane 

(3-D) 
^SMP^SMP^ i = failure stress ratio on the Spatial Mobilized Plane at 

(oSMp)F = 1 atmosphere 
Tuit = asymptotic shear stress 
t 1 5 = shear stress to cause liquefaction in 15 cycles 
<p = angle of internal friction 
<t> c v  = angle of internal friction at constant volume 
<J>F = failure friction angle 
<f>|s = failure friction angle (plane strain) 
<J>p = failure friction angle (triaxial conditions) 

1 3 
failure friction angle (for o2^o3 and oJ^o1) 

= failure friction angle (defined by principal stresses o. and 
13 „ \ 1 



<f>F = failure friction angle (defined by principal stresses o2 and 
* * * V 
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°3> 

<|>F = failure friction angle (defined by principal stresses ox and 
1 2 o 2 ) 

<t>m = mobilized friction angle 
A = mobilized friction angle (defined by principal stresses ox 

m -1 3 and o3) 
A = mobilized friction angle (defined by principal stresses a2  3 3 and o3) 
<p = mobilized friction angle (defined by principal stresses m« - and o2) 
<()p = peak friction angle 
<(>£ = residual friction angle 
<f>1 = peak friction angle at the effective mean normal stress of 1 

atmosphere 
X = angle defined by the vertical direction and the direction of 

the major principal stress increment, Aox 
\|) = angle defined by the vertical direction and the direction of 

the major principal stress, ox 

\|) = state parameter (chapter 6) 
ui(t) = angular frequency at time t 



ACKNOWLEDGEMENTS 

I am extremely thankful to my supervisor, Professor P.M. Byrne, for 
his guidance, ideas, encouragement and enthusiastic interest throughout my 
research. Despite an overflown timetable Professor Byrne has always been 
100% available to clarify my ideas and strengthen my arguments. 

I would also like to express my grateful appreciation to Professors 
Y.P. Vaid, W.D.L. Finn, D.L. Anderson and K.W. Savigny for their critical 
comments and for being flexible in their schedule in meeting my deadlines. 
The valuable suggestions received from Professor Vaid are much appreciated. 
In addition, I extend my thanks to: Professor P.K. Robertson and J.A. 
Howie for many stimulating discussions on the pressuremeter tests; as well 
as Mr. M.G. Jefferies for the valuable discussions and the data on the 
Molikpaq study; Dr. M.K. Lee for his assistance in implementing the hyper-
bolic stress-strain law into 3-D F.E. formulation; my friends and 
colleagues Dawit Negussey, Mustapha Zergoun, Afzal Sulleman, Upul 
Atukorala, Li Yan, Blair Gohl, (Yoge) M. Yogendrakumar, Alberto Sayao and 
(Wije) W. Wijewickreme, whose cheerfulness and comments have carried me 
through moments of factor of safety = 1.0; Mrs. Kelly Lamb for typing my 
thesis with such ability and speed and for being flexible in her time table 
to meet my deadlines. 

I am grateful for the financial support provided by the University of 
British Columbia, the National Science and Engineering Research Council, 
the Graduate Research Engineering and Technology (G.R.E.A.T.) award 
sponsored by the Science Council of British Columbia and Golder Associates 
(Vancouver, British Columbia). 

Finally I would like to thank my daughter Marta, my parents Luciano 
and Etelvina and brother Ze' whose encouragement, faith and support made 
this thesis a reality. 



CHAPTER 1 
INTRODUCTION 

1.1 Purpose 
This thesis is concerned with the development and evaluation of 

analysis procedures for caisson-retained island type structures deployed in 
the Beaufort Sea for oil exploration and recovery. 

Offshore exploratory oil drilling has been carried out through the 
years from either piled platforms or gravity platforms, the type being 
dependent essentially on the depth of water, the characteristics of the 
foundation soil and the loading, wave or ice. In the Beaufort Sea one of 
the governing factors for the type of platform to be used is the presence 
of ice, which covers the sea for at least 3/4 of the year. Loads developed 
on stationary structures by movements of the ice can be very high and have 
a dynamic as well as static component. Because of the high ice loads, 
gravity platforms comprised of artificial sand islands have been used in 
shallow waters. In deeper waters, however, such an approach is not viable 
due to the very large volume of fill required. To overcome this problem, 
two of the major oil companies (Esso Resources Canada and Gulf Canada 
Resources Inc.) have investigated the concept of an artificial caisson-
retained island. The first monolithic caisson-retained island deployed in 
the Beaufort Sea was a mobile arctic caisson called Molikpaq, shown in Fig. 
1.1, and owned by Gulf Canada Resources Inc. The Molikpaq has been 
described in several publications including: Bruce and Harrington, 1982; 
McCreath et al., 1982; Fitzpatrick and Stenning, 1983; Jefferies et al., 
1985; Stewart and Brakel, 1986; Jefferies and Wright, 1988; and Jefferies 
et al., 1988. 



The platform consists of a steel caisson containing ballast water 
tanks, with a simply supported steel deck. In plan the caisson is almost a 
square as shown in Fig. 1.1 with an outside dimension of 111 metres. The 
central void, which is approximately 72 by 72 metres in plan is filled with 
sand to provide sufficient mass to resist the large horizontal ice loads. 
The overall height of the structure is 33.5 metres and the height of the 
sand fill core is approximately 21.0 metres. As shown in Fig. 1.2 the 
steel caisson with its sand core rests on a submerged sand berm, which in 
turn rests on a prepared area of the sea floor. The thickness of the sand 

Figure 1.1 Beaudril Mobile Artie Caisson "Molikpaq" (after Jefferies et 
al., 1988) 
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Figure 1.2 Schematic Cross-Section of Molikpaq and Berm 
(after Jefferies et al., 1988) • > 

berm at a particular site depends on the water depth and on the strength 
characteristics of the sea floor deposits. Soft sea floor sediments are 
removed and replaced by a sand fill subcut prior to constructing the berm. 
The caisson is then placed on the berm and filled with sand to provide a 
stable drilling platform. After completion of exploratory drilling at a 
site the core sand fill is removed, the ballast water pumped out, making 
the caisson reusable for another site. 

The Molikpaq was first deployed in October 1984 at Tarsiut P-45, see 
Fig. 1.3 for location, where the ice-loads mobilized were considered to be 
quite modest (Jefferies and Wright, 1988). In September 1985, the Molikpaq 
was moved to Amauligak 1-65. At this site during the Winter 1985/86 the 
ice loads, which were dynamic in nature, were quite large and caused part 
of the sand core fill to liquefy and the platform to come close to limiting 
stability (Jefferies and Wright, 1988; and Jefferies et al., 1988). 

The behaviour of these soil-structure systems is highly complex 
depending upon the characteristics of the soil and structural elements as 
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Figure 1.3 Molikpaq Site Locations (after Jefferies et al., 1988) 

well as the construction sequence and the type of loading. Important 
aspects of their behaviour can be obtained from field observation as well 
as laboratory centrifuge tests. In addition, much can be learned from 
analytical modelling of these structures, particularly when such models can 
be calibrated with known field behaviour. This thesis is concerned with 
the development of such a model and in comparing its predictions with field 
measurements. 

1.2 Scope 
A sophisticated modelling of Molikpaq type structures require a three 

dimensional (3-D) computer program for non-linear analysis of soil-
structure interaction problems. Besides structural elements, the following 
is required: 

• Soil elements with an appropriate 3-D constitutive law for soil. 



• Assessment of stress-strain parameters of the soils from laboratory 
and field tests. 

• Interface elements. 
• Analysis procedure to assess the static response of the Molikpaq 
during the fill construction phase and moderate ice loading phases. 

• Analysis procedure to assess the dynamic response of the Molikpaq 
during high ice loading phase. 

The above topics are briefly discussed next. 

a) 3-D Constitutive Law for Sands 
Due to the 3-D nature of the problem, not only in geometric terms but 

also in the terms of the loading, the stress paths mobilized in the core 
and berm sand fills during the construction phase and the ice loading 
phases, a 3-D constitutive law for sands that can model its shear, dilation 
and principal stress axis rotation characteristics is required. The 
three parameter dilatant elastic plastic stress-strain model for sands 
developed by Byrne and Eldridge (1982) was used in preliminary analysis 
after extending it to 3-dimensions. It was soon found, however, that 
although this formulation is able to model adequately the shear and 
dilation characteristics of the sand when subject to the triaxial stress 
path, it could not model the shear, dilation and deformation under 
principal stress rotation characteristics of the sand when subject to the 
simple shear stress path, a path which is considered to be more 
representative of the stress change induced by the horizontal ice load 
movement on the Molikpaq structure. 

To satisfy the above requirements, a 3-D model for sands following the 
concept of the Spatial Mobilized Plane (SMP) (Matsuoka, 1974,1983) was 
developed and implemented into Finite Element (F.E.) form. 



The performance of this model is evaluated by comparison with labora-
tory measurements obtained from triaxial tests, true triaxial tests, simple 
shear tests and pressuremeter chamber tests, and also by comparison with 
in-situ measurements obtained from field tests. 

b) Evaluation of Stress-Strain Parameters of Soil from Laboratory and In 
Situ Testing 
Extensive in situ testing is carried out in the core, berm and founda-

tion of the Molikpaq, any time this structure is deployed at a new site in 
order to assess the quality and strength characteristics of the foundation 
soil and of the sand fills used (Jefferies et al., 1985). The in situ 
testing consists mainly of cone penetration tests (CPT), self-boring 
pressuremeter tests (SBP) and shear wave measurements by downhole and 
crosshole methods. In addition, laboratory testing is also carried out on 
samples obtained from those fills to complement the in situ testing. 

A special effort was made in this thesis for the development of 
procedures to evaluate soil parameters for use in the two analytical models 
described earlier. It will be shown that soil parameters can be obtained 
from the following three sources: 

i) Laboratory tests 
ii) Pressuremeter tests 
iii) Laboratory and cone penetration tests. 

Particular attention in this thesis is paid to the pressuremeter test. 
This test can yield useful information about the in situ stress-strain 
behaviour of soil during loading and unloading. However, because the 
stress field induced by the SBP is not homogeneous, a rational analysis and 



interpretation of the SBP test data requires that it be analyzed using 
selected stress-strain relations. In addition, it is important that such 
analysis and interpretation be checked against experimental data under 
controlled conditions before application to in situ field conditions. A 
review of the existing methods to infer soil parameters from the unloading, 
and the first time loading pressuremeter test data indicate that: 

• A detailed analysis method, that considers both the stress and void ratio 
changes induced by pressuremeter loading and the nonlinear stress-strain 
response upon unloading, to infer the maximum in situ shear modulus, 
G from the unload pressuremeter shear modulus, G*, had not been max, o 
developed. Herein such a procedure is developed and checked against both 
laboratory and field data. 

• The evaluation of soil parameters from the first time loading part of the 
pressuremeter tests in sand has been restricted for many years to the 
evaluation of the peak friction angle, and the dilation angle, v. 
Only recently, Manassero (1989) proposed a method that allows the 
complete plane strain nonlinear stress and volume change response of sand 
to be obtained from pressuremeter pressure-expansion data. This method 
was analytically verified herein against Finite Element generated 
pressuremeter data which was computed using the 3-D SMP model developed 
in this thesis. Procedures to evaluate soil parameters for use in this 
3-D model from the pressuremeter test data were also developed. These 
procedures used Manassero's method after expanding it to take into 
account the intermediate principal stress, o2. 

Particular attention was also focussed on the evaluation of soil 
parameters from the data obtained from both cone penetration and laboratory 



tests. The in situ void ratio, e c > was the key parameters used to link 
the laboratory test data with the CPT data. Soil moduli such as the 
Young's modulus, E, the shear modulus, G, and the bulk modulus, B, are 
highly dependent on the consolidated void ratio, ec» The in situ void 
ratio, ec was evaluated from the in situ state parameter, \j), which was 
pre-obtained from the CPT cone bearing, qc, following the procedures 
developed by Been et al. (1986). Once ec was known, the in situ moduli 
were estimated from existing laboratory data. 

c) Interface Elements 
Interface elements were considered necessary to model the contact 

between the Molikpaq steel structure and the sand fill. A 3-D interface 
element following the concept of Desai's 'Thin' element (Desai et al., 
1984), was developed and implemented into the finite element formulation. 
Procedures for the evaluation of soil parameters for this interface element 
were also developed. Its performance was evaluated by comparisons with 
available closed form solutions. In addition, both the 'Thin' element and 
the SMP model predictions were compared with earth pressure measurements on 
a 10 m retaining wall field test. These F.E. studies were considered 
necessary to check the procedures followed in the construction analysis of 
the Molikpaq, since there were no earth pressure measurements during the 
core construction phase of this structure. 

d) Static Assessment 
To assess the static response of the Molikpaq upon gravity loading 

(construction phase) and moderate ice loading the following procedures were 
followed in the analysis: 



The construction of the berm and core was simulated in the 3-D analy-
sis by placing the above fills in one single layer. Although the ideal 
approach is to "analytically construct" these fills in layers, that 
procedure was not followed due to the large band width of the system of 
equations. However, the stresses so obtained from the 3-D analysis (along 
the cross-section oriented in the direction of the ice load) were compared 
with the stresses obtained from 2-D analysis in which construction in 
layers was simulated. It was found that the stresses obtained from both 

2-D and 3-D analyses were in reasonable agreement. 

• Moderate Ice Loading Phase 
On March 25, 1986 the Molikpaq structure was subject to moderate ice 

loads of about 110 MN. Based on data reported by Jefferies and Wright 
(1988) , this event was considered to be a static ice load event. Therefore 
3-D static analysis simulating the ice load conditions of March 25, 1986 
were carried out and the model used in the analysis was calibrated against 
the reported field behaviour. 

e) Dynamic Assessment 
On April 12, 1986 the Molikpaq structure was subject to severe dynamic 

ice loads. To analyse this event a 3-D finite element dynamic program with 
an appropriate stress-strain law is required. To date, however, such a 
program does not exist. 

Adequate 2-D finite element dynamic programs do exist, such as the 
program RICEL developed by Yogendrakumar and Finn (1987). This program was 
used in 2-D dynamic and pseudo-dynamic analysis of the Molikpaq's response 



to the above ice load event by Finn et al, (1988), who showed that the 
Molikpaq's system damping was very large and consequently no significant 
dynamic amplification occurred. Hence the response of the structure can be 
estimated from pseudo-dynamic or pseudo-static analysis which do not 
consider inertia forces. 

The 3-D dynamic assessment was carried out using 3-D pseudo-static 
analysis, following an approach in which the response of the Molikpaq 
structure to a number of ice load cycles was inferred from the displace-
ments and stresses computed from a single static loading cycle. The 
proposed procedure is outlined later in Chapter 7. 

The stress cycles obtained from the pseudo-static analysis were used 
to compute the potential for liquefaction by comparing these stresses with 
the liquefaction resistance of the sand fills. This liquefaction resist-
ance was developed based on the cone penetration resistance, qc, of the 
fills and on the chart proposed by Seed and DeAlba (1986). However, 
because this chart is valid for earthquakes of magnitude 7.5 or 15 signi-
ficant load cycles and because the Molikpaq was subject to a substantially 
larger number of cycles than 15 (Jefferies and Wright, 1988), an extrapo-
lation of this chart for a larger number of cycles was required and this 
was considered herein, as is described later in Chapter 6. 



CHAPTER 2 
3-D CONSTITUTIVE MODEL FOR SANDS FOLLOWING THE CONCEPT 

OF THE SPATIAL MOBILIZED PLANE 

2.1 Introduction 
The Molikpaq caisson retained island represents a good example of a 

3-D geotechnical problem. The 3-D aspects are evident not only from the 
3-D geometry of the structure but also from the 3-D aspects of the ice 
movement which can strike the structure from any horizontal direction. For 
these reasons soil elements within the core and berm fills can be subjected 
to many different stress paths. Constant stress ratio conditions (o1/o3 = 
1/K0) are likely to develop during the construction phase in the soil 
elements located on the centreline of the fills (K0 is the earth pressure 
coefficient at rest). Simple shear conditions are likely to develop in the 
sand fills during the ice loading phase. A rigorous solution of the 
problem requires an adequate constitutive law that can model the shear, 
dilation and principal stress axis rotation characteristics of sand in a 
3-D stress space. 

The hyperbolic model which was developed by Duncan and Chang (1970) 
and Duncan et al. (1980) was used in preliminary analysis after extending 
it to 3 dimensions and implementing it in the 3-D F.E. code 'NONSAP' (Bathe 
et al., 197A). In this model the stress-strain curves are assumed to be 
hyperbolic as first proposed by Kondner (1963) and Kondner and Zelasko 
(1963) and are characterized by a tangent Young's and tangent bulk moduli 
that vary with both stress level and relative density. 

This model was later modified and expanded by Byrne and Eldridge 
(1982) with an additional dilatant parameter based on Rowe's (1962, 1971) 
stress-dilatancy theory to account for the dilation characteristics of the 



sand material when subject to a triaxial stress path as shown in Fig. 2.1 
(a). However, this model can not predict adequately the shear, dilation 
and principal stress axis rotation characteristics of sand when subject to 
the simple shear stress path. Predictions using the hyperbolic model (with 
and without dilation parameters) of the simple shear results in Ottawa sand 
(Vaid, Byrne and Hughes, 1981) are presented in Fig. 2.1(b). It may be 
seen that the dilation effects of the test correspondent to Dr = 72.3% were 
reasonably modelled (with dilation parameters), however, the predicted 
shear stresses are too low. This is due to the Mohr-Coulomb failure 
criterion used in the hyperbolic model. This criterion assumes that the 
friction angle, <f>, at failure is constant regardless of the stress path to 
failure, i.e. the influence of the intermediate principal stress, o2, is 
not considered. 

Since the simple shear stress path is most likely to occur in the 
Molikpaq sand fill during the ice loading phase it was decided to review 
the existing 3-D constitutive models for sand to select the most 

t 

appropriate one. A brief review is presented below. 
The yield criterion used in the existing plasticity based constitutive 

models is considered here to be one of the key issues for the selection. 
The other important issue is the capability of the constitutive law to 
model adequately the stress-strain dilatancy behaviour of sand in a 
3-dimensional space. These issues are briefly discussed next. 

Wroth (1984), Matsuoka and Nakai (1985) presented good reviews of the 
3-dimensional failure criteria for sands most used in practice. These 
consist of the following: 

i) Extended Mohr-Coulomb, defined by <p  = constant 
3 

ii) Lade (1972), Lade and Duncan (1975) defined by I^Ij = constant 
iii) Matsuoka-Nakai (1974,1985), defined by IjIj/Ij = constant 
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where I l f I2 and I3 are the known three principal stress invariants. 
A sketch showing these criteria projected on the octahedral plane is 

presented in Fig. 2.2. It may be seen that both Lade and Matsuoka-Nakai 
failure surfaces coincide with the Mohr-Coulomb criterion for triaxial 
compression tests. The Matsuoka-Nakai and Mohr-Coulomb criteria also 
coincide for triaxial extension tests, whereas the Lade curve does not. 
Nevertheless Lade's and Matsuoka-Nakai failure criteria are very similar. 

Of the three criteria, Matsuoka-Nakai' s was chosen here for two 
reasons: (a) it was initially developed from theory and not from curve 
fitting of experimental data (Wroth, 1984); and (b) it appears to predict 
experimental data best (based on the proceedings of the Cleveland workshop 
on constitutive equations for granular non-cohesive soils (Saada and 
Bianchani, 1987)). 

Based on the above discussion and because Matsuoka's 3-D flow rule 
following the concept of the Spatial Mobilized Plane (SMP) considers the 
stress-strain dilatancy behaviour of sand in a 3-Dimensional stress space 
(Matsuoka, 1983) his SMP model was selected here with some modifications 
to make it more practical and, take into account the rotation of the 
principal stress axis of sand when subject to the simple shear stress path. 
A detailed description of this model and its implementation to 3-D, 2-D and 
axisymmetric F.E. codes is presented in this chapter. Before describing 
this model, however, it was felt that a brief description of Matsuoka's 2-D 
constitutive model which is based upon the Mobilized Plane (MP) concept 
should be presented first because its development served as a basis for the 
more complex 3-D SMP model. 



Figure 2.2 Mohr-Coulomb, Lade and Matsuoka-Nakai Failure Criteria 



2.2 2-D Constitutive Model for Sand Following the Concept of the Mobilized 
Plane 
The concept of a single mobilized plane for 2-D constitutive models 

was first developed by Murayama (1964). The term "Mobilized Plane" (MP) 
refers to the plane where the mobilized stress ratio between the shear 
stress and normal stress on the plane, xMp/°Mp» is a maximum. The 2-D 
representation of this plane is shown in Fig. 2.3(a). The plane forms an 
angle of 45° + (<J>m/2) with the major principal stress plane, where <p̂  is 
the maximum angle of friction that is mobilized. This <f>m angle can be 
easily obtained by constructing the Mohr's circle for the current principal 
stresses ox and a3 as shown in Fig. 2.3(b). 

Based on the above "Mobilized Plane" concept Matsuoka developed 2-D 
and 3-D constitutive models. A brief description of the 2-D constitutive 
model is presented below. 

2.2.1 Brief Description of the 2-D Constitutive Model 
The 2-D model for sand following the Mobilized Plane concept is an 

elasto-plastic model. As in any model of this type its constitutive 
matrix, {C6^} , which relates the increments of strain {Ae} with the 
stresses {o} , is elasto-plastic and is composed of two components, an 

e p elastic component {C } and a plastic component {Cr} related by the 
following equation: 

{Cep} = {Ce) + {CP} (2.1) 

The elastic component is defined by Hooke's constitutive law and the 
plastic component is based on a yield criterion, a flow rule, and a 
hardening rule. What makes this model different from other elasto-plastic 
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Figure 2.3 (a) 2-Dimensional Mobilized Plane; (b) Evaluation of <j>m, 
oMp, and tMp 



models existing in the literature is the way these three components are 
defined. 

2.2.1.1 Yield Criterion 
The yield criterion of the model describes the stress conditions 

causing elastic or plastic strains and is composed of the yield and failure 
surfaces described below. 

A family of yield surfaces in the ( x Mp. s t r e s s space is 
schematically shown in Fig. 2.A. These yield surfaces are given by the 
following equation developed by Matsuoka and Nakai (1974,1985) 

The "current" yield surface corresponding to the stress state at a 
point in a mass of soil, is defined by the maximum stress ratio mobilized 
at the point during its history of loading. Assuming that at a given time 
of loading the "current" yield surface is yield surface A (K = K^) (see 
Fig. 2.4), than inside this yield surface (K £ KA) only reversible 
(elastic) strains occur. This corresponds to an unloading condition. 
Outside the yield surface A (Kg > K^) both reversible and irreversible 
(plastic) strains occur and when this happens the yield surface moves from 
line A to line B. This corresponds to a loading condition. The limit or 
bound of the yield surfaces is called failure surface and no further 
loading is possible outside this surface. The failure surface is defined 
by the following equation: 

tMD/°mi. = t a n(<U = K MP' MP (2.2) m 

T (2.3) 



F A I L U R E S U R F A C E 
<£ f K = K F=tan(</> F) 

Y I E L D S U R F A C E 
K = K c = t a n ( ( < £ m o ) c ) 

° C Y I E L D S U R F A C E 
K = K B = t a n ( ( < £ m o ) B ) 
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NORMAL STRESS 

Figure 2.4 Matsuoka-Nakai 2-D Failure Criterion 



where: 
= the failure friction angle of the sand 

r (r1.T,/owr.)_ = the failure stress ratio Mr MP F 

2.2.1.2 Flow Rule 
The flow rule of the model relates the plastic strain increment ratio, 

defined on the current mobilized plane (or yield surface) with the stress 
state at the point. 

Murayama and Matsuoka (1973), Matsuoka (197A) developed the following 
relationship between the shear-normal stress ratio o n 

Mobilized Plane and the increment ratio (Aê p/Af̂ p) 

(2.A) 

where A,ji are soil parameters evaluated as is shown in Fig. 2.5(a) (pg. 23) 
and the stresses and o„„, and the increments of strain Arun and AeUT, 

MP MP Mr MP 
are evaluated as is described later in section 2.2.2 (pg. 29). 

This relationship was verified by data derived from triaxial tests 
(compression and extension), under constant mean principal stress, o^, and 
a plane strain test under constant o3, on Toyoura sand as shown in pg. 23, 
Fig. 2.5(a). It may be seen that the data points plot in a straight line 
despite the initial void ratio, e^, which ranged from ,6A to .89 and the 
mean normal stress, o , which ranged from 100 kPa to 396 kPa. 

m 
It should be noted that the above increments of strain, AeWT, and Ar„_ 

MP MP 
were treated initially as increments of total strain, however in later 



publications Matsuoka (1987) refers to these quantities as increments of 
plastic strain and therefore, these are designated from now on as Aê p and 

a 4 -

From eq. (2.A), Ae^ can be obtained as follows: 
Mr 

(2.5) 

To develop an incremental stress strain law it is necessary to relate the 
term with the increment of the stress ratio A^p/o^p) on the current 
Mobilized Plane (or yield surface), and that is done by combining the above 
flow rule with the hardening rule described below. 

2.2.1.3 Hardening Rule 
Two different types of hardening rules were developed by Matsuoka 

which resulted in two different 2-D stress strain laws. 

- 1st Hardening Rule 
Matsuoka (197A) developed the following relationship between the 

stress ratio (TMp/°Mp) an<* normal-shear plastic strain ratio 
on the Mobilized Plane: 

MP  
3MP 

= X (- 'MP ) + u' (2.6) 
'MP 

where: 
X 
li' 

= same soil parameter used in eq. (2.A) 
= soil parameter 



This relationship was also verified by data derived from triaxial 
tests (compression and extension), under constant mean principal stress, 
om, on Toyoura sand as shown in Fig. 2.5(b). The initial void ratios, e^, 
of these tests varied from .68 to .89 and the mean normal stress, a , from 

m 

100 kPa to 398 kPa. Again the fit with the laboratory data is seen to be 
good. 

Combining the flow rule given by eq. (2.A) with the hardening rule 
given by eq. (2.6) the following equation was obtained by Matsuoka (1983) 

TMP , , TMP . — = Cm* - yHn — + \i 
°MP ^ 

(2.7) 

where: 
= plastic shear strain at which is a minimum 

Differentiating eq. (2.7) with respect to the stress ratio (Tjjp/0^p) 
the following incremental stress-strain law is obtained: 

a 4  =  fa  e x p (  ( w v - ^ A r , , 
— ^ > MP MP (2.8) 

( TMP / OMP ) _ U 

Designating G^ = ŷ /(n-ji') exp ( ^, ), the above equation can be 
rewritten as follows: 

(2.9) 
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where G^ is designated here as the plastic shear modulus parameter which 
relates the increment of plastic shear strain with the stress ratio 
increment on the current mobilized plane (or yield surface). 

Equation (2.9) represents Matsuoka's first incremental stress strain 
law. 

- 2nd Hardening Rule 
Matsuoka (1987) developed a model for soil where the rotation of 

principal stresses is taken into account. The flow rule of the model is 
the same as that described by eq. (2.4). However, the hardening rule was 
developed based on the assumption that the relationship between the ratio 
of the shear stress and vertical stress, T /O , with the shear strain, 

xz z y , is hyperbolic and given by the following equation: X 2 

v 1 ^ x z ^ F ^ m / V f . , m 

xz " G (x /a  - (x /O ) o xz z F xz z 

where: 
G = the initial slope of the relation between (t /o ) and r . o xz z xz 
(T /O )„ = the failure stress ratio xz z F 

After some manipulations, Matsuoka shows that eq. (2.10) can be 
rewritten as: 

, sm(4J sm(<f> ) sm(2a) 
1 F m , \ f = n —/T~\ • , , s— (2.10a) 'xy G sin(L) - sm(d> ) J o F m 



the failure friction angle 
the mobilized friction angle 
the angle between the o3 direction and the o x direction. 

To account for the "shear" on the Mobilized Plane and the "rotation" 
of the principal stress axis, eq. (2.10a) is differentiated with respect to 
<f>m and a, respectively. The details are given by Matsuoka (1987). When a 
= 45°, eq. (2.10a) becomes 

, sin(<j> ) sin(<J> ) 
T = 7T- • r-rrV (2.10b) 
' Gq sin(<J>F)-sm(<J>m) 

where: 
y = the maximum shear strain = e1-e3. 

Based on the above, Matsuoka (1987) concludes that G can be obtained 
o 

from either the simple shear test (eq. 2.10a) or the triaxial test (eq. 
2.10b). This approach, however, was not followed here as is explained 
below. 

Matsuoka (1983) has also shown that the relationship between the 
stress ratio anc* t*16 plastic shear strain on the Mobilized 
plane is hyperbolic as is shown in Fig. 2.6, which is based on data 
obtained from triaxial tests (compression and extension) on Toyoura sand. 
Because this relationship is considered to be more fundamental and easier 
to implement in a 3-D space than the relationships given by eqs. (2.10), it 
was decided to develop the plastic hardening of the model as is described 
below. 

*m 
a 
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Following similar procedures as outlined by Kondner (1963) and Kondner 
and Zelasko (1963) the following equation representative of the hyperbolic 
relationship on the Mobilized Plane is obtained: 

x rP 
MP 'MP — = — (2.11) °MP rP 

1 MP 
Gpi ^MP^MP^lt 

where: 
G . = the initial slope of the stress ratio - strain curve pi 

and 
(twt,/owt,) = the asymptotic value of the stress ratio which is MP MP ult J r 

related closely to the failure stress ratio (T„_,/OV._.)T,. 
J MP MP F 

The plastic shear strain increment, Afĵ p is obtained from eq. (2.11) 
and is given by: 

(2.11a) 

This equation represents the hardening rule of the proposed model and 
is the substitute for Matsuoka's 1st and 2nd hardening rules which were 
given earlier by eqs. (2.9) and (2.10), respectively. 

Since the proposed hardening relationship is assumed to be hyperbolic 
the procedures developed by Duncan et al. (1980) to evaluate the tangent 
Young's modulus, E , for the hyperbolic model were followed here and by 



analogy give the tangent shear plastic parameter G . This parameter is 
pt 

considered to be dependent on both the normal stress, o^,, and stress ratio 
level, SRL, and given by the following equation: 

(2.12) 

where: 
G . Pi 
KG 

np 
Pa 

" K Gp (°MP / P a ) n P 

= the plastic shear number 
= the plastic shear exponent 
= the atmospheric pressure 
= a parameter that relates the asymptotic value of the stress 
ratio, (^p/^p^ult' w i t h t h e stress ratio, ^mp^mp^F' 
by the equation: 

(TMP/oMP}F = V W ' W u l t (2.13) 

and the stress ratio level, SRL, is given by the equation: 

SRL = (xMp/°Mp)/(TMp/oMp)F 

or 

(2.14) 



i.e., SRL relates the "current" yield surface defined by tan(^m) with the 
failure surface defined by tan(<£p). At failure SRL = 1. 

2.2.2 Brief Development of the 2-D model in the Cartesian System of 
Coordinates 

A brief development of the 2-D stress-strain , constitutive law is 
presented here since its development will give an insight into the more 
complex development of the 3-D stress-strain constitutive law which will be 
described later. 

The development of the 2-D model consists briefly of the following: 
Relationships between the shear stress, normal stress, o^p, on 

the Mobilized Plane and^the principal stresses and o3 can be obtained 
from the Mohr circle plot shown in Fig. 2.7(a). From this figure the 
following relationships are obtained: 

TMP = (0i"03>/2 cos<t>m 
(2.15) 

°MP = ( o i + ° 3 ) / 2 " (°i"°3)/2 s i n * m 

Assuming that the direction of the increments of plastic principal 
strain coincide with the direction of the principal stresses Matsuoka 
(1983) obtains the increments of plastic strain as is shown in Fig. 
2.7(b). From this figure the following relationships are obtained, 

ArMP = ( A e? " A e3 } C O S < Pm 
(2.16) 

Aegp = (Aep + Aep)/2 - (AeP - Aep)/2 sin<f>m 



Figure 2.7 (a) Mohr Circle of Stresses; (b) Mohr Circle of Incre-
ments of Plastic Strain 



Substituting the values of sin<f>m = (o1-o3) / (OJ+OJ ) and cos<|>m = 2Tla1a3/ 
(O J+O J) in the above equations and solving for AeP and AeP the following 
equations are obtained: 

AeP = AePp + (c^/o,)*" ArPp/2 
(2.17) 

Aep = Aepp - (o./o^i" ArPp/2 

From Fig. 2.7(b) the following relationship between increments of 
plastic strain, {AeP} and increments of plastic principal strain are 
obtained: 

AeP = (AeP + AeP)/2 - (AeP - AeP)/2 cos2a 

AeP = (AeP + AeP)/2 + (Aex - Ae3)/2 cos2a (2.18) z 

ArP = (AeP - AeP)sin2a 
21X 

Since Ae P p = (vi - T M p/° M p) ArjJpA (see eq. (2.5)), and ArPp = 1/Gpt 
A(x^p/o^p) (see eq. (2.11)), then, manipulating the above equation, rela-
tionships between increments of plastic strain, {AeP}, and the increment 
of stress ratio on the Mobilized Plane can be obtained. The manipulation 
of these equations is not presented here since only a brief insight to the 
model is intended at this stage. Nevertheless the increments of plastic 
strain would be given by equations of the following form: 



A e x = G ~ ( f x > A ( T M P / o M P ) pt 

A e z = g T A ( t m p / o m p ) ( 2 - 1 9 ) pt 

a 4 = G T A ( t m p / o M P ) pt 

where the terms f , f , f can be obtained as described above. X z zx 
To completely define the stress-plastic strain relation it is neces-

sary to develop a relationship between the increment of the stress ratio on 
the Mobilized Plane, A(x^/o™) , and the increments of stress, Ao , Ao and 

' MP MP ' x' z 
AT . 
zx 

Such development will not be carried out here because it will be 
carried out later for the 3-D Spatial Mobilized Plane. Nevertheless that 
relationship would be given by an equation such as the following: 

A(T M I,/OM 1,) = (TMX)Ao + (TMZ)Ao + (TMZX)AT (2.20) MP MP x z zx 

where TMX, TMZ and TMZX are terms that will be defined later in Section 
2.4.3.5. 

Substituting this equation into eqs. (2.19), the plastic strain-stress 
relation shown below can be obtained: 

{AeP} = [CP] {Ao} (2.21) 

The above equation completes the development of the plastic constitu-
tive matrix of the model. As described earlier the elastic strain-stress 
relation is given by: 

{Aee} = [Ce] {Ao} (2.22) 



where [C ] is Hooke's constitutive law. 
Therefore, to obtain the complete strain-stress relation, designated 

also as elasto-plastic strain-stress relation, eqs. (2.21) and (2.22) are 
added to give 

{Ae} = {Aee + AeP} = [Ce] {Ao} + [CP] {Ao} = [Cep] {Ao} (2.23) 

The extension of the 2-D Mobilized Plane concept to 3-D is discussed 
next. 

2.3 Discussion on the Theories of the 'Compounded Mobilized Planes' (CMP) 
and the 'Spatial Mobilized Plane' (SMP) 
The concept of the 2-D Mobilized Plane was later expanded to 3-D by 

Matsuoka and Nakai (1974). From their work, two theories were developed. 
The theory of the 'Compounded Mobilized Planes' (CMP) and the theory of the 
'Spatial Mobilized Plane' (SMP). These two theories are well described by 
Matsuoka (1983) and only a brief discussion is presented here. 

In the CMP theory the 3-D stress-strain constitutive model is devel-
oped based on three 2-D mobilized planes which are defined based on the 
three pairs of principal stresses (oJto2), (o2,o3) and (Oj.Oj) as shown in 
pg 35, Fig. 2.8(a), and, the correspondent mobilized friction angles, <p  , 

mi 2 
<b and <b are obtained as shown in Fig. 2.8(b). 

2 3 m ! 3 

To evaluate the deformations at a point representative of a mass of 
soil, the same 2-D stress-strain constitutive law is used independently for 
each of the three mobilized planes, and the principal strain e^ in the 
direction i (i = 1,2,3) is obtained by a linear summation. 



In the SMP theory the 3-D stress-strain constitutive law is based upon 
a single 3-D mobilized plane as shown in Fig. 2.8(c), and the deformations 
are obtained directly from stress-strain relationships developed for this 
plane. 

The first theory, CMP, was favoured by Matsuoka and in 1987 he intro-
duced the hyperbolic hardening rule (described earlier in section 2.2.1.3) 
in order that the rotation of principal axis is taken into account. The 
constitutive law is 2-D and is expanded to 3-D following the CMP concept 
described above. 

The second theory, SMP, was favoured here because this concept is 
considered to be more fundamental, since the stress-strain relations are 
obtained directly for a 3-D stress space and the 2-D constitutive relations 
can be obtained from the 3-D constitutive relations by imposing the 
necessary boundary conditions as will be described later. 

A detailed description of the SMP model is presented next. 

2.4 3-D Constitutive Model for Sand Following the Concept of the Spatial 
Mobilized Plane 
A constitutive model based on one 2-D mobilized plane, defined by the 

major and minor principal stresses (o: and o3), has been presented in 
section 2.2. 

In this section a 3-D model based on the Spatial Mobilized Plane (SMP) 
(Matsuoka, 1983) is presented. This model is also based on a single plane, 
however, this time the plane is defined in a 3-D space by the three 
principal stresses (olt o2 and o3). 

The concept of the 2-D model described earlier will be closely 
followed for the development of the 3-D model and includes several devia-



(a) 

Figure 2.8 (a) Three 2-Dimensional Mobilized Planes; (b) Development 
of Three Mobilized Friction Angles in the T, O Stress Space-
(c) Spatial Mobilized Plane 



tions from Matsuoka's 3-D SMP model. As will be shown, these deviations 
allow adequate modelling of the 3-D shear, dilation and rotation character-
istics of sand when subject to several stress paths including simple 
shear. 

A detailed description of the 3-D formulation will be presented first, 
and the 2-D and axisymmetric formulations which are obtained from the 3-D 
formulation by imposing boundary conditions will be presented after. 

2.4.1 Description of the SMP (After Matsuoka, 1983) 
The state of stress on a soil element can be characterized by its 

three principal stresses o l t o2, and o3. Based on these stresses three 
Mohr circles can be constructed as shown earlier in Fig. 2.8(b) and three 
mobilized friction angles <p  , <b  and <b  obtained. Based on these 

m m m 
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mobilized friction angles a 3-D plane is geometrically developed in princi-
pal stress space and intercepts the principal stress axes 1, 2, and 3 at 
the points A, B and C as shown earlier in Fig. 2.8(c). This plane (ABC), 
which is defined by Matsuoka as "the plane on which the soil particles are 
most mobilized on average in the 3-D stress space", is designated as 
Spatial Mobilized Plane (SMP). 

The SMP is characterized by a normal direction, n, normal stress, 
o S Mp, and shear stress, tSMp. The direction cosines of the normal to the 
SMP are given by the following equation: 

°1  °2  °3  1'2 a. = (— ? ) (2.24) 
i oi(o1oJ + o2o3 + a3al 

where: 
ô  = principal stress in direction i (i = 1,2,3) 
a. = cos(n,i), direction cosine in relation to principal direction i 



and the normal stress, ° S Mp and the shear stress tSMp on the SMP are given 
by the following equations: 

°SMP = + + ( 2 , 2 5 ) 

l 

and 
x = ((ax-o2)Ja12aJ 2 + (o2-o3)2a22a32 + (0,-0^2a32ai2)i'2 (2.26) 

where: 
â  (i = 1,2,3) are given by eq. (2.24). 

Assuming that the principal plastic strain increments, Ae?, have the 
same direction as the principal stresses o^, it follows that the increment 
of the plastic normal strain, Aej^p, and the increment of the plastic shear 
strain, ̂ TgMp» the SMP are given by the following equations: 

AeP = AePaj2 + Ae^a,2 AeP2a32 (2.27) 

and 
ArPMp/2 = ((AeP-AeP)2a12a22 + (AeP-AeP)2a22a32 + (AeP-AeP)2a32aJi: 1 ̂  3 

(2.28) 

Because the above assumption is one of the key assumptions of the model, it 
will be discussed in detail in section 2.5 of this chapter. 

2.4.2 Development of the Plastic Constitutive Matrix [CP] 
The plastic component of the 3-D constitutive matrix is based on the 

yield criterion, flow rule and hardening rule described below. 



2.4.2.1 Yield Criterion 
The 3-D failure criterion of the SMP model is the same as the 2-D 

failure criterion described earlier except that this time the yield and 
failure surfaces are defined based upon the three principal stresses oa, o2 

and o3. 
The yield and failure surfaces are given by the following equations 

developed by Matsuoka and Nakai (1974,1985). 

• Yield Surfaces 
t /oQMp = 2/3 (tan* + tan<f> + tan* )*" = K (2.29) SMP SMP moi2 mo 23 raoi3 

• Failure Surface 

' W W F = 2 / 3 ( t a n*F 1 2 + t a n*F 2 3 + W F J 1 " • KF ( 2' 3 0 ) 

where: 
<(>  , <p  and <j> are the mobilized friction angles mi 2 m23 m!3 

and 
<J>„ , <(>„ and are the failure friction angles. 

12 2 3 13 

Earlier attempts made by the writer to predict measurements obtained 
from simple shear tests on Leighton-Buzzard sand (Stroud, 1971) and from 
true-triaxial tests on Ottawa sand (Yong and Ko, 1980) (Workshop soil 
modelling, McGill University) indicate however that the peak failure stress 
ratio, (xgMp/°sMp)p» dependent on the normal stress on the SMP at 
failure, (°SMp)p» an<* that a better agreement with the laboratory data was 
obtained if the failure stress ratio was expressed by the following 
equation: 



(ZSMP, , - 4,182, 1 O 8 i , ( ^ £ F ) (2.31) 
SMP SMP SMP pa 

where 
TSMP 
( ). = failure stress ratio at (o,,̂ ),, = 1 atmosphere. 
°SMP 1 S M P F 

and 
^ QWN 

A( ) = decrease in failure stress ratio for a 10 fold increase in 
°SMP 

^ s m p V 

A sketch of the failure surface, projected on the octahedral plane and 
in the 3-D stress space is presented in Fig. 2.9(a) and (b) respectively. 
The 3-D Mohr-Coulomb failure surface is also shown in the figures and it 
may be seen that the Mohr-Coulomb and Matsuoka-Nakai failure surfaces 
coincide whenever the triaxial stress path is followed (compression or 
extension) but differ for any other stress path. 

To show the influence of the intermediate principal, o2, on the 
failure friction angle <p 13  =  sin' 1C(a 1-a 3 )/(a 1-a 3 )),  better known as <j>, a 
relationship was developed between <p 13 and b-value which is a parameter 
that was developed by Bishop (1966). The relationship is given by the 
following equation, which was obtained from eq. (2.30) (see Appendix 2.1) 

. * „ 3 , b(l+a)+(l-a) (1-b) ,, tan<Pp^ ~ F 2 (1+a) (b+b2)+ (l-a) (2-3b+b2) 

where: 
b = (o2-o3)/(o1-o3) 
a = (0^03)7(0^03) = sin <|>F 



M O H R - C O U L O M B 

M A T S U O K A - N A K A I 

\ 
N\ 

( a ) 

Figure 2.9 Matsuoka-Nakai and Mohr-Coulomb Failure Criteria: 
(a) Projection on the Octahedral Plane; (b) 3-Dimensional 
Stress Space 



K = constant = 2V2/3 tan <J>„ (obtained from eq. (2.30) 
* * 1 3 

tx 
Designating by i.e. the failure friction angle corresponding 

* 1 3 * 
to triaxial conditions, then: 

* tx 
<t>„  = </)„  for b = 0 or b = 1 
13 F 

<J>* f for 0 < b < 1 
13 e 

* i.e., <f>„ is the failure friction angle, defined by ox and a3, for o2?oj 
" 1 « 1 3 

and OJ^OJ. 
* tx Values of were computed for different values of <f>„ and for 
13 * 

different values of the b-value using eq. (2.32), and the differences 
* tx 

between <f>„ and <(>„ evaluated. The results are presented in Fig. 2.10. 
M3 * 

* tx 
It may be seen that the value (<f>„ -<(>„)  is  equal to zero when b = 0 or b 

* 13 * 
= 1 (triaxial compression or triaxial extension) and has values > 0, when 0 tx < b < 1. The highest difference occurs when <f>„ = 50° and b is about .25. r 
This behaviour has been observed by many researchers based on laboratory 
measurements from tests on sand using true-triaxial, plane strain (triaxial 
and simple shear), hollow cylinder and other devices. 

2.A.2.2 Flow Rule 
The 2-D flow rule described earlier by eq. (2.A) has been extended to 

the SMP by Matsuoka and Nakai (197A) and Matsuoka (1983) who show that eq. 
(2.A) can be re-written as: 

TSMP/oSMP = X (- A eSMP / A4p ) + ^ ( 2' 3 3 ) 



b - V A L U E 

Figure 2.10 Variation of (<j>p - <J>jjx) with b-Value. 



where: 
X,)i are the same soil parameters earlier defined for the 2-D model. 

This relationship was verified by data derived from triaxial tests 
(compression and extension) on Toyoura sand as shown in Fig. 2.11(a) It 
may be seen that the same intercept (̂  = .20) and about the same slope (X = 
1.12) is obtained from the 3-D flow rule as compared with the 2-D flow 
rule, (p. = .20 and X = 1.20), shown earlier in Fig. 2.5(a). 

2.A.2.3 Hardening Rule 
The 2-D hyperbolic hardening rule described earlier by eqs. (2.11) is 

extended here to the SMP by re-writing this equation as follows: 

(2.3A) 

This relationship is shown to be verified by the triaxial test data 
(compression and extension) on Toyoura sand, presented in Fig. 2.11(b). 

To evaluate the tangent plastic shear parameter, G » eq. 2.12, which 
was derived earlier for the 2-D model is used here, i.e. G . = 

pt G . (1-R„ SRL)2, however in the 3-D model, G . , R„ and SRL are defined on pi F pi F 
the SMP by the following equations: 

Gpi = K Gp (°SMP / P a ) n P ( 2 ' 3 5 ) 

RF = (TSMP/0SMP)F/(TSMP/°SMP)ult ( 2' 3 6 ) 
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Figure 2.11 (a) Relationship Between (xSMp/oSMp) and -(AeSMp/ArSMp). 
Toyoura sand (after Matsuoka, 1983). 

( b ) Relationship Between ( T S M p / o S M p ) a n d rSMP' T ° y ° u r a S a n d 

(after Matsuoka, 1983). 



and 

SRL = (TSMP/°SMP)/(XSMP/ASMP)F ( 2' 3 7 ) 

2.4.2.4 Summary of the Basic Equations of the SMP Model 
The basic equations of the SMP model are presented below. 

Yield Criterion 

^ S M P ' W F = (tSMP/oSMP^ ~ A(TSMP/°SMP) 1o«XO ̂ SMP'^ ( 2' 3 8 ) 

Hyperbolic Hardening Rule 

Flow Rule 

a 4 p = r : A < W W ( 2 ' 3 9 ) pt 

AeP M p=l/X( H- (xSMp/oSMp)) Ar P M p (2.40) 

2.4.3 Development of the SMP's Plastic Constitutive Matrix in the 
Cartesian System of Coordinates 

A brief development of the plastic constitutive matrix {CP} is 
presented below. Details will be given after. 

The following relationships will be developed: 

• A ei = fa (AeSMP« A 4 p > ( 2 ' 4 1 a ) 

The relationship f is developed in section 2.4.3.1 (pg. 47) 



A ei = fb ^ W W ( 2 ' A l b ) 

The relationship is obtained by substituting eqs. (2.39) and (2.40) into 
eq. (2.41a). This is described in section 2.4.3.2 (pg. 51). 

{Aep} = f (Ae?) (2.41c) c 1 

where {AeP} = increments of plastic strain. 

The relationship f is developed in section 2.4.3.3 (pg. 51) 

{ A e P } = fd ^ w w * ( 2 - A l d ) 

The relationship f^ is obtained by substituting eq. (2.41b) into eq. 
(2.41c). This is described in section 2.4.3.4 (pg. 53). 

A ( W ° S M P ) = fe ( { A o } ) ( 2 - A l e ) 

where {Ao} = increments of stress. 

The relationship f is developed in section 2.4.3.5 (pg. 53). 

• {AeP} = [CP]{Ao} (2.41f) 

where the plastic constitutive matrix, is obtained by substitut-
ing eq. (2.41e) into eq. (2.41d). This is described in section 2.4.4 
(pg. 56). 



To develop the above relationships the procedures described by 
Matsuoka (1983) will be followed here except for a few deviations that will 
be outlined. 

2. A. 3 .1 Relationship Between Increments of Plastic Principal Strain, Ae? 
and Ae|Mp and A^ Mp 

Matsuoka (1983) showed that the relationship between Ae? and, AeP SMP 
and Ay^p is given by the following equation (see Appendix 2.2): 

A e P - A e P A ei " SMP + a. 2 
I 

(2.42) 

where: 

b. l 

= the direction cosines of the normal stress (see eq. 2.24) 
°i~°SMP  

TSMP 
a. = the direction cosines of the shear 

stress Tĝ p (see Appendix 2.2) (2.43) 

a 

To establish the above eq. (2.42) the following two assumptions were 
considered by Matsuoka: 
a) That the direction cosines of Ae^p are the same as the direction 

cosines a. 
I 

b) that the direction cosines of Afg^p are the same as the direction 
cosines b. 

I 

Earlier attempts made by the writer to predict laboratory measurements 
obtained from simple shear tests (data published by Stroud, 1971, on 
Leighton-Buzzard sand), and from true-triaxial tests (data used in the 



workshop soil modelling competition, McGill University, on Ottawa sand, 
Yong and Ko, 1980), indicate, however, that the assumption regarding the 
direction cosines b^ was not in agreement with the published laboratory 
data. Deviations between the b.values obtained from the stresses, o. , and 

1 l 
the b^ values obtained from the increments of plastic strain, Ae?, were 
observed to be stress path dependent and a function of the 'b-value' = 
(o2-a3) / (o 1-o3). These deviations of b^ are given by the following 
equation: 

Ab. = (b.) - (b.) (2.44) 
'i L X O . i A P 

i Ae. 

where: 
(b.) = direction cosines of the shear stress direction 

i 
(b.) = direction cosines of the increment of plastic shear 

1 Ac? 
direction 

The variation of Ab^ with the 'b-value' are shown in Fig. 2.12. Based on 
this figure eq. (2.41) is re-written in a different form as follows: 

A ei = AeSMP + < v A v a 4 p (2.45) 

Predictions of the simple shear test data reported by Stroud, using 
Ab.= 0, and Ab. f 0 (obtained from Fig. 2.12) are shown in Fig. 2.13. It 



Figure 2.12 Variations of Abi (i = 1,2,3) with 'b-Value*. 
(a) i=l; (b) i=2; (c) i=3 
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Figure 2.13 Predicted and Measured Simple Shear Data, (a) t z x versus r z x; 
(b) ev versus rzx5 ( C) UO J / O J + O J ) versus f 



may be seen that good agreement with the measured data is obtained when 
Ab^ 0. When Ab^ = 0 the predictions of the shear stress, and volumetric 
strain, versus shear strain are in fair agreement with the measured data, 
however, the prediction of 2os/(OJ+OJ) versus shear strain is extremely 
high, and inadequate. Therefore the use of eq. (2.45) instead of eq. 
(2.42) in the SMP formulation is considered to be justified. 

2.4.3.2 Relationship Between Increments of Plastic Principal Strain, Ae? 
and Increment of the Stress Ratio on the SMP, 

Substituting the values of AfPMp from eq. (2.39) and Aeĵ p from eq. 
(2.40) into eq. (2.45) the following equation is obtained: 

U - (TSMp/o ) b -Ab t 
AE? = [( ; M P S M F ) + I)] (2.46) 

1 A 2 ai Gp SMP 

where i = 1,2,3. 

Designating the term in square brackets by M^ then eq. (2.46) can be 
rewritten as: 

Ae? = [M.] A ( ^ ) (2.47) 1 Gp SMP 

2.4.3.3 Relationship Between Increments of Plastic Cartesian Strain {AeP} 
and Increments of Plastic Principal Strain {AeP] 

Now that a relationship between Ae? and, AeP^p and AfP̂ p has been 
established a relationship between the cartesian components of plastic 
strain {AeP} and Ae? is needed. 

l 
Matsuoka (1983) assumes that the direction cosines JL , nu and n^ (i = 

1,2,3) which relate cartesian stresses with principal stresses, are the 



same direction cosines that relate increments of plastic cartesian strain 
with increments of plastic principal strain. Based on the above assump-
tion, the following equations are obtained (see Appendix 2.3): 

Aep = I Ae? i. x . -, 0 i i 1=1 ,3 

A y 22 = I 
i=l,3 

Ae? fi.m. l ii 

Aep = 
i=l ,3 

Ae? m. l l 
Arp yz 

2 i=1.3 
Ae? m.n. l ii (2.48) 

AeP = 
i=l,3 

Ae^ i n. 
A 7" zx 

i-1.3 
Ae? n.S. l ii 

The above assumption is considered to be correct for stress paths such 
as the triaxial or other paths where there is no rotation of principal 
stress axes. However simple shear test data reported by Roscoe (1970), 
Stroud (1971) and Wood et al. (1979) on Leighton-Buzzard sand show that the 
above assumption is not strictly correct. A review of these is carried out 
later in section 2.5. From this review it is concluded that during the 
initial stages of all tests the angle \J> (defined by the vertical direction 
and the direction of the major principal stress, ox) , and the angle E 
(defined by the vertical direction and the direction of the major principal 
strain increment, Aex, can diverge considerably but when failure is 
approached these angles start converging and at failure the deviation 
between the angles \|) and £ is not significant. 

Based on the above it is concluded that the assumption considered by 
Matsuoka (1983) is reasonable and can be used here to relate the increments 
of plastic cartesian strain with the increments of plastic principal 
strain as presented by eqs. (2.48) above. 



2.4.3.4 Relationship Between Increments of Plastic Strain, {AeP}, and 
Increment of Stress Ratio on the SMP 

The relationship between the increments of plastic strain, {AeP} and 
the increments of the stress ratio on the SMP, A(xSMp/oSMp) are given by 
the following equations which were obtained by substituting eq. (2.47) into 
eq. (2.48): 

P i t<;MP 
Ae = ( Z M.«.») fr A(-^) X i=l,3 Gp SMP 

Af; 
& = ( Z M.i.m.) . , _ i l l G 1=1,3 p 

A(^MP) 
°SMP 

Aep = ( Z M.m.2) A(-^) 
y i=l,3 1 1 Gp °SMP 

Af; 
Y*  - , 1 A /SMP, M.m.n.) — A( ) 

i=l,3 1 1 1 Gp °SMP 
= ( Z 

, i 
Aep = ( Z M.n.2) jr A(-i=l,3 l l 

SMP, 
?SMP 

Af zx 1 <?MP 
= ( Z M.n.JL) A(-^-) 

i=l,3 1 1 1 Gp SMP 

(2.49) 

2.4.3.5 Evaluation of the Increment of the Stress Ratio on the SMP as a 
Function of the Increments of Stress, (Ao) 

The last step required to develop {Cp} consists of developing a rela-
tionship between A(TSMp/oSMp) and the increments of stress, {Ao}. The 
approach described by Matsuoka (1987) to account for the "shear" on the 2-D 
Mobilized Plane, MP, and the "rotation" of the principal stress axis is 
followed below after adapting it to the 3-D Spatial Mobilized Plane, SMP. 

The stress ratio on the SMP is given by the following equation which 
is obtained from eq. (2.25) and eq. (2.26): 

t_MP [(0,-0,)Ia12a22+(a2-o3)JaJ2a32+(o3-o1)Ja32a1J]1/2 
= (2.50) 

°SMP o1a12+o2a22+o3a32 



To account for the "shear" on the SMP, the following steps were 
taken: 

• Differentiating Eq. (2.50) with respect to the principal stresses, ô (i = 
1,2,3), and the direction cosines, a^, of the normal to the SMP the 
following equation is obtained (see Appendix 2.4): 

A(T c m/o c m n) = fJ(Ao., Aa.) (2.51) smp smp 1 i l smp smp 

Eq. (2.24), which relates a^ with o^ is differentiated with respect to 
o^, and relationships between Aa^ and Ao^ are obtained. Substituting 
these in eq. (2.51) the following equation is obtained (see Appendix 
2.4) 

A(_sraE) = ( T S M 0 B l ) A O i + (XSM0B2)AO2 + (TSM0B3)Aos (2.52) 
smp 

where the terms TSM0B1, TSM0B2 and TSM0B3 are as described in the 
Appendix. 

To account for the "rotation" of the principal stress axis the 
following relationships were considered: 

(o -o.)cos(i,x) + x cos(i,y) + x cos(i,z) = 0 x i ' xy J zx 
x cos(i,x) + (o -o.)cos(i,y) + x cos(i,z) = 0 (2.53) yx y l J yz 
x cos(i,x) + x cos(i,y) + (o -o.)cos(i,z) = 0 zx zy J z l 

cos2(i,x) + cos2(i,x) + cos2(i,z) = 1 

where cos(i,x), cos(i,y) and cos(i,z) are the direction cosines of 
direction i (i=l,2,3) with respect to directions x,y and z, respectively. 



In the above, the first three equations were obtained from the funda-
mental relationships between cartesian stresses and principal stresses and 
the fourth equation from the known relation for direction cosines (see 
Appendix 2.5). 

By differentiating the above equations, equations for the increments 
of principal stress, Ao^ and for the increments of the angle of rotation of 
principal stress axis, A(i,x), A(i,y) and A(i,z) are obtained as functions 
of the increments of the stresses, {Ao} (see Appendix 2.5). Since "i" 
above has values of 1, 2 and 3, then three systems of 4 equations with 4 
unknowns, are obtained. Solving these equations yields values of Ao^, 
which take into account the rotation of the principal stress axis, in terms 
of the increments of the stresses, {Ao}. 

