NON-LINEAR ANALYSIS FOR TRANSVERSELY POST-TENSIONED TIMBER BRIDGE

By

Cai, Shen

B.Eng. & M.Eng. Beijing Institute of Civil Engineering and Architecture

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

in
THE FACULTY OF GRADUATE STUDIES
CIVIL ENGINEERING

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1991

© Cai, Shen, 1992
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

(Signature)

Department of CIVIL ENGINEERING
The University of British Columbia
Vancouver, Canada
Date April 12, 1992
ABSTRACT

Timber bridges have been very important in North America due to an abundant resource of the material and the relatively unsophisticated requirement for equipment and skilled labour. The transversely post-tensioned laminating method can improve the loading distribution capacity of the timber bridge structure and elongate the bridge service life. To develop a method for its analysis it is necessary to consider the non-linear behaviour of between-beams friction in the bridge structure.

A method and corresponding computer program (PTB) has been developed for the non-linear analysis for the transversely post-tensioned timber bridge. The finite strip element method is used in the analysis. Wheel loadings are idealized as patches with static uniformly distributed loadings. The beam to beam friction parameters were obtained from tests. The relative movements between beams, in three-directions, stresses and deformations of the structure are obtained by the PTB program. As an application, a bridge with post-tensioned T-beams made of Parallam is considered.
Table of Contents

ABSTRACT

List of Tables

List of Figures

Acknowledgement

1 INTRODUCTION

1.1 Background ... 1

1.2 Literature Review ... 3

1.3 Objectives of the Thesis .. 4

2 NON-LINEAR FINITE ELEMENT ANALYSIS

2.1 Structural Model .. 6

2.1.1 Middle surface displacement functions for the flange of the T-beam 6

2.1.2 Displacement functions for the centroid of the T-beam web 9

2.1.3 Degrees of freedom for the joint element 11

2.2 Strain Energy of the Structural System and Virtual Work 13

2.2.1 Strain energy in the flange of the T-beam element 14

2.2.2 Strain energy in the web .. 18

2.2.3 Strain energy in the web-flange connector 20

2.2.4 Virtual work done by non-conservative forces in the joint element 23

2.3 Global Equation ... 26
2.3.1 Stiffness contribution from one T-beam element 27
2.3.2 Stiffness contribution from one joint element 29
2.3.3 Consistent load vectors 30
2.3.4 System of equations corresponding to one T-beam (Element Matrix) 32

2.4 Global Equations and Solution Method 33
 2.4.1 Characteristics of the global equation 33
 2.4.2 The incremental procedure 34
 2.4.3 Newton-Raphson method 35
 2.4.4 Jacobi iteration method 39

3 FRICITION PARAMETERS FOR THE SPRING MODEL 40
 3.1 The Friction Test 40
 3.2 Spring Model ... 43

4 ANALYTICAL RESULTS ... 49
 4.1 Beam Test ... 49
 4.2 T-beam Analysis ... 52
 4.2.1 Analysis for post-tensioning force only 54
 4.2.2 Analysis for the one patch of vertical loading 55
 4.2.3 Wheel loading analysis 61

5 CONCLUSIONS .. 73

Bibliography ... 74

Appendices .. 76

A SHAPE FUNCTIONS AND DERIVATIVES 76
List of Tables

3.1 Data of Friction Test Samples ... 42
3.2 Statistical Results of the Friction Test 43
4.1 Properties of the Cantilever Beam 50
4.2 Status of the Springs in the Cantilever Beams 50
4.3 Properties of T-beam Structure ... 53
4.4 Analytical Results: Post-tensioning Force Only 55
List of Figures

1.1 Analytical Structural Model ... 5

2.1 The Structural Model .. 7
2.2 The T-beam Model and The Joint Model 7
2.3 The Distribution of the Discrete Springs 12
2.4 The Constitutive Relationship of the Springs 12
2.5 The Vechicle and Post-tensioning Load 30
2.6 The Global Equation System ... 34
2.7 The Incremental Method .. 36
2.8 Newton-Raphson Method .. 36

3.1 The Friction Test Setup ... 41
3.2 Two Kinds of Friction Test .. 41
3.3 Friction Test Recording Curves(1) 44
3.4 Friction Test Recording Curves(2) 45
3.5 Friction Test Recording Curves(3) 46
3.6 Idealized Friction Test Curves 47
3.7 Same Slip Assumption .. 48

4.1 Two Cantilever Beam Structure 50
4.2 Cantilever Beam Structure Displacements 51
4.3 Built-in Solid Beams ... 51
4.4 Three T-beam Structure ... 52
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Three T-beam Structure with Post-Tensioning Force Only</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Displacements of T-beam Structure under Post-Tensioning Force Only</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>T-beam Structure One Patch Loading Case</td>
<td>57</td>
</tr>
<tr>
<td>4.8</td>
<td>Bending Stress of T-beam Structure One Patch Loading Case</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>Displacements of T-beam Structure One Patch Loading Case</td>
<td>58</td>
</tr>
<tr>
<td>4.10</td>
<td>Relative Displ. of T-beam Structure One Patch Loading Case</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Upward Deflection of the T-beam</td>
<td>60</td>
</tr>
<tr>
<td>4.12</td>
<td>Displacements of T-beam under One Patch Loading</td>
<td>60</td>
</tr>
<tr>
<td>4.13</td>
<td>T-beam Structure CASE 1</td>
<td>62</td>
</tr>
<tr>
<td>4.14</td>
<td>Bending Stress in T-beam Structure CASE 1</td>
<td>63</td>
</tr>
<tr>
<td>4.15</td>
<td>Displacements in T-beam Structure CASE 1</td>
<td>63</td>
</tr>
<tr>
<td>4.16</td>
<td>Relative Displacements in T-beam Structure CASE 1</td>
<td>64</td>
</tr>
<tr>
<td>4.17</td>
<td>Bending Stress under Moving Loading</td>
<td>64</td>
</tr>
<tr>
<td>4.18</td>
<td>Displacements under Moving Loading</td>
<td>65</td>
</tr>
<tr>
<td>4.19</td>
<td>T-beam Structure CASE 2</td>
<td>65</td>
</tr>
<tr>
<td>4.20</td>
<td>Bending Stress in T-beam Structure CASE 2</td>
<td>66</td>
</tr>
<tr>
<td>4.21</td>
<td>Displacements in T-beam Structure CASE 2</td>
<td>66</td>
</tr>
<tr>
<td>4.22</td>
<td>Relative Displacements in T-beam Structure CASE 2</td>
<td>67</td>
</tr>
<tr>
<td>4.23</td>
<td>The Effect of the Stiffness of the Spring</td>
<td>68</td>
</tr>
<tr>
<td>4.24</td>
<td>T-beam Structure CASE 3</td>
<td>69</td>
</tr>
<tr>
<td>4.25</td>
<td>Bending Stress in T-beam Structure CASE 3</td>
<td>69</td>
</tr>
<tr>
<td>4.26</td>
<td>Displacements in T-beam Structure CASE 3</td>
<td>70</td>
</tr>
<tr>
<td>4.27</td>
<td>Relative Displacements in T-beam Structure CASE 3</td>
<td>70</td>
</tr>
<tr>
<td>4.28</td>
<td>Effect of the Fourier Terms on Bending Stress</td>
<td>71</td>
</tr>
<tr>
<td>4.29</td>
<td>Effect of the Fourier Terms on Displacement</td>
<td>71</td>
</tr>
<tr>
<td>4.30</td>
<td>Effect of the Fourier Terms on Relative Displacement in Joint 1</td>
<td>72</td>
</tr>
</tbody>
</table>

viii
4.3.1 Effect of the Fourier Terms on Relative Displacement in Joint 2 72

B.1 PTB Program Flow Chart 81
Acknowledgement

The author takes this opportunity to gratefully acknowledge the guidance of his advisor Dr. Ricardo O. Foschi throughout this research and thesis preparation. His suggestions and advice during our discussions proved invaluable. The author also expresses his sincere gratitude to Dr. D.L. Anderson and Dr. H.G.L. Prion for reading this thesis and suggesting improvements.

The financial support in the form of a Research Assistantship from the National Engineering Research Council of Canada is gratefully acknowledged. Also acknowledged are contributions by MacMillan Bloedel Research Limited Centre such as the use of their laboratories in the friction testing of Parallam, and for providing other data on this composite product.
Chapter 1

INTRODUCTION

1.1 Background

Timber has been very important in North American bridge construction due to its abundance and the relatively unsophisticated requirements for equipment and skilled labour in comparison to steel and concrete bridges. More than a thousand timber bridges with short and medium spans have been built across Canada. Two kinds of bridges, using either nailed-laminated or glue-laminated construction have been most commonly designed.

In the first half of this century, with the high quality and high strength of steel and reinforced concrete materials being used more and more, timber as a material for bridge construction was progressively ignored. Structural engineers were reluctant to use timber in bridges, since the frequent failure of such bridges in the past convinced engineers that these structures could not be expected to last more than 40 years [1], leading to expensive replacements.

In 1973, the Ontario Ministry of Transportation and Communications began a laminated timber bridge testing program to evaluate the load carrying capacity of this kind of bridges. The results pointed out that the load carrying capacity and service life were a direct function of the ‘tightness’ of the structural system. ‘Tightness’ was defined as the ability of the structure to prevent relative movement between components and prevent the entry of harmful agents between adjoining interfaces [2]. The tightness also reflects
the loading distribution ability of the structure. In turn, this ability is an indication of the bridge load carrying capacity.

The bridge is a structure subjected to vehicle wheel loading, which is relatively concentrated. Slips between components of the deck (cover) would occur and form gaps. Water and incompressible materials (such as stones) would enter these gaps. The incompressible materials would force the gaps to remain open and make the deterioration of the structure worse, resulting in local deck failures after only a relative short service life.

Increasing the tightness of the bridge means increasing its load distribution capacity of the bridge and, consequently, increasing its loading carrying capacity. The transversely post-tensioned laminating process, developed for this purpose, was first used in Ontario, in 1976, for the rehabilitation of a nailed-laminated bridge cover. Comparison of the load test results obtained before and after the transverse post-tensioning indicated the effectiveness of the procedure in improving the load distribution and decreasing the deflection in the bridge [2]. Since then, the transverse post-tensioning method has been accepted in new bridge design and construction.

Timber bridges can be constructed in the four seasons of the year. This is especially important in Canada because of its winter weather. Their economic advantage has also been proven by cost statistics for short span bridges [3].

A method is needed to analyze the transversely post-tensioned timber bridge structure and obtain the relative interface movement under load. Such analysis could be used for the study of the reliability of the bridge for different performance criteria. The development of such an analysis is the main purpose of this research.
1.2 Literature Review

Previous research has developed different models for the two or three-dimensional analysis of stiffened plates.

Cheung [4] developed the finite strip approach to analyze thin rectangular plates with two opposite edges simply supported. A trigonometric series function was used in the approximation of the deflection of the plate between the two simply supported edges, while a finite element representation was used in the cross-direction. For this case, the finite strip element method required less computer memory and increases the computational efficiency when compared to standard finite elements techniques.

Foschi [5] used a combination of Fourier series and finite elements to analyze a type of timber floor system. This consists of a cover (deck) and the beams. The cover is fastened (nailed) to the timber beams to form a composite T-beam finite strip. The width of the T-beam flange is equal to the spacing between the beams. The flange (cover) is considered as an orthotropic thin plate in the analysis. FAP (Floor Analysis Program) was developed based on this model. The program can be used to consider gaps in the cover perpendicular to the span. However, the consideration of gaps caused coupling between the different Fourier terms in the global equations, requiring more computer memory and longer solution times.

Thompson, Goodman and Vanderbilt developed the computer program FEAFLO [6],[7], to analyze the same wood floor system, taking account of the composite behaviour between cover and beams. The method considered the floor as a system of crossing T- and rectangular beams, including the effects of slip between layers owing to fastener deformation.

Taylor [8] used the computer program ORTHOP to analyze the transversely post-tensioned Hebert Creek timber bridge, which assumed no transverse flexural stiffness in
the structural system while the transverse load transfer was due to vertical shear only. The friction coefficient between the timber interior surfaces was assumed to be about 0.5.

Onate and Suarez [9] used Mindlin's plate theory to establish an analytical model taking into account the effect of transverse shear deformation. In their model, the transverse section was discretized by one dimensional finite elements and the longitudinal behaviour of the structure was defined by Fourier series. The element was called the simple two noded strip element with one single integrating point.

Harik and Salamoun [10] also adopted the strip element to analyze the stiffened orthotropic rectangular plates. They idealized the stiffened plate as a system of plated strips and beam segments rigidly connected to each other.

All these analyses only performed a linear elastic study of the structural system. Actually, the system response is nonlinear and the non-linearities due to friction between components must be considered in a more general analysis.

1.3 Objectives of the Thesis

In order to obtain a general theoretical analysis, the non-linear properties for the transversely post-tensioned timber bridge must be considered. On the basis of the program FAP by Foschi [5], a non-linear, transversely post-tensioned timber bridge analysis computer program, PTB(Post-tensioned Timber Bridge), has been developed. The structure is shown in Figure 1.1.

Nonlinear springs, representing the nonlinear frictional behaviour between T-beams, are inserted between the T-beam elements. The analysis is limited to static loading. The thesis objective is the development of a method for the calculation of the relative displacement between two adjacent T-beams, under the vehicle wheel loading. The method and the PTB program can be used to obtain the relationship between maximum relative
displacement and post-tensioning force, permitting the calculation of the force required to achieve a target maximum relative displacement.

The Newton-Raphson method [14] and the incremental loading method [15] are used to solve the non-linear problem. Since the non-linear behaviour of the friction springs produces coupling between the Fourier terms, the Jacobi iteration method [5] has been used to solve the coupled global equations. As an example, this Thesis considers a post-tensioned bridge with T-beams made with Parallam, a composite wood product manufactured by MacMillan Bloedel Ltd. of Vancouver, B.C.
Chapter 2

NON-LINEAR FINITE ELEMENT ANALYSIS

2.1 Structural Model

The bridge structural model consists of two types of structural elements, i.e. the T-beam and the joint between beams shown in Figure 2.1. The joint element, as mentioned in Chapter 1, is assumed to represent the non-linear friction behaviour between the interfaces of the adjacent beams.

It is assumed that all the T-beam elements remain linearly elastic, with small deformations. The joint elements have non-elastic material properties. For the T-beam element, its flange can be assumed fastened to the web to produce an assembly capable of composite action, behaving as a stiffened plate under loading [5]. The flange may also be assumed to be rigidly connected to the web. Orthotropic thin plate theory [11] has been used in the analysis, to consider the different elastic properties of the flange in the directions perpendicular and parallel to the beams.

A semianalytical procedure [12] has been used here, assuming in the x-direction a Fourier series for the displacement function, and a finite element approximation along the y-direction. The T-beam and the joint elements are illustrated in Figure 2.2. The displacements of the T-beam and the joint element are matched at their common nodes.

2.1.1 Middle surface displacement functions for the flange of the T-beam

These displacements are represented as follows:
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

Figure 2.1: The Structural Model

Figure 2.2: The T-beam Model and The Joint Model
1) in the \(z\)-direction
\[
 w(x, y) = \sum_{n=1}^{N} F_{1n}(y) \sin\left(\frac{n\pi x}{L}\right)
\]
(2.1)

2) in the \(x\)-direction
\[
 u(x, y) = \sum_{n=1}^{N} F_{2n}(y) \cos\left(\frac{n\pi x}{L}\right)
\]
(2.2)

3) in the \(y\)-direction
\[
 v(x, y) = \sum_{n=1}^{N} F_{3n}(y) \sin\left(\frac{n\pi x}{L}\right)
\]
(2.3)

where:

\(N\) = the number of terms used in the Fourier series

\(L\) = the span of the bridge

These displacements satisfy simply supported conditions at \(x = 0\) and \(x = L\). The functions \(F_{1n}(y)\), \(F_{2n}(y)\) and \(F_{3n}(y)\) can be expressed in terms of polynomials in the non-dimensional variable \(\xi = 2y/s\), where: \(s\) = the spacing of the T-beams. A 5th order polynomial is used for \(F_{1n}(y)\), and 4th order polynomials for \(F_{2n}(y)\) and \(F_{3n}(y)\), with degrees of freedom associated with nodes 1, 2 and 3 in Figure 2.2. Thus, if \(\{\delta_n\}\) is the vector of nodal displacements, \(F_{1n}(\xi)\), \(F_{2n}(\xi)\) and \(F_{3n}(\xi)\) and their corresponding derivatives can be written as:

\[
 F_{1n}(\xi) = \{M_0(\xi)\}^T\{\delta_n\}
\]
(2.4)

\[
 F_{2n}(\xi) = \{M_3(\xi)\}^T\{\delta_n\}
\]
(2.5)

\[
 F_{3n}(\xi) = \{M_5(\xi)\}^T\{\delta_n\}
\]
(2.6)

with corresponding derivatives:
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

\[
\frac{dF_{1n}(\xi)}{d\xi} = \{M_1(\xi)\}^T\{\delta_n\}
\] (2.7)

\[
\frac{d^2F_{1n}(\xi)}{d\xi^2} = \{M_2(\xi)\}^T\{\delta_n\}
\] (2.8)

\[
\frac{dF_{2n}(\xi)}{d\xi} = \{M_4(\xi)\}^T\{\delta_n\}
\] (2.9)

\[
\frac{dF_{3n}(\xi)}{d\xi} = \{M_6(\xi)\}^T\{\delta_n\}
\] (2.10)

The vectors \(\{M_1(\xi)\}\) to \(\{M_6(\xi)\}\) are given in Appendix A.

2.1.2 Displacement functions for the centroid of the T-beam web

These are expressed as follows:

1) in the z-direction

\[
W(x) = \sum_{n=1}^{N} W_{4n} \sin\left(\frac{n\pi x}{L}\right)
\] (2.11)

2) in the x-direction

\[
U(x) = \sum_{n=1}^{N} U_{4n} \cos\left(\frac{n\pi x}{L}\right)
\] (2.12)

3) in the y-direction

\[
V(x) = \sum_{n=1}^{N} V_{4n} \sin\left(\frac{n\pi x}{L}\right)
\] (2.13)

4) rotation about x-axis

\[
\theta(x) = \sum_{n=1}^{N} \theta_{4n} \sin\left(\frac{n\pi x}{L}\right)
\] (2.14)

The vector \(\{\delta_n\}\), associated with the \(n^{th}\) term of the Fourier series, is shown in Equation 2.15. Each T-beam element has 19 degrees of freedom.
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

\[
\{\delta_n\} = \begin{bmatrix}
 w_{1n} \\
 w_{1n}' \cdot s \\
 u_{1n} \\
 u_{1n}' \cdot s \\
 v_{1n} \\
 v_{1n}' \cdot s \\
 u_{2n} \\
 v_{2n} \\
 w_{2n} \cdot s \\
 U_{4n} \\
 V_{4n} \\
 \theta_{4n} \cdot s \\
 w_{3n} \\
 w_{3n}' \cdot s \\
 u_{3n} \\
 u_{3n}' \cdot s \\
 v_{3n} \\
 v_{3n}' \cdot s \end{bmatrix}
\]

(2.15)

The prime (') denotes the derivative with respect to \(y \). For example, \(w_{1n}' \cdot s \) is the derivative of \(w(x,y) \) with respect to \(y \) at node 1 associated with the \(n^{th} \) item of Fourier series. The rotation degree of freedom is multiplied by the beam spacing \(s \) to make all components in \(\{\delta_n\} \) dimensionally consistent.
2.1.3 Degrees of freedom for the joint element

Similar to the T-beam element, the degrees of freedom for the joint element are associated with the each term of the Fourier series.

\[
\{ \delta_n^J \} = \begin{pmatrix}
 w_{1n} \\
 w_{1n} \cdot s \\
 u_{1n} \\
 v_{1n} \\
 w_{2n} \\
 v_{2n} \\
 e \\
 t \\
 \Delta x \\
 \Delta y
\end{pmatrix}
\] (2.16)

The joint element consists of discrete three-dimensional springs at both the top and the bottom of the flanges along the bridge span shown in Figure 2.3. The dots show the positions of the three-dimensional springs which connect the flanges of two adjacent T-beam elements. The three-dimensional spring can act in the x-, the y- and the z-direction.

The constitutive relationships for the x-, y- and z-direction springs are illustrated in Figure 2.4, where:

- \(\mu_x \) = the friction coefficient of the T-beam flange in the x-direction;
- \(\mu_z \) = the friction coefficient of the T-beam flange in the z-direction;
- \(\sigma_y \) = the normal stress in the T-beam flange caused by post-tensioning force;
- \(e \) = the spring separation along the x-direction;
- \(t \) = the width of spring's effective area;
- \(\Delta x \) = the elongation of the spring in the x-direction;
- \(\Delta y \) = the elongation of the spring in the y-direction;
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

Figure 2.3: The Distribution of the Discrete Springs

Figure 2.4: The Constitutive Relationship of the Springs
\[\Delta z = \text{the elongation of the spring in the } z\text{-direction} \]

The elongation of the spring is represented by the relative displacement between the two adjacent T-beam flanges at the corresponding location of each spring.