The above procedures are presented in detail in Appendix 2.5. The 
final results are as follows: 

where: Q . , Q . , Q . , Q _ .,Q_ . and Q . are terms described in Appendix tci' ̂ yi' ocyi ŷzi zxi 
2.5. 

Substituting the values of Ao^ from eq. (2.54) into eq. (2.52) a relation-
ship between A(x M p/o Q M P) and {Ao} is obtained and given by: 

(2.54) 

A(T SMP/oSMP (TMX)Ao + (TMY)Ao + (TMZ)Ao 
y z 

(2.55) 
+ (TMXY)Ax xy + (TMYZ) AT + (TMZX) At zx 



where: 

TMX = I (TSMOBi) (Q^) TMXY = I (TSMOBi) (Q^) 
i=l,3 i=l,3 

TMY = S (TSMOBi) (Q^) TMYZ = I (TSMOBi) (Q ) (2.56) 
i=l,3 i=l,3 

TMZ = X (TSMOBi)(Q .) TMZX = X (TSMOBi)(Q .) 
• T <-i 2 1 • i o Z X 1 1=1,3 1=1,3 

2.4.3.6 Evaluation of the Plastic Constitutive Matrix 
Substituting eq. (2.55) into eq. (2.49) a relationship between incre-

ments of plastic strain {AeP} and increments of stress {Ao} is obtained and 
given by the following equation: 

{AeP} = [CP]{Ao} ( 2 . 5 7 ) 

where {CP} is the plastic constitutive matrix of the SMP model. This 
matrix is given in detail in Appendix 2.6. 

2 . 4 . 4 Evaluation of the Elasto-Plastic Constitutive Matrix [ c e p ] 

As described earlier the strains in the SMP model are composed of two 
components. The plastic strains are given by the above eq. ( 2 . 5 7 ) and the 
elastic strains by the following equation: 

Ae® = [Ce]{Ao} (2.58) 



Q 

[C ] is defined using an incremental linear elastic and isotropic law. 
Isotropy is a convenient assumption since it lowers the number of elastic 
parameters to two. The two parameters selected here are the shear modulus, 
G, and the bulk modulus, B. Both moduli are considered to be dependent on 
the mean normal stress and evaluated in the formulation by the following 
equations: 

G = KG P (o /P )n (2.59) a m a 

B = KB P (o /P )m (2.60) a m a 

where: KG and KB are the shear modulus and bulk modulus number, and 
n and m are the shear modulus and bulk modulus exponent. 

To obtain the complete strain-stress relation, eq. 2.57 and 2.58 are 
added to give 

{Ae} = tCep]{Ao} (2.61) 

Procedures for the evaluation of both the elastic and plastic para-
meters for use in the modified SMP model will be given later, in Chapter 3 
(from laboratory test data), in Chapter 5 (from pressuremeter test data), 
and Chapter 6 (from laboratory and cone penetration test data). 

2.A.A.I Loading and Unloading Constitutive Matrix 
One of the major advantages of using an elasto-plastic constitutive 

matrix is that it is very easy to model the loading and unloading 
characteristics of the sand material in a F.E. formulation. 



A soil element is considered to be in a loading stress path whenever 
the stress ratio level (SRL) of the element, in the current load step, is 
higher than the SRL of the previous load step, and for this condition the 
full [Cep] matrix in eq. (2.61) will be used in the analysis. However, if 
the current SRL is smaller or equal to a previous SRL then the soil element 
is considered to be on an unloading stress path. The plastic component 
[CP] of the total constitutive matrix [Cep] will be dropped and only the 

£ 
elastic component [C ] given by eq. (2.58) will be used in the analysis. 

2.A.4.2 Implementation of the Modified SMP Model into Finite Element Form 
To analyze the response of the Molikpaq structure to ice loading, the 

modified SMP model was implemented in the 3-D computer code '3DSLB1. 
Unfortunately because the required computer memory to analyze the Molikpaq 
exceeds the existing UBC computer (Amdahl) capacity of 1 megaword, this 
model could not be used in the 3-D analysis. However, the modified SMP 
model was implemented in the 2-D computer code '2DSLB' and 2-D plane strain 
analysis of the Molikpaq were carried out. 

The modified SMP model was also implemeted in axisymmetric form in the 
computer code '2DSLB' to analyse pressuremeter test data obtained in the 
fills of the Molikpaq. Both the 2-D plane strain and axisymmetric 
formulations were obtained from the 3-D formulation by imposing the 
corresponding boundary conditions. The details are presented in Appendix 
2.6. 

Formulation for "load shedding" was also included in the above two 
computer codes and this is briefly discussed next. 



2.A.4.3 Load Shedding Formulation 
During the ice loading on the Molikpaq structure the soil elements 

adjacent to the loaded wall can undergo shear failure due to loading (see 
Fig. 2.14(a)) and the soil elements underneath the base of the structure on 
the side of the loaded wall can undergo shear and/or tension failure due to 
unloading (see Figs. 2.14(b) and 2.14(c)). 

In the F.E. formulations (3-D and 2-D) earlier described, whenever a 
soil element reaches failure the G p shear parameter is defaulted to a 
prescribed low value so that the element does not absorb any additional 
significant shear stresses during subsequent load steps. 

This approach will work provided the soil element is being subject to 
increasing normal stresses. Its effectiveness depends on the magnitude of 
the load increment to failure, see Fig. 2.14(a), on how low the G p 

parameter is defaulted to and on how small the subsequent load increments 
will be. 

This approach, however, will not work if the normal stresses on the 
element decreases during the load step, because the element stresses will 
stay practically the same violating the failure criteria. 

To solve the problem, Zienkiewicz et al. (1968), Byrne and Janzen 
(1984) proposed a stress redistribution technique called "stress transfer" 
or "load shedding" by which the element overstresses are redistributed to 
the adjacent stiffer soil or structural elements. 

Briefly this "load shedding" technique consists of the following: 
(a) Evaluation of the over-shear stress, Ax^s to be shed in terms of 

increments of cartesian stress, {Ao}TC (i.e. Ao , Ao .., AT ). 
L 5 XLS yLS LS 

(b) Correct the current stresses {a} of the element overriding the failure 
criterion by -{Ao}^. 

(c) Default the shear modulus of this element to a low value. 



LEGEND = 
A = s t r e s s  point at l o a d 

i n c r e m e n t  ( K ) 

B = s t r e s s  point at l o a d 
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A a ^ s = a m o u n t of  n o r m a l 
s t r e s s  to be s h e d d e d 

Figure 2.14 (a) Shear Failure During Loading; (b) Shear Failure During 
Unloading; (c) Shear and Tension Failure During Unloading. 



(d) Compute nodal loads a r e equivalent to the overstress. 
Perform an additional load step of analysis with the load vector 

This will redistribute the load to the adjacent elements. 

By doing the above, the quantity {Ao}̂ g which is in violation is taken 
from the element and is redistributed to the adjacent elements in such a 
way as to satisfy both equilibrium, compatibility and the failure 
criterion. 

The implementation of the above procedures in the modified SMP 
formulation is presented in Appendix 2.7. 

2.5 Review of the Assumptions Considered in the Modified SMP Model 
The assumptions considered in the formulation of the modified SMP 

model were described while the model was presented. A summary of these 
assumptions is presented below. 

2.5.1 Summary of the Assumptions Used in the Modified SMP Model 
1st Assumption: The elastoplastic constitutive matrix [Cep] is 

e 
composed of two components, an elastic component [C ] and a plastic 
component [cP]. 

2nd Assumption: The elastic constitutive matrix [C ] is assumed to be 
isotropic. 

3rd Assumption: The increments of elastic principal strain are 
assumed to have the same direction as the increments of principal stress. 



4th Assumption: The increments of plastic principal strains are 
assumed to have the same direction as the principal stresses. 

5th Assumption: The Spatial Mobilized Plane is assumed to be the 
plane in which the soil particles are most mobilized on average in the 3-D 
stress space. 

6th Assumption: The relationship between the stress ratio 
and the ratio of the increments of plastic strain AepUT,/Arp „ is assumed to 

r SMP SMP 
be given by the following equation. 

TSMP/aSMP = X (- A eSMP / Ai MP ) + » 

The above relationship, which is designated as flow rule, is assumed 
to be independent of both the initial void ratio e^ and the initial 
confining, a ̂ . 

7th Assumption: The relationship between the stress ratio tsmp^°smP 

and the plastic shear strain Tĝ p is assumed to be hyperbolic and given by 
the following equation: 

ArSMP " G A(tSMP/oSMP) 

This equation represents the hardening rule and it assumes that the 
shear parameter, G , is dependent on both the normal stress, an<i 
stress ratio level, SRL. 



8th Assumption: The sand material fails when the stress ratio 
XSMP/oSMP r e a c h e s a limiting value, which is given by the equation 

tcmp 9 
= 3 Vtan'*i»F + t a n 2 ^ 3 F + tan'*i»F = KF 

and it is assumed that the above equation is valid for any stress path. 

From the above assumptions the ones regarding the direction of the 
increments of principal strain (Assumptions #3 and #4) and the assumption 
regarding the SMP failure criterion (Assumption #8) are considered to be 
the most pertinent and are discussed below. 

2.5.2 Discussion of the Assumptions Regarding the Direction of the Incre-
ments of Principal Strain 

As described, simple shear conditions are likely to develop in the 
sand fills of the Molikpaq structure during ice loading. Therefore the 
simple shear data on Leighton-Buzzard sand reported by Roscoe (1970) will 
be briefly discussed below. 

The rotation of principal axes with shear strain during a typical 
simple shear test is presented in Fig. 2.15. The directions of the 
principal axes of stress, increments of strain and increments of stress are 
defined as is shown in Fig. 2.15(a) in which if), £ and x are the angles with 
the vertical made by the directions of the major principal stress ox, major 
principal strain increment Aex, and major principal stress increment Ao,, 
respectively. Virgin loading test data is shown in Fig. 2.15(b) and, 
virgin loading, unloading and reloading test data is shown in Fig. 2.15(c). 
Based on these test results, Roscoe (1970) concluded the following: 
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Figure 2.15 Rotation of Principal Axes During Simple Shear Tests on 
Leighton-Buzzard Sand (e0 = .64). Data reported by Roscoe 
(1970). (a) Definition of Angles \|>, £ and x> (b) Virgin 
Loading Test Data, and (c) Virgin Loading, Unloading and 
Reloading Test Data. 



a) For monotonically increasing stresses the principal axes of increments 
of strain (£) and of stresses coincide as the sand was sheared, 
except for the earliest stages of the test before the sample developed 
its minimum void ratio (Min.V.R.) (see Fig. 2.15(b)). This fact 
reinforces Assumption #4 because after Min.V.R. the deformations are 
essentially plastic. 

b) At no stage of a virgin loading test did the axes of increment of 
strain (£) and increment of stresses (x) coincide. However, if after 
monotonic increase of the shear stress this stress was reduced and 
then increased again the angles £ and x coincide (see Fig. 2.15(c)) 
indicating elastic behaviour. This fact reinforces Assumption #3. 

However, to fully validate the above assumptions, other stress paths 
with rotation of principal axis should be addressed. For that the research 
work carried out by Symes et al. (1982,1984,1988) on Ham river sand and 
Sayao (1989) on Ottawa sand using the hollow cylinder torsional apparatus 
are briefly discussed in Appendix 2.8. The main conclusions are as 
follows: 

For the "continuous rotation tests" carried out by Symes et al. and 
Sayao, with increasing or decreasing values of \|) but with constant values 
of stress ratio a./a,, b-value and, mean normal stress o it is concluded 

1 3' ' m 
that the deviations between the angle \p  (stresses) and the angle £ 
(increments of strain) can be quite significant. The same conclusions 
apply for the "continuous variation in b-value tests" carried out, by 
Sayao, with increasing or decreasing b-value but with constant values of \j), 
a,/a, and o . This indicates that Assumption #4 is not valid for these two 1 3 m 
types of tests. However Assumption #4 is shown to be valid for the hollow 
cylinder tests where a stress path to failure was followed (except for the 



early stages of the tests) such as the "initial anisotropic tests" carried 
out, by Symes et al. and Sayao, with increasing o1/a3 but with constant 
values of \p, b-value and o^. The same conclusions apply for the 
"proportional loading tests" carried out by Sayao with increasing o^ but 
constant o1/o3, \p and b-value. 

Since for the case of the Molikpaq the stress path that matters is a 
failure stress path, it is concluded therefore that Assumption #4 is 
considered to be adequate enough for the Molikpaq analysis. 

2.5.3 Discussion of the Assumption Regarding the SMP Yield Criterion 
As discussed the SMP yield criterion developed by Matsuoka and Nakai 

(1974,1985) assume that at failure, the stress ratio TgMP/'0SMP c o n s t a n t 

regardless of the stress path followed up to failure. The above also 
implies that the failure friction angle <{>13 defined by the principal direc-
tions ox and o3 is the same for the triaxial stress path in compression or 
extension. Based on experimental data reported by some reseachers, 
however, the above have not been verified. As an example, the variation of 
<f>13 with b-value obtained from the data reported by Arthur et al. (1977) 
ispresented in Fig. 2.16. This data was obtained from true-triaxial tests 
on Leighton-Buzzard sand (e0 = .52). In the figure the <fi13 obtained from 
the simple shear results on the same sand (e0 = .53) reported by Stroud 
(1971) is also presented. 

Applying Matsuoka-Nakai failure criterion equation with the <p 13 

obtained from the triaxial compression test (b-value = 0) the dashed line 
No. 1 is obtained. Following the same procedure with the <f>13, values 
obtained from the simple shear test (b-value = .33) and triaxial extension 
test (b-value = 1) than the dashed lines No. 2 and 3 are obtained, 
respectively. 
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It may be seen from the figure, that for this set of data, the 
Matsuoka-Nakai failure criterion underestimates the <f>13 for b > 0 if the 
triaxial compression data point is used. 

From the above it is concluded that although the Matsuoka- Nakai 
failure criterion represents an improvement as compared with the Mohr-
Coulomb failure criterion, which does not show any increase of <f>13 with the 
b-value, it can not account for the different values of <j>13 for the cases 
of triaxial compression and extension. 

2.6 Disadvantages of the SMP Modified Model 
The main disadvantage of the proposed formulation is that it involves 

a non-symmetric stiffness matrix [K] and therefore it requires a solver 
routine for non-symmetric system of equations. This fact in itself is not 
a problem because routines to solve this type of systems are available. 
However, the required computer memory is considerably larger than that 
required for the standard symmetric banded system of equations. This dis-
advantage became relevant for the case of the 3-D FE mesh used in the 
analysis of the Molikpaq (Chapter 7) because a 2.5 megaword memory capacity 
was required and this is larger than the existing 1 megaword memory capa-
city of the current UBC computer (Amdahl). Therefore the modified SMP 
model could not be used in the 3-D FE analysis of the Molikpaq and only 2-D 
FE analysis could be carried out with this model. For the 3-D FE analysis 
the hyperbolic model (Duncan et al., 1980) which uses a symmetric stiffness 
matrix was used instead. This disadvantage however is considered to be a 
temporary one since computers with larger memory capacity than the UBC 
Amdahl are used in other other technological fields and hopefully soon will 
be available to solve special geotechnical problems such as the Molikpaq 
study. 



CHAPTER 3 
PROCEDURES FOR THE EVALUATION OF SOIL PARAMETERS FOR USE IN THE MODIFIED 

SMP MODEL. VERIFICATION OF THE MODIFIED SMP MODEL 

3.1 Introduction 
This chapter is concerned with the following aspects which are import-

ant to any constitutive model: 

a) Development of procedures for the evaluation of soil parameters for 
use in the model. 

b) Verification of the model against observed laboratory test results. 
The laboratory data selected here was obtained from the following 
three sources: 
• Data reported by Stroud (1971) for Leighton-Buzzard sand using the 
Cambridge Simple-Shear Apparatus Mark 7. 

• Data reported by Vaid, Byrne and Hughes (1981) for Ottawa sand using 
the UBC Simple-Shear Apparatus. 

• Data provided for the workshop on "Limit Equilibrium Plasticity and 
Generalized Stress-Strain in Geotechnical Engineering", McGill 
University, and published by Yong and Ko (1980). The data consists 
of true triaxial test results on Ottawa sand. 

The simple shear test receives particular attention here because the 
shear, dilation and deformation under the principal stress rotation of sand 
when subject to the simple shear stress path is considered to be 
representative of the stress change induced by the horizontal ice loading 
on the Molikpaq sand fills. 



3.2 Evaluation of Soil Parameters for Use in the Modified SMP Model from 
the Standard Triaxial Test 
The soil parameters required for the modified SMP model can be divided 

into two main groups: 
i) Elastic parameters 
ii) Plastic parameters 

In all, 11 parameters are used in the modified SMP model. These 
parameters are summarized below in Table 3.1. 

Table 3.1 
Summary of Soil Parameters for Use in the Modified SMP Model 

Type Parameter Description 
KGe Elastic shear modulus number 

Elastic n Elastic shear modulus exponent 
KBe Elastic bulk modulus number 
m Elastic bulk modulus exponent 

Hardening 
Rule K G P Plastic shear number Hardening 
Rule 

np Plastic shear exponent 

Plastic Flow Rule P 
Flow rule intercept 

Plastic Flow Rule 
X Flow rule slope 
(tSMP/oSMP)1 Failure stress ratio at 1 atmosphere 

Failure A(TSMp/oSMp) Decrease in one log cycle of (TSMP/'0SMP^F 

R F Failure ratio 

The above soil parameters can be evaluated from: (a) laboratory test 
results, (b) pressuremeter test results, and (c) laboratory and cone 
penetration test (CPT) results. 



The procedures to evaluate the soil parameters from the standard 
triaxial test are presented in Appendix 3.1. Procedures to evaluate soil 
parameters from pressuremeter test results are presented in Chapter 5 and 
from laboratory and CPT results are presented in Chapter 6 where the soil 
parameters for use in the Molikpaq analysis are obtained. 

3.3 Verification of the Modified SMP Model Against Observed Laboratory 
Test Data 
To check the modified SMP model's formulation and capabilities the 

following two levels of verification were carried out: 

1° Level of Verification (Calibration) 
This consists of an evaluation of soil parameters from the results of 

a particular laboratory test on sand and calibration with the measured 
results obtained from the same test. This will allow a check of the 
following: 
a) that the procedures described earlier to evaluate soil parameters are 

correct; and 
b) that the formulation used in the model is also correct. 

2° Level of Verification 
Evaluation of soil parameters from the results of a compression tri-

axial test (b-value = 0) and/or extension triaxial test (b-value =1) on a 
particular sand and prediction of the observed laboratory data obtained 
from other tests (simple shear, true-triaxial) on the same sand consolida-
ted to the same void ratio. This will allow a check of the capability of 
the model to predict the response of sand when subject to various stress 
paths, using soil parameters that were determined from the standard 
triaxial test. 



3.3.1 First Level of Verification of the Modified SMP Model. Calibration 
with the Simple Shear Test Data Reported by Stroud on Leighton-
Buzzard Sand 

The data reported by Stroud (1971) for Leighton-Buzzard sand using the 
Cambridge simple-shear apparatus Mark 7 (SSAM7) was selected here to 
calibrate and verify the 3-dimensional formulation of the modified SMP 
model because: 
• The SSAM7, which was developed by Stroud, gives information on all three 
principal stresses, o l t o2 and o3 during the simple shear test. 

• A gradual rotation of the axes of principal stress and strain occur 
during this test. 

• Simple shear conditions are likely to develop in the fills of the 
Molikpaq structure during ice loading. 

3.3.1.1 Soil Parameters for Leighton-Buzzard Sand (eff=.53) for Use in the 
Modified SMP Model 

The Leighton-Buzzard sand tested by Stroud (1971) is a coarse rounded 
quartz sand graded between No. 14 and No. 25 BS sieves with 60-65% passing 
no. 18 BS sieve. The sand samples were prepared with a void ratio e0 = .53 
(Dr = 87%). 

The soil parameters for Leighton-Buzzard sand for use in the modified 
SMP model are summarized in Table 3.2 and were obtained as described in 
Appendix 3.2. 

3.3.1.2 Calibration with the Simple Shear Data Reported by Stroud 
From the data reported by Stroud (1971) the tests carried out with 

constant vertical stress, o = 48 kPa, o = 76 kPa and o = 172 kPa were 
z z z 

selected here to be predicted. In the numerical analysis the initial 
values for the horizontal stresses, a , (the direction of shear) and o , 

x y' 
(the direction of the intermediate stress) were taken equal to .44 owhich 
were the values reported by Stroud. 



Table 3.2 
Soil Parameters for Leighton-Buzzard Sand (e0=.53) 

for use in the Modified SMP Model 

Elastic 
Parameters 

KGe = 620 
Elastic 
Parameters 

n = 0.63 Elastic 
Parameters 

KBe =580 
Elastic 
Parameters 

m =0.60 

Plastic 
Parameters 

Plastic Shear 
Modulus 
Parameters 

K Gp = 335 

Plastic 
Parameters 

Plastic Shear 
Modulus 
Parameters np = -.48 

Plastic 
Parameters 

Flow Rule 
Parameters 

Vi = .20 
Plastic 
Parameters 

Flow Rule 
Parameters 

X =1.20 Plastic 
Parameters 

Failure 
Parameters 

fTSMP^ 
SMP 1 a t m ' = 

Plastic 
Parameters 

Failure 
Parameters 

A(;SMP) = .08 SMP 

Plastic 
Parameters 

Failure 
Parameters 

(Rp)av = .957 

Using the soil parameters shown in Table 3.2 the following predictions 
were carried out: 

(a) t/s versus y (presented in Fig. 3.1) 
where: 

t = (ox - o3)/2 = shear stress 
s = (ox + O3)/2 = mean normal stress 

and y = ( e 1 - e 3 ) = shear strain 



(b) x versus y (presented in Fig. 3.2(a)) 
ZX  zx 
where: 

x = cartesian shear stress zx 
y = cartesian shear strain ' zx 

(c) e versus y (presented in Fig. 3.2(b)) 
v zx 
where: 

e = volumetric strain v 

(d) a /o versus y (presented in Fig. 3.3) 
x xo 
where: 

a = the initial horizontal stress in the x-direction xo 
o = the mobilized stress, due to shear, in the x-direction x 

(see Appendix 3.3 for the evaluation of afrom the 
reported laboratory data) 

(e) o2/s versus y (presented in Fig. 3.4). 

The above predictions were carried out using both the 3-D and 2-D 
plane strain formulations of the modified SMP model, both gave exactly the 
same predictions. 

The overall agreement between the predictions and the measured data is 
seen to be good except for the ° x/° x 0 versus y predictions. These 
differences are attributed to deviations of the measured vertical stress, 
o^, from the assumed constant vertical stress boundary conditions of the 
tests. Based on the above, it is concluded that the procedures described 
in Appendix 3.1 to evaluate soil parameters and both the 3-D and 2-D 
formulations of the model have been verified. 



MEASUREMENTS 

Figure 3.1 Predicted and Measured Simple Shear Data on Leighton-Buzzard 
Sand (t/s versus r)• (a) a = 48 kPa; (b) o„ = 72 kPa; and 
(c) o v = 172 kPa v 
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Figure 3.2 Predicted and Measured Simple Shear Data on Leighton-Buzzard 
Sand, (a) x ^ versus r^; ev v e r s u s T z x 
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Figure 3.4 Predicted and Measured Simple Shear Data on Leighton-Buzzard -j 
Sand (o2/s versus y) . ov = 48 kPa °° 



3.3.2 Second Level of Verification of the Modified SMP Model. Predictions 
of Simple Shear and True-Triaxial Test Data on Ottawa Sand 

The true triaxial test data on Ottawa sand (Dr = 87%) used in the 1980 
workshop on McGill University (data reported by Yong and Ko) is used here, 
as is described below, together with the simple shear test data reported by 
Vaid, Byrne and Hughes (1981) on the same sand (D = 72.3% and 92.7%) to 
further verify the modified SMP model. 

The above test data was subdivided here into two sets of data: 
• Data Base from which the soil parameters for use in the model were 
obtained. The stress paths used to generate the data base are presented 
in Fig. 3.5(a) and the grain size distribution of the Ottawa sand used in 
the tests is shown in Fig. 3.5(b). It may be seen that the tests con-
sisted of conventional triaxial tests (compression (CTC) and extension 
(CTE)), constant mean stress triaxial tests (compression (TC) and exten-
sion (TE)) and hydrostatic compression test (HC). This data is the same 
data base (or pre-workshop data) used in the 1980 workshop at McGill 
University. 

• Data Used for Predictions. The stress paths considered for the predic-
tions were subdivided into the following five groups: 
- Simple shear test which can be characterized by a b-value = .30 (see 
Fig. 3.6(a)), 

- Constant mean stress triaxial tests with b-values of .2, .5 and .8 (see 
Fig. 3.6(a)), 

- Proportional loading tests, PL1 and PL2 (see Fig. 3.6(b)), 
- Reduced triaxial tests, RTC and RTE (see Fig. 3.6(b)), and 
- Circular path test (see Fig. 3.6(c)). 
A detailed description of these tests is given later in the predictions 
section. 
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Figure 3.5 (a) Stress Paths Used to Generate Data Base for Modelling; (b) 
Grain Size Distribution of Ottawa Sand. 
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Figure 3.6(a,b,c) Stress Paths Used for Predictions 



For comparison purposes, predictions of the above tests using the 
hyperbolic model (Duncan et al. (1980)) are also included here because the 
hyperbolic model was used in the 3-Dimensional analysis of the Molikpaq. 

3.3.2.1 Soil Parameters for Ottawa Sand (0̂ =87%) for Use in the Modified 
SMP Model and the Hyperbolic Model 

The soil parameters for use in the modified SMP model were evaluated 
from the Data base as described in Appendix 3.3. A summary of the soil 
parameters is given in Table 3.3. 

The soil parameters for Ottawa sand (D = 87%) for use in the 
r 

hyperbolic model are presented in Table 3.A and were evaluated by Duncan 
and published by Yong and Ko (1980). 

Table 3.3 
Soil Parameters for Ottawa Sand (Dr = 87%) 

for Use in the Modified SMP Model 

KG = 1640 
n = 0.49 
KB = 2578 
m = 0.25 

Elastic 
Parameters 

KG = 190 
np = -.50 

Plastic Shear 
Modulus Parameters 

Plastic 
Parameters 

\i = .25 
X = 1.10 

Flow Rule 
Parameters Plastic 

Parameters 
C ^ ) ! = .935 SMP 1 

A(^SMP) - .62 SMP 
(RF)av - .97 

Failure Parameters 

Plastic 
Parameters 



Table 3.A 
Soil Parameters for Ottawa Sand (D̂  = 87%) (Evaluated by Duncan (1980) 

and Used in the Hyperbolic Model) 

Parameter Average Value Range 

K 400 ± 120 
*UR 2000 -

n 0.85 -

Cohesion, c 0.5 psi 
700 -

m 0.50 -

* 43° ± 3° 
Rf .86 -

3.3.2.2 Predictions of the Simple Shear Test Data Reported by Vaid, Byrne 
and Hughes (1980) 

The simple shear tests on Ottawa sand were carried out using the UBC 
simple shear apparatus described by Finn and Vaid (1977), which is a 
Cambridge type of apparatus similar to that developed by Roscoe (1953). 
The tests were carried out under drained conditions at a constant vertical 
confining stress, o = 200 kPa. The test results are shown in Fig. 3.7 for 

z 
a range of relative densities. The tests were strain controlled and one 
test (Dr = 92.7%) exhibited strain softening. 

In order to take into account the strain softening behaviour of Ottawa 
sand the modified SMP formulation was expanded with two additional soil 
parameters. The details are given in Appendix 3.5 and follow similar 
procedures as outlined by Carter and Yeung (1985) after some adaptations to 
the SMP formulation. 



Shear S t r a i n , y ( % ) 

Figure 3,7 Stress-Strain Behaviour of Ottawa Sand in Drained Simple Shear 
(after Vaid, Byrne and Hughes, 1980) 



Predictions of the simple shear test results were carried out using 
both the modified SMP model (with and without strain softening parameters) 
and the hyperbolic model. Because the relative density corresponding to 
the Data base was 87%, only the measured simple shear test data for Dr = 
72.3% and 92.7% will be considered here to bound the predictions. 

The initial stresses used in the analysis consisted of: vertical 
stress, o = 200 kPa, which remained constant; and o = o =86.5 kPa which z x y 
assumes a K0 = .A3. This K0 value represents the average value of that 
reported by Stroud (1971) (K0 = .AAO) and, Wood, Drescher and Budhu (1979) 
(K0 = .A25) which were obtained from the experimental values recorded in 
the elaborately instrumented Cambridge simple shear apparatus. 

The laboratory results together with the predictions obtained with the 
two models are presented in Fig. 3.8. It may be seen that up to peak shear 
stress the predictions obtained with the modified SMP model for Dr = 87% 
lie very close to the laboratory measurements (shear and volume measure-
ment) corresponding to Dr = 92.7%. After peak, the predictions taking into 
account the strain softening effects are in good agreement with the labora-
tory measurements. On the other hand, if strain softening is not 
considered, the mobilized shear stresses x maintains a constant value ' zx 
after the peak shear stress is reached. 

The predictions evaluated here using the soil parameters developed by 
Duncan with the hyperbolic model are also presented in Fig. 3.8 and show 
that this model underestimates the failure strength of the Ottawa sand when 
it follows the simple shear stress path. This is related with the Mohr-
Coulomb failure criteria that is used in the hyperbolic model. Regarding 
the volumetric predictions, the hyperbolic model does not predict any 
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volume changes since its formulation does not take into account volume 
changes mobilized by the shear component. As described in the beginning of 
this chapter even using the version of the hyperbolic model developed by 
Byrne and Eldridge (1982) which takes into account the volume changes due 
to dilation, the failure strength of the Ottawa sand for this particular 
stress path was well underestimated. This was one of the reasons why the 
modified SMP model was developed. 

3.3.2.3 Predictions of the Post-Workshop Test Data of the 1980 Workshop of 
McGill University 

The test equipment used is a flexible, fluid cushion cubical device 
with stress control, which is known as cube or true-triaxial device. The 
vertical axis, z, and the horizontal axes x and y are principal stress 
axes, which means that shear stresses cannot be applied with this device. 

The stress paths of the tests the investigators were asked to predict 
in the 1980 workshop of McGill University were given earlier in Figs. 
3.5(b), (c) and (d). These tests can be divided into four groups: 

a) constant mean stress tests 
b) proportional loading tests 
c) reduced triaxial tests 
d) circular path test 

The predictions of the test results will be presented following the above 
order together with a brief description of each test and comments on the 
quality of the predictions by the two constitutive models. 



a) Constant Mean Stress Tests 
Four tests where the o and the b-value were kept constant were 

m 
performed: 

a,) b = .2 and a =10 psi. During this test Ao = 1/3 Ao , and 
1 m y 6 x z' Ao = 2/3 Ao . y z 
a.) b = .5 and o = 5 psi. During this test Ao = Ao . 
2 m r " x z 
a.) b = .5 and a = 20 psi. During this test Ao = Ao . 
3 m r 6 x z 
a.) b = .8 and o =10 psi. During this test Ao = .5 Ao and 
4 m r b x z 

Ao = 1.5 Ao . 
y z 

The test results and the predictions from the two models are presented 
in Fig. 3.9 to Fig. 3.12. 

The predictions obtained with the modified SMP model are in good 
agreement with the measured results for both the initial phase and the 
failure phase of the tests. Test with b=.5 and o m =20 psi was the only 
exception where 1 psi difference of t ^ at failure is noted. 

The predictions obtained by Duncan with the hyperbolic model show that 
the higher bound of the predicted range is in good agreement with the tests 

with b=.2 and b=.8, but that the predictions for the tests b=.5 (o =5 and 
m 

20 psi) reach failure conditions much sooner than the laboratory measure-
ments indicate. The reasons for this are most likely related with the 
Mohr-Coulomb failure criteria used in the hyperbolic model, which 
underestimates the failure friction angle for stress paths with b values 
different than 0 (triaxial compression) or 1 (triaxial extension). 
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b) Proportional Loading Tests 
Two proportional loading tests with = 10 Psi were carried out. 

In the first Ao = Ao = 1/8 Ao and was designated PL.. In the second x y z & i 

Aox= AOy = 1/2 Aoz and was designated PL,. The test results together with 
the predictions are presented in Fig. 3.13. 

The predictions by the two models of the PL1 test underestimate 
considerably the failure phase of the test, and no apparent reasons can be 
offered since the b value = 0. 

The predictions of the PL2 test indicate that the predictions of e 
z 

strain by the modified SMP model and the high bound of the hyperbolic model 
are in very good agreement up to a e = .3% and after that the laboratory 

z 

data seems to deviate from its initial trend. Regarding the ex and e 
strains, both models predict strains with the wrong sign as compared with 
the laboratory measurements and again no apparent reason can be offered to 
justify that deviation. 

c) Reduced Triaxial tests 
Two reduced triaxial tests with (o ). =20 psi were carried out. One 

m i 
was a reduced triaxial compression test, RTC, with b=0, Aoz=0 and decreas-
ing Ao = Ao , and the other a reduced triaxial extension test RTE with 

& x y 
b=l, Aox = AOy = 0 and decreasing Aoz. The test results and predictions 
are shown in Fig. 3.14. 

The predictions of the RTC and RTE tests carried out by the two models 
are in good agreement with the laboratory measurments. 

d) Circular Path Test 
This test, which was performed with a constant o m = 10 psi, is 

composed of 3 phases. In the first phase the sand is loaded in shear until 
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a T o c t = 4.2 psi is developed. The second phase is characterized by main-
taining a constant x . = 4.2 psi while the three stresses o , o and o 

& oct ^ x' y z 
vary in magnitude, and share at different times the directions of the 
principal stresses a l t a3 and o3. Although the name of the test (circular 
path) seems to imply that a gradual rotation of the principal stress axis 
is taking place, in reality that is not the case, and what takes place is 
an instant flip of the principal directions at different times during the 
test. This phase is terminated when the "apparent" angle of rotation 0 
reaches a value of 420°. During the last phase of the test the sand is 
unloaded from x . = 4.2 psi to x . = 0. The results and the predictions oct ^ oct r 

corresponding to the 2nd phase of the test are shown in Fig. 3.15. 
The predictions obtained by Duncan using the hyperbolic model are in 

fair agreement with the laboratory measurements. On the other hand the 
predictions carried out with the modified SMP model, which are in fair 
agreement with the laboratory measurements during the first (1/3) of the 
second phase of the test, show a poor agreement for the rest of the test. 
However, because this circular path test is not representative of the 
stress paths that occur in the sand fills of the Molikpaq structure during 
either the construction or ice loading phases, explanations for the above 
differences were not investigated at this time, but will deserve considera-
tion in the future by the writer. 

3.4 Summary and Conclusions 
Procedures for the evaluation of soil parameters from laboratory test 

results for use in the modified SMP model has been presented in this 
chapter. This was followed by a verification of the proposed model against 
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observed laboratory test results. Based on the overall good agreement 
between the predictions and the reported data the following is concluded: 

(1) The procedures described in this chapter are adequate to evaluate soil 
parameters for use in the modified SMP model. 

(2) Both the 3-D and 2-D plane strain formulations of the proposed model 
can reproduce well the reported simple shear test data on Leighton-
Buzzard sand. 

This indicates the following: 
(a) The model takes into account the gradual rotation of the axes of 

principal stresses and strains that occur during that test. 
(b) The 2-D formulation which is derived from the 3-D formulation by 

applying the appropriate boundary conditions give a good predic-
tion of the intermediate principal stress o,. 

(3) The overall good predictions of the simple shear and true-triaxial 
tests on Ottawa sand, with the exception of the circular path test, 
further indicate that the proposed model is able to predict the 
behaviour of that sand with reasonable accuracy for the stress-paths 
of practical importance. 

(A) Because the circular path test is not representative of the stress 
paths that occur in the sand fills of the Molikpaq structure during 
either the construction or ice loading phases, the reasons for the 
poor predictions of this test by the modified SMP model were not 
investigated herein. 



CHAPTER 4 
INTERFACE ELEMENTS 

4.1 Introduction 
The behaviour of the interface between the sand fills used in the core 

and berm and the Molikpaq steel structure are important aspects that will 
effect the behaviour of the soil-structure system under load. 

In this chapter a brief review of the existing interfaces elements 
available in the literature is presented. From this review an interface 
element designated as "thin" element is selected due its simplicity, 
concept and performance. Next this "thin" element is described together 
with methods for the evaluation of the soil parameters used in the consti-
tutive laws for the element. Procedures for the implementation of the thin 
element to 2-D and 3-D F.E. codes, are also described and include the 
implementation of load shedding techniques for elements that failed in 
tension or shear. Finally, the performance of the "thin" interface element 
is assessed by comparing F.E. results with the closed form solutions of a 
pipe-soil system and with earth pressures measured on a 10 meter retaining 
wall field study. 

4.2 Brief Review of the Existing Interface Elements 
A good review on this topic is given by Desai (1981) and Desai et al. 

(1984) and a brief summary is presented here. 
The first interface elements described in the literature are the pin-

ended element (Anderson and Dodd, 1966), the spring element (Ngo and 
Scordelis, 1967) and the zero thickness joint element (Goodman et al., 
1968). From these, the one that received most attention and has been 



used in F.E. analysis, (Clough and Duncan, 1971) and others, is the 
interface element proposed by Goodman. This element's formulation is 
derived on the basis of relative nodal displacements of the solid or 
structural elements surrounding the interface. Because there is a lack of 
physical basis for this zero thickness interface element and because it 
requires a formulation with a special element stiffness matrix, other types 
of interface elements have been developed since then. Of these elements, 
the one derived by Desai et al. (1984) was found most desirable due to its 
simplicity and excellent performance. This element with a finite but thin 
thickness was designated as a "thin" interface element. This element is 
described next. 

4.3 Description of the "Thin" Interface Element 
The "Thin" element is treated essentially like any other solid iso-

parametric F.E. element, except for a few differences described below. Its 
behaviour involves a finite thin zone as shown in Fig. 4.1(a) (2-D element) 
and Fig. 4.1(b) (3-D element). 

The two basic differences between the "thin" element and the standard 
isoparametric solid element are: 

(1) The "Thin" element uses an anisotropic constitutive law, where the two 
moduli used to described its behaviour, normal modulus, E.., and shear 

.N 
modulus, G, are independent of each other. 

The Ê j modulus is used to characterize the normal response of the 
element when subject to compressive loads (bonding mode, i.e. normal 
stress, Ojj > 0) or tensile loads (debonding mode, o^ £ 0) as shown in Fig. 
4.2. When o.T > 0 the E„ modulus is equal to a value that characterizes its N N 



Figure 4.1 "Thin" Interface Element: (a) 2-Dimensional; (b) 3-Dimensional 
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compressive behaviour, and when o^ £ 0 the E^ modulus is equal to a small 
value in order that the element does not absorb any more tensile stresses 
during the subsequent load increments. 

The G modulus is used to characterize the shear response of the 
element when subject to shear loads as shown in Fig. 4.3. When the 
absolute value of the mobilized shear stress, |t I , is smaller than the 

m 
resistant shear stress, t d the element is in a "no slip" mode and the G 
modulus is equal to a value that characterizes its shear behaviour, and 
when it i £ t„ the element is in slip mode and the G modulus is defaulted m R c 

to a small value in order that the element does not absorb any more shear 
stresses during the subsequent load increments. Recommendations concerning 
the values of the moduli E„ and G and the interface failure parameters 

M 
angle of friction, 6, and cohesion, C , are given later in Section 4.5 of 
this chapter together with the constitutive models that are generally used 
in practice. 

The advantage of using an uncoupled pair of moduli is that in the case 
where the interface element fails in shear (slips) the low shear modulus 
does not also imply a low EN inferring a tension failure, i.e. the element 
behaves as cross-anisotropic. If a coupled pair of moduli was used instead 
the element will behave isotropically, which means that when it fails in 
shear the element will soften in both shear and axial directions since the 
moduli E and G are linked this time by the Poisson's ratio, v. 

(2) The other difference from the standard isoparametric solid elements is 
that the constitutive matrix [D] that relates the strains and stresses of 
each element, is defined in the local coordinate system (n, r, s) of the 
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element rather than the global coordinate system (x,y,z) used in the 
standard solid element's formulation (see Fig. 4.1). 

4.4 Determination of Soil Parameters: Constitutive Modelling 
The soil parameters required to define the characteristic behaviour of 

the interfaces can be divided into two groups: shear parameters and normal 
parameters. 

• Evaluation of Shear Parameters 
For the evaluation of the shear modulus, G, the interface friction 

angle, 6, and cohesion, Ca> the test most recommended in the literature is 
the direct shear test. These tests are performed using a standard direct 
shear machine, where the soil is compacted in the upper half of the shear 
box and the lower half consists of a specimen of the structure under 
consideration (steel, concrete, wood, etc.). Several tests are generally 
carried out at different normal stresses, o^, to simulate the expected 
range of stresses in situ. The measured relative displacements between the 
upper and lower halves of the shear box are assumed to characterize the 
shear interface response upon the applied stresses. Other devices also 
used are the torsion ring shear and the not so common multi-degree-of-
freedom shear device (Desai, 1981), where translational and rotational 
modes can be mobilized. 

From the results obtained from the direct shear test the following 
relationships can be obtained: 

a) Shear stress, t, versus relative displacement, ur. 
b) Failure shear stress t, versus normal stress, o„. 

I N 



From relationship (a) the shear modulus, G, can be obtained, and from 
relationship (b) the strength parameters 6 and C will be evaluated as 

Si 
described next. 

• Evaluation of the Shear Modulus, G 
To evaluate the shear modulus, G, the procedures recommended by Clough 

and Duncan (1971) combined with the procedures recommended by Desai (1984) 
will be followed. 

Clough and Duncan assume that the relationship between the shear 
stress, x, and the relative displacement, ur, is hyperbolic as shown in 
Fig. 4.4(a) and that the initial tangent stiffness, is given by the 
following equation: 

Ksi = Vw (S ) n 

where: 
KI 
n 

Pa 

= dimensionless stiffness number 
= stiffness exponent 
= unit weight of water 
= atmospheric pressure 

To obtain the above terms, several direct shear tests are carried out 
at different normal stresses and plots of (û /x) versus u^ are developed as 
shown in Fig. 4.4(b). From these transformed plots, and following steps 
that are very similar to the steps followed to evaluate the parameters Kg 
and n used for the standard hyperbolic model (Duncan and Chang, 1970; 
Duncan et al., 1980), the parameters KT and n are evaluated. 



As for the case of the standard hyperbolic model, the shear behaviour 
of the interfaces is assumed to be dependent on the stress level, and the 
tangent stiffness, K is given by the following equation: 

Rfx 2 K . = K . (1 -st si (A.2) 

where: 
Rf 
T f 
Tult 

m 

failure ratio = Tf/Tu^t 

failure shear stress = C + o„ tan 8 
a N 

the asymptotic shear stress = inverse of the slope of the 
transformed plot 
mobilized shear stress 

To evaluate the value of the initial shear modulus G^ the equation 
proposed by Desai (1984) will be followed: 

G. = K . • t 
1 si 

(4.3) 

where: 
t = interface thickness 

and the tangent shear modulus, G^ of the interface is given by: 

G = K • t 
t st 

or 

Gt = G i ( 1 " R f f ? (4.4) 



Substituting the values of eqs. (4.1) and (4.3) into (4.4) 

and to be consistent with the formulation used in Chapter 2, the tangent 
shear modulus G is given by 

(4.5) 

where the shear modulus number, K_ is given by the following equation: 

Kr = K_(y /Pa) • t (4.6) lj i w 

• Evaluation of Interface Thickness, t 
As described by Desai (1984) the quality of simulation of the 

interface behaviour will depend on a number of factors such as physical and 
geometric properties of the surrounding media, nonlinear material behaviour 
and the thickness, t, of the "thin" interace element. If the thickness is 
too large in comparison with the length, L, of the interface (see Fig. 
4.1), the "thin" element will behave essentially as a standard solid 
element. If it is too small, computational difficulties may arise. The 
choice of the element thickness, t, is therefore an important issue. Based 
on parametric studies in which the predictions from various thickness, t, 



were compared with direct shear test observations, Desai (1984) concluded 
that if the ratio t/L is within the range 0.01 to 0.1 than satisfactory 
agreement between the predicted results and the laboratory measurements was 
obtained. 

• Evaluation of 6 and Ca 
The values of the interface friction angle, 6, and cohesive, Ca, are 

easily evaluated from the plot of the failure shear stress, t^ versus the 
normal stress oN as it is illustrated in Fig. 4.4(c). 

• Evaluation of Normal Parameters 
Regarding the normal modulus, E^, the literature is not to clear how 

to evaluate it. Based on the assumption that the structural and geological 
media do not overlap at interfaces, generally a high value has been 
assigned for this modulus. Desai believes, however, that there is no 
physical ground for such an assumption, which can create numerical instabi-
lity problems. In reality, the normal properties of the interface must be 
dependent upon the characteristics of the thin interface zone as well as 
the state of stress and properties of the surrounding elements. Based on 
Desai's experience he concludes that satisfactory results can be obtained 
by assigning the interface normal component the same properties as those of 
the adjacent soil elements. This concept was followed in this thesis with 
satisfactory results as will be shown later when the predictions are 
carried out. Therefore in the formulation, E^, is considered to be 
dependent on the normal stress, o„, and given by the following equation: 
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Figure 4.4 (a) Comparison of Hyperbolic and Actual Stress-Displacement 
data (after Clough and Duncan, 1971) ; (b) Transformed Linear 
Hyperbolic Plots for Interface Tests (after Clough and Duncan, 
1971) ; (c) Evaluation of 6 and Cfl from Direct Shear Tests 



E N = P A ( ? ! ) N ( 4 - 7 ) 

normal modulus number, generally taken = Kg (Young's modulus 
number) of the adjacent material 
normal modulus exponent, generally equal to the Young's modulus 
exponent of the adjacent material 

4.5 Implementation of the "Thin" Interface Element into the Finite Element 
Formulation 
The "Thin" interface element was implemented in the 3-D and 2-D F.E. 

formulation codes '3DSLB' and '2DSLB'. The required F.E. formulation is 
rather simple and is described in detail in Appendix 4.1. A load shedding 
formulation for the "Thin" element was also developed and implemented into 
the above two computer codes. The details are presented in Apendix 4.2. 

4.6 Performance Studies of the "Thin" Interface Element 
4.6.1 Closed Form Solution of a Soil-Pipe System 

In order to gain confidence with these formulations, predictions of a 
'dosed form solution were made. A closed form solution of a soil-pipe 
system was developed by Burns and Richards (1964) in their study of 
"Attenuation of Stresses for Buried Cylinders". A schematic view of the 
idealized soil-pipe system is shown in Fig. 4.5. The pipe, which is 
treated as a linear elastic material has a radius of .84 m and is encased 
in a homogeneous soil which is also linear elastic. The external bound-
aries are located four radii from the pipe centre as shown. The boundary 
and loading conditions are also shown in Fig. 4.5. For this soil-pipe 

where: 

n 



Pressure, p0 

Figure 4.5 Soil Pipe System 



system, Burns and Richards developed two closed form solutions correspond-
ent to the two extreme frictional cases: (a) completely bonded; and (b) 
completely frictionless. The results from these two extreme frictional 
cases were predicted. Because these two extreme cases are not representa-
tive of sandy soils an additional frictional case was also considered: (c) 
interface friction angle 6 = 14°. For this case no closed form solution is 
available. 

Since the problem is plane strain, the 2-D F.E. code 2DSLB was used in 
the analysis. In addition, and to test the capability of the 3-D interface 
element, 3-D F.E. analyses were also carried out using the computer code 
3DSLB. 

The F.E. meshes for both the 2-D and 3-D analysis are shown in Fig. 
4.6 together with the soil, interface and pipe properties. To insure that 
the 3-D analyses were carried out under plane strain conditions the width, 
b, of the 3-D F.E. mesh was assigned a value b=l unit length. In addition, 
movement was restricted in the width direction (see Fig. 4.6(b)). The 
interface thickness, t, was assumed to be L/10, where L = side length of 
the interface elements. 

The closed form solutions together with the F.E. predictions for both 
2-D and 3-D analysis are shown in Fig. 4.7. It may be seen that the 
predictions obtained are in very good agreement with the closed form 
solutions for both the bonded and frictionless cases. The 3rd solution 
where a intermediate friction 6 = 14° was used appear reasonable since both 
normal and shear pressures are in between the two extreme cases. To note 
that the 2-D and 3-D results were exactly the same and therefore a degree 
of confidence is established for the implementation of the "thin" interface 
element in both the 2-D and 3-D F.E. computer codes. 



PROPERTIES 
SOIL TYPE MATERIAL E 

(kPa) 
\J tan& 

1 Pipe 20.7 x 10' .30 10.0 
2 Soil 18 x 10i .33 10.0 
3 Interface •Bonded •Frictionless •Friction 18 x 10J .33 10.0 0.0 .25 

Figure 4.6 F.E. Meshes and Soil Properties Used for the Soil Pipe Closed 
Form Solution 
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4.6.2 Retaining Wall Study 

Introduction 

The analyses presented above are of interest because they allowed a 
check on the performance of the "Thin" element against a closed form solu-
tion situation. However that example does not represent the conditions at 
the interface between the Molikpaq steel structure and its sand fills. 
Since no measurements of earth pressures were carried out in the structure 
fill interface during the core placement phase at the Molikpaq's two sites 
(Tarsiut and Amauligak), the writer looked elsewhere for a case study that 
could resemble such a situation. The experimental study of earth pressures 
developed in a 10 in retaining wall carried out by Matsuo et al. (1978) 
represents a good field case to further test the described "thin" element 
and at the same time test the performance of the two nonlinear stress-
strain models, the hyperbolic (Duncan et al., 1980) and the modified SMP 
model. 

From the results obtained in the field and in the F.E. analysis, 
discussions will be made regarding the following points: (a) the importance 
or not of using the "thin" interface element instead of using the standard 
solid element for this given situation; (b) comparisons between the two 
nonlinear stress strain models and a third point, (c) assessment of the 
coefficient of earth pressure K0, which as will be shown later (Chapter 7) 
will play an important role in the F.E. predictions of the Molikpaq upon 
ice loading. 

• Description of the Retaining Wall Field Test 
A detailed description of the problem is given by Matsuo et al. 

(1978). herein a brief description is presented. 



A schematic section of the retaining wall is shown in Fig. A.8(a). 
This wall which is 10 m high and made of concrete is laterally supported by 
three oil jacks which are installed between the retaining wall and the wall 
of an adjacent building, and, is bottom supported by a hinge which allows 
the wall to stay in a state of rest position (vertical position) or to 
rotate to an active state position (inclined position) as shown in Fig. 
4.8(b). To measure the earth pressures mobilized during the above two 

\ 

positions, twenty load cells were employed which were located between the 
retaining wall and five pressure receiving plates as shown in Fig. 4.8(a). 
This way the earth pressure was evaluated in detail at five locations. 

Three different field tests were carried out using three different 
types of backfill materials. One using a silty sand backfill and the other 
two using slags produced from iron manufacture plants. From these three 
field tests only the first will be analyzed here since in the Molikpaq the 
fill material used is sand. 

• Characteristics of the Silty Sand Fill 
The silty sand fill was placed in lifts until a height of 10 m was 

achieved. The average unit weight of this fill was about 19 kN/m3 and the 
water contents ranged between 5% and 8%. 

The parameters describing the silty sand fill are given by Matsuo et 
al. (1978) and are reproduced in Fig. 4.9. It is understood that the 
strength parameters Ca and 6 given in that figure represent the mean values 
of many data obtained by direct shear tests in which soil samples of 10 cm 
in diameter with 5.5% to 6.7% in water content and a unit weight of = 19 
kN/m3 were used. Unfortunately, laboratory data curves of shear stress 
versus shear strain were not published by Matsuo and therefore values for 



.155 

<D 

© 

WAS 
rn-rr^ 

ri, 

s r 
_ L 

a ) 

® WALL CP THE EXISTING BUILDING 
© O I L JACK 
© RETAINING W A L L 
© LOAD CELL 
© E A R T H PRESSURE CELL 
© PRESSURE RECEIVING P L A T E 

j'—i 
\l 1 W A L L \ 1 i . 

BACK-\ 
F I L L 

W 
(a) 

(a) STATE AT REST 
(b) A C T I V E STATE 

Figure 4.8 Retaining Wall Field Story: (a) Retaining Wall Instrumentation; 
(b) Wall Positions 



G R A I N S I Z E ( m m ) 

BACKFILL PROPERTIES 
Silty Sand 

Gs 2.69 
uopt(%) 11.9 

rdmax ( t / r a 3 ) 1.94 

Strength Parameters 
C 2.3 (t/m») 

Strength Parameters 
<t> 27° 

Figure 4.9 (a) Grain Size Distribution of Silty Sand; (b) Index Properties 
and Strength Parameters of Silty Sand 



the moduli used in the F.E. analysis were based on the published work by 
Byrne et al. (1987) and on the writer's experience on sands with similar 
characteristics of strength. 

• Assessment of the Quality of the Field Measurements 
The field measurements of the earth pressures mobilized at the 

"at-rest" or Kq position and at several inclined positions of the wall are 
shown in Fig. A. 10(a), where d is the displacement at the top of the wall. 
The inferred earth pressure coefficients, K, for d=0, d = 1.6 cm, and d = 
8.A cm, are shown in Fig. A.10(b). As shown, highest values for K were 
computed as expected for the "at-rest" position, d=0, and ranged from .7A 
at a depth of 1.0 m to .28 at a depth of 5.0 m with an average value (K) 
= ,A7. On the other hand, when the wall is rotated and d = 1.6 cm, the K 
values ranged from .09 at 5.0 m depth to .A at 9.0 m depth with an average 
value (K) = . 25 . If the wall is further rotated to d = 8. A cm, the K av 
values further decreased to a (K) = .11. 

av 
The data presented above in Figs. A. 10(a) and (b) show that as the 

displacement, d, increases the K values decrease as expected. To further 
assess the quality of the field measurements in Fig. A.10(c), the plot dev-
eloped by Matsuo et al. (1978) is shown where the ratio between the earth 
pressure for different wall rotated positions, p, and the initial earth 
pressure at rest, p0, for different depths, is plotted against the 
displacements inferred for these depths. It may be seen that the active 
state for the whole backfill was reached for values of d ranging from .3 to 
.8 cm (or d/H ranging from .003 to .008, where H = 10 m is the wall 
height). This is in good agreement with the results of tests performed by 
Terzaghi (193A) which showed that the active conditions on a rough wall was 
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reached for a value of d/H = .001A for dense sand, and a value d/H = .0084 
for loose sand. 

Now that the measured earth pressures carried out by Matsuo et al. 
(1978) are considered to be reliable, then F.E. analysis were carried out 
to assess the reliability of the different F.E. element types and constitu-
tive model types. 

• F.E. Analysis 
A cross-section showing the geometric conditions at the site is given 

in Fig. 4.11(a) and the F.E. mesh together with the soil parameters used in 
the analysis is shown in Fig. 4.11(b). 

Three field conditions were analyzed: (a) at rest condition (d/H = 0) 
and, active conditions (d/H = .0016) and (d/H = .0084). 

To analyze these conditions, a simulation of the in situ sequence of 
construction was carried out by placing the different soil layers shown in 
Fig. 4.11 in 10 layers and following the analytical procedures described by 
Byrne and Duncan (1979). During the construction sequence the nodes 
located on the wall were not allowed to move in the horizontal direction. 
At the end of the construction phase the stresses obtained were stored and 

used as initial streses for the active phase were this time those nodes 
were allowed to move in both horizontal and vertical directions being only 
constrained by the movements of the stiffer beam member used to represent 
the wall. 

Each of the above conditions was analyzed with different sets of 
element types and constitutive law types. In all, three F.E. studies were 
carried out. These are described below: 
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Figure 4.11 (a) Cross Section Illustrating Retaining Wall and Backfill; (b) 
Finite Element Mesh and Soil Properties Used in the Analysis 



In the first study, the wall soil interface was represented by the 
"thin" interface element using an elastic perfect plastic model and the 
backfill soil represented by standard solid elements using the hyperbolic 
model. In the second analysis both interface and backfill were represented 
by standard solid elements using the modified SMP model and in the third 
analysis both interface and backfill were represented by standard solid 
elements, this time using the hyperbolic model. 

It should be noted that the modified SMP model's formulation was 
expanded with an additional parameter, the cohesion, c, in order that the 
strength of the backfill material was properly characterized in the 
analysis using this model. The details are given in Appendix 4.3. 

• F.E. Results 
The results obtained in the F.E. analyses are given in Figs. 4.12 to 

4.14 together with the field measurements observed by Matsuo and his 
co-workers. From the comparisons between the field measurements and the 
F.E. predictions the following conclusions are made: 
(1) All the combination of element types and constitutive model types give 

an almost identical earth pressure distribution for the "at-rest" 
condition (see Fig. 4.12). These results are considered to be in 
agreement with the field measurements with the exception of the "at-
rest" earth pressures computed at the depths of 5 and 7 m where the 
field measurements are overestimated and underestimated respectively 
by approximately 15 kPa. 

(2) The F.E. results obtained for the active conditions (see fig. 4.13 and 
4.14) are shown to be in agreement with the field measurements, 
especially the earth pressures computed by the modified SMP model. 
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(3) From this particular case study it seems that standard solid elements 
when used with adequate stress-strain constitutive laws are adequate 
to model interface behaviour and there is no the need for a "thin" 
interface type of element. 

• F.E. Parametric Studies Carried Out by Others (Influence of 6) 
It was the intention of the writer to carry out F.E. analysis where 

the angle 6 would vary from 6=0 (smooth wall) to 6=</> (rough wall) to show 
its importance, but such study has been done by Clough and Duncan (1971) 
and herein only a brief description of their study together with their main 
conclusions is presented instead. Their analytical study comprised a 10 
foot retaining wall. The interface between the wall and the soil backfill 
was represented by the zero thickness element proposed by Goodman, follow-
ing the hyperbolic model described in section 4.4. The soil properties 
used in the analysis together with the results obtained are reproduced in 
Fig. 4.15. It may be seen that the variation of 6 from a smooth wall 
condition (6 = 0) to a rough wall condition (6 = <p) makes little difference 
in the results. The results obtained by Clough and Duncan (1971) show that 
the active condition was reached over the entire height of the backfill 
when the outward movement at the top, d, has become equal to .0023 H which 
is also in good agreement with the results of tests performed by Terzaghi 
(1934) for a medium dense sand. Their results also show that the initial 
assumed value of the coefficient of earth pressure K0 = .43 decreases 
considerably as the wall moves away from the backfill. Average K values of 
.25 to .28 can be inferred, using the equation presented below, from their 
results when d/H = .0023. 