When the relative displacement of the spring in the \(x \)-direction or in the \(z \)-direction (see Equation 2.54 and Equation 2.56) exceeds the corresponding friction limit, the spring loses its stiffness in the corresponding direction, but maintains a constant force equal to the friction force.

The spring in the \(y \)-direction is used as a contact spring, to permit flange separation but not overlapping. When the relative displacement is negative or zero, ie. the two flanges tend to overlap each other, the stiffness of the \(y \)-direction spring is set very high, to enforce no overlapping between them. Thus, when the relative displacement is positive, which means that there is a separation between two adjacent T-beam flanges at the spring position, the spring is inactive or has no stiffness and no force in it. When the spring in \(y \)-direction loses its stiffness, this spring will not make contribution to the stiffness matrix. The effects of the springs in the \(x \)- and the \(z \)-direction depend on the 'contact condition', ie, if there is a separation, the springs in the \(x \)- and in the \(z \)-direction are not active.

2.2 Strain Energy of the Structural System and Virtual Work

The energy variational approach and the principle of virtual work are to establish the global equations for the structure. In this section, the strain energy of each component and the virtual work done by the conservative and the non-conservative forces are presented in terms of nodal displacement degree of freedom.
2.2.1 Strain energy in the flange of the T-beam element

The strain energy per unit area of flange can be obtained by applying small deflection orthotropic plate theory.

\[
U_{fu} = \frac{K_x}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)^2 + \frac{K_y}{2} \left(\frac{\partial^2 w}{\partial y^2} \right)^2 + K_v \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + 2K_G \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + D_x \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)^2 + D_y \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)^2 + D_v \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 v}{\partial x \partial y} \right)^2
\]

(2.17)

For the plate with the thickness d, the stiffnesses \(K_x, K_y, K_v, K_G, D_x, D_y, D_v \) and \(D_G \) are given as follows:

1) the flexural stiffness in the x-direction

\[
K_x = \frac{E_x d^3}{12(1 - \nu_{xy} \nu_{yz})}
\]

2) the flexural stiffness in the y-direction

\[
K_y = \frac{E_y d^3}{12(1 - \nu_{xy} \nu_{yz})}
\]

and

\[
K_v = \nu_{xy} K_x
\]

3) the torsional stiffness

\[
K_G = \frac{G d^3}{12}
\]

4) the axial stiffness in the x-direction

\[
D_x = \frac{E_x d}{1 - \nu_{xy} \nu_{yz}}
\]
5) the axial stiffness in the y-direction

\[D_y = \frac{E_y d}{(1 - \nu_{xy}\nu_{yz})} \]

and

\[D_v = \nu_{xy} D_z \]

6) the shear stiffness in plane

\[D_G = G \cdot d \]

in which,

\(d \) = the thickness of the flange;

\(E_x \) = the elastic modulus of the flange material in the x-direction;

\(E_y \) = the elastic modulus of the flange material in the y-direction;

\(\nu_{xy} \) = the Poisson's ratio, strain in the x-direction when stress is applied in y-direction;

\(\nu_{yz} \) = the Poisson's ratio, strain in the y-direction when stress is applied in the x-direction;

\(G \) = the shear modulus in the x-y plane.

The total strain energy \(U_f \) in the element flange can be obtained by integrating \(U_{fu} \) over the whole area of the flange.

\[U_f = \int_{-L/2}^{L/2} \int_0^L U_{fu} \, dx \, dy \quad (2.18) \]

Substituting Equation 2.17 and derivatives of the \(w(x,y), u(x,y) \) and \(v(x,y) \) (shown in Appendix A) into Equation 2.18, the total strain energy in the flange of one T-beam element is obtained in terms of the vectors \(\{\delta_n\} \). The integration makes use of the orthogonality of the trigonometric functions in the interval \((0,L)\):
\[
\int_0^L \cos\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right) = \begin{cases} \frac{L}{2} & m = n \\ 0 & m \neq n \end{cases}
\]

\[
\int_0^L \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right) = \begin{cases} \frac{L}{2} & m = n \\ 0 & m \neq n \end{cases}
\]

\[
\xi = \frac{2y}{s}, \quad d\xi = \frac{2}{s}dy, \quad dy = \frac{s}{2}d\xi
\]

Thus,

\[
U_f = \sum_{i=1}^{8} U_{f_i}
\]

(2.19)

where the \(U_{f_i}\) components are given as follows:

\[
U_{f1} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \left\{ \int_0^L U_{f1i} dx \right\} dy
\]

\[
= \frac{N}{8L^3} \sum_{n=1}^{N} \frac{K_u n^4 \pi^4 s}{8L^3} \int_{-1}^{1} \{\delta_n\}^T \{M_0(\xi)\}\{M_0(\xi)\}^T \{\delta_n\} d\xi
\]

(2.20)

\[
U_{f2} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \left\{ \int_0^L U_{f2i} dx \right\} dy
\]

\[
= \sum_{n=1}^{N} \frac{K_u}{2} \left(\frac{2}{s}\right)^3 \frac{L}{2} \int_{-1}^{1} \{\delta_n\}^T \{M_2(\xi)\}\{M_2(\xi)\}^T \{\delta_n\} d\xi
\]

(2.21)

\[
U_{f3} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \left\{ \int_0^L U_{f3i} dx \right\} dy
\]

\[
= \sum_{n=1}^{N} -K_v \left(\frac{n\pi}{L}\right)^3 \left(\frac{2}{s}\right) \frac{L}{2} \int_{-1}^{1} \{\delta_n\}^T \{M_0(\xi)\}\{M_2(\xi)\}^T \{\delta_n\} d\xi
\]

(2.22)
\[U_{f4} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \{ \int_{0}^{L} U_{fu4} dx \} dy \]
\[= \sum_{n=1}^{N} 2K_G \left(\frac{n\pi}{L} \right)^2 \frac{8}{2} \int_{-1}^{1} \{ \delta_n \}^T \{ M_1(\xi) \} \{ M_1(\xi) \}^T \{ \delta_n \} d\xi \]
\[\text{(2.23)} \]

\[U_{f5} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \{ \int_{0}^{L} U_{fu5} dx \} dy \]
\[= \sum_{n=1}^{N} \frac{D_y}{2} \left(\frac{n\pi}{L} \right)^2 \frac{8}{2} \int_{-1}^{1} \{ \delta_n \}^T \{ M_3(\xi) \} \{ M_3(\xi) \}^T \{ \delta_n \} d\xi \]
\[\text{(2.24)} \]

\[U_{f6} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \{ \int_{0}^{L} U_{fu6} dx \} dy \]
\[= \sum_{n=1}^{N} \frac{D_y}{2} \frac{2}{s} \frac{L}{2} \int_{-1}^{1} \{ \delta_n \}^T \{ M_6(\xi) \} \{ M_6(\xi) \}^T \{ \delta_n \} d\xi \]
\[\text{(2.25)} \]

\[U_{f7} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \{ \int_{0}^{L} U_{fu7} dx \} dy \]
\[= \sum_{n=1}^{N} D_v \left(\frac{n\pi}{L} \right)^2 \frac{L}{2} \int_{-1}^{1} \{ \delta_n \}^T \{ M_6(\xi) \} \{ M_6(\xi) \}^T \{ \delta_n \} d\xi \]
\[\text{(2.26)} \]

\[U_{f8} = \int_{-\frac{L}{2}}^{\frac{L}{2}} \{ \int_{0}^{L} U_{fu8} dx \} dy \]
\[= \sum_{n=1}^{N} \frac{D_G sL}{2} \frac{4}{s} \int_{-1}^{1} \{ \delta_n \}^T \{ X\} \{ \delta_n \} d\xi \]
\[\text{(2.27)} \]
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

Where:

\[
[XX] = \left(\frac{2}{s} \right)^2 \{M_4(\xi)\} \{M_4(\xi)\}^T + \left(\frac{n\pi}{L} \right)^2 \{M_5(\xi)\} \{M_5(\xi)\}^T \\
+ \left(\frac{n\pi}{L} \right) \left(\frac{2}{s} \right) \{M_5(\xi)\} \{M_4(\xi)\}^T + \{M_4(\xi)\} \{M_5(\xi)\}^T \ \ (2.28)
\]

2.2.2 Strain energy in the web

This is given in terms of the displacements \(U, V \) and \(W \) and the rotation \(\theta \). Thus,

\[
U_j = \frac{EI_y}{2} \int_0^L \left(\frac{d^2W}{dx^2} \right)^2 dx + \frac{EI_z}{2} \int_0^L \left(\frac{d^2V}{dx^2} \right)^2 dx + \frac{EA}{2} \int_0^L \left(\frac{dU}{dx} \right)^2 dx + \frac{GI_t}{2} \int_0^L \left(\frac{d\theta}{dx} \right)^2 dx \ \ (2.29)
\]

Where:

\(I_y = \frac{(BH^3)}{12} \) the moment of inertia about the y-axis;

\(I_z = \frac{(HB^3)}{12} \) the moment of inertia about the z-axis;

\(I_t = \beta HB^3 \) the torsional moment of inertia;

\(A = BH \), the T-beam web cross sectional area;

\(E = \) the elastic modulus of the web;

\(G = \) the shear modulus of the web.

\(\beta = \) the torsional coefficient dependent on the ratio \((H/B) \) [13].

It can be assumed that the ratio \(E/G \) is fixed. For most wood products, this is a large number, eg. \(E/G = 17.0 \).

Substituting the derivatives of the \(W(x), U(x), V(x) \) and \(\theta(x) \) (see Appendix A) into Equation 2.29 the strain energy of the web can be written as:
\[U_j = \sum_{i=1}^{4} U_{ji} \]

in which

\[U_{j1} = \frac{EI_y}{2} \int_{0}^{L} \left(\frac{d^2 W}{dx^2} \right)^2 dx \]
\[= \frac{EI_y}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \int_{0}^{L} W_{4n} W_{4m} \left(\frac{n\pi}{L} \right)^2 \left(\frac{m\pi}{L} \right)^2 \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) dx \]
\[= \frac{EI_y}{2} \sum_{n=1}^{N} (W_{4n})^2 \left(\frac{n\pi}{L} \right)^4 \left(\frac{L}{2} \right) \]

(2.31)

\[U_{j2} = \frac{EI_z}{2} \int_{0}^{L} \left(\frac{d^2 V}{dx^2} \right)^2 dx \]
\[= \frac{EI_y}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \int_{0}^{L} V_{4n} V_{4m} \left(\frac{n\pi}{L} \right)^2 \left(\frac{m\pi}{L} \right)^2 \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) dx \]
\[= \frac{EI_z}{2} \sum_{n=1}^{N} (V_{4n})^2 \left(\frac{n\pi}{L} \right)^4 \left(\frac{L}{2} \right) \]

(2.32)

\[U_{j3} = \frac{EA}{2} \int_{0}^{L} \left(\frac{dU}{dx} \right)^2 dx \]
\[= \frac{EA}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \int_{0}^{L} U_{4n} U_{4m} \left(\frac{n\pi}{L} \right) \left(\frac{m\pi}{L} \right) \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{m\pi x}{L} \right) dx \]
\[= \frac{EA}{2} \sum_{n=1}^{N} (U_{4n})^2 \left(\frac{n\pi}{L} \right)^2 \left(\frac{L}{2} \right) \]

(2.33)

\[U_{j4} = \frac{GI_t}{2} \int_{0}^{L} \left(\frac{d\theta}{dx} \right)^2 dx \]
\[= \frac{GI_t}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \int_{0}^{L} \theta_{4n} \theta_{4m} \left(\frac{n\pi}{L} \right) \left(\frac{m\pi}{L} \right) \cos \left(\frac{n\pi x}{L} \right) \cos \left(\frac{m\pi x}{L} \right) dx \]
\[= \frac{GI_t}{2} \sum_{n=1}^{N} (\theta_{4n})^2 \left(\frac{n\pi}{L} \right)^2 \left(\frac{L}{2} \right) \]

(2.34)
2.2.3 Strain energy in the web-flange connector

Three kinds of deformations have been considered in the connectors between the flange and the beam.

1) The deformation of the connector parallel to the beam:

\[
\Delta u = \left[u_2 - \frac{d}{2} \left(\frac{\partial w_2}{\partial x} \right) \right] - \left[U + \frac{H}{2} \frac{dW}{dx} \right] \tag{2.35}
\]

2) The deformation of the connector perpendicular to the beam:

\[
\Delta v = \left[v_2 - \frac{d}{2} \left(\frac{\partial w_2}{\partial y} \right) \right] - \left[V + \frac{H}{2} \theta \right] \tag{2.36}
\]

3) The rotation deformation of the connector about the x-axis

\[
\Delta \phi = \left(\frac{\partial w_2}{\partial y} \right) - \theta \tag{2.37}
\]

Where:

\(d \) = the thickness of the flange

\(H \) = the height of the web

\(u_2 \) = the displacement in the flange at point 2 in the x-direction

\(v_2 \) = the displacement in the flange at point 2 in the y-direction

\(w_2 \) = the displacement in the flange at point 2 in the z-direction

The flange is assumed connected by uniformly spaced discrete connectors along the longitudinal centerline of the beam. Thus, the total strain energy in the connectors in each T-beam is:

\[
U_N = \sum_{i=1}^{N} \left[\frac{k_x}{2} (\Delta u)^2_i + \frac{k_y}{2} (\Delta v)^2_i + \frac{k_\theta}{2} (\Delta \phi)^2_i \right] \tag{2.38}
\]
Where:

- \(NA \) = the number of the total connectors in one T-beam;
- \((\Delta u)_i \) = the deformation in the x-direction for the \(i^{th} \) connectors;
- \((\Delta v)_i \) = the deformation in the y-direction for the \(i^{th} \) connectors;
- \((\Delta \phi)_i \) = the rotation deformation for the \(i^{th} \) connector about the x-axis;
- \(k_x \) = the stiffness of a single connector corresponding to the x-direction;
- \(k_y \) = the stiffness of a single connector corresponding to the y-direction;
- \(k_\theta \) = the rotation stiffness of a single connector.

Alternatively, an equivalent continuous connector model can be used to calculate the strain energy of the connectors per T-beam.

\[
U_N = \int_0^L \left[\frac{k_x}{2e} (\Delta u)^2 + \frac{k_y}{2e} (\Delta v)^2 + \frac{k_\theta}{2e} (\Delta \phi)^2 \right] dx
\]

(2.39)

where \(e \) = the connector spacing along the beam.

Substituting Equation 2.1 - Equation 2.3 , Equation 2.11 - Equation 2.14 and the corresponding derivatives into Equation 2.35 - Equation 2.37,

\[
\Delta u = \sum_{n=1}^{N} \left[F_{2n}(y = 0) \cos\left(\frac{n\pi x}{L}\right) - \frac{d}{2} F_{1n}(y = 0) \frac{n\pi}{L} \cos\left(\frac{n\pi x}{L}\right) - U_{4n} \frac{n\pi}{L} \cos\left(\frac{n\pi x}{L}\right) \right] - \sum_{n=1}^{N} \left[\frac{d}{2} W_{4n} \frac{n\pi}{L} \cos\left(\frac{n\pi x}{L}\right) \right]
\]

(2.40)
\[
\Delta v = \sum_{n=1}^{N} [F_{3n}(y = 0) - \frac{d}{2} \frac{dF_{1n}(y = 0)}{dy} - V_{4n} - \frac{H}{2} \theta_{4n}] \sin\left(\frac{n\pi x}{L}\right)
\]
\[
= \sum_{n=1}^{N} [v_{2n} - \frac{d}{2} w_{2n} - V_{4n} - \frac{H}{2} \theta_{4n}] \sin\left(\frac{n\pi x}{L}\right)
\]
\[\Delta \phi = \sum_{n=1}^{N} [w_{2n} - \theta_{4n}] \sin\left(\frac{n\pi x}{L}\right) \quad (2.42)\]

Finally, introducing these three Equations into Equation 2.39,

\[
U_N = \sum_{n=1}^{N} \frac{L}{2} \frac{1}{2e} \left\{ k_x [v_{2n} - U_{4n} - W_{4n}(H + d)]^2 + k_y [v_{2n} - \frac{d}{2} w_{2n} - V_{4n} - \frac{H}{2} \theta_{4n}]^2 + k_\theta [w_{2n} - \theta_{4n}]^2 \right\} \quad (2.43)
\]

In order to express the strain energy of the connector in terms of the nodal degrees of freedom, we introduce a set of \((19 \times 1)\) vectors \(\{e_i\}\) such that the \(i\)-th entry row is unit, but all other rows are zero. Substituting Equation 2.15 and \(\{e_7\}^T, \{e_8\}^T \ldots \{e_{13}\}^T\)

into the Equation 2.43, the strain energy of the connector can be written as follows:

\[
U_N = \sum_{n=1}^{N} \frac{L}{2} \frac{1}{2e} \left\{ k_x \{X\} + k_y \{Y\} + \frac{k_\theta}{S} \{\Theta\} \right\} \quad (2.44)
\]

Where:

\[
\{X\} = \{\delta_n\}^T [\{e_7\} - \{e_{11}\} - \{e_{10}\}(H + d)] \cdot
\]
\[
[\{e_7\} - \{e_{11}\} - \{e_{10}\}(H + d)]^T \{\delta_n\} \quad (2.45)
\]
\[\{Y\} = \{\delta_n\}^T \left[\{e_8\} - \{e_9\} \frac{d}{2S} - \{e_{12}\} - \{e_{13}\} \frac{H}{2S} \right] \cdot \]

\[\left[\{e_8\} - \{e_9\} \frac{d}{2S} - \{e_{12}\} - \{e_{13}\} \frac{H}{2S} \right]^T \{\delta_n\} \] \hspace{1cm} (2.46)

\[\{\Theta\} = \{\delta_n\}^T \{e_9\} - \{e_{13}\} \cdot \]

\[\{e_9\} - \{e_{13}\} \{\delta_n\} \] \hspace{1cm} (2.47)

2.2.4 Virtual work done by non-conservative forces in the joint element

The joint element consists of \(2N_8\) ‘three dimensional’ springs. The deformations of the \(i^{th}\) ‘three-dimensional spring’ in the \(x\)-, \(y\)- and the \(z\)-direction are expressed, respectively, as follows.

When a spring is at the top of the flange its \(z\)-coordinate is \(-0.5d\), and its \(z\)-coordinate is \(0.5d\) when it is at the bottom of the flange.

Along the \(x\)-direction,

\[u(x_i, z_i) = u(x_i) - z_i \left(\frac{\partial w}{\partial x} \right)_{x_i} \] \hspace{1cm} (2.48)

with the spring elongation then being,

\[\Delta u(x_i, z_i) = u_2(x_i, z_i) - u_1(x_i, z_i) \]

\[= -u_1(x_i) + u_2(x_i) + z_i \left(\frac{\partial w_1}{\partial x} \right)_{x_i} - z_i \left(\frac{\partial w_2}{\partial x} \right)_{x_i} \] \hspace{1cm} (2.49)

Similarly, along the \(y\)-direction,

\[v(x_i, z_i) = v(x_i) - z_i \left(\frac{\partial w}{\partial y} \right)_{x_i} \] \hspace{1cm} (2.50)
with elongation

\[
\Delta v(x_i, z_i) = v_2(x_i, z_i) - v_1(x_i, z_i) = -v_1(x_i) + v_2(x_i) + z_i \left(\frac{\partial w_1}{\partial y} \right)_{x_i} - z_i \left(\frac{\partial w_2}{\partial y} \right)_{x_i}
\]

(2.51)

For the z-direction,

\[
w(x_i, z_i) = w(x_i)
\]

(2.52)

and the spring elongation is:

\[
\Delta w(x_i, z_i) = w_2(x_i, z_i) - w_1(x_i, z_i) = -w_1(x_i) + w_2(x_i)
\]

(2.53)

Substituting the displacement functions of the T-beam flange and the corresponding derivatives in \(\Delta u(x_i, z_i)\), \(\Delta v(x_i, z_i)\) and \(\Delta w(x_i, z_i)\) above,

\[
\Delta u(x_i, z_i) = \sum_{n=1}^{N} [-u_{1n} + u_{2n} + z_i \frac{n\pi}{L} w_{1n} - z_i \frac{n\pi}{L} w_{2n}] \cos\left(\frac{n\pi x_i}{L}\right)
\]

(2.54)

\[
\Delta v(x_i, z_i) = \sum_{n=1}^{N} [-v_{1n} + v_{2n} + z_i w_{1n} - z_i w_{2n}] \sin\left(\frac{n\pi x_i}{L}\right)
\]

(2.55)

\[
\Delta w(x_i, z_i) = \sum_{n=1}^{N} [-w_{1n} + w_{2n}] \sin\left(\frac{n\pi x_i}{L}\right)
\]

(2.56)

which can be written in terms of the nodal degree of freedom vector.

\[
\{\Delta\} = \begin{cases}
\Delta u \\
\Delta v \\
\Delta w
\end{cases}
\]

(2.57)
\[
\{\Delta\} = \sum_{n=1}^{N} \{\Delta_n\} = \sum_{n=1}^{N} [B_n] \{\delta_n^T\}
\]

Where:

\[
\{\Delta_n\} = \begin{cases}
\{\Delta_u_n\} \\
\{\Delta_v_n\} \\
\{\Delta_w_n\}
\end{cases}
\]

\[
[B_n]^T = \begin{bmatrix}
\begin{array}{ccc}
z_i \left(\frac{\pi x_i}{L}\right) \cos \left(\frac{\pi x_i}{L}\right) & 0 & -\sin \left(\frac{\pi x_i}{L}\right) \\
0 & \frac{z_i}{S} \sin \left(\frac{\pi x_i}{L}\right) & 0 \\
-\cos \left(\frac{\pi x_i}{L}\right) & 0 & 0 \\
0 & -\sin \left(\frac{\pi x_i}{L}\right) & 0 \\
-z_i \left(\frac{\pi x_i}{L}\right) \cos \left(\frac{\pi x_i}{L}\right) & 0 & \sin \left(\frac{\pi x_i}{L}\right) \\
0 & -\frac{z_i}{S} \sin \left(\frac{\pi x_i}{L}\right) & 0 \\
cos \left(\frac{\pi x_i}{L}\right) & 0 & 0 \\
0 & \sin \left(\frac{\pi x_i}{L}\right) & 0
\end{array}
\end{bmatrix}
\]

The forces in one 'three-dimensional' spring will be:

\[
\{F\} = [D] \{\Delta\} = [D] \sum_{n=1}^{N} [B_n] \{\delta_n^T\}
\]

Where:

\[
[D] = \begin{bmatrix}
E_x^* & 0 & 0 \\
0 & E_y^* & 0 \\
0 & 0 & E_z^*
\end{bmatrix}
\]

\(E_x^*\) = the stiffness modulus of the spring in the x-direction
\(E_y^*\) = the stiffness modulus of the spring in the y-direction
Chapter 2. **NON-LINEAR FINITE ELEMENT ANALYSIS**

\(E^* = \) the stiffness modulus of the spring in the z-direction

Assuming that the structural system is subjected to a virtual displacement, corresponding to a virtual change in the nodal displacement vector for the joint element \(\{ \delta^J \}^* \), and the arbitrary deformations of the spring can be obtained:

\[
\{ \Delta \}^* = \sum_{n=1}^{N} [B_n] \{ \delta^J_n \}^*
\]

(2.63)

The internal virtual work in one 'three-dimensional' spring is, therefore,

\[
W^*_i = ([\Delta]^*)^T \{ F \} = \sum_{n=1}^{N} ([\delta^J_n]^*)^T [B_n]^T \{ F \}
\]

(2.64)

\[
W^*_i = \sum_{n=1}^{N} \sum_{m=1}^{N} ([\delta^J_n]^*)^T [B_n]^T [D] [B_m] \{ \delta^J_m \}
\]

The internal virtual work in one joint element is then the sum

\[
W^* = \sum_{i=1}^{2N_s} W^*_i
\]

(2.65)

where \(2N_s \) = the number of the total three dimensional spring in one joint element.

2.3 Global Equation

The global system of equations for the structural system is

\[
[G][U] = \{ P \}
\]

(2.66)

in which:

\([G] = \) the global stiffness matrix
The global stiffness matrix, the global nodal displacement vector and the global consistent load vector are assembled by the total contributions from each individual element using the conventional finite element method.

2.3.1 Stiffness contribution from one T-beam element

The stiffness contribution of one T-beam element can be derived by minimizing the total strain energy in the T-beam element. The total strain energy of the T-beam is the summation of the strain energy of the flange, the strain energy of the web and the strain energy of the connectors.

\[
U = U_f + U_j + U_N
= \sum_{i=1}^{8} U_{fi} + \sum_{i=1}^{4} U_{ji} + \sum_{i=1}^{3} U_{Ni}
\] (2.67)

Take the first variation of the strain energy of the flange with respect to the \(\{\delta_n\}\), we get the stiffness contribution from the T-beam.

\[
\delta(U_{n}) = \delta(U_f)_{n} + \delta(U_j)_{n} + \delta(U_N)_{n}
= \sum_{i=1}^{8} (\delta U_{f1}i)_{n} + \sum_{i=1}^{4} (\delta U_{j1}i)_{n} + \sum_{i=1}^{3} (\delta U_{N1}i)_{n}
\] (2.68)

\[
\delta(U_{f1})_{n} = \frac{K_s n 4 \pi^4 s}{4L^3} \int_{-1}^{1} \{M_0(\xi)\} \{M_0(\xi)^T d\xi \} \{\delta_n\}
\] (2.69)

\[
\delta(U_{f2})_{n} = \frac{K_s (\frac{2}{3}) 3 L}{2} \int_{-1}^{1} \{M_2(\xi)\} \{M_2(\xi)^T d\xi \} \{\delta_n\}
\]
\[\delta(U_{f3})_n = -K_v\left(\frac{n\pi}{L}\right)^2\frac{s}{L}\int_{-1}^{1}\{M_0(\xi)\}^T\{M_2(\xi)\}^T d\xi \{\delta_n\} \quad (2.70) \]

\[\delta(U_{f4})_n = 2K_G\left(\frac{n\pi}{L}\right)^2\frac{s}{L}\int_{-1}^{1}\{M_1(\xi)\}^T\{M_1(\xi)\}^T d\xi \{\delta_n\} \quad (2.71) \]

\[\delta(U_{f5})_n = \frac{D_x}{2}\left(\frac{n\pi}{L}\right)^2\frac{s}{L}\int_{-1}^{1}\{M_3(\xi)\}^T\{M_3(\xi)\}^T d\xi \{\delta_n\} \quad (2.72) \]

\[\delta(U_{f6})_n = \frac{D_y}{2}\frac{s}{L}\left(\frac{n\pi}{L}\right)^2\int_{-1}^{1}\{M_6(\xi)\}^T\{M_6(\xi)\}^T d\xi \{\delta_n\} \quad (2.73) \]

\[\delta(U_{f7})_n = D_v\frac{s}{L}\int_{-1}^{1}\{M_5(\xi)\}^T\{M_5(\xi)\}^T d\xi \{\delta_n\} \quad (2.74) \]

\[\delta(U_{f8})_n = D_G\frac{s}{L}\int_{-1}^{1}\{M_4(\xi)\}^T\{M_4(\xi)\}^T d\xi + \int_{-1}^{1}\left(\frac{n\pi}{L}\right)^2\{M_6(\xi)\}^T\{M_6(\xi)\}^T d\xi
+ \int_{-1}^{1}\left(\frac{n\pi}{L}\right)^2\{M_5(\xi)\}^T\{M_5(\xi)\}^T d\xi \{\delta_n\} \quad (2.75) \]

\[\delta(U_{f9})_n = D_G\frac{s}{L}\int_{-1}^{1}\left(\frac{n\pi}{L}\right)^2\{M_4(\xi)\}^T\{M_4(\xi)\}^T d\xi \{\delta_n\} \quad (2.76) \]
\[
\sum_{i=1}^{4} \delta(U_{\xi_{i}}) = \frac{EI_{y}}{2} W_{2n} \left(\frac{n\pi}{L} \right)^{4} L + \frac{EI_{z}}{2} V_{4n} \left(\frac{n\pi}{L} \right)^{4} L
\]
\[
+ \frac{E A}{2} U_{4n} \left(\frac{n\pi}{L} \right)^{2} L + \frac{G I_{l}}{2} \theta_{4n} \left(\frac{n\pi}{L} \right)^{2} L
\]
\[
(2.77)
\]
\[
\sum_{i=1}^{3} \delta(U_{\xi_{i}}) = \frac{L}{2\pi} \left\{ k_{x} [X][X]^T + k_{y} [Y][Y]^T + \frac{k_{\theta}}{S} [\Theta][\Theta]^T \right\} \delta_{m}
\]
\[
(2.78)
\]
\[
[X] = \left\{ \{e_{7}\} - \{e_{11}\} - \{e_{10}\} (H + d) \right\}
\]
\[
(2.79)
\]
\[
[Y] = \left\{ \{e_{8}\} - \{e_{6}\} \frac{d}{2S} - \{e_{12}\} - \{e_{13}\} \frac{H}{2S} \right\}
\]
\[
(2.80)
\]
\[
[\Theta] = \left\{ \{e_{8}\} - \{e_{13}\} \right\}
\]
\[
(2.81)
\]

2.3.2 Stiffness contribution from one joint element

Because there are non-conservative forces in the joint element, the corresponding stiffness contribution is obtained by using the principle of virtual work.

As shown in the previous section, the internal virtual work done by the spring forces in the joint element is:

\[
(W_{i}^{*})^{*} = \sum_{i=1}^{2N_{e}} \sum_{n=1}^{N} \sum_{m=1}^{N} \left\{ \{\delta_{n}^{m}\}^{*} \right\}^{T} [B_{n}]^{T} [D] [B_{m}] \{\delta_{m}^{m}\}
\]
\[
(2.82)
\]

Since \{\delta_{n}^{m}\}^{*} is an arbitrary nodal displacement the stiffness contribution from the joint element corresponding to the \(n^{th}\) and \(m^{th}\) terms in Fourier series is:
$BK[n,m] = \sum_{i=1}^{2N_s} [B_n]^T [D][B_m]$ \hspace{1cm} (2.83)

$BK[n,m]$ is a 8 x 8 symmetric matrix, producing coupling between the Fourier terms. This coupling is reduced (i.e. $BK[n,m]$ approaches $[0]$ if $n \neq m$) when N_s is large and all springs are elastic, since such limit approaches the orthogonality situation among the trigonometric shape functions.

2.3.3 Consistent load vectors

Two kinds of loading are shown in Figure 2.5.

Vehicle wheel load

Under a virtual displacement $w^*(x,y)$, the potential of the vehicle wheel load $p(x,y)$ is

$$U_i = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \{w^*(x,y)\}^T \{p(x,y)\} dxdy$$
From the definition of the consistent load we have

\[\sum_{n=1}^{N} \{(\delta_n)^\ast\}^T \{R_n\} = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \{w^\ast(x, y)\}^T \{p(x, y)\} dxdy \]

\[= \int_{x_1}^{x_2} \int_{y_1}^{y_2} \{\sum_{n=1}^{N} \{(\delta_n)^\ast\}^T \{M_0(\xi)\} \{p(x, y)\}\} \sin(\frac{n\pi x}{L}) dxdy \]

Then:

\[\{R_n\} = \int_{x_1}^{x_2} \int_{y_1}^{y_2} \{M_0(\xi)\} \{p(x, y)\} \sin(\frac{n\pi x}{L}) dxdy \] (2.86)

where: \(\{R_n\} = \) consistent load corresponding to the \(n^{th} \) term in the Fourier series.

If \(p(x, y) = P \), a constant uniformly distributed load over the patch,

\[\{R_n\} = \frac{P \cdot s}{2} \int_{x_1}^{x_2} \int_{\xi_1}^{\xi_2} \{M_0(\xi)\} \sin(\frac{n\pi x}{L}) dxd\xi \]

\[= \frac{P \cdot s \cdot L}{2n\pi} \left\{ \cos(\frac{n\pi x_1}{L}) - \cos(\frac{n\pi x_2}{L}) \right\} \int_{\xi_1}^{\xi_2} \{M_0(\xi)\} d\xi \] (2.87)

Where:

\[\xi_1 = \frac{2y_1}{s} \; ; \; \xi_2 = \frac{2y_2}{s} \]

Post-tensioning load

The individual concentrated post-tensioning load is assumed to be applied, respectively, at node 1 and node 3 of the first and last T-beams. Under an arbitrary displacement \(v^\ast(x, y) \), the potential of the post-tensioning load \(PT(x_i) \) is

\[U_{PT} = \sum_{i=1}^{NT} \{v^\ast(x, y)\}^T \{PT(x_i)\} \] (2.88)
From the definition of the consistent load we have:

\[
\sum_{n=1}^{N} \{\delta_n\}^T \{R_n\} = \sum_{n=1}^{N} \{\delta_n\}^T \{M_\xi(\xi)\} \sum_{i=1}^{NT} PT(x_i)sin\left(\frac{n\pi x_i}{L}\right) \tag{2.89}
\]

\[
\{R_n\}_5 = \sum_{i=1}^{NT} sin\left(\frac{n\pi x_i}{L}\right)PT(x_i) \tag{2.90}
\]

\[
\{R_n\}_{18} = -\sum_{i=1}^{NT} sin\left(\frac{n\pi x_i}{L}\right)PT(x_i) \tag{2.91}
\]

where:

\(PT(x_i)\) = the value of the \(i^{th}\) pair of post-tensioning forces;

\(NT\) = the total number of the post-tensioning forces;

\(x_i\) = the location of the \(i^{th}\) post-tensioning force.

2.3.4 System of equations corresponding to one T-beam (Element Matrix)

The system of equations corresponding to one T-beam element has the following form:

\[
[AK^e] \{\delta^e\} = \{R^e\} \tag{2.92}
\]

where:

\[
[AK^e] = \begin{bmatrix}
[AK(1,1)] & [0] & \ldots & [0] \\
[0] & [AK(2,2)] & \ldots & [0] \\
\vdots & \vdots & \ddots & \vdots \\
[0] & [0] & \ldots & [AK(N,N)]
\end{bmatrix} \tag{2.93}
\]
Each submatrix $AK[n,n]$ is a 19 x 19 symmetric square matrix. N is the number of items in the Fourier series. \(\{\delta_n^e\} \) and \(\{R_n^e\} (n = 1, 2 \ldots N) \) are the 19 x 1 vectors.

2.4 Global Equations and Solution Method

The characteristics of the global equations and the solution strategy will be discussed with an example, using only two terms in the Fourier series and three T-beams (NJT=3).

2.4.1 Characteristics of the global equation

The form of the global equations is shown in Figure 2.6 and Equation 2.96:

$${\begin{bmatrix} [GK(1,1)] & [GK(2,1)] \\ [GK(2,1)] & [GK(2,2)] \end{bmatrix}} \begin{bmatrix} \{U_1\} \\ \{U_2\} \end{bmatrix} = \begin{bmatrix} \{P_1\} \\ \{P_2\} \end{bmatrix} \quad (2.96)$$

$AK^1(1,1)$ is the stiffness contribution from the T-beam element 1 associated with the first term of the Fourier series. As mentioned in the previous section, it is a 19 x 19 symmetric matrix, as are each of the other $AK^i(n,n)$ (n = 1, 2) matrices. $BK^i(n,m)$ is the stiffness contribution from the joint element i associated with the n-th and m-th terms in Fourier series. It is a 8 x 8 symmetric matrix.
Chapter 2. NON-LINEAR FINITE ELEMENT ANALYSIS

$GK(n,n)(n = 1, 2)$ is the $(NJ^T * 19)^2$ symmetric banded matrix with a band width of 19 made up of contributions from the $AK(n,n)$ and $BK(n,n)$; $GK(1,2)$ and $GK(2,1)$ only have the contributions from the joint elements. $\{U_n\}$ and $\{P_n\}$ are the $(NJ^T * 19)$ x 1 displacement vector and consistent load vector associated with the n^{th} term of the Fourier series.

2.4.2 The incremental procedure

The incremental method [15] is used to solve the non-linear global equations. The initial values play a very important role in the non-linear analysis iteration method. The
incremental method solves the global equations by replacing the solution to
\[[G(U)]\{U\} = \{P\} \]
by successive solutions of
\[[G(U)_i]\{\Delta U_i\} = \{\Delta P_i\} \]

The final solution is
\[\{U\} = \sum_{i=1}^{j}\{\Delta U_i\} \]

Where:
\[\{\Delta U_i\} = \text{the incremental displacement of each step.} \]
\[\{\Delta P_i\} = \text{the incremental load} \]

The initial value used in order to get \{U_j\} is the solution \{U_{j-1}\} in the previous step.

With in each step, the global stiffness matrix must be updated according to the current displacement. The final solution is the summation of all displacement increments. The process is illustrated in Figure 2.7.

2.4.3 Newton-Raphson method

From the Figure 2.7 we could note that the more the number of steps, the more accurate the solution is.

In order to decrease the error within each incremental load step, the Newton-Raphson method has been used in the PTB program. This method is illustrated in the Figure 2.8. The final solution in each incremental step \{\Delta U_i\} is obtained when the Newton-Raphson method converges. Thus,
\[\{\Delta U_i\} = \sum_{k=1}^{l}\{\Delta u_k\} \]
Figure 2.7: The Incremental Method

Figure 2.8: Newton-Raphson Method
\[[G(U)]_t\{\Delta u_k\} = \{\Delta Q_k\} \quad (2.97) \]

\[\|\{\Delta u_k\}\|_2 < \epsilon_{kl}\|u_{k-1}\|_2 \]

where:
\[[G(U)]_t = \text{the global tangent stiffness matrix which must be updated to the current displacements;} \]
\[\{\Delta Q_k\} = \text{imbalance load vector;} \]
\[\epsilon_{kl} = \text{a tolerance;} \]
\[\{u_{k-1}\} = \sum_{i=1}^{k-1}\{\Delta u_i\} ; \]
\[\|\{u_k\}\|_2 = (\sum_{i=1} u_{ki}^2)^{1/2} \text{the Euclidean norm of the vector } \{u_k\} . \]

The derivations of the tangent stiffness matrix \([G(U)]_t\) and imbalance load vector \{\Delta Q_k\} are expressed below.

At the element level

\[[K(u)]\{u\} = \{p\} \quad (2.98) \]

then

\[\{R\} = \{p\} - [K(u)]\{u\} \quad (2.99) \]

To guess \{u_{i-1}\}, we get a residual force vector

\[\{R^{i-1}\} = \{p\} - [K(u_{i-1})]\{u_{i-1}\} \neq 0 \quad (2.100) \]

We look for \{u_k\} and make \{R_k\} equal zero

\[\{u_k\} = \{u_{k-1}\} + \{\Delta u_k\} \quad (2.101) \]
\{R_k\} = \{R(u_{k-1} + \Delta u_k)\}

= \{R(u_k)\} \cong 0 \tag{2.102}

Expand \{R_k\} in Taylor series in the neighbourhood of \{u_k\} and only take the first two terms.

\{R(u_{k-1} + \Delta u_k)\} = \{R(u_{k-1})\} + \frac{\partial \{R\}}{\partial \{u\}}|_{u_{k-1}} \cdot \{\Delta u_k\} = \{0\} \tag{2.103}

\frac{-\partial \{R\}}{\partial \{u\}}|_{u_{k-1}} \cdot \{\Delta u_k\} = \{R(u_{k-1})\}

= \{p\} - [K(u_{k-1})]\{u_{k-1}\} \tag{2.104}

where:

\frac{-\partial \{R\}}{\partial \{u\}}|_{u_{k-1}} = [g(u)]_t

[g(u)]_t is the element tangent stiffness matrix corresponding to the \{u_{k-1}\} and \{u_{k-1}\}
is the current displacement.

\{p\} - [K(u_{k-1})]\{u_{k-1}\} = \{q(u)\}

\{q(u)\} is the imbalance load vector corresponding to displacement \{u_{k-1}\} at the element level.

At the global level

Assemble all element tangent stiffness matrices \[[g(u)]_t\] and imbalance load vectors \{q(u)\} by conventional finite element method, we get the global tangent stiffness matrix \[[G(U)]_t\] and the global imbalance load vector \{\Delta Q_k\}.
2.4.4 Jacobi iteration method

Within each iteration of the Newton Raphson method, the Jacobi iteration method is used to solve the global system of Equation 2.97. This avoids storing the entire global matrix, requiring less computer memory. If the diagonal matrices are dominant, the rate of the convergence of this method is very high. The procedure can be written as follows:

\[
\{ \Delta u_k \}^i_m = [GK(m,m)]^{-1}_i \{ \Delta Q_k \}^i_m - \sum_{n=1}^{N} [GK(m,n)]_i \{ \Delta u_k \}^i_{n-1} \quad (n \neq m) \quad (2.105)
\]

with starting vector

\[
\{ \Delta u_k \}^0_m = [GK(m,m)]^{-1}_i \{ \Delta Q_k \}^0_m \quad (2.106)
\]

The iterative procedure is stopped when the following convergence condition is satisfied:

\[
\| \{ \Delta u_k \}^i_m - \{ \Delta u_k \}^{i-1}_m \|_2 < \epsilon \| \{ \Delta u_k \}^{i-1}_m \|_2 \quad (2.107)
\]

\[
m = 1, 2, \ldots, N
\]

where: \(\epsilon \) is the error tolerance (which could be .001 for example).

Theory presented in this Chapter has been incorporated into computer program PTB given in Appendix B.
3.1 The Friction Test

In order to determine the friction characteristics of Parallam, an experiment was conducted at MacMillan Bloedel Limited Research Centre. Four kinds of surface textures were studied:

- wet and preservative treated,
- dry and preservative treated,
- wet and untreated,
- dry and untreated.

The test setup is shown in Figure 3.1.