Backfill Parameter Symbol Value 
HI 12) (3) (4) 

Medium-dense Unit weight, In pounds per cuoic foot Y 100 
sand backfill Coefficient  of  earth pressure at rest K 0 0.43 

Cohesion intercept, in pounds per 
square foot c 0 

Friction angle in degrees » 35 
Primary loading modulus number K 720 
Unloading-reloading modulus number 

K  u r 900 
Modulus exponent n 0.5 
Failure ratio R r 0.8 
Poisson's ratio V 0.3 

Wall-backfill Friction angle tn degrees s Varies 
interface Stiffness  number Kl Varies 

Stiffness  exponent n Varies 
Failure ratio */ Varies 

Base-backflU Friction angle in degrees i :4 
interface Stiffness  number 75,000 

Stiffness  exponent n 0.5 
Failure ratio *r 0.9 

Properties Used by Clough and Duncan (1971) 
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1) That the interface was smooth. For this analysis 4-0.1', Kj-1.0, n-0.0, and 

2) That the wall-friction angle was 2/3 of For this analysis 4=2ft'. Kj-40.000. 
n-1.0, and R£-0.9 

3) That the wall-friction angle was equal to For this analysis 4-35°, Kj-75,000, 
n-1.0, and Rf»0.9 

Figure 4.15 Variation of Horizontal Wall Pressure Distribution with Wall 
Movement and Interface Friction Angle, 6 (after Clough and 
Duncan, 1971) 



°H 
K = — K0 (4.22) 

°H0 

where: 
K0 = earth pressure coefficient at rest (= .43) 
o„ = horizontal wall pressure for d = 0 o 
ou = horizontal wall pressure for d > 0 H 

Similar K values were recorded by Matsuo et al. as was described 
previously. 

4.7 Conclusions 
From the material presented in this Chapter, the following can be 

concluded: 
(1) The F.E. results show that an excellent agreement with the closed form 

solutions of a soil-pipe system developed by Burns and Richards (1964) 
is obtained when the "thin" element is used in both the 2-D and 3-D 
F.E. analysis (plane strain conditions). 

(2) The field measurements carried out by Matsuo et al. (1978) and the 
F.E. predictions carried out by the writer, are in good agreement with 
the results of tests performed by Terzaghi (1934) and with the 
analytical work carried out by Clough and Duncan (1971). The field 
measurements show that the coefficient of earth pressure at rest, K0 

varies from a maximum K0 = .74 at 1.0 m depth to a minimum K0 = .28 at 
5.0 m depth. If the wall is allowed to rotate away from the backfill 
then the coefficient of earth pressure, K, decreases considerably to 



an average (K) = .11 which corresponds to a movement of the top of 
the wall of 8.A cm or .84% of the wall height. 

(3) F.E. studies carried out by Clough and Duncan (1971) show that the 
predicted earth pressures on a 10 ft. retaining wall are only slightly 
affected by the interference friction angle 6 when it varies from a 
smooth wall conditions (6=0) to a rough wall condition (6=<j>). 

(4) F.E. predictions of the earth pressures measured on a 10 m retaining 
wall by Matsuo et al. (1978) show that adequate results are obtained 
using standard solid elements with an appropriate stress-strain 
models, such as the hyperbolic model (Duncan et al., 1980) or the 
modified SMP model both expanded with load shedding capabilities. 
There is no need for a special interface element. 



CHAPTER 5 

EVALUATION OF SOIL PARAMETERS FROM THE PRESSUREMETER TEST IN SAND 

5.1 Introduction 

Analytical predictions of the response of sand masses to applied loads 
requires a suitable stress-strain law whose parameters are adequately 
defined. While these parameters can be determined from laboratory tests on 
sand samples it is very difficult to recover and test undisturbed samples 
and determine meaningful parameters for in situ conditions. Due to the 
above, any time the Molikpaq structure is deployed at a new site, extensive 
in situ testing is carried out in the hydraulically placed core and berm 
fills. 

The Self-Boring Pressuremeter (SBP) Test is one of the in situ tests 
that was performed at the Amaulikpaq 1-65 site to evaluate soil parameters 
representative of the sand fill. However, because the stress field induced 
by the SBP is not homogeneous, a rational analysis and interpretation of 
the SBP test requires that it be analyzed using selected stress-strain 
relations. In addition, it is important that such analysis and interpreta-
tion be checked against experimental data under controlled conditions 
before application to in situ field conditions. 

This chapter is concerned with the evaluation of soil parameters from 
the SBP test in sand, and is subdivided in the following two sections: 
a) Evaluation of the maximum shear modulus, G from the unload-reload 

max 
loop of the pressuremeter test. 

b) Evaluation of soil parameters from the first time loading part of the 
pressuremeter test. 

These two topics are briefly discussed below. 



• Evaluation of G max 
One of the soil parameters that can be derived from the SBP is the 

equivalent elastic unload shear modulus, G*, which is obtained from the 
slope of the unload-reload pressuremeter loop as shown in Figure 5.1. G*, 
however, is not equal to the maximum shear modulus, G at the original 

^ max,o 
stress due to expansion of the pressuremeter as well as high shear strains 
close to the face of the pressuremeter. G is a fundamental soil 

r max,o 
parameter that is essential for dynamic analysis of soil structures and is 
also one of the elastic parameters used in the modified SMP model. 
Previous researchers (Robertson (1982) ; Robertson and Hughes (1986) ; and 
Belloti et al. (1989)) have proposed methods for correcting the measured G* 
to obtain G based upon an average stress and strain in the plastic 

1T1&2C y  o 
zone. In the first part of this chapter a more detailed analysis 
considering the complete variation in the stress and strain state is 
presented. The method considers both the stress and void ratio changes 
induced by pressuremeter loading and the nonlinear stress-strain response 
upon unloading. The results are presented in the form of a chart that allow G to be determined from the equivalent elastic unload modulus, max,o ^ 
G*, for a wide range of loading and unloading conditions. The analysis 
procedure is checked with laboratory and field data and the results are 
found to be in good agreement provided factors to account for disturbance 
and anisotropy are considered. 

• Evaluation of Soil Parameters from the First Time Loading Part of the 
Pressuremeter Test 

The evaluation of soil parameters from the first time loading part of 
the pressuremeter tests in sand have been restricted for many years to the 



Figure 5.1 Pressuremeter Unload Modulus, G*. 



evaluation of the peak friction angle <p and the dilation angle v. Ladanyi 
(1963), Vesic (1972), Wroth and Windle (1975), Hughes et al. (1977), 
Robertson (1982) , and Robertson and Hughes (1986), proposed procedures to 
determine <p by assuming that the sand around the pressuremeter behaves as 
a plane strain linear elastic-perfect plastic material. The main differ-
ences between these methods is the way that volume changes due to shear are 
taken into account. Only recently, Manassero (1989) proposed a method that 
allows the complete plane strain nonlinear stress and volume change 
response of sand to be obtained from pressuremeter pressure-expansion data. 
This method can be used to determine parameters for the proposed stress-
strain model as will be discussed later in this chapter. 

5.2 Evaluation of the Maximum Shear Modulus for Sand From the Unload Shear 
Modulus Obtained from Pressuremeter Tests 
The shear modulus G* obtained from the pressuremeter test is unlikely 

to be equal to the maximum shear modulus G because of the stress and ^ max 
strain changes caused by the pressuremeter. An analysis procedure for 
correcting the measured G* to G is presented herein. The method is 6 max r 

based upon an elastic-plastic analysis of the pressuremeter domain to 
determine the stresses in the domain prior to unloading, and a nonlinear 
elastic analysis to determine the displacement at the pressuremeter face 
upon unloading, which in turn is used to compute the equivalent pressure-
meter shear modulus, G*. By comparing the computed G* with G m a x for 
various levels of applied radial stress prior to unloading, and for various 
amounts of unload, a chart is generated from which G*/G can be obtained 

° max 
depending on the applied pressuremeter loading conditions. 



Because the stress-strain relations used to model the behaviour of 
sand during unloading are an important factor in the analysis these are 
described prior to presenting the analysis and results. 

5.2.1 Assumed Stress-Strain Relations for Sand Upon Unloading 
Upon unloading it is assumed that the initial shear modulus is the 

maximum shear modulus, G , and that the unloading curve is nonlinear and 
max ° 

hyperbolic. Justification for these assumptions is presented in Fig. 5.2 
and 5.3 from Byrne et al. (1987) based on triaxial tests by Negussey 
(1984). Figure 5.2 shows that the Young's modulus upon unloading is 
nonlinear with strain, and Fig. 5.3 shows that the initial unload modulus 
is equal to the maximum modulus obtained from resonant column tests. Since 
the Young modulus, E and the shear modulus, G are. related through the 
Poisson's ratio, v, it is reasonable to assume the same behaviour for the 
shear modulus. 

The above indicates that the observed unload response of the pressure-
meter can yield the in situ G value if appropriate modifications for 

nici3C f o 
stress and strain levels are applied as discussed below. 

• G and Stress Level max 
Hardin (1978) proposed that G for sand can be expressed as r r max r 

follows: 

G = A • F(e) • Pa • (o'/Pa)0,5 (5.1) max m 

i i i 
1/3(oJ+oJ+oJ) = the mean effective stress 
atmostpheric pressure 

where: 

o' 
m 
Pa 
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and the parameters A and F(e) depend on particle shape and void ratio, e, 
as follows: 

F(e) = (2.17-e) 2/(l+e) -| 
A = 700 
F(e) = (2.97-e) V(l+e) n 

A = 326 

Rounded sand (5.2) 

Angular sand (5.3) 

Hardin and Black (1966) and Hardin (1978) concluded that G was 
max 

independent of deviator stress or stress ratio level depending only on 
However, more recent test data presented by Yu and Richart (1984) indicates 
that G depends on an average effective stress, o1 that is somewhat max e av 
different to a'. In addition, G , also depends on the stress ratio, m max 
i i 

a1/a3. Their proposed equation is: 

G = A • F(e) • Pa • (o* /Pa)0'5 (1-0.3k1'5) (5.4) max av n 

where: 
j1 = (a' + o')/2 av a p 

a 
P 

= the normal effective stress in direction of wave propagation 
= the normal effective stress in direction of particle vibration 

and 
k = (o1/o3-l)/((o1/o3)m -1) (5.5) n 1 3 1 3 max 

where: 
i (o,/o.) is the failure stress ratio. 1 3 max 



In the above eq. (5.A) may also be considered as the average 
effective stress in the plane in which the strains are induced and 
therefore in the pressuremeter analysis carried out herein = 
in which o1 and o' are the effective radial and circumferential stresses, r 6 

Equation (5.A) is in good agreement with the results of resonant 
column tests as shown in Fig. 5.A. It indicates that for a given sand at a 
given void ratio, e, the maximum shear modulus, G will increase with 6 ' ' max 
increased average effective stress, but will decrease with increased 

i i 
stress ratio, o,/o,. There will be a 30 percent reduction in G in zones 1 3 max 
where the stress ratio is a maximum, i.e. where the strength of the sand is 
fully mobilized. 

Upon unloading, the sand is assumed to respond in a nonlinear elastic 
manner as shown in Fig. (5.5). In the analysis the unload stress-strain 
curve is assumed to be hyperbolic with the secant and tangent shear modulus 
given by: 

G = G s max 

G. = G t max 

where: 
G = the maximum shear modulus, max 
SL = the stress level, which is 

(1 - SL) (5.6) 

(1 - SL)* (5.7) 

obtained from eq. (5.A) 
given by: 

SL = (Tl - t)/(Tl + Tf) (5.8) 
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Figure 5.4 Measured and Computed G m a x Values. (After Yu and 
Richart, 1984). 

Figure 5.5 Assumed Unload Stress-Strain Behaviour. 



where: 
r^ = the shear stress prior to unloading 
t = the current shear stress 
t, = the shear stress at failure 

These shear stresses are shown in Fig. 5.5. 
The secant shear modulus, G as defined by eq. (5.6) implies a modulus 

s 
reduction with stress or strain level as shown in Fig. 5.6. The computed 
values of modulus reduction from the stress-strain unload-reload loops of 
Fig. 5.2 are also shown in Fig. 5.6 and are in reasonable agreement with 
eq. (5.6). Also shown in the figure are the average upper and lower bounds 
described by Seed et al. (1986). It may be seen that the equation chosen 
lies within the bounds specified by Seed et al. 

5.2.2 Analysis Procedure 
A brief description of the procedures followed in the analysis is 

presented below. 
A sketch of the pressuremeter loading and unloading phases is shown in 

Fig. 5.7. These two different phases are treated in the analysis as two 
separate cases as is described next. 

From point A to point C the pressuremeter is loading and at point C 
the stresses mobilized in the sand domain prior to unloading are computed 
herein using available closed form solutions. 

From point C to point D the pressuremeter is unloading. A finite 
element axisymmetric plain strain analysis was used herein to evaluate the 
inward movement, u, of the pressuremeter face at point D. 
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Assuming that the soil behaves elastically during unloading, the 
pressuremeter unload shear modulus, G*, is evaluated using the following 
equation: 

G* = (Ao )- /((2*u)/R ) (5.9) r face o 

where: 
(Aor)^ace = the decrease in pressure at the pressuremeter face from 

point C to point D. 
Rq = the initial pressuremeter radius 

By comparing the computed G* with the in situ maximum shear modulus, 
G , for various levels of applied radial stress prior to unloading and mdx p o 
for various amounts of unload, a chart is generated from which G*/G 

° max,o 
can be obtained depending on the applied pressuremeter loading conditions. 

A detailed description of the procedures followed in the analysis for 
the loading and unloading phases is presented next. 

5.2.2.1 Loading Phase 

Prior to loading, at point A (see Fig. 5.7) the in situ maximum shear 
t modulus G is evaluated using eq. (5.4). Since a'  =  a'  =  a„, i.e., max,o & i r 0 

i i a1/a3 = 1 (in the horizontal plane), it follows that: 

G m a v « = A ' ' P a (o]/Pa)°'5 (5.10) max,o 0 

During loading the stresses in the sand domain change as shown in Fig. 
5.8. Initially the radial stress a' increases while the circumferential 
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Figure 5.8 Stress State After Pressuremeter Loading 
(Elastic-Plastic Model). 



stress, OQ decreases. However, once the failure envelope is reached (at 
point B) and a plastic zone develops, o' commences to increase in the 

y 
plastic zone and the average effective stress = (ô +Og)/2 increases as 
shown in the figure. 

As described, the stresses prior to unloading, at point C (see Figs. 
5.7 and 5.8) were computed using a closed form solution. The deformations 
were assumed to occur under plane strain and follow an elastic-plastic 
stress-strain law. The closed form solutions followed in the analysis has 
been described by Gibson ad Anderson (1961) , Ladanyi (1963) , Vesic (1972) 
and Hughes et al. (1977), and herein only the selected equations will be 
presented. 

In the plastic zone, which is defined by Mohr-Coulomb failure criter-
ion, the radial and circumferential effective stresses o' and o' are linked 

' r 8 
by 

= a\/a\ = tan2 (45 + <f>/2) - N (5.11) 

where: 
<j> = the angle of internal friction (assumed to be constant in the 

analysis) 
N = the failure stress ratio 

The outer radius of the plastic zone, R^, (see Fig. 5.8) is given by: 

Ep - Rface <(^) f a c e/<=;(H3in«)) ( 1 + s i n* ) / ( 2 s i n*' (5.12) 

where: 

face = the current pressuremeter radius 



= the current effective radial stress at the pressuremeter 
face 

The stresses in the plastic zone, (r £ R^), are given by: 

°r = °R ' ( V r ) 1 N ( 5 , 1 3 ) 
P 

a' = o'/N (5.14) 8 r 

where the radial stress at the outer radius of the plastic zone, o' is 
K P 

given by: 

= o0 (l+sin<f>) (5.15) 
P 

Outside the plastic zone or within the elastic zone (r > R ), the 
P 

stresses are given by: 

o' = a' (1 + (R2/r2)sin<f>) (5.16) r o p 

o' = a'0 (1 - (Rp/rJ)sin<f>) (5.17) 

The above equations describe the stresses induced by expansion of the 
pressuremeter and these will be used in eq. (5.4) to compute G m a x prior to 
unloading. In addition, there may be additional changes in G^^ due to 
shear induced volume changes and this will be addressed next. 

Based upon Hughes et al. (1977), the shear strain distribution f as a 
function of r in the plastic region is given by: 



r = (R /r) ( n + 1 ) (U /R ) ( n + 1 ) (5.18) P P P 

where: 
Up = the displacement that takes place at the interface between the 

plastic and elastic zones and is given by: 

Up = (R /2G) * o0 • sinf (5.19) 

n = (l-sin\)) / (l+sin\)) (5.20) 

and 
v = the dilation angle 

Assuming that the dilation angle is constant with shear strain, the 
volumetric strain is given by: 

ev =  -y  sin\) (5.21) 

and the change in void ratio is given by: 

Ae = (1 + e0)ev (5.22) 

This change in void ratio was included in eq. (5.4) when computing the 
value of G m a x prior to unloading. 

5.2.2.2 Unloading Phase 
Upon unloading the whole domain is assumed to behave in a nonlinear 

elastic manner. However, because the average stress, (o'+o')/2, the stress 



ratio, o'/o' and the shear strain, f, prior to unloading are different at r o 
every point within the domain, G m a x will be different throughout the 
domain. In addition the appropriate shear modulus will reduce with the 
level of unloading in accordance with eqs. (5.6) or (5.7). Consequently, 
although the material is assumed to be elastic upon unloading the state of 
stress is not homogeneous in the elastic zone and hence it is not appropri-
ate to use closed form elastic equations to compute stress changes upon 
unloading. Herein a finite element analysis using a plane strain axisym-
metric domain as shown in Fig. 5.9 was used, following the procedures 
described next: 
• The initial stresses o^ and ô  in the soil elements were computed for a 
given pressuremeter stress, (°j)face u s i n g the closed form solutions 
described above. 

• The shear strains and consequent changes in void ratio were computed from 
eqs. (5.18) and (5.22), using G = 1/2 G 

max p o • From these stresses and void ratio changes, G values were evaluated 
max 

for each element based upon eq. (5.4). 
• The stress at the face of the pressuremeter was then unloaded in a series 
of small steps and a tangent shear modulus corresponding to the average 
shear stress in each element was computed in accordance to eq. (5.7). 

• The inward displacement at the face of the pressuremeter (Au)face was 
computed for each step of unloading (A°r)face summed to allow the 
complete unloading response to be determined. 

• The equivalent modulus G* was computed at various stages of unloading 
using eq. (5.9) and compared with G which was computed from the 

max y o 
initial stress and void ratio state, using eq. (5.10). The ratio 
G*/G was then determined for a range of (Ao ), /(d1),. ratios. max,o ° r face r face 
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The process was then repeated using a range of Co'), values. This 
r race i allowed G*/G to be computed as functions of both (o'), /o„ and max,o r r face 0 

(Ao )_ /(o'), as described next, r face r face 

5.2.3 Results 
Based on the Self-Boring Pressuremeter field tests carried out at the 

Amaulikpaq 1-65 site the following range of stress ratios was considered 
appropriate and was used in the analysis: 

and 
3 * «°;w°o) *12 

0.0 S ((A o J - / ( o ' ) - ) * 0.60 r face r face 

The results obtained from the analysis for the different 
loading-unloading conditions are presented in a form of a chart in Fig. 
5.10 where the factor a = G*/G is plotted against the stress ratio 

p max, o c ° 
i (o')_ /o. for the different stress ratios (Ao )_ /(o1), r face 0 r face r face 

i 
The analyses were carried out over a range of o0 values as well as a 

range of void ratio values (.4 < e 0 < .7) and the results were found to be 

insensitive to these variables. It was also found that shear induced void ratio effects on G were less than 5% for all loading conditions shown in max ° 
Fig. 5.10. Dilation angles ranging between 0° for loose sands and 16° for 
dense sands were considered. 

5.2.A Validation of the Proposed G*/G Chart 
The proposed analysis presents a method of determining the in situ 

G value from the secant modulus G* from the unload-reload max , o 
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Figure 5.10 Chart for Determination of G,,,̂  0 from the Measured G* Value 
(after Byrne, Salgado and Howie I 1990) 



pressuremeter loops which considers the variation in stress-strain and void 
state imposed by the pressuremeter. The results are expressed in terms of 
a single parameter a^which is obtained from the chart of Fig. 5.10 and 
allows G to be determined as follows: max, o 

G = — (5.23) max.o a 
P 

The method is based upon analytical concepts and idealized soil behaviour 
and its validation requires comparison with measured data under controlled 
conditions before application to in situ field conditions. 

Belloti et al. (1989) present both pressuremeter and resonant column 
and shear wave velocity tests for both laboratory and field conditions 
which allow an evaluation of the proposed chart. Their data is used in the 
evaluation that follows. 

^max v a^- u e s w e r e computed from the pressuremeter data using the chart 
of Fig. 5.10 and compared with G from the resonant column or shear wave 6 r max 
velocity tests. The comparison from the "ideal" pressuremeter chamber 
tests in which the pressuremeter was inserted prior to placing the sand is 
shown in Fig. 5.11(a) where it may be seen that G values from the 

max 
resonant column tests, G r c, are on average higher than those from the 
pressuremeter test by a factor of 1.25. Pressuremeter tests involve 
strains in the horizontal plane whereas resonant column tests involve 
strain in the vertical plane. Bellotti et al. (1989) based on tests (Knox, 
1982; Stokie and Ni, 1985; Lee, 1986) indicate that the anisotropic factor 
a. = G„TT/GtIII = 1.2 in which G,rII = the maximum shear modulus in the vertical A VH HH VH 
plane and GH„ = the maximum shear modulus in the horizontal plane. Thus 
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the predicted G^^values from the pressuremeter are in good agreement with 
the expected G values for strains in the horizontal plane. c max 

A similar comparison for "self-bored" pressuremeter chamber tests is 
shown in Fig. 5.11(b). It may be seen that the G values from the 

max 
resonant column test, G r c > are on average 1.75 times higher than those from 
the pressuremeter test. This indicates that the process of self-boring 
introduces a disturbance factor, a^ = 1.75/1.25 = 1.4. 

Comparisons of G x values computed from self-boring pressuremeter and 
crosshole (CH) seismic tests for field conditions are shown in Fig. 5.12(a) 
and (b). It may be seen that the G ^ values exceed those computed from the 
pressuremeter by a factor of 1.58 for the Camkometer and 1.43 for the 
PAF-79 probe. If the disturbance factor a^ for Camkometer is taken as 1.4, 
then a. = 1.58/1.4 = 1.13. A 

The comparison with laboratory and field data indicates that the 
proposed method can be used to predict the in situ G value provided 

ni&x | o 
corrections are made for disturbance and anisotropy. The maximum shear 
modulus for horizontal loading G ^ can be obtained from pressuremeter tests 
as follows: 

GHH " ̂  aD ( 5 ' 2 A ) 

in which G* is the secant modulus from the pressuremeter unloading loop, 
otpis the factor from the proposed chart shown in Fig. 5.10 and a^ is the 
disturbance factor = 1.4 for the Camkometer. 

The G value for vertical loading, G„TT, which corresponds with max & VH ^ 
seismic crosshole (CH) or downhole (DH) can be expressed as follows: 



Figure 5.12 Relationship Between G j n a X f 0 and Gch. 
(a) In Situ, Self-Bored (Camkometer). 
(b) In Situ, Self-Bored (PAF-79). 



GVH = GCH " GDH " GHHaA = ^ V A ( 5' 2 5 ) 

in which a^ is an anisotropic factor. Belloti et al. (1989) suggest a^ = 
1.2. Yan and Byrne (1989) based upon hydraulic gradient model tests and 
shear wave velocity measurements found a^ = 1.1, and the test data analyzed 
herein shows that: a^ = 1.25 (Chamber tests, 'ideal' installation) and a^ = 
1.13 (in situ tests, 'self-bored'). Based on the above four a. values an 
average value (°^)av = 1.17 is obtained. This value together with the 
proposed chart will be used later (Chapter 6) to evaluate values of G^ 
from the SBP tests carried out at the Amauligak 1-65 site. It will be 
shown that G „ values obtained as described here are in good agreement 
with G w u values obtained from the cone penetration test (CPT) using V H 
empirical correlations. 

5.3 Evaluation of Soil Parameters from the First Time Loading Part of the 
Pressuremeter Tests in Sand 
The evaluation of soil parameters for use in stress-strain models for 

sand from the first time loading part of the pressuremeter tests have been 
restricted for many years to the evaluation of the peak friction angle <p 
and the dilation angle, v. However, Manassero (1989) proposed a method 
that allows the complete plane strain nonlinear stress and volume change 
response the sand to be obtained from pressuremeter pressure-expansion 
data. 

To verify numerically Manassero's method, F.E. pressuremeter test 
analyses under plane strain and infinite outer boundary conditions were 
carried out using the modified SMP model. Manassero's method was then 
applied to the F.E. generated pressuremeter response and the stress-strain 



and volume change response for an element at the face of the pressuremeter 
obtained by his method was compared with the F.E. predictions at the face 
using the modified SMP model. 

First, however, before the above analysis were carried out, the 
modified SMP model was validated against known and controlled pressuremeter 
chamber test data. This is presented next. 

5.3.1 Finite Element Predictions of Pressuremeter Chamber Tests 
Leighton-Buzzard sand has been tested under controlled laboratory 

conditions by many researchers. Simple shear tests on this sand were 
reported by Stroud (1971) and pressuremeter chamber tests on the same sand 
are reported by Jewell et al. (1980). 

Stroud's data was used earlier to evaluate soil parameters for the 
modified SMP model and predictions by this model of Stroud's data were 
shown to be in very good agreement (see Chapter 3). To further validate 
the modified SMP model, F.E. predictions of the pressuremeter chamber tests 
reported by Jewell et al. were carried out herein using the SMP model. The 
soil parameters used in the analysis are presented in Table 5.1 below. 

Table 5.1 
Soil Parameters for Leighton-Buzzard Sand (e0 = .53) for Use in the Modified SMP Model 

Elastic Parameters KGe = 620, n = .63 
KBe = 580, m = .60 

Plastic Parameters: 
• Hardening parameters KGp = 330, np = -.48 
• Flow rule parameters li = .20, X = 1.20 
• Failure parameters (tSMP/oSMP)i = , 8 6 2 • Failure parameters 

A(TSMP/OSMP) = - 0 8 

• Failure parameters 

Rp = .957 



A description of the pressuremeter chamber conditions and the results 
are presented next. 

Pressuremeter Chamber Tests 
A detailed description of the pressuremeter chamber tests is given by 

Jewell et al. (1980). The test apparatus is shown in Fig. 5.13. The main 
features of the chamber are that independent horizontal and vertical bound-
ary stresses can be applied to the sides and base of the sand domain using 
the membranes (1) and (2), and that the lateral movements of the sides were 
monitored. Nine pressuremeter tests were reported by Jewell et al. An 
initial radial stress of 90 kPa was used for all tests. The vertical 
stress was controlled by a pressure applied at the base. Tests were 
conducted using vertical pressures of 200, 90 and 45 kPa and a constant 
radial outer boundary stress, o r > of 90 kPa. 

Finite Element analyses of the pressuremeter chamber tests were 
carried out using the axisymmetric mesh shown in Fig. 5.14 which simulates 
the geometry and boundary conditions used in the laboratory tests. 

To study the influence of different boundary conditions, analyses were 
also carried out using a plane strain axisymmetric domain with an outer 
boundary at a distance R = .467 m which corresponds with the chamber test 
as well as an outer boundary which simulates an infinite radius. The finite 
element mesh used for this analysis is shown in Fig. 5.9 

For all the analyses the radial pressure at the inner boundary was 
increased in small increments and the stresses and deformations examined in 
the domain. 

The predicted and observed pressuremeter response in terms of radial 
stress at the face (a )_ , and circumferential strain at the face, 
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(£g)^ace is shown in Fig. 5.15. It may be seen that there is generally 
good agreement between the predicted and observed response, provided the 
actual boundary conditions of the chamber test are used in the analysis. 
The observed response is somewhat softer than computed during the initial 
loading stage for o = 200 kPa (Fig. 5.15(a)), but is in good agreement 

z 
with the compute response for o =90 kPa (Fig. 5.15(b)). The observed 

z response for a = 45 kPa was not published by Jewell et al. and therefore z 
comparisons with the computed results are not presented. 

The computed responses for a plane strain condition corresponding with 
the outer boundary at: (i) the chamber test location; and, (ii) at infinity 
are also shown in Fig. 5.15(a) and are seen to be significantly softer and 
stiffer, respectively in the high stress range than the computed using the 
actual boundary conditions. 

Computed and observed displacements of the inner and outer boundary 
movements are shown in Fig. 5.16. It may be seen that for any selected 
level of inner boundary movement the computed displacement at the outer 
boundary are significantly higher than the observed values for the test 
carried out at o = 200 kPa. However at higher stress levels the computed 
ratio between the inner and outer boundary movements, i.e. the slope of the 
line, is in good agreement with the measured values. It may be also seen 
that the computed values of displacement at the outer boundary are highly 
dependent on o , being much lower for the lower o values. Jewell et al. z z 
do not show outer boundary movements for these lower a^ stresses but they 
can be inferred to be much lower from their computation regarding 
dilation. 

The strong influences of the vertical boundary stresses, o , on the 
displacements can be understood from the computed displacement patterns 
shown in Fig. 5.17. It may be seen that for o = 200 kPa, upward 

z 
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Figure 5.15 Predicted and Observed Response at Face of Pressure-
meter. (a) oz = 200 kPa. (b) o2 = 90 kPa. 
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Figure 5.17 Predicted Displacement Patterns. 
(a) oz = 200 kPa; (b) oz = 45 kPa 



displacement at the bottom boundary is predicted while for o = 45 kPa 
z 

downward displacement is predicted. These vertical movements greatly 
affect the predicted horizontal movements, particularly at the outer bound-
ary and suggest that there could be considerable error in applying a plane 
strain analysis to these tests as was done by Jewell et al. to compute 
dilation effects. 

The analysis indicates that the chosen stress-strain model can 
accurately predict the pressuremeter response under controlled chamber test 
conditions. In this case the parameters for the model were first obtained 
from simple shear tests. In practice, what is needed is the reverse, i.e., 
given the pressuremeter response, what are the appropriate stress-strain 
model parameters for the in situ sand. One could vary the model parameters 
in a finite element analysis of the pressuremeter and by trial and error 
determine a set of parameters that gives a best fit to the observed 
pressuremeter response. However, Manassero (1989) has presented a method 
of obtaining plane strain stress-strain response from pressuremeter tests. 
A numerical verification of this method using the F.E. data presented in 
Fig. 5.15(a) for plane strain infinite outer boundary conditions is 
presented next. 

5.3.2 Evaluation of Soil Parameters from the Pressuremeter Test 
This section is concerned with the evaluation of soil parameters from 

pressuremeter test data and is subdivided into the following parts: 
(a) A numerical verification of the method proposed by Manassero (1989) is 

carried out first. 
(b) Procedures for the evaluation of soil parameters for use in the 

modified SMP model from pressuremeter test data are presented last. 



5.3.2.1 Numerical Verification of the Method Proposed by Manassero 
Manassero's method is briefly described in Appendices 5.1 and 5.2. 

This method was applied to the finite element generated pressuremeter 
response for plane strain conditions with the outer boundary at infinity. 
As described, Manassero's method yields the stress-strain and volume change 
response for an element at the face of the pressuremeter and this is 
compared in Fig. 5.18(a) and (b) with the finite element prediction at the 
face using the modified SMP model. It may be seen that Manassero's method 
predicts a stress-strain and volume change response that is in amazing 
agreement with the modified SMP model. His model predicts values of <f>pS = 
45.5° and \> = 13° while the computed values by the modified SMP model are 
rf)Ps = 45.5° and \) = 14°. An assessment of the actual values for <f>̂ S and v • P P 
based on laboratory data is presented in Appendix 5.3. From this assess-
ment values of 46° and v = 15° were obtained and are considered to be 
representative of the failure strength and dilation characteristics of 
Leighton-Buzzard sand for the pressuremeter test stress conditions analyzed 
herein. It may be seen that the set of values computed by both the 
modified SMP model and Manassero's method agree extremely well with the 
expected values. 

The stress-strain and volume change obtained from simple shear test 
data and predictions of these using the modified SMP model are also shown 
in Fig. 5.18(a) and (b). It may be seen that the predictions are in very 
good agreement with the measured data, however, the stress-strain and 
volume change response computed by the modified SMP model for the pressure-
meter and simple shear stress paths is not quite the same. The difference 
is due to the greater increases in mean stress during the pressuremeter 
test as shown in Fig. 5.18(c). The higher confining stresses in the 



u 
V 
a 
a 

ec s < 
-a 
V 

.a ra M O 
s 

Shear Strain (%) 

2 4 6 8 
I I 1— 

rmnr 

( a ) 

10 
J 

PHCSSURCMCTER Q U A 10", » 200KPol 
(Plone srrotn infinite Boundary end.) 

computed (mod. SUP model) 
Q predicted (Uonossero's model) 

51UPLE SHE AR OATA I a, s 172kPo) 
measured 
predicted (mod. SUP model) 

<i 

o 
•c V E 
9 £ 

S3 

« t> + 
t> 

600 n 

400 

200-

o4 

Shear Strain (%) 

j3 c 
C j3 

J©-

( c ) 

T t y « x * * 

i 
10 

Shear Strain (%) 

0 6 

Figure 5.18 Pressuremeter and Simple Shear Data Versus Shear Strain, y. 



pressuremeter leads to lower dilation and hence lower mobilized friction in 
agreement with the data. 

The excellent agreement between the Manassero and modified SMP predic-
tions indicates that parameters for the proposed SMP model can be deter-
mined from the pressuremeter test data using Manassero's method. This is 
described in detail in the next section. 

5.3.2.2 Procedures for the Evaluation of Soil Parameters for Use in the 
Modified SMP Model from Pressuremeter Test Data 

The modified SMP model is a 3-D stress-strain model that requires two 
different types of soil parameters: (a) elastic; and (b) plastic. 

• Evaluation of Elastic Soil Parameters From Unload-Reload Pressuremeter 
Test Data 

The elastic components are specified in the modified SMP model by 
tangent shear and bulk moduli, G^ and B̂  defined as follows: 

G. = KG Pa (o /Pa)n (5.27) t e m 

and 
B = KB Pa (o /Pa)m t e m 

where o = (o,+o,+o,)/3, and KG , n, KB and m have been described earlier 
m 1 3 3 e' e 

(Chapters 2 and 3). 

To evaluate KG , the G*/G (or G*/G1II.) chart developed in section e max,o HH r 

5.2 will be used here as follows. 



The maximum shear modulus for horizontal loading, G^, is evaluated 
first from the unload reload shear modulus, G*, using the chart presented 
in Fig. 5.10 together with eq. (5.24), which is repeated below: 

GHH = ^ aD ( 5' 2 8 ) 

Manipulating the above equations (see Appendix 5.4), the following equation 
is obtained: 

KG = (Pa/(K o ))0,5 G„u (5.29) 
e o v tin O 

where o = the in situ vertical stress, vo 
To evaluate KBg the following relationship is obtained (assuming that 

the exponent m = 0.5): 

KB = (2KG (l+\>) )/(3 (l-2v)) (5.30) e e 

Assuming that a Poisson'e ratio value of v = 0.1 is representative of 
the elastic behaviour of sand, it follows from Eq. (5.30) that 

KB = KG (5.31) e e 

• Evaluation of Plastic Soil Parameters from First Time Loading Pressure-
meter Test Data 

Before the method proposed by Manassero is used herein to evaluate 
plastic soil parameters, it is necessary to develop an additional relation-
ship to estimate the changes of the intermediate principal stress, a2 

during the pressuremeter cavity expansion for the following reasons: 



(a) The modified SMP model is a 3-D stress-strain model, i.e. considers 
the three principal stresses a l t a2 and o3. 

(b) The method proposed by Manassero is a 2-D plane strain model, i.e. a2 

is not considered. 

Such a relationship was developed earlier in Appendix 5.3 and is 
presented in Fig. 5.19 where the variation of b-value = (oa-o3)/(o1-o3) 
with shear strain, y  = ej-e3 is presented. Because the above relationship 
is hyperbolic a relationship between (f/b-value) and y  was developed and is 
presented in Fig. 5.19(b). It may be seen that a straight line is obtained 
for y  £ 0.5%. From this figure, the following equation is obtained 

b-value = y/(1.2  +  2.83y ) (5.32) 

From the above equation the value of the intermediate principal stress 
o2 = o v is easily obtained and given by: 

°2 = = (o -o0)((e -e0)/(1.2+2.83(e -efi)) + ofl (5.33) * v r o r o r o o 

The above equation is valid for the case when a =olt otherwise o2=or 

which is the measured stress. 
Since Manassero's method computes values of e and o Q from the 

r y measured o and e a pressuremeter data (see Appendix 5.1) substituting these r y 
values in eq. (5.33) the value for a3 can be evaluated. 

To validate the above, Manassero1s method was applied together with 
eq. (5.33) to the finite element generated pressuremeter response for plane 
strain conditions with the outer boundary at infinity for the case of Kq = 
.45. The computed values of (o )_ , (o ) and (o)„, , by the r r face' v face 0face' J 

modified SMP model, versus shear strain (f)facef°r a n element at the face 
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of the pressuremeter is presented in Fig. 5.20(a) together with the 
corresponding values predicted by Manassero model and eq. (5.33). It may 
be seen that an excellent agreement is obtained. 

A comparison between the computed values of ( e r ) f a c e (£e^face 

versus shear strain (Y)face i-s presented in Fig. 5.20(b) together with the 
values predicted by Manassero's model. As expected the agreement is very 
good. 

Since the soil parameters used in the F.E. analysis are known the data 
shown in Fig. 5.20 was used to back predict these same soil parameters. 
This was carried out in Appendix 5.5, and a comparison between the soil 
parameters used in the F.E. analysis and the backpredicted from the data 
generated by Manassero's model and eq. (5.33) are presented in Table 5.2. 

Table 5.2 
Comparison Between Plastic Soil Parameters 

Used in the 
F.E. analysis 

Back-
Predicted 

Deviation 
(%) 

Hardening 
Parameters 

KGp 335.0 325.0 -2.98 Hardening 
Parameters 

np -.480 -.500* not applicable 
Flow 
Rule 
Parameters 

Y 0.200 .195 -2.50 Flow 
Rule 
Parameters X 1.20 1.220 +1.67 

Failure 
Parameters 

( I S M E ) I 

°smp 
0.862 0.854 -.93 

Failure 
Parameters A(^smE) 

°smp 
0.080 0.076 -5.00 

Failure 
Parameters 

R F 0.957 0.976 +1.95 
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It may be seen that very good agreement is obtained. 
Based on the above comparisons, it is concluded that, theoretically, 

soil parameters for use in the modified SMP model can be obtained using the 
method proposed by Manassero. However, from a practical point of view, the 
proposed method needs further validation to assess the influence of initial 
disturbance that might occur at the beginning of in situ SBP tests. 

Because the method proposed by Manassero (1989) is a recent method and 
because the SBP tests at the Amauligak 1-65 site were carried out under 
partially drained conditions (Jefferies, 1988) the first time loading data 
obtained from these tests was not analyzed herein to infer first time 
loading soil parameters for use in F.E. analysis of the Molikpaq. These 
soil parameters will be estimated on the basis of both cone penetration 
test (CPT) data and laboratory data as will be described in the next 
chapter. 

5.4 Summary 
(a) A procedure for analyzing the unloading response of the pressuremeter 

has been presented. The analysis considers the effects of change in 
the average stress (o'+o')/2, the stress ratio o'/ol, and shear 

r 0 r 0 
induced volume change on the maximum modulus. Results of the analysis 
are presented in a chart which allows the in situ, G to be * max,o 
computed from the equivalent elastic shear modulus G* taking into 
account both the level of pressuremeter loading and unloading. 

The predicted G values from pressuremeter chamber and field r max 
tests using the proposed chart are compared with values obtained from 
resonant column and crosshole seismic test and are found to be in good 



agreement provided factors are included to account for disturbance and 
anisotropic effects. 

(b) Finite element predictions of the pressuremeter chamber tests reported 
by Jewell et al. (1980) were carried out to further validate the 
modified SMP model. The soil parameters were obtained from simple 
shear test data reported by Stroud (1971) on Leighton-Buzzard sand the 
same sand used in the pressuremeter chamber tests. 

The results indicate generally good agreement between computed 
and observed pressure-deflection relations at the face of the 
pressuremeter provided the actual boundary conditions of the chamber 
tests are modelled. The measured response is a little softer at the 
initial stages of loading. This may be due to disturbance. 

The computed displacement patterns in the chamber tests are 
sensitive to the vertical stress oapplied at the base of the chamber 
and indicate that plane strain conditions did not prevail in the 
chamber tests. 

(c) A procedure for analyzing the first time loading response of the 
pressuremeter has been developed by Manassero (1989). His method was 
applied to the finite element generated pressuremeter response for 
plane strain conditions with the outer boundary at infinity. An 
excellent agreement was obtained between the stress-strain and volume 
changes, predicted by Manassero's method, and computed by the modified 
SMP model. 

(d) Soil parameters for use in the modified SMP model can be determined 
from poressuremeter test data using Manassero's method provided that: 
(i) elastic parameters for the model are estimated first from the 
unloading response of the pressuremeter using the proposed G*/G 



chart; and (ii) that Manassero's method is expanded to take into 
account the intermediate principal stress, o2. 

(e) From a practical point of view (i.e. to interpret in situ self boring 
pressuremeter tests) the method proposed by Manassero needs further 
validation to assess the influence of initial disturbance that might 
occur at the beginning of these tests. 



CHAPTER 6 
EVALUATION OF SOIL PROPERTIES FOR USE IN THE ANALYSIS OF THE MOLIKPAQ 

STRUCTURE AT THE AMAULIGAK 1-65 SITE 

6.1 Introduction 
The soil types and their stress-strain parameters used in the analysis 

of the Molikpaq structure at the Amauligak 1-65 site are described in this 
chapter. Two different stress-strain models were used in the Finite 
Element (F.E.) analysis of the response of the structure during both the 
construction and ice loading phases. The hyperbolic model was used in 3-D 
and 2-D F.E. analysis and the modified SMP model was used only in 2-D F.E. 
analyses. 

As will be described later in Chapter 7 these analyses included: (a) 
a static assessment of the response of the Molikpaq structure during the 
construction and moderate ice loading phases; and (b) a dynamic assessment 
of the response of the Molikpaq structure during high ice loading phases. 

The soil parameters were estimated on the basis of both in situ test 
and laboratory data. The in situ test data at the Amauligak 1-65 site 
consisted of cone penetration test (CPT) data (Gulf Canada Resources Inc., 
1986) and self-boring pressuremeter (SBP) data (Thurber Consultants, 1986). 
In situ test data obtained at the Tarsiut 1-45 site were also used in the 
assessment of soil parameters because the in situ conditions at Tarsiut are 
considered to be reasonably similar to those at Amauligak. 

The laboratory data used in the assessment consisted of monotonic 
drained and cyclic undrained triaxial tests (Golder Associates, 1986 and 

This chapter is divided into three main sections: 



In the first section, a brief description of the on site investigation 
and construction sequence of the berm and core fills is presented together 
with a description of the sand used. 

In the second section, the procedures followed to obtain the appropri-
ate soil parameters for use in the two stress-strain models are presented. 

Finally, in the third section the procedures followed to obtain the 
liquefaction resistance curves of the core and berm fills for use in the 
dynamic assessment are presented. 

6.2 Brief Description of the On Site Investigation and Construction 
Sequence. Type of Sand Used in the Berm and Core of the Molikpaq 
A good description of Island construction in the Canadian Beaufort Sea 

(including the Molikpaq) is given by Jefferies et al. (1988). Herein only 
a brief summary of the investigation and construction sequence at the 
Amauligak 1-65 site is presented and consists of the following (see Fig. 
6.1(a)): 

1) A detailed geotechnical investigation program including sampling, in 
situ testing and laboratory testing was carried out in order to 
provide parameters for foundation design (Jefferies and Livinstone, 
1985). This investigation showed that the foundation soil conditions 
at the site consist of the following (see Fig. 6.1(b)): 

• very soft to soft silty clay 9 m thick, followed by 
• compact silty sand 5 m thick, followed by 
• compact to very dense fine sand 35 m thick, followed by 
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• stiff to very stiff clayey silt 10 m thick, followed by 
• very hard, frozen sand (permafrost). 

Based on MacKay (1972) permafrost as much as 300 to 400 m thick should 
exist in the southern Beaufort Sea. Herein considerations of time-
dependent deformations of the permafrost foundation are not considered 
because the Molikpaq is a temporary structure for oil exploration 
purposes. However, if this structure becomes a permanent structure 
for oil recovery purposes, then time-dependent deformations (creep) of 
the permafrost should be accounted for in the long term stability of 
the structure. 

2) The weak superficial sediments (silty clay) were removed; 

3) The excavation was backfilled and the berm was constructed in several 
"lifts" by both the "pump-out" and the "bottom discharge" methods. 
These two methods are well described by Jefferies et al. (1988). 
Verification of adequate berm density was carried out and consisted of 
nine CPT's. Then the berm was levelled prior to set down of the 
Molikpaq; 
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4) The Molikpaq was positioned over the berm and setdown by filling its 
ballast water tanks; 

5) The caisson core was hydraulically filled with sand using a moveable 
(horizontally and vertically) discharge pipe; 

6) A verification program was carried out from the surface of the sand 
core. 20 CPT's together with 3 SBP holes (20 tests) were carried out 
to verify that the core and the berm had adequate densities. 

Determination of the fill quality used in the berm and core was 
obtained from grain size testing on representative samples of sand. 

Based on available information the Erksak 320/1 sand is considered to 
be the type of sand representative of the berm and core fills used at the 
Amaulikpaq 1-65 site. It is a uniform, brown fine to medium sand and its 
grain size distribtuion is shown in Fig. 6.2. Index properties of the 
Erksak 320/1 sand were reported by Golder Associates (1986) and are 
presented in Table 6.1. 

6.3 Evaluation of the Soil Parameters for Erksak 320/1 Sand 
This section is subdivided into two subsections. In the first, the 

procedures for the assessment of the different moduli used in the hyper-
bolic and the modified SMP models are presented. In the second, the 
procedures for the evaluation of the failure angle of internal friction 
used in the hyperbolic model and of the failure stress ratio on the SMP 
used in the modified SMP model are presented. 
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Table 6.1 
Index Properties of Erksak 320/1 Sand 
Reported by Golder Associates (1986) 

PROPERTY DESCRIPTION (or) VALUE 

Mineralogical composition 
(visual inspection) 

Quartz, calcite, feldspar 
and mica 

Medium grain size, D 5 0 (vim) 320 

Effective grain size, D 1 0 (jam) 200 

Uniformity coefficient, Cu = D60/D10 1.6 

% passing #200 sieve 0.8 

Specific gravity, Gg 2.67 

Average sphericity 0.67 

Average roundness 0.47 

Particle shape Subrounded 

.3.1 Evaluation of the Moduli Used in the Analysis 
The void ratio is a fundamental soil parameter. Soil moduli such as 

the Young1s modulus, E, shear modulus, G, and bulk modulus, B, are highly 
dependent on the consolidated void ratio, e c > and therefore in situ moduli 
may be estimated once the in situ void ratio is known by combining it with 
data from laboratory testing or using it with empirical correlations. 

The procedure followed for estimating the in situ void ratio is 
presented below. 



6.3.1.1 Evaluation of the In Situ Void Ratio Versus Depth 
The in situ void ratio was evaluated from the in situ state parameter, 

\f>, which was obtained from the CPT cone bearing, q c > as it will be 
described. The state parameter concept was developed by Been and Jefferies 
(1985) , and is a quantitative measure of the state of the sand that 
combines both the effects of void ratio and effective mean normal stress in 
a unique way for each sand. 

As shown in Fig. 6.3, the state parameter, \|), is a measure of the 
distance of the consolidated void ratio, ec> from the steady state line. 
The steady state line represents a condition of zero dilation during shear 
(Castro, 1969). Once the in situ state parameter, \|>, and in situ effective 
mean normal stress, a', are known, the in situ void ratio e can be 

m c 
evaluated. 

To evaluate the in situ state parameter the procedures outlined by 
Been et al. (1986) were followed. Based on chamber test data Been et al. 
conclude that \p can be estimated from CPT data using the following 
equation: 

, q -o 
f = - M n [(-^HVK] (6.1) 

m 

where: 
m 
q 

= (8.1 - In X ) = 11.2 ss 
= CPT cone bearing ("mean" q value was considered) c c 

o' = effective mean normal stress = a' (1+2K )/3 m v o 
Kq = .AO (based on Kq study presented in Appendix 6.1) 
a' = effective vertical stress (based upon r, = 9.5 kN/m3) v b 
u = static pore pressure (based upon water level = 3.0 m below top 

of core, estimated from CP.T soundings) 
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and 

a = Total mean normal stress = o1 + u 
m m 

K = ( 8 + - 2 3 - 3 

ss 

X g s = slope of steady state line = 0.046 for the Erksak 320/1 sand 
(Golder Associates, 1986) 

Using the "mean" qc value for the core and berm fills shown in Fig. 
6.4, which is based upon 20 CPT's carried out in the fills of the Molikpaq 
(see Fig. 6.5 for CPT location) , a profile of the state parameter versus 
depth was evaluated and is presented in Fig. 6.6. Based on the \p  values 
shown in this figure the in situ void ratio was then obtained following the 
steps described below: 
1) The in situ void ratio on the steady state line, e is evaluated 

ss 
using the following equation (see Fig. 6.3) 

e = e - X log., (o') (6.2) ss ssx ss 6 1 0 m 

where: e g g = 0.875 (Golder Associates, 1986) is the void ratio on the 
steady state line correspondent to o' = 1 kPa, and the effective mean 

m 
normal stress, o^ was computed as described in equation (6.1). 

2) The in situ void ratio, e c > is then evaluated from the equation: 

e = e + \p (6.3) c ss r 

The resulting values of the in situ void ratio versus depth are shown 
in Fig. 6.7. In order to define different soil types to be used in the 
analysis, the profile shown was divided into four depth segments each of 
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which was assigned an average in situ void ratio, (e ) , as shown in the 
c av 

figure. It may be seen that ( e c) a v range from .620 in the berm to .685 in 
the upper 17.5 m of the core. In the transition zone of the core and berm 
(e ) = .660 and for the foundation soil (e ) = .680. c av c av 

6.3.1.2 Evaluation of the In Situ Maximum Shear Modulus Versus Depth 
The in situ maximum (low strain) shear modulus, G , was determined 

max 
from empirical correlations between void ratio, CPT data, pressuremeter 
tests, and from direct in situ measurements of shear wave velocity. 

The values of G as a function of depth obtained from the various max 
methods described below are shown in Fig. 6.8. 

• Hardin and Drnevich (1972): The shear modulus G is a function of max 
the in situ void ratio and effective mean normal stress and is given by the 
following equation: 

(2.973 - e )2 o' ~ r ' m 1 ' ^ G = 320 =— p (—) (6.4) max 1 + e ra p c *a 

where p is the atmospheric pressure, a 
This equation together with the in situ void ratios from Fig. 6.7 were 

used to estimate the Hardin and Drnevich values. 

• Robertson and Campanella (1984): The G m a x values were obtained from 
the "mean" cone bearing resistance qc values of Fig. 6.4 following the 
relationship proposed by Robertson and Campanella (1984) which is shown in 
Fig. 6.9. 
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modulus, G (after Robertson and Campanella, 1984) 



Seed and Idriss (1970): The shear modulus, G is given by the * ' max 6 J 

equation: 

G = 21.7 (KJ p (—) (6.5) max 2 max *a p 

where depends upon the density or normalized standard penetration 
resistance of the sand, (N1)60. Tokimatsu and Seed (1987) suggest the 
following relationship: 

^ m a x = 20[(N1)60]1'3 (6.6) 

The (N1)60 values were obtained as follows. First the (N)60 values 
were computed using the chart proposed by Seed and DeAlba (1986) that 
correlates the penetration ratio qc/(N)60 with the mean grain size D50. 
This chart is shown in Fig. 6.10. For the Erksak 320/1 sand with D s o = .32 
mm, qc/(N)60 = A. 6. The qc values of Fig. 6.A were used to obtain (N)60 
values as a function of depth and these were modified to (Nx)6 0 values 
using the following equation proposed by Liao and Whitman (1986): 

(N^o = * (N)60 (6.7) 
v 

The computed values of G m a x vs depth using these (N1)60 values and Eqs. 
(6.5) and (6.6) are shown in Fig. (6.8). 

• G from Self-Boring Pressuremeter Data: The self-boring max _ ° 
pressuremeter data obtained at the Amauligak 1-65 site were analyzed using 
the method described in Chapter 5 and are shown in Fig. 6.8. The shear 
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modulus G m a x was determined from the secant unloading modulus G* using the 
chart developed in Chapter 5 and shown earlier in Fig. 5.10. 

G values determined by Golder Associates (1987) from analysis of max J J 

SBP data from TARSIUT 1-45 are also shown in Fig. 6.8. 

• Seismic Determination of G : The shear moduli deduced from down-max 
hole and crosshole measurements of shear wave velocities at the TARSIUT 
1-45 site reported by Golder Associates (1986) are shown in Fig. 6.8. 

It may be seen from the G data shown in Fig. 6.8 that there is J max ° 
considerable scatter. The solid line, which closely follows the Robertson 
and Campanella prediction represents the average G of all the data shown 
in the figure and was used in the analysis. 

• KG Versus Void Ratio max 
In the analysis carried out with the modified SMP model the maximum 

shear modulus was obtained using the following equation which has been 
already described in Chapter 2: 

G = KG Pa (^)n 
max max Pa 

From this equation KG is obtained as follows: ^ max 

o* 
KG = G /(Pa(^)n (6.8) max max Pa 

Assuming that n = .5 (common value for sands), and using eq. (6.8) and the 
G values shown in Fig. 6.8 by the solid line, KG values versus depth max J max r 

were obtained. From these values, average (KG ) values were obtained 
max av 

and are presented in Fig. 6.11. Combining the values of ( e c ) a v an<* 



V) 
© 

"S3 

0 £ 

Z) 
01 
LU 
Dd O O 

LU CD 
JZ t— Q_ 
LU 
o 

MAXIMUM SHEAR MODULUS NUMBER ,(KGmax) 
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1200 1400 -j 1 1 I l—j 

a-v 

- 1 0 -

= -20-

-30-

-40-

-50-

- 6 0 -

GV = 

KGmax)av.=785 

CORE 

BERM 

x)av=850 FOUNDATION 

Figure 6.11 Variation of maximum shear modulus number, (KG_„„) 
. IllelJt d V 



(KG ) a relationship between KG and e is obtained and shown in Fig. max av max c e 

6.12. In this figure the points representative of the core and berm 
(points A, B, C) define a curve that is thought to be representative of 
KG vs e for the Erksak 320/1 sand. It may be seen that point D, which max c j  c j 

is representative of the foundation soil was not taken into account to 
define that relationship, since the data available for the foundation soil 
is based on 1 single CPT test and also it is thought that the foundation 
soil is located too far away from the ice loading location for its 
importance to be relevant in the analysis. 

6.3.1.3 Evaluation of the Young's Modulus 
Two Young's moduli were used in the analysis carried out with the 

hyperbolic model. One is the tangent Young's modulus on first loading, E , 
and the other the unloading/reloading or maximum Young's modulus, E x > 

The Young's modulus, E^ was evaluated in the analysis using the 
following equation developed by Duncan et al. (1980): 

E. = KE Pa (o'/Pa)n (1 - SL R_)' t m r (6.9) 

where: 
KE 
n 

RF 

SL 

= Young's modulus number 
= Young's modulus exponent 
= failure ratio, the ratio of the strength from the Mohr-Coulomb 
criterion to the strength from the hyperbola 

= stress level, the ratio of the mobilized deviator stress 
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The soil parameters KE, n and R^ as a function of void ratio, ec are 
shown in Fig. 6.13 and were obtained using the drained triaxial test data 
on Erksak 320/1 sand reported by Golder Associates (1986). The relevant 
data for that evaluation is presented in Appendix 6.2. 

The maximum Young's modulus, E m a x was evaluated in the analysis using 
the following equation: 

E = KE Pa (o'/Pa)n (6.10) max max m 

To evaluate the maximum Young's modulus number, KE , the equation 
° max 

that relates the Young' s modulus with the shear modulus was adapted to the 
parameters KE and KG , i.e. r max max 

KE = 2 (1+\j)KG (6.11) max max 

The relationship between KE and e is shown in Fig. 6.13 and was ^ max c 
obtained using equation (6.11), assuming a Poisson's ratio value of \> = .2 
and using the values of KG versus e shown in Fig. 6.12. 