The dimensions of the top specimen were 63.5mm x 63.5mm x 38mm and the size of the bottom specimen was 88.9mm x 88.9 x 38mm. Both were cut from rough-sawn planks. It should be pointed out that the surface of the preservative treated specimens was much rougher due to the chemical treatment process. The specimens classified as 'wet' were soaked in water for 24 hours before test. All test specimens were measured before being soaked in water and weighted just after being taken out of water, and wiped clean of surface water. For each kind of surface texture, both the friction coefficient for the sliding direction perpendicular and parallel to Parallam fibres were determined, as shown in Figure 3.2.
Chapter 3. \textit{Friction Parameters for the Spring Model}\textbf{\textit{1}}

- \textbf{Figure 3.1: The Friction Test Setup}

- \textbf{Figure 3.2: Two Kinds of Friction Test}
Table 3.1: Data of Friction Test Samples

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Average Weight (gr)</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry, Treated, Parallel</td>
<td>110.99</td>
<td>20</td>
</tr>
<tr>
<td>Dry, Treated, Perpendicular</td>
<td>111.16</td>
<td>19</td>
</tr>
<tr>
<td>Wet, Treated, Parallel</td>
<td>141.15</td>
<td>17</td>
</tr>
<tr>
<td>Wet, Treated, Perpendicular</td>
<td>140.08</td>
<td>14</td>
</tr>
<tr>
<td>Dry, Untreated, Parallel</td>
<td>92.36</td>
<td>15</td>
</tr>
<tr>
<td>Dry, Untreated, Perpendicular</td>
<td>92.75</td>
<td>12</td>
</tr>
<tr>
<td>Wet, Untreated, Parallel</td>
<td>135.18</td>
<td>19</td>
</tr>
<tr>
<td>Wet, Untreated, Perpendicular</td>
<td>137.47</td>
<td>12</td>
</tr>
<tr>
<td>Weight of the Clamp</td>
<td>109.91</td>
<td></td>
</tr>
<tr>
<td>Applied Weight</td>
<td>5000.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1 gives the data of the samples used in each type of tests.

In the perpendicular direction test, the sliding direction was perpendicular to the Parallam fibres. In the parallel direction test, the sliding direction was parallel to the fibres.

The force F_H required to produce sliding between the surfaces of the specimens was proportional to the force F_v applied normal to the plane of motion. The ratio is defined as the coefficient of friction.

$$ \mu = \frac{F_H}{F_v} $$

(3.1)

In all tests, an Instron 4210 testing machine was used to provide a 0.4in/min. constant sliding velocity. The horizontal force F_H vs. sliding movement relationship through the test was monitored and recorded, and typical curves are shown in Figure 3.3 to 3.5. From these Figures, it can be seen that the curve of the horizontal force vs. the movement, after sliding, is not smooth, reflecting the stop-and-go induced by surface roughness. The results and statistical data are presented in Table 3.2.
Table 3.2: Statistical Results of the Friction Test

<table>
<thead>
<tr>
<th>Classified Specimens</th>
<th>μ</th>
<th>σ of μ</th>
<th>C_v of μ</th>
<th>E (N/mm)</th>
<th>σ of E</th>
<th>C_v of E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry, Treated, Parallel</td>
<td>.655</td>
<td>.076</td>
<td>.115</td>
<td>16.902</td>
<td>2.895</td>
<td>.171</td>
</tr>
<tr>
<td>Dry, Treated, Perpendicular</td>
<td>.831</td>
<td>.080</td>
<td>.096</td>
<td>17.378</td>
<td>1.922</td>
<td>.111</td>
</tr>
<tr>
<td>Wet, Treated, Parallel</td>
<td>.833</td>
<td>.038</td>
<td>.046</td>
<td>12.618</td>
<td>3.197</td>
<td>.254</td>
</tr>
<tr>
<td>Wet, Treated, Perpendicular</td>
<td>.878</td>
<td>.059</td>
<td>.068</td>
<td>12.353</td>
<td>3.863</td>
<td>.313</td>
</tr>
<tr>
<td>Dry, Untreated, Parallel</td>
<td>.373</td>
<td>.031</td>
<td>.083</td>
<td>11.183</td>
<td>1.751</td>
<td>.157</td>
</tr>
<tr>
<td>Dry, Untreated, Perpendicular</td>
<td>.419</td>
<td>.041</td>
<td>.098</td>
<td>10.891</td>
<td>1.992</td>
<td>.183</td>
</tr>
<tr>
<td>Wet, Untreated, Parallel</td>
<td>.804</td>
<td>.052</td>
<td>.065</td>
<td>14.900</td>
<td>2.523</td>
<td>.170</td>
</tr>
<tr>
<td>Wet, Untreated, Perpendicular</td>
<td>.811</td>
<td>.048</td>
<td>.059</td>
<td>12.339</td>
<td>1.943</td>
<td>.158</td>
</tr>
</tbody>
</table>

μ = friction coefficient (mean);

E = stiffness (initial slope of the F_H vs. displacement curve)(mean);

σ = standard deviation;

C_v = coefficient of variation.

3.2 Spring Model

As previously mentioned, a 'three-dimensional spring' model is assumed in the non-linear analysis and its constitutive relations are shown in Figure 2.4 of Chapter 2. The friction coefficients μ_x and μ_z are directly adopted from the friction testing. The stiffnesses E^*_x and E^*_z, on the other hand, are derived from the friction testing results using the 'same slip' assumption.

We can idealize the friction test results in Figure 3.6.

In the spring model let the elastic displacement limits in the x and the z-direction be, respectively, Δ^x_{lim} and Δ^z_{lim}. Thus,

$$\Delta^x_{lim} = \frac{\mu_x \sigma_y e_l}{E^*_x}$$ \hspace{1cm} (3.2)
Figure 3.3: Friction Test Recording Curves(1)
Figure 3.4: Friction Test Recording Curves(2)
Wet Treated Parallel,

$D(\text{in})$

Ff_{Its}

$F(\text{lb})$

Wet Treated Perpendicular

Wet Treated Parallel

$0.5 \quad 1.0$

Figure 3.5: Friction Test Recording Curves(3)
Chapter 3. *FRICITION PARAMETERS FOR THE SPRING MODEL*

Figure 3.6: Idealized Friction Test Curves

\[\Delta_{lim}^z = \frac{\mu_z \sigma_{yt}}{E_z^t} \] (3.3)

In the parallel direction of the friction test:

\[\Delta_{tx} = \frac{F_H}{E_z^t} \] (3.4)

In the perpendicular direction of the friction test:

\[\Delta_{tz} = \frac{F_H}{E_z^t} \] (3.5)

The 'same slip' assumption implies that

\[\Delta_{lim}^z = \Delta_{tx} \] (3.6)

\[\Delta_{lim}^z = \Delta_{tz} \] (3.7)

from which,
Figure 3.7: Same Slip Assumption

\[E^*_z = \frac{E^t_z \sigma_y e t}{F_V} \] \hspace{1cm} (3.8) \]

\[E^*_s = \frac{E^t_s \sigma_y e t}{F_V} \] \hspace{1cm} (3.9) \]

\(E^*_z \) and \(E^*_s \) are the stiffnesses used in the 'three dimensional' spring; \(E^t_z \) and \(E^t_s \) are the stiffnesses obtained from the friction test. The relations between the spring stiffness and the stress \(\sigma_y \) is clearly shown in Figure 3.7. We can note that \(E^*_z \) and \(E^*_s \) are proportional to the normal stress \(\sigma_y \), however the maximum friction force in the spring cannot exceed the shear strength of the material \(\tau_s e t \), where \(\tau_s \) is the shear strength of the flange and \(e t \) is effective area of the spring.
4.1 Beam Test

In order to test the spring model described in Chapter 2, a simple beam structural problem, shown in Figure 4.1, is now considered. The structure consists of two built-in beams connected by four springs. At the top, there are one y-direction and one z-direction spring. The other two are assumed in the y and z-directions at the bottom of the beams. The left beam is subjected to one vertical concentrated force at midspan. The properties and the dimensions of this structure are shown in the Table 4.1. The structure was analyzed by a specific program using the same spring model theory, which is used in the PTB program.

When \(P > 0.0 \), this axial load produces tension in both beams. The results given in the Figure 4.2 show the displacements of node 2 and 3 vs. the tensioning force \(P \). The status of the four springs as a function of the post-tensioning force \(P \) is given in the Table 4.2.

In Table 4.2, F means the force in the spring is beyond the friction limit; E means that the deformation of the spring is within the elastic range, less than the friction limit \(\Delta_{im} \).

From Figure 4.2 and Table 4.2, we can note that increasing the post-tensioning force \(P \) influenced the status of the springs, with an associated change in load distribution within the structure. Finally, when the \(P \) reached 100,000(N), the two y-direction springs were
Figure 4.1: Two Cantilever Beam Structure

Table 4.1: Properties of the Cantilever Beam

<table>
<thead>
<tr>
<th>BEAM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>width of the beam (B)</td>
<td>200 (mm)</td>
</tr>
<tr>
<td>depth of the beam (H)</td>
<td>400 (mm)</td>
</tr>
<tr>
<td>span of the beam (L)</td>
<td>4000 (mm)</td>
</tr>
<tr>
<td>elastic modulus of the beam (E_b)</td>
<td>14000 (MPa)</td>
</tr>
<tr>
<td>elastic modulus of the y-dir. spring (E_y)</td>
<td>1.0E10 (MPa)</td>
</tr>
<tr>
<td>elastic modulus of the z-dir. spring (E_z)</td>
<td>17.4 (MPa)</td>
</tr>
<tr>
<td>friction coefficient (μ_z)</td>
<td>.65</td>
</tr>
</tbody>
</table>

LOADING

| vertical concentrated loading (V) | -20,000 (N) |

Table 4.2: Status of the Springs in the Cantilever Beams

<table>
<thead>
<tr>
<th>STATUS OF THE SPRINGS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Force (N)</td>
<td>y-dir. at top</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>0.0</td>
<td>contact</td>
</tr>
<tr>
<td>10</td>
<td>contact</td>
</tr>
<tr>
<td>100</td>
<td>contact</td>
</tr>
<tr>
<td>1,000</td>
<td>contact</td>
</tr>
<tr>
<td>10,000</td>
<td>contact</td>
</tr>
<tr>
<td>100,000</td>
<td>contact</td>
</tr>
<tr>
<td>1000,000</td>
<td>contact</td>
</tr>
</tbody>
</table>
Chapter 4. ANALYTICAL RESULTS

![Graph of Vertical Displacement vs. Post Tensioning Force](image)

Figure 4.2: Cantilever Beam Structure Displacements

![Built-in Solid Beams](image)

Figure 4.3: Built-in Solid Beams
active (full contact between the beams) and the deformations of the two z-direction springs (in terms of relative displacement at the interface of the beams) were all within the elastic deformation limit. When the P reached 100,000(N) the displacement of node 2 was decreased by several times in comparison with that for $P = 0.0(N)$. The displacement of node 2 must then be nearly equal to the displacement of node 2 in Figure 4.3. The structure in Figure 4.3 is a solid beam and all its properties are the same as those for the case of Figure 4.2. This was independently verified with a structural analysis of the beam in Figure 4.3.

4.2 T-beam Analysis

The configuration and the other properties of the structure are presented in Figure 4.4 and Table 4.3. The bridge is assumed built with Parallam T-beam (dry, treated conditions).

Since a sine series in the x-direction is used to approximate the displacement $w(x,y)$
Table 4.3: Properties of T-beam Structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-beam span</td>
<td>L</td>
<td>12000 (mm)</td>
</tr>
<tr>
<td>T-beam spacing</td>
<td>s</td>
<td>1000 (mm)</td>
</tr>
<tr>
<td>web height</td>
<td>H</td>
<td>500 (mm)</td>
</tr>
<tr>
<td>web width</td>
<td>B</td>
<td>100 (mm)</td>
</tr>
<tr>
<td>the ratio of elastic modulus to shear modulus of the web</td>
<td>REG</td>
<td>17.0</td>
</tr>
<tr>
<td>flange height</td>
<td>d</td>
<td>100 (mm)</td>
</tr>
<tr>
<td>friction coefficient in x-direction</td>
<td>μ_x</td>
<td>0.50</td>
</tr>
<tr>
<td>friction coefficient in z-direction</td>
<td>μ_z</td>
<td>0.65</td>
</tr>
<tr>
<td>three dim. spring number in one joint element</td>
<td>$2N_s$</td>
<td>42</td>
</tr>
<tr>
<td>spring elastic modulus in the x-direction</td>
<td>E_{x}</td>
<td>16.9 (N/mm)</td>
</tr>
<tr>
<td>spring elastic modulus in the y-direction</td>
<td>E_{y}</td>
<td>1.0E10 (N/mm)</td>
</tr>
<tr>
<td>spring elastic modulus in the z-direction</td>
<td>E_{z}</td>
<td>17.4 (N/mm)</td>
</tr>
<tr>
<td>web elastic modulus in the x-direction</td>
<td>E_{web}^x</td>
<td>14000.0 (MPa)</td>
</tr>
<tr>
<td>web elastic modulus in the y-direction</td>
<td>E_{web}^y</td>
<td>14000.0 (MPa)</td>
</tr>
<tr>
<td>flange elastic modulus</td>
<td>E_{flange}</td>
<td>14000.0 (MPa)</td>
</tr>
<tr>
<td>post-tensioning force spacing</td>
<td></td>
<td>1200 (mm)</td>
</tr>
</tbody>
</table>
Figure 4.5: Three T-beam Structure with Post-Tensioning Force Only

(deflection) of the structure, simply supported boundary conditions are satisfied at \(x = 0 \) and \(x = L \). Other edges are free. The analysis considered five loading cases and was done by running program PTB. Since all cases are symmetric about midspan in the \(x \)-direction, four Fourier terms with order 1,3,5 and 7 were chosen in the analysis. The objective was to study the effect of the post-tensioning force in the loading distribution within the structure. The program PTB can give either nonlinear or linear elastic results, the latter implying that all springs keep their initial stiffness throughout the loading. Studying the relative displacement in \(z \)-direction between the flanges of adjacent the T-beams constitutes the main objective of this analysis.

4.2.1 Analysis for post-tensioning force only

The structure and loading condition are shown Figure 4.5

Three T-beams were subjected to ten pairs of post-tensioning forces along the span.
Chapter 4. ANALYTICAL RESULTS

Table 4.4: Analytical Results: Post-tensioning Force Only

<table>
<thead>
<tr>
<th>POST FORCE (N)</th>
<th>Maximum Displacement (T-beam 1) (mm)</th>
<th>Maximum BEND. STRESS (T-beam 1) (MPa)</th>
<th>Maximum Displacement (T-beam 2) (mm)</th>
<th>Maximum BEND. STRESS (T-beam 2) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>-0.57952E-05</td>
<td>-0.14474E-05</td>
<td>-0.58064E-05</td>
<td>-0.11604E-05</td>
</tr>
<tr>
<td>10,000</td>
<td>-0.57726E-01</td>
<td>-0.14681E-01</td>
<td>-0.58461E-01</td>
<td>-0.11126E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POST FORCE (N)</th>
<th>Maximum Displacement (T-beam 1) (mm)</th>
<th>Maximum BEND. STRESS (T-beam 1) (MPa)</th>
<th>Maximum Displacement (T-beam 2) (mm)</th>
<th>Maximum BEND. STRESS (T-beam 2) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>-0.57952E-05</td>
<td>-0.14474E-05</td>
<td>-0.58064E-05</td>
<td>-0.11604E-05</td>
</tr>
<tr>
<td>10,000</td>
<td>-0.57726E-01</td>
<td>-0.14681E-01</td>
<td>-0.58461E-01</td>
<td>-0.11126E-01</td>
</tr>
</tbody>
</table>

From Table 4.4, we can note that the results from the non-linear analysis and those from the linear analysis are identical. This means all springs were in the elastic range at the different levels of the post-tensioning forces.

Figure 4.6 gives the relative deformations of the joint element 1 in z-direction along the span of the T-beam. The negative deformation of the joint element indicates that the flange of T-beam 2 moved down less than the flange of T-beam 1 did.

4.2.2 Analysis for the one patch of vertical loading

The load case is shown in Figure 4.7. This is a symmetric problem. Along the 12m long span 10 pairs of post-tensioning force were acting. Each pair of the post-tensioning force was equal to PT. The structure carried one patch of vertical loading equal to 500 mm x 300 mm x 0.2 (N/mm²) = 30,000 (N) at midspan of T-beam 2. For the symmetric
Figure 4.6: Displacements of T-beam Structure under Post-Tensioning Force Only
problem, we only plot the stresses and the displacements of the T-beam 1 and T-beam 2. Figure 4.8 to Figure 4.10 show the effect of the post-tensioning force on, respectively, the maximum bending stresses in the webs and the maximum vertical displacements in beams.

When $PT = 0.0$, the total vertical loading is carried by beam 2 only. The maximum relative displacement between beam 1 and beam 2 (i.e., the maximum deformation of the Joint element 1 in the z-direction) was more than 20mm. With the increase in the post-tensioning forces, the link between beam 1 and 2 became tighter and, consequently, the load sharing behaviour of the structure improved dramatically.

When PT approached 10,000 (N), the non-linear analysis results were identical to those from the linear elastic analysis. When PT reached 100,000 (N), the maximum relative displacement, in z-direction, between the flanges of beam 1 and beam 2, was negligible when compared to the 20mm for $PT = 0.0$.

Figure 4.7: T-beam Structure One Patch Loading Case
Chapter 4. ANALYTICAL RESULTS

Figure 4.8: Bending Stress of T-beam Structure One Patch Loading Case

Figure 4.9: Displacements of T-beam Structure One Patch Loading Case
Chapter 4. ANALYTICAL RESULTS

Relative Deck Displacement vs. Post-tensioning Force

![Graph](image)

Figure 4.10: Relative Displ. of T-beam Structure One Patch Loading Case

In the example shown in Figure 4.9, upward (negative) deflections of the T-beams can be seen to be developing as the post-tensioning force becomes large. The reason for this behaviour is explained as follows: when the flange of the T-beam subjected to post-tensioning forces in the y-direction, the flange will expand in the x-direction due to Poisson's effect. Since the flange is connected to the T-beam web by the connectors with non-zero stiffnesses, shear forces develop to maintain compatibility. The direction of these forces as shown in Figure 4.11, is such that they cause an upward deflection which, shown in Figure 4.9, becomes more important for post-tensioning forces greater than $1E + 05N$.

Figure 4.12 is the maximum displacements of the T-beams caused only by one patch loading. Those displacements were measured from the upward deflection caused by post-tensioning forces. See Figure 4.11. It is very obvious that the post-tensioning force can improve the loading sharing capacity of the whole structure.
Chapter 4. ANALYTICAL RESULTS

Figure 4.11: Upward Deflection of the T-beam

Figure 4.12: Displacements of T-beam under One Patch Loading
4.2.3 Wheel loading analysis

Four patches of vertical loading simulating a vehicle with four wheel were applied to the structure. According to the different locations of the four wheels we have three cases to study.

CASE 1

The wheel loadings (each patch carried 500 mm x 300 mm x 0.1 (N/mm²) = 15,000(N)) were at the centre lines of the T-beam 1 and T-beam 2 respectively. The separation in x-direction between the two patches was 2000mm. The structure is shown in Figure 4.13.

PTB obtained the displacement and stress plots shown in Figure 4.14 to Figure 4.16. At the beginning (PT = 0.0), the maximum bending stress in beam 1 and beam 2 were the same. All beams acted almost independent of each other, with little load sharing. Beam 3 did not share the wheel loading applied to beam 1 and beam 2. When the post-tensioning forces were increased, the contribution from beam 3 to the sharing of loading increased, producing a corresponding difference between the maximum bending stresses of beam 1 and beam 2.

For the maximum relative displacement between the adjacent flanges of the T-beams, the effect of the post-tensioning force was very obvious. At the beginning, the maximum relative displacement between the beam 1 and beam 2 was very small due to their similar loading and boundary conditions. But the maximum absolute deformation of the joint 2 in z-direction was very large. After the post-tensioning force got to 100,000 (N), the value of the maximum deformation of the joint element 2 in z-direction was negligible in comparison with that obtained at the PT = 0.0 as shown in Figure 4.16.

Keeping the post-tensioning force at PT = 100,000(N), the four patches of wheel loading were then moved from z = 0.0 to z = 6000mm. The Figure 4.17 and Figure 4.18
give us the non-linear analytical results from PTB program. When the vehicle moved to midspan, the displacement and the bending stress of the T-beam achieved the peak values.

CASE 2

The four patches of vehicle loading were acting at the edges of T-beam 1 and T-beam 2 as shown Figure 4.19. The deformations in joint elements were correspondingly more than those in CASE 1 at same level of the post-tensioning force. But the trend of the post-tensioning force effect was the same. When PT approached 10,000 (N), the tightness of and load distribution in the structure was improved dramatically. The analytical results are shown from Figure 4.20 to Figure 4.22.

The initial stiffnesses E_x and E_z of the springs have an influence on the magnitude of the relative displacements. Figure 4.23 shows the effect on the maximum relative
Chapter 4. ANALYTICAL RESULTS

Figure 4.14: Bending Stress in T-beam Structure CASE 1

Figure 4.15: Displacements in T-beam Structure CASE 1
Chapter 4. ANALYTICAL RESULTS

Figure 4.16: Relative Displacements in T-beam Structure CASE 1

Figure 4.17: Bending Stress under Moving Loading
Figure 4.18: Displacements under Moving Loading

Figure 4.19: T-beam Structure CASE 2
Chapter 4. ANALYTICAL RESULTS

Figure 4.20: Bending Stress in T-beam Structure CASE 2

Figure 4.21: Displacements in T-beam Structure CASE 2
vertical displacement if the horizontal spring stiffness E_x and the vertical spring stiffness E_z are changed from $E_x = 16.9N/mm$ and $E_z = 17.4N/mm$ to $E_x = 169N/mm$ and $E_z = 174N/mm$ respectively. It is seen that these parameters should be known with some accuracy if the maximum relative displacement is to be estimated at intermediate post-tensioning forces. However, the level of the post-tensioning force which makes the whole structure work as a unit is less affected by the uncertainty in E_x and E_z. Determination of E_x and E_z should include a larger experimental sample than used in this thesis.

CASE 3

In this case, the vehicle loadings were next the center lines of the T-beams as shown Figure 4.24. In addition to the maximum bending stress, maximum displacement in the beam webs and the maximum deformation of the joint elements in the z-direction shown respectively in Figure 4.25 through Figure 4.27, the program PTB was used to study the
Figure 4.23: The Effect of the Stiffness of the Spring

convergence of the solution as the number of terms in the Fourier series was increased. As discussed in Chapter 2, the larger the number of Fourier series terms included, the greater the coupling in the system of equations. Since the structure and the loading cases were symmetric in x-direction, only odd number terms in the Fourier series were included. From Figures 4.28 to 4.31, it can be seen that the convergence is quite good with only two Fourier terms (n = 1,3), being sufficient to obtain satisfactory answers.
Figure 4.24: T-beam Structure CASE 3

Figure 4.25: Bending Stress in T-beam Structure CASE 3
Chapter 4. ANALYTICAL RESULTS

Figure 4.26: Displacements in T-beam Structure CASE 3

Figure 4.27: Relative Displacements in T-beam Structure CASE 3
Chapter 4. ANALYTICAL RESULTS

Figure 4.28: Effect of the Fourier Terms on Bending Stress

Figure 4.29: Effect of the Fourier Terms on Displacement
Chapter 4. ANALYTICAL RESULTS

Figure 4.30: Effect of the Fourier Terms on Relative Displacement in Joint 1

The Effect of the Fourier Terms

Figure 4.31: Effect of the Fourier Terms on Relative Displacement in Joint 2
A non-linear analysis for the post-tensioned timber bridge has been developed and implemented in the computer program PTB. The analysis takes into account the frictional contact between the bridge beams. The relative movements between beams, the stresses and deformations of the structure can be obtained as a function of the post-tensioning force by PTB. It is clear that post-tensioning forces increases the stiffness of the structure, improving load sharing and increasing the load carrying capacity of the structure.

As part of a further study, it is suggested that more friction tests be done to confirm the ‘same slip’ assumption, and that reliability analyses be carried out to develop design criteria. The structural analysis presented here can form the basis for such probabilistic investigation.
Bibliography

Appendix A

SHAPE FUNCTIONS AND DERIVATIVES

Polynomial Shape Functions

Vector \(\{M_0\} \) All components are zero except:

\[
M_0(1) = \xi^2 - \frac{5}{4} \xi^3 - \frac{1}{2} \xi^4 + \frac{3}{4} \xi^5
\]

\[
M_0(2) = \frac{1}{8}(\xi^2 - \xi^3 - \xi^4 + \xi^5)
\]

\[
M_0(9) = \frac{1}{2}(\xi - 2\xi^3 + \xi^5)
\]

\[
M_0(10) = 1 - 2\xi^2 + \xi^4
\]

\[
M_0(14) = \xi^2 + \frac{5}{4} \xi^3 - \frac{1}{2} \xi^4 - \frac{3}{4} \xi^5
\]

\[
M_0(15) = \frac{1}{8}(-\xi^2 - \xi^3 + \xi^4 + \xi^5)
\]

Vector \(\{M_3\} \) All components are zero except:

\[
M_3(3) = \frac{1}{4}(-3\xi + 4\xi^2 + \xi^3 - 2\xi^4)
\]
Appendix A. SHAPE FUNCTIONS AND DERIVATIVES

\[M_3(4) = \frac{1}{8}(-\xi + \xi^2 + \xi^3 - \xi^4) \]

\[M_3(7) = 1 - 2\xi^2 + \xi^4 \]

\[M_3(16) = \frac{1}{4}(3\xi + 4\xi^2 - \xi^3 - 2\xi^4) \]

\[M_3(17) = \frac{1}{8}(-\xi - \xi^2 + \xi^3 + \xi^4) \]

Vector \(\{M_5\} \) All components are zero except:

\[M_5(5) = M_3(3) \quad M_5(6) = M_3(4) \quad M_5(8) = M_3(7) \]

\[M_5(18) = M_3(16) \quad M_5(19) = M_3(17) \]

Vector \(\{M_1\} \quad \{M_2\} \quad \{M_4\} \)

\[M_1(k) = \frac{dM_0(k)}{d\xi}; \quad M_2(k) = \frac{dM_0^2(k)}{d\xi^2}; \]

\[M_4(k) = \frac{dM_3(k)}{d\xi}; \quad M_6(k) = \frac{dM_3(k)}{d\xi}; \]

Where: \(k = 1, 2, \ldots, 19. \)

Derivatives of the Displacement Functions

\[\frac{\partial w(x,y)}{\partial x} = \sum_{n=1}^{N} \{M_0(\xi)\}^T \{\delta_n\}(\frac{n\pi}{L})\cos(\frac{n\pi x}{L}) \]

\[
\frac{\partial^2 w(x, y)}{\partial x^2} = -\sum_{n=1}^{N} \{M_0(\xi)\}^T \{\delta_n\} \left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial w(x, y)}{\partial y} = \sum_{n=1}^{N} \{M_1(\xi)\}^T \{\delta_n\} \left(\frac{2}{s}\right) \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial^2 w(x, y)}{\partial y^2} = \sum_{n=1}^{N} \{M_2(\xi)\}^T \{\delta_n\} \left(\frac{2}{s}\right)^2 \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial^2 w(x, y)}{\partial x \partial y} = \sum_{n=1}^{N} \{M_3(\xi)\}^T \{\delta_n\} \left(\frac{2}{s}\right) \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial u(x, y)}{\partial x} = -\sum_{n=1}^{N} \{M_4(\xi)\}^T \{\delta_n\} \left(\frac{n\pi}{L}\right) \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial u(x, y)}{\partial y} = -\sum_{n=1}^{N} \{M_5(\xi)\}^T \{\delta_n\} \left(\frac{n\pi}{L}\right) \cos\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial v(x, y)}{\partial x} = \sum_{n=1}^{N} \{M_6(\xi)\}^T \{\delta_n\} \left(\frac{n\pi}{L}\right) \cos\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{\partial v(x, y)}{\partial y} = \sum_{n=1}^{N} \{M_7(\xi)\}^T \{\delta_n\} \left(\frac{n\pi}{L}\right) \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{d^2 U(x)}{dx^2} = -\sum_{n=1}^{N} U_n \left(\frac{n\pi}{L}\right)^2 \cos\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{d^2 W(x)}{dx^2} = -\sum_{n=1}^{N} W_n \left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{d^2 V(x)}{dx^2} = -\sum_{n=1}^{N} V_n \left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi x}{L}\right)
\]

\[
\frac{d^2 \theta(x)}{dx^2} = -\sum_{n=1}^{N} \theta_n \left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi x}{L}\right)
\]
Appendix B

THE PTB PROGRAM

B.1 PTB Program Specifications

The non-linear analysis for the transverse post-tensioned bridge structure can be done with the PTB computer program. The wheel loadings are idealized as patches of static loading. PTB evaluates the response of the structure subjected to the transverse post-tensioning forces and the wheel loadings in terms of:

- the maximum deflection of the T-beam web;
- the maximum bending stress in the T-beam web;
- the maximum deflection of the T-beam flange;
- the maximum stress of the T-beam flange;
- the maximum deformations (relative displacements) of the joint elements in the x, y and the z-direction.

The stiffness matrices and the consistent load vectors were derived in Chapter 2. PTB can be run in an IBM 386 PC computer or a UNIX SUN work station. The program limits the size of the problem which can be solved, as follows:

- MAX. NUMBER OF T-BEAMS = 10 (MJT)
- MAX. NUMBER OF JOINT ELEMENTS = 9 (MSP)
Appendix B. THE PTB PROGRAM

- MAX. NUMBER OF 3-D SPRINGS IN ONE JOINT ELEMENT = 126
 (INCLUDING SPRINGS AT BOTH TOP AND BOTTOM)
 \(MNP = 126 \times 3 = 378 \)

- MAX. NUMBER OF FOURIER TERMS = 4 (MFT) (*)

- MAX. NUMBER OF LOADED AREAS = 12 (MLD)

- MAX. NUMBER OF BOUNDARY CONDITIONS = 20 (MBC)

- MAX. NUMBER OF POST-TENSIONING FORCES PAIRS = 20 (MPF)

(*) If the problem is symmetric about midspan in the x-direction, 'four terms' in the Fourier series means that the terms with order 1,3,5 and 7 are chosen. If the problem is not symmetric in the x-direction, 'four terms' in the Fourier series means that the terms with order 1,2,3 and 4 are chosen.

According to the capacity of the computer, the size of the problem can be expanded by changing the corresponding parameters in the PTB source code.

B.2 Program Structure

The program PTB consists of one main program and a number of subroutines. Each subroutine performs its specific function. The flow chart of the Main Program of PTB is given below.

PTB uses common blocks to convey data between the main program and subroutines and between the subroutines as well.

SUBROUTINE DATA

This subroutine inputs data for the structure in free format through a data file PTB.DAT, which includes the size of the structure, the number of the terms in the
CALCULATE IMBALANCE LOAD VECTOR

ASSEMBLE TANGENTIAL GLOBAL STIFFNESS MATRIX

CALCULATE INCREMENTAL DISPLACEMENTS OF THE STRUCTURE

STEP

CHECK ALL THREE-DIMENSIONAL SPRINGS

IF NO

ASSEMBLE INCREMENTAL WHEEL LOADING VECTOR

AND GLOBAL STIFFNESS MATRIX

BOUNDARY CONDITIONS

SOLVE EQUATIONS CORRESPONDING n-th TERM

OF FOURIER SERIES TO GET DISPLACEMENTS OF THE STRUCTURE

USING JACOBI ITERATION METHOD

CHECK ALL THREE-DIMENSIONAL SPRINGS

CALCULATE IMBALANCE LOAD VECTOR

ASSEMBLE TANGENTIAL GLOBAL STIFFNESS MATRIX

CALCULATE INCREMENTAL DISPLACEMENTS OF THE STRUCTURE

(STEP *)

CHECK ALL THREE-DIMENSIONAL SPRINGS

IF NO

CHECK DISPLACEMENT CONVERGENCY

IF NO

ALL WHEEL LOADING?

IF YES

OUTPUT RESULTS

Figure B.1: PTB Program Flow Chart
Fourier series, material properties, vehicle wheel loadings, transverse post-tensioning forces, number of three-dimensional springs in the joint elements, boundary conditions etc. This subroutine can print out the input data as a double check.

SUBROUTINE GENMTX

This subroutine calculates the integrals in Equation 2.20-Equation 2.27 using a six-point Gaussian quadrature to evaluate the contributions from the T-beam flanges to the stiffness matrix.

SUBROUTINE COVCON

This subroutine calculates the stiffness matrix of one T-beam element $ESTIF(I,J)$ excluding the stiffness contributions of the T-beam web. $ESTIF(I,J)$ is a 19×19 symmetric matrix corresponding to each term of the Fourier series.

SUBROUTINE STIF12

This subroutine creates the 12×12 stiffness matrix from one joint element with respect to each term of Fourier series. One joint element consists of $2 \times N_s$ three dimensional springs. N_s has been input from the data file PTB.DAT.

In this subroutine STIF12, subroutine BX, BY and BZ are called to evaluate the stiffness contributions from the x-, the y- and the z-direction springs according to the status of each spring respectively.

SUBROUTINE CHECK

This subroutine checks every spring in each joint element, according to the current displacement and the constitutive relationship, to calculate the stiffness matrix and the internal forces of the joint elements.

SUBROUTINE LOAD

This subroutine calculates the consistent load vector $XF(n,IJ)$ according Equation 2.86 for wheel loading and Equation 2.90 and Equation 2.91 for post-tensioning forces.

In $XF(n,IJ)$ where:
n = the n-th term in Fourier series

IJ = 19 x NJT

NJ = the number of the T-beam elements in the structure

SUBROUTINE SLOAD

According to the checking results obtained from SUBROUTINE CHECK, this subroutine creates the internal force vector components from the 'yielded' springs.

SUBROUTINE ASMBLY

This subroutine assembles the T-beam stiffness components, connector stiffness components and joint element stiffness components to form a global stiffness matrix by calling SUBROUTINE COVCON, and SUBROUTINE STIF12.

From the Equation 2.96 we can note two kinds of matrices GK(n,n) and GK(n,m). The lower triangle of the diagonal global stiffness matrix GK(n,n) is stored column by column in the two dimensional matrix GSTIF(n,IJ). The components of the off-diagonal global stiffness matrix GK(n,m) are stored column by column in the two dimensional matrix ASTIF(nm,JK).

SUBROUTINE GBC and SUBROUTINE ABC

These two subroutines apply the boundary conditions to the stiffness matrices GSTIF(n,JK), load vector XF(n,IJ) and stiffness ASTIF(nm,JK). To impose a specific boundary restrain to the structure, the corresponding columns and rows in the stiffness matrices are set to zero, and the corresponding components in the load vector is also zeroed, as while the diagonal entry in $GK(n, n)$ is set to 1.

SUBROUTINE DCOMP

$GK(n,n)$ is a positive-definite matrix. It has a unique decomposition form $GK(n, n) = [L][L]^T$, where $[L]$ is a lower triangular matrix with positive diagonal elements. This subroutine decomposes $GK(n,n)$ via the Cholesky method. The lower half band of $GK(n,n)$,
including the diagonal, is stored column by column in the GSTIF(n,JK). Cholesky decomposition is a useful method in solving the system linear equation like $GK(n,n)\{u\} = \{Q\}$ when $GK(n,n)$ is a positive-definite banded matrix.

SUBROUTINE SOLVE and SUBROUTINE ITERATION

On the basis of Cholesky decomposition the SUBROUTINE SOLVE obtains the final results, according to Equation 2.106. Then the main program calls SUBROUTINE ITERATION to solve Equation 2.105. The final answer will be obtained when the iteration converges.

$$\|\{\Delta u_k\}_m^i - \{\Delta u_k\}_m^{i-1}\|_2 < \epsilon \|\{\Delta u_k\}_m^{i-1}\|_2$$

$k = 1, 2, \ldots, N$ and ϵ is the error tolerance

SUBROUTINE IMBALANCE

This subroutine calculates the imbalance load for each iteration in Newton-Raphson method. See Figure 2.8

SUBROUTINE RESULT

This subroutine outputs all responses of the structure in terms:

- the maximum displacement of the T-beam web
- the maximum bending stress of the T-beam web
- the maximum displacement of the T-beam flange
- the maximum stress of the T-beam flange
- the maximum deformations of the joint element in the x-direction, the y-direction and the z-direction

In all cases, the maximum response is obtained by comparing 19 values at equally spaced locations along the longitudinal span.
Appendix C

PTB USER'S MANUAL

PTB: Post-Tensioned Timber Bridge Non-linear Analysis Program

User's Manual

Version 1.0

by Cai Shen

Department of Civil Engineering, UBC

Vancouver, B.C. Canada V6T 1W5

November, 1991
Appendix C. PTB USER'S MANUAL

The computer program PTB Version 1.0, which is written in FORTRAN 77, is developed for implementation in a DOS-based microcomputer or UNIX SUN workstation. To run the program the user creates a data file named PTB.DAT in accordance with the input instructions given below. All data are to be entered in free format (i.e. by providing a space or comma between each data entry). The capacity limitations of the PTB program are:

- **MAX. NUMBER OF T-BEAMS = 10 (MJT)**
- **MAX. NUMBER OF JOINT ELEMENTS = 9 (MSP)**
- **MAX. NUMBER OF 3-D SPRINGS IN ONE JOINT ELEMENT = 126**
 \(MNP = 126 \times 3 = 378\)
- **MAX. NUMBER OF FOURIER TERMS = 4 (MFT)**
- **MAX. NUMBER OF LOADED AREAS = 12 (MLD)**
- **MAX. NUMBER OF BOUNDARY CONDITIONS = 20 (MBC)**
- **MAX. NUMBER OF POST-TENSIONED FORCES = 20 (MPF)**

PTB produces two output files. PTB.OUT is a comprehensive output of the deformations and stresses in the structure and PTBB.OUT is a summary of the analysis results including the relative interface movements.
1. Enter: **NTITLE**

NTITLE = problem title (limited to 60 characters)

2. Enter: **NM, NJT, ISYM**

NM =

maximum order of sine/cosine terms in the Fourier series. There can be
maximum of four terms. For x-direction symmetrical problem, NM can be up
to 7 (the four terms will be of 1, 3, 5 and 7). If NM = 5, there will be three
terms, these orders are 1, 3 and 5. For x-direction non-symmetrical problem,
NM agrees with the number of terms. NM = 4 means terms with order 1, 2,
3 and 4 will be involved in the program.

NJT = number of T-beams (NJT ≤ 10)

ISYM =

1 if the problem is x-direction symmetrical.
0 if the problem is not x-direction symmetrical

3. Enter: **XL, SPJT**

XL = the span of the T-beam

SPJT = T-beam spacing (the width of the T-beam flange)

4. Enter: **BJT, HJT**

BJT = the width of the T-beam web

HJT = the height of the T-beam web
5. Enter: \textbf{EJT(I)}
\textit{EJT(I)} = the elastic modulus of the i-th T-beam web

6. Enter: \textbf{REG}
\textit{REG} = the ratio of T-beam web elastic modulus to its shear modulus (\textit{E/G})

7. Enter: \textbf{PTK, EMUX, EMUZ}
\textit{PTK} = the thickness of the T-beam flange
\textit{EMUX} = the x-direction friction coefficient of the T-beam flange
\textit{EMUZ} = the z-direction friction coefficient of the T-beam flange

8. Enter: \textbf{PEX, PEY, PG, PVXY, PVYX}
\textit{PEX} = the elastic modulus of the T-beam flange in x-direction
\textit{PEY} = the elastic modulus of the T-beam flange in y-direction
\textit{PG} = the shear modulus of the T-beam flange
\textit{PVXY} = Poisson’s ratio of T-beam flange, strain in x-direction while stress in y-direction
\textit{PVYX} = Poisson’s ratio of T-beam flange, strain in y-direction while stress in x-direction

9. Enter: \textbf{SPC, XIN, CKPAL, CKPER, CKROT}
\textit{SPC} = flange connector spacing along the T-beam span
\textit{XIN} =

\quad \text{distance between the end support and the first connector along the T-beam span}

\textit{CKPAL}, \textit{CKPER} =
connector load-slip moduli, respectively in the directions parallel and perpendicular to the T-beam (unit = force/length)

CKROT = connector rotation modulus

10. Enter: TAOSX, TAOSZ

TAOSX = the shear strength of the T-beam flange in x-direction
TAOSZ = the shear strength of the T-beam flange in z-direction

11. Enter: NAN, Ns, MNL

NAN =

1 PTB will do non-linear analysis
0 PTB will do linear analysis only

Ns =

the number of the top three-dimensional springs in one joint element (the total number of the springs in one joint element is equal to \(N_s \times 2 \times 3 \leq MNP = 378 \))

MNL =

the number of the incremental steps (each incremental loading is equal to the wheel loading divided by MNL i.e. PPWLD/MNL)

12. Enter: EX(I)

EX(I) = the initial elastic modulus of the three dimensional spring in x-direction for the I-th joint element.
13. Enter: $EY(I)$
$EY(I)$ = the initial elastic modulus of the three dimensional spring in y-direction for the I-th joint element.

14. Enter: $EZ(I)$
$EZ(I)$ = the initial elastic modulus of the three dimensional spring in z-direction for the I-th joint element.