TH612C c 

6.3.1.4 Evaluation of the Bulk Modulus 
As for the case of the Young's modulus, two bulk moduli were used in 

the analysis. One is the tangent bulk modulus on first loading, Bt> and 
the other the unloading/reloading bulk modulus, B . Both Bt and B u r 

depend on void ratio and effective mean normal stress and were evaluated in 
the analysis using the following equation: 

B (or B ) = KB (or KB ) Pa (^)ra (6.12) u ur ur r Bl 



4000-1 

3500-

3 0 0 0 -
x o 
£ 

"D 
O 2500 

cn 
U J CO 
3 2000 
z 
in 
ZD 
Q O 
V) 
O 
O 

1500 

1000 

500 

<H 
0 . 5 

LEGEND 

A = Po in t R e p r e s e n t a t i v e of C O R E 

B = Point Representative of TRANSION(CORE-BERM) 

C = P o i n t . R e p r e s e n t a t i v e of BERM 

D = Point R e p r e s e n t a t i v e of FOUNDATION 

0 6'3.<B Data point ( t r i a x i a l t e s t - 6 3 ) 

KE max 

O 01 

0 . 6 0 . 7 

VOID RATIO , ec 
0.8 



where: 
KB = bulk modulus number (first loading) 
KBur = bulk modulus number (unloading/reloading) 
a'  = effective mean normal stress m 
m = bulk modulus exponent 

The tangent bulk modulus parameters, KB and m for Erksak 320/1 sand 
are shown in Fig. 6.14 and were determined from the triaxial isotropic 
compression test data reported by Golder Associates (1986), following the 
procedures outlined by Byrne and Eldridge (1982). The relevant data for 
this evaluation is presented in Appendix 6.2. 

The unloading/reloading bulk modulus number, KBur was evaluated from 
B^/B relationships which were obtained from test data on Ottawa sand t ur r 

provided by Negussey (1987). The relationship between and ec for the 
Erksak 320/1 sand is also shown in Fig. 6.14. 

6.3.1.5 Evaluation of the Plastic Shear Parameter G and the Flow Rule p 
Parameters for Use With the Modified SMP Model 

As described in Chapter 2 the plastic shear parameter, G^, is 
evaluated in the analysis by the following equation: 

G = KG (o'/Pa)np (1 - R_ SL) (6.13) p p m r 

The soil parameters KG^, np and R^ as a function of void ratio, e c > 

are shown in Fig. 6.15 and were obtained from the drained triaxial test 
data reported by Golder Associates (1986), following the procedures 
outlined earlier in Chapter 3. 
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The Flow Rule relationship for Erksak 320/1 sand is shown in Fig. 
6.16. From this figure values of X = .97 and yi = .25 were obtained. The 
relevant data used to obtain the above quantities is given in Appendix 
6.2. 

6.3.2 Evaluation of the Failure Friction Angle and the Failure Stress 
Ratio on the SMP 

Relationships between the moduli and void ratio have been established 
in the previous section. The two additional soil parameters needed are the 
failure friction angle, <(>-,, to use with the hyperbolic model, and the 

r 
failure stress ratio on the SMP (t^/o.^),,, to use with the modified SMP 

SMP SMP F 
model. The procedures followed to evaluate these two soil parameters are 
described below. 

6.3.2.1 Evaluation of the Failure Friction Angle 
In the analysis carried out, the failure friction angle was defined 

using the following equation: 

* F « 4>x - M log10(o;/Pa) (6.14) 

where: 
<px = peak friction angle at the effective mean normal stress of 1 

atmosphere 
A<f>  =  decrease in <p„  for a ten-fold increase in effective mean normal 

r 
stress 
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The above equation is based on the equation developed by Duncan et al. 
(1980), to define <p p . The only difference is that, herein, o^ is used to 
define the terra A<f> rather than ô  which is used by Duncan et al. 

The two soil parameters and A<f> were evaluated as follows. 
A relationship between failure friction angle, <J>F and state parameter, 

\J), for several sands including the Erksak 320/1 sand, was developed by 
Golder Associates (1986) and is presented in Fig. 6.17. Using the in situ 
state parameter values shown in Fig. 6.6 together with the corresponding in 
situ effective mean normal stress, o', a plot of <!>„ versus log1n (o'/Pa) 

m r i 0 m 
was developed and is shown in Fig. 6.18. 

Data points evaluated from the drained triaxial test data reported by 
Golder Associated (1986), together with data points representative of the 
berm fills prior to placement of the core are also included in Fig. 6.18. 
These berm values were obtained using the "mean" qc data shown in Fig. 
6.19. 

Void ratio values, ec, correspondent to the triaxial test and the berm 
and core fills are also shown in Fig. 6.18. It may be seen that the field 
and laboratory data plot in agreement with each other and the data points 
representative of the berm fills before and after the placement of the core 
show that the failure friction angle decreases with o', as would be 

m 
expected, and converge towards a residual friction angle <J>D = 33°. A 

K 
similar trend is also observed for the core material and for the three 
triaxial tests carried out at the lower void ratios. 
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Figure 6.18 Relationship between failure friction angle, <f>F 
and log10 ((o,;)i/Pa)) for Erksak 320/1 sand to O 
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Based on the results shown in Fig. 6.18 values of <t>1 and A<|> were 
evaluated for each data point and in turn a relationship of <p 1 and A<J> 
versus depth was developed. Based on these values, average (<f>a) and 
(A<f>)  values, corresponding to the same depth intervals used to evaluate 

6i  V 
the average in situ void ratios (e ) , were evaluated and are shown in 

C FL V 

Fig. 6.20. It may be seen that (<f>i)av range from 35.7° for the upper 17.5 
m of the core to 39.7° for the berm, while the corresponding range 
from 2.8° to 6.1° for the same sand zones. 

6.3.2.2 Evaluation of the Peak Stress Ratio on the SMP 
In the analysis carried out with the modified SMP model the peak 

stress ratio on the SMP was defined using the following equation developed 
earlier in Chapter 2. 

^ S M P ' W F = ' W W * " A(TSMP/°SMP)logio((°SMP)F/Pa) ( 6 ' 1 5 ) 

where: 
(xSMP/°SMP) 1 = t h e f a i l u r e s t r e s s ratio on the SMP at (°sMp)p = 1 

atmosphere. 

A(xSMp/oSMp) = the decrease in ( T S M p/ a S Mp) f o r a ten-fold increase in 
(o1 ) 
v SMP'f (aivra)p = the effective normal stress on the SMP at failure. 

SMr r 

The two soil parameters (TPMT,/Ocmt,) . and A ( T C L U M / O C V M ) were evaluated r SMP SMP 1 SMP SMP 
as follows: 
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Using the drained triaxial test data on Erksak 320/1 sand reported by 
Golder Associates (1986), the relationships shown in Fig. 6.21 between 
(T S M p/o S M p) F and log j 0 ((o^Mp)F/Pa) were obtained, and from it, values of 
^XSMP/'0SMP^ 1 anc* A^TSMP^°SMP^ w e r e evaluated for each test. Using these 
values and the values of <pi and Aif>, earlier obtained for the same tests, 
linear relationships were obtained between (TgMp/°SMP^i a n d anc* between 
A ( T S M P / O S M P ) anc* A<^' These t w o relationships are shown in Fig. 6.22. 
Finally using the (<f>i)av an<3 v a ^ u e s s^own in Fig. 6.20 together with 
the relationships shown in Fig. 6.22 the values of ((t.m/o.u.),) and 

bMr SMr 1 av A(xol.r./0 o„_,) shown in Fig. 6.23 were obtained. SMP SMP av 

6.3.3 Predictions of the Drained Triaxial Tests on Erksak 320/1 Sand 
In the previous two sections (6.3.1 and 6.3.2) the following 

relationships were established: (a) void ratio versus depth; (b) moduli 
versus void ratio; (c) and A<f> versus depth; and (d) i a n d 

A ( TSMP /°SMP ) V E R S U S D E P T H -
To validate the soil parameters obtained from these relationships, 

predictions of the drained triaxial tests on Erksak 320/1 sand were carried 
out using the hyperbolic model with the soil parameters shown in Table 6.2 

and the modified SMP model with the soil parameters shown in Table 6.3. 
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Figure 6.22(a) Relationship between ("tsMP̂ SMP̂  1 a n d 
for Erksak 320/1 sand 

A<f> 

Figure 6.22(b) Relationship between M^SMP^SMP^ anc* A<f> 
for Erksak 320/1 sand 
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Table 6.2 
Hyperbolic Soil Parameters - Erksak 320/1 Sand 

Test # e 
c 

KE KE 
max 

n KB KB 
ur 

m rF •l A<f> <t> 
P 

01 .740 720 1260 .50 230 550 .38 .80 34.4 2.0 33.8 

02 .717 960 1710 .50 250 610 .38 .80 35.5 2.8 34.4 

61 .572 1320 4000 .50 378 1130 .36 .90 45.6 10.8 45.6 

62 .552 1648 4600 .50 573 1750 .40 .87 46.4 11.6 39.5 

63 .583 1160 3600 .50 474 1420 .38 CD
 

U3
 44.8 10.0 38.6 

Table 6.3 
Modified SMP; Soil Parameters - Erksak 320/1 Sand 

Test # e 
c 

KG max n KB ur 
m KG 

P 
np RF CSM\ 

SMP 1 
AC T S M P) 
°SMP 

u X 

01 .740 525 .5 550 .38 575 -.56 .95 .64 .04 .25 .97 

02 .717 710 .5 610 .38 620 -.56 .94 .68 .072 .25 .97 

61 .572 1670 .5 1130 .36 910 -.56 1.00 1.01 .340 .25 .97 

62 .552 1920 .5 1750 .40 980 -.56 .94 1.04 .362 .25 .97 

63 .583 1500 .5 1420 .38 840 -.56 .94 .98 .313 .25 .97 



The predictions obtained with the hyperbolic model are presented in 
Fig. 6.24. It may be seen that the shear behaviour up to peak stress ratio 
is very well predicted by this model. However, as may be seen the volum-
etric dilative strains were not predicted. This is because the hyperbolic 
model used in the analysis does not consider dilatant effects. 

The predictions obtained with the modified SMP model are presented in 
Fig. 6.25. It may be seen there is very good agreement between the 
measured and computed values of both shear and volume change responses up 
to the peak stress ratio. However, since strain softening parameters were 
not considered for the predictions, past the peak the predictions are not 
in good agreement with the measurements of those tests that do show strain 
softening. 

6.3.4 Selection of Soil Types and Soil Parameters to Use in the Molikpaq 
Analysis 

The soil types and parameters for use in the Molikpaq analysis for 
both the hyperbolic and the modified SMP models are tabulated in Fig. 
6.26(a) and (b) respectively and were obtained following the procedures 
described below. 

Based on the profile of.the in situ void ratio versus depth evaluated 
earlier, and the existing water level at the time of the April 1987 ice 
loading event (4.8 m below core surface), five soil types were identified 
as shown in Fig. 6.27. Also shown in the figure are the locations of the 
different soil layers used in the F.E. analysis. 

To obtain the different soil parameters shown in Fig. 6.26(a) and 
6.26(b), the (e ) value of each soil type obtained from Fig. 6.27 was c av 
used together with the following figures: 
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Elastic Parameters 
Plastic Parameters Elastic Parameters Hardening Parameter Flow Rule Param. Yield Parameters 

Soil Type No. 
Avg. Void Ratio 
(ecJav r kN/m K0 KGmax n .raur m KGP np U X (TSMP) SMP 1 MJsej 

SMP 
R F 

5 .685 15.6 .40 670 .50 750 .38 645 -.56 .25 .97 .685 .070 .94 
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Figure 6.26(b) Soil types and parameters for use in the Molikpaq analysis with the modified smp model. 
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6.4 Evaluation of Liquefaction Resistance Curves for Erksak 320/1 Sand 
Most of the geotechnical engineering experience with cyclic loading 

has been developed over the past 30 years based on field data obtained from 
both earthquake and wave storm events as well as from laboratory tests 
simulating these events. This experience has shown that the liquefaction 
resistance of sandy soils depends essentially on the following major 
factors: 

• Density and grain size characteristics of the soil. 
• Static stress conditions prior to cyclic event. 
• Amplitude and number of cycles of loading. 
• Past history of cyclic loading. 
• Drainage conditions. 

These factors will be discussed next together with a review of the 
available cyclic loading laboratory tests on Erksak 320 sand. 

6.4.1 Review of Available Cyclic Loading Triaxial Tests on Erksak Sand 
A series of repeated loading triaxial tests were carried out by Golder 

Associates (1987) on samples of sand obtained from the Molikpaq core after 



the dynamic ice load event of April 1986. A review of the above data indi-
cates the following. 

The data available for predicting liquefaction resistance were from 
tests carried out with a static shear stress bias corresonding to consoli-
dation ratios K^ = o[/a'3 in the range 2 to 3. Based on the static bias 
developed by the ice loads, which will be discussed in detail later in 
Chapter 7, these high K^ values seemed, at first, to be appropriate. 
However, liquefaction occurred in none of the tests. This fact is contrary 
to what happened in the field where liquefation was triggered in the soil 
elements adjacent to the loaded wall. The above contradiction is discussed 
below. 

The soil elements adjacent to the loaded wall would initially have a 
static bias. However in contrast to the triaxial test conditions where the 
shear stress bias is imposed, the elements of the core that experience a 
significant increase in porewater pressure will gradually lose their bias 
during subsequent cyclic loading because the shear stresses initially 
carried out by these elements will be transferred to other parts of the 
structure. This stress transfer (or reduction in static bias) will 
ultimately allow a soil element adjacent to the loaded wall to achieve 100% 
porewater pressure rise and liquefy. 

It is understood that additional testing was carried out by Golder 
Associates where no static bias was considered. Unfortunately that data 
was not available for this study. 

Based on the above, the liquefaction resistance curves for Erksak 
320/1 sand were evaluated based on curves available in the literature for 
no static bias rather than the available laboratory data reported by Golder 
Associates. 



The procedures followed for that evaluation are described below. 

6.4.2 Evaluation of Liquefaction Resistance Curves for Erksak 320/1 Sand 
Based on no Static Bias 

The liquefaction assessment chart proposed by Seed and DeAlba (1986) 
and shown in Fig. 6.28 was used to evaluate the liquefaction resistance of 
Erksak 320/1 sand. This chart shows the relationship between the modified 
cone tip resistance (q ). and the cyclic stress ratio t /o' causing r c 1 eq vo 
liquefaction in 15 cycles and is appropriate for sands and silty sands. 
The correlations are based on a large body of field data on liquefaction 
due to earthquake shaking. It may be seen that the resistance is strongly 
dependent on the mean grain size D s o of the sand and the % of fines. For 
Erksak 320/1 sand D K n = .32 mm and % fines £ 5%. The shear stress, T . is 

»o ©q 

the uniform shear stress that would have the same effect in 15 cycles of 
shaking as the actual irregul ar shear stress, and is the effective 
overburden pressure. 

The April 1986 ice event involved a much larger number of cycles than 
15 and therefore it was necessary to develop a relationship between the 
shear stress T^ to cause liquefaction in N cycles and T 1 5 which caused 
liquefaction in 15 cycles. Such a correlation was developed by Been (1988) 
based on both published data and data obtained by Golder Associates (1984) 
as shown in Fig. 6.29. 

Based on the charts shown in Fig. 6.28 and 6.29 the liquefaction 
resistance curve for the different soil layers used in the analysis were 
obtained as follows: 
1) The relationship between stress ratio causing liquefaction and (qc)j 

for 15 cycles and D s o = .32 and % fines £ 5 was obtained from Fig. 
6.28. 
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Figure 6.28 Relationship between stress ratio causing liquefction in 15 
cycles and modified cone tip resistance for sands and silty 
sands (after Seed and DeAlba, 1986) 
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2) Cyclic shear stress ratios, Tn/T15 for N = 5, 15, 100, 500 and 1000 
cycles were obtained using Fig. 6.29. 

3) The relationship, obtained in (1), for N = 15 cycles was scaled by the 
shear stress ratio T n/T 1 5 obtained in (2) using the following 
equation: 

Ni = 5, 100, 500, 1000 cycles 
These relationships are presented in Fig. 6.30. 

A) The appropriate (qc) x for each layer was obtained from the "mean" qc 

profile shown earlier in Fig. 6.4 and the normalizing equation 
proposed by Liao and Whitman (1986): 

A plot of of the average (q ((qc)i)av f°r e a c h layer is presented 
in Fig. 6.31. 

5) Using the C(<lc)i)av values corresponding to each soil layer, and using 
Fig. 6.30 relationships between the stress ratio, x /o1 , and the 

eq vo 
number of cycles causing liquefaction was obtained for all the soil 
layers used in the analysis as is shown in Fig. 6.32. 
These relationships represent the liquefaction resistance curves for 

Erksak 320/1 sand. 

In the above evaluation the effects of both the past-history of cyclic 

loading and drainage conditions at the Amauligak 1-65 site were not taken 

into account due to unavailability of data. Nevertheless its possible 

influence on the liquefaction resistance curves is briefly discussed next. 

(6.16) 

where: 

q = q (Pa/o' )»'» X x Mc vo vo (6.17) 
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6.4.3 Discussion on the Past History of Cyclic Loading and Drainage 
Conditions at the Amauligak 1-65 Site 

• Past-History of Cyclic Loading 
The Molikpaq structure while stationed at the Amauligak 1-65 site was 

subject to several ice loading events as described by Jefferies and Wright 
(1988). A summary of these is presented in Table 6.4. It may be seen that 

Table 6.4 
Summary of Multi-Year Ice Loading Events (Spring, 1986) 

(after Jefferies and Wright, 1988) 

Date/Time Peak Ice 
Load (MN) 

Failure Mode* 
and Direction 

Normalized** 
Dynamic 
Amplitude 

Comments 

March 7 
15:30-17:43 

230 Crushing at north 
west (N.W.) faces 

16% -

March 8 
17:32-18:37 

320 crushing at north 
west (N.W.) faces 
same flow 

26% — 

March 25 
13:00-16:00 

110 viscous flow/ 
buckling at 
at north face 

0% — 

April 12A 
08:00-08:45 

>500*** crushing followed 
by ridge break out 
at east face 

45% Liquefaction in 
the core adjacent 
to east face 

April 12B 
13:02-13:51 

210 crushing at south 
east (S.E.) face 

0% -

May 12 
03:01-03:26 

250 crushing at north 
face 

20 to 45% -

June 25 
05:31-05:44 

130 crushing at west 
face 

25% -

Notes: 
* for failure mode definition see Jefferies and Wright (1988) 
** 0% indicates static ice loading conditions; 45% indicates dynamic 

ice loading conditions with an amplitude of ±45% of the average 
ice load 

*** Maximum ice load greater than this value (not recorded due to 
instrumentation failure) 



prior to the event under study herein (April 12) the Molikpaq structure was 
subject to two major dynamic ice loading events. Peak loads of 230 and 320 
MN were applied to the N.W. faces of the structure on March 7 and 8 respec-
tively. The possible significance of these two events was discussed by 
Finn et al (1988), their main points are summarized below. 

Based on simple shear tests Finn et al. (1971) showed that previous 
cyclic loading had a significant effect on the rate of porewater pressure 
generation and liquefaction resistance. Generally, cyclic loading which 
generates small shear strains and does not disrupt the structure of the 
soil, results in greatly increased resistance to liquefaction and a slower 
rate of porewater pressure development in subsequent loading. 

Typical effects of previous cyclic loading are illustrated in Fig. 
6.33(a) for a medium dense sand and in Fig. 6.33(b) for a loose sand. In 
each case a virgin sample was subjected to undrained cyclic loading in a 
simple shear test until the porewater pressure reached 50% of the effective 
confining pressure. The samples were then drained and again subjected to 
cycles of undrained loading of the same amplitude as previously. Although 
the void ratio had changed by only a very small amount, there was a marked 
increase in liquefaction resistance and a much slower rate of porewater 
pressure development than previously. The liquefaction resistance of the 
dense sand increased from about 17 to 145 cycles and the resistance of the 
loose sand from about 25 to 65 cycles. Recent investigations by Seed and 
Lee (1988) have confirmed these earlier conclusions. They found increases 
in liquefaction resistance between 25-35% due to previous loading (see fig. 
6.34). 

This phenomenon is routinely taken into account in the determination 
of the resistance of North Sea sands to wave loading. Generally, in 
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testing these materials, samples are first subjected to a considerable 
number of small strain cycles to simulate the effect of the milder summer 
storms before the samples are subjected to the large amplitude stresses and 
strains considered typical of the winter storms (Bjerrum, 1973). 

Because test data was not available to determine the possible increase 
in liquefaction resistance of the sand core of the Molikpaq due to past 
load events of March 7 and 8, 1986, the curves shown in Fig. 6.32 were not 
modified. 

• Drainage Conditions 
For stability reasons the water level inside the core of the Molikpaq 

was maintained at an elevation of -3.0 m below mean sea level (msl). This 
lowering of the water table was developed by a series of water pumps 
located around the inside perimeter of the structure near the core berm 
interface. 

In order to assess correctly the liquefaction resistance and (or) the 
porewater pressures rise developed in the fills during the dynamic ice 
loading event of April 12, 1986, the drainage effects developed by those 
water pumps should be taken into account. A rigorous solution of the 
problem would require a 3-D consolidation analysis in which both generation 
and dissipation are considered to occur simultaneously. That was not 
considered in the present study. Nevertheless it is considered that the 
liquefaction resistance for the soil located near the core berm interface 
and adjacent to the perimeter of the structure should be higher than that 
shown in Fig. 6.32. 

To summarize the liquefaction resistance curves presented in Fig. 6.32 
do not take into account the following factors: 



a) initial effects of the static bias developed by the ice loading, 
b) past history of cyclic loading, and 
c) drainage conditions. 

In addition, the possibility of seasonal frost at the top of the core 
sand fill was also not considered herein. 

Based on the above it is considered that the curves shown in Fig. 
6.32 represent a lower bound to liquefaction resistance. This will be taken 
into account, later in Chapter 7, when assessing the results obtained from 
the analysis. 

6.A.A Pore Pressure Rise 
The liquefaction resistance curves evaluated in the previous section 

were used to assess the soil elements that liquefy, i.e. the soil elements 
in which the ratio between the generated porewater pressure and the 
effective overburden pressure, u /o' = 1. 

^ g vo 
To evaluate the porewater pressure rise within the sand fill material 

during the dynamic ice load event of April 1986, two different models were 
considered. One to estimate the increase of the residual porewater 
pressure and the other to estimate the cyclic porewater pressure. 

• Residual Porewater Pressure Model: The following equation proposed 
by Seed et al. (1976) was used in the analysis to predict the residual pore 
pressure, 

u /o' = 2/TT sin"1 (N/Nn)1/2a (6.18) g vo £ 

where: 
u = the generated porewater pressure 



o' = the effective overburden pressure vo r 

N = the number of cycles 
N^ = the number of cycles to cause liquefaction 
a = an exponent taken to be 0.7 

This equation which is valid for cases where there is no static bias such 
as horizontal ground, is plotted in Fig. 6.35. 

As discussed earlier the static bias will be initially present during 
ice loading and could perhaps cause a significantly different initial rise 
in porewater pressure than assumed by the use of Eq. 6.18. This was 
considered by examining the pore pressure rise data from the Golder tests 
with Kc values in the range 2 to 3 which corresponds to a high static bias. 
The data from these tests are also shown on Fig. 6.35 and indicate that the 
initial porewater pressure rise at low values of N/N̂  would be a little 
faster than predicted by Seed's curve. However this is compensated for in 
the analyses herein, by using an Nj value corresponding to zero static bias 
which is lower. 

At higher ratios of N/N^, the forced static bias of the Golder tests 
curtails the rise of porewater pressure. However, in the Molikpaq as 
discussed earlier the static bias drops as the soil softens and hence the 
porewater pressure will continue to rise. It was therefore considered that 
Seed's model, used in conjunction with N^ based upon zero static bias, 
would give a reasonable estimate of the residual porewater pressure rise in 
the Molikpaq. 

• Cyclic Pore Pressures: Data from the Golder cyclic triaxial tests 
described above, indicated that the transient or cyclic component pore 
pressure could be approximated by the following equation: 



I . 0 

0.8 -

b° 
\ D> 3 

h-< 
tr 
LU 
en z> 
CO 
CO 
UJ tr a. 
LLI 
tr o 
Q. 

0.6 -

0.4 -

0.2 

0 
0.2 0.4 0.6 0.8 

C Y C L I C R A T I O , N / N ^ 

1.0 

Figure 6.35 Residual porewater pressure rise as a function of the 
number of cycles to liquefaction 



Au = Aa - 0.7 AT . (6.19) cy m oct 

where: 
Au = cyclic developed pore pressure cy 
Ao = cyclic variation in total mean normal stress m J 

cy 
AT Q c t = 2/3 [((Ao1-Ao2)/2)2 + ((AOj-AOj)/2)2 + ((A03-A0J/22]1'2 

= cyclic variation in octahedral shear stress 



CHAPTER 7 
3-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE MARCH 25 AND APRIL 12, 1986 

ICE LOAD EVENTS 

7.1 Introduction 
On April 12, 1986 the Molikpaq structure, while stationed at the 

Amauligak 1-65 site in the Beaufort Sea, was subject to high ice loading 
(maximum ice load > 500 MN) , dynamic in nature, causing vibrations which 
were sufficiently severe to induce partial liquefaction of the sand core. 
Since this is the principal element by which the Molikpaq resists the 
driving forces of the ice, the ability of the platform to withstand such 
load conditions was almost compromised (Jefferies and Wright, 1988). 

To study this complex soil-structure geotechnical problem, five 
research groups, three in Canada (Golder Associates, Calgary; EBA 
Engineering Consultants Ltd.; and the University of British Columbia 
(UBC)), and two in the United States (University of Southern California 
(USC); and Wooward-Clyde) were commissioned in 1987, by Supply and Services 
Canada, to predict the geotechnical response of the Molikpaq to this ice 
loading event. The predictions included the assessment of porewater 
pressures, accelerations, horizontal displacements and settlement. 

The writer, due to the topic of his Ph.D. research programme, was part 
of the UBC research team, which was led by W.D. Finn. The final UBC report 
was based on the work of several investigators and comprised the different 
studies listed below. 
a) 3-Dimensional and 2-Dimensional Structural Model of the Molikpaq. 

Work carried out by D.L. Anderson, P.M. Byrne and F.M. Salgado. 



b) Assessment of Soil Properties to be used in the Static and Pseudo-
Static Analysis. Work carried out by P.M. Byrne and F.M. Salgado and 
presented earlier in Chapter 6. 

c) Assessment of Liquefaction Resistance Curves to be used in the 
Analysis. Work carried out by P.M. Byrne, F.M. Salgado and B. 
Stuckert. 

d) Assessment of soil properties to be used in the dynamic and pseudo-
dynamic analysis. Work carried out by W.D. Finn and M. 
Yogendrakumar. 

e) 3-Dimensional and 2-Dimensional Static and Pseudo-Static, Finite 
Element Analysis of the Molikpaq. Work carried out by P.M. Byrne and 
F.M. Salgado. 

f) 2-Dimensional, Dynamic and Pseudo-Dynamic, Finite Element Analysis of 
the Molikpaq. Work carried out by W.D. Finn and M. Yogendrakumar. 

This chapter is divided into three sections and references to the UBC 
report are made, when necessary, by referring to the appropriate investi-
gators . 

An assessment of the ice loading function used in the analysis is 
presented in the first section. 

The structural model, finite element mesh and stress-strain law used 
in the 3-Dimensional analysis are described in the second section. 

The procedures followed in the 3-Dimensional analysis are presented in 
the third section together with both the results obtained and the available 
field measurements. 

To study the influence on the results of some key parameters, includ-
ing the stress-strain law used in the analysis, several 2-Dimensional 
analysis were also carried out. 



7.2 Ice Loading Function Used in the Analysis 
Ice cover is a major environmental feature in the Beaufort Sea. Ice 

loads used for design are influenced by two major factors: risk of exposure 
to thick ice and type of the artificial island (Jefferies et al., 1988). 
During the ice event of April 12, 1986 the ice was approximately 1.5 m 
thick (Jefferies, 1987). The failure pressure of thin ice against a 
stationary structure whose width is 100 m (such as the Molikpaq) is about 
1 MPa. For this type of structure (vertical ice/island interface) the ice 
failure consists of pure crushing whereby intact ice is fractured to a 
granular material which is then extruded from the failure zone. This type 
of crushing of ice produces systematic load cycling with an amplitude in 
the order of 50% of the peak load and frequencies in the order of 1 Hz 
(Jefferies and Wright, 1988). 

The given ice loading function for use in the analysis is presented in 
Fig. 7.1. It should be noted that this is an idealized version of the 
actual ice load which is shown (part of it) in Fig. 7.2. Because the 
actual load was made available after the analysis had been carried out, the 
following assessment applies only to the idealized load version. It may be 
seen that from time 8:10:00 to 8:17:51 the ice load increased slowly 
reaching a peak value of about 59 MN and a trough value of 22 MN. From 
8:17:51 to 8:21:45 the ice load increased very rapidly to a peak value of 
397 MN and a trough value of 161 MN. Between 8:21:45 to 8:26:00 the peak 
and trough load remained constant at 397 MN and 161 MN respectively. 
Subsequently, the load increased rapidly to a maximum load of 500 MN, 
however, between 8:27:00 and 8:29:10 a data gap is observed. After 8:29:10 
the ice load decreased rapidly. 



241-A 

In the analysis the above ice loading function was treated as follows: 

a) 8:10:00  to 8:17:51 loading: this low cyclic load level was ignored; 
and 

b) 8:17:51 to 8:21:45 loading: This phase of the ice loading with its 
variable dynamic amplitude which lasted for 290 cycles was scaled to 
60 equivalent cycles of a uniform dynamic amplitude of 118 MN which is 
the amplitude of the steady cyclic phase from 8:21:45 to 8:26:00. 
This greatly simplifies the analysis while preserving the effects of 
the more complicated load. The scaling technique used is presented in 
Appendix 7.1 and follows the procedures described by Seed and Idriss 
(1982). 

c) 8:21:45 to 8:26:00 loading: The ice loading function was kept the same 
and 250 cycles of amplitude = 118 MN are inferred for this interval. 

d) 8:26:00 to 8:27:00 loading: The 40 cycles of amplitude = 127.5 MN were 
scaled to 90 cycles of amplitude 118 MN as discussed in Appendix 7.1 
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Based on the above, the given loading function was treated in the 
analysis as a load with a static component = 280 MN and a dynamic component 
comprising 400 uniform cycles with amplitude = 118 MN. 

7.3 3-Dimensional Modelling of the Molikpaq 
Descriptions of the structural model, finite element , (F.E.) mesh and 

stress-strain law used in the 3-Dimensional (3-D) F.E. analysis are 
presented below. 

7.3.1 3-Dimensional Structural Model of the Molikpaq 
The (3-D) structural model of the Molikpaq's steel caisson was devel-

oped by D.L. Anderson (see Section 7.1 of this chapter) and is described 
below. 

A 2-Dimensional sketch of the Molikpaq's steel caisson is shown in 
Fig. 7.3. The caisson acts as a large beam-column and the overall section 
member properties are also presented in Fig. 7.3. In order to take into 
account both the torsional response and the differing "hoop" forces between 
the top and bottom of the caisson, Anderson proposed the 3-D structural 
model as shown in Fig. 7.4. It may be seen that the 3-D structural model 
of the caisson comprises two ring beams connected by truss members. The 
properties of the members of the 3-D structural model are also given in 
Fig. 7.4 and were chosen so as to match the lateral, torsional and axial 
stiffnesses of the caisson section shown in the previous Fig. 7.3. 

7.3.2 3-Dimensional Finite Element Mesh Used in the Analysis 
The ice loading was treated in the analysis as being perpendicular to 

its eastern face and therefore because of symmetry only half of the domain 
was modelled in the analysis. The ice loading and the 3-D F.E. mesh, which 
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3D Structural Model Properties 

Member 
Area Shear Area 

J 
m* 

Ix' 
m" * Member A 

ml V 
m1 * J 

m* 
Ix' 
m" * 

1 1.31 0.33 0.60 46 54 38 
2 2.50 0.67 1.20 88 104 74 
3 4.0 0* 0 0 200 200 
4 4.0 0 0 0 0 0 

*A zero shear area indicates shear deformation is neglected 
E = 200,000 MPa 
G - 80,000 MPa 

Figure 7.4 3-Dimensional structural model of the Molikpaq's steel caisson 
and properties used in the analysis 



comprises 675 soil elements and 204 beam elements, are shown in Fig. 
7.5(a). The soil elements were modelled by 3-D brick isoparametric finite 
elements. The total number of degrees of freedom is 2448. The mesh is 250 
meters long in the x direction, 100 m long in the y direction (direction 
perpendicular to the ice load direction) and 63.5 m in the vertical or z 
direction. Nodes located on the vertical boundary planes were not allowed 
to move in the direction perpendicular to those planes, but were free to 
move in the other two directions. Nodes on the foundation base were 
assumed fixed. The interface between the steel caisson and the sand fills 
was considered in the analysis as shown in Fig. 7.5(b) where part of the 
cross-section of the 3-D finite element mesh along the core center line is 
shown. The interface elements which were treated as standard 3-D soil 
brick elements were assigned a thickness, t = 5 cm and an angle of internal 
friction, 6 = 20° (Broms, 1966). 

7.3.3 3-Dimensional Soil Model Used in the Analysis 
The stress-strain law used in the analysis is presented in this 

section which includes a description of the different types of moduli and 
failure criteria used in the analysis. 

The complex nonlinear stress-strain relations of the soil elements 
shown in Fig. 7.5 were modelled in the 3-D analysis, using the hyperbolic 
model (Duncan et al., 1980) by a 2 parameter incremental elastic and 
isotropic law using a tangent Young's modulus, E, and a tangent bulk 
modulus, B, described in Chapter 6. The tangent Young's modulus depends 
upon the initial consolidated void ratio, ec, the mean effective stress, 
o', and the mobilized shear stress level, MSL. The tangent bulk modulus, m 
B, depends upon ec and In addition, both moduli were considered to be 
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Figure 7.5(a) 3-Dimensional F.E. mesh used in the analysis 
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Figure 7.5(b) Cross-section of the 3-Dimensional F.E. mesh along the 
core center line 



dependent upon the loading condition, i.e. whether it is a first time 
loading or an unloading/reloading condition. The soil parameters used in 
the analysis for the two different loading conditions are presented in 
Fig. 7.6 and were evaluated as described earlier in Chapter 6. 

In order to trigger the appropriate moduli for the different loading 
conditions, an additional soil parameter was included in the stress-strain 
model used in the analysis. This parameter, designated as (MSL)max is 
defined as the maximum mobilized stress level during the loading history of 
the soil elements. The mobilized stress level, MSL, is defined in the 
analysis as follows: 

MSL = m̂obilized ( ? > 1 ) 
failure 

When MSL < (MSL) the soil elements will respond with the unload/ max r 

reload or repeated loading parameters shown in Fig. 7.6. Otherwise the 
first loading parameters shown in Fig. 7.6 will be used and the soil 
elements will follow a hyperbolic stress-strain law. 

The first time loading parameters were used in the analysis of the 
construction of the berm and core, and at the end of this loading phase an 
average value of (MSL)max = .7 was computed and subsequently used for all 
soil elements. 

Upon ice loading, MSL first drops in value due to the increase in 
horizontal normal stress and therefore, in this ice loading phase, the 
repeated loading soil parameters were used in the analysis. At higher 
levels of loading, MSL increases again and for MSL > (MSL)̂ ^̂  a hyperbolic 
stress-strain law was used in the analysis. 
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Figure 7.6 Soil types and properties used in the analysis 



During analysis of the construction phase, the 3-D Mohr-Coulomb fail-
ure criterion was used. However, during the ice loading phase, a 2-D 
failure criterion was used. The 2-D Mohr-Coulomb failure criterion was 
selected because the shear T in the direction of ice loading was 

zx 
considered to be most effective in controlling strains and displacements 
and in generating pore pressure. 

When a soil element fails in shear according to the Mohr-Coulomb fail-
ure criterion (MSL = 1) a low value of the tangent Young's modulus given by 
E* = 0.03 Bt was used. This corresponds to a Poisson's ratio, \) = 0.495. 

The soil may also fail in tension. A soil element is considered to be 
failing in tension whenever ô  is less than or equal to zero. Low values 
of the tangent Young's modulus, E*, and tangent Bulk modulus, B*, given by 
B* = B /10 and E* = 0.03 B* were used. 

A soil element is considered to have liquefied whenever the cyclic 
stress ratio (Ax /a' ) is greater than or equal to the cyclic resistance zx vo e 6 ^ J 

ratio (x /o')n. Once an element liquefies, its shear stiffness is eq o 2 ^ 
considered to be very small. 

7.4 3-Dimensional Analysis 
The following 3-D assessments of the Molikpaq response to different 

load conditions were carried out: 
• static assessment during the construction phase of the berm and 
core; 

• static assessment during the moderate ice loading phase of the event 
of March 25, 1986; 

• pseudo-static assessment during the high ice loading phases of the 
event of April 12, 1986; 



• static assessment of the settlement phase after the ice loading 
event of April 12, 1986. 

The procedures followed in the analysis are described next. 

7.4.1 Construction Phase Analysis 
The ideal approach to simulate the construction of the berm and core 

fills is to "analytically construct" these fills by layers as recommended 
by Kulhawy et al. (1969). To do that, the nodes of the F.E. mesh shown 
earlier in Fig. 7.5 need to be numbered along horizontal planes, starting 
from the bottom. However, such a numbering procedure leads to a system of 
equations with a large band width which in turn requires a large computer 
time for its solution. 

To overcome the problem, the nodes were numbered along vertical 
planes, which led to an acceptable band width. However, this restricts the 
modelling of the sand fills to a gravity "turn-on" type of construction, 
which simulates deployment in 1 single placement. 

To minimize the differences between the results that would be obtained 
by the gravity "turn-on" approach and the ideal approach described above, 
the following procedures were followed in the analysis. 
a) All soil elements were initialized, prior to applying the gravity 

loads, with moduli based on the following effective stresses: vertical 
stress, o' = 1/2 (r'h) and horizontal stresses o' = o' = 1/2 (Kn o1), ' z x y 0 z 
where h is the distance from the centroid of each element to the top 
of the sand fill. The unit weight, y'  , and K0 values used are shown 
in Fig. 7.6. 



b) During the gravity loading the moduli of the soil elements were 
reformulated at mid-step following the procedures described by Duncan 
et al. (1980). 

Since field observations of the stresses mobilized at the end of 
construction were not carried out, it was considered important to compare 
the results obtained from the gravity approach against 2-D plane strain 
construction analysis where the sand fills were built in 7 layers. 

The 2-D analyses were carried out using the finite element mesh and 
the structural model shown in Fig. 7.7. This mesh is an exact replica of 
the cross-section, along the E-W core centre line, of the 3-D finite 
element mesh presented earlier in Fig. 7.5. 

The results of the horizontal and vertical displacements of the struc-
ture obtained from the construction analysis are presented in Fig. 7.8(a). 
It may be seen that the computed vertical displacement of the structure by 
the "gravity method" is 182 mm (3-D analysis) and 193 mm (2-D analysis) , 
and by the "layer method" (2-D analysis) is 71 mm. This is because higher 
shear stresses, T , are computed by the "gravity method" at the fill-
structure interface than the "layer method". Nevertheless the horizontal 

displacements of the structure, and the vertical displacement of its base 
relative to the structure inside corner, computed by all analyses are in 
good agreement as is shown in the figure. 

The results of the stresses o', o' and T versus depth obtained from 
z x zx r 

all the above construction analyses (3-D and 2-D following the gravity 
method and 2-D following the layer method) are presented in Fig. 7.8 
(b,c,d). It may be seen that the results obtained by the two, 2-D 
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construction methods and the 3-D gravity method agree quite well (except 
for the T stresses at the fill-structure interface). Based on the above, zx 
the computed 3-D construction stresses were considered appropriate for use 
as the initial stress condition in the ice loading phase analysis that are 
considered in the next section. 

7.A.2 3-D Analysis of the Static Ice Load Event of March 25, 1986 
Prior to the dynamic ice load event of April 12, 1986, the Molikpaq 

structure was subject to several other ice load events as described earlier 
in Chapter 6. Because the event of March 25, 1987 was the best documented 
ice event, several 3-D analyses were carried out to compare with the avail-
able field measurements and therefore calibrate the soil-structure para-

(«xe»>.4 fc*4h€ v.̂iCQl oJi'5̂kaccrvirni SWW) 
Geometric SCAUE 

Fig. 7.8(a) Displacements of the structure after construction. 
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parameters for use subsequently in the 3-D analysis of the dynamic ice load 
event of April 12, 1986. 

The procedures followed in the analysis are described below. 
It is understood that the ice load event of March 25, 1986 was charac-

terized by a static ice load of approximately 110 MN ( see Chapter 6, Table 
6.A) applied to the north face of the Molikpaq structure. The load center 
line was at 18.5 m above the base of the structure or 1 m below mean sea 
level. To simulate this ice load, the two 3-D ice pressure distributions 
shown in Fig. 7.9 were considered in the analysis because of the uncertain-
ties about the actual ice pressure distribution. The 3-D load vector 
associated with these two pressures was computed as is described in 
Appendix 7.3. 

Prior to applying the above load vector, all soil elements were 
initialized with the stresses that were computed at the end of the 
construction analysis. 

Based on preliminary 3-D results the mobilized stress level, (MSL), 
(see eq. (7.1)), computed at the end of loading (ice load = 110 MN) , 
decreased in value from the MSL evaluated at the end of construction. 
Therefore the unload/reload soil parameters shown in Figure 7.6 were used 
in the analysis which were carried out using one single increment of load = 
110 MN. 

The results obtained using the two different pressure ice load distri-
butions are presented and compared below with the field observations which 
consisted of displacement measurements carried out, during and after the 
loading, with the inclinometer and extensometers shown in Fig. 7.10. 

The measured 3-D caisson deformations due to the 110 MN ice load are 
shown in Fig. 7.11 together with the results obtained. From the two sets 
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of predictions shown in the Figure, the results obtained using the triangu-
lar pressure distribution are considered to be the ones that best model the 
inferred deflected caisson shape (see Fig. 7.11). It may be seen that the 
3-D deflected shape of the caisson is adequately modelled by the analysis 
except for the NE corner, where the results obtained indicate movements in 
the opposite direction from the measurements. 

The measured deformation profile in the core and berm due to the 110 
MN ice load is shown in Fig. 7.12. These deformations were measured by the 
in-place inclinometer located at the centre line and approximately 3 m from 
the loaded face (see Fig. 7.10). 

The results obtained from the analysis using the triangular pressure 
distribution of the ice load are also shown in Fig. 7.12. Because there 
were no nodes at the inclinometer location, displacements were computed at 
0 and 6 m from the face and an average value was obtained to assess the 
displacements at the inclinometer location (see Fig. 7.12). 

It may be seen that the average of the computed results agree extreme-
ly well with the field measurements and both show a remarkable difference 
between the shear behaviour of the core and the shear behaviour of the 
berm. This is in agreement with the maximum shear modulus profile selected 
for use in the analysis and presented earlier in Chapter 6. 

Based on Jefferis, M.G. (1987), the in-place inclinometer returned to 
its pre-ice loading position after unloading. This indicates that the core 
and berm sand fills responded elastically during the ice load event of 25 
March, 1986. This is in agreement with the unload/reload set of parameters 
used in the analysis. 

Based on the quality of the predictions shown above, it is concluded 
therefore that the soil parameters shown earlier in Fig. 7.6 are adequate 
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for use in the subsequent analysis of the dynamic ice load event of 12 
April 1986. 

7.A.3 3-D Analysis of the Dynamic Ice Load Event of April 12, 1986 
The procedures followed in the 3-D analysis of the above ice load 

event are described below. 
Prior to applying the ice loads, all soil elements were initialized 

with the stresses mobilized due to the gravity loads. 
The ice load shown earlier in Fig. 7.1, was treated in the analysis as 

a rectangular pressure on the east face of the caisson. A triangular 
pressure was not considered because during the ice event of April 12, 1986 
the full lateral perimeter of the caisson was surrounded by ice which moved 
from an eastern direction. 

The 3-D dynamic assessment of the response of the Molikpaq to the ice 
loading was subdivided herein into three separate assessments: (a) 
liquefaction assessment; (b) porewater pressure rise assessment; and (c) 
acceleration assessment. 

7.A.3.1 Liquefaction Assessment 
The 3-D response of the caisson to series of cyclic ice loading pulses 

was determined by computing the static response to one-half cycle of load/ 
unload. The cyclic stress ratios so computed were assumed to be the 
dynamic values corresponding to a dynamic amplification factor of 1. This 
is in close agreement with the findings of the 2-D dynamic analysis carried 
out by Finn and Yogendrakumar (see section 7.1 of this chapter). 

Once these cyclic stress ratios were obtained the potential for lique-
faction was assesed by comparing these stresses with the liquefaction 



resistance stress ratios of the Molikpaq sand fills. These resistance 
stresses are shown in Fig. 7.13 and were developed earlier in Chapter 6 
based on the cone penetration resistance of the fills, qc, and an 
extrapolation of the chart developed by Seed and DeAlba (1986). 

These procedures are described in detail in Appendix 7.A (section 
7.A.1). A brief summary is presented below. 
(1) The east face of the caisson was loaded to 397 MN (see Fig. 7.1). 

During this phase the soil elements were considered to be drained. 
(2) Next the east face of the caisson was unloaded back to 297 MN (i.e. 

one-half cycle of load/unload) and the cyclic stress ratio, 
evaluated for each soil element by the following equation: 

a T - x AT ZX,„, ZX, zx '39 7 ""a 7 9 (7.2) 
vo z 2 7 9 

The numbers 279 and 397 indicate the ice load levels in MN. 
(3) The soil elements that would liquefy were determined by comparing the 

above cyclic stress ratio, AT /o1 , with the cyclic resistance ratio, J zx vo J 

T /o' , obtained from Fig. 7.13. av vo ° 
(A) The Young's modulus and bulk modulus of the liquefied elements were 

now assigned their default values. The east face of the caisson was 
loaded again from 0 to 397 MN and the static analysis repeated. 

(5) Steps (2) to (A) were repeated for different stages of loading (i.e. 
different number of cycles), as is described in Appendix 7.A, and the 
liquefaction assessment updated. 

The 3-D liquefaction assessment at the end of the given ice loading is 
presented in Figs. 7.1A(a) to 7.14(d). It may be seen that the 3-D 
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Figure 7.14 3-Dimensional liquefaction assessment: (a) layer no. 6; 
(b) layer no. 5; (c) layer no. 4; and (d) layer no. 3. 



liquefied zone is concentrated around the loaded face and has its greatest 
horizontal extent near the top where the load was applied. This is in 
agreement with the actual liquefaction areal extent as is shown in Fig. 
7.15 where is plotted the observed settlement of the core surface (along 
the E-W cross-section of the 3-D F.E. mesh) and the computed liquefiable 
soil for the same location Since the observed settlement was due to the 
dissipation of the porewater pressure from the liquefied soil zone it is 
concluded that a good liquefaction prediction was obtained by the 
analysis. 

7.4.3.2 Pore Pressure Rise Assessment 
During cyclic loading two kinds of porewater pressure are generated in 

saturated sands. One is cyclic in nature and the other is residual. 
The procedures followed to assess the soil elements that liquefy (i.e. 

the soil elements in which the ratio between the generated residual 
porewater pressure and effective overburden pressure, U /o^ = 1), were 
described in the previous section. 

The porewater pressure model developed by Seed et al. (1976) was used 
to evaluate the residual porewater pressure rise (i.e. to evaluate the 
ratios U /o' < 1). The procedures followed are described in detail in g vo F 

Appendix 7.4 (section 7.4.2) where are also described the procedures 
followed to evaluate the cyclic porewater pressure, AU^. 

A comparison between the results obtained and the field porewater 
pressures developed during the ice load event of April 12, 1986 is 
presented next. 

The location of the piezometers used to monitor the porewater 
pressures is shown in Fig. 7.16. It may be seen that the piezometers El, 
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E2 and E3 are located near the loaded face and the piezometers W1, W2 and 
W3 are located near the trailing face. 

Before a comparison between the measurements and the computed values 
is made, a description of the drainage conditions in the core is briefly 
described below because of its importance in the interpretation of the 
results. 

For stability reasons the water level inside the core was maintained 
at an elevation of -3.0 m below mean sea water level. This lowering of the 
water table was developed by a series of water pumps located around the 
inside perimeter of the structure near the base of the caisson (see Fig. 
7.16). 

In order to assess correctly the porewater pressures developed during 
the dynamic ice loading event, the drainage effects developed by those 
water pumps should be taken into account. However, as described earlier, 
drainage was not considered in the analysis, but its possible effects 
should be kept in mind in the interpretation of the results presented 
below. 

The maximum residual excess porewater pressures recorded, and predic-
ted by the 3-D analysis following the procedures described earlier are 
presented in Table 7.1. 

Table 7.1 
Maximum Residual Excess Porewater Pressures (kPa) 

El E2 E3 W1 W2 W3 
Measured £150* £190* £40* =10 =20 =20 
Predicted 148 196 103 o** 
*Maximum values not registered. Data gap between 
time 8:27 and 8:29 

**No significant values computed. 



The excess porewater pressures versus time computed at the locations 
of piezometers El, E2 and E3 are presented in Fig. 7.17 and a comparison 
between the measured excess porewater pressure versus time and computed at 
the location of piezometer El are presented in Fig. 7.18. 

It may be seen from the results presented in the above table and 
figures that the maximum residual excess porewater pressures computed from 
the analysis for the locations of piezometers El and E2 are in good agree-
ment with the field measurements, which indicate that liquefaction was 
developed at these two locations. 

The results also indicate that the prediction of the time to liquefac-
tion, at the location of piezometer El, is not correct. The computed time 
is 8:21 while the recorded time was 8:26. This fact is not unexpected 
because as described earlier the liquefaction resistance curves used in the 
analysis do not take into account the effects of the initial static bias, 
the effects of drainage and the effects of the previous dynamic ice loading 
events that took place at the Amauligak 1-65 site during the time period 
March 7-8, 1986. In addition, the analyses were carried out using the 
idealized ice loading function presented earlier in Fig. 7.1 which is 
somewhat different from the actual ice loading of April 12, 1986 presented 
in Fig. 7.2. 

The results also indicate that the predictions of the residual pore-
water pressure for the location of piezometer E3 is substantially higher 
than the maximum measured value before the data gap took place. This can 
also be explained by the above considerations. 

Regarding the piezometers Wl, W2 and W3 no significant residual pore-
water pressure values were computed from the analysis which is in agreement 
with the low values measured at those locations (see Table 7.1). 
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Figure 7.18 Comparison between the excess porewater pressure values versus 
time, measured and computed at the location of piezometer El 



Based on the results shown above it is concluded that the procedures 
followed in the analysis to compute the residual porewater pressures are 
adequate. However, future analysis should be carried out with the actual 
ice loading and taking into account the effects of the initial static bias, 
drainage and previous dynamic loading since they can be very important for 
the evaluation of the exact time to liquefaction. 

7.4.3.3 Acceleration Assessment 
The procedures followed in the analysis to evaluate the accelerations 

developed by the ice loading function shown in Fig. 7.1, are described in 
this section. 

The 3-D response of the caisson to series of cyclic ice loading pulses 
was determined by computing the static response to one-half cycle of 
load/unload. The amplitude of the displacements so computed were assumed 
to be the dynamic values corresponding to a dynamic amplification factor of 
1. In addition, assuming that the response to cyclic loading of a 
particular frequency was harmonic, the peak acceleration at time t, A(t), 
was computed by the following equation: 

A(t) = X(t) • wCt)2 (7.3) 

the amplitude of the static displacement at time t correspond-
ent to one-half cycle of load/unload 
the angular frequency at time t 

where: 
X(t) = 

u) (t) = 

The procedures followed in the analysis to evaluate the function X(t) 
are described in detail in Appendix 7.4 (section 7.4.3). 



The above procedures were followed for the evaluation of the accelera-
tions. The results obtained are presented below together with available 
field measurements. 

The field accelerations developed during the ice load event of 12 
April 1986 were monitored with the accelerometers located as shown in Fig. 
7.19. However, the available field data is restricted to the accelerations 
measured, with accelerometer no. TM706 located on the loaded wall, and with 
accelerometer No. 841 located at centre line on the top of the core. 

The magnitudes and time of maximum acceleration, measured, and predic-
ted by the 3-D analysis following the procedures described earlier are 
presented in Table 7.2. 

Table 7.2 
Magnitude and Time of Maximum Acceleration 

TM-706 ACC-841 

%g Time %g Time 
Measured £10.5 £8:25:36 £5 8:22:30 
Predicted 17.0 8:23:00 6.0 8:23:00 

A comparison between the accelerations versus time, measured at the 
location of ACC-841, and computed at this location are presented in Fig. 
7.20 and the measured and computed accelerations correspondent to the 
location of TM-706 are presented in Fig. 7.21. 

It may be seen from the results presented in the above table and 
figures that the predictions of the accelerations for the location of ACC-
841 underestimate the field measurements around the time 8:20 but agree 
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'quite well with both the maximum acceleration value recorded and the time 
of its occurrence. 

On the other hand the predictions of the accelerations for the loca-
tion of TM-706 agree quite well with the field measurements around time 
8:20, but both the maximum acceleration recorded and its time of occurrence 
are not well predicted by the analysis. This is not unexpected because the 
computed values of the accelerations were based on the assumption that the 
response of the Molikpaq to cyclic loading was harmonic which is an 
extremely crude assumption. In addition an idealized loading function was 
used in the analysis, 

7.4.4 3-Dimensional Analysis for the Settlement Assessment 
After the ice loading phase was completed the east face of the caisson 

was unloaded to zero ice load and the settlement assessment carried out as 
follows. 

The cyclic shear stresses and strains from the ice loading event 
induce plastic volumetric strains which cause a rise in porewater pressure 
and subsequently settlement of the sand core. 

Because testing of the sand core material from which such plastic 
volumetric strains could be evaluated was not performed, estimates of such 
strains were made based on the work developed by Tokimatsu and Seed (1987) 
and Byrne (1990), as is described below. 

The procedures followed were subdivided into two parts. In the first, 
an assessment of the volumetric strains associated with earthquakes of 
magnitude = 7.5 (or 15 cycles) was made based on the work reported by 
Tokimatsu and Seed. In the second part an assessment of the volumetric 
strains associated with a larger number of cycles than 15 was made based on 
the work developed by Byrne. 



• Assessment of Plastic Volumetric Strains Associated with 15 Cycles of 
Load 

A chart showing the expected volumetric strains as a function of both 
cyclic stress ratio and (N1)60 value was developed by Tokimatsu and Seed 
and is presented in Fig. 7.22. Their values are based on laboratory tests 
and field experience during earthquakes. 

The material of the core has a density corresponding to a (N1)60 value 
in the range of 8 to 12 as is shown in Fig. 7.23 and hence from Fig. 7.22, 
the likely volumetric strains associated with 15 cycles of load, if lique-
faction is triggered, would be in the range 21'2 to 3%. If liquefaction is 
not triggered, the cyclic shear strains and the volumetric strains are 
likely to be small and may be neglected. 

• Assessment of Volumetric Strains Associated with a Larger Number of 
Cycles than 15 

As described earlier, 400 equivalent cycles of load of magnitude 118 
MN were assessed for the time period starting at 8:10 and finishing at 
8:27(see Fig. 7.1). As shown in the figure a data gap took place between 
8:27 and approximately 8:29 and therefore the total number of equivalent 
cycles, N, is unknown but is expected to have been > 400. 

Based on the work developed by Byrne (1990) the ratio between the 
volumetric strains associated with 400 cycles and 15 cycles, e /e , is 

V * 0 0 V 1 5 

equal to 2.6. Therefore, using the ev values of 21'2 to 3% obtained from 
Fig. 7.22 the volumetric strains due to 400 cycles are 6.5% to 8.0%. 
Because N is expected to have been > 400 a value of e^ = 8% was considered 
in the analysis. 

To evaluate the settlement associated with the above volumetric 
srains, these strains were assigned as potential strains to the liquefied 
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Figure 7.23 Relationship between (N^gg and depth 



elements and finite element analysis were carried out to obtain a compat-
ible distribution of the volume strain and the settlement. The moduli and 
load vector used in the above analysis are described in Appendix 7.5. 

The settlement results obtained following the above procedures are 
discussed below together with the field measurements. 

The settlement measurements of the top of the core surface along its 
E-W centreline are presented in Fig. 7.24 together with the settlement 
results computed from the analysis based on a volumetric strain value, e^ = 
8%. 

It may be seen that both the trend and the magnitude of the predic-
tions agree quite well with the field observations. 

Because the settlement areal extent is closely associated with the 
liquefied soil zone extent, it is concluded that the zone of liquefaction 
that occurred during the ice loading event of 12 April 1986 was adequately 
identified by the analysis procedure carried out herein. 

In addition, inclinometer observations were also carried out to assess 
the residual deformations of the sand fills of the Molikpaq structure. 
These observations were carried out in the inclinometer located as shown in 
Fig. 7.25. 

The displacement profile measured in the inclinometer located adjacent 
to the west wall of the caisson and the corresponding computed displace-
ments from the analysis are presented in Fig. 7.26. 

It may be seen that the predictions underestimate the field measure-
ments. This could be associated with the fact that a Poisson's ratio value 
of v = 0.0 was used in the analysis (see Appendix 7.5). 
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7.5 2-D Finite Element Analysis of the Dynamic Ice Load Event of April 12, 
1986 
To study the influence on the results of some key parameters, several 

2-D analyses were carried out. 
A brief description of the key parameters studied is presented below. 

The details of the analysis are described in Appendix 7.6 and the main 
conclusions are presented afterwards, 

7.5.1 Description of the Key Parameters Studied in the 2-D Analysis 
(a) Influence of the Interface Element Type and the Value of the Angle of 

Friction, 5 
The interface between the steel structure and the sand fills was 

modelled in the 3-D analysis by a standard solid isoparametric brick 
element characterized by an angle of friction, 6 = 20°. 

To study the influence of the interface element type in the results, 
2-D analyses were carried out using both the standard isoparametric element 
and the "thin" interface element that was described in Chapter A. For both 
cases a value of the angle of friction 6 = 20° was considered (see Apendix 
7.6). 

To study the influence of 6 in the results, additional 2-D analyses 
were carried out using the "thin" element with values of 6 = 0 and 6 = <J>. 
The main conclusions from the above studies are presented later in section 
7.5.2. 