15. Enter: $NWLD$
$NWLD$ = the number of the wheel loadings; if $NWLD = 0$ goto step 17

16. Enter: $JTLD(I), X1LD(I), X2LD(I), Y1LD(I), Y2LD(I), PPWLD(I)$
$JTLD(I)$ = the number of the T-beam on which the I-th wheel loading is applied
$X1LD(I) =$
$X2LD(I) =$
$Y1LD(I) =$
$Y2LD(I) =$

the coordinates of the I-th wheel loading patch, all coordinates are local T-beam coordinates ($I = 1, NWLD$)

17. Enter: $NPTF$
$NPTF =$

the number of the transversely post-tensioning forces

if $NPTF = 0$ goto step 20
18. Enter: \(ES, AS, DIT, RFAC \)

- \(ES, AS \) = the elastic modulus and area of the post-tensioning cable
- \(DIT \) = the tooth distance of the threaded anchor head of post-tensioning tendon
- \(RFAC \) = factor to compensate the loss of post-tensioning force

19. Enter: \(XPTF(I), PTF(I) \)

- \(XPTF(I) \) = the x-coordinate of the I-th pair of post-tensioning force
- \(PTF(I) \) = the magnitude of the I-th pair of post-tensioning force

\((I = 1, NPTF) \)

20. Enter: \(NBC \)

\(NBC \) =

the number of applied boundary conditions

If \(NBC = 0 \) skip step 21

21. Enter: \(IBC(I,1), IBC(I,2) \)

- \(IBC(I,1) \) = the boundary conditions for I-th T-beam
- \(IBC(I,2) \) = the number of the constraint \((1 \text{ to } 19) \)

\((I = 1, NBC) \)
Appendix D

PTB SOURCE CODE AND I/O FILE

PTB.FOR

PTB.DAT

PTB.OUT

PTBB.OUT
Appendix D. PTB SOURCE CODE AND I/O FILE

D.1 PTB.FOR

C***
C
C Post Tensioned Timber Bridge Non-Linear Analysis Program
C Version 1.0 (Nov. 1991)
C Civil Engineering Department
C University of British Columbia
C 2324 Main Mail
C Vancouver, Canada V6T-1W5
C
C***
C
C PROGRAM LIMITATIONS

C 1) MAXIMUM NUMBER OF T-BEAMS = 10 (MJT)
C 2) MAXIMUM NUMBER OF JOINT ELEMENTS = 9 (MSP)
C 3) MAX. No. OF 3-DSPRINGS IN ONE JOINT ELEMENT = 126 (MNP = 126*3)
C 4) MAXIMUM NUMBER OF FOURIER TERMS = 4 (MPT)
C 5) MAXIMUM NUMBER OF LOADED AREAS = 12 (MLD)
C 6) MAXIMUM NUMBER OF BOUNDARY CONDITIONS = 20 (MBC)
C 7) MAXIMUM NUMBER OF POST-TENSIONED FORCES = 20 (MPF)

C PROGRAM VARIABLES AND OPTIONS

C NTITLE = THE TITLE OF THE PROBLEM
C NM = MAXIMUM ORDER FOR THE SINE & COSINE SERIES. NM CAN BE UP
C TO 7 FOR SYMMETRIC PROBLEMS (ISYM = 1). NM CAN ONLY BE UP
C TO 4 FOR NON-SYMMETRIC PROBLEMS.
C NJT = NUMBER OF T-BEAMS
C ISYM = 1 FOR SYMMETRIC ABOUT X-DIC CASE; = 0 OTHERWISE.
C XL = THE SPAN OF THE BRIDGE
C SPJT = THE FLANGE WIDTH OF THE T-BEAM
C BJT = THE WEB WIDTH OF THE T-BEAM
C EJT(I) = THE WEB ELASTIC MODULUS OF THE i-th T-BEAM
C R.EG = THE RATIO OF THE WEB ELASTIC MODULUS TO ITS SHEAR MODULUS
C PTK = THE FLANGE THICK OF THE T-BEAM
C EMUX = THE FRICTION COEFFICIENT OF THE FLANGE IN X-DIRECTION
C EMUZ = THE FRICTION COEFFICIENT OF THE FLANGE IN Z-DIRECTION
C PEX = THE ELASTIC MODULUS OF THE T-BEAM FLANGE IN X-DIRECTION
C PEZ = THE ELASTIC MODULUS OF THE T-BEAM FLANGE IN Z-DIRECTION
C PG = THE SHEAR MODULUS OF THE T-BEAM FLANGE
C PVXY = POISSON'S RATIO, STRAIN IN X-DIC WHILE STRESS IN Y-DIC
C PVYX = POISSON'S RATIO, STRAIN IN Y-DIC WHILE STRESS IN X-DIC
C SPC = NAIL SPACING ALONG THE LONGITUDINAL SPAN OF THE BRIDGE
C XIN = DISTANCE BETWEEN THE END SUPPORT AND THE FIRST NAIL
Appendix D. PTB SOURCE CODE AND I/O FILE

C ALONG THE LONGITUDINAL SPAN OF THE BRIDGE
C CKPAL, CKPER = NAIL LOAD-SLIP MODULI, RESPECTIVELY, IN THE DIC.
C PARALLEL AND PERPENDICULAR TO THE WEB OF THE T-BEAM
C CKROT = NAIL ROTATION MODULUS
C TAOX = THE SHEAR STRENGTH OF THE PLANGE IN X-DIRECTION
C TAOSZ = THE SHEAR STRENGTH OF THE PLANGE IN Z-DIRECTION
C NAN = 1 - TO DO NON-LINEAR ANALYSIS
C 0 - TO DO LINEAR ANALYSIS ONLY
C NP = THE HALF NUMBER OF THREE DIMENSIONAL SPRINGS IN ONE JOINT ELE.
C EX(I) = THE INITIAL ELASTIC MODULUS OF THE X-DIRECTION SPRING
C EY(I) = THE INITIAL ELASTIC MODULUS OF THE Y-DIRECTION SPRING
C EZ(I) = THE INITIAL ELASTIC MODULUS OF THE Z-DIRECTION SPRING
C NWLD = THE NUMBER OF THE WHEEL LOADINGS
C JTLD(I) = THE NUMBER OF THE T-BEAM SUBJECTED BY THE WHEEL LOADING
C X1LD(I)
C X2LD(I) = THE COORDINATES OF THE i-th WHEEL LOADING
C Y1LD(I)
C Y2LD(I)
C PPWLD(I) = MAGNITUDE OF THE WHEEL LOADING
C NPTF = THE NUMBER OF THE TRANSVERSELY POST-TENSIONING FORCES
C EAS, ES = THE MODULUS AND AREA OF THE POST-TENSIONING CABLE
C DIT = THE TOOTH DISTANCE OF THE CABLE
C RPAC = THE
C XPTF(I) = THE X COORDINATE OF THE i-th POST-TENSIONING FORCE
C PTF(I) = THE MAGNITUDE OF THE i-th POST-TENSIONING FORCE
C NBC = NUMBER OF APPLIED BOUNDARY CONDITIONS.
C IBC(I,1) = BOUNDARY CONDITIONS FOR I-TH T-BEAM WEB.
C IBC(I,2) = NUMBER OF THE CONSTRAINT (1 TO 19).

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, M0Z = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MTF = 20)
PARAMETER (MSP = 9, MPO = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B01/ RM00(19,19), RMO2(19,19), RM20(19,19),
1 RM33(19,19), RM66(19,19), RM36(19,19),
2 RM63(19,19), RM44(19,19), RM54(19,19),
3 RM55(19,19)
COMMON /B02/ AA(19,19), RMM(19,19), RM(19,19),
1 RM(6,19), RM1(6,19)
COMMON /B03/ ETA(6), GWT(6)
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHB, NSE, NA1
COMMON /B05/ XL, SPJT
COMMON /B06/ BJT(MJT), GST(MJT), BJT, HJT, AJT, RY, RZ, RIT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
1 PDF, PDY, FVD, FDG
COMMON /B08/ CKPAL, CKPER, CKROT, SPC, XIN
COMMON /B09/ X1LD(MLD), X2LD(MLD), Y1LD(MLD), Y2LD(MLD),
1 PWLD(MLD), PWLD(MLD), JTLD(MLD), NWLD
COMMON /B10/ XPTF(MPF), PTF(MPF), NPTF
COMMON /B11/ IDC(MBC,3), NBC
COMMON /B12/ ESTIP(19,19)
COMMON /B13/ GSTIP(MPT,MSZ), A&TIP(MP,MOZ),
1 XP(MPT,MEQ),YP(MPT,MEQ),RF(MPT,MEQ),SVEC(MPT,MEQ),
3 SVE1(MPT,MEQ),SVE2(MPT,MEQ),XFX(MPT,MEQ),EK(8,8)
COMMON /B14/ XK(8,8),YK(8,8),EK(8,8),
1 BX1(1,8),BX2(1,8),BY1(1,8),BY2(1,8),
2 BE1(1,8),BE2(1,8),BZ1(8,1),BZ2(8,1),B1T(8,1).
3 BY2T(8,1),BZ1T(8,1),BZ2T(8,1),SXK(8,8),
4 SYK(8,8),EK(8,8),EK12(12,12)
COMMON /B15/ EX(MSP),DY(MSP),EZ(MSP),NAN,NF,MNL
COMMON /B17/ ICH(MSP,MNP),ICH1(MSP,MNP),SL(12),
1 DDX,DDX,F1,TOLL,NNA
COMMON /B18/ SIGMAY,WDX1(MSP),WDX2(MSP),
1 WDX1(MSP),WDX2(MSP),WX1(MSP),WX2(MSP)

WRITE (*,111)
111 FORMAT (---)
WRITE (*,20)
20 FORMAT (T10,)

C

WRITE (*,111)
111 FORMAT (---)
WRITE (*,20)
20 FORMAT (T10,)

PI = 4.0D0 * DATAN(1.0D0)
PI2 = PI**2
PI4 = PI**4
TOL = .001

CALL DATA
WRITE(*,1)
1 FORMAT(1X,'THE DATA HAVE BEEN INPUT')

CALL GENMTX
NPT = 6 * NP
DO 25 I = 1,NST
DO 25 J = 1,NPT
ICH(I,J) = 1
25 ICH(I,J) = 0
NNA = 0

DO 26 IK = 1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (IK+1)/2
DO 26 I = 1,NEQ
SVEC2(IKM,I) = 0.D0
SVEC(IKM,I) = 0.D0
RFP(IKM,I) = 0.D0
26 FF(IKM,I) = 0.D0

MMM = MNL + 1
DO 350 LMN = 1,MMM
C
IF (LMN .EQ. 1) THEN
WRITE(*,*)
WRITE(*,*)' APPLY POST-TENSIONING FORCE ONLY'
END IF

IF (LMN .NE. 1) THEN
WRITE(*,*)
WRITE(*,*)' APPLY WHEEL LOADING TO THE BRIDGE'
END IF
C
DO 3 I = 1,NWLD
3 PWLD(I) = (LMN-1)*PPWLD(I)/(MMM-1)
CALL LOAD(1,2)

DO 300 IK = 1,NM,NSTEP
IK0 = IK
IF (NSTEP .EQ. 2) IK0 = (IK+1)/2
DO 30 I = 1,NEQ
30 XFX(IK0,I) = XF(IK0,I)
CALL ASMBLY
WRITE(*,')
8 FORMAT(BX,'THE GLOBAL STIFFNESS MATRIX HAS BEEN ASSEMBLED')

DO 9 I = 1,NWLD
9 PWLD(I) = PWLD(I)/(MMM-1)
WRITE(*,')
IF (LMN .EQ. 1) THEN
IF (NPTF .EQ. 0) GOTO 350
CALL LOAD(1,0)
END IF
IF (LMN .GE. 2) THEN
IF (NWLD .EQ. 0) GOTO 250
CALL LOAD(0,2)
END IF
WRITE(*,10)
FORMAT(1X,'THE GLOBAL LOAD MATRIX HAS BEEN ASSEMBLED')
WRITE(*,*)
DO 29 IK = 1,NM,NSTEP
 IKM = IK
 IF (NSTEP .EQ. 2) IKM = (1+IK)/2
 DO 29 I = 1,NEQ
 XF(IKM,I) = XF(IKM,I) RFF(IKM,I)
 29 CONTINUE
C USING ITERATING METHOD TO SOLVE THE COUPLING EQUATION
CALL ITERATE
C IF (NAN .NE. 0) GOTO 315
CALL CHECK(0)
WRITE(*,*) ' CHECK HAS BEEN FINISHED'
WRITE(*,*)
IF (NNA .NE. 0) THEN
WRITE(*, *) NON-LINEAR ANALYSIS IS DOING
WRITE(*, *)
DO 240 IK = 1, NM, NSTEP
IKM = IK
IF (NSTEP .EQ. 2) THEN
IKM = (IK + 1)/2
END IF
DO 240 I = 1, NEQ
240 SVEC1(IKM, I) = SVEC(IKM, I)
C
245 CALL IMBALANCE(1)
CALL ASMBLY
DO 249 IK = 1, NM, NSTEP
DO 249 IN = 1, IK, NSTEP
IKM = IK
INM = IN
IF (NSTEP .EQ. 2) THEN
IKM = (IK + 1)/2
INM = (IN + 1)/2
END IF
IF (IN .NE. IK) THEN
IKO = (INM - 1)/2 + IKM
END IF
IF (IN .EQ. IK) THEN
IKO = IKM
CALL GBC(IKO)
CALL DCOMP(IKO)
DO 246 I = 1, NEQ
FF(IKM, I) = XF(IKM, I)
246 CONTINUE
CALL SOLVE(IKM)
DO 297 I = 1, NEQ
247 SVEC(IKM, I) = XF(IKM, I)
END IF
249 CONTINUE
CALL ITERATE
C
NLF = 1
DO 260 IK = 1, NM, NSTEP
IKM = IK
IF (NSTEP .EQ. 2) THEN
IKM = (IK + 1)/2
END IF
TP = 0.0
TP1 = 0.0
C
AMAX = 0.0
DO 250 I = 1, NEQ
TP1 = TP1 + (SVEC(IKM, I)**2) + SVEC2(IKM, I)**2
250 CONTINUE
TOLL = 0.01
Appendix D. PTB SOURCE CODE AND I/O FILE

C -----------------------------
250 TP = TP + (SVEC(IKM,I)**2)
WRITE(10,'(TOLL = ',TOLL
TP = DSQRT(TP)
TP1 = DSQRT(TP)
EP = TP/TP1
WRITE(10,'),EP = NON LINEAR',EP,'IKM = ',IKM
WRITE(10,')LMN = ',LMN
EWRITE(10,')PWLD(I) = ',(LMN-1)*PWLD(I)/ (MNM - 1)
NPA = 1
IF (EP .GT. TOLL) NPA = 0
NLF = NLF + NPA
DO 260 I = 1,NEQ
SVEC1(IKM,I) = SVEC1(IKM,I)
260 CONTINUE
DO 280 IK = 1, NM, NSTEP
IKM = IK
IF (NSTEP .EQ. 2) THEN
IKM = (IK -1)/2
END IF
DO 280 I = 1, NEQ
SVEC(IKM,I) = SVEC1(IKM,I)
IF (NLF .EQ. 1) GOTO 300
WRITE(10,'(NON-LINEAR ANALYSIS IS CONTINUING'
WRITE(10,')GOTO 245
END IF
C -----------------------------
IF (NNA .EQ. 0) THEN
WRITE(10,'(NO NON-LINEAR SPRING OCCURS'
WRITE(10,')END IF
C -----------------------------
300 CONTINUE
CALL IMBALANCE(0)
DO 310 I =1,NEQ
RFF(IKM,I) = XF(IKM,I)
310 CONTINUE
DO 320 IK =1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (1+IK)/2
DO 320 I = 1,NEQ
SVEC2(IKM,I) = SVEC(IKM,I)
320 CONTINUE
DO 380 IK =1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (1+IK)/2
DO 380 I = 1,NEQ
SVEC(IKM,I) = SVEC2(IKM,I)
380 CONTINUE
CALL CHECK(1)
CALL RESULT
WRITE(*,398)
398 FORMAT(1X,'THE RESULTS HAVE BEEN OUTPUT')
WRITE(*,*)
CLOSE(1)
CLOSE(2)
CLOSE(3)
STOP
END

C SUBROUTINE DATA READS INPUT DATA FROM DATA FILE.
C
SUBROUTINE DATA
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 37)
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B06/ EJT(MJT), GJT(MJT), BJT, HJT, AJT, RIY, RIZ, RIT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
 1 PDX, PDY, PDV, PDG
COMMON /B08/ CKPAL, CKPEB, CKROT, SPC, XIN
COMMON /B09/ X1LD(MLD), X2LD(MLD), Y1LD(MLD), Y2LD(MLD),
 1 PWLD(MLD), PPWLD(MLD), JTLD(MLD), NWLD
COMMON /B10/ XPTF(MPF), PTF(MPF), NPTF
COMMON /B11/ IBC(MBC,2), NBC
COMMON /B15/ EX(MSP), EY(MSP), EZ(MSP), NAM, NP, MNL
COMMON /B17/ ICH(MSP, MNP), ICH1(MSP, MNP), XL(12),
 1 DDX, DDX, FJ-T, LLLN
COMMON /B18/ SIGMAY, WDX1(MSP), WDX2(MSP),
 1 WDX1(MSP), WDX2(MSP), WDX1(MSP)
CHARACTER*72 NTITLE

C INPUT DATA.

READ (1,10) NTITLE
10 FORMAT (A)
READ (1,*) NM, NJT, ISYM

NST=NJT+1
READ (1,*) XL, SPJT
READ (1,*) BJT, HJT
READ (1,*) [EJT(I),I=1,NJT], REG
BETA = (1.0 - (0.63 * BJT / HJT)) / 3.0
AJT = BJT * HJT
RIY = BJT * (HJT**2) / 12.0
RIZ = HJT * (BJT**3) / 12.0
RIT = BETA * HJT * (BJT**3)
DO 20 I = 1, NJT
 GJT(I) = HJT(I) / REG
20 CONTINUE

READ (1,*) PTK, EMUX, EMUZ
READ (1,*) PEX, PEY, PG, PVXY, PVYX
PKX = (PEX * PTK**3) / (12.0D0 * (1.0D0 - (PVXY*PVYX)))
PKY = PKX * PEY / PEX
PKG = PG * (PTK**3) / 12.0D0
PDX = (PEX * PTK) / (1.0D0 - (PVXY*PVYX))
PDY = PDX * PEY / PEX
PDG = PG * PTK

READ (1,*) SPC, XIN, CKPAL, CKPER, CKROT
C
C
READ (1,*) TAOSX, TAOSZ
READ (1,*) NAN, NP, MNL
IF (NAN .EQ. 0) THEN
 WRITE(*,*)' ** ONLY LINEAR ELASTIC ANALYSIS IS REQUIRED **'
 WRITE(*,*)
END IF

READ (1,*) (EX(I), I=1,NST)
READ (1,*) (BY(I), I=1,NST)
READ (1,*) (EZ(I), I=1,NST)
C
READ (1,*) NWLD
DO 150 I = 1, NWLD
 READ (1,*) JTLD(I), X1LD(I), X2LD(I), Y1LD(I), Y2LD(I), PPWLD(I)
150 CONTINUE

READ (1,*) NPTF
IF (NPTF .NE. 0) THEN
 READ (1,*) ES, AS, DIT, RFAC
 DO 160 I = 1, NPTF
 READ (1,1 XPTF(I), PTF(I)
160 CONTINUE
END IF

READ (1,*) NBC
IF (NBC .NE. 0) THEN
 DO 170 I = 1, NBC
 READ (1,*) (IBC(I,J), J=1,2)
170 CONTINUE
END IF

READ (1,*) NBC
IF (NBC .NE. 0) THEN
 DO 170 I = 1, NBC
 READ (1,*) (IBC(I,J), J=1,2)
170 CONTINUE

Appendix D. PTB SOURCE CODE AND I/O FILE

```fortran
C

END IF
C

DDXL = (5.0*9.8)*EMUX/EX(1)
DDZL = (5.0*9.8)*EMUZ/EZ(1)

EXL = TAOSX *0.5*PTIC*XL/(NP-1) /DDXL
EZL = TAOSZ '0.5*PTK*XL/(NP-1) /DDZL

FXL = EXL - DDXL
FZL = EZL - DDZL

IF (NPTF .NE. 0) THEN
    AW = PTK*XL/NPTF
    FS = PTF(1)
    SIGMAY = FS/AW

    FX = SIGMAY * EMUX *0.5*PTK*XL/(NP-1)
    FZ = SIGMAY * EMUZ *0.5*PTK*XL/(NP-1)

    IF (FX .GT. FXL) FX = FXL
    IF (FZ .GT. FZL) FZ = FZL

    DO 190 I = 1, NST
        EX(I) = EX(I)*SIGMAY*0.5*PTK*XL/(NP-1)/(5.0*9.8)
        EZ(I) = EZ(I)*SIGMAY*0.5*PTK*XL/(NP-1)/(5.0*9.8)

        IF (EX(I) .GT. EXL) EX(I) = EXL
        IF (EZ(I) .GT. EZL) EZ(I) = EZL
        IF (EX(I) .LT. EEEXXX) EX(I) = EEEXXX
        IF (EZ(I) .LT. EEEZZZ) EZ(I) = EEEZZZ

    190 CONTINUE

    IF (EX(1) .NE. 0.0) DDX = FX/EX(1)
    IF (EZ(1) .NE. 0.0) DDZ = FZ/EZ(1)

    IF ( DDX .GT. DDXL ) DDX = DDXL
    IF ( DDZ .GT. DDZL ) DDZ = DDZL

    IF (EX(1) .EQ. 0.0) DDX = 0.0
    IF (EZ(1) .EQ. 0.0) DDZ = 0.0

END IF
C

IF (NPTF .EQ. 0) THEN
```

102
SIGMAY = 0.0
FX = 0.0
FZ = 0.0

DO 191 I = 1,NST
EX(I) = 0.0
EZ(I) = 0.0

191 CONTINUE

DDX = 0.0
DDZ = 0.0

END IF

C TO CALCULATE THE NO. OF THE TURN OF THE POST TENSIONING CABLE

IP (NPTF .NE. 0) THEN
TN = (RFAC * FS * NJT * SPJT * (1/(ES'AS) + 1/(FY*AW)))/DIT
END IF

C SET PARAMETERS FOR PROBLEM SIZE AND TYPE.

NEQ = NJT * 19
LHB = 19
NSZ = 19 * NEQ

NA1 = 144 * NST

IF (ISYM .EQ. 0) THEN
NSTEP = 1
NFT = NM
ELSE IF (ISYM .EQ. 1) THEN
NSTEP = 2
NFT = (NM + 1) / 2
END IF

WRITE(2,200) NTITLE
WRITE(3,200) NTITLE
200 FORMAT (/1X,' FLOOR ANALYSIS PROGRAM ',26('"'),//,' PROBLEM TITLE: ',A)
WRITE(2,210) NJT, NFT, NM
WRITE(3,210) NJT, NFT, NM
210 FORMAT (/1X,' NUMBER OF FLOOR JOISTS = ',I4,' /',1X,' NUMBER OF FOURIER TERMS USED = ',14,I)
Appendix D. PTB SOURCE CODE AND I/O FILE

2 ' MAX. ORDER OF FOURIER TERM = ', 14)

WRITE(2,220)
220 FORMAT (//, ' PROPERTIES AND DIMENSIONS OF JOISTS')
WRITE(2,230) X1, SPT, BJT, HJT
230 FORMAT (' JOIST SPAN = ', E12.5, /,
1 ' JOIST SPACING = ', E12.5, /,
2 ' JOIST WIDTH = ', E12.5, /,
3 ' JOIST DEPTH = ', E12.5)
DO 245 I = 1, NJT
WRITE (2,240) I, EJT(I), GJT(I)
240 FORMAT (' JOIST NO. = ', I3, 2X, ' EJT = ', E12.5, 2X,
1 ' GJT = ', E12.5)
245 CONTINUE
WRITE(2,250)
250 FORMAT (//, ' PROPERTIES AND DIMENSIONS OF PLATE COVER')
WRITE(2,260) PTK
260 FORMAT (' COVER THICKNESS = ', E12.5)
WRITE(2,270) PKX, PKY, PKV, PKG
270 FORMAT (' KX = ', E12.5, 2X, ' KY = ', E12.5, /,
1 ' KV = ', E12.5, 2X, ' KG = ', E12.5)
WRITE(2,280) PDX, PDY, PDV, PDG
280 FORMAT (' DX = ', E12.5, 2X, ' DY = ', E12.5, /,
1 ' DV = ', E12.5, 2X, ' DG = ', E12.5)
WRITE(2,340)
340 FORMAT (//, ' PROPERTIES FOR CONNECTORS')
WRITE(2,350) CKPAL, CKPER, CKROT
350 FORMAT (' STIFFNESS PARALLEL TO JOIST = ', E12.5, /,
1 ' STIFFNESS PERPENDICULAR TO JOIST = ', E12.5, /,
2 ' ROTATIONAL STIFFNESS FLANGE/JOIST = ', E12.5)
WRITE(2,360) SPC
360 FORMAT (SPACING BETWEEN CONNECTORS = ', E12.5, //)

IF (NWLD .GT. 0) THEN
WRITE(2,370)
370 FORMAT (' APPLIED TRANSVERSE LOADING')
WRITE(2,380)
380 FORMAT (' JOIST, 6X, 'XI', 12X, 'X2', 12X, 'Y1', 12X, 'Y2',
1 11X, 'LOAD')
DO 390 I = 1, NWLD
390 WRITE (2,400) JTLD(I), XI1LD(I), X2LD(I), Y1LD(I), Y2LD(I), PPWLD(I)
400 FORMAT (1X, 12, 5(2X,E12.5))
END IF

IF (NPTF .GT. 0) THEN
WRITE (2,410)
410 FORMAT (' POST TENSIONING FORCES')
WRITE (2,420)
Appendix D. PTB SOURCE CODE AND I/O FILE

420 FORMAT (' X-LOC, 6X, 'FORCE')
 DO 420 I = 1, NPTF
430 WRITE (2,435) XPTF(I), PTF(I)
935 FORMAT (2(2X,E12.5))
END IF
IF (NPTF .EQ. 0) THEN
 WRITE(2,'*')
 WRITE(2,'*') 'NO POST TENSIONING FORCE'
END IF
WRITE (2,440) NBC
440 FORMAT (//' NO. OF BOUNDARY CONDITIONS = ', 14)
 IF (NBC .EQ. 0) GO TO 470
 DO 950 I = 1, NBC
450 WRITE (2,960) (IBC(I,J), J=1,2)
460 FORMAT (' JOIST NO. = ', 13, 3X, ' B.C. CODE NO. = ', 12)
970 CONTINUE
C --------------
 NPP = NP*2
 WRITE(2,'*') 'THREE DIMENSIONAL SPRING BETWEEN TWO T-BEAMS, NPP'
 WRITE(2,'*') 'STIFF. OF THE SPRING IN X-DIC.'
 DO 480 I = 1, NST
490 WRITE (2,490) I, EX(I)
490 FORMAT (JOINT NO. = ', 13, 3X, ' EX = ', E12.5)
 WRITE(2,'*') 'STIFF. OF THE SPRING IN Y-DIC.'
 DO 500 I = 1, NST
510 WRITE (2,510) I, EY(I)
510 FORMAT (JOINT NO. = ', 13, 3X, ' EY = ', E12.5)
 WRITE(2,'*') 'STIFF. OF THE SPRING IN Z-DIC.'
 DO 520 I = 1, NST
530 WRITE (2,530) I, EZ(I)
530 FORMAT (JOINT NO. = ', 13, 3X, ' EZ = ', E12.5)
 WRITE(2,540) EMUX
540 FORMAT (1X, 'FRICTION COEFFICIENT OF THE COVER (X-DIC.) = ', E12.5)
 WRITE(2,543) EMUZ
543 FORMAT (1X, 'FRICTION COEFFICIENT OF THE COVER (Z-DIC.) = ', E12.5)

IF (NPTF .NE. 0) THEN
 WRITE(2,700) ES
600 WRITE (2,705) AS
610 WRITE (2,710) DIT
620 WRITE (2,715) RFAC
630 WRITE (2,720) TN
700 FORMAT (1X, 'STIFFNESS OF THE POSTENSIONING CABLE = ', E12.5)
705 FORMAT (1X, 'THE AREA OF THE POSTENSIONING CABLE = ', E12.5)
710 FORMAT (1X, 'THE DISTANCE BETWEEN THE CABLE TEETH = ', E12.5)
715 FORMAT (1X, 'THE RELAX FACTOR OF THE CABLE = ', E12.5)
720 FORMAT (1X, 'THE TURN NO. REQUIRED = ', E12.5)
Appendix D. PTB SOURCE CODE AND I/O FILE

C SUBROUTINE GENTMX COMPUTES THE INTEGRALS REQUIRED IN THE DEVELOPMENT C OF THE ELEMENT STIFFNESS MATRIX NUMERICALLY USING SIX POINT GAUSS C QUADRATURE.

C***

C SUBROUTINE GENTMX
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
COMMON /B01/ RM00(19,19), RM22(19,19), RM02(19,19), RM20(19,19),
1 RM33(19,19), RM66(19,19), RM36(19,19), RM63(19,19),
2 RM44(19,19), RM45(19,19), RM54(19,19), RM55(19,19),
3 RM11(19,19)
COMMON /B02/ AA(19,19), RM(6,19), RM1(6,19)
COMMON /B03/ ETA(6), GWT(6)
DIMENSION ETA2(6), ETA3(6), ETA4(6), ETA5(6)
CALL ZERO(RM, RM1)
ETA(1) = 0.932469514203152D0
ETA(2) = 0.661209386466265D0
ETA(3) = 0.238619186083319D0
ETA(4) = -ETA(3)
ETA(5) = -ETA(2)
ETA(6) = -ETA(1)
GWT(1) = 0.171324492379170D0
GWT(2) = 0.360761573048139D0
GWT(3) = 0.467913934572691D0
GWT(4) = GWT(3)
GWT(5) = GWT(2)
GWT(6) = GWT(1)
DO 10 I = 1, 6
ETA2(I) = ETA(I) * ETA(I)
ETA3(I) = ETA2(I) * ETA(I)
ETA4(I) = ETA3(I) * ETA(I)
ETA5(I) = ETA4(I) * ETA(I)
10 CONTINUE
C M0 AND M2 MATRICES.

DO 20 I = 1, 6
RM(I,1) = ETA2(I) - (5.0D0 * ETA3(I)) / 4.0D0
RM(I,2) = ETA2(I) - ETA3(I) * ETA4(I)
RM(I,3) = ETA2(I) - ETA3(I) * ETA5(I)
RM(I,4) = ETA2(I) - ETA4(I) / 2.0D0
RM(I,5) = ETA2(I) - ETA5(I) / 2.0D0
RM(I,6) = ETA2(I) - (5.0D0 * ETA3(I)) / 4.0D0
RM(I,7) = ETA2(I) - ETA3(I) * ETA4(I)
RM(I,8) = ETA2(I) - ETA3(I) * ETA5(I)
RM(I,9) = ETA2(I) - ETA4(I) / 2.0D0
RM(I,10) = ETA2(I) - ETA5(I) / 2.0D0
RM(I,11) = ETA2(I) - (5.0D0 * ETA3(I)) / 4.0D0
RM(I,12) = ETA2(I) - ETA3(I) * ETA4(I)
RM(I,13) = ETA2(I) - ETA3(I) * ETA5(I)
RM(I,14) = ETA2(I) - ETA4(I) / 2.0D0
RM(I,15) = ETA2(I) - ETA5(I) / 2.0D0
RM(I,16) = ETA2(I) - (5.0D0 * ETA3(I)) / 4.0D0
RM(I,17) = ETA2(I) - ETA3(I) * ETA4(I)
RM(I,18) = ETA2(I) - ETA3(I) * ETA5(I)
RM(I,19) = ETA2(I) - ETA4(I) / 2.0D0
RM(I,20) = ETA2(I) - ETA5(I) / 2.0D0

END IF
RETURN
END
Appendix D. PTB SOURCE CODE AND I/O FILE

\[RM1(I,1) = 2.0D0 - (15.0D0 \times \eta(I)) / 2.0D0 \]
\[- (6.0D0 \times \eta(I)) + (15.0D0 \times \eta(I)) \]
\[RM1(I,14) = 2.0D0 + (15.0D0 \times \eta(I)) / 2.0D0 \]
\[- (6.0D0 \times \eta(I)) - (15.0D0 \times \eta(I)) \]
\[RM1(I,16) = -4.0D0 + (12.0D0 \times \eta(I)) \]
\[RM1(I,2) = (2.0D0 - (6.0D0 \times \eta(I)) - (12.0D0 \times \eta(I)) \]
\[+ (20.0D0 \times \eta(I)) / 8.0D0 \]
\[RM1(I,15) = (2.0D0 - (6.0D0 \times \eta(I)) + (12.0D0 \times \eta(I)) \]
\[+ (20.0D0 \times \eta(I)) / 8.0D0 \]
\[RM1(I,9) = (12.0D0 \times \eta(I)) + (20.0D0 \times \eta(I)) \]

20 CONTINUE
CALL DMAT(1)
DO 40 I = 1, 19
DO 30 J = 1, 19
RMOO(I,J) = AA(I,J)
30 CONTINUE
40 CONTINUE
CALL DMAT(2)
DO 50 I = 1, 19
DO 50 J = 1, 19
RM2(I,J) = AA(I,J)
50 CONTINUE
60 CONTINUE
CALL DMAT(3)
DO 60 I = 1, 19
DO 60 J = 1, 19
RM3(I,J) = AA(I,J)
60 CONTINUE
70 CONTINUE
CALL DMAT(4)
DO 70 I = 1, 19
DO 70 J = 1, 19
RM4(I,J) = AA(I,J)
70 CONTINUE
80 CONTINUE
CALL ZERO(RM, RM1)

C M3 AND M6 MATRICES.

DO 100 I = 1, 6
RM(I,1) = (-3.0D0 \times \eta(I)) / 6.0D0 + \eta(I)
\[+ (\eta(I)) / 6.0D0 \]
RM(I,16) = (3.0D0 \times \eta(I)) / 6.0D0 + \eta(I)
\[- (\eta(I)) / 6.0D0 \]
RM(I,17) = 1.0D0 - (2.0D0 \times \eta(I)) + \eta(I)
RM(I,14) = (-\eta(I) + \eta(I) + \eta(I) - \eta(I)) / 6.0D0
RM(I,17) = (\eta(I) - \eta(I) + \eta(I) + \eta(I)) / 6.0D0
RM(I,15) = (3.0D0 / 6.0D0) + (2.0D0 \times \eta(I))
\[+ (3.0D0 \times \eta(I) / 6.0D0) - (2.0D0 \times \eta(I)) \]
RM(I,18) = (-3.0D0 / 6.0D0) + (2.0D0 \times \eta(I))
\[- (2.0D0 \times \eta(I)) / 6.0D0 \]
\[- (2.0D0 \times \eta(I)) / 6.0D0 - (2.0D0 \times \eta(I)) \]
RM(I,18) = (-3.0D0 / 6.0D0) + (2.0D0 \times \eta(I))
Appendix D. PTB SOURCE CODE AND I/O FILE

\begin{equation}
RM1(I,6) = (-1.0D0 + (2.0D0 \times ETA(I)) + (3.0D0 \times ETA2(I)))
\end{equation}
\begin{equation}
\quad \times (4.0D0 \times ETA3(I)) / 8.0D0
\end{equation}
\begin{equation}
RM1(I,18) = (-1.0D0 - (2.0D0 \times ETA(I)) + (3.0D0 \times ETA2(I)))
\end{equation}
\begin{equation}
\quad + (4.0D0 \times ETA3(I)) / 8.0D0
\end{equation}

110 CONTINUE
CALL DMAT(1)
DO 120 I = 1, 19
DO 120 J = 1, 19
RM33(I,J) = AA(I,J)
120 CONTINUE
130 CONTINUE
CALL DMAT(2)
DO 140 I = 1, 19
DO 140 J = 1, 19
RM66(I,J) = AA(I,J)
140 CONTINUE
150 CONTINUE
CALL DMAT(3)
DO 160 I = 1, 19
DO 160 J = 1, 19
RM36(I,J) = AA(I,J)
160 CONTINUE
170 CONTINUE
CALL DMAT(4)
DO 180 I = 1, 19
DO 180 J = 1, 19
RM63(I,J) = AA(I,J)
180 CONTINUE
190 CONTINUE

C M5 AND M4 MATRICES.

DO 200 I = 1, 6
RM(1,5) = RM(1,3)
RM(1,3) = 0.0D0
RM(1,18) = RM(1,16)
RM(1,16) = 0.0D0
RM(1,8) = RM(1,7)
RM(1,7) = 0.0D0
RM(1,6) = RM(1,4)
RM(1,4) = 0.0D0
RM(1,19) = RM(1,17)
RM(1,17) = 0.0D0
RM(1,15) = RM(1,13)
RM(1,13) = 0.0D0
RM(1,16) = RM(1,14)
RM(1,14) = 0.0D0
RM(1,18) = RM(1,17)
RM(1,17) = 0.0D0
RM(1,15) = RM(1,13)
RM(1,13) = 0.0D0
RM(1,16) = RM(1,14)
RM(1,14) = 0.0D0
RM(1,17) = RM(1,18)
RM(1,18) = 0.0D0
RM(1,15) = RM(1,13)
RM(1,13) = 0.0D0
RM(1,16) = RM(1,14)
RM(1,14) = 0.0D0
RM(1,17) = RM(1,18)
RM(1,18) = 0.0D0
RM(I,J) = 0.0D0
200 CONTINUE
CALL DMAT(2)
DO 220 I = 1, 19
DO 210 J = 1, 19
RM44(I,J) = AA(I,J)
210 CONTINUE
220 CONTINUE
CALL DMAT(4)
DO 240 I = 1, 19
DO 230 J = 1, 19
RM45(I,J) = AA(I,J)
230 CONTINUE
240 CONTINUE
CALL DMAT(3)
DO 260 I = 1, 19
DO 250 J = 1, 19
RM54(I,J) = AA(I,J)
250 CONTINUE
260 CONTINUE
CALL DMAT(1)
DO 280 I = 1, 19
DO 270 J = 1, 19
RM55(I,J) = AA(I,J)
270 CONTINUE
280 CONTINUE
CALL ZERO(RM, RM1)
C M1 MATRIX.
DO 290 I = 1, 6
RM(I,1) = (2.0D0 * ETA(I)) - (15.0D0 * ETA2(I) / 4.0D0)
1 - (2.0D0 * ETA3(I)) + (15.0D0 * ETA4(I) / 4.0D0)
RM(I,14) = (2.0D0 * ETA(I)) + (15.0D0 * ETA2(I) / 4.0D0)
1 - (2.0D0 * ETA3(I)) - (15.0D0 * ETA4(I) / 4.0D0)
RM(I,10) = (-4.0D0 * ETA(I)) + (4.0D0 * ETA3(I))
RM(I,12) = ((2.0D0 * ETA(I)) - (3.0D0 * ETA2(I))
1 - (4.0D0 * ETA3(I)) + (6.0D0 * ETA4(I)) / 8.0D0
RM(I,11) = ((2.0D0 * ETA(I)) - (3.0D0 * ETA2(I))
1 + (4.0D0 * ETA3(I)) + (5.0D0 * ETA4(I)) / 8.0D0
RM(I,19) = (1.0D0 * (6.0D0 * ETA2(I))
1 + (5.0D0 * ETA4(I))) / 2.0D0
290 CONTINUE
CALL DMAT(1)
DO 310 I = 1, 19
DO 300 J = 1, 19
RM11(I,J) = AA(I,J)
300 CONTINUE
310 CONTINUE
RETURN
END
C SUBROUTINE ZERO CALLED BY GENMTX.

C SUBROUTINE ZERO
IMPLICIT DOUBLE PRECISION (A - H, 0 - Z)
COMMON /B02/ AA(19,19), RM(6,19), RM1(6,19)

DO 20 I = 1, 6
 DO 10 J = 1, 19
 RM(I,J) = 0.0D0
 RM1(I,J) = 0.0D0
 10 CONTINUE
20 CONTINUE
RETURN
END

C SUBROUTINE DMAT CALLED BY GENMTX.

C SUBROUTINE DMAT (II)
IMPLICIT DOUBLE PRECISION (A - H, 0 - Z)
COMMON /B02/ AA(19,19), RM(6,19), RM1(6,19)
COMMON /B03/ ETA(6), GWT(6)

DO 20 I = 1, 19
 DO 10 J = 1, 19
 AA(I,J) = 0.0D0
 10 CONTINUE
20 CONTINUE
DO 50 I = 1, 6
 DO 40 J = 1, 19
 F1 = RM(I,J)
 IF (II .EQ. 2 .OR. II .EQ. 4) F1 = RM1(I,J)
 IF (F1 .NE. 0.0) THEN
 DO 30 K = 1, 19
 F2 = RM1(I,K)
 IF (II .EQ. 1 .OR. II .EQ. 4) F2 = RM(I,K)
 IF (F2 .NE. 0.0) THEN
 AA(J,K) = AA(J,K) + F1 * F2 * GWT(I)
 END IF
 30 CONTINUE
 END IF
 40 CONTINUE
50 CONTINUE
RETURN
END

C SUBROUTINE COVCON COMPUTES THE STIFFNESS MATRIX FOR THE PLATE COVER
C AND CONNECTORS ASSOCIATED WITH A GIVEN T-BEAM STRIP.

C SUBROUTINE COVCON (IN,IK)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MBE = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MPT = 4, MLD = 12, MBC = 20, MFP = 20)
PARAMETER (MSF = 5, MFQ = 6, MNF = 376)
COMMON /B00/ P1, P12, PI4, TOL
COMMON /B01/ RM00(19,19), RM22(19,19), RM02(19,19), RM30(19,19),
1 RM33(19,19), RM56(19,19), RM26(19,19), RM53(19,19),
2 RM44(19,19), RM45(19,19), RM54(19,19), RM55(19,19),
3 RM11(19,19)
COMMON /B03/ ETA(6), GWT(6)
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHE, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B06/ EJT(MJT), GJT(MJT), BJT, HJT, AJT, RIT
COMMON /B07/ PTK, PEX, PEY, PG, PVX, PVY, PKV, PKG, PDX, PDY, PDV, PDG
COMMON /B08/ CKPAL, CKPER, CKROT, SPC, XIN
COMMON /B12/ ESTIF (19,19)
COMMON /B17/ ICH(MSP, MNP), ICH1(MSP, MNP), SL(12),
1 DDX, DDX, FX, PX, P2, TL, NNA
DIMENSION AD(19,19)

DO 20 I = 1, 19
DO 10 J = 1, 19
ESTIF(I,J) = 0.0
10 CONTINUE
20 CONTINUE

C CONTRIBUTION FROM THE PLATE COVER.