(b) Influence of the Stress Redistribution Method 
The procedures followed in the 3-D analysis to redistribute the shear 

stresses of the liquefied soil elements to the adjacent soil and structural 
elements was described earlier. This stress redistribution method is con-



sidered to be an adequate method, but not the only method. An alternative 
method to the above was also considered in the 2-D analysis and consisted 
briefly on the following. 

Once a soil element is identified as having liquefied its shear 
strength is assigned a low value corresponding with its residual strength, 
s . The amount of shear stress, AT that exceeds s is redistributed to the u u 
adjacent stiffer elements using the load shedding procedures developed by 
Byrne and Janzen (1984) and described earlier in Chapter 2. 

To study the influence of the two different methods of stress-
redistribution, in the results, 2-D analyses were carried out using both 
methods as is described in Appendix 7.6. The main conclusions of this 
study are presented later in section 7.5.2. 

(c) Influence of the Constitutive Law 
The 3-D analysis of the Molikpaq were carried out following a combina-

tion of an elastic and hyperbolic stress-strain laws as described in 
section 7.3.3. To study the influence of the stress-strain law in the 
outcome of the results, 2-D analysis were also carried out in Appendix 7.6 
using the modified SMP model which was developed and presented earlier in 
Chapter 2. 

Ideally, the above items would have been studied with a 3-D analysis, 
but either due to the computer time required or due to the shortage of 
computer memory space, the influence of the above had to be studied with 
2-D analysis. The main conclusions from the 2-D analysis are presented 
below: 



7.5.2 Conclusions from the 2-D Analysis 
a) The same initial response of the Molikpaq loaded wall movement was 

computed by the analysis carried out using the "Thin" interface 
element and the "Standard" soil element for the same 5 = 20°. However 
at ice load levels of 400 MN the displacements obtained with the 
"Thin" element are shown to be about 85% of that computed by the 
"Standard" element. 

b) The same response of the Molikpaq loaded wall was computed by the 
analysis when using the "thin" interface element with 6 = 20° or 6 = 
<(>.  For  the case 6 = 0° however, the displacements of the loaded wall 
are shown to be about 10% larger than those computed by the above 
analysis. 

c) The same initial response of the Molikpaq loaded wall was computed by 
the analysis carried out using the modified SMP model and the hyper-
bolic model. However, at ice load levels of 400 MN, the displacements 
computed by the modified SMP model are shown to be about 82% of that 
computed by the hyperbolic model. This difference is related with the 
Mohr-Coulomb failure criteria that is used in the hyperbolic model and 
also because this model does not compute increases in mean normal 
stress, Ao due to increases in shear stress AT 

m zx 
d) Similar responses of the Molikpaq back wall movements were computed 

from all analyses except for the movements computed by the analyses 
where the shear stresses of the liquefied soil elements were redistri-
buted following the "load shedding" method. This method computed 
larger movements for the back wall than that computed from the stress 
redistribution method used in the 3-D analysis. 



e) Essentially the same 2-D liquefaction areal extent is computed from 
all analyses and coincides with the 3-D liquefaction assessment for 
the location of the E-W cross-section. 

7.6 Summary and Conclusions 
An analysis procedure for a caisson-retained island type structure was 

described and used to predict the response of Gulf's Molikpaq structure to 
the ice load event of April 12, 1986. 

The liquefaction assessments from the 3-D analysis indicate that the 
computed liquefaction areal extent is in good agreement with the field 
liquefaction assessment based on porewater measurements and settlement 
observations. 

The results obtained from the 3-D analysis also indicate that the 
overall predictions of porewater pressure and accelerations agree well with 
the field measurements except for the time to liquefaction and the magni-
tude and time of occurrence of the maximum accelerations. These discrepan-
cies are attributed to the idealized ice loading function used in the 
analysis and to the influence of the initial static bias, drainage and 
previous loading history which were not considered in the analysis. 

In addition, several 2-D analyses, which considered different types of 
interface elements ("thin" and "standard" elements) and constitutive models 
(modified SMP and hyperbolic models) indicate that the computed liquefac-
tion areal extent is practically insensitive to the above parameters and in 
good agreement with that computed by the 3-D analysis. 

Based on the above it is concluded that both the procedures followed 
to obtain soil parameters and the analysis procedures followed in the 3-D 
analysis are adequate procedures for design purposes, and that the 
influence of the above 3 factors must be considered in future analysis. 



CHAPTER 8 
SUMMARY AND CONCLUSIONS 

A procedure to analyze the response of large offshore drilling plat-
forms to the high ice loading conditions of the Beaufort Sea has been 
presented in this thesis. These platforms comprise a large steel box 
infilled with a sand core for stability against high ice loading. One such 
structure was subjected to very severe ice loading, and being the response 
monitored, it allows a case study against which the proposed procedures 
were checked. 

To analyze the behaviour of these highly complex soil-structure 
interaction systems a 3-D F.E. computer program with soil, interface and 
structural elements was developed in this thesis. The stress-strain 
relations and the evaluation of the stress-strain parameters from in situ 
testing as well as interface elements were considered the key aspects of 
the analysis and were considered in detail. These aspects together with 
the analysis of the Molikpaq structure are summarized in this chapter. 

8.1 3-D Constitutive Law for Sands 
The 2-D hyperbolic model developed by Duncan and Chang (1970) and 

Duncan et al. (1980) was expanded to 3-D and implemented into F.E. formula-
tion. This model does not account for the dilation characteristics of the 
sand material and to account for this an additional dilatant parameter 
based on Byrne and Eldridge (1982) was expanded to 3-D and also implemented 
into F.E. formulation. However, preliminary analysis of simple shear tests 
on Ottawa sand indicate that the predictions obtained by the hyperbolic 



model (with and without dilatant parameters) considerably underestimate the 
failure shear stresses measured in those tests. 

Based on the above, and because the simple shear stress path is the 
path most closely followed in the sand fills of the Molikpaq due to the 
horizontal ice loading on this structure, a review of the existing 3-D 
stress strain models was carried out in chapter 2 to select the most 
appropriate one. Special emphasis was focussed on the 3-D yield criterion, 
and stress-dilatancy theory of the models. 

From the review, presented in Chapter 2, the 3-D model developed by 
Matsuoka (1974,1983) following the concept of the Spatial Mobilized Plane 
(SMP) was selected. This model was modified by the writer to make it more 
practical, and, take into account the rotation of principal axes during the 
simple shear test. The model so developed is called the modified SMP 
model. 

Particular attention was addressed in this thesis to the development 
of procedures to evaluate soil parameters for use in the modified SMP. In 
all, eleven soil parameters (4 elastic and 7 plastic) are required. It was 
shown that these soil parameters can be obtained from the following 
sources: 

(a) Laboratory tests (Chapter 3); 
(b) Pressuremeter tests (Chapter 5); and 
(c) Laboratory and cone penetration tests (Chapter 6). 

The performance of the modified SMP model was evaluated by comparisons 
with laboratory measurements, pressuremeter chamber test measurements, and 
in situ measurements obtained from field tests. 

The laboratory data selected for the comparisons was obtained from 
simple shear test data on Leighton-Buzzard sand, simple shear, and true-



triaxial test data on Ottawa sand. In addition comparisons were also made 
against triaxial test data on Erksak 320/1 sand. 

From the comparisons between the predictions and the reported data the 
following is concluded: 

• Both the 3-D and 2-D plane strain formulations of the proposed model 
can reproduced well the reported simple shear test data on Leighton-Buzzard 
sand. This indicates that: (i) the model takes into account he gradual 
rotation of the axes of principal stresses and strains that occur during 
that test; and (ii) the 2-D formulation which is derived from the 3-D 
formulation by applying the appropriate boundary conditions give a good 
prediction of the intermediate principal stress o2. 

• The overall good predictions of the triaxial tests on Erksak 320/1 
sand and both the simple shear and true-triaxial on Ottawa sand with the 
exception of the circular path test further indicate that the proposed 
model is able to predict the behaviour of sand with reasonable accuracy for 
the stress-paths of practical importance for the Molikpaq structure. 

• Because the circular path test is not representative of the stress 
paths that occur in the sand fills of the Molikpaq structure during either 
the construction or ice loading phases, the reasons of the poor predictions 
of this test by the modified SMP model were not investigated herein. 

To further validate the modified SMP model, F.E. predictions of 
pressuremeter chamber tests on Leighton-Buzzard sand were carried out as 
described in Chapter 5. The parameters for the model were determined from 
the simple shear test data on Leighton-Buzzard sand (Chapter 3) , the same 
sand used in the pressuremeter chamber tests. 

From the comparisons between the pressuremeter chamber test measure-
ments and the F.E. predictions the following conclusions are made: 



• The results indicate generally good agreement between computed and 
observed pressure-deflection relations at the face of the pressuremeter 
provided the actual boundary conditions of the chamber tests are modelled. 
The measured response is a little softer at the initial stages of loading. 
This may be due to disturbance. 

• The computed displacement patterns in the chamber tests are 
sensitive to the vertical stress oapplied at the base of the chamber and 
indicate that plane strain conditions did not prevail in the chamber 
tests. 

8.2 Evaluation of Stress-Strain Parameters of Soil from Laboratory and/or 
In Situ Testing 
Particular attention was addressed in this thesis to the development 

of procedures to evaluate soil parameters for use in the modified SMP model 
and hyperbolic model. The current methods of soil parameters evaluation 
were reviewed, some expanded and applied in this thesis. It was shown that 
the soil parameters for use in these two models can be obtained from the 
following three sources: 

i) Laboratory tests (Chapter 3); 
ii) Pressuremeter tests (Chapter 5); and 
iii) Laboratory and cone penetration tests (Chapter 6). 

8.2.1 Evaluation of Soil Parameters from Laboratory Tests 
It was shown in Chapter 3 that the laboratory data obtained from any 

test, including the standard triaxial test, that measures the three 
principal stresses and strains can be used to evaluate soil parameters for 
use in the modified SMP model. The procedures used to evaluate the shear 



(elastic and plastic) and failure parameters follow closely those developed 
by Duncan et al. (1980) to evaluate the E moduli and failure parameters 
used in the hyperbolic model. The procedures used to evaluate the elastic 
bulk parameters follow those developed by Byrne and Eldridge (1982) to 
evaluate the bulk moduli used in the hyperbolic model and the procedures 
used to evaluate the flow rule parameters of the model follow those 
developed by Matsuoka (1983). 

8.2.2 Evaluation of Soil Parameters from the Pressuremeter Test 
The current methods to infer soil parameters from the unloading and 

first time loading pressuremeter test data were reviewed, expanded and 
applied in this thesis. A summary of the work carried out is presented 
below: 

• A procedure for analyzing the unloading response of the 
pressuremeter was presented in Chapter 5. The analysis considers the 
effects of change in the average stress (o'+o')/2, the stress ratio o'/o', 

r b r o 
and shear induced volume change on the maximum modulus. Results of the 
analysis are presented in a chart which allows the in situ, G to be J r max,o 
computed from the equivalent elastic shear modulus G* taking into account 
both the level of pressuremeter loading and unloading. 

The predicted G values from pressuremeter chamber and field tests r max 
using the proposed chart were compared with values obtained from resonant 
column and crosshole seismic test and are found to be in good agreement 
provided factors are included to account for disturbance and anisotropic 
effects. 

• The proposed chart was also used in Chapter 6 to evaluate G 
c c r max 

values from the SBP tests carried out at the Amauligak 1-65 site. These 



values were shown to be in good agreement with the G m a x values obtained 
from the cone penetration test (CPT) using empirical correlations. 

• A procedure for analyzing the first time loading response of the 
pressuremeter has been developed by Manassero (1989). His method was 
applied to the finite element generated pressuremeter response for plane 
strain conditions with the outer boundary at infinity. An excellent 
agreement was obtained between the stress-strain and volume changes, 
predicted by Manassero's method, and computed by the modified SMP model. 

• Soil parameters for use in the modified SMP model can be determined 
from pressuremeter test data using Manassero's method provided that: (i) 
elastic parameters for the model are estimated first from the unloading 
response of the pressuremeter using the proposed G*/G chart; and (ii) 

max y o 
that Manassero's method is expanded to take into account the intermediate 
principal stress, a3. 

• From a practical point of view (i.e. to interpret in situ 
self-boring pressuremeter tests) the method proposed by Manassero needs 
further validation to assess the influence of initial disturbance that 
might occur at the beginning of these tests. 

8.2.3 Evaluation of Soil Parameters from Laboratory and In Situ Testing 
The stress-strain parameters for Erksak 320/1 sand used in the 

analysis of the Molikpaq structure at the Amauligak 1-65 site were 
evaluated following the procedures described in Chapter 6. 

The soil parameters were estimated on the basis of both in situ test 
and laboratory data. The in situ test data consisted of cone penetration 
test (CPT) data, self-boring pressuremeter (SBP) data, and direct shear 
measurements of shear wave velocity. The laboratory data used in the 
assessment consisted of monotonic drained triaxial tests. 



The following three types of soil parameters were evaluated from the 
above data: 

a) Moduli. These were subdivided as (1) repeated loading moduli, 
and, (2) first time loading moduli. 

b) Failure Parameters. 
c) Liquefaction resistance curves. 

8.2.3.1 Summary of the Procedures Followed to Evaluate the Moduli Used in 
the Analysis 

One of the key parameters used in the procedures to define the 
different soil types and moduli used in the analysis was the in situ void 
ratio, e c > This parameter was evaluated from the in situ state parameter, 
, which was obtained from the CPT cone bearing, qc, following the 

procedures developed by Been et al. (1986). Soil moduli such as the 
Young's modulus, E, the shear modulus, G, and bulk modulus, B, and the 
plastic shear parameter, G^, are highly dependent on the consolidated void 
ratio, e . Therefore once the in situ void ratio, e was known, the in c c 
situ moduli and G^ could be estimated by combining the in situ void ratio, 
ec, with the existing laboratory data. 

Another key parameter used in the analysis was the in situ maximum 
shear modulus , G . This modulus was determined in Chapter 6 from 

max r 
empirical correlations between G and void ratio (Hardin and Drnevich, r max 
1972), G and cone bearing q (Robertson and Campanella, 1984), and G 

IT13.X C JIleLX 
and K 2 r a a x ( S e e d a n d Idriss, 1970). The unloading SBP data obtained at the 
Amauligak 1-65 site was also used to evaluate G using the G*/G chart 

max max 
developed in Chapter 5. In addition the G values determined by Golder r max 
Associates (1986,1987) at the TARSIUT 1-45 site from SBP tests and shear 



wave velocities measurements were also used to assess the in situ maximum 
shear modulus, G . The various method gave rise to considerable scatter ' max 6 

obtained in the plot of G versus depth, and an average G was used in 
JT13.X IHdX 

the analysis. 

8.2.3.2 Summary of the Procedures Followed to Evaluate the Failure 
Parameters Used in the Analysis 

To evaluate the failure parameters <j)1 and A<f>, the relationship between 
failure friction angle, <p„,  and state parameter, \p,  developed by Golder 

r 
Associates (1986) was used together with the corresponding in situ 
effective mean normal stress, o^, and the procedures developed by Duncan et 
al., (1980). The failure parameters (tSmp/'0SMP^ 1 a n d ^TSMP^°SMP^ W e r e 

evaluated in turn from the <p 1 and A<f> parameters through linear 
relationships developed based on laboratory data. 

8.2.3.3 . Summary of the Procedures Followed to Evaluate the Liquefaction 
Resistance Curves or Erksak 320/1 Sand 

The liquefaction resistance curves for Erksak 320/1 sand were 
evaluated based on the cone penetration resistance, q c > of this sand fills 
and the chart developed by Seed and DeAlba (1986). This chart shows the 
relationship between the modified cone tip resistance, (qc)1, and the 
cyclic stress ratio, Teq/°^0» causing liquefaction. This chart is valid 
for earthquakes of magnitude 7.5 or 15 significant cycles of loading. 
Because during the April 12, 1986 ice load event the Molikpaq was subject 
to a substantially larger number of cycles than 15, it was necessary to 
develop a relationship between the shear stress, x^, to cause liquefaction 
in N cycles, and t 1 5, which caused liquefaction in 15 cycles. Such a 
correlation was developed by Been (1988) based on both published data and 
data obtained by Golder Associates (1984). 



Because test data was not available to determine the possible increase 
in liquefaction resistance of the sand core of the Molikpaq due to: (a) 
initial effects of the static bias developed by the ice loading; (b) past 
history of cyclic loading; and (c) drainage conditions developed by the 
water pumps, the liquefaction resistance curves used in the analysis did 
not consider the above factors and therefore represent a lower bound to 
liquefaction resistance. 

8.3 Interface Elements 
To model the contact between the Molikpaq steel structure and its sand 

fills, an interface element following the concept of Desai's "thin" element 
was developed and implemented into F.E. formulation (Chapter A). Both 
formulations include the implementation of load' shedding techniques for 
interface elements that failed in tension or shear. Procedures to evaluate 
soil parameters for use with the "thin" element were also developed and 
follow those developed by Clough and Duncan (1971) combined with the 
procedures recommended by Desai. 

The performance of the "thin" element was assessed by comparing its 
F.E. results with the closed form solutions of a soil-pipe system developed 
by Burns and Richards (1964). The. F.E. results show that an excellent 
agreement with the closed form solutions was obtained when the "thin" 
element is used in both the 2-D and 3-D F.E. analysis. 

In addition, both the "thin" element and the "standard" soil element 
(using the hyperbolic and modified SMP models) predictions were compared 
with earth pressure measurements on a 10 m retaining wall field test. 
These F.E. studies were necessary to check the procedures followed in the 
construction analyses of the Molikpaq, since there were no earth pressure 
measurements during the core construction phase of this structure. 



From the comparisons between the field measurements and the F.E. 
predictions the following conclusions are made: 

• All the combination of element types and constitutive model types 
give results that are in fair agreement with the field measurements for 
both the at-rest condition and active condition. 

• The field measurements carried out by Matsuo et al. (1978) and the 
F.E. predictions carried out by the writer, are in good agreement with the 
results of tests performed by Terzaghi (1934) and with the analytical work 
carried out by Clough and Duncan (1971). The field measurements show that 
the coefficient of earth pressure at rest, K0 varies from a maximum K0 = 
.74 at 1.0 m depth to a minimum K0 = .28 at 5.0 m depth. If the wall is 
allowed to rotate away from the backfill than the coefficient of earth 
pressure, K decrases considerably to an average (IK) = .11 which 

flV 
corresponds to a movement of the top of the wall of 8.4 cm or .84% of the 
wall height. 

• From this particular case study it seems that the need for a "thin" 
interface type of element is not completely justified if "standard" solid 
elements with stress-strain models, such as the hyperbolic model (Duncan et 
al., 1980), or the modified SMP model, both expanded with load shedding 
capabilities, are used in the analysis. 

8.4 Summary of the Analysis Procedure and the Results Obtained from the 
Analysis 
The following 3-D assessments of the Molikpaq response to different 

load conditions were carried out by: 
• Static assessment during the construction phase of the berm and core; 



• Static assessment during the ice loading phase of the event of March 25, 
1986; 

• Pseudo-static assessment during the high ice loading phases of the event 
of April 12, 1986; 

• Static assessment of the settlement phase after the ice loading event of 
April 12, 1986. 

The above 3-D analyses were carried out using the hyperbolic model because 
the 3-D formulation of the modified SMP model, could not be used since the 
required computer memory exceeded the existing UBC computer capacity of 1 
megaword. 

To study the influence on the results of some key parameters (inter-
face element type, constitutive law, stress redistribution) several 2-D 
analyses were carried out using both the hyperbolic and the modified SMP 
models. 

A summary of the procedures followed in the analysis carried out and 
of the results obtained is presented next. 

a) Construction Phase of the Berm and Core 

The construction of the berm and core was simulated in the 3-D analy-
sis by placing the fill in one single layer. Although the ideal approach 
is to "analytically construct" the fill in layers, that procedure was not 
followed due to the large band width of the system of equations. The 
stresses so obtained were compared with the stresses obtained from 2-D 
plane strain construction analysis where the sand fills were built in 7 
layers. It was found that the stresses obtained from both 2-D and 3-D 
analyses were in reasonable agreement. 



b) 3-D Analysis of the Static Ice Load Event of March 25, 1986 
Prior to the dynamic ice load event of April 12, 1986, the Molikpaq 

structure was subject to several other ice load events. Because the event 
of March 25, 1986 was the best documented ice event, several 3-D analyses 
were carried out to predict the available field measurements and therefore 
calibrate the soil-structure parameters for use subsequently in the 3-D 
analysis of the dynamic ice load event of April 12, 1986. From the 
comparisons between the F.E. predictions and measurements, the following is 
concluded: 

• The 3-D deflected shape of the caisson is adequately modelled by the 
analysis except for the NE corner, where the results indicate movements in 
the opposite direction from the measurements. 

• The measured deformation profile, by the in-place inclinometer, in 
the core and berm is well modelled by the analysis and both show a 
remarkable difference between the shear behaviour of the core and the shear 
behaviour of the berm. 

c) 3-D Analysis of the Dynamic Ice Load Event of April 12, 1986 
On April 12, 1986 the Molikpaq structure was subject to severe dynamic 

ice loads. To analyse this event a 3-D finite element dynamic computer 
program with an appropriate stress-strain law is required. To date, 
however, such a program does not exist. 

Adequate 2-D finite element dynamic computer programs do exist, such 
as the program RICEL developed by Yogendrakumar and Finn (1987). This 
program was used in 2-D dynamic and pseudo-dynamic analysis of the 
Molikpaq's response to the above ice load event by Finn et al. (1988), who 
showed that the Molikpaq's system damping was very large and consequently 



no significant dynamic amplifications developed. Hence, the response of 
the structure can be studied from pseudo-dynamic or pseudo-static analysis 
which do not consider inertia forces. 

Based on the above, the 3-D dynamic response of the caisson to a 
series of cyclic ice loading pulses was determined by computing the static 
response to one-half cycle of load/unload. The amplitude of displacement 
and the cyclic stress ratios so computed were assumed to be the dynamic 
values corresponding to a dynamic amplification factor of 1. 

The 3-D analysis of the response of the Molikpaq to the ice loading 
event of April 12, 1986 were subdivided in Chapter 7 into four separate 
assessments: liquefaction, porewater pressure rise, accelerations, and 
settlement. 
• The liquefaction assessment was carried out by comparing the cyclic 
stress ratio, At^Jcorrespondent to one-half cycle of load/unload, 
mobilized in each soil element, with the cyclic resistance ratio, 
Tav^°vo' These comparisons were carried out at different stages of load-
ing (i.e. for different numbers of cycles) and the liquefaction 
assessment updated until the end of the ice loading. 

• The pore pressure rise assessment was carried out following the pore 

pressure model developed by Seed et al. (1976). 

• The acceleration assessment was carried out assuming that the response of 
the Molikpaq structure to cyclic loading was harmonic. 

• The settlement assessment was carried out based on the work developed by 
Tokimatsu and Seed (1987) and Byrne (1990). 

From the comparisons between the F.E. predictions and the measured 
data at the Amauligak 1-65 site the following is concluded. 



• The liquefaction assessments from the 3-D analysis indicate that the 
computed liquefaction areal extent is in good agreement with the field 
liquefaction assessment based on porewater measurements and settlement 
observations. 

• Both the trend and the magnitude of the predictions of settlement 
agree quite well with the field observations. 

• The residual displacement profile measured by the inplace 
inclinometer located adjacent to the west wall of the caisson was 
underestimated by the F.E. predictions. This could be associated with the 
fact that a Poisson's ratio value of v  =  0.0 was used in the analysis of 
settlement. 

• The maximum residual excess porewater pressures computed from the 
analysis for the locations of the piezometers Ex and Ea (adjacent to the 
loaded wall) are in good agreement with the field measurements, which 
indicate that liquefaction was developed at these two locations. However 
the results indicate that the prediction of the time to liquefaction, at 
the location, of piezometer E l t is not correct. This could be due to the 
fact that the liquefaction resistance curves used in the analysis do not 
take into account the effects of the initial static bias, drainage, and 
previous dynamic ice loading events at the site. In addition, the analyses 
were carried out using an idealized ice loading function which is somewhat 
different from the actual ice loading of April 12, 1986. 

• The results also indicate that the predictions of the residual 
porewater pressure for the location of piezometer E3 is substantially 
higher than the maximum measured value. This can also be explained by the 
above considerations. 



• The predictions of the accelerations measured at the centre of the 
top of the core by the accelerometer ACC-841 underestimate the field 
measurements during the initial phase, but agree quite well with both the 
maximum acceleration value recorded and the time of its occurrence. On the 
other hand the predictions of the accelerations measured at the top of the 
loaded wall by the accelerometer TM-706 agree quite well with the field 
measurements during the initial phase but both the maximum acceleration 
recorded and its time of occurrence are not well predicted by the analysis. 
These differences are not unexpected because the computed values of the 
accelerations were based on the assumption that the response of the 
Molikpaq to cyclic loading was harmonic which is an extremely crude 
assumption. In addition an idealized loading function was used in the 
analysis. 

• The results obtained from the several 2-D analysis, which considered 
different types of interface elements ("thin" and "standard" elements) and 
constitutive models (modified SMP and hyperbolic models) indicate that the 
computed liquefaction areal extent is practically insensitive to the above 
parameters and in good agreement with both the 3-D analysis and field 
observations. 

Based on the above, it is concluded that both the procedures followed 
to obtain soil parameters from laboratory and in situ testing and the 
procedures followed in the analysis have been validated. 
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EVALUATION OF FRICTION ANGLE <f>13 FOR VARYING b-VALUES 



Evaluation of Friction Angle for Varying b-Values 

Matsuoka-Nakai failure criterion is expressed by the following 
equation (see main text eq. (2.29), 

= I ( t a n 2 *ml2 + t a n ^ m 2 3 + t a n ' W ( 2- 1- 1 ) 

SMP 

This equation can also be written as: 

TSMP 2 , ( s i n W 2 , ( s i n W 2 , ( 8 i n W V ^ „ . „ 
°SMP = 1 ( C 0 S ^ 1 2 ) 2 ( C 0 S V 2 3 ) J ( C 0 S ^ 1 3 ) 2 

since 
° l - ° 2 

( s i n ^ 1 2 ) J = W 

and 

( c 0 S W = 1 " ( 8 i n W 

then 

(cost.J*  = 
(Oj+a,)2 - (oro2)2 

ml2 (Oj+OJ)2 

or 
4oi°2 

( c o s W 2 



therefore 

( T ^ ) 3 = (2.1.3) 
cos* 1° 1 2 

and 

and 

S i n < J ) m 2 3 ( T1^1)2 = -j (2.1.4) 
C O S * 2 ° 3 

sin* 1 0 (a -a )2 

( — = . (2.1.5) 
1 3 

Substituting eqs. (2.1.3) to (2.1.4) into eq. (2.1.2) the following 
eqution is obtained 

2 TSHP 2 , ^ a - 0 3 ) 2 C ° x - ° , ) ' X , 
= -r (— + —: + —; ) (2.1.6) 

°SMP 3 4°2°3 A O l ° 3 

In order to perform a study of the influence of the b-value on the 
value of the friction angle <f> the above eq. (2.1.6) will be expressed as a 
function of the following quantities: 

o2-o3 
b = (2.1.7) 

°i-°3 

and 
0,-0 3 

a = — — — (2.1.8) 
° l + ° 3 

from (2.1.7) 
°2 = bcoj-o,) + o3 (2.1.9) 



substituting eq. (2.1.9) into eq. (2.1.6) the following is obtained: 

^ S M P 2 b^o^o,)2 (1-b)2 (o1-o3)2 1 / a 

°SMP ~ 3 ^ + ^(b0103+032-b03)2 + ^(bo^+OjOj-bOjOj^ 

2 b2 (1-b)2 x'2 
= - ( rci + - ) + ( )) 
3 ^ AOjOj L U bo1o3 o 3 2 bo32 ^bo,2 a1a3 °!°3 

+ + b 
°1°3 °1°3 °1°3 °1°3 °1°3 

2 b2 (1-b)2 1 , 2 
= f (tan*2 [1 + — + )) 3 ml3 o3 o3 Oj 

b+ b — b — +l-b 
°1 °3 

or 
T 0l(b+b2) + o3(2-3b+b2) l / a 

= | tan* ( 7————rt ) (2.1.10) 
°SMP bOj+Ojd-b) 

from eq. 2.1.8. 

o, = (1+a) 
(1-a) (2.1.11) 

substituting eq. (2.1.11) into eq. (2.1.10) the following is obtained: 

TSMP 2 , jilt} (b+b2) + o3(2~3b+b2) 1/a 
^ = 3 ml3 ( ( U i ) } 

b Tl^Ij  + °3 ( 1 _ b ) 

TSMP = 2 , , (1+a)(b+b2)+(l-a)(2-3b+b2h 
oeMT> 3 ml3 b(l+a)+(l-a) (1-b) ; (2.1.12) 



Entering in the above equation values of b=0 (or b=l), which correspond to 
the triaxial stress path compression (or extension) then: 

= ̂  tan* 1 _ = K (2.1.13) 
°SMP 3 m 1 3 

To note that the same value is obtained from eq. (2.1.1) by entering the 
triaxial stress path condition, i.e., <p . _ = <b  , 0 and <p  = 0 and 

r ml2 mlJ m2J 
therefore eq. 2.1.12 is considered to be verified. 

Now from eq. (2.1.12) the value of ta™!^^ is obtained: 

. . = 3 b(l+a)+(l-a)(1-b) 
ml3 ; o S M p ; 2 (1+a)(b+b2)+(l-a)(2-3b+b2) 

TSMP 
since the value of ( ) is assumed to be a constant, by Matsuoka-Nakai, 

°SMP 
when the sand reaches failure, then: 

t-T,*  - V 1 I  b(l+a) + (l-a) (1-b) . 
tan*F13 f 2 (1+a)(b+b2)+(l-a)(2-3b+b2) U.i.i*; 

where: 
K_ = constant value regardless of the stress path, and given by eq. r 

(2.1.13). 

Since the above eq. (2.1.14) is only valid when b=0 or b=l, for 
values of b̂ O and b^l, then this equation is rewritten as: 



(2.1.15) 

where: 
* 

*F13 = *F13 

^F13 * *F13 

* i.e., is the failure friction r i i 
general stress path. 

for b=0 or b=l 
for 0 < b < 1 

angle, defined by ox and o3, for any 
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STRAIN SPACE 



Relationship Between Principal Stresses and the Normal and Shear Stress on 
the SMP. Extrapolation of These Relations to the Increments of Plastic 

Strain Space 

The state of stress on a soil element .can be characterized by its 
principal stresses o^ (i = 1,2,3) or by the normal stress, Oĝ p and shear 
stress, "tĝ p defined on the Spatial Mobilized Plane of the element. A 
relationship between these stresses, which is based on equilibrium of 
stresses in direction i, was developed by Matsuoka (1983) and is given by 
the following equation: 

(°i " °SMP)ai " TSMPbi = ° ( 2 ' 2 a ) 

where 
b. = direction cosines of the shear stress direction l 
a. = direction cosines of the normal stress direction (see main l 

text eq. (2.24)) 

From eq. (2.2.1) b^ is obtained as follows: 

°i"°SMP 
b. = 1 a. (2.2.2) 

TSMP 1 

To obtain Ae? as a function of A£gMp ^SMP' M a t s u o ^ a (1983) 
assumes that the direction cosines of the normal component of the increment 
of plastic strain are the same as the direction cosines, a^ of the normal 
stress, °2j4p> i n the SMP, and that the direction cosines of the shear 



component of the increment of plastic strain are equal to the direction 
cosines, b^ of the shear stress on the SMP. Based on these two assumptions 
Matsuoka developed the following equation: 

A R P 

( A ef - A e I M p ) a i + - F bi = 0 ( 2- 2- 3 ) 

This equation is similar to eq. (2.2.1) developed for the stresses. 
From eq. (2.2.3), Ae? is obtained as follows: 

A ei = A£SMP + W ( A rSMP / 2 ) ( 2' 2' A ) 



FUNDAMENTAL RELATIONSHIP BETWEEN CARTESIAN STRESSES AND PRINCIPAL STRESSES. 
EXTRAPOLATION OF THESE RELATIONS TO THE INCREMENTS OF PLASTIC STRAIN SPACE 



Fundamental Relationship Between Cartesian Stresses and Principal Stresses. 
Extrapolation of these Relations to the Increments of Plastic Strain Space 

• Fundamental relationship between Cartesian stresses and principal 
stresses: Extrapolation of these relations to the increments of plastic 
strain space 

The state of stress on a soil element can be defined using a Cartesian 
coordinate system (x,y,z) or a principal coordinate system (1,2,3) . The 
relationship between the stresses defined in these two coordinate systems 
is obtained from equilibrium of stresses in the x,y,z directions and are 
given by the following equation: 

a 
X 

X 
xy 

X 
xz 

£ 
T 
yx 

o 
y 

X 
yz 

m2 m 
X 
zx 

X 
zy 

a 
z 

n i n2 n 

a l 0 0 

0 
0 0 o 

°2 0 

£j mj 
J2 m2 n2 

i3 m3 n3 

(2.3.1) 

where 
S i,m i,n i are the direction cosines of the principal stresses 

oi(i=l,2,3) 
i.e. 

iL = cos(i,x) nu = cos(i,y) and n^ = cos(i,z) 

Developing the multiplication of matrices the following equations are 
obtained: 



I 
i=l,3 

I 
i=1.3 

2 
o.m. 
l l 

I 
i=l,3 

o.n. 
l l (2.3.2) 

x = I o.S.m. 
xy i=it3 1 1 1 

c = 1 o.m.n. 
y z i - i . 3 1 1 1 

c = l o.n.2. zx . , „ 1 1 1 i=l ,3 

Assuming that the increments 
stresses have the same direction, 
(2.3.2) can be extrapolated for 
follows: 

of plastic principal strain and the 
than the relationships shown in Eq. 
the increments of plastic strain as 



Ae* X 
i=l,3 

Ae* 

Aep 
y 

x 
i=l ,3 

A P 2 Ae. m. 

Ae1 X 
i=l ,3 

Ae? n? i I 

A/; 
SL  = X 

i=l,3 

(2.3.3) 

Ae? 2.m. l li 

A/; ZZ = X 
i=l ,3 

Ae. m.n. l li 

Af 
n.  = X 

i=l,3 
Ae? n.2. l 11 



DEVELOPMENT OF A(o_Mp/o ) IN TERMS OF Aolf Ao2, AND Ao3 



Development of A(TSMp/oSMp) in terms of Aalt Ao2, and Ao3 

To evaluate the increment of the stress ratio on the SMP, 
A^XSMP/'°SMP^ ' t e r m s increments of principal stress, Ao^ (i = 
1,2,3), eq. (2.50) from the main text is differentiated as follows: 

A T , \ A T S M P ° S M P T S M P A O S M P . 
S M P S M P = ( O T T ) ^ ( 2 - A - 1 } 

S M P 

Therefore the terms Ax„wr. and Aanv/r. need to be evaluated. 
S M P S M P 

2.2.1 Evaluation of AT0„n  S M P 

TSMP Si v e n by ( s e e main text, eq. (2.26)) 

TSMP = [(°i-°2),ai2a22 + (o2-o3)'a2Ja3* + (0,-0,)»a,»ai»](2.4.2) 

Designating the term inside the square brackets by A then 

T S M P = [ A ] 1 ' A ( 2 - 4 * 3 ) 

Differentiating eq. (2.4.3) the following is obtained 

A T S M P = \ A _ 1 ' J A ( A ) 



or 
AT A (A) 
SMP 2T (2.A.A) 

SMP 

• Evaluation of A(A) 
As described, 

A = (Oj-Oj)2ax2a2 2 + (o2-o3)2a22a32 + (o3-o:)2a32aj2 (2.A.5) 

differentiating with respect to o^ and a^ (i = 1,2,3) 

A(A) = 2(o1-o2)a12a22(Ao2-Ao3) + (0,-0,)22axa22Aa, + (0,-0,)22at2a2Aa2 
+ 2(o2-o3)a22a32(Ao2-Ao3) + (o2-o3)22a2a32Aa2 + (o2-o3)22a22a3Aa3 
+ 2(o3-o3)a32a12(Aoj-Ao,) + (o3-a\)22a3a12Aa3 + (o3-ox)22a32a1Aa1 

rearranging the above terras the following is obtained: 

A(A) = Ao,(DSl) + Ao2(DS2) + Ao3(DS3) + Aa,(DAI) 
+ Aa2(DA2) + Aa3(DA3) (2.A.6) 

where 
DSl = 2(o1-o3)a12a22 - 2(o3-o,)a32a,2 

DS2 = -2(o1-o2)a12a22 + 2(o2-o3)a22a32 

DS3 = -2(o2-o3)a22a32 + 2(o3-ox)a32ax2 

DAI = 2(o1-o2)2a1a22 + 2(o3-ot)2axa32 

DA2 = 2(o1-o2)2a12a2 + 2(o2~o3)2a2a32 

DA3 = 2(o2-o3)2a22a3 + 2(03-0,)2a12a3 



in order to have A(A) as a function of Ao^ only, the terms Aa^ shown in eq. 
(2.A.6) will be evaluated as follows: 

• Evaluation of Aa, 
From eq. (2.2A) of the main text 

l» = (o 
° 1 ° 2 ° 3 1 ' 2 

l2a2+ai°203+03°l2' 
(2.A.7) 

Designating the term inside the square brackets by Ax, than 

aa = [ A J ^ 

Differentiating 
Aa, = A(A1)/2a1 (2.A.8) 

- Evaluation of A(A,) 
As described 

A, = 
° 1 ° 2 ° 3 

1 ° l 2 ° 2 + a i 0 2 0 3 ° 3 ° 1 : 
(2.A.9) 

Designating the numerator by AXT and the denominator by A1B, than 

Ax = AjT/AJB 

Differentiating 
A(AJT)AJB  - AJTACAJB) 

= (A^P ( 2' 4- 1 0 ) 



- Evaluation of A(AtT) and A(A,B) 
As described 

A 1 T = ° 1 ° 2 0 3 

Differentiating 

A(A,T) = Ao,o2o3 + AO jO jO j + Ao3o,o2 (2.4.11) 

and 
A,B = o,2o2 + o,o2o3 + o3o,2 

Differentiating 

A(A,B) = 2o,o2Ao, + o,2Ao2 + AO,O 2O3 + Aa2o,o3 
+ Ao3o,o2 + AO 3O, 2 + 2O3O,ACJ, (2.4.12) 

Substituting A(A,T) from eq. (2.4.11) and A(A1B) from eq. (2.4.12) 
into eq. (2.4.10) the following is obtained; 

A(A,) = {Ao1(A1B)o2o3 + Ao2(A1B)o1o3 + Ao3(A,B)o,o2) 
- [Ao,(A,T)(2o,o2+0203+2o,a3)) + AO2((A,T) (O,2+O,O3)) 

+ AO3((A,T)(O,O2+O,2))]}/(A,B)2 

rearranging in terms of Ao,, Ao2, Ao3 

A(A,) = Ao,(A,,) +Ao 2(A, 2) + AO 3(A, 3) (2.4.13) 



where 
A 1 X = [(A.BJOjOj - (AlT)(2o1oJ + o2o3 + 2o1o3)]/(AjB)2 (2.4.14) 

A 1 2 = [(AJBJOJOJ - (AJT)(OJ 2 + O 1O 3)]/(A 1B) 2 (2.4.15) 

and 
A 1 3 = [(A.Bjo.o, - (A1T)(O1O2 + o12)]/(A 1B) (2.4.16) 

Substituting eq. (2.4.13) into eq. (2.4.8) the following is obtained: 

(2.4.17) 

Evaluation of Aa„ 
From eq. (2.24) of the main text 

° 1 ° 2 ° 3 1 ' 2 (2.4.18) 

Designating the term inside the square brackets by A2, than 

a2 = [A2P'2 

Differentiating 
Aa2 = A(A2)/2a2 (2.4.19) 

- Evaluation of A(A7) 
As described 



°1°203 
A 2 O,O22 + o 2 2o 3 + 0,0,0, 

Designating the numerator by A2T and the denominator by A2B, than 

A2 = A2T/A2B 

Differentiating 

A(A2T)A2B - A2TA(A2B) 
A(A2) - ^ (2.4.20 

- Evaluation of A(A,T) and A(A,B) 

As described 

A2T = 0,0,03 

Differentiating 

A(A 2T) = AO,O 2O 3 + AO 2O,O 3 + AA3o,o2' (2.4.21) 

and 
A2B = o,o22 + o 2 2o 3 + o,o2o3 

Differentiating 

A(A2B) = Ao,o2 2 + 2Ao2o,o2 + Ao3o2 2 + 2Ao2o2o3 + Ao,o2o3 
+ Ao2o,o3 + Ao3o,o2 = Ao,(o22+o2o3) + 
+ Ao2(2o,o2+2o2o3+o,o3) + Aa3(o22+o,o2) (2.4.22) 



Substituting A(A2T) from eq. (2.4.21) and A(A2B) from eq. (2.4.22) 

into eq. (2.4.20) the following is obtained: 

A(A2) = AOj(Aal) + Ao 2(A J2) + Ao3(A23) (2.4.23) 

where: 

A 2 1 = [(AaB)(o2O3)-(A2T)(O22+O2O3)]/(A2B) (2.4.24) 

A 2 2 = [(A2B)(O1O3) - (A2T)(20l02 + 2O2O3 + oxo3)]/(AaB)2 (2.4.25) 

and 
A a 3 = [(AaB)(o1oa) - (A2T)(o22 + o1oa)]/(AaB) (2.4.26) 

Substituting eq. (2.4.23) into eq. (2.4.19) the following is 
obtained: 

(2.4.27) 

Evaluation of Aa, 
From eq. (2.24) of the main text 

a, = [- 1  /  2 
3  a i°2°3  +  ° 2 ° 3 2 + ° 1 ° 3 2 " 

(2.4.28) 

Designating the term inside the square brackets by A3, than: 



a3 = [A3P'2 

Differentiating 
Aa3 = A(A3)/2a3 (2.4.29) 

as described above 

_ 0 1 ° 2 0 3 
A3 - 0 l0 20 3 + o2o32 + 0 l0 3* 

Designating the numerator by A3T and the numerator by A3B, than 

A3 = A3T/A3B 

Differentiating 

A(A,T)A3B - A3TA(A3B) 
A(AJ = rTTTt A(2.4.30) (A3B) 

Evaluation of A(A,T) and A(A,B) 

A(A3T) = A(AXT) = A O j O j O j + A O 2 O X O 3 + Ao3o1o2 (2.4.31) 
and 

A3B = 0,0,0, + o2o32 + 0 l 0 3 2 

Differentiating 

A(A3B) = A a1a2a3 + Ao2oxo3 + A a3a1a2 + A o2o32 + 2A o3o2o3 + Ao^,2 

+ Aoxo32 + 2 A O 3 O 1 O 3 

= A O 1 ( O 2 O 3 + O 3 2 ) + A O 2 ( O 1 O 3 + O 3 2 ) + A O 3 ( O 1 O 2 + 2 O 2 O 3 + 2 O 1 O 3 ) 

(2.4.32) 



Substituting A(A3T) from eq. (2.4.31) and A(A3B) from eq. (2.4.32) 
into eq. (2.4.30) the following is obtained: 

A(A3) = AO 1(A 3 1) + Ao2(A32) + AO 3(A 3 3) (2.4.33) 

where: 

A S 1 = [(A3B)(o2o3) - A 3T(O 2O 3 + O,»)]/(A3B)» (2.4.34) 

A 3 2 = [(A 3B)(O1O3) - A 3T(0i03 + O 3 2)]/(A 3B) 2 (2.4.35) 

and 
A 3 3 = [(A3B)(O1O2) - A3T(O1O2 +1 2O2O3 + 2O1O3)]/(A3B)* (2.4.36) 

Substituting eq. (2.4.33) into eq. (2.4.29) the following is 
obtained: 

Aa3 = (A31/2a3)Aox + (A32/2a3)Ao2 + (A33/2a3)Ao3 (2.4.37) 

Substituting the values of Aa, from eq. (2.4.17), Aa2 from eq. 
(2.4.27) and Aa3 from eq. (2.4.37) into eq. (2.4.6) the following is 
obtained: 

A X 1 A 2 1 A3 x 
A(A) = AoJDSj + I T D Ai + 21" + 2i" D A3 ] 

A 1 2 A 2 2 A 3 2 
+ AO2[DS2 + ̂  DA, + DA2 + J - DA3] 

'1 2 

A 1 3 A 2 3 A 3 3 
+ AO3[DS3 + — DA, + j - DA2 + j - DA3] 

'1 ""2 



designating the terms in brackets by TM1, TM2 and TM3, respectively, the 
following is obtained: 

A(A) = AojTMl] + AO2 [TH2] + Ao3[TM3] (2.4.38) 

Substituting the value of A(A) from eq. (2.4.38) into eq. (2.4.4) the 
value of AT™- is obtained: 

(2.4.39) 

2.1.2 Evaluation of Ao^p 
o M p is given by (see main text, eq, (2.25)) onr 

°SMP = °iai2 + °*a*2 + °3a32 (2.4.40) 

Differentiating 

Ao S M p = Ao.a,2 + 2a1olAa1 + Ao2a2> + 2a2o2Aa2 + Ao3a3* + 2a3o3Aa3 
(2.4.41) 

Substituting the values of Aax from eq. (2.4.17), Aa2 from eq. 
(2.4.27) and Aa3 from eq. (2.4.37) into eq. (2.4.41), the following is 
obtained: 

AO = AOJ(SIGM01) + AO2(SIGM02) + Ao3(SIGM03) (2.4.42) 



where: 
SIGM01 
SIGM02 
SIGM03 

(a,2 + o,A,, + o 2 A 2 , + O 3 A 3 1 ) 

(a 2 2 + o,A, 2 + O 2 A 2 2 + O 3 A 3 2 ) 

(a 3 2 + o,A, 3 + O 2 A 2 3 + O 3 A 3 3 ) 

Substituting the values of AT from eq. (2.4.39) and A o ^ from eq. 
(2.4.42) into eq. (2.4.1) the following is obtained: 

A ( ^ ) = 
°SMP 

/ TM1 , ̂  . , TM2 , A , TM3 ,, (Ao, (^ ) + Ao2 (— ) + Ao, (— )]opvm) -
SMP 

2 2T SMP 
3 2t SMP 

- [Ao,(SIGM01) + AO2(SIGM02) + Ao3(SIGM03)] T SMP 
l/(oSMp) 

or rearranging 

(2.4.43) 

where: 
TSMOBI = 

TM1 
o S M p - (SIGM01)TSMp]/(oSMp)2 

SMP 

TM? T S M 0 B 2 = °SMP " CSIGM02)xSMp]/(oSMp)2 SMP 

T S M 0 B 3 = °SMP " (SIGM03)TSMp]/(oSMp)2 SMP 



RELATIONS BETWEEN INCREMENTS OF PRINCIPAL STRESS AND INCREMENTS OF 
CARTESIAN STRESS IN 3-DIMENSIONAL STRESS SPACE 



Relations Between Increments of Principal Stress and Increments of 
Cartesian Stress in 3-Dimensional Stress Space 

2.5.1 Relation Between Principal Stresses and Cartesian Stresses 
In Fig. 2.5.1 it is shown the plane ABC defined in the 3-Dimensional 

cartesian stress system x,y,z. Assuming that the direction, i, perpendi-
cular to the plane is a principal direction, than the normal stress to the 
plane, o^is a principal stress and the plane ABC, on which there is no 
shear stress, is a principal plane. 

A relationship between the principal stress, o^ and the cartesian 
stresses o , o , o , x , T and x can be developed based on force x y z xy yz zx r 

equilibrium in the x,y and z directions and given by the following 
equations: 

(o -a.) cos(i,x) + T cos(i,y) + T cos(i,z) = 0 x i ' xy , J xz 
T cos(i,x) + (o -a.)  cos(i,y) + x cos(i,z) = 0 (2.5.1) yx y I 'J yz 
x cos(i,x) + x cos(i,y) + (o -o.) cos(i,z) = 0 zx zy z x 

where cos(i,x), cos(i,y) and cos(i,z) are the direction cosines of 
direction i (i = 1,2,3) in respect to directions x,y and z, respectively. 

From the known relation for direction cosines, a fourth equation is 
obtained 



Figure 2.5.1 Sketch of a Principal Plane 



cos2(i,x) + cos2(i,y) + cos2(i,z) = 1 (2.5.2) 

2.5.2 Relations Between Increments of Principal Stress, Increments of the 
Rotation of Principal Directions and Increments of Cartesian Stress 

Differentiating eqs. (2.5.1) and (2.5.2) the following is obtained: 

(Ao -Ao.)cos(i,x) - (o -a.)sin(i,x)A(i,x) + Ax cos(i,y) -x i x i xy 
- x sin(i,y)A(i,y) + Ax cos(i,z) - x sin(i,z)A(i,z) = 0 xy xz xz 

Ax cos(i,x) - x sin(i,x)A(i,x) + (Ao -Ao.)cos(i,y) -yx yx y I 

- (Oy-â )sin(i,y)A(i,y) + Ax^costi.z) - x ẑsin(i,z)A(i,z) = 0 

Ax cos(i,x) - x sin(i,x)A(i,x) + Ax cos(i,y) - x sin(i,y)A(i,y) + zx zx zy ŷ 
+ (Ao -Ao.)cos(i,z) - (o -o.)sin(i,z)A(i,z) = 0 z 1 z 1 

cos(i,x)sin(i,x)A(i,x) + cos(i,y)sin(i,y)A(i,y) + 
+ cos(i,z)sin(i,z)A(i,z) = 0 

(2.5.3) 

The above equations constitute a system of A equations with the A 
unknowns: Ao^, A(i,x), A(i,y) and A(i,z). Since i = 1,2,3 than 3 systems 
of A equations with A unknowns are obtained and those will be solved as 
follows: 



2.5.2.1 Relations between increment of principal stress, Aolt vith incre-
ments of cartesian stress 

Substituting i=l in eqs. (2.5.3) the following is obtained: 

Aa cos(l,x) - AO.cos(l,x) - (o -o,)sin(l,x)A(1,x) + AT cos(l,y) -x x xy 
- T sin(l,x)A(l,y) + AT COS(1,Z) - T sin(l,Z)A(1,Z) = 0 xy xz xz 

AT COS(1,X) - T sin(l,X)A(1,X) + Ao cos(l.y) - Ao.cos(l.y) -yx yx y 
- (o^-o1)sin(l,y)A(l,y) + Ar^cosd.z) - T^sind,z)A(l,z) = 0 

AT cos(l,x) - R sin(l,x)A(l,x) + AT cos(l.y) - T sind,y)A(l,y) + xz zx zy zy 
+ Ao cos(l,z) - Ao.cos(l,z) - (o -o1)sin(l,z)A(l,z) = 0 z z 

cos(l,x)sin(l,x)A(l,x) + cos (1 ,y) sind ,y)A(l ,y) + 
+ cos(l,z)sin(l,z)A(l,z) = 0 

To simplify the above equations take the following form: 

All-AOjfij-Ad ,x)Bll+Cll-A(l ,y)Dll+Ell-A(l ,z)Fll = 0 (2.5.A) 

A21-A(l,x)B21+C21-Ao1m1-A(l,y)D21+E21-A(l,z)F21 = 0 (2.5.5) 

A31-A(l,x)B31+C31-A(l,y)D31+E31-Ao1n1-A(l,z)F31 = 0 (2.5.6) 



AA1 A(l,x)+BA1 A(1,y)+CA1 A(l,z) = 0 (2.5.7) 

where: 

All = Aa cos(l.x) A21 = AT cos(l,x) A31 = At cos(l.x) x yx zx 

Bll = (o -o.)sin(l.x) B21 = T sin(l,x) B31 = T sin(l,x) x 1 yx zx 

Cll = AT^cosd.y) C21 = ACyCos(1,y) C31 = ATzycos(l,y) 

Dll = T^sind.y) D21 = (Oy-Oj)sin(l,y) D31 = Tzysin(l,y) 

Ell = AT COS(1,Z) 
XZ 

E21 = AT COS(1,Z) E31 = Ao cos(l,z) yz z 

Fll = T sin(l,z) xz F21 = T sin(l,z) F31 = (o -ojsind.z) yz z 1 

AA1 = cos(l,x)sin(l,x) = cos(l,x) 

BA1 = cos(l,y)sin(l,y) iDj = cos(l,y) 

CA1 = cos(l,z)sin(l,z) na = cos(l,z) 

Note: all the above equations are designated as (2.5.8) 

- Evaluation of the System of Equations (2.5.A) to (2.5.7) 
From eq. (2.5.6) Aox is obtained: 

. A31 B31 A M , C31 D31 A M » . E31 F31 A n , Ao. = - — A(l,x) + — A(l,y) + — A(l,z) 1 nx nx nx nx nt n. 

\ 



and from eq. (2.5.7) 

(2.5.10) 

Substituting eqs. (2.5.9) and (2.5.10) into Eq. (2.5.5) the following 
is obtained: 

RAT  Ch1  A^I A21 + 77T B21 A(l,y) + 777 B21 A(l,z) + C21 - — m. A41 , J A41 vi' n, 1 

B41 B31 . , C41 B31 , C31 ^ D31 A M . 
m — m, A(l.y) - m — m, A(l,z) - — ml + — ra, A(l.y) 

— ml + — ra, A(l,z) - D21 A(l,y) + E21 - F21 A(l,z) = 0 ni ni 

collecting terms in the above equation: 

. rB41 _01 B41 B31 A D31 
A(l.y) l m B21 - m — ra, + — ra, - D21] 

x AM ^ r C A 1 no 1 B 3 1 X F 3 1 iron + A ( 1 « z ) [A4l B 2 1 " M l iTT"1111 + H T m i " F 2 1 ] 

+ A21 + C21 - — m, - — ra, - — m. + E21 = 0 n, 1 n, 1 n, 

Designating the terms inside the square brackets by [FM1] and [FJ1] 
the following is obtained 



A(l,y) [FM1] + A(1 ,z) [FJl] + A21 + C21 - — m, - — m, - — m, + E21 = 0 
ni ni ni 

and solving for A(l,y) 

am i = _ L Z 1 a m n A21 C21 E21 A31 m* C31 mi E31 mi A U , y ; FM1 A U ' z ; FM1 FM1 FM1 FM1 nl FM1 nx FM1 n. 

(2.5.11) 

Substituting now the values of Ao, from eq. (2.5.9) and A(l,x) from 
eq. (2.5.10) into eq. (2.5.A) the following is obtained: 

All - A31 ̂  + B31 ̂  (- M i A ( 1 , y ) _ gLI A ( l f Z ) ) _ C 3 1 li 

2 2 2 
*1 *1 *1 RAl 

+ D31 — A(l,y) - E31 — + F31 — A(l,z) + Bll A(l,y) 

C41 
+ Bll A(l,z) + Cll - Dll A(l,y) + Ell - Fll A(l,z) = 0 

Collecting terms the following is obtained: 

A(l,y) [-B31 + D31 ̂  + Bll - Dll] 

+ A(l,z) (-B31 ^ + F31 ̂  + Bll jg - Fll) 

2 2 2 
+ All - A31 — - C31 — - E31 — + Cll + Ell = 0 ni ni ni 



designating the terra inside the square bracket by FP1 and substituting the 
value of A(l,y) from eq. (2.5.11) the following is obtained: 

F T 1 F P l F P 1 F P l F P 1 m ! F P l m i -FP1 fg A(l.z) - §g A21 - f § C21 - f g E21 + §g A31 - + §g C31-

F P l m i C A 1 C 4 1 + E31 — + A(1,z) (-B31 777 — + F31 — + Bll 777 - Fll) FM1 nx AA1 nx nx A41 

i i i 
+ All - A31 — - C31 — - E31 — + Cll + Ell = 0 ni ni ni 

collecting terms: 

A(l.z) [-FP1 - B31 ^ + F31 ̂  + Bll - Fll] 

F P l F P l F P l F P l m i 

+ All + Cll + Ell - §g A21 - fg C21 - §g E21 + (§g - - - ) A31 

F P l rai F P l m i 

+ ) C31 + ) E31 =0 
FM1 nx nx FM1 nx nx 

Designating the term inside the square brackets by FL1 and solving for 
A(l,z) the following equation is obtained: 

A(l,z) = All(Alz) + Cll(Clz) + Ell(Elz) + A21(A2z) + C21(C2z) 
+ E21(E2z) + A31(A3z) + C31(C3z) + E31(E3z) 

where: 



Alz = Clz = Elz = - FL1 

A2z = C2z = E2z = FPl 
FL1 FM1 

and 
FPl rai l 

A3z - C3z - E3z - -<2L - - _ ) _ 

Substituting the value of A(l,z) from eq. (2.5.12) into eq. (2.5.11) 
the value of A(l,y) is obtained: 

A(l,y) = -All (Alz) - Cll (Clz) fg - Ell(Elz) fg - A21(A2z) fg 

- C21(C2z) " E21 (E2z) " A31(A3z) - C31(C3z) 

_ . FJ1 A21 C21 E21 A31 C31 E31 
tijiUjZ] -j.-, + 17M1 „ + TTM1 ~ FM1 FM1 FM1 FM1 FM1 n, FM1 n, FM1 n, 

rearranging terras: 

A(l,y) = All(Aly) + Cll(Cly) + Ell(Ely) + A21(A2y) + C21(C2y) 
+ E21(E2y) + A31(A3y) + C31(C3y) + E31(E3y) 

(2.5.13) 



where: 

A l y = _ A l z Ml 
Cly = -Clz 

Ely = -Elz 

FJ1 1 A2y = -(A2z ̂  + m ) 

C2y = -(C2z fg + ^ 

E2y = -CE2z + 

and 

r^  F J 1 1 M ,ri  F J 1 1 A3y = -(A3z m - m - ) C3y = -(C3z — - ̂  _ ) 

FTl 1 
E 3 y = - ( E 3 z m - Fiii ^ 

Substituting A(lz) from eq. (2.5.12) and A(l,y) from eq. (2.5.13) into eq. 
(2.5.10) A(l,x) is obtained as follows: 

A(l,x) = All(Alx) + Cll(Clx) + Ell(Elx) + A21(A2x) + C21(C2x) 
+ E21(E2x) + A31(A3x) + C31(C3x) + E31(E3x) 

where: 



Alx = -

A2x = -

B41.a1 , C41,., . 
M l ( A l y ) " M l ( A l z ) 

B41... . C41.. . 
A4l ( A 2 y ) " A41 

A3x = - Hj(A3y) - ££x ( A 3 z ) 

B41 C41, C l x = ~ A41 ( C l y ) " ^ T ( C l z ) 

B41 

A41 

C41, 
C 2 x = " A4l ( C 2 y ) " TTT ( C 2 z ) A41 

C3x = - f^(C3y) - g^(C3z) 

B41 C41, E l x = ~ A4l ( E l y ) " T ^ ( E 1 z ) 

B41 

A41 

C41, E2x = - ̂ (E2y) - T7T(E2Z) A41 

E3x = - Mf(E3y) - ̂ (E3z) 

Substituting the values of A(l,z) from eq. (2.5.12), A(l,y) from eq. 
(2.5.13) and A(l,x) from eq. (2.5.14) into eq. (2.5.9) the value of Aô ^ is 
obtained as follows: 

Ao. = — - — All (Alx) - — Cll (Clx) - —Ell (Elx) - — A21(A2x) 1 na n2 nx nx na 

— C21 (C2x) - — E21 (E2x) - — A31(A3x) - — C31(C3x) ni ni ni ni 

^ E31(E3x) + ̂  - } _ D31 c n ( c l } ni n! n! ni 

— Ell(Ely) - — A21(A2y) - — C21(C2y) - — E21(E2y) ni ni ni ni 

^ A31 (A3y) - 231 C31(C3y) - ̂  E31(E3y) + H i _ 111 A U ( A l z ) n, J n, J n, J n, n, 

— Cll(Clz) - — Ell(Elz) - — A21(A2z) - — C21(C2z) ni ni ni ni 

— E21(E2z) - — A31(A3z) - — C31(C3z) - — E31(E3z) n, n. n, n. 



collecting terras 

Ao, = All(QA11) + Cll(QCll) + Ell(QEll) + A21(QA21) + C21(QC21) 

+ E2KQE21) + A31CQA31) + C31(QC31) + E31(QE31) 

where: 

QA11 = - (Alx) _ D31 ( A l y ) _ m ( A l z )  ni ni ni 

QC11 = - ̂ (Clx) - ̂ (Cly) - ̂ (Clz) n, n, n, 

QE11 = - — (Elx) - —(Ely) - — (Elz) ni ni ni 

QA21 = - —(A2x) - —(A2y) - —(A2z) ni ni ni 

QC21 = - —(C2x) - —(C2y) - —(C2z) ni ni ni 

QE21 = - —(E2x) - —(E2y) - —(E2z) ni ni ni 

QA31 = - ̂ ±(A3x) - ̂ (A3y) - |^(A3z) + 
ni ni ni ni 

QC31 = - —(C3x) - —(C3y) - — (C3z) + — n, n, n, 

QE31 = - —(E3x) - — (E3y) - —(E3z) + — ni ni ni ni 



Since from eqs. (2.5.8) 

All = 2. AO , Cll = M. AT , Ell = n. AT 
1 x 1 yx 1 xz 

A21 = JL AT , C21 = m. Ao , E21 = n. AT 
1 xy 1 y 1 yz 

A31 = £. AT , C31 = m. AT , E31 = n, Ao„ 
1 ZX 1 7.V' 1 z 

zy 

and assuming that AT = AT , AT = AT and AT = AT , then & xy yx yz zy xz zx 

Aox = Aox(Qxl) + Aoy(Qyl) + Aoz(Qzl) + Ar^Qxyl) 
+ AT (Qyzl) + AT (Qzxl) 

(2.5.15) 

where: 
Qxl = fi^QAll) 
Qyl = m1(QC21) 
Qzl = nx(QE31) 
Qxyl = £1(QA21) + m^QCll) 
Qyzl = mx(QC31) + n1(QE21) 
Qzxl = Jx(QA31) + nx(QE11) 

2.5.2.2 Relations Between Increment of Principal Stress, Ao3 with Incre-
ments of Cartesian Stress 

The procedures followed to obtain Ao3 in terms of increments of 
cartesian stress are the same as the procedures followed for Aox and 
consist on the following. 

Substituting i = 3 in eq. (2.5.3) the following equations are 
obtained: 



A13 -Ao 3£3 - A(3,x)B13 + C13 - A(3,y)D13 + E13 - A(3,z)F13 = 0 (2.5.4a) 

A23 - A(3,x)B23 + C23 - Ao3m3 - A(3,y)D23 + E23 - A(3,z)F23 = 0 (2.5.5a) 

A33 - A(3,x)B33 + C33 - A(3,y)D33 + E33 - Ao3n3 - A(3,z)F23 = 0 (2.5.6a) 

A43 A(3,x) + B43 A(3,y) + C43 A(3,z) = 0 (2.5.7a) 

where: 
A13 = Ao cos(3,x) A23 = Ax cos(3,x) A33 = Ax cos(3,x) x yx zx 

B13 = (o -o )sin(l,x) B23 = x sin(3,x) B33 = x sin(3,x) x yx zx 

C13 = Ax cos(3,y) C23 = Ao cos(3,y) C33 = Ax cos(3,y) xy y zy 

D13 = t sin(3,y) D23 = (oy-o3)sin(3,y) D33 = xzysin(3,y) 

E13 = Ax cos(3,z) E23 = Ax cos(3,z) E33 = Ao cos(3,z) xz yz z 

F13 = x sin(3,z) F23 = x sin(3,z) F33 = (o -o,)sin(3,z) xz yz z 3 

A43 = cos(3,x)sin(3,x) S3 = cos(3,x) 

B43 = cos(3,y)sin(3,y) ra3 = cos(3,y) 

C43 = cos(3,z)sin(3,z) n3 = cos(3,z) 

Note: all the above equations are designated as (2.5.8a). 



- Evaluation of the System of Equations (2.A.4a) to (2.4.7a) 
From Eq. (2.5.4a) 

. A13 B13 , . C13 AO3 = -R— A(3,x) + j — 
3 3 3 

D13 A,0 . E13 j— A(3 ,x) + -r— 
A 3 * 3 

F13 A(3,z) (2.5.9a) 

and from eq. (2.5.7a) 

(2.5.10a) 

Substituting eqs. (2.5.9a) and (2.5.10a) into eq. (2.5.5a) the 
following is obtained: 

B23 B43 B23 C43 m, 
A23 + A43 A ( 3 ' y ) + A43 A ( 3 , z ) + C 2 3 " A 1 3 F 

ra, m3 m3 
+ B 1 3 fi7 A43 A ( 3 ' y ) " M3 A ( 3 ' z ) ) ~ 0 1 3 ~ + 0 1 3 ~ A ( 3 ' y ) £ fi 

m3 m3 - E13 -r- + F13 j- A(3,z) - D23 A(3,y) + E23 - F23 A(3,z) = 0 
3 3 

Collecting terms in the above equation: 



... . rB23 B43 B13 B43 . n i . m 3 , A,, , rB23 C43 , y A43 A43 17 + 0 1 3 27 " D 2 3 ] + A ( 3 ' Z ) A43 

r i 3 C 4 3 m 3 m 3 ra3 
" a/Q 7" + F 1 3 T~ ~ F23] + A23 + C23 + E23 - A13 7 -* A43 23 x3 £3 

m3 m3 
- C13 T- - E13 j- = 0 

3 3 

Designating the terras inside the square brackets by FM3 and FJ3 the 
following is obtained: 

m3 m3 A(3,y)[FM3] + A(3,z)[FJ3] + A23 + C23 + E23 - A13 j- ~ c 1 3 J 0 
3 

and solving for A(3,y): 

Af-3 \ = _ 111 A(* ^ _ M l _ £23 _ E23 A13.^ C13 ̂  E13 ^ U , y ; FM3 FM3 FM3 FH3 FM3 £3 FM3 £3 FM3 £3 
(2.5.11a) 

Substituting the values of Ao3 from eq. (2.5.9a) and A(3,x) from eq. 
(2.5.10a) into eq. (2.5.6a) the following is obtained: 

A33 + B 3 3 4 3 4 3 A(3,y) + ̂ j ^ 4 3 A(3,z) + C33 - D33 A(3,y) + E33 

n 3 n 3 R A 3 B13 C43 n3 n3 
- 1 7 - B 1 3 1 7 H I - ̂ M r 1 1 7 M 3 - z > - C 1 3 1 7 

n3 n3 n3 + D13 -i- A(3,y) - E13 -j- + F13 y A(3,z) - F33 A(3,z) = 0 * 3 y 3 * 3 

Collecting terms the following is obtained 



. rB33 B43 B13 B43 . n», . A,_ , . B33 C43 
AO.y) A43 " 0 3 3 " A43 T t + 0 1 3 IT3 + A ( 3 ' Z ) ( " W 

B13 C43 n3 n3 n3 " A/o IT + F13 T ~ F33) + A33 + C33 + E33 - A13 -r~ A43 Jl 3 it 3 S 3 

n 3 n 3 
- C13 r - E13 r = 0 

* 3 * 3 

Designating the term inside the square bracket by FP3 and substituting 
the value of A(3,y) from eq. (2.5.11a) the following is obtained: 

FP3 FJ3 FP3 FP3 FP3 FP3 m3 
^ i P A ( 3 ' z ) - I i A 2 3 - I i c 2 3 - I i E 2 3 + I i 1 7 A 1 3 

A FP3 m3 FP3 A A,_ , ,B33 C43 B13 C43  
+ FM3 JJ C 1 3 + m 17 E 1 3 + A ( 3 , Z ) A43 A43 T t 

n 3 " 3 n 3 n 3 + F13 F33) + A33 + C33 + E33 - A13 C13 E13 -=— = 0 
X 3 * 3 * 3 * 3 

Collecting terms: 

Afi ^ r FP3 FJ3 . B33 C43 B13 C43 n3 n3 
[- -pgr- + X4T" 1 7 + F 1 3 1 7 " F 3 3 ] + A 3 3 

FP3 FP3 FP3 + C33 + E33 + A23 (- gg) + C23 (- + E23 (- |g) 

F P 3 m 3 n 3 FP3 m3 n3 FP3 m3 n3 
+ A 1 3 ( l i 17" £7> + 0 1 3 ( l i 17' £T} + E 1 3 fe 17" 17) = 0 

Designating the term inside the square bracket by FL3 and solving for 
A(3,z) the following is obtained: 



A(3,z) = A13(A13z) + C13(Cl3z) + E13(El3z) + A23(A23z) 
+ C23(C23z) + E23(E23z) + A33(A33z) + C33(C33z) + E33(E33z) 

(2.5.12a) 
where: 

FP3 m3 n3 1 A13z = C13z = E13z = 7 FM3 S3 2 3 FL3 
FP3 1 

A23z = C23z = E23z = FM3 FL3 

A33z + C33z + E33z = " 

Substituting the value of A(3,z) from eq. (2.5.12a) into eq. (2.5.11a) 
the value of A(3,y) is obtained: 

A(3,y) = - A13(A13z) - C13(C13z) - fg E13(E13z) 

- A23 (A23z) - C23 (C23z) - E23(E23z) 

- A33 (A33z) - C33 (C33z) - E33(E33z) 

A23_C23_E23A13 ^ C 1 3 ^ E 1 3 ^ 
FM3 FH3 FM3 FM3 23 FM3 23 FM3 23 

rearranging terms: 

A(3,y) = A13(A13y) + C13(C13y) + E13(E13y) + A23(A23y) 
+ C23(C23y) + E23(E23y) + A33(A33y) + C33(C33y) + E33(E33y) 

(2.5.13a) 



where: 
p t o 1 m 3 

A13y = C13y = E13y = - fjg (A13z) + ̂  j-

•C" TO 1 

A23y + C23y + E23y = - fjg (A23z) - ^ 

A33y = C33y = E33y = - f^f (A33z) 

Substituting A(3,z) from eq. (2.5.12a) and A(3,y) from eq. (2.5.13a) into 
eq. (2.5.10a), A(3,x) is obtained as follows: 

A(3,x) = A13(A13x) + C13(C13x) + E13(C13x) + A23(A23x) + C23(C23x) 
+ E23(E23x) + A33(A33x) + C33(C33x) + E33(E33x) 

(2.5.14a) 

where: 

A13x =-

A23x =-

||f(A13y)- jj|f(A13z> 

|||(A23y)- f£f(A23z) 

A33x =- |||(A33y)- JJ^U33z) 

C13x =- ||§(Cl3y)- ||f(C13z) 

C23x =- fff(C23y)- ̂ ||(C23z) 

C33x =- fff(C33y)- ^(C33z) 

E13x =-

E23x 

|||(E13y)- §£§(E13z) 

f*f(E23y)- g|(E23z) 

E33x =- ||f(E33y)- jff(E33z) 



Substituting the values of A(3,z) from eq. (2.5.12a), A(3,y) from eq. 
(2.5.13a) and A(3,x) from eq. (2.5.14a) into eq. (2.5.9a) the value of Ao3 
is obtained as follows: 

Ao3 = A13(QA13) + C13(QC13) + E13(QE13) + A23(QA23) + C23(QC23) 
+ E23(QE23) + A33(QA33) + C33(QC33) + E33(QE33) 

where: 
QA13 = - f^(A13x) - ̂ (A13y) - f^(A13z) + f-

3 3 3 3 

QC13 = - f^(C13x) - ̂ (C13y) - y^(C13z) + f-
3 * 3 * 3 * 3 

QE13 = - f^(E13x) - j^(E13y) - f^(E13z) + }-
* 3 * 3 3 * 3 

QA23 = - f^(A23x) - j^(A23y) - f^(A23z) 
* 3 * 3 * 3 

QC23 = - f^(C23x) - j^(C23y) - f^(C23z) 
A • A n A » 

QE23 = - f^(E23x) - j^(E23y) - f^(E23z) 
* 3 * 3 * 3 

QA33 = - f^(A33x) - j^(A33y) - f^(A33z) x3 *3 x3 

QC33 = - f^(C33x) - j^(C33y) - y^(C33z) 
* 3 3 3 

QE33 = - f^(E33x) - y^(E33y) - y^(E33z) 
A a A a A * 



Since from eqs. (2.5.8a) 

A13 = J.Ao , C13 = m,Ax , E13 = n3Ax 
3 x 3 yx 3 zx 

A23 = J,AT , C23 = m.Ao , E23 = n,Ax 
3 xy 3 y 3 yz 

A33 = S, AT , C33 = M,Ax , E33 = n.Ao 3 zx ' 3 zy 3 2 

and assuming that A x ^ = Ax^, A x y z = A x ^ and A T x z = A T ^ , then 

Ao3 = Ao (Qx3) + Ao (Qy3) + Ao (Qz3) + Ax (Qxy3) x y z xy 
+ Ax (Qyz3) + Ax (Qzx3) yz zx 

(2.5.15a) 

where: 
Qx3 = fi3(QA13) 
Qy3 = m3(QC23) 
Qz3 = n3(QE33) 
Qxy3 = J3(QA23) + m3(QC13) 
Qyz3 = m3(QC33) + n3(QE23) 
Qzx3 = 23(QA33) + n3(QE13) 

2.5.2.3 Relations Between Increment of the Principal Stress, Ao? with 
Increments of Cartesian Stress 

Substituting i = 2 in eqs. (2.5.3) the following equations are 
obtained: 



A12 - Ao222 - A(2,x)B12 + C12 - A(2,y)D12 + E12 - A(2,z)F12 = 0 (2.5.4b) 

A22 - A(2,x)B22 + C22 - Ao.m. A(2,y)D22 + E22 - A(2,z)F22 = 0 (2.5.5b) 

A32 - A(2,x)B32 + C32 - A(2,y)D32 + E32 - Ao2n2 - A(2,z)F32 = 0 (2.5.6b) 

A42 A(2,x) + B42 A(2,y) + C42 A(2,z) = 0 (2.5.7b) 

where: 
A12 = Ao 2. 

x ' 
A22 = Ax 2. 

yx -
A32 = Ax 2. 

zx ' 

B12 = (o -o,)sin(2,x) B22 = x sin(2,x) B32 = x sin(2,x) x yx zx 

C12 = Ax ra, xy 2 C22 = Aa ra, C32 = Ax ra, zy 3 

D12 = x sin(2,y) D22 = (o -o2)sin(2,y) D32 = x sin(2,y) xy y zy 

E12 = Ax n, xz J E22 = Ax n, yz 5 E32 = Aa n, z 5 

F12 = x sin(2,z) F22 = x sin(2,z) F32 = (a  -a. )sin(2,z) xz yz z 

A42 = 22 sin(2,x) 22 = cos(2,x) 

B42 = m, sin(2,y) m2 = cos(2,y) 

C42 = n2 sin(2,z) n2 = cos(2,z) 

Note; all the above equations are designated as (2.5.8b) 



- Evaluation of the System of equations (2.5.4b) to (2.5.7b) 
From eq. (2.5.5b) Ao2 is obtained: 

. A22 B22 ... . Ao. = — A(2,x) 1 m, m. 
D22 . . E22 A(2,y) + 
m m, m 

F22 . , 0 x C22 A(2,z) + m, 

(2.5.9b) 

and from eq. (2.5.7b) 

(2.5.10b) 

Substituting eqs. (2.5.9b) and (2.5.10b) into eq. (2.5.6b) the 
following is obtained: 

A32 + B 3 2 4 B A 2 A(2,y) + A(2,z) + C32 - A(2,y)D32 + E32 - A22 

n* B22 B42 A,_ , B22 C42 A, 0 > . "2 A, 0 . 
^ A42 A ( 2 ' y ) " ̂  ~A42 A ( 2 ' Z ) + 57 0 2 2 A ( 2 ' y ) 

n2 n2 n2 
— E22 + — F22 A(2,z) C22 - F32 A(2,z) = 0 
m2 m2 m2 

collecting terms in the above equation: 



, rB32 B42 n,_ B22 B42 ^ . rB32 C42 A(2,y) AA2 " 0 3 2 " 57 A42 + ^ D 2 2 ] + A ( 2 ' z ) [ A42 

R9? CAO  n2 "a "j 
1,0 + — F22 - F32] - A22 C22 — - E22 — 

m2 A42 m2 m2 ra2 ra2 
+ A32 + C32 + E32 = 0 

Designating the terras inside the square brackets by FM2 and FJ2 the 
following is obtained: 

n2 
ra2 m2 ra2 A(2,y)[FM2] + A(2,z)[FJ2] - A22 — - C22 — - E22 

+ A32 + C32 + E32 = 0 

solving for A(2,y) 

. . _ , _ _ FJ2 A,0 ^ ., A22 C22 E22 A32 C32 E32 
A U . y ; - F M 2 A U . Z J + F M 2 ^ + F M 2 m ^ + F M 2 m ^ FM2 FM2 FM2 

(2.5.11b) 

Substituting now the values of Ao2 from eq. (2.5.9b) and A(2,x) from 
eq. (2.5.10b) into eq. (2.5.4b) the following is obtained: 

fi £ £ 2 
A12 - A22 ji + B22 ̂  A(2,x) + D22 ̂  M2,z) + D22 ̂  A(2,y) 

_ E 2 2 !i + F 2 2 A ( 2 , z ) - C22 ̂  + s i y « , + m g i M 
m2 m2 m2 A42 A42 

+ C12 - A(2,y)D12 + E12 - A(2,z)F12 = 0 



collecting terras the following is obtained: 

fij B22 BA2 . ̂  . B12 BA2 
A ( 2 « y ) 57 + D 2 2 57 + - D 1 2 ] + A ( 2 ' z ) 

2 2 
(- — B 2 2 + F22 — + 6 1 2 ^ 4 2 - F12) + A12 + C12 + E12 m2 AA2 m2 AA2 

^ 2 £ 2 ^ 2 

- A22 C22 E22 — = 0 
m2 m3 m2 

Designating the term inside the square bracket by FP2 and substituting 
the value of A(2,y) from eq. (2.5.11b) the following is obtained: 

Ar? ^ r- FP2 ̂  - — 5 2 2 C A 2 + F22 — + 6 1 2 C A 2 - F121 [ FP2 F M 2 ^ M 2 + F22 ̂  + M 2 

FP? na FP? FP? FP2 FP2 
+ i f A 2 2 5 7 + i f C 2 2 5 7 + l i E 2 2 57 - i f A 3 2 - i f c 3 2 

2 J 2 
wpo 2 2 2 

E32 + A12 + C12 + E12 - A22 C22 E22 — =0 
FM2 m2 m m2 

Designating the term in brackets by FL2 and rearranging: 

A(2,z) [FL2] + A12 + C12 + E12 + A22 cfgf £ - + C22 (§|§ £ I D , 

FP2 n 2 2 FP2 FP2 FP2 
+ E 2 2 ( i f  57 - 5 7 > " i f A 3 2 " i f C 3 2 " i f E 3 2 = 0 

solving for A(2,z): 



A(2,z) = A12(A12z) + C12(C12z) + E12(E12z) + A22(A22z) + C22(C22z) 
+ E22(E22z) + A32(A32z) + C32(C32z) + E32(E32z) 

(2.5.12b) 

where: 
1 A12z = C12z = E12z = - FL2 

n £ FP2 2 2 1 A22z = C22z = E22z = - ) FM2 m3 ra/ FL2 

A32z = C32z = E32z = F P 2 
FH2 FL2 

Substituting the value of A(2,z) from above into eq. (2.5.11b) the 
value of A(2,y) is obtained as follows: 

A(2,y) = - (fjjf (A12z))A12 - (C12z))C12 - (El2z))E12 

1 F T 9  1 F T 9 

+ (FH2 57 " I f (A22Z))A22 + - - M f (C22z))C22 

+ (Fi2 57 " M l CE22z»E22 - ( ^ + i f (A32z))A32 

" (FH2 + l i (32z))C32- ( ^ + ] § (E32z))E32 

or 



A(2,y) + (A12y)A12 + (C12y)C12 + (E12y)E12 + (A22y)A22 + (C22y)C22 
+ (E22y)E22 + (A32y)A32 + (C32y)C32 + (E32y)E32 

(2.5.13b) 
where: 

A12y = C12y = E12y = - A12z FJ2 FM2 

A22y = C22y = E22y 

A32y = C32y = E32y 

1 n„ FJ2 
FM2 m, FM2 A22z 

1 
FM2 

FJ2 
FM2 A32z 

Substituting A(2,z) from eq. (2.5.12b) and A(2.y) from eq. (2.5.13b) 
into eq. (2.5.10b) A(2,x) is obtained: 

A(2,x) + A12(A12x) + C12(C12x) + E12(E12x) + A22(A22x) + C22(C22x) 
+ E22(E22x) + A32(A32x) + C32(C32x) + E32(E32x) 

(2.5.14b) 
where: 

A12x =- |||(A12y)- ̂ ||(A12z) 

A22x =- |||(A22y)- |||(A22z) 

A32x |||(A32y)- ̂ §(A32z) 

Cl2x =- |||(Cl2y)- fff(C12z) 

C22x =- |||(C22y)- ̂ |(C22z) 

C32x =- |||(C32y)- |||(C32z) 

E12x =- ||F(El2y)- J£§(E12Z) 

E22x =- ||f(E22y)- ||f(E22z) 

E32x =- |||(E32y)- |||(E32z) 



Substituting the values of A(2,z) from eq. (2.5.12b), A(2,y) from eq., 
(2.5.13b) and A(2,x) from eq. (2.5.14b) into eq. (2.5.9b) the value of Ao2 
is obtained as follows: 

' A A22 _ B22JU2 _ B22.C12 } _ B22_E12 ( m x ) 
2 m2 m2 m2 m2 

. B22_M2 ( A 2 2 x ) _ B2^22 ( c 2 2 x ) _ 8 ^ 2 2 ( E 2 2 x ) _ ̂  ( A 3 2 x ) 
m2 m2 m2 m2 

_ B2^32 3 _ B22JI32 _ D2^A12 _ 022^12 
m2 m2 m2 3 m2 J 

_ D22_E12 ( e 1 2 j _ D22_A22 _ D22_C22 ( _ U22E22 
m2 m2 m2 m2 

. D21A32 3 _ D22_C32 _ D22_m ( E 3 2 , + E22 
m2 J m2 m2 J m2 

_ I21A12 1 2 _ F22_C12 _ 122^12 z ) _ F2M22 ( A 2 2 z ) 
m2 m2 m2 m2 

. F22_C22 _ F21E22  ( E 2 2 z ) _ F22A32 ( A 3 2 z ) _ F22_C32 ( c 3 2 z ) 
m, m, m. m. 

collecting terms 

Ao2 = A12(QA12) + C12(QC12) + E12(QE12) + A22(QA22) + C22(QC22) 
+ E22(QE22) + A32(QA32) + C32(QC32) + E32(QE32) 

where: 



QA12 = - —(A12x) - ̂ 22(A12y) - ̂ (A12z) X ma m 2 ra2 

QC12 = - —(C12x) - —(C12y) - ̂ (Cl2z) ra2 ra2 m2 

QE12 = - —(E12x) - —(El2y) - —(E12z) m2 m2 m2 

QA22 = - ̂ (A22x) - j=p(A22y) - ̂ (A22z) + ra. ra, ra, 

QC22 = - —(C22x) - ̂ (C22y) - ̂ (C22z) + 1 ra2 ra2 m2 m. 

QE22 = - —(E22x) - ̂ (E22y) - ̂ (E22z) + ^ m2 ra2 J ra2 ra2 

QA32 = - —(A32x) - —(A32y) - —(A32z) 
m2 m2 m2 

QC32 = - —(C32x) - —(C32y) - —(C32z) m2 m2 m2 

QE32 = - —(E32x) - ̂ (E32y) - ̂ (E32z) m2 m2 m2 

Since from eqs. (2.5.8b) 

A12 = Ao 2. 
x ' 

C12 = Ax m, yx 2 E12 = AT n, xz 2 

A22 = AT 2. 
xy < 

C22 = Ao m, E22 = AT n, yz 2 

A32 = AT 2. 
zx ' 

C32 = AT M, zy 2 E32 = Ao n, z 2 



and assuming that AT = AT ; AT = AT ; and AT = AT then 6 xy yx yz zy xz zx 

Aoa = Ao (Qx2) + Ao (Qy2) + Ao (Qz2) + AT (Qxy2) x y z xy 
+ AT (Qyz2) + AT (QZX2) yz zx 

(2.5.15b) 
where: 

Qx2 = Sa(QA12) 
Qy2 = m2(QC22) 
Qz2 = n2(QE32) 
Qxy2 = S2(QA22)+m2(QC12) 
Qyz2 = m2 (QC32)+n2(QE22) 
Qzx2 = fi2(QA32)+n2(QE12) 



EVALUATION OF THE PLASTIC CONSTITUTIVE MATRIX (CP) OF THE- SMP MODEL 

2.6.1 3-DIMENSIONAL FORMULATION 

2.6.2 2-DIMENSIONAL FORMULATION 

2.6.3 AXISYMMETRIC FORMULATION 

\ 



Evaluation of the Plastic Constitutive Matrix (CP) of the SMP Model 

2.6.1 3-Dimensional Formulation 

Evaluation of the Plastic Constitutive Matrix {CP} of the SMP Model 
Substituting eq. (2.55) into eq. (2.49) (see main text), the 

relationship between increments of plastic Cartesian strain {AeP} and 
increment of Cartesian stress {Ao) are obtained and given by: 

AeP 
X 

AeP 
y AeP z 

A r p 'xy 
Arp 'yz 

A r p 

zx _ 

CP(1,1) CP(1,2) CP(1,3) CP(1,4) CP(1,5) CP(1,6) 
CP(2,1) CP(2,2) CP(2,3) CP(2,4) CP(2,5) CP(2,6) 
CP(3,1) CP(3,2) CP(3,3) CP(3,4) CP(3,5) CP(3,6) 

CP(4,1) CP(4,2) CP(4,3) CP(4,4) CP(4,5) CP(4,6) 

CP(5 ,1) CP(5 ,2) CP(5 ,3) CP(5,4) CP(5,5) CP(5,6) 

CP(6,1) CP(6,2) CP(6,3) CP(6,4) CP(6,5) CP(6,6) 

Ao 
Ao 
Ao 

AX xy 
AT yz 
AT 
zx 

(2.6.1) 

where: 
CP(1,1) = ( I M.S.) TMX/G 

i=l ,3 1 1 p 
CP(1,4) = ( 2 M.J.) TMXY/G 

i-1.3 1 1 P 

CP(1,2) = ( I M.S. TMY/G 
i=l,3 1 1 p 

CP(1,5) = ( X M.J.) TMYZ/G 
i=l,3 1 1 P 

CP(1,3) = ( S M.J.) TMZ/G 
i=l,3 1 1 P 

CP(1,6) = ( I M.J.) TMZX/G 
i=l,3 1 1 . P 

(2.6.2) 



Since for rows 2 to 6 a similar structure to the above is obtained, 
only the first and last term of each row is given below 

(2.6.3) 

(2.6.4) 

(2.6.5) 

(2.6.6) 

(2.6.7) 

2.6.2 2-Dimensional Formulation 
2-D FE analysis are, in general, carried out more often in practice 

that 3-D FE analysis because the 3-D analysis require more time to define 
and input the relevant data (nodes and soil elements) and also because a 
great deal more computer time is required to numerically solve the problem 

CP(2,1) = ( Z M.m?) TMX/G 
i=l,3 1 1 1 

CP(2,6) = ( X M.m?) TMZX/G 
i=l,3 1 1 ] 

CP(3,1) = ( Z M.n?) TMX/G 
i=l,3 1 1 1 

CP(3,6) = ( Z M.n?) TMZX/G 
i=l,3 1 1 1 

CP(4,1) = 2( Z M.2.m.) TMX/G 
i-1.3 1 1 1 1 

CP(4,6) = 2( Z M.2.m.) TMZX/G 
. i-1,3 1 1 1 1 

CP(5 ,1) = 2( Z M.m.n.) TMX/G 
i-1.3 1 1 1 1 

CP(5,6) = 2( Z M.m.n.) TMZY/G 
i-1.3 1 1 1 1 

CP(6,1) = 2( Z M.n.2.) TMX/G 
i-1.3 1 1 1 1 

CP(6,6) = 2( Z M.n.2.) TMZX/G 
i-1.3 1 1 1 1 



at hand. Therefore it is considered useful to adapt the 3-D formulation 
that has been described in the previous sections to 2-D. This simply 
requires imposing the necessary plain strain boundary conditions, and this 
way the 3-D characteristics will not be lost because the 2-D formulation 
will still be able to consider the influence of the intermediate principal 
stress, o2, as will be described next. 

The stress-strain relationship given in Eq. (2.6.1) is rewritten 
below. 

Ae?" 
X 

Cll C12 C13 CIA C15 C16 Ao 
X 

AeP 
y 

C21 C22 C23 C2A C25 C26 Ao 
y 

AeP z C31 C32 C33 C3A C35 C36 A o 
z 

A R P 'xy CA1 CA2 CA3 CAA CA5 CA6 AT 
xy 

A r p 'yz C51 C52 C53 C5A C55 C56 AT 
yz 

A T P 

' zx 
C61 C62 C63 C6A C65 C66 AT 

zx 

where the C.. terms were described in eq. (2.6.2) to (2.6.7). 
Assuming that the 2-D Cartesian coordinate system is defined by the 

x-axis (horizontal) and z-axis vertical, then all the terms associated with 
xy or yz, i.e.AR , Ar , AT and AT can be deleted since there is no J  J i 'xy' 'yz' xy yz 
contribution from these terms in the 2-D plane strain analysis. Therefore, 
eq. (2.6.8) will take the following form: 

Ae 
X 

~C11 C12 C13 C16~ Ao 
X 

Ae 
y 

C21 C22 C23 C26 Ao 
y 

Ae 
z 

C31 C32 C33 C36 Ao 
z 

A R 
' zx 

C61 C62 C63 C66 AT 
zx 



By renumbering the above terms the following is obtained: 

Ae 
X 

Ae 
y 

Ae 
z 

A r _ z 3 i 

Cll C12 C13 CIA 

C21 C22 C23 C2A 

C31 C32 C33 C3A 

CA1 CA2 CA3 CAA 

Ao 

Ao 

Ao 

AT 
zx 

(2.6.10) 

Since in 2-D plain strain analysis, Ae = 0 , then from above, the 
3 y 

following equation is obtained: 

Ae = C21 Ao + C22 Ao + C23 Ao + C2A AT = 0 (2.6.11) y x y z zx 

and solving for Ao^: 

A C21 A C23 A C2A A 
y = ~ C22 A o x " C22 A o z " C22 A T Z X (2.6.12) 

From eqs. (2.6.10) the following equations are also obtained: 

Ae = Cll Ao + C12 Ao + C13 Ao + CIA AT x x y z zx 

Ae = C31 Ao + C32 Ao + C33 Ao + C3A AT (2.6.13) z x y z zx 

AR = CA1 Ao + CA2 Ao + CA3 Ao + CAA AT ' zx x y z zx 



Substituting the value of Ao from eq. (2.6.12) into eq. (2.6.13) and 
rearranging the following equations are obtained: 

A e x " ( C 1 1 " ̂ 2 P ) A ° X + ( C 1 3 " £ i C 2 p ) A ° z + ( C 1 4 " ^ 2 F ) A t Z X 

A e z = ( C 3 1 " £ 1 C 2 P ) A o X + ( C 3 3 " ̂ ^ y P ^ z + ( C 3 A " ^ 2 F ) A ^ z x 

A r zx (C41 - ^ F ) A O X + . ( C 4 3 ^ F ) A o 2 + (C44 C24 C24w 
C22 zx 

or in a general format 

(2.6.14) 

Ae 1 X 
Ao _ 
z 

A r 
_ Z 3 L 

Cll* C12* C13* 

C21* C22* C23* 

C31* C32* C33* 

Ao 

Ao 

AT zx 

(2.6.15) 

where the C^ terms are given by the corresponding terms in brackets shown 
in eq. (2.6.14). 

The above eq. (2.6.15) together with eq. (2.6.12) constitute the 
complete 2-D F.E. formulation of the modified SMP model. This means that 
during the 2-D F.E. analysis the value of the intermediate principal stress 
o^.(o2) is updated at all load steps with eq. (2.6.12) and with this value 
the 3-D formulation earlier described is used in its full extent for the 
2-D F.E. analysis. This way the 3-D effects of the intermediate principal 
stress are taken into account in the 2-D FE analysis. Predictions of 
laboratory simple shear results that include predictions of o2 are 
presented in Chapter 3 to show the validity of the above formulation. 



2.6.3 Axisymmetric Formulation 
The axisymmetric formulation is also useful to implement into a F.E. 

code, since it allows to solve 3-D problems that are axisymmetric in 
nature. A good example is the pressuremeter test, which will be considered 
in some detail later in this thesis. The elasto-plastic stress strain 
relation used for the axisymmetric F.E. analysis are obtained from eq. 
(2.6.8) by imposing the necessary axisymmetric boundary conditions, which 
consist of deleting the terms AY ,AR , AT and AT from eq. (2.87) and 

& 'xz' 'yz' xy yz ^ 
by changing the x coordinate to the r coordinate (radial), the y coordinate 
to the 9 coordinate (circumferencial) and keeping the z coordinate 
(vertical) the same. Performing these changes the following equations are 
obtained: 

AeT 
Ae, 
Ae 
A r zR 

Cll 
C21 
C31 
C41 

C12 
C22 
C32 
C42 

C13 
C23 
C33 
C43 

C16 
C26 
C36 
C46 

Ao. R 
Ao, 
Ao 
AT zR 

(2.6.16) 

and by renumbering the above terms the following equations are obtained: 

A £ R Cll C12 C13 C14 A O R 

A ee C21 C22 C23 C24 A o e 
Ae 
z 

C31 C32 C33 C34 Ao 
z 

C41 C42 C43 C44 _ A T Z R _ 



LOAD SHEDDING FORMULATION TO USE WITH THE MODIFIED SMP MODEL 



Load Shedding Formulation to Use with the Modified SMP Model 

The load shedding procedures described in the main text were 
implemented in the modified SMP formulation to account for soil elements 
that failed in shear and in tension, and consist of the following. 

• Load Shedding for Elements Failed in Shear 
A sketch of the Matsuoka-Nakai failure criterion in the 3-D stress 

space shown in Fig. 2.7.1. Let us assume that the stress conditions of a 
soil element at a given load step is given by the stress point A. If, for 
instance, the subsequent load increment is too large the stress conditions 
of the soil element will shift from the stress point A to the stress point 
B which corresponds to a stress condition outside the failure envelope and 
therefore violating the failure criterion which is represented by the 
stress point F. The magnitude of the violation, which is represented in 
the figure by BF, is given by the following equation: 

BF = At smp, o LS smp 
= flsHE-i _ fTsmp, lo B vo F smp smp 

(2.7.1) 

where 

^Tsmp/'0smp^B 
^smp^smp^F 
A( T /o ) smp smp LS 

stress ratio at B 
failure stress ratio 
stress ratio increment to be "shedded" to the 
surrounding soil or structural elements. 

Substituting Eq. (2.51) from the main text into eq. (2.7.1) the following 
equation is obtained: 



Figure 2.7.1 Matsuoka-Nakai Failure Criterion 



T<SMP 
M o ^ L S = (TSMOB1)AO1ls + (TSMOB2)AO2LS + (TSMOB3 )Ao3LS 

• " (2.7.2) 
SMP B SMP F 

where 
Ao,^, Ao2^s and Ao3^g are the increments of principal stress to be 
shedded to the surrounding soil or structural elements 

In order to evaluate the Ao. values (i = 1,2,3), 2 more equations are 
XLS 

required, and for that the following assumptions are made: 

a) The mean normal stress remains constant during load shedding, which 
implies that 

Ao 1 L S + Ao 2 L S + Ao 3 L S = 0 (2.7.3) 

b) The b-value = (o2-o3)/(o1~o3) of the soil element at stress point F is 
equal to the b-value that the soil element had at stress point A. 
(This requires that the b-value for every soil element be stored for 
the current and previous load step.) 

((o2-Ao2LS) - (o3-Ao3Lg)) 
(b-value)F = c ^ . ^ ) _ (o3-Ao3LS)) = <b-value)A (2.7.4) 

where the ô  (i = 1,2,3) are the principal stresses at point B. 
Now that a system of 3 equations with 3 unknowns has been established 

it is a question to solve the system for Ao^g, Aa2^s and Ao3^s< 



• Evaluation of the Increments of Principal Stress (ACK)^ 
To simplify, the terms (Ao.)T~ will, from now on, be referred to as 

1 JLi o 
Ao. From eq. (2.7.A) the following is obtained. 

o,b - bAo, - o3b + bAo3 = o2 - Ao, - o3 + Ao3 

bAoj = o,b + o3b - bAo3 + o2 - Ao, - o3 + Ao3 

b0l-o2-bo3+o3 1 b - 1 
= [ 1 ] + tp  Ao, + AO3 

or 

Ao, = (TS11) + AO2(TS12) + Ao3(TS13) (2.7.5) 

where: 
baj-o2-bo3+o3 

TS11 = ( ^ ) 

TS12 = £ b 

TS13 = ^ b 

Substituting into (2.7.3) 

TSll + AO2(TS12) + AO3(TS13) + Ao2 + Ao3 = 0 



collecting terras 

Ao, [TS12 + 1] = -TS11 - Ao,tl + TS13] 

Solving for Aoa 

or 

A = /-TS11 > . ,1+TS13> J TS12+1 ~ 3 TS12+1 

(2.7.6) 

where: 
TS22 = 

TS23 = 

-TS11 
TS12+1 

1+TS13 
TS12+1 

Substituting the values of Ao, from eq. (2.7.5) and Ao2 from eq. (2.7.6) 
into eq. (2.7.2) the following is obtained: ' 

(TSMOBI) [TSS11 + (TS22 - Ao3(TS23))(TS12) + AosTS13] 

+ (TSM0B2) [TS22 - Ao,(TS23)] + (TSM0B3) Ao, = A(-£ii£)TC 
°SMP L S 

Solving: 



TSM0B1 TSS11 + TSMOB1 TS22 TS12 - TSMOBl TS23 TS12 Ao, 

+ TSMOBl TS13 AO3 + TSMOB2 TS22 - TSMOB2 TS23 Ao3 

+ TSMOB3 Ao. = a(_§!!!£) 3 O LS smp 

assembling: 

AO3 [(-TSMOBl)(TS23)(TS12) + (TSMOBl)(TS13) - (TSMOB2)(TS23) 

+ TSMOB3] + [(TSMOBl)(TS11) + (TSMOBl)(TS22)(TS12) 

+ (TSMOB2) (TS22) ] = A(-^) T C 
°SMP L S 

Designating the terms inside the brackets by TS33 and TS31 than 

AO3 [TS33] + [TS31] = A(-^)._ 
SMP L S 

and solving for Ao, 

(2.7.7) 

To summarize the increments of principal stresses to be shedded are 
Ao 1 L S (given by Eq. (2.7.5)), Ao 2 L S (given by eq. (2.7.6)) and Ao 3 L S (given 
by eq. (2.7.7)). 



The next step is to obtain the increments of Cartesian stress {Ao} LS 
that are equivalent to the increments of principal stress Ao. evaluated 

XLS 
above, and that is done the following way. 

The new principal stresses at point F (see Fig. 2.7.1), (o.)̂ ,, are 
1 r 

obtained from the principal stresses at point B, following the 
equations: 

LS 

LS (2.7.8) 

<°3>F = (o,)B " A°3 L S 

now assuming that the direction cosines of the principal stresses at point 
F are the same as the direction cosines of the principal stresses at point 
B, then using eq. (2.3.1) from Appendix 2.3, which relates cartesian 
stresses with principal stresses the new Cartesian stresses at point F, 
{o}p, are obtained as it is described below: 

(ox>F V f ( T « } F 

V F ( V F V F 

<*zx>F « V F (°Z}F 

2a fi3 £ 
mi m3 m 

n3 n 

0 
0 (o,)F 
0 . 0 

0 
0 

(o,)F 

m3 n3 
m2 n3 

£x m3 n3 

Finally the increments of cartesian shear stress to be shedded are 
evaluated following the equations below: 



(2.7.9) 

A \ s " ^ B - <°x>F 

A°y L S = < V B " ( V F 

A° Zl s  =  i a zh  ~ (oz>F 

AT = (T )_ - (T )_ xyLS xy B xy F 

AT = (T )_ - (T )_ yzLS yz B yz F 

A tZX l s = ^zx^B " (tZX>F 

To finish the stress redistribution, the stresses of the soil element 
that failed are defaulted to the stress values of point F, the G^ of the 
soil element is defaulted to a low prescribed value (G = Pa/100) and the 

P 

increments of cartesian stress to be shedded, {AoĴ g. are transformed into 
a load vector, {f} ̂ ^, which is applied at the nodes of the soil element 
that failed in shear and will develop equivalent stresses {Ao)g^ = 
Ao^g) on the surrounding soil or structural elements. This way, stress 
equilibrium will be maintained within the soil mass. To develop the load 
vector {f}̂  g^ 6 following equation is used: 

{f)LS = (AO}ls [B]T volume (2.7.10) 

where 
T 

[B] is the transpose of the strain-displacement matrix of the failed 
element 

volume = volume of the soil element. 

This equation is derived as follows: 



Within any soil element considered in a finite element formulation, 

the principle of virtual work requires, for equilibrium, that the work done 

by the virtual displacements {6} to be equal to the work done by the 

increment of internal strains as it is shown by the following equation: 

(6}T{f} = /{Ae}T{Ao}dv (2.7.11) 

where: 

{f} = the force increment at the element nodes 

{Ao} = the increment of stresses within the element 

v = element volume 

and 

Ae = the increment of strains within the element 

Since this incremental strain vector, {Ae} can be related with the 

incremental nodal displacement vector, {6}, using the following equation: 

{Ae} = [B] {6} ' (2.7.12) 

where: 

[B] = the strain-displacement matrix of the element 

than substituting eq. (2.7.12) into eq. (2.7.11) the following is 

obtained: 

{6}T{f} = J{6}T[B]T{Ao}dv 



Since [B] is constant, then 

{6} {f} = {6} [B] {Ao} volume I,T 

or 

{f} = [B]T {AO) volume (2.7.13) 

• Load Shedding for Elements in Tension 

The load shedding procedures for the soil elements that failed in 

tension are rather simple and consist of the following. 

Physically, a soil-element fails in tension whenever a^ £ 0, i.e. 

either o 3 :£ 0 or o 2 and o 3 £ 0 or o l f o 2, and o 3 £ 0. To void excessive 

interactions, however, the following tension failure bound is used instead. 
Pa If (-o.) £ (- — ) the soil element is considered to have failed in i K 

tension, where a K = 100 has been used with success. 

The increments of principal stress to be shedded are easily evaluated 

using the following equation: 

and from this stage, the procedures described earlier for the elements that 

failed in shear are applied for the elements that failed in tension, i.e. 

using eqs. (2.7.8) through (2.7.10). 

Ao. = abs(-o.) 
1LS 

(2.7.14) 



DISCUSSION OF THE ASSUMPTIONS REGARDING THE DIRECTION OF 

THE INCREMENTS OF PRINCIPAL STRAINS BASED ON HOLLOW CYLINDER TESTS 



Discussion of the Assumptions Regarding the Direction of 
, the Increments of Principal Strains Based on Hollow Cylinder Tests 

The hollow cylinder apparatus was developed mainly because it allows 

the independent control of the magnitude and direction of the three princi-

pal stresses. This allows to investigate the effects that the initial 

anisotropy, and/or the stress ratio a 1/a 3, and/or b-valve, and/or mean 

normal stress, have on the sand behaviour. From the work of Symes et al. 

(1982,1984,1988) and Sayao (1989), only the aspects related with 

Assumptions Nos. 3 and 4 will be considered here. 

2.8.1 Hollow Cylinder Tests Carried out by Symes et al. on Ham River Sand 

The hollow cylinder tests carried out by Symes et al. were divided in 

the following categories: 

a) Initial anisotropy tests, 

b) Continuous rotation tests, 

c) Shear after rotation tests, and 

d) Combined rotation and shear tests, 

and therefore this order will be followed next in the discussion. 

• Initial Anisotropy Tests 

To study the effects of the initial anisotropy, the angle that o x 

makes with the vertical was kept constant through the test together with a 

constant b-value and constant mean normal stress. Several tests with 

different initial i|) angles were performed on Ham River sand by Symes et al. 

and these are listed below: 



1) Dry tests on dense sand, test C,, C2 and C3 (1982). 

2) Undrained tests on medium-loose sand, tests A 0, A 2 and A 4 (1984). 

3) Drained tests on medium-loose sand, tests L0, L2 and LA (1988). 

All the above tests were performed with a b-valve = .5 and a constant 

effective mean normal stress, o1 = 200 kPa. 
m 

The results of the C, , , A, , and L, . tests are shown in the Figs. 
(s) (s) (s) 

2.8.1, 2.8.2 and 2.8.3, respectively. In each of the above figures, three 

plots are presented: (a) the stress path followed in terms of the shear 

stress, x = (0,-03)/2 versus (b) the stress-strain relationship in terms 

of x versus octahedral shear strain, r . ; and (c) the variation of the 
oct 

angle of the increments of strain £ with x. From the test results shown, 

a list of facts will be given first and conclusions derived from these will 

be given last. 

Facts: 

1) From the dry tests on dense sand (\|> f 90°) the angle E diverges from 

the angle \p  from 0 to 8° at the start of the test and from 4 to 6° at 

the end of the test. For the test \p  =  90° there is no divergency, 

because this is a triaxial extension stress path. 

2) From the undrained tests on medium-loose sand (\p  f  0°) the angles £ 

diverge from the angle \|) from 15° to 18° at the start of the test. 

This divergency decreases rapidly while shear increases and at peak 

and after peak, the divergency between £ and \p vary from 0° to 5°. 

For the test * = 0° there is no divergence because this is a tri'axial 

compressive stress path. 

3) From the drained tests on medium loose sand (\f> ? 0°) the angle £ 

diverges from the angle \|) from -3° to 17° at the start of the test. 
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Again this divergency decreases with shear and at the end of the test 

the divergency between £ and \|> varies from 0° to 7°. For the test = 

0° there is no divergency. 

Conclusions: Based on the above facts it is concluded that Assumption #4 

regarding the direction of the increments of strain is a valid assumption 

since at the end of the above Initial Anisotropy tests the deviation 

between £ and \|) varies from 0° to 7°. 

• Continuous Rotation Tests 

These tests are characterized by increasing or decreasing the angle \|> 

while the b-value, the stress ratio a 1/a 3 , the mean normal stress and the 

deviatoric stress are kept constant. For the tests carried out by Symes et 

al. a b = .5 and o' = 200 kPa were used. The value of T varied from test 
m 

to test as it is listed below: 

1) Dry test on dense sand (1982) 

Test M: x = 110 kPa and \p  varied from 0 to 67.5° 

2) Undrained tests on medium-loose sand (1984) 

Test Rl: x = 40 kPa and \p  varied from 0 to 45° 

Test R2: x = 40 kPa and \p varied from 45 to 0° 

3) Drained tests on medium-loose sand (1988) 

Test LR1: x = 43 kPa and \f> varied from 0 to 45° 

Test LR3: x = 89 kPa and \p  varied from 0 to 45° 

Test LR2: x = 43 kPa and \J> varied from 45 to 0° 

Test LR4: x = 89 kPa and \|> varied from 45 to 0°. 

The results of these seven tests are shown in the following 7 figures 

(Figs. 2.8.4 to 2.8.10) by the order listed above and in each figure three 



plots are presented: (a) T versus (b) T versus T o c t » a n (* ( Q) versus 

and x (when available). Before any factual conclusions are made, some of 

the comments by Symes et al. (1988) will be outlined herein, and those are: 

"when the angle \p increases there is an increase in T o c t  and therefore 

these test paths should be related with a "loading" path; When the angle \|> 

decreases there is a decrease in T o c t a n d therefore these test paths should 

be related with an "unloading" path". Perhaps the above terms "loading" 

and "unloading" should be substituted by "strain loading" and "strain 

unloading" since there is no change in the T terras, or perhaps the varia-

tion of the stress ratio on the mobilized plane T /a  with \b  should be 
smp smp 

evaluated to see if there is any physical variation on the 3-D state of 

shear stresses while varies during the tests. What is important, how-

ever, is that the reader should keep in mind that there are "strain 

loading" paths• and "strain unloading" paths. From the test results the 

following is inferred: 

(1) From the dry test on dense sand (Fig. 2.8.4) which is a "strain load-

ing" test, the divergency between E and \J) is about 20° at the start of the 

rotation and T"oct = >3%. This divergence decreases rapidly when \|> varies 

from 5° to 67.5° and r . increases from .3% to 6%. At the end of the test 
oct 

the divergency between £ and \|) is about 5°. 

From the results of this test it is concluded that Assumption #4 has 

been validated. 

(2) From the undrained test on medium-loose sand, R1 (Fig. 2.8.5), which 

is a "strain loading" test, it may be seen that the mobilized T o c t are very 

small (< 0.15%). 



Y Z • • . 

l -i 
0 22.5 45 57.5 90 

angle ty0 

kPa iso 

100 

50 

0 
roct% 

90 

-9- 60 
0) I—I 00 c (0 

30 

DO 



T 
kPa 

20 

40 B 

45 - angle 

oos 0 is 

OCt% 



As the test results show there is no significant divergency between the 

angles x and £ for the initial stages of the test (0° < \|) < 15°) which can 

be associated with an elastic phase of the test. However, when 

15° < \p  £  45° the angle £ starts converging towards the angle \J> and 

diverging from the angle x- This stage of the test can be associated with 

the begining of the plastic phase of the test. 

From the undrained test on medium loose sand, R2 (Fig. 2.8.6), which 

is a "strain unloading test", it may be seen from the laboratory results 

that the angles x a n c* £ show a divergency of about 14° through the test, 

being the divergency between £ and \j) about 30° The mobilized y during 

the stage of rotation are small and about .05%. The above facts can be 

associated with an elastic behaviour of the sand during unloading. 

(3) From the drained tests on medium-loose sand the following facts are 

collected: 

Test LR1 (Fig. 2.8.7) is a strain loading test carried out at a low 

stress level (q = 43 kPa). The mobilized r . are small and less than .2%. 
oct 

Again as test Rl the angles x a n <* £ almost coincide for the initial stages 

of the test (0 < \J) < 25°) which can be associated with an elastic phase of 

the test. However, when 25° < \|) < 45° the angle £ starts converging 

towards \|> and diverging from the angle x- This stage of the test can be 

associated with the beginning of the plastic phase. 

Test LR3 (Fig. 2.8.8) is, as well, a strain loading test but the shear 

stress level is higher (T = 89 kPa) than the shear stress level of test LRl 

(x = 43 kPa). Therefore the mobilized y are as well higher than in the 

other test and in the order of 2%.  The response of the angles £ and x 

reflect the above fact. It may be seen that the angle £ lies closer to \p 
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than to x. diverging from the former from 10 to 15° (at large strains) and 

reflecting that at higher stress levels the behaviour of the sand is 

essentially plastic. 

Tests LR2 and LRA (see Fig. 2.8.9 and 2.8.10) are "strain unloading 

tests" carried out at q = A3 kPa and q = 89 kPa. It may be seen that the 

response of the angles x a n £i £ is identical (to the observed during the 

other strain unloading test (test R2) and show that regardless of the 

stress level during strain reversal the behaviour is essentially elastic. 

• Shear After Rotation Tests 

For the case of the continuous rotation tests carried out in medium 

loose sand, tests Rl, R2 (undrained) and tests LR1, LR2, LR3 and LRA 

(drained), once the rotation phase was terminated, these tests were 

extended with an additional shear phase where the deviatoric stress, x, was 

increased until failure was developed. The results of the undrained tests 

are presented in Fig. 2.8.11 and the results of the drained tests are 

presented in Fig. 2.8.12. Again in each figure three plots: (a) x versus 

\p;  (b) x versus T o c t ; a n d (c) x versus £ are presented. 

The results show that for all tests the initial divergency between £ 

and \|> decreases rapidly with increasing shear. At the end of the tests the 

divergency between £ and \p  is zero for test R2, LR1, LR2, LRA and 5° for 

test Rl. Test LR3 is the only exception where the results show that the 

angle £ deviates from \J) during the last part of the test. 

• Combine Rotation and Shear Test 

To study the combined effects of rotation and shear the drained test 

LR5 was carried out by Symes et al. (1988) on medium loose sand, where the 
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sand sample initially confined to 200 kPa was sheared to x = 90 kPa while \p 

was constant and equal to 0°. From this point the angle \p  varied from 0° 

to 45° while the magnitude of x was simultaneously increased. In Fig. 

2.8.13 it is presented the test path (x versus \p)  and the results x versus 

f c t and x versus \f> , E and x* It m a y be seen that while both x and \p 

increase the initial deviation of \|> and & of 10° decrease to almost zero 

when failure is developed. 

2.8.2 Hollow Cylinder Tests Carried out by Sayao (1989) on Ottawa Sand 

These tests were carried out on Ottawa sand with D f ranging from 20% 

to 36% and were divided in the following categories: 

a) Initial anisotropy tests 

b) Proportional loading tests 

c) Continuous variation in b-value tests. 

Because the results from these tests are well documented by Sayao 

(1989) these will not be discussed in detail here. A summary of these 

tests together with a summary of the tests carried out by Symes et al. is 

presented below. 

2.8.3 Summary 

For the "continuous rotation tests" carried out by Symes et al. and 

Sayao, with increasing or decreasing values of \p  but with constant values 

of stress ratio o,/o., b-value, and mean normal stress, o it is concluded 
1 3 ' ra 

that the deviations between the angle \p  (ox) and the angle £ (Aex) can be 

quite significant. The same conclusions apply for the "continuous varia-

tion in b-value tests" carried out, by Sayao, with increasing or decreasing 



angle \|>,E,X° 



b-value but with constant values of \b, a./a,, and o . This indicates that 
ni 

Assumption #4 is not valid for these two types of tests. However 

Assumption #4 is shown to be valid for the hollow cylinder tests where a 

stress path to failure was followed (except for the early stages of the 

tests) such as the "initial anisotropic tests" carried out by Symes et al. 

and Sayao, with increasing Oj/o3 but with constant values of \p, b-value and 

o^. The same conclusions apply for the "proportional loading tests" 

carried out by Sayao with increasing o m but constant a 1 / a 3 , \p, and 

b-value. 
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PROCEDURES FOR THE EVALUATION OF SOIL PARAMETERS  FOR USE IN THE MODIFIED 
SMP MODEL FROM THE STANDARD TRIAXIAL TEST 

The soil parameters required for the modified SMP model can be divided 

in two main groups: 

i) Elastic parameters 

ii) Plastic parameters. 

Therefore these groups will be dealt with separately. 

3.1.1 Evaluation of the Elastic Parameters 

As described earlier two elastic parameters were selected to define 

the {Ce} term of the constitutive matrix {ceP}. One is the shear modulus, 

G, and the other the bulk modulus, B. Since these two moduli will be used 

to model the unloading reloading characteristics of the sand they will be 

referred to as G (or G ) and B (or B ) respectively. These two moduli e max e ur c J 

will be considered to be dependent on the mean normal stress (o^) and 

therefore nonlinear-elastic. 

• Evaluation of G From the Standard Triaxial Test e 
In practice the laboratory test used to evaluate G (or G ) is the 

e max 

resonant column test, however a brief review of the methods to evaluate 

^max Byrne et al. (1987) and Negussey (1984) on loading, unloading and 

reloading on Ottawa sand, using the standard triaxial test, indicate that 

the G value obtained from triaxial unloading is in agreement with the G m a x 



obtained from the resonant column tests. Therefore the unloading data from 

standard triaxial tests can be used to evaluate G . 
e 

The variation of G g with o m is represented by the following equation, 

which is similar to the equation proposed by Janbu (1963): 

G = KG Pa (o /Pa)n (3.1.1) e e m 

where: 

KG = elastic shear modulus number e 
n = elastic shear modulus exponent 

To evaluate the above two parameters the procedures described by 

Duncan et al. (1980) are followed here after being adapted to the elastic 

shear modulus G g. A brief description is presented below. 

Plots of the shear strain-shear stress ratio, (y/x) , versus y  are 

developed from the unload data of the standard triaxial test. The shear 

strain and shear stress are obtained by the following equations: 

r = e f e 3 (3.1.2) 

x = (o:-o3)/2 (3.1.3) 

where: 

EJ.OJ are the major principal strain and stress, respectively. 

e3,o3 are the minor principal strain and stress, respectively. 



In principle the data from three unload tests carried out at three 

different initial (prior to unloading) mean normal stresses, (a^)^ is 

required. From these plots three values of are evaluated as is shown 

by the sketch presented in Fig. 3.1.1(a). 

To obntain KG and n a log-log plot of (G )./Pa) versus (o )./Pa) is e O O J T e l rai 

developed as is shown in pg. 74, Fig. 3.1.1(b). KG e is the 

correspondent to = 1 atmosphere and n is the slope of the line. 

• Evaluation of B e 
As for G the bulk modulus, B is considered to be dependent on teh e e r 

mean normal stress, o^, and expressed by the following equation: 

B = KB Pa (o /Pa)m (3.1.4) e e m 

where: 

KB = elastic bulk modulus number e 
m = elastic bulk modulus exponent 

To obtain KBg and m the procedures proposed by Byrne and Eldridge 

(1982) are followed herein. Based on data from conventional triaxial 

isotropic consolidation tests, Byrne and Eldridge show that the volumetric 

strain, e , due to consolidation can be related to the mean normal stress, v 
o^, in the following manner: 

e = a(o ) l ' m (3.1.5) v m 

a = soil parameter 



Using the data from an unload isotropic consolidation test and 

plotting the above relation on a log-log stress strain plot, Fig. 3.1.1(c) 

is obtained. From this figure, m, a, and KB e are evaluated as follows: 

(1-m) is the slope of the line, the soil parameter a, is the intercept and 

KB g is given by the following equation developed by Byrne and Eldridge: 

KB = tt" (3.1.6) 
e a(l-m) (Pa)1 111 

In summary, to characterize the elastic behaviour of sand two pairs of 

soil parameters are needed: (KBe,m) and (KGg,n) and can be obtained 

respectively from the isotropic consolidation phase and shear phase of the 

standard triaxial test. 

3.1.2 Evaluation of the Plastic Parameters 

The plastic soil parameters for the modified SMP model can be divided 

into three main groups: 

i) Hardening parameters KG^ and np to define the plastic shear modulus 

parameter G^; 

ii) Flow rule parameters and A; and 

iii) Failure parameters ( T S Mp/° SMP^F a n d RF* 

Therefore these groups will be dealt with separately. 

3.1.2.1 Evaluation of the Plastic Shear Modulus Parameter, G p 

As discussed earlier the hardening rule used in the modified SMP model 

is assumed to be described by a hyperbolic relationship between the stress 
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ratio, ^smp^smP^ ' a n <^ t* l e P l a s t i c shear strain, TgMp> This relationship 

is given by the following equation (see eq. (2.34)): 

a 4 P = 1 / G P A < w w ( 3 - 1 - 7 ) 

Therefore, to obtain the plastic shear modulus parameter, G^, iot is 

necessary to derive values of (TsMp/°SMP^ a n c^ ^SMP ^ r o r a laboratory test 

data. 

• Evaluation of ( T S M p / ° S M p ) 

The stress ratio is evaluated using the following equation (see eq. 

(2.50)): 

= ( T- r- : ) (3.1.8) 
° S M p O i a i 2 + ° 2 a 2 2 + ° 3 a 3 2 

where: 

a^ = direction cosines of the normal to the SMP and given by the 

following equation (see eq. (2.24)): 

0 1 ° 2 ° 3 1 ' 2 
a. = ( — r) (3.1.9) I o i(o 1o J+o 2o 3+o 3o 1) 

For the case of the triaxial compression test (o2=o3) eq. (3.1.8) 

takes the following form as shown by Matsuoka (1983): 

( TSMP / oSMP } = V 2 / 3 ( V ^ ) 1 ' 2 " ^ / ^ ) 1 ' 2 (3.1.10) 



• Evaluationof r p n SMP 
g 

Fir the increments of elastic principal strain, Ae^ are evaluated 

using the equation: 

Ae? = [Ce]Ao. (3.1.11) 1 I 

where: 

[Ce] = Hooke's constitutive relation, which is developed based on the 

elastic moduli B and G obtained in section 3.1.1. e e 

Ao^ = increments of principal stress which were recorded during the 

laboratory test. 

Next the increments of plastic principal strain, Ae?, are evaluated 

using the following equation: 

AeV = Ae. - AeT (3.1.12) i l l 

where: 

Ae^ = increments of principal strain which were recorded during the 

laboratory test. 

Finally, f P M p is obtained using the following equation: 

Y P = X Ar P 
'SMP f 'SMP k 



where: 

k = total number of stress increments carried out during the 

test. 

= increment of plastic shear strain on the SMP and obtained 
SMP 

using the following equation (see main text eq. (2.28)): 

A rSMP = ( ( A e ? " A e ? ) 2 a i 2 a 2 J + " AeP)'a2'a3' 

+ (Ae1̂  - AeP) aa,»az l a) 1" (3.1.14) 

For the case of the triaxial compression test (o2=o3, AeP=AeP) eq. 

(3.1.14) takes the following form as shown by Matsuoka (1983): 

A r P M p = 2V2 (o 1o 3) 1' 2 (AeP-AeP)/(2 0l+03) (3.1.15) 

Since the proposed hardening relationship is assumed to be hyperbolic, 

the procedures developed by Duncan et al. (1980) to ev aluate the tangent 

Young's modulus, E t > for the hyperbolic model were adapted to the modified 

SMP model and the tangent shear plastic parameter, G^, is iven by the 

following equation (see main text eq. (2.12)): 

2 
. G = G . (1 - R_ SRL) (3.1.16) p pi F 

where: 

G . = the initial tangent value or the initial slope of the pi & 

hyperbolic stress ratio - strain curve. 



R„ = a parameter that relates the asymptotic value of the stress r 
ratio, ("£_„_/o _..) . . with the failure stress ratio SMP SMP ult 
^ tSMP /'0SMP^ F following equation (see main text eq. 

(2.36)): 

^ S M P ' W F = RF ' W W u l t ( 3 a - 1 7 ) 

where: 

SRL = the stress ratio level which relates the mobilized stress 

ratio, (T_...„ /o _.. _) , with the failure stress ratio by the SMP SMP 
following equation (see main text eq. (2.37)): 

SRL = ( T S M p / o S M p ) / ( T S M p / o S M p ) F (3.1.18) 

To obtain (Gp>. and ^ S M p / ° S M p ) u l t plots of ( y ^ / ( x S M p / o S M p ) ) versus 

^SMP a r e <lev el°Pecl a s is shown in Fig. 3.1.2(a). From this figure, values 

of (G ) . and (Tt,v.r./oovrr.) .. are obtained as shown, p l SMP SMP ult 
As described, the initial shear parameter, (G is considered to be 

, on the SMP ai 

equation (see main text eq. (2.35)): 

dependent on the normal stress, o g Mp, on the SMP and given by the following 

( V i = K G P ( o S M P / P a ) n P ( 3 - 1 ' 1 9 ) 

where: 

KGp = is the plastic shear parameter 

np = is the plastic shear exponent 



To obtain KG and np, plots of log ((G ).) versus log ((o )./Pa) are 
P P 1 uUlT 1 

developed as shown in Fig. 3.1.2(b). KG^ is the (Gp)^ correspondent to 

(o C M P). = 1 atmosphere and np is the slope of the line. 
o n r X 

3.1.2.2 Evaluation of the Flow Rule Parameters, y and X , 

The equation that expresses the flow rule on the SMP is given by the 

following equation (see main text eq. (2.40)): 

( T S M P / O S M P ) = X ( - A E S M P / A R S M P ) ( 3 - 1 ' 2 0 ) 

To develop the above relationship from the standard triaxial test data 

the values of (TsMp/°sMP^ a n d ^ S M P a r e o b t a i n e d f r o r a e <5 s # (3.1.10) and 

(3.1.14) respectively and the value of Ae^p is obtained from the following 

equation (see main text eq. (2.27)): 

AeP M p = A e ^ * + Ae?a 22 + he?3a3> (3.1.21) 

For the case of the triaxial compression test (Ae? = Ae?) eq. (3.1.21) 

takes the following form: 
t 

A e P M p = (2o, Ae p + 03AeP)/(2 0l + o,) (3.1.22) 

A sketch of the SMP flow rule is shown in Fig. 3.1.2(c) from which the 

values of X and v1 are obtained as shown. 

3.1.2.3 Evaluation of the Failure Parameters (TRI„_/O_„_.),  and A(t PV M/O. UR,) SMP SMP 1 SMP SMP 
The failure stress ratio on the SMP is given by the following equation 

(see main text eq. (2.31)): 
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( T S M P / ( W F = ( x S M P / c W i " A ( T S M P / ° S M P ) l o g i o ( ( o S M P ) F / P a ) ( 3 a ' 2 3 ) 

where: 

^SMP^SMP^ 1 = t* i e stress ratio at 1 atmosphere 

A^ TSMP / OSMP ) = t h e d e c r e a s e i n o n e l o 8 c y c l e o f ( TSMP / OSMP )F 
( o . u J r = the mobilized normal stress on the SMP at failure. SMP F 

Plotting ^smp^sMP^F v e r s u s l o S I o ( ' t h e a b o v e f a i l u r e 

parameters are obtained as is shown in Fig. 3.1.2(d). 

Finally the failure ratio parameter, R^, is evaluated from eq. 

(3.1.17): 

R F = ^ S M P ^ S M p V t W W u l t ( 3 ' 1 ' 2 4 ) 

where ( T S M p / ° S M P ^ F i s e v a l u a t e d f r o i n ecl' (3.1.8) and ( T S M p / ° S M p ) u i t i s 

evaluated as shown in Fig. 3.1.2(a). 

3.1.3 Summary of the Required Soil Parameters for Use in the Modified SMP 
Model 

In all, 11 parameters are used in the modified SMP model. These 

parameters are summarized below in Table 3.1.1. 



Table 3.1.1 

Summary of Soil Parameters for Use in the Modified SMP Model 

Type Parameter Description 

KG e Elastic shear modulus number 

Elastic n Elastic shear modulus exponent 

KB e Elastic bulk modulus number 

m Elastic bulk modulus exonent 

Hardening 
Rule 

K G P Plastic shear number Hardening 
Rule 

np Plastic shear exponent 

Flow Rule 
H Flow rule intercept 

Plastic 
Flow Rule 

X Flow rule slope 

( tSMP / oSMP )1 Failure stress ratio at 1 atmosphere 

Failure A(T SHP/OSM P) Decrease in one log cycle of ('RSMP'/OSMP̂  F 

RF Failure ratio 
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EVALUATION OF THE SOIL PARAMETERS  FOR LEIGHTON-BUZZARD SAND (eB = .53) 
FOR USE IN THE MODIFIED SMP MODEL 

• Elastic Parameters. B and G 1— e e 
The elastic bulk modulus, B , was evaluated based on triaxial test 

e 

data obtained on Leighton-Buzzard sand (e0 = .53) by Kolbuszewski (1965) 

and on Silver sand (e0 = .55) by Andrawes (1964). These data were 

retrieved from the work published by Stroud (1971). The elastic shear 
modulus, G was evaluated based on triaxial test data obtained on Silver e 

sand (e0 = .55) by Andrawes (1964). The Silver sand is also a coarse 

rounded sand and was considered by Stroud to have similar elastic 

properties as the Leighton-Buzzard sand. The variation of B g and G g with 

mean normal stress, o m is shown in Fig. 3.2.1 where the log-log plots of 

B /pa and G /pa versus o /pa are presented. From this figure, the e e m 
following equations for B g and G g were evaluated: 

B = 580 Pa (o /Pa),6° m 

G = 620 Pa (o /Pa)'63 
m 

i.e.: KB = 650, m = .60, and KG = 620, n = .63. e e 

• Plastic Parameteres 

The evaluation of the plastic parameters G , u, X, (x„.._,/O-,.,-.) , , 
p SMP SMP 1 

Mipun/Opu,,) and R„ is described below, onr orlr r 
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Figure 3.2.1 Variation of B e and G g with Mean Normal Stress 
W OO 



• Plastic Shear Modulus Parameter, G P 

The procedures to evaluate the plastic shear modulus parameter, G^ as 

a function of o S M p from simple shear data are exactly the same as that 

outlined in the main text (section 3.1) from the triaxial data once the 

values of the principal stresses a l t a J t and o 3, and the values of the 

increments of plastic strain Ae P, Ae P, and Ae p are known from each test. 

Based on the laboratory data published by Stroud (1971) the above 

quantities were obtained as presented in Appendix 3.3, and in turn the 

values of the stress ratio (i^/Opun) and the plastic shear strain _ 
SMP SMP SMP 

evaluated. Based on these two quantities, Figs. 3.2.2 and 3.2.3 were 
developed. The plot of TgM p/^xSMP /oSMP^ v e r s u s ^SMP i s s h o w n i n 3 » 2 - 2 

and the log-log plot of (G ) . versus (oCM_)./Pa) is shown in Fig. 3.2.3. 
p x oar  x 

From this figure, the value of G^ is obtained and is given by: 

G = 335 (o /pa) , A 8 
p m 

i.e., KG = 335 np = -.48. 
P 

• Flow Rule Parameters u and X 

Manipulating Stroud's data and following the procedures described 

earlier in Appendix 3.1, the plot of tS M P//°SMP v e r s u s ~ A eSMP^ A^SMP 

presented in Fig. 3.2.4. From this figure, the following flow rule 

parameters are evaluated: 

ji = .20 

X = 1.20 



SMP 

Figure 3.2.2 Plot of (r^P/ ( TSMP / OSMP ) ) versus R| 
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• Failure Parameters ( T S M p / ° S M p ) i • A ( x S M P / o S M P ) a n d RF 

The values of ( x S M p / ° S M p ) F versus ( o S M p ) F / p a are presented in a 

semi-log plot in Fig. 3.2.5 and from this figure ^smp^sMP^F i s g i v e n b y 

the following equation, 

' W W F " - 8 6 2 " '°8 ( ° S M P / P a ) 

i.e. 

' W W l = - 8 6 2 

and 

A ( T S M P / O S M P ) = - 0 8-

The failure parameter R p was obtained using the ^sMP^SMP^ult values 

obtained from Fig. 3.2.2 together with the ( T S M P/°SMP^F v a l u e s o b t a i n e d 

above. From those values, a ( Rp) f l V = « 9 5 7 w a s obtained. 

A summary of the soil parameters for Leighton-Buzzard sand (e0 = .53) 

is presented in Table 3.2.1. 





Table 3.2.1 

Soil Parameters for Leighton-Buzzard Sand (en=.53) 
for use in the SMP Modified Model 

Elastic 
K G e = 620 
n = 0.63 

Parameters KB = 580 e 
m = 0.60 

Plastic Shear 
Modulus 

KG -5 o r p = 335 

Parameters np = -.48 

Flow Rule Vi = .20 
Parameters X =1.20 

Plastic 
Parameters 
Plastic 
Parameters ,Tsmp. 

o '1 atm. = .862 
smp 

Failure 
Parameters = .08 o smp 

( V a v = ' 9 5 ? 



A) EVALUATION OF oa,_o,,_o, and Ae P. Aef, Ae P FROM SIMPLE SHEAR DATA ON 
LEIGHTON-BUZZARD SAND (Stroud. 1971) 

B) EVALUATION OF THE MOBILIZED o :(shown in Fig. 3.5 of the Main Text) 



A) Evaluation of o 1, o 2, o 3 and Ae P, Ae P, Ae P from Simple Shear Data on 
Leighton-Buzzard Sand (Stroud, 1971) 

From the laboratory test data reported by Stroud (1971) (simple shear 

tests with constant vertical stress) on Leighton-Buzzard sand, the 

following figures were retrieved: 

• Fig. 3.3.1 - plot of t versus s 

where: 

t = (O1-O3)/2 

s = (a^a^/2 

and 

o l f o 3 = major and minor principal stresses 

• Fig. 3.3.2 - plot of (t/s) versus y 

where: 

r = 

and 

e l f e 3 = major and minor principal strains 

Fig. 3.3.3 - plot of (Av/Af) versus y  (t/s) 





Figure 3.3.3 Plot of (AV/Ay) versus r (after Stroud, 1971) 



where: 

Av = Aex + Ae3 

Af = Ae : - Ae3 

and 

Ae 1,Ae 3 = major and minor increments of principal strain 

• Fig. 3.3.4 - plot of (o2/s) versus y 

where: 
o 2 = intermediate principal stress 

From the data shown in the above 4 figures the following tables were 

developed: 

• Table 3.3.1 for test D44 (ov = 48 kPa); 

• Table 3.3.2 for test D14 (oy = 76 kPa); 

and 

• Table 3.3.3 for test D13 (oy = 172 kPa). 

These tables were developed in the following manner: 

a) From Fig. 3.3.1 values of s and t were obtained for each data point. 

b) With the above s and t values the ratio (t/S) is obtained. Entering 

this (t/s) value in Fig. 3.3.2 the corresponding shear strain y  is 

evaluated. 

c) Entering this y  value in Fig. 3.3.4 the value of o2/s is obtained and 

in turn that of o 2. 

d) The values of o x and o 3 are obtained as follows: 



a -OA 

tazt 

• DAI 
0 D44 
A D42. 
+ .D47 
<> D49 

—I 1 
O-IO _ OlS 

— 

O a 
S 

o a 

0 - 6 l 

0-4 * -t" 
OOS" 

Figure 3.3.4 Plot of (o2/s) versus y (after Stroud, 1971) 



Table 3.3.1 

Reduction of Data From Simple Shear Results 

o v = 48.27 kPa . 

s 
(kPa) 

t 
(kPa) 

t/s r o2/s (t/s)av Av/Ay A r Av 

34.9 13.4 .385 0.0 .615 34.9 13.4 .385 0.0 .615 
.420 N/A 0.00140 N/A 

30.0? 13.8 .46 0.00140 .675 
.420 N/A 0.00140 N/A 

30.0? 13.8 .46 0.00140 .675 
.525 .040 0.00140 +.000560 

37.0 22.0 .59 0.00280 .690 
.525 .040 0.00140 +.000560 

37.0 22.0 .59 0.00280 .690 
.605 -.070 0.00137 -.000096 

42.0 26.0 .62 0.00417 .700 
.605 -.070 0.00137 -.000096 

42.0 26.0 .62 0.00417 .700 
.655 -.150 0.00623 -.000935 

49.0 34.0 .69 0.01040 .720 
.655 -.150 0.00623 -.000935 

49.0 34.0 .69 0.01040 .720 
.700 -.234 0.00490 -.001147 

54.0 39.0 .71 0.01530 .730 
.700 -.234 0.00490 -.001147 

54.0 39.0 .71 0.01530 .730 
.720 -.270 0.00900 -.002430 

59.0 43.0 .73 0.02430 .740 
.720 -.270 0.00900 -.002430 

59.0 43.0 .73 0.02430 .740 
.745 -.350 0.05070 -.017740 

64.8 49.3 .76 0.07500 .740 
.745 -.350 0.05070 -.017740 

64.8 49.3 .76 0.07500 .740 



Table 3.3.2 

Reduction of Data From Simple Shear Results 

o y = 75.8 kPa 

s 
(kPa) 

t 
(kPa) 

t/s r o2/s <t/s)av Av/Af A r Av 

54.8 21.1 .385 0.0 .615 54.8 21.1 .385 0.0 .615 
.448 N/A .0028 N/A 

70.3 36 .51 .0028 .690 
.448 N/A .0028 N/A 

70.3 36 .51 .0028 .690 
.555 .020 .0025 .00005 

76 46 .60 .0053 .710 
.555 .020 .0025 .00005 

76 46 .60 .0053 .710 
.635 -.085 .0072 -.00061 

85 56 .67 .0125 .725 
.635 -.085 .0072 -.00061 

85 56 .67 .0125 .725 
.695 -.190 .0111 -.0021 

93 67 .72 .0236 .740 
.695 -.190 .0111 -.0021 

93 67 .72 .0236 .740 
.740 -.280 .0564 -.0158 

99.3 74.8 .75 .0080 .740 
.740 -.280 .0564 -.0158 

99.3 74.8 .75 .0080 .740 



Table 3.3.3 

Reduction of Data From Simple Shear Results 

o v = 172 kPa 

s 
(kPa) 

t 
(kPa) 

t/s r a 2 /s (t/s)av Av/Af A R Av 

124.5 47.9 .385 0.0 .615 124.5 47.9 .385 0.0 .615 
.440 N/A 0.0028 N/A 

138 67 .49 0.0028 .690 
.440 N/A 0.0028 N/A 

138 67 .49 0.0028 .690 
.545 0.045 0.0048 +.000216 

161 96 .60 0.0076 .715 
.545 0.045 0.0048 +.000216 

161 96 .60 0.0076 .715 
.635 -0.114 0.0083 -.000946 

201 135 .67 0.0159 .735 
.635 -0.114 0.0083 -.000946 

201 135 .67 0.0159 .735 
.685 - .235 0.0105 -.002470 

216 152 .70 0.0264 .740 
.685 - .235 0.0105 -.002470 

216 152 .70 0.0264 .740 
.705 - .298 0.0083 -.002470 

228 163 .71 0.0347 .740 
.705 - .298 0.0083 -.002470 

228 163 .71 0.0347 .740 
.720 - .330 0.0195 -.006430 

234 170 .73 0.0542 .740 
.720 - .330 0.0195 -.006430 

234 170 .73 0.0542 .740 
.730 - .350 0.0258 -.009030 

241 176 .73 0.0816 .740 
.730 - .350 0.0258 -.009030 

241 176 .73 0.0816 .740 



o 1 = s + t ; o 3 = s - t (3.3.1) 

e) From the values of every two consecutive rows, in the tables, the 

following quantities are obtained: 

A r = r — y 
row(i+l) 'row(i) 

(3.3.2) 

°irow(i+l) 0lrow(i) 
A o ' = °2row(i+l) ~ °Jrow(i) 
A ° 3 °3row(i+l) °3row(i) 

(3.3.3) 

(t/s) = [(t/s) + (t/s) ,.J/2 av row(i+l) row(i) (3.3.4) 

f) Entering the value of (t/s)av in Fig. 3.3.3 the corresponding value of 

(Av/A-jO is obtained. 

g) Using the value of Af from eq. (3.3.2) and the value of (Av/Af) 

obtained above the value of Av is evaluated. 

h) The values of AE J and Ae3 are evaluated as follows: 

and 

Aet = (Av+Ar)/2 

Ae 3 = (Av-Ar)/2 

Ae 2 = 0 from boundary conditions 

(3.3.5) 

i) The mean normal stress, o is evaluated using.the values of m 
o^(i=l,2,3) obtained above in (c) and (d) together with the following 

equation: 

°m = 3 + °2 + °3) (3.3.6) 



j) Using the values of KG e > n and KB g and m obtained in Appendix 3.2, the 

moduli G g and B g are obtained using the following equations, 

G = 620 pa (o /pa)'63 (3.3.7) e m 

B = 580 pa (o /pa),6° (3.3.8) e m 

where o is the value obtained above in (i). m 
k) Using the relationship between Poisson's ratio, \), and G and B, the 

Poisson's ratio is obtained as follows: 

\j = (3B -2G )/(6B +2G ) (3.3.9) e e e e 

and in turn the Young's modulus, E obtained using the equation 

E = 2(l+\i) G (3.3.10) e e 

e e e 
i ) The increments of elastic strain Ae x, Ae 2, Ae3 are then obtained using 

Hooke's Law: 

Ae (AOJ - v(Ao2 + AO 3) 

Ae! 
e 

v(Aoa + AO 3) (3.3.11) 

e 

A e 

3 = r 
e 

- v(Ao1 + AO 2) 



m) Assuming that the increments of strain are composed of increments of 
e p elastic strain, Ae , and increments of plastic strain Ae , i.e. 

Ae. = Ae? + Ae? (i = 1,2,3) (3.3.12) i l l 

than the values of Ae? are evaluated from the values of Ae^ (given by 
eq. (3.3.5)) and the values of Ae^ (given by eq. (3.3.11)), i.e. 

Aep = Ae1 - Ae® 

AeP = Ae3 - Ae3 

and since Ae2 = 0 

Ae? = - Ae® 

B) Evaluation of the Mobilized o During Shear (Shown in Fig. 3.5 of the 
Main Text) 
For the tests carried out with constant vertical stress (i.e. o = 

z 
const.) the following equality is observed: 

o. + a = o + o 1 3 z x 
or (3.3.13) 

o = o, + o, - a x 1 3 z 



entering the values of ox and o3 from eq. (3.3.1) and the value of o 
correspondent to each test into eq. (3.3.13) the values of o were 

X 
evaluated. 
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EVALUATION OF THE SOIL PARAMETERS FOR OTTAWA SAND (D = 87%) . FOR USE IN 
THE MODIFIED SMP MODEL 1 

The stress paths used to generate the data base for modelling are 
shown in Fig. 3.4.1 together with the description of each test. 

3.4.1 Evaluation of Elastic Parameters 
• Evaluation of G e 

To obtain KGg and n, plots of (y/x)  versus y  were developed from the 
unload data of the conventional triaxial compression tests CTC-5 and CTC-10 
(5 and 10 mean the initial, prior to shear, confining pressure in psi). As 
it is shown in Fig. 3.4.2 three values of (G ) . were evaluated. One from 

e. v e i 
the only unload cycle of test CTC-5 and two values of (G ) . from the 2 

e I 

unload cycles of test CTC-10. The mean normal stresses prior to the 
unloading for each unload cycle is also presented in the figure. To obtain 
KG a log-log plot of ((G )./p ) versus (o (prior to unload)/p ) was 
6 6 1 d ID 3 

developed and it is presented in Fig. 3.4.3, and from this figure values of KG = 1640 and n = 0.49 were obtained. Therefore the G for Ottawa sand e e 
(Dr = 87%) is given by the following equation: 



Figure 3.4.1 Stress Paths Used to Generate the Data Base 
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Figure 3.4.2 Plot of {f/i) versus f obtained from the Unload CTC Data 
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• Evaluation of B e 
To obtain the KBg and m parameters the procedures proposed by Byrne 

and Eldridge (1982) are followed. Based on data from conventional triaxial 
isotropic consolidation tests, Byrne and Eldridge shown that the volumetric 
strain, e , due to consolidation can be related to the mean normal stress, ' v 
o m in the following manner: 

e = a(o J1 m (3.4.2) v m 

where: 
a = soil parameter 

Using the unloading part of the data of test HC (hydrostatic 
compression) and plotting the above relation on a log-log stress strain 
plot, Fig. 3.4.4 is obtained. From this figure m and KBg are evaluated as 
follows: 

i) (1-m) is the slope of the average line through the laboratory data 
points 

ii) KB = (3.4.3) 
e a(1-m)(Pa)1 m 

From this figure, a = 0.00007, m = .25 and KBg = 2578 are obtained. 
Substituting these values in Eq. (3.4.3), Bg is obtained by: 

B = 2578 Pa (o /Pa)'25 e m 
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3.4.2 Evaluation of Plastic Parameters 
• Evaluation of the Plastic Shear Modulus Parameter, G p 

Using the laboratory data of tests CTC and CTE and following the 
procedures outlined in Appendix 3.1 (section 3.1.2.1), plots of ^S M P^SMP^ 

versus r?uri were obtained as shown in Fig. 3.4.5. 
SMP 

To obtain (Gp). and <*SMp/°SMp>ult. plots of rPMp/^SMp/°SMp> v e r s u s 

^SMP w e r e developed from the CTC and CTE laboratory data and are shown in 
Fig. 3.4.6. From this figure the values of (Gp)i and (TsMP^°SMP^ult w e r e 

obtained as shown. 
To obtain KG and np, plots of (G ). versus ((oOVjrT,) ./Pa) in a log-log p p i SMP l 

plot were developed as shown in Fig. 3.4.7. In this figure the values of 
(G ). and (o )./pa obtained from all the triaxial tests of the workshop p i smp l p 
Data base are shown. Since the lab data does not follow a single line an 
average line is considered and shown as a dashed line, and from it a KG = & P 
190 and a np = -.50 are obtained. Therefore the shear parameter (Gp)^ for 
Ottawa sand (D̂  = 87%) is given by the following equation 

(G ). = 190 (o Mp/Pa) -5° (3.4.5) p 1 SMr 

• Evaluation of the Flow Rule Parameters yi and X 
The equation that expresses the flow rule on the SMP was given earlier 

in Chapter 3 (eq. (3.21)) and is reproduced below 

(TSMP/oSMP) = M " ^SMp/^SMp) + * 

Following the procedures outlined in section 3.1.2.2 of Appendix 3.1 with 
the Data base of the workshop, the flow rule relationship shown in Fig. 
3.4.8 was obtained. 
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Figure 3.4.6 Plot of (r§Mp/(xSMP/oSMP^ versus RF 
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from this figure values of (i = .25 and X = 1.1 were evaluated from the 
dashed line which represents the average of all data points. 

3.4.4 Evaluation of the Failure Parameters 
Following the procedures outlined in section 3.1.2.3 of Appendix 3.1 

the stress ratio at failure for all the Data base tests were plotted 
against log j0((ogMp)f/Pa) where (°SMp)F i s t h e mobilized normal stress on 
the SMP at failure. This relationship is shown in Fig. 3.4.9. Considering 
the dashed lined as being representative of the average laboratory data 
points shown in Fig. 3.4.9, values of (TgMp/°sMP^l = * 9 3 5 a n d A^TSMP^°SMP^ 
= .62 were obtained and constitute the failure parameters of the modified 
SMP model. 

Finally to obtain the parameter Rp the ratios between ^ S M P^ S MP^F a n d 

("t„wri/o_v,ri) , ̂  were evaluated for all the tests and an average value (R„) SMP SMP ult r av 
= .97 was obtained. 

A summary of all soil parmeters for Ottawa sand is presented in the 
following Table 3.4.1. 
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Table 3.4.1 
Soil Parameters for Ottawa Sand (D = 87%) 

for Use in the SMP Modified Model . 

K Ge = 1640 n = 0.49 Elastic 
K Be = 2578 m = 0.25 

Parameters 

K Gp = 190 np = -.50 
Plastic Shear 
Modulus Parameters 

\i = .25 Flow Rule 
X = 1.10 Parameters Plastic 

Parameters Parameters 
T SMP 

S M P 1 = « 9 3 5 

A( T s M P) = .62 

T SMP 

S M P 1 = « 9 3 5 

A( T s M P) = .62 
Failure Parameters 

°SMP 
( V a v = * 9 7 



STRAIN SOFTENING FORMULATION FOR USE IN THE MODIFIED SMP MODEL 



Strain Softening Formulation for use in the Modified SMP Model 

To analytically study the effects of strain softening, a formulation 
taking these effects into account was implemented in the modified SMP model 
and follows similar procedures as that outlined by Carter and Yeung 
(1985). 

A sketch of the relationship between the stress ratio on the SMP, 
TSMP//°SMP' a n d t*ie plastic shear strain on the plane, f°r a strain 
softening material, is shown in Fig. 3.5.1. From point 0 to point F the 
material is hardening until the mobilized stress ratio reaches the value 
^TSMP^°SMP^F* F r o r a P°int F °nf the sand starts to exhibit softening, and 
that is taken into account as follows: 

a) After peak failure the plastic shear modulus, G^, is obtained using 
the following equation: 

(x SMP/°SMP)R SMP/°SMP)F 
CAT? > 

(3.5.1) 
SMP sof 

where: 

SMP/oSMP)R )_, = residual stress ratio of the sand 
(x SMP/°SMP)F 
LyP ) SMP sof 

peak failure stress ratio of the sand 
(Ar = increment of plastic strain characterizing the degree 

of softening and given by the equation: 

•P ) SMP R 



where: 
(ry ) SMP R 
( rp ) SMP F 

residual plastic shear strain correspondent to point R 
plastic shear strain at peak failure, correspondent to 
point F 

It may be seen from eq. (3.5.1) that (Gp)gof» will be negative since 

^TSMP/°SMP)R * (xSMP/oSMP^F a n d t h a t w i l 1 d e v e l ° P t h e d e s i r e d strain 
softening characteristics of the sand. 

b) Since the sand is softening from point F to point R the new failure 
stress ratio at a point A, (T̂ /̂Or,,.-,) . located between F and R will be 

SMP SMP A 
obtained using the following equation: 

.XSMP, = .TSMP, 
o„„_ A o„WT, F SMP SMP 

XSMP. _ ,XSMP> 
o„w_ F { o ' R SMP SMP 

( r P ) 'SMP A 
(rR ) 
"SMP R 

(3.5.3) 

where: 
^SMP^A = ra°bilized plastic shear strain at point A. 

c) When the residual plastic shear strain, (Tĝ p)̂  is reached, will be 
defaulted to a prescribed low value and ( T S Mp / o S Mp) F = ^TsMP/aSMP^R' A t 

the same time the parameter X of the SMP flow rule is defaulted to in 
order that no more volumetric strains take place. 

To summarize only two additional soil parameters are required to take 
into account the strain softening behaviour of sand and consist of: 



(TCVM/ AOVM)R> = the residual stress ratio on the SMP, and SMP SMP R 

^SMP^R = residual shear strain on the SMP. 

For Ottawa sand these two parameters were assessed with the value 
( T S M P / ° S M P ) R = , 6 1 , i , e ' t h e e cl u i v a l e nt to <J>CR = 33° and ( R S M P ) R = -50 
which was obtained by trial and error. 

Figure 3.5.1 Strain Softening Behaviour on the SMP. 
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IMPLEMENTATION OF THE "THIN" INTERFACE ELEMENT 
INTO THE FINITE ELEMENT FORMULATION 

The implementation of this interface element into 3-D and 2-D F.E. 
formulations is described below: 

4.1.1 3-D Formulation 
(a) Transformation of stresses 

Let us consider the 3-D "thin" interface element, shown in the main 
text Fig. 4.1(b), defined in its local coordinate system (n,s,t). This 
coordinate system is related with the global coordinate system (x,y,z) by 
the direction cosines S., m. and n. (i = 1,2,3) as is shown in Table 4.1.1. 

1 1 l 

Table 4.1.1 
Table of Direction Cossines Between Axes of the Local 

and Global Coordinate Systems (3-D) 

X y z 
s mi ni 
t 22 m2 n2 
n »3 m3 n3 

At the beginning of every load step the cartesian stresses {o}, which 
are defined in the global coordinate system (x,y,z) are transformed into 
the stresses £o*}, which are defined in the local coordinate sytem (n,s,t). 



Such transformation of stresses is obtained using the equations published 
by Cook et al. (1989) which are reproduced below: 

{o*} = [To] {0} (4.1.1) 

where: 
[T ] = stress transformation matrix, which is given by: o 

and 

[To] = 
2TT 

— T T 2 s AT 
(4.1.2) 

[TQ] 

iV n^ 
fi22 m2 2 n2 2 

i 3 2 m 3 2 n3»_J 

(4.1.3) 

[TR] 

Jjmj m!ni ni®i 
J2m2 m2n2 n 22 2 

£3m3 m3n3 n3i3 

(4.1.4) 

2m1mJ 2nxn2 
[Ts] = 2S2S3 2m2m3 2n2n3 (4.1.5) 

2m3m1 2 n 3 n i -



(£ 1m3 + iJm1) (m1nJ + raJn1)(n1£2 + n22j) 
(22m3 + 23m2)(m2n3 + m3n2)(n223 + n322) 
CS 3m1 + 21m3)(m3n1 + m1n3)(n321 + njJ3) 

Once the {o*} stresses are obtained, only the normal stress on the 
interface plane, o^ and the shear stresses on this plane, and x̂. are 
considered to evaluate the normal modulus E„ and shear modulus G. as will 

w r 
be described next. The other stresses are neglected as recommended by 
Desai (1984) since they represent coupling effects that are difficult to 
determine from laboratory tests. 

(b) Constitutive Matrix 
Now that the stresses are evaluated in the local coordinate system of 

the element, (n,s,t), its constitutive matrix [D*] can be evaluated as well 
in this system and that is done as recommended by Desai (1984) . The [D*] 
matrix is composed of two components, a normal component D* and a shear 
component D*, as is described below: 

0 0 0 

0 0 0 
0 0 0 

[D*] 0 [D*] (4.1.7) 
0 0 0 D* 0 0 
0 0 0 0 D* 0 
0 0 0 0 0 D* 



D* = _ l O = & = E 
U1 (1+\J) (l-2v) N 

D* = Ev 
2 (l+\>) (l-2v) 

D* = D* = D* = G t (assumes an isotropic shear behaviour on the 
interface plane) 

Desai is not too clear on the role of Poisson's ratio, \), in the above 
formulation. To be consistant with the E^ definition, the writer attribu-
ted low values for v such as .1 except for the closed form solution example 
that will be presented. 

As described in the main text in Section 4.3, the E„ and G. moduli are 
N t 

independent of each other and are controlled by the local stresses. The E^ 
modulus is controlled only by o^ and the Gt modulus is controlled by the 
shear stresses t and x. . When o„ > 0 the normal modulus, E„, is given by s t N .N 
eq. (4.7) (main text). If o^ S 0 then E^ is defaulted to a small value. 
When IT I and IxJ are less than T, the shear modulus, G. , is given by eq. s t I r 
(4.5) (main text), and assuming that the shear behaviour of the interface 
is isotropic in the shear directions, s and t, the G modulus will be 
defaulted to a small value whenever |x I or |x.I are greater than x,. 

s t t 

Based on the writer's experience, defaulted values for E^ and G^ in the 
range of Pa/100 to Pa/1000 give reasonable results. 

Now that the constitutive matrix [D*] is defined in the local 
coordinate system of each element, this matrix needs to be transformed into 
the constitutive matrix [D] defined in the global coordinate system. That 
is done following the equation published by Cook (19 ): 



[D] = [ T / [D*] [T£] (4.1.8) 

where: 

[TE] = R (4.1.9) 

where T^, TR, Tg and T T are given by eq(s). 4.1.3 to 4.1.6 respectively. 
Finally the stiffness matrix [K] of each interface is obtained as any 

other standard solid element using the following equation: 

[K] = J [B]1 [D][B] dV 
V 

(4.1.10) 

where [B] is the strain-displacement matrix of the element and V is the 
element volume. 

4.1.2 2-D Formulation (Plane Strain) 
Let us consider the 2-D "thin" interface element, shown in the main 

text Fig. 4.1(a), and defined in its local coordinate system (n,s). 
Defining {3 as the angle between the axis z and n the relationship between 
the local and global coordinate systems is given by the direction cossines 
presented in Table 4.2. 

Table 4.1.2 
Table of Direction Cossines Between Axis of the Local 

and Global Coordinate Systems (2-D) 

X z 
s ij = cosj? nj = sinp 
n i3 = -sinp n3 = cosp 



As for the case of the 3-D formulation the cartesian stresses {o} are 
transformed into the local stresses {a*} following eq. (4.1.1) which is 
reproduced below: 

{o*} = [To3 Co} 

For the case of the 2-D formulation, the stresses transformation matrix, 
[To] is given by: 

[Tc] = 
c2 s2 2cs 
s2 c2 -2cs (4.1.11) 
-cs cs c 2 —s 2 

where: 
c = cosp 
s = sinp 

and the local constitutive matrix D* is given by 

[D*] = 
[D*] 

D* D* 0 
°2 0 (4.1.12) 
0 0 [D*] 

where the terms D*, D^ and D̂  are described as in eq. (4.14). 
As for the case of th 3-D formulation the constitutive matrix [D*] is 

transformed into the global constitutive matrix [D] following eq. (4.1.8) 
which is reproduced below: 

[D] = [Te]T [D*] [Te] 



For the case of the 2-D formulation, the matrix [T„] is given by: 

[TE] = 
c2 

s2 

-2cs 2cs 
cs 
-cs 

c 2 - s 2 

(4.1.13) 
2 S 

and the stiffness matrix [K] of each interface is obtained as follows: 

[K] = f  [B]T [D] [B] dA (4.1.14) 

where A is the area of the element. 

4.1.3 Load Shedding Formulation 
The importance of redistributing the stresses of the standard soil 

elments that violate the failure criterion through shear or tension was 
emphasized earlier in Chapter 2 (section 2.7). The case of the interface 
elements is no different than any standard soil element. Therefore the 
load shedding technique described in Chapter 2 was adapted to the "thin" 
interface element's formulation and that is presented in Appendix 4.2. 
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LOAD SHEDDING FORMULATION FOR INTERFACE ELEMENTS 

4.2.1 Load Shedding for Elements in Tension 
Physically an interface element fails in tension whenever the normal 

stress, o.T £ 0. To avoid excessive iterations, however, the following 
tension failure bound is used instead: 

If (-o„) £ -Pa/K the interface element is considered to have failed in .N 
tension, where a K = 100 has been used with success. 

The overshooting tensile normal stress to be load shedded is evaluated 
following the equation: 

{Ao*)LS = abs(-oN) (4.2.1) 

and the current normal stress is corrected using the equation 

corrected = ' V current + {A°*}LS ( 4' 2' 2 ) 

At the same time the load shedding force vector, IfĴ g is developed 
following the next two equations. The first equation transforms the local 
{Ao*}̂ g stresses into the global {Ao*}^ stresses as follows: 

< A O>LS = [ T o ] _ 1 { A ° * } L S ( A - 2 ' 3 ) 

where CT^] ~1 is the inverse matrix of [T ] which is given by eq. (4.1.2) 
(Appendix 4.1) for the 3-D formulation or eq. (4.1.11) for the 2-D 
formulation. The second equation evaluates the load shedding force vector 
{f)̂ g as follows: 



• 3-D formulation 

• 2-D Formulation 

The basis for eq(s). 4.2.4 have been already discussed in Appendix 2.5. 
This force vector, (f^S' aPPlied a t t^e nodes that define the 

interface element in question and that will develop equivalent stresses, 
{Ao} = {Ao}Tn, on the adjacent soil or structural elements because the eq LS J 

element that failed in tension has now a low defaulted E., value. The above 
w 

procedures, which maintain stress equilibrium, will be repeated until 
convergency is obtained within the same load step. 

4.2.2 Load Shedding for Elements in Shear Failure 
Physically an interface element fails in shear whenever the absolute 

value of the mobilized shear stress, |x I is greater or equal than the 
m 

resistant shear failure stress, T^. TO avoid excessive iterations the 
following shear failure bond is used instead: 

x 
If abs I - I i (1.0 + CONV) the interface element is considered to 

Tf 
have failed in shear, where a CONV = 0.05 has been used with success. 

The overshooting shear stress to be load shedded is evaluated 
following the equation: 

{AO*} T_ = AT = T_ - abslx I (4.2.5) LS f m 

T 
{f)LS = (AO) ls [B]1 volume 

{f} = {Ao)ls [B]T Area 
(4.2.4) 

and from this stage on the same procedures described earlier for the 
interface elements that failed in tension are followed. 
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EXTENSION OF MATSUOKA-NAKAI FAILURE CRITERION TO GRANULAR SOILS WITH 
COHESION AND FRICTION 

The fills used in the Molikpaq consist essentially of sand as will be 
described later in this thesis. However, fills commonly comprise silty 
sand soils which have limiting resistances characterized by a cohesion, C, 
and an internal friction angle, <J>. This is the case of the backfill used 
in the retaining wall field study carried out by Matsuo et al. (1978) (see 
main text section, 4.6.2). Therefore the modified SMP model was expanded 
to take into account the extra cohesion term as is described below. 

It is assumed that the factor of safety, FS, of a silty sand matrix is 
composed of two terms, the Factor of Safety due to cohesion, (FSC), and the 
Factor of Safety due to Friction, (FS</>). It is further assumed that the 
Total Factor of Safety, (TFS), is given by the following equation: 

TFS = FSC + FS <t> (A.3.1) 

By definition 
FS Resistant Shear 

Mobilized Shear ( A . 3 . 2 ) 

Using this equation the FS<J> term is defined as: 

FS<f> = ̂ SMP^SMP^  (tSMP/°SMP)m 
( A . 3 . 3 ) 

Comparing Eq. (A.3.3) with Eq. (2.77) of the main text it is concluded 
that: 



FS(j> = 1/SRL (4.3.4) 

where SRL = stress ratio level. 
To define the FSC terra, a similar approach is followed, but von Mises 

failure criterion is used instead: 

FSC = | T° C t^ F (4.3.5) 
oct ra 

where: 
Toct = I + ((O2-O,)/2)» + ((OJ-OJ)/2)s]1'* (4.3.6) 

(T „.)_ = octahedral failure shear stress oct F 
(x .) = octahedral mobilized shear stress oct m 

By analogy with eq. (4.3.4) the FSC term can be given by the following 
equation: 

FSC = 1/CL (4.3.7) 

where: 
CL = the cohesion level = (T .) /(T J,, 

oct m oct r 

Substituting eq(s). (4.3.4) and (4.3.7) into eq. (4.3.1) the following 
equation is obtained: 

TFS = 1/CL + 1/SRL (4.3.8) 



and inverting this equation the total stress level, TSL, is obtained: 

T S L " H*8'"1 = 1/CL I 1/SRL ( A' 3' 9 ) 

The meaning of this equation is that the Matsuoka-Nakai failure envelope 
instead of starting from the origin of the principal stress coordinate 
system starts from a circle with a radius = T o c t ' The failure envelopes 
for sands with and without cohesion in 2-D and 3-D stress spaces are 
schematized in Fig. 4.3.1. 



(a) 

Figure 4.3.1 Sketches of failure envelopes for granular material: (a) With 
friction and no cohesion; (b) With friction and cohesion 
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BRIEF DESCRIPTION OF THE METHOD DEVELOPED BY MANASSERO (1989) 

Manassero's method (1989) like other researchers assumes that the 
pressuremeter cavity expansion takes place under plane strain boundary 
conditions, that elastic strains are neglected and that Rowe's stress 
dilatancy theory is valid. However his method allows to infer the complete 
plane strain nonlinear nature of the stress and volume change of sand from 
the pressuremeter test data. This method is briefly described below. 

Combining the equilibium and compatibility equations (correspondent to 
the axisymmetric plane strain conditions) with Rowe's stress dilatancy 
equation Manassero obtains the following equation for a soil element 
adjacent to the pressuremeter face (see Appendix 5.2): 

^ r W ^ G f a c e = " ^ r W 1 + ( 1 / K ) face"[AeG) face):) 

/ ( < e r > f a c e - ( e e W ( 5 ' 1 ' 1 ) 

where: 
(Ao )_ = increment of radial stress = r face 

• ' " r W " " ^ r W 1 - " ( 5 - 1 ' 2 ) 

K = Rowe's constant = (l+sin<fc )/(l-sin<i ) 
cv cv 

<j>cv = the friction angle of sand at constant volume 
(Ae ), = increment of radial strain = r face 

" ^ r W " ' ^ r W 1 " 1 ) ( 5 ' 1 - 3 ) 

(Aert), = increment of circumferential strain = 6 face 
• ^ e W 1 ' " ^ e W 1 " " ( 5' 1- A ) 

i = l,n = the increment number 



Manipulating eq. (5.1.1), Manassero (1989) shows that (£r)face(i) c a n 

be obtained as follows: 

(e ), (i) = Ml + M2 + M3 + M4 (5.1.5) r face 

where Ml, M2, M3, and M4 are terms that are functions of (o ) (i) , 
r face 

^r^ace^" 1 5' (e9)face(i)» ( e9 ) face(i_1) a n d ( er ) face^"1* ' s e e A P P e n d i x 

5.2. 
Because when i=l, (o ), (i-1) = (a  )^  (o) = o. = the lift-off 

r face r face 0 
pressure and ( £ r)f a c e(°) = = all°ws the step by 
step computation of the unknown values of (er)face(i) f°r i=2 to n where n 
is the number of the last measurement data point. Once (e ) (i), 

r r face 
( e9 )face ( i ) a n d 'Vface^ a r e k n o w n ' t h e n ^Vface a n d ^Vface c a n b e 

computed using eqs. 5.1.3 and 5.1.4, respectively, and in turn (°g)face(i) 
evaluated using Rowe's stress dilatancy eq., i.e.: 

' " e W ^ = " " V f a c e ' ^ ' ^ r W ^ e W ( 5' 1' 6 ) 

D S 

To compute the mobilized plane strain friction angle, <f>̂  , at the 
pressuremeter face the following equation is used: 

C ( i ) = 8 i n " 1 ( ( ( V f a c e ( i ) " ' " e W ^ ' ^ r W " + ' " e W 1 " 

(5.1.7) 

and once these are evaluated, for i = 1 to n, the maximum mobilized 
friction angle or peak friction angle <J>ps can be easily obtained. 
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DEVELOPMENT OF MANASSERO'S (1989) INCREMENTAL EQUATION 

• From Rove's stress dilatancy theory 

a 1/a 3 = -K Ae3/Ae1 (5.2.1) 

where: 
o l fo 3 = the major and minor principal stresses 
K = (l+sin(f> )/(l-sin<|> ) cv rcv 
d> = the friction angle of sand at constant volume rcv 6 

AeltAe3 = the increments of major and minor principal strains 

Using the axisymmetric formulation eq. (5.2.1) takes the following 
form (within the plastic region) 

o /o_ = -K AeQ/Ae (5.2.2) r w o r 

where the subscripts r and 9 mean radial and circumferential, 
respectively. 

• From the equilibrium equation 

Ao /Ar = (oQ - o )/r (5.2.3) r o r i 

r = radial distance 



From the compatibility equation 

Ae./Ar = (e -eQ)/r (5.2.4) o r o 

Combining eqs. (5.2.3) and (5.2.4) the following equation is obtained 

(oQ-or)/Aor = (er-ee)/Ae6 (5.2.5) 

From eq. 5.2.2, oQ is given by o 

oQ = -(or/K)(Aer/Aee) (5.2.6) 

Substituting o0 into eq. (5.2.5) and rearranging the following is obtained 

o (1+(1/K) (Ae/AeJ) 
(Aor/Ae0) = - ( g _ (5.2.7) 

r 9 

to solve the above equation Manassero followed the numerical technique 
described below 

Ao = o (i) - o (i-1) r r r 
Ae0 = eQ(i) - e0(i-l) (5.2.8) 
Ae = e (i) - e (i-1) r r r 

where 
i = 1 to n is the number of the measurement data point (see Fig. 

5.2.1). 



Figure 5.2.1 Use of pressuremeter curve for numerical analysis (after 
Manassero, 1989) 



Substituting eq. (5.2.8) into eq. (5.2.7) and rearranging Manassero 
obtained the following equation. 

er(i) = Ml + M2 + M3 + MA (5.2.9) 

where: 

or(i)(e9(i-l) + (1/K)er(i-1) 
M 1 = 2(or(i)(l+(l/K)) - or(i-l) (5.2.10) 

-or(i-l)e0(i) 
M 2 = 2(o (i)(1+(1/K) - o (i-1) (5.2.11) r r 

or(i)(e0(i-l) - er(i-l)) 
M 3 = 2(1/K) o (i-1) (5.2.12) r 

o(i-l)(e (i-l)(l+(l/K) - efi(i)) 
M 4 = ~ 2(l/K)or(i-l) ( 5- 2' 1 3 ) 
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ASSESSMENT OF THE PEAK FRICTION ANGLE. <p  , AND THE ANGLE OF DILATION. \), 
FOR LEIGHTON-BUZZARD SAND (e„ = .53) IASEP ON THE SIMPLE SHEAR DATA 

REPORTED BY STROUD (1971) AND BUDHU (1979) 

It is a well known fact that for sands the peak angle <J>p = 
sin"1((Oj-O,)/(Oj+O,)) is stress path dependent. Several detailed 
investigations on the variation of $ with b-value have been reported and 
are shown schematically in Fig. 5.3.1. It may be seen that this variation 
is not unique. Arthur (1977) shows that for Leighton-Buzzard sand the 
variation of ̂  with b-value is as presented in Fig. 5.3.2. 

Based on the above, it was considered important to assess the expected 
mobilized b-value during the pressuremeter test path. Manipulating data 
from the F.E. analysis a plot of b-value versus shear strain, y  =  e1-e3, 
was obtained for the soil element adjacent to the pressuremeter face and is 
presented in Fig. 5.3.3. The variation of b-value with y  obtained from 
simple shear data reported by Stroud (1971) is also shown in the figure. 
It may be seen that the computed b-values at failure for the pressuremeter 
stress path agree extremely with those obtained from the simple shear test 
data. The data also show that the b-value at failure is independent of the 
Kq used in the analysis. 

From the above it is concluded that a failure surface based on simple 
shear test data can be used to assess the plane strain peak friction angle 
<J>ps correspondent to the pressuremeter test stress path conditions. 

Based on simple shear test data reported by Stroud (1971) and Budhu 
(1979) the failure surface (plane strain conditions) for Leighton-Buzzard 
sand was obtained and is presented in Fig. 5.3.A. The computed stress 
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Figure 5.3.1 Reported variation of <pv with b-value for sands (data 
collected by Sayao, 1989) 



Figure 5.3.2 Reported variation of <J>_ with b-value for Leighton-Buzzard 
sand (after Arthur, 1977) 



L E G E N D--

S i m p l e S h e a r D a t a 

P r e s s u r e m e t e r  D a t a 

b - V A L U E = 0 . 3 3 

Figure 5.3.3 Variation of b-value with shear strain (based on measured 
simple shear test data and computed pressuremeter test data 

(CT, +CT3)/2 

Figure 5.3.A Failure surface for Leighton-Buzzard sand (b-value = 0.33) 



paths mobilized at the face of the pressuremeter correspondent to Ko(s) = 
.45, 1.0 and 2.0 are also shown in the figure. It may be seen that values 
of <b p s = 46.4 (K = 1.0); <|>pS = 46.0 (K = 2.0) and <p p S  = 45.6 (K = .45) T p o P ° P 0 

were computed from the analysis. Based on the above, an average value of 
<j)pS = 46 and an average value of o m = 600 kPa (at failure) are obtained. 

To assess the expected dilation angle, v, for the pressuremeter test 
stress conditions, the simple shear data reported by Stroud (1971) and 
Budhu (1979) was also used here and the variation of \J with mean normal 
stress, om, inferred from these tests is presented in Fig. 5.3.5. Using 
the average value of o^ = 600 kPa, a value of v = 15° is obtained. 

Based on the above, it is concluded that a value of <bps = 46° and v = 
P 

15° are representative of the strength and dilation characteristics of 
Leighton-Buizzard sand (correspondent to an average value of o^ = 600 kPa) 
for the pressuremeter test stress conditions analyzed in the main text. 



(cr1 + 0"3 )/2 

Figure 5.3.5 Variation of the dilation angle v with mean normal stress 
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RELATIONSHIP BETWEEN KG and G„„ 
e nn 

The elasic tangent shear modulus G is defined in the modified SMP 
model as follows: 

° i + 0 2 + 0 3 n 

G. = KG Pa (— ) n (5.4.1) 
t e JPa 

Using the pressuremeter initial lift-off conditions this equation takes the 
form 

o +o +oft 

where: 
o = the initial vertical stress vo 
o = the initial radial stress ro 
o„ = the initial circumferential stress So 

Since o = o. = K o , then ro Go o vo 

o (1+2K ) 
Gt = KGe Pa ( V ° 3 p a ° ) n (5.4.2) 

The maximum shear modulus for horizontal loading G ^ is evaluated by the 
following equation: 

G* GutJ = — a_. (see eq. 5.24, main text) nn Gtp u 



Assuming that G ^ can be expressed as 

GHH • ' F S S A > N 

Dividing eq. (5.4.2) by eq. (5.4.3) the following relationship is obtained 

G. = ((1+2K )/3K )N GU (5.4.4) t o o HH 

Assuming that n = 0.5, common value for sands and substituting eq. (5.4.4) 
into eq. (5.4.2) the following equation is obtained 

KGe • ( ;rV> 0'5 gHH 
v0 o 
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EVALUATION OF SOIL PARAMETERS FROM PRESSUREMETER TEST DATA. FOR USE IN THE 
MODIFIED SMP MODEL 

As described in the main text Manassero's method was applied together 
with eq. (5.33) to the finite element generated response for plane strain 
conditions with the outer boundary at infinity for Leighton-Buzzard sand 
(KQ = .45). The predicted values at the face of the pressurementer of 
(o ), , (ort), , and (e )_. , by the above method and equation, v face' 9 face' r face J ^ 
together with the input values of (°r)face a n d ^ee^face w e r e s ^ o w n i-n Fig. 
5.20(a) and (b) of the main text. These set of data will be used next to 
evaluate plastic soil parameters for use in the modified SMP model. 

The elastic soil parameters, KGg, n, KBg and m are assumed here to be 
known and equal to the elastic parameters used in the F.E. analysis because 
pressuremeter test data from unload reload loops in Leighton-Buzzard sand 
for plane strain boundary conditions with outer boundary at infinity are 
not known. Therefore values of KG = 620, n = .60, KB = 580 and m = .63 

e e 
(see Table 5.1 of main text) will be used for the computations that follow. 

The plastic soil parameters used in the modified SMP model consist of 
the following (see main text chapters 2, 3, and 5): 

• Hardening Parameters 
• Flow Rule Parameters 
• Failure Parameters 

To evaluate these parameters, the procedures described in Chapter 3 
together with the above elastic parameters and the set of data shown in 
Fig. 5.20 of the main text, were used here as follows: 

KG and np P F 

p and X 
( T  / O ). , A ( X  / O ) and R. 
Rtnn smn ± <?mn qmn smp smp smp smp 



- Evaluation of Hardening Parameters, KG^ and np 
The above parameters KG^ and np are used to define the initial shear 

parameter, by the following equation (see eq. 3.20, Chapter 3) 

Gpi = K Gp (°SMP / P a ) n P ( 5' 5- 1 ) 

and this parameter is used to define the tangent shear plastic parameter, 
Gp, by the following equation (see eq. 3.16, chapter 3) 

G = G . (1 - R_ SRL)a (5.5.2) p pi F 

where: 
Rp - the failure ratio = <TSMp/°SMp>F/<-rSMp/oSMp>ult (5.5.3) 

and 
SRL = the stress ratio level 

The above quantities have been defined in chapter 3. 
To evaluate G . and (xc„T,/o(,v,T3) a relationship between pi SMP SMP ult 

^SMP/^SMP/oSMP^ a n d rSMP W a S o b t a i n e d u s i n 8 t h e d a t a shown in Fig. 5.20 
and is presented in Fig. 5.5.1. It may be seen that for shear strains TgMp 

> 0.1 the above relationship plot in a straight line with an intercept a = 
.0032 and a slope b = 1.205. Since G . = (a)'1 and (T_MT,/o_Mr,) = (b)"1 r pi SMP SMP uit 
(see chapter 3) then the following values are obtained 

G . = 312 Pi 



Figure 5.5.1 Evaluation of Gp_ and (TsMP//°SMP^ult 



and 

( W W u i t  • - 8 3 0 ( 5 - 5 - A ) 

To evaluate KG equation (5.5.1) is used below, i.e. P 

KG_ = G . (oOMt3/Pa) n p 
pi x SMP' 

Since a„ur, = 110 kPa is the initial normal stress on the SMP (for K = SMP o 
.45) and assuming that np = -0.5, common value for sand (based on the 

writer's experience), then it follows that KG^ = 325. 

- Evaluation of Flow Rule Parameters 

To evaluate the flow rule parameters yi and X, a relationship between 

(T g Mp/o S Mp) and (~Ae|Mp/Ar| Mp) was obtained and is presented in Fig. 5.5.2. 

The solid line shown in the figure represents the flow rule obtained 

earlier (chapter 3) from the simple shear data reported by Stroud (1971) . 

It may be seen that the solid line almost coincides with the average of the 

data points (dashed line) predicted, by the present study. This line has an 

intercept jj = .195 and a slope X = 1.22, which are the flow rule parameters 

required. It should be noted that these same parameters can be obtained 

from laboratory testing on remolded (or disturbed) samples of sand and 

therefore its evaluation can be verified at a later stage. 

- Evaluation of Failure Parameters 

The failure parameters used in the modified SMP model are listed 

below: 



Figure 5.5.2 Evaluation of flow rule parameters 



R = the failure ratio (see eq. (5.5.3)) r 
(•r„WTyo„WTJ , = the failure stress ratio at 1 atmosphere SMP SMP 1 

A(Tf,w„/of,„„) = the decrease in failure stress ratio for a 10 fold 
SMr aMr 

increase in o-̂ .,, SMP 

• Evaluation of R^ 

Manipulating the data a relationship between the mobilized stress 

ratio ( T S M p / o S M p ) m o b a n d l o g l 0 ^°SMP /pa^ w a s o b t a i n e d a n d i s presented in 

Fig. 5.5.3. The solid line shown in the figure represents the failure 

surface obtained earlier (chapter 3) from the simple shear data reported by 

Stroud (1971). It may be seen that a peak failure stress ratio 
= «81 is computed from the figure. Entering this value in eq. 

SMr oMr r 
(5.5.3) together with ( T S M p / o S M p ) u i t = - 8 3 ( s e e ecl- (5.5.4)) a value for 

Rp = .976 is obtained. 

• Evaluation of (^ S M P/O S Mp)i A ( T S M P / ° S M P ) 

The following two approaches will be used to evaluate (Tg^p/°s^p)i a n d 

A(TSMP/OSMP): 

(a) using the data shown in Fig. 5.5.3; and 

(b) using data published by Bolton (1986). 

The reason for the two approaches is explained below. 

Using the analytical data shown in Fig. 5.5.3 a failure surface can be 

defined by point P (which corresponds to the peak stress ratio) and point L 

(the last data point). This surface is represented in the figure by the 

dashed line. Using this line values of ( x o l u t T , / o ) . = .854 and 
SMP SMP 1 

A ( T _ U „ / O „ w t . ) = .076 are obtained. However, because points P and L are too SMP SMP 

close, it might turn out difficult to infer a failure line from real 

pressuremeter data. One of course could expand the pressuremeter with 



Ul N> 
Figure 5.5.3 Evaluation of (xsMP^°SMP^F ^ 



stresses larger than that shown in the figure until the failure line 

becomes more evident. However, because the circumferential strain computed 

for point L, as a value of ( £ 0 ) f a c e = 30% the above approach cannot be 

followed in practice since (e n )  ^  =  30% is about the maximum  value that 
8 face 

can be mobilized with the existing SBP devices. 

Based on the above, it was decided to use the procedures and test data 

reported by Bolton (1986) to evaluate values for i a n d 

A^TSMP^°SMP^* alternative approach is described next. 

The following relationship between the peak friction angle, $ , and 

the friction angle at constant volume, <j>cv was developed by Bolton (1986) 

<f> -  <p  = 0.8 v  = KI rp rcv max r (5.5.5) 

where: 

max 
K 

and 

the maximum  dilation angle 

a constant 

the relative dilatancy index, which is given by the following 

equation: 

I r = D r (Q - ln(P)) - 1 (5.5.6) 

where: 

Q 

the relative density 

the mean normal stress = 

(a^a^/2 

constant 

I 



Substituting eq. (5.5.6) into eq. (5.5.5) the following is obtained: 

tp  - d>  = 0.8 v  = K (D (Q - ln(P)) - 1) (5.5.7) Tp Tcv max r 

Therefore once D r is estimated and the constants Q, K and <j>cv are 

established, values of <b for different levels of stress, p, can be 
P 

evaluated. 

• Estimation of D r 
Based on the laboratory sand data referenced in Table 5.5.1 (Bolton, 

1986) developed a relationship between maximum  dilatancy rate 

(-Ae /Ae,) , and D for both triaxial and plane strain tests. This v 1 max r r 

relationship is presented in Fig. 5.5.4 and plots as a straight line with a 

slope K. = 1.0 and an intercept K, = .13. Therefore once (-Ae /Ae.) is r 1 * v 1 max 
known, D can be evaluated as follows: ' r 

D = ((-Ae /Ae.) + K.)/K. (5.5.8) r v 1 max 2 1 

substituting the values of Kj and K 2 in the above equation, the following 

is obtained 

D = (-Ae /Ae.) + .13 (5.5.9) r v 1 max 

A plot of ~Ae v versus Ae x was developed from the values of ( £ 0 ) f a c e a n d 

(e ), predicted by Manassero's model and is presented in Fig. 5.5.5. 
I* X £IC © 

From this figure a value of -(Ae /Ae.) = .61 is obtained which in turn 
v 1 max 

leads to a value of D = .74. The values computed by the modified SMP 



model are also shown in the figure. From these a value of -(Ae /Ae,) 
6 v 1 max 

.68 is obtained which leads to D r = .81. Comparing these values with the 

actual D^ = .87 of the sand analyzed (Leighton-Buzzard sand, e0 = .53) 

deviations of -6.9% (modified SMP model) and -15% (Manassero1s model) are 

obtained. 

Table 5.5.1 
Sand Data 

ID Name d 6 0 : 
mm mm 

emin emax 4>crit Reference 

A Brasted river 0.29 0.12 0.47 0.79 32.6 Conforth (1964,1973) 
B Limassol 

marine 0.11 0.003 0.57 1.18 34.4 Cornforth (1973) 
C Mersey river =0.2 =0.1 =0.49 0.82 32.0 Rowe (1969) 

Rowe & Barden (1964) 
D Monterey #20 =0.3 =0.15 =0.57 0.78 36.9 Marachi, Chan, Seed & 

Duncan (1969) 
E Monterey #0 =0.5 =0.3 =0.57 0.86 37.0 Lade & Duncan (1969) 
. F Ham river 0.25 0.16 0.59 0.92 33.0 Bishop &. Green (1965) 
G Leighton-

Buzzard 14/25 0.85 0.65 0.49 0.79 35.0 Stroud (1971) 
H Welland river 0.14 0.10 0.62 0.94 35.0 Barden et al. (1969) 
I Chattahoochee 

river 0.47 0.21 0.61 1.10 32.5 Vesic & Clough (1968) 
J Mol 0.21 0.14 0.56 0.89 32.5 Ladanyi (1960) 
K Berlin 0.25 0.11 0.46 0.75 33.0 De Beer (1965) 
L Guinea marine 0.41 0.16 0.52 0.90 33.0 Cornforth (1973) 
M Portland river 0.36 0.23 0.63 1.10 36.1 Cornforth (1973) 
N Glacial 

outwash sand 0.9 0.15 0.41 0.84 37.0 Hirschfield &. Poulos 
(1964) 

P Karlsruhe 
med. sand 0.38 0.20 0.54 0.82 34.0 Hettler (1981) 

R Sacramento 
river 0.22 0.15 0.61 1.03 33.3 Lee & Seed (1967) 

S Ottawa sand 0.76 0.65 0.49 =0.8 30.0 Lee & Seed (1967) 

• Evaluation of Constant Q 

To evaluate Q, eq. (5.5.6) will be used next, together with the simple 

shear data reported by Stroud on Leighton-Buzzard sand. 
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Figure 5.5.5 Variation of Ae v with Aex 
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From eq. (5.5.6) it follows that: 

Q = (I + 1 + D r ln(P))/D. r r 

and when d> = d> it follows that I = 0 (see eq. (5.5.5)), i.e. the value T p Tcv r 
of Q can be obtained by the following equation: 

Because the above equation is considered to be valid for any value of 

(Bolton, 1986) it implies that Q can be evaluated from laboratory tests 

on remoulded samples of sand prepared at different Dr(s). Herein the 

simple shear data reported by Stroud (1971) on Leighton-Buzzard sand (D^ = 

.87) is used below for that effect. 

Manipulating Stroud's data (shown in Fig. 5.3.4) and using = 35° a 

value of P = 230,000 kPa is evaluated. Entering this value of p with cv 6 *cv 
D r = .87 in eq. (5.5.11) a value of Q = 13.7 kPa is obtained. This 

Q value is considered to be representative of Leighton-Buzzard sand for 

plane strain conditions. 

• Evaluation of Constant K 

Substituting the values of <j>cv = 35°, D r = .74 (estimated value) and Q 

= 13.7 kPa into eq. (5.5.7) the following equations are obtained: 

Q = (1 + D r ln(Pcv))/D r (5.5.11) 

where: 

p = the mean normal stress required for d> = <p rcv ^ p cv 



K = (<J>pS - 35)/(.74(13.7 - ln(P))-l) (5.5.12a) 

or 

K = (.8 v )/(.74(13.7 - ln(P))-l) (5.5.12b) max 

Therefore, to evaluate K, values of d>ps (or v ) and p are necessary. 
p max 

These values were computed earlier in the main text using Manassero's model 

(see section 5.3.2.1) and consist on the following: <j>p = 45.5°; \j = 13°; 

and p = 600 kPa. Entering these values in eqs. (5.5.12) the following is 

obtained: 

K = 2.38 (from eq. (5.5.12a) 

or 

K = 2.36 (from eq. (5.5.12b) 

Based on the above an average value of K = 2.37 will be used below. 

• Evaluation of ( T S M p / o S M p ) t and A ( T S M p / o S M p ) 

Entering the above values of <f>cv» D r, Q and K in eq. (5.5.7) the 

following equation is obtained: 

<t>pS = 35 + 2.37(.74(13.7 - ln(P))-l) (5.5.13) 
P 

To evaluate the parameters (tSMP^°SMP^  I a n d ^^SMP^SMP^ t b e a b o v e 

equation will be used here together with the following relationships: 

p = 1.45 o S M p (5.5.14) 



( x S M p / o S M p ) = 2V2/3 tan (<j>tX) (5.5.15) 

«j,tx = ^ - 4.8° (5.5.16) 

where: 
tx 

<p  = the angle of friction for triaxial conditions 

The relationship p = 1.45 ° S M p was obtained from the data generated by 

the F.E. pressuremeter analysis (plane strain infinite outer boundary 
— tx 

conditions) . The relationship ^S M P^SMP^ = tan(<f> ) was obtained 

from the equation defining the stress ratio on the SMP (see eq. (2.29), 

main text) after applying it the correspondent triaxial boundary conditions 
tx p s 

and the relationship <t>  =<f>  - 4.8° was obtained based on the data 

presented in Fig. 5.5.6 which was developed earlier in Chapter 2 (section 

2.A.2.1), together with a b-value = .33 which was computed earlier in 

Appendix 5.1. 

Manipulating eqs. (5.5.13) to (5.5.16) the following equation is 

obtained: 

( x S M p / o S M p ) = 2V2/3tan(30+2.37(.74(13.7-ln(l.A5oSMp)-l))) (5.5.17) 

Entering a value of = Pa = 101.33 kPa in the above equation a 

value of (x-%,T./a„XIT,). = .876 is obtained, and entering a value of o,,^ = SMP SMP 1 SMP 
(10 • Pa) = 10,133 kPa a value of (T0„_/o CM tJ . _ = .760 is obtained. Since 

SMP SMP 1 0 

A ( T S M P / o S M P ) = ' W W * " ( W ° S M P ) ^ F O L L O W S M T ^ / O ^ ) = 

.116. 



Comparing these two values with the actual values used in the F.E. 

analysis: ( T S M p / ° S M p ) 1 = ' 8 6 2 and ^SMP^SMP^ = 0 , 8 d e v i a t i o n s o f l- 6 2% 

and 45.0% are computed respectively. 

The above indicates that a good prediction of the value I 

was obtained. However, the predicted value for ^(Tg^p/Og^p) is high. 

Nevertheless if the stress ratio correspondent to = (10 • Pa) is 

computed using both the F.E. parameters and the backpredicted parameters 

the following values are obtained: 

( T S M P / ° S M P ) = - 8 6 2 " - 0 8 = - 7 8 2 ( F- E- parameters) 

( T S M p / o S M p ) 1 0 = .876 - .116 = .760 (backpredicted) 

i.e., a deviation of -2.8% between these two values is obtained indicating 

that for stress levels of Og^p in the range of (1 • Pa) to (10 • PA) the 

deviations for the failure stress ratio are in the range of +1.62% to 

-2.8%. Based on this fact the failure parameters (xgMp/°sMP^ i a n d 

A^TSMP /'°SMP^ assessed above are considered to be acceptable for analyses 

purposes. 
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K. ASSESSMENT 

The earth pressure coefficient, K, is a parameter that is important to 

assess with some degree of accuracy since its effects are two-fold: 

a) Affects the evaluation of the two mean normal stresses, a and o1 

m m 
which in turn affect the evaluation of the in situ state parameter, \|), 

and in situ void ratio, e . Presented in Fig. 6.1.1 are three 
c 6 

different assessments of e c for K 0 = .4, .7 and 1.0. It may be seen 

that the void ratios in the core can range from .68 to .73 depending 

upon if K, s . 4 or 1.0. To see its influence, for example in the 

evaluation of maximum  shear modulus, G m a x the equation proposed by 

Hardin and Drnevick (1972) can be used: 

(2.973 - e )* o' 
G = 320 = — — pa (—) (6.1.1) 
max 1 + e r pa 

and the following values are obtained: 

e = .68 - G = 94,000 kPa c max 
e = .73 - G =78,300 kPa c max 

i.e., for a decrease of void ratio from .73 to .68 G increases by 
max 

17%. 

b) The earth pressure coefficient, K, which is mobilized during the 

deployment of the Molikpaq sand fills also affects the mobilized 
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stress level (MSL) = ((0,-03 ) m o b i l i z e d / ( o . - o , ) f a i l u r e ) prior to the 

ice loading. The maximum  magnitude of this pre-ice loading shear 

stress level, (MSL) ma x, is an important parameter. Upon ice loading, 

MSL first drops in value due to the increased horizontal normal stress 

and therefore, in this phase of loading the sand fills wil behave with 

unloading characteristics. At higher levels of ice loading MSL 

increases again and when MSL £ (MSL) then the and fills will behave 6 max 
with first loading characteristics. 

Based on the above, a F.E. study was carried out to evaluate the 

probable value of K after the construction of the core fills. This study 

consisted of the following. 

The deployment or construction of the upper 20 meters of the core was 

simulated by "analytically constructing" it with 17 layers and following 

the procedures outlined by Byrne and Duncan (1979). The F.E. mesh and the 

boundary conditions used in the analysis are shown in Fig. 6.1.2. Plane 

strain conditions with zero lateral outward movement were assumed since 

this condition will develop higher horizontal stresses, than the horizontal 

stresses developed if the horizontal boundary was free to move. The above 

have been verified experimentally by the retaining wall field test study 

carried out by Matsuo et al. (1978) which was described earlier in Chapter 

A (section A.7.2). 

Three F.E. studies were carried out: Two of them using the hyperbolic 

model and the modified SMP model for a condition of initial K 0 = 1.0 and 

the third using the modified SMP model for a condition of initial K 0 = .7. 

In the analysis, all the 20 metres of the soil were assumed to be 

composed of the same soil type, and the properties of this soil type were 
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assumed to be equal to the soil properties that were derived from the 

drained triaxial test No. 02 (ec = .717) which was carried out by Golder's 

Associates (1986) on Erksak 320/1 Sand. The soil properties for the two 

models are given in Table 6.1.1 and were obtained as it is described in the 

main text (section 6.3.1 and 6.3.2). 

The results obtained for the condition of initial (K0 = 1.0, using the 

hyperbolic model and the modified SMP model are presented in Fig. 6.1.3. 

Table 6.1.1 

a) Hyperbolic Soil Parameters for Erksak 320/1 Sand (Triaxial Test #2) 

KE n KB m Rp • i A<j> K 0 

960 .50 250 .38 .80 35.5 2.8 1.0 

b) Modified SMP Soil Parameters for Erksak 320/1 Sand (Triaxial Test #2) 

KG max n KB 
ur 

m KG 
P 

np r F 
(TSMP} 
°SMP 1 

A ( T s m p ) 
°SMP 

X V- K 0 

710 .50 .610 .38 620 -.56 .94 .68 .072 .97 .25 1.0 & .70 
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It may be seen from the figure, that both models give results that are 

in very good agreement with each other. The results indicate that, 

although an initial K 0 = 1.0 was used, the mobilized earth coefficient, K 

at the end of the construction, decreases from 1.0 to .4 in the upper 4 

meters of the core and remain with a value of .40 for the bottom 16 

meters. 

To study the effect of starting with different initial K0's a third 

study was performed with the modified SMP model and using a K 0 = .70. The 

results obtained using K 0 = 1.0 and K 0 = .70 are presented in Fig. 6.1.4. 

Again the trend obtained is very similar. This time the mobilized K 

decreases from .70 to .40 in the upper 4 meters of the core and the same 

results as before are obtained for the lower 16 meters. 

The above study indicates that a K 0 = .40 is an appropriate value to 

be used in the Molikpaq analysis. it should be noted that the soil 

parameters used were derived from a drained triaxial test on Erksak 320/1 

sand with a e £ = .717. It turns out, that the void ratio assessments for 

the berm and core fills range from .620 to .685, if a K 0 = .40 is used. To 

check if, the soil properties correspond to a soil type of = .62 have 

any influence on the outcome of the mobilized K, the analysis simulating 

the construction of the core were repeated using soil parameters 

correspondent to e = .62. Similar results were obtained and therefore a 

K 0 = .40 is considered to be appropriate. 
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ASSESSMENT OF SOIL PARAMETERS FOR ERKSAK 320/1 SAND BASED ON THE DRAINED 
TRIAXIAL TEST DATA REPORTED BY GOLDER ASSOCIATES (1986) 



Assessment of Soil Parameters for Erksak 320/1 Sand Based on the Drained 
Triaxial Tests Data Reported by Golder Associates (1986) 

A) Evaluation of KE, n and R„ 
£ 

The transformed hyperbolic plots of tests 01, 02 are presented in Fig. 

6.2.1 and that of tests 61, 62 and 63 in Fig. 6.2.2. As shown in Fig. 

6.2.1, the vertical axis for test 01 is expressed by ex/(O1-2\JO3) instead 

of the standard e 1/(o 1-o 3) because test 01 is a constant mean normal stress 

triaxial test. A poisson's ratio m = .2 was assumed for the calculation. 

From these figures and from the laboratory data shown in Fig. 6.24 

(see main text) the values shown in Table 6.2.1 were obtained following the 

procedures outlined by Duncan et al. (1980). Values of KE and n 

correspondent to each test are tabulated in Table 6.2.2 and were obtained 

from the log-log plot of E./pa versus a /pa shown in Fig. 6.2.3. 
i 

Table 6.2.1 

Hyperbolic Parameters I 

Test E^pa 
°dult dpeak R F 

01 1096 2.46 425 340 0.800 

02 1410 2.46 730 652 0.800 

61 1316 0.99 550 498 .905 

62 2990 3.95 1608 1400 .870 

63 2055 3.95 1605 1330 .830 





Fig. 6.2.2 Transformed plot 
test 61,62,63 
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Fig. 6.2.3 Assessment of K p for Erksak 320/1 Sand 



Table 6.2.2 

Hyperbolic Parameters II 

Test KE n 

01 720 .5 
02 960 .5 
61 1320 .5 
62 1650 .5 
63 1160 .5 

B) Evaluation of K n and m 
a 

To evaluate the parameters Kg and m from the drained isotropic 

triaxial consolidation tests the procedures outlined by Byrne and Eldridge 

(1982) were followed, after a small modification was introduced to the 

method, which consists on the following: Byrne and Eldridge relate the 

volumetric strain due to consolidation with mean normal stress following 

the equation: 
e = a(o ) 1 _ m (6.2.1) v m 

where a and (1-m) are parameters as defined in Fig. 6.2.A. 

Based on the above equation and the equation defining the tangent bulk 

modulus, B^, which is 

B = K n Pa (o /Pa)m (6.2.2) t B m 

those researchers obtain 

K b a(l-m)(Pa) 1-m 
(6.2.3) 
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Since, however, equation (6.2.3) is atmospheric pressure dependent, it 

was decided to relate the volumetric strain to the mean normal stress using 

the following equation: 

o T , m,l-m ,, » .. e v - a (jg) (6.2.A) 

differentiating with respect to o m 

or 

Ae . . v 1 1 »-i s -m 7 — = — = a : — (l-m)o Ao B̂ . fr. .l-m m m t (Pa) 

, _ .l-m 
Bt ~ a(l-m) ° ( 6 ' 2 ' 5 ) 

Since B^ is given also by 6.2.2. then 

or 

„ v ti /m.m (Pa) m B. = K n Pa (—) = —-p.—r—  o t B Pa a(l-m) 

K n = — — r (6.2.6) B a(l-m) 

Based on the data from the isotropic triaxial consolidation test plots 

of log ev~log (om/pa) were obtained and are shown in Fig. 6.2.5. From this 

figure the following values shown in Table 6.2.3 were evaluated. 

C) Evaluation of KG , n , R„ P P F 

Following the procedures outlined in Chapter 2 the transformed plots 
0 f r S M P / ( x S M P / ° S M P ) v e r s u s Tgjjp f o r the tests 01, 02, 61, 62, and 63 were 



Fig. 6.2.5 Assessment of Bulk Modulus from Isotropic Triaxial 
Consolidation 320/1 Erksak Sand 



Table 6.2.3 

Hyperbolic Parameters III 

Test m a KB 

01 N/A N/A N/A 

02 .38 .0064 250 

61 .36 .0042 378 

62 .40 .0029 573 

63 .38 .0034 474 

Note: For Test 01 there was not enough laboratory 
data to evaluate Kg. 

evaluated and are presented in Fig. 6.2.6 (for test 01 and 02) and in Fig. 

6.2.7 for the other tests. 

From these figures and from the laboratory data shown in Fig. 6.24 

(see main text) the values shown in Table 6.2.4 were obtained. 

Table 6.2.4 

Modified SMP Parameters-I 

Test G P (om)i/pa ( x S M p / o S M p ) u l t ( T S M p / o S M p ) F RF 

01 330 2.46 .663 .630 .95 

02 360 2.46 .686 .645 .94 

61 910 0.99 .960 .960 1.00 

62 435 3.95 .826 .777 .94 

63 360 3.95 .802 .754 .94 



Transformed Modified SMP Plots (Tests No. 1 and 2) 



Transformed Modified SMP Plots (Tests No. 61, 62, and 63) 



Using the G and (o /pa) values, a log-log plot of these quantities 
p i m i 

was obtained and presented in Fig. 6.2.8. From this figure the values of 

KG and n were evaluated and are presented in Table 6.2.5. 
P P 

Table 6.2.5 

Modified SMP Parameters-II 

Test s "P 

01 575 -.56 

02 620 -.56 

61 910 -.56 

62 980 -.56 

63 840 -.56 



Ul Ln 00 
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Evaluation of the Number of Equivalent Cycles 
of the Given Ice Loading Function 

The given ice loading function is presented in Fig. 7.1.1. To 

simplify this ice loading function was treated as a load with uniform 

cycles of a magnitude = 236 MN, which is the magnitude of the cycles within 

the steady portion of the load from time 8:21:45 to 8:26:00. The 

procedures followed are presented below. 

• Evaluation of the Number of "Equivalent Cycles" for the Time Interval 
8:17:51 to 8:21:45 

During this time interval the load presents a variable but increasing 

magnitude (see Fig. 7.1.1). To obtain the number of "equivalent cycles" of 

magnitude = 236 MN for this time interval the following procedures were 

followed: 

a) The total number of cycles, from 8:17:51 to 8:21:45 is 290. This time 

interval was subdivided into 10 time intervals of 29 cycles each. 

b) The liquefaction resistance curves to liquefaction which were obtained 

as described in Chapter 6 are reproduced in Fig. 7.1.2. From this 

figure, the stress ratio to resist liquefaction correspondent to 29 

cycles is ( T e q / ° y 0 ) = -122. (The curve correspondent to layer no. 4 

and 5 was used for that effect.) 

c) For each of the 10 time intervals evaluated in (a) the correspondent 

A(ice load) was assessed at the average time of each interval. For 

instance for the 1st time interval, A(ice load) = 46 MN. 
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d) Assuming that the stress ratio to resist liquefaction evaluated in (b) 
Teq^°vo = corresponds to 29 cycles of magnitude = 236 MN than the 

stress ratio to resist liquefaction correspondent to 29 cycles of 

magnitude = 46 MN is obtained following the procedures proposed by 

Seed and Idriss (1982) used for scalling the liquefaction resistance 

curves correspondent to earthquakes of magnitude = 7.5 to other 

earthquake magnitudes. The equation used is as follows: 

(t /O" )0,, 
(t /o' ) A, = - .63 (7.1.1) eq vo 46 (46/236) 

e) Using the same liquefaction resistance curve the number of cycles 

correspondent to ( T eq/°y 0) = is evaluated as being £ 1. 

The steps described from (c) to (e) were repeated for all the 10 time 

intervals and Table 7.1.1 developed. 

Table 7.1.1 

Assessment of Equivalent Number of Cycles From Time 8:17:51 to 8:21:48 

Increment 
No. 

A(ice load) 
MN 

(A(ice load)^ 
236 

(t/O' ) v ' vo'equiv. Number of 
Equiv. Cycles 

1 46.0 .194 .630 1 
2 68.0 .287 .430 1 
3 87.4 .370 .330 1 
4 104.9 .440 .280 1 
5 126.7 .537 .227 2 
6 146.4 .620 .196 3 
7 170.4 .722 .169 5 
8 187.9 .796 .159 7 
9 209.8 .880 .139 12 
10 231.6 .980 .124 25 

Total = 60 



It may be seen that the 290 cycles of variable magnitude were assessed 

as being equivalent to approximately 60 cycles of magnitude = 236 MN. 

• Evaluation of the Number of Equivalent Cycles for the Time Interval 
8:21:45 to 8:26:00 

During this time interval the ice loading function is uniform with a 

constant magnitude = 236 MN. Taking into account the natural frequencies 

shown in Fig. 7.1.1 the number of cycles for this time interval is assessed 

as being = 250. 

• Evaluation of the Number of Equivalent Cycles for the Time Interval 
8:26:00 to 8:27:00 

An average A (ice load) = 255 MN is assessed for this interval. 

Although the number of cycles for this interval is 40 cycles the number of 

equivalent cycles of magnitude = 236 MN is 90, which was evaluated 

following the same procedure described above. 

Therefore, based on the above calculations a total number of 400 

cycles of magnitude = 236 MN occurred from time 8:17:51 to 8:27:00. 



2-DIMENSIONAL STRUCTURAL MODELS 



APPENDIX 7.2 

2-DIMENSIONAL STRUCTURAL MODELS 

The 2-D structural models of the Molikpaq's steel caisson were 

developed by D.L. Anderson (see Chapter 7, Section 7.1) and the procedures 

followed for its development consisted briefly on the following. 

During the construction of the sand core, the 2-D structural model 

must be able to simulate the 3-D restraining effects of the caisson. For 

this construction phase the simple 2-D structural model presented in Fig. 

7.2.1 was developed and consists essentially on a rigid front and back 

members connected by a beam at a height H above the berm. The properties 

of the beam and the height, H were selected to ensure that the displace-

ments of the front and back members were similar to those at equivalent 

sections of a 3-D model under equivalent loading. 

During the ice loading phase the 2-D structural model must be able to 

transfer the ice load to the sand core and also to the berm along the 

caisson sides. To develop an appropriate 2-D structural model, finite 

element analysis were carried out using the (2-D) F.E. mesh presented in 

Fig. 7.2.2 which is the replica of the cross-section of the 3-D F.E. mesh 

along the E-W direction (ice load direction), i.e. the same number elements 

were used with the same material properties, as the 3-D cross-section. To 

achieve the same results as that obtained from the 3-D analysis the complex 

2-D beam system presented in Fig. 7.2.3 was developed by D.L. Anderson. 

In this model, beams 1, 2 and 3 are located at the same elevation and 

are straight. Beam 3 is shown bent in the figure only for clarity of 

illustration. The joint common to beams 1 and 2 is assumed to have only 
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horizontal movement, and spring 4 is attached to this joint and aligned 

horizontally. Beam 1 transfers load from the loaded face to the berm, 

whose stiffness is modelled by spring 4. Beam 2 transfers load from the 

berm to the back side of the caisson, and because of symmetry was assumed 

to have the same propeties as beam 1. Beam 3 is included because it was 

observed that if the berm is rigid, application of the ice load causes a 

negative or inward displacement of the back face when the caisson is empty, 

hence a negative area is assigned to beam 3. 

The properties of the beams are also given in Fig. 7.2.3. The area of 

beam 1 was determined from a 3-D analysis that included the soil in the 

berm and core. The area of beam 3 and the moment of inertia (I) of beam 1 

were estimating by propriating the results from an earlier simpler 3-D 

structural analysis of the caisson only. The location of the beams, given 

by the height H, was based on the results reported by Sandwell Swan Wooster 

Inc. (1986) and essentially agrees with the results from the simpler 3-D 

structural analysis. 

The axial stiffness of spring 4 was calculated to range from 330,000 

to 190,000 kN/m/m as the total ice load increased from 330 MN to 550 MN. 

The reduced stiffness with increasing load is an indication of the 

nonlinear response of the berm material at higher load levels. 

The 2-D results obtained following the procedures described above were 

in very good agreement with their 3-D counterparts as it will be shown 

later in Appendix 7.4. 
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Evaluation of the 3-D Load Vector Used in the Analysis 

The ice load of the April 12, 1986 event was treated in the analysis 

as a rectangular pressure as it is shown in Fig. 7.3.1(a). To evaluate the 

force vector shown in the figure the following procedures were followed. 

A plan view of the forces and pressures involved are shown in Fig. 

7.2.1(b). From equilibrium in the direction of the ice force 

Q = P • L (7.3.1) 

where: 

Q = ice force 

P = pressure 

L = length of the caisson face 

= 2(La + + Lc)(see Fig. 7.3.1(b)) 

Values of L = 10.92 m, L, = 7.5 m and L = 7.2 m were considered in a b c 
the analysis. 

From eq. (7.3.1) the value of the pressure P is evaluated 

P = Q/51.24 (7.3.2) 

To develop this pressure P on the face of the caisson the following force 

vectors were obtained: 



Figure 7.3.1 Ice load vector used in the analysis (a) 3-Dimensional view, 
(b) plan view. 



L • P 
F,m = F IT "IB A = 2.73 P 

F„_, = F 
LA • P ^ S • P 

»T J B A = A.605 P 
(7.3.3) 

L, • P L • P P = P = -2-;— + — = 3.675 R3X ^ B A A 

L • P 
F„M = F *T AB A = 1.8 P 
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PROCEDURES FOLLOWED IN THE 3-D ANALYSIS OF 
THE DYNAMIC ICE LOAD EVENT OF APRIL 12, 1986 

The 3-D dynamic assessment of the response of the Molikpaq to the ice 

loading was subdivided into three separate assessments: (a) liquefaction 

assessment; (b) porewater pressure rise assessment; and (c) acceleration 

assessment. 

The procedures followed are described below. 

7.A.1 Procedures for the Liquefaction Assessment 

The 3-D response of the caisson to series of cyclic loading pulses was 

determined by computing the static resonse to one-half cycle of load/ 

unload. The amplitude of displacement and the cyclic stress ratios so 

computed were assumed to be the dynamic values corresponding to a dynamic 

amplification factor of 1. This is in close agreement with the findings of 

the 2-D dynamic analysis carried out by Finn adn Yogendraumar (see Section 

7.1 of this chapter). With the above in mind, the procedures followed 

during the dynamic ice loading phases are presented below together with the 

displacements versus ice load obtained from the analysis at four selected 

locations (see Fig. 7.A.1). 

1) The east face of the caisson was loaded to 397 MN using one increment 

of 110 MN and 5 increments of 57.A MN. The soil elements were 

considered to be drained during this phase. 

2) Next the east face of the caison was unloaded back to 279 MN, in one 

load increment (see Fig. 7.A.1). This is equivalent to half of the 

cyclic load for this cyclic loading stage (see main text Fig. 7.1). 

During unloading, the unload/reload moduli were used. 



HORIZONTAL DISPLACEMENTS , c m 

Figure 7.4.1 Displacements versus ice load obtained from the 3-D analysis 
of the 12 April, 1986 ice load event 
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3) The elements that would liquefy during the initial equivalent 60 

cycles of loading (from time 8:17:51 to 8:21:45) were determinjed by 

comparing the cyclic stress ratio ^ T z x / ° y 0 with the cyclic resistance, 

x /o' , for 60 cycles obtained from Fig. 7.14 (main text) The cyclic av vo ° J 

stress ratio is evaluated in the analysis by the following equation: 

AT zx 
VO 

zx - T 
3 9 7 ZX 2 7 9 (7.4.1) 

'2 7 9 

The numbers 279 and 397 indicate the ice load levels in MN. 

4) The Young's modulus and bulk modulus of the liquefied elements were 

now assigned their default values. The east face of the caisson was 

loaded again from 0 to 397 MN and the static analysis repeated. 

5) Steps 2 to 4 were repeated to determine the effects of an additional 

250 cycles of loading from time 8:21:48 to 8:26:00 on the elements 

which did not liquefy in the first 60 cycles. This step was repeated 

until no further elements liquefied. It may be seen from Fig. 7.4.1 

that it took 5 of such "static load cycles" from 0 to 397 MN for that 

to happen. 

6) The east face was loaded from zero to 555 MN and then unloaded to 417f 

MN which is equivalent to half the cyclic laod of this loading stage. 

Elements which had been predicted to liquefy up to time 8:26:00 were 

assigned a very low value of Young's modulus and bulk modulus. 

7) The procedure described in step 5 was then repeated to determine the 

effect of an additional 90 ycles of laod (from time 8:26:00 to 

8:26:38). It may be seen that, at this ice load level only 3 "static 

load cycles" from 0 to 550 MN were carried out to assess the genera-



tion of more liquefied elements, but no significant generation took 

place. 

The 3-D liquefaction areal extent obtained following the above 

procedures is presented in teh main text in Figs. 7.14(a) to (d). 

7.4.2 Pore Pressure Rise Assessment 

During cyclic loading two kinds of porewater pressure are generated in 

saturated sands. One is cyclic in nature and the other is residual. 

The procedures followed to assess the soil elements that liquefy (i.e. 

the soil elements in which the ratio between the generated residual 

porewater pressure and effective overburden pressure, u = 1) were 

described in the previous section. 

The procedures followed to evaluate the residual pore pressure rise 

(i.e. to evaluate ratios ug/°y 0 < D a n d the cyclic porewater pressure, 

AU^, are presented in this section. 

The models to evaluate the above porewater pressures were described 

earlier in Chapter 6 and are summarized below. 

• Evaluation of Residual Pore Pressures 

The following equation proposed by Seed et al. (1976) was used in the 

analysis to predict the gradual increase in residual porewater pressures: 

u / o ' = (2/Tr)sin-i(N/N n)0'71 (7.4.2) 
g v o 2 

where: 

N = the number of cycles 

Nj = the number of cycles to cause liquefaction 



To evaluate the number of cycles, N, the relationship between the 

number of equivalent cycles of amplitude 118 MN versus time was obtained as 

described in Appendix 7.1 and is presented in Fig. 7.4.2. From this 

figure, N was evaluated at any desired time. 

To evaluate the number of cycles to cause liquefaction, N^, the 

liquefaction resistance curves presented in Fig. 7.14 (main text) were used 

together with the cyclic stress ratio, AT /a'  , which was computed as 
ZX  VO 

described in section (7.4.1). 

The ratio (N/Nj) was then computed and in turn u g/o^ o evaluated using 

eq. (7.4.2). 

The effective overburden pressure, was computed using the unit 

weights shown in Fig. 7.6 (main text) and with this value the increase in 

residual porewater pressure, u , was finally evaluated. 
§ 

• Evaluation of Cyclic Porewater Pressures 

The following equation developed earlier in Chapter 6 was used herein 

to compute the cyclic porewater pressure, AU : 
cy 

AU = Ao - 0.7 AT . (7.4.3) cy m oct 

where: 

Ao^ = cyclic variation in total mean normal stress during a half 

cycle of load 

cycli 

cycle 

AT ^ = cyclic variation in octahedral shear stress during the half 

The above procedures were followed for the evaluation of the porewater 

pressures. The results obtained are presented in the main text together 

with available field measurements. 



7.A.3 Procedures for the Acceleration Assessment 

The procedures followed in the analysis to evaluate the accelerations 

developed by the ice loading function shown in Fig. 7.1 (main text) are 

described in this section. 

Assuming that the resonse to cyclic loading of a particular frequency 

was harmonic, the peak acceleration at time t, A(t) , is given by the 

following equation: 

A(t) = X(t) • oi(t)2 (7.4.A) 

where: 

X(t) = the amplitude of the displacement at time t 

w(t) = the angular frequency at time t 

In the analysis, X(t) was computed using the following equation: 

X(t) = X g L • SDF(t) (7.A.5) 

where Xg^ represents the amplitude of the displacement correspondent to the 

steady ice load time interval (see Fig. 7.1), and is given by the following 

equation: 

X S L = x397 - X 2 7 9 (7.A.6) 

X 3 9 7 = displacement obtained at peak cycle (ice load level = 397 MN) 

X J 7 9 = displacement obtained at half cycle (ice load level = 279 MN) 



TIME , minutes 

Figure 7.4.2 Relationship between number of equivalent load cycles of 
amplitude 118 MN and time 



In eq. (7.A.6), the term SDF(t) represents a scaling displacement 

factor which is a function of time and is given by the following equation: 

SDF(g) A ice load (t)  
B (A ice load)gL 

where: 

A ice load (t) = the amplitude of the cyclic laod at time t 

(A ice load)g^ = the amplitude of the cyclic laoding during the steady 

loading time interval = 379-279 = 118 MN 

The values of the scaling displacement factor, SDF, versus time were 

evaluated from the ice loading function presented in Fig. 7.1 (main text), 

and are presented in Fig. 7.A.3. It may be seen that during the steady 

part of the loading function, SDF(t) = 1. 

The values of the angular frequency w(t) were computed from the values 

of the natural frequency f 0(t) shown in Fig. 7.A.3. The relationship 

between u(t) and f (t) by definition is as follows: 
o 

u(t) = 2u f (t) (7.A.8) o 

The above procedures were followed for the evaluation of the 

accelerations. The results obtained are presented in the main text 

together with available field measurements. 



Figure 7.4.3 Relationships between scaling displacement factor, ice load 
frequency function, and time 
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Evaluation of the Moduli and Load Vector Used in the Settlement Analysis 

• Evaluation of the Moduli 

At a depth of 10 m below the core surface the excess porewater 

pressure is given by the following equation: 

AU = z r' (7.5.1) 

where: 

Y' = effective unit weight of the soil. 

Considering f1 s 10 kPa and the water level at 5.0 m then, 

AU = 150 kPa 

Assuming that the volume changes are due to changes in the vertical 

direction only and that the Poisson's ratio, v = 0 then 

Ae = Ae = ^ (7.5.2) z v E 

where: 

Ae = vertical srain z 
Ae = volumetric strain v 
E = Young's modulus 



from above 

E = AU/Ae (7.5.3) v 

assuming that Ae v = .08 (8%) and AU = 150 kPa, then 

E = 1875 kPa 

Since the bulk modulus is related with the Young's modulus by 

following equation 

B - „ . (7.5A) 3 (1-2\j) 

and since a \)=0 is considered above then, 

B = E/3 = 625 kPa 

Since in the analysis E and B are given by 

E = Kg Pa (°VPa) n (1-RpSL)1 (7.5.5) 

and 

B = K_ Pa (o'/Pa)m (7.5.6) B m 

assuming that n = m = R„ = 0 than from the above equations it follows that 
r 

Kg = 18.5 and K Q = 6 



• Evaluation of the Load Vector 

To predict the settlement due to the dissipation of the excess pore 

pressure AU in each liquefied element, a force vector {f} was applied to 

the nodes of each liquefied element, developing a pressure -AU. 

The equation used to evaluate the force vector {f} is as follows: 

{f} = [B]T {-AU} volume (7.5.7) 

The basis for this equation has been described in Appendix 2.5. 
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2-Dimensional Finite Element Analysis of the Dynamic Ice Load Event of 
April 12. 1986 

7.6.1 Introduction 

Several two-dimensional (2-D) plane strain analysis of the Molikpaq 

resopnse to the ice loading event of April 12, 1986 were carried out here 

to study the following aspects (see chapter 7, Section 7.4.3.1). 

• Influence of the interface element type and the value of the angle 

of friction, 6. 

• Influence of the stress redistribution method. 

• Influence of the constitutive law. 

Before the above studies were carried out, however, it was considered 

important to verify first the 2-D structural model developed in Appendix 

7.2. This is presented next. 

7.6.2 Verification of the Structural Model Used in the 2-D Ice Loading 
Analysis of the Molikpaq Structure 

To verify the 2-D structural model 2-D analysis were carried out here 

following the exact same procedures as that followed earlier in the 3-D 

analysis. The 2-D finite element mesh and structural model used were 

discussed and presented earlier in Appendix 7.2. 

Comparisons between the results obtained from the 2-D and 3-D analysis 

consisted of displacements, and the liquefaction soil zone developed during 

the ice loading, because these are considered to be the most representative 

of the dynamic ice loading effects on the Molikpaq structure. 



In addition, the maximum  ice load level used in the 2-D analysis was 

restricted to 397 MN, because this was the maximum  ice load level developed 

during the ice load steady period, during which the majority of the ice 

dynamic action took place as was shown earlier in Chapter 7. 

The displacements versus ice load obtained from the 2-D analysis, for 

the dynamic stages of zero dynamic cycles (pre-liquefaction) and 310 

dynamic cycles (liquefaction is considered) are presented in Fig. 7.6.1 

together with the correspondent results obtained from the 3-D analysis. 

It may be seen that the results obtained from the 2-D and 3-D analysis 

agree very well except for the displacements obtained at the bottom of the 

loaded wall where the 2-D displacements are shown to be softer before 

liquefaction but stiffer after liquefaction. Nevertheless these 

differences did not have any effect on the number of soil elements to 

liquefy as is shown in Fig. 7.6.2, where the 2-D liquefaction assessement 

is presented. 

By comparing this liquefaction zone with the 3-D liquefaction zone 

obtained earlier at the E-W cross-section (see main text Fig. 7.15) it is 

concluded that a coincidence was obtained. 

Based on the above results the 2-D structural model shown in Fig. 

7.2.3 (Appendix 7.2) is considered to be appropriate for use in the several 

2-D parametric studies that are presented next. 

7.6.3 Study of the Influence of the Interface Element Type, and of the 
Angle of the Friction 6 Used in the Analysis 

The analysis carried out to study the influence of the above two 

factors in the outcome of the results are presented below. 

• Study of the Influence of the Interface Element Type 

The following two sets of analyses were carried out to study the 
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Figure 7.6.1 Displacements versus ice load obtained from 2-D and 3-D 
finite element analysis of the ice loading phases U1 
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Figure 7.6.2 L i q U e f a c t ^ o n assessment obtained from 2-D analysis following 
the same procedures as that followed in the 3-D analysis 



influence of the element type used to simulate the behaviour of the 

"interface" between the sand fills and the Molikpaq steel structure. 

The first set of analyses correspond to the 2-D analysis described in 

the previous section. These analyses were carried out with the "interface" 

represented by the "standard" isoparametric solid element. The second set 

of analyses were carried out with the "interface" represented by the "thin" 

element. This element was described in detail in Chapter 4 and uses an 

uncoupled elastic-perfect plastic stress-strain law where the two moduli 

used to described its behaviour, normal modulus, E„ and shear modulus, G, 

are independent of each other. The values of E^ and G used in the analysis 

correspond to the unload/reload moduli of the adjacent soil elements to the 

"interface" (see Fig. 7.6; Chapter 7). 

The results obtained from the two analysis, using a value of 6 = 20° 

are presented in Fig. 7.6.3. 

It may be seen that the same initial response of the Molikpaq loaded 

wall movement was computed by the analysis carried out using the "thin" 

interface element and the "standard" soil element. However at ice load 

levels of approximately 400 MN the displacements obtained with the "thin" 

element are shown to be about 85% of the computed by the "standard" soil 

element. This fact is not unexpected because the "thin" element uses an 

anisotropic constitutive law as opposed to the isotropic constitutive law 

used in the "standard" element. 

Regarding the number of soil elements to liquefy, the same liquefac-

tion distribution was obtained from both analysis. This indicates that, 

although different displacements were obtained from the two analyses, the 

stress distribution remained the same. 
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• Study of the Influence of the Angle of Friction, 6 

Two additional set of analyses were carried out, using values of 6 = 0 

and fi = <p,  to supplement the previous analysis which were carried out using 

a value of 6 = 20°. Both analyses were carried out using the "thin" 

element to characterize the "interface", and the values of <p  used in the 

analysis correspond to the <j> angle of the adjacent soil elements to the 

"interface" (see Fig. 7.6; Chapter 7). 

The results obtained from the analyses for the cases of 6 = 0, 6 = 20° 

and 6 = <f> are presented in Fig. 7.6.A. 

It may be seen that the results obtained from the analyses carried out 

with 6 = 20° and 6 = <f> are essentially the same. On the other hand, the 

displacements correspondent to the case 6 = 0 ° are slightly (110%) higher 

than the displacements correspondent to 6 = 20° or 6 = <p, and approach the 

displacement values obtained earlier from the analysis that were carried 

out using the "interface" represented by standard soil elements (see Fig. 

7.6.3). 

Regarding the number of soil elements to liquefy the same liquefaction 

distribution was obtained from all the analysis. 

Based on the above results it is concluded that if the 3-D analysis 

had been carried out using the "thin" element with a value of 6 = 0° (worse 

condition) the displacements would not change much from the displacements 

computed earlier using the "standard" element and furthermore the 3-D 

liquefaction assessment shown earlier in Chapter 7 would remain the same. 

7.6.4 Study of the Influence of the Method Used to Redistribute the Shear 
Stress of the Liquefied Soil Elements 

As described in Chapter 7 (section 7.5) an alternative method to 

redistribute the shear stresses of the liquefied soil elements to the 
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adjacent elements was also considered in the 2-D analysis. The method 

follows the load shedding technique developed by Byrne and Janzen (1984) 

and consists of the following. 

The assessment of the soil elements to liquefy is carried out in the 

exact same way as described previously in Chapter 7. However, once these 

elements are identified, the shear strength of these elements is defaulted 

to a residual shear strength value, s . Next, and within the same load 
& ' u 

step, the load shedding technique developed by Byrne and Janzen (1984) is 

triggered following the procedures described in Chapter 2 and the shear 

stresses, AT, exceeding the residual strength, s^ of the liquefied soil 

elements are redistributed to the adjacent soil and structural elements. 

To assess the residual strength, s^ assigned to the liquefied soil 

elements the relationship, presented in Fig. 7.6.5, between (N 1) 6 0 and s^ 

developed by Seed et al. (1988), was followed herein. 

Plots of the average (N x) 6 0 values, ( ) 6 0 ) a v versus depth, corres-

pondent to the soil layers used in the finite element analysis are 

presented in Fig. 7.6.6. The procedures followed to compute the (N 1) 6 0 

values were described earlier in Chapter 6. 

Combining the (CN X) 6 0) a v values from Fig. 7.6.6 with the relationship 

between ( N j J j , , and s^ shown in Fig. 7.6.5, a lower bound profile for the 

shear strength, s ^ , and a higher bound profile for the shear strength, 
SuH' w e r e obtained and are included in Fig. 7.6.6. 

Two sets of 2-D analysis were carried out following the above 

procedures. One correspondent to the residual shear strength, s ^ and the 

other to the residual shear strength, s ^ . Both analyses were carried out 

using the "interface" represented by the "thin" element with a value of 6 = 

20°. 
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The results obtained from the two analyses are presented in Fig. 7.6.7 

together with the results obtained earlier from the 2-D analyses which were 

carried out using the same "thin" element but using the stress redistribu-

tion method that was followed earlier in the 3-D analysis. 

To simplify the discussion of results presented below, the stress 

redistribution method followed in the 3-D analyses is referred here as 

method 1 and the "residual strength + load shedding" method as method 2. 

It may be seen that the two sets of displacements obtained from the 

analyses following method 2 are quite similar, although larger displace-

ments were computed when s^ = 

It may also be seen that the results obtained from the analysis 

following method 1 show an opposite trend to the trend computed from the 

analysis following method 2, i.e. the results obtained from method 1 show 

that the ratio between the displacements computed at the locations of the 

loaded wall and the back wall, di/db, is quite higher than the d2/db ratio 

computed from the results obtained following method 2. 

Despite the displacement differences noted above the liquefaction 

distributions computed from the analysis following method 1 and 2 were 

essentially the same, except for one soil element located in the top row of 

the submerged core. 

Based on the above results it is concluded that if method 2 had been 

used in the 3-D analysis, instead of method 1, the 3-D liquefaction assess-

ment would remain essentially the same as the computed earlier in Chapter 

7. 

7.6.5 Study of the Influence of the Stress-Strain Law Used in the 
Analysis 

The 3-D analyses of the Molikpaq were carried out following a combina-

tion of elastic and hyperbolic laws as described earlier in Chapter 7. 
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To study the influence of the stress-strain law in the outcome of the 

results, two additional sets of 2-D analyses were carried out. One using 

the constitutive laws described above and the other using the modified SMP 

constitutive law developed earlier in Chapter 2. 

Except for the constitutive law, both analyses were carried out 

following the same procedures. These are listed below. 

a) The "interface" between the steel structure and the sand fills was 

simulated by the "thin" type of element. 

b) The shear stresses, AT, of the liquefied soil elements were redistri-

buted using method 2, i.e. following the "residual shear strength + 

load shedding" approach described in the previous section. The lower 

bound profile for the residual shear strength, s^g, shown in Fig. 

7.6.6 was used in the analysis. 

The soil parameters used in the modified SMP model are presented in 

Fig. 7.6.8 and were evaluated as described earlier in Chapter 6. The soil 

parameters used in the other model were presented earlier in Chapter 7 

(Fig. 7.6). 

The results obtained from the 2-D analyses are shown in Fig. 7.6.9 and 

a discussion of these is presented below. 

It may be seen that up to an ice load level of about 200 MN the 

displacements computed by the two models are essentially the same. This 

indicates that the response of the sand fills to that ice load level was 

essentially elastic because the same elastic parameters were used in both 

models when MSL < (MSL) 
max 

When the ice load increased from 200 to 397 MN, however, the displace-

ments computed, by both models, at the loaded wall locations are quite 

different, but about the same at the back wall location. This indicates 

that the modified SMP model computed a stiffer response for the sand 
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adjacent to the loaded wall, than the computed by the hyperbolic model. 

The same trend was computed after triggering liquefaction. The results 

show that the displacements computed by the modified SMP model are about 

82% of that computed by the hyperbolic model. 

The above results are not surprising because the hyperbolic model uses 

a yield criterion that underestimates the failure strength of sand subjec-

ted to stress paths that differ from the triaxial path. On the other hand, 

the yield criterion followed in the modified SMP model takes different 

stress paths into account, as shown earlier in Chapter 3. In addition, the 

dilatant and rotational (rotation of principal stress axis) characteristics 

of the sand fills were not modelled by the hyperbolic model but were 

modelled by the modified SMP model. It is felt that the above considera-

tions explain the different displacement results computed, before and after 

liquefaction, by the two models. 

The liquefaction assessment by the two models is presented in Fig. 

7.6.10. It may be seen that the computed number of soil elements to 

liquefy by the modified SMP model is 10 while a number of 13 was computed 

by the hyperbolic model. Nevertheless, the two liquefaction distributions 

are quite similar and indicate that the distribution of the shear stress, 

x and effective vertical stress, a', computed by the two models are also ZX z 
similar because only these two stresses were used in the assessment of 

liquefaction as described in Chapter 7. 

Based on the above, it is concluded that if the modified SMP model had 

been used in the 3-D analysis instead of the hyperbolic model, then: 

a) The horizontal displacements correspondent to the elastic phase (MSL < 

(MSL) ) would be essentially the same as that computed earlier in max 
Chapter 7. However, the horizontal displacements correspondent to the 
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Figure 7.6.10 Liquefaction assessment obtained from 2-D analysis: (a) 
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plastic phases (MSL > (MSL) ) would be smaller than that computed 
max 

earlier for the loaded wall location, but about the same for the back 

wall location. 

b) The 3-D liquefaction assessment would remain essentially the same as 

computed earlier in Chapter 7. 

7.6.6 Conclusions 

The main conclusions, derived from the results of the several 2-D 

analysis of the Molikpaq structure response to ice loading are summarized 

in Table 7.6.1 together with a brief description of each case studied. 

It may be seen that the influence of the several parameters considered 

in the analysis on the horizontal displacements of the structure varied 

from case to case. 

Stiffer responses of the Molikpaq loaded wall were computed by the 

analysis carried out using the "thin" interface element and the modified 

SMP model than that computed by the analysis carried out using the 

"standard" interface element and the hyperbolic model. 

Similar responses of the Molikpaq back wall movements were computed 

from all analysis except for that computed by the analysis where the shear 

stresses of the liquefied soil elements were redistributed following the 

"residual strength + load shedding" method. This method computed larger 

displacements for the back wall than the computed from the stress redistri-

bution method used in the 3-D analysis. 

The results also indicate that the influence of the different 

parameters considered in the analysis, on the liquefaction distribution was 

of no significance. 



Table 7.6.1 
Summary of Conclusions 

CASE 
STUDIED DESCRIPTION 

INFLUENCE ON THE RESULTS 
CASE 
STUDIED DESCRIPTION HORIZONTAL 

DISPLACEMENTS 
LIQUEFACTION 
ASSESSMENT 

• INTERFACE 
TYPE 

(Sec. 7.6.3) 

Behaviour of the interface 
between the Molikpaq steel 
structure and the sand fills. 
"Standard" soil elements, 
versus, Desai's "thin" 
element. Both analyses 
carried out with 6 = 20° 

• Larger displacements 
were computed at the 
loaded wall locations 
from the "standard" 
element analyses 

• Similar displacements 
were computed at the 
back wall locations 
from both analyses 
(see Fig. 7.6.3) 

The same lique-
faction distri-
bution was 
computed from 
both analyses 

• ANGLE OF 
FRICTION, 6 

(Sec. 7.6.3) 

Three cases considered: 6=0°; 
6=20°; and 6=<f>. All analyses 
carried out using the "thin" 
element 

• Larger displacements 
were computed at the 
loaded wall locations 
from the "6=0°" 
analysis, & approach 
the displacements 
obtained from the 
"standard" element 
analysis (6=20°) 

• Same displacements 
were computed at the 
loaded wall location 
from the "6=20" and 
"6=<J>" analyses 

• Similar displacements 
were computed at the 
back wall locations 
from all analyses 
(see Fig. 7.6.4) 

The same lique-
faction distri-
bution was 
computed from 
all analyses 

• SHEAR 
STRESS 
REDISTRI-
BUTION 
METHOD 

(Sec. 7.6.4) 

The shear stresses of the 
soil elements to liquefy at 
an ice load level, ILL are 
redistributed to the adjacent 
elements by: 
Method 1: defaulting the 
moduli of these elements to 
a small value and by re-
loading from ice load = 0 
to ice load = ILL 

Method 2: using the "residual 
strength + load shedding" 
method. 

• Larger displacements 
were computed at the 
loaded wall locations 
by the "method 1" 
analysis 

• Larger displacements 
were computed at the 
back wall locations 
by the "method 2" 
analysis 

Similar lique-
faction distri-
butions were 
computed from 
both analyses 

• CONSTITU-
TIVE 
MODEL 

(Sec. 7.6.5) 

Hyperbolic model, versus, 
modified SMP model. Both 
analyses used the following: 
• Method 2 to redistribute 
the shear stresses of the 
liquefied elements 

• "Thin" element to 
simulate the interface 
between steel and sand 
(6=20°) 

• Larger displacements 
were computed at the 
loaded wall locations 
by the "hyperbolic" 
analysis 

• Similar displacements 
were computed at the 
back wall locations 
by both analyses (see 
Fig. 7.6.9) 

Similar lique-
faction distri-
butions were 
computed from 
both analyses 
(see Fig. 
7.6.10) 