FAC = 0.0
IF (IN .EQ. IK) FAC = PKX * (IK**4) * PI4 * SPJT / (4.0*XL**3)
DO 60 I = 1, 19
DO 50 J = 1, 19
AD(I,J) = RM00(I,J)
50 CONTINUE
60 CONTINUE
CALL ADD(AD, FAC)

C ________________________________

FAC = 0.0
IF (IN .EQ. IK) FAC = PKY * 4.0 * XL / (SPJT**3)
DO 100 I = 1, 19
DO 90 J = 1, 19
AD(I,J) = RM22(I,J)
90 CONTINUE
100 CONTINUE
CALL ADD(AD, FAC)

C ________________

FAC = 0.0
IF (IN .EQ. IK) FAC = -PKV * PI2 / (SPJT*XL)
FAC = FAC * (IK**2)
DO 140 I = 1, 19
DO 130 J = 1, 19

Appendix D. PTB SOURCE CODE AND I/O FILE
AD(I,J) = RM02(I,J)
130 CONTINUE
140 CONTINUE
 CALL ADD(AD, FAC1)
C
PAC1 = FAC " (IN**2)
160 DO 160 I = 1, 19
170 DO 160 J = 1, 19
180 AD(I,J) = RM11(I,J)
190 CONTINUE
200 CONTINUE
 CALL ADD(AD, FAC2)
C
PAC = 0.0
IF (IN .EQ. IK) PAC = PKG " 4.0 " PI2 " (IK**2) / (SPJT**XL)
220 DO 220 I = 1, 19
230 DO 220 J = 1, 19
240 AD(I,J) = RM13(I,J)
250 CONTINUE
260 CONTINUE
 CALL ADD(AD, FAC3)
C
PAC = 0.0
IF (IN .EQ. IK) PAC = PDY " XL / SPJT
280 DO 280 I = 1, 19
290 DO 280 J = 1, 19
300 AD(I,J) = RM16(I,J)
310 CONTINUE
320 CONTINUE
 CALL ADD(AD, FAC4)
C
PAC = 0.0
IF (IN .EQ. IK) PAC = -PDV " PI / 2.0
340 FAC1 = FAC " IK
350 DO 350 I = 1, 19
360 DO 350 J = 1, 19
370 AD(I,J) = RM36(I,J)
380 CONTINUE
390 CONTINUE
 CALL ADD(AD, FAC1)
C
PAC1 = FAC " IN
410 DO 410 I = 1, 19
DO 330 J = 1, 19
 AD(I,J) = RM63(I,J)
330 CONTINUE
340 CONTINUE
CALL ADD(AD, FAC1)
C
FAC = 0.0
IF (IN .EQ. IK) FAC = PDG * XL * SPJT / 4.0
FAC1 = FAC * 4.0 / (SPJT**2)
DO 380 I = 1, 19
 DO 370 J = 1, 19
 AD(I,J) = RM44(I,J)
370 CONTINUE
380 CONTINUE
CALL ADD(AD, FAC1)
C
FAC1 = FAC * 2.0 * IN * PI / (SPJT*XL)
DO 400 I = 1, 19
 DO 390 J = 1, 19
 AD(I,J) = RM45(I,J)
390 CONTINUE
400 CONTINUE
CALL ADD(AD, FAC1)
C
FAC1 = FAC * 2.0 * IK * PI / (SPJT*XL)
DO 420 I = 1, 19
 DO 410 J = 1, 19
 AD(I,J) = RM54(I,J)
410 CONTINUE
420 CONTINUE
CALL ADD(AD, FAC1)
C
FAC1 = FAC * IK * IN * PI2 / (XL**2)
DO 440 I = 1, 19
 DO 430 J = 1, 19
 AD(I,J) = RM55(I,J)
430 CONTINUE
440 CONTINUE
CALL ADD(AD, FACT)
C CONTRIBUTION FROM THE COVER-TO-STIFFENER CONNECTORS.
D0 460 I = 1, 6
 AD(I,7) = 0.0
 AD(I,11) = -1.0
460 CONTINUE
AD(1,7) = 1.0 * PI / (HJT + PTK) / (2.0*XL)
AD(2,7) = 1.0
AD(2,11) = -1.0
AD(2,10) = -IN * PI * (HJT + PTK) / (2.0*XL)
AD(3,8) = 1.0
AD(3,12) = -1.0
AD(3,9) = -PTK / (2.0*SPJT)
AD(3,13) = -HIT / (2.0*SPJT)
AD(4,8) = 1.0
AD(4,12) = -1.0
AD(4,9) = -PTK / (2.0*SPJT)
AD(4,13) = -HIT / (2.0*SPJT)
AD(5,9) = 1.0 / SPIT
AD(5,13) = -1.0 / SPIT
AD(6,9) = 1.0 / SPIT
AD(6,13) = -1.0 / SPIT

C ——————————————————
IF (IN .NE. IK) GO TO 510
SPAR = XL / (2.0*SPC)
SPER = XL / (2.0*SPC)
SROT = SPER
GO TO 520
510 SPAR = 0.0
SPER = 0.0
SROT = 0.0
520 SPAR = SPAR * CKPAL
SPER = SPER * CKPER
SROT = SROT * CKROT
C ——————————————————
DO 540 I = 1, 19
DO 530 J = 1, 19
ESTIF(I,J) = ESTIF(I,J) + (SPAR * AD(1,I) * AD(2,J))
1 + (SPER * AD(3,I) * AD(4,J))
2 + (SROT * AD(5,I) * AD(6,J))
530 CONTINUE
540 CONTINUE
RETURN
END
C ——————————————————
FUNCTION Z IS USED TO CALCULATE Ix(n,m,i)
C ——————————————————
FUNCTION Z(N, M, Z1, ZO, XL, NX, PI)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
IF (N .EQ. M) GO TO 20
S1 = DSIN((N - M)*PI*Z1/XL)
S2 = DSIN((N - M)*PI*ZO/XL)
S3 = DSIN((N - M)*PI*Z1/XL)
S4 = DSIN((N - M)*PI*ZO/XL)
D1 = (S1 - S2) / (2.0*(N - M))
D2 = (S3 - S4) / (2.0*(N + M))
IF (NX .EQ. 1) GO TO 10
Z = XL * (D1 - D2) / PI
RETURN
10 Z = XL * (D1 + D2) / PI
RETURN
20 S1 = DSIN(2.0*N*PI/21/XL)
S2 = DSIN(2.0*N*PI/20/XL)
D1 = PI * (Z1 - Z0)/(2.0*XL)
D2 = (S1 - S2) / (4.0*N)
IF (NX .EQ. 1) GO TO 30
Z = XL * (D1 - D2)/PI
RETURN
30 Z = XL * (D1 + D2)/PI
RETURN
END

C **
C SUBROUTINE ADD, WHICH IS CALLED BY SUBROUTINE COVCON, BUILDS THE
C STIFFNESS AND MASS MATRICES ASSOCIATED WITH THE PLATE COVER
C AND THE CONNECTORS FOR A GIVEN T-BEAM STRIP.
C **

SUBROUTINE ADD (AD, FAC)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
COMMON /B12/ ESTIF(19,19)
DIMENSION AD(19,19)
IF (FAC .EQ. 0.0D0) RETURN
DO 20 I = 1, 19
DO 10 J = 1, 19
ESTIF(I,J) = ESTIF(I,J) + (FAC * AD(I,J))
10 CONTINUE
20 CONTINUE
RETURN
END

C **
C SUBROUTINE ASMBLY ASSEMBLES THE DIAGNOSTIC STIFFNESS SUB-MATRICES
C FOR EACH FOURIER TERM. GSTIF(IK,O,JK) AND ASTIF(IK,O,JK)
C **

SUBROUTINE ASMBLY
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MBQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MPF = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
PDX, PDY, PDV, PDG
COMMON /B11/ IBC(MBC,2), NBC
COMMON /B12/ ESTIF(19,19)
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MPF,MOZ),
XP(MPT,MBQ),FP(MPT,MBQ),RF(MPT,MBQ),SVEC(MPT,MBQ),
SVEC(MPT,MBQ),SVEC2(MPT,MBQ),XPX(MPT,MBQ),EK(8,8)
COMMON /B14/ XK(8,8),YK(8,8),ZK(8,8),
Appendix D. PTB SOURCE CODE AND I/O FILE

```fortran
1  EX1(1,8),DX2(1,8),BY1(1,8),BY2(1,8),
2  EY1(1,8),EZ1(1,8),EY1T(8,1),EZ2T(8,1),
3  BX2T(8,1),BY2T(8,1),EZ2T(8,1),EYK(8,8),
4  EYK(8,8),EZK(8,8),EK12(12,12)
COMMON /B15/ EX(MSP),EY(MSP),EZ(MSP),NAN,NP,MNL
COMMON /B17/ ICH(MSP,MNP),ICH1(MSP,MNP),SL(12),
1  DDX,DDZ,FX,FZ,TOLL,NNA

DO 60 IK = 1, NM, NSTEP
DO 55 IN = 1,IK,NSTEP
  IKM = IK
  INM = IN
  IF (NSTEP .EQ. 2) THEN
    IKM = (IK + 1)/2
    INM = (IN + 1)/2
  END IF
  IP (INM = IKM, NM, INM = (INM + 1)/2)
  END IF

C
IP (IN .NE. IK) THEN
  IKO = (INM - 1) * "NPT + IKM - INM" * (INM + 1)/2
  DO 5 J = 1, NA1
      ASTIF(IKO,J) = 0.0
  DO 20 IE = 1,NJT
      IJ = (IE - 1)*10
      IP (IE .LE. NST ) THEN
          CALL STIF12(IE,IJK)
  C
  END IF

C
D0 20 IE = 1,NJT
  IJ = (IE - 1)*10
  IP (IE .LE. NST ) THEN
      CALL STIF12(IE,IJK)
  C
  END IF

C
IP (IN .EQ. IK) THEN
  IKO = IKM
  FAC2 = (IK**2) * PI2 / (2.0D0 * XL)
  FAC4 = (IK**4) * PI4 / (2.oD0 * (XL**3))
C
END IF
```

DO 25 I = 1, NSZ
 GStif(Iko,J) = 0.0D0
25 CONTINUE

C CONTRIBUTION FROM THE PLATE COVER AND CONNECTORS.

CALL COVCON(IN,IK)
DO 50 IE = 1, NJT
 IJ = (IE - 1) * 19
 DO 40 J = 1, 19
 DO 30 K = 1, J
 JK = LHB*(IJ + K - 1) + J - K + 1
 GStif(Iko,JK) = GStif(Iko,JK) + ESTIF(J,K)
30 CONTINUE
40 CONTINUE

C CONTRIBUTION FROM THE JOISTS.

JK = LHB*(IJ + 9) + 1
GStif(Iko,JK) = GStif(Iko,JK) + (EJT(IE)*RIY*FAC4)
JK = LHB*(IJ + 10) + 1
GStif(Iko,JK) = GStif(Iko,JK) + (EJT(IE)*AJT*FAC2)
JK = LHB*(IJ + 11) + 1
GStif(Iko,JK) = GStif(Iko,JK) + (EJT(IE)*RIZ*FAC4)
JK = LHB*(IJ + 12) + 1
GStif(Iko,JK) = GStif(Iko,JK) + (GJT(IE)*RIT*FAC2/(
1
(SPT*l)**2))
IF (IE LE. NST) THEN
 CALL STIF12(IE,IN,IK)
 IJ=(IE-1)*19+13
 DO 45 J=1,12
 DO 45 K=1, J
 JK=LHB*(IJ+K-1)+J-K+1
 GStif(Iko,JK) = GStif(Iko,JK) + EK12(J,K)
45 CONTINUE
END IF
50 CONTINUE
55 CONTINUE
60 CONTINUE
RETURN
END

C ***
C THIS SUBROUTINE GENERATES THE STIFFNESS MATRICES OF THE JOINT C
C ELEMENT BETWEEN THE T-BEAM STRIP.
C ***

SUBROUTINE STIF12(IE,IN,IK)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MBE = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLT = 12, MBF = 20, MFF = 20)
PARAMETER (MSP = 9, MFO = 6, MNF = 378)
COMMON /B00/ F1, P12, F14, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PKX, PKY, PKV, PKG,
1 PDX, PDY, PDV, PDG
COMMON /B13/ GSTIP(MFT,MSZ), ASTIP(MFO, MOZ),
1 XP(MFT,MEQ), YP(MFT,MEQ), RPP(MFT,MEQ), SVEC(MFT,MEQ),
3 SVEC1(MFT,MEQ), SVEC2(MFT,MEQ), XFX(MFT,MEQ), BK(8,8)
COMMON /B14/ XK(8,8), YK(8,8), ZK(8,8),
1 BX1(1,8), BX2(1,8), BY1(1,8), BY2(1,8),
2 BX1(1,8), BX2(1,8), BX1T(8,1), BX2T(8,1), BY1T(8,1),
3 BY2T(8,1), BX1T(8,1), BX2T(8,1), SXK(8,8),
4 SYK(8,8), SZK(8,8), EK12(12,12)
COMMON /B15/ EX(MSP), EY(MSP), EZ(MSP), NAN, NP, MNL
COMMON /B17/ ICH(MSP, MNF), ICH1(MSP, MNF), SL(12),
1 DDX, DDX, PX, PZ, T0, LL, NNA

M=IK
N=IN

C ***
D0 20 J=1,8
BX1(J,1)=0.0
BX2(J,1)=0.0
BY1(J,1)=0.0
BY2(J,1)=0.0
EZ1(J)=0.0
EZ2(J)=0.0
BX1T(J,1)=0.0
BX2T(J,1)=0.0
BY1T(J,1)=0.0
BY2T(J,1)=0.0
BE1(J,1)=0.0
BE2T(J,1)=0.0
20 CONTINUE
CALL BX(N,M,JE)
CALL BY(N,M,JE)
CALL BZ(N,M,JE)
D0 60 I=1,8
D0 60 J=1,8
EK(I,J)=SXK(I,J)+SYK(I,J)+SZK(I,J)
60 CONTINUE
CALL EXP
RETURN
END

C ***
C THE CONTRIBUTION OF THE SPRING IN X DTC. CALLED BY STIP12
C ***

SUBROUTINE BX (N,M,JE)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MFT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /1100/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEF, NPT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B06/ XL, SPJT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
 PDX, PDV, PDG
COMMON /B12/ GSTIP(MFT, MSZ), ASTIP(MFO, MFO),
 XP(MFT, MBE), XP2(MFT, MBE), SVEM(MFT, MBE),
 SVBC(MFT, MBE), SVEC(MFT, MBE), SVEC1(MFT, MBE), SVEC2(MFT, MBE),
 XF(MFT, MEQ), FF(MFT, MEQ), RFF(MFT, MEQ), SVEC(MFT, MBE),
 SVEC1(MFT, MEQ), SVECA(MFT, MBE), SVEC2(MFT, MBE),
 SVEC1(MFT, MEQ), SVEC2(MFT, MBE),
 GSTIF(MFT, MSZ), ASTIF(MFO, MFO),
 XF(MFT, MEQ), FF(MFT, MEQ), RFF(MFT, MEQ), SVEC(MFT, MBE),
 SVEC1(MFT, MEQ), SVECA(MFT, MBE), SVEC2(MFT, MBE),
 SVEC1(MFT, MEQ), SVECA1(MFT, MEQ), SVECA2(MFT, MEQ),
 XFX(MFT, MEQ), EK(8, 8)
COMMON /B14/ X(8, 8), Y(8, 8), Z(8, 8),
 BX1(1, 8), BX2(1, 8), BY1(1, 8), BY2(1, 8),
 BYT1(1, 8), BYT2(1, 8), BZ1(1, 8), BZ2(1, 8),
 BX1T(8, 1), BX2T(8, 1), BXIT(8, 1),
 BX1T(8, 1), BX2T(8, 1), BZ1T(8, 1), BZ2T(8, 1),
 SXK(8, 8), SYK(8, 8), SZK(8, 8), EK12(12, 12)
COMMON /B15/ EX(MSP), EY(MSP), EY(MSP), EY(MSP), EY(MSP), EY(MSP), EY(MSP),
 N1, NP, MN1
COMMON /B17/ ICH(MSP, MNP), ICH(MSP, MNP), ICH(MSP, MNP), ICH(MSP, MNP),
 SL(12),
 DX, DX, DX, DX
DO 10 1 = 1, 8
DO 10 1 = 1, 8
10 SXK(J, J) = 0.0
DO 100 1 = 1, NP
DX = XL/(NP - 1)
IF (LEQ1 OR LEQ1, NP) DX = 0.5*XL/(NP - 1)
XI = (1-1)*XL/(NP-1)

BX1(1, 1) = PTK/2.*((M*PI/XL)*DCOS(M*PI*X1/XL)
BX1(1, 2) = DCOS(M*PI*X1/XL)
BX1(1, 2) = PTK/2.*((M*PI/XL)*DCOS(M*PI*X1/XL)
BX1(1, 3) = DCOS(M*PI*X1/XL)

KX1 = (1-1)*6 + 1

C ---
BX1T(1, 1) = PTK/2.*((N*PI/XL)*DCOS(N*PI*X1/XL)*EX(IE)
1 ICH(IE, KX1)
BX1T(1, 2) = DCOS(N*PI*X1/XL)*EX(IE)
1 ICH(IE, KX1)
BX1T(1, 5) = PTK/2.*((N*PI/XL)*DCOS(N*PI*X1/XL)*EX(IE)
1 ICH(IE, KX1)
BX1T(1, 7) = DCOS(N*PI*X1/XL)*EX(IE)
1 ICH(IE, KX1)

BX2(1, 1) = PTK/2.*((M*PI/XL)*DCOS(M*PI*X1/XL)
BX2(1, 3) = DCOS(M*PI*X1/XL)
BX2(1, 5) = PTK/2.*((M*PI/XL)*DCOS(M*PI*X1/XL)
BX2(1, 7) = DCOS(M*PI*X1/XL)

KX2 = (1-1)*6 + 2

C ---
BX2T(1, 1) = PTK/2.*((N*PI/XL)*DCOS(N*PI*X1/XL)*EX(IE)
1 ICH(IE, KX1)
Appendix D. PTB SOURCE CODE AND I/O FILE

BX2T(3,1) = DCOS(N*PI*X1/XL)*EX(IE)
1 "ICH(N,XX2)
BX2T(5,1) = PTK/2.*(N*PI/XL)*DCOS(N*PI*X1/XL)*EX(IE)
1 "ICH(N,XX2)
BX2T(7,1) = DCOS(N*PI*X1/XL)*EX(IE)
1 "ICH(N,XX2)

CALL DGMULT (BX1T,BX1,XK,8,1,8,8,1,8)
DO 20 11=1,8
DO 20 JN=1,8
20 SXK(I1,J)=SXK(I1,3)-I*XK(I1,3)
CALL DGMULT (BX2T,BX2,XK,8,1,8,8,1,8)
DO 30 11=1,8
DO 30 JN=1,8
30 SXK(I1,J)=SXK(I1,J)+XK(I1,J)
100 CONTINUE
RETURN
END

C **
C THE CONTRIBUTION OF THE SPRING IN X DIC. CALLED BY STIF12
C **

SUBROUTINE BY (N,M,IE)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MIT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MP() = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B07/ PTK, PEX, PY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
1 PDX, PDY, PDV, PDG
COMMON /B13/ GSTIF(MFT,MSZ). ASTIF(MFO,MOZ),
1 XP(MFT,MEQ),FP(MFT,MEQ),RFP(MFT,MEQ),SVEC(MFT,MEQ),
3 SVEC1(MFT,MEQ),SVEC2(MFT,MEQ),XPX(MFT,MEQ),EK(8,8)
COMMON /B14/ XK(8,8),YK(8,8),ZK(8,8),
1 BX1(1,8),BX2(1,8),BY1(1,8),BY2(1,8),
2 BZ1(1,8),BZ2(1,8),BX2T(8,1),BY1T(8,1),
3 BY2T(8,1),BZ1T(8,1),BZ2T(8,1),SXK(8,8),
4 SYK(8,8),ZK(8,8),EK12(12,12)
COMMON /B15/ EX(MSP),EY(MSP),EZ(MSP),NA,NF,MNL
COMMON /B17/ ICH(MSP,MNP),ICH(MSP,MNP),SL(12).
1 DDX,DDZ,FX,FZ,TOLL,NN

DO 10 1=1,8
DO 10 JN=1,8
10 SYK(JN)=0.0
DO 100 I=1,NF
DX=XL/(NF-1)
IF (I.EQ.1 .OR. I.EQ.NP) DX=0.5*XL/(NF-1)
XL=-(I-1)*XL/(NF-1)
Appendix D. PTB SOURCE CODE AND I/O FILE

BY1(1,2)=PT/(2.*SPJT)*DSIN(M*PI*XI/XL)
BY1(1,4)=DSIN(M*PI*XI/XL)
BY1(1,6)=PT/(2.*SPJT)*DSIN(M*PI*XI/XL)
BY1(1,8)=DSIN(M*PI*XI/XL)

KY1 = (I - 1) * 6 + 3
IF(ICH(IE,KY1) .EQ. 1) EKY1 = 1.00*EY(IE)
IF(ICH(IE,KY1) .EQ. -1) EKY1 = 1.00*1.00E+10
IF(ICH(IE,KY1) .EQ. 0) EKY1 = 0.00

C

BY1T(2,1)=PT/(2.*SPJT)*DSIN(N*PI*XI/XL)
BY1T(4,1)=-DSIN(N*PI*XI/XL)
BY1T(6,1)=PT/(2.*SPJT)*DSIN(N*PI*XI/XL)
BY1T(8,1)=DSIN(N*PI*XI/XL)

CALL DGMULT (BY1T,BY1,YK,8,1,8,8,1,8)
DO 20 11=1,8
DC) 20 J=1,8
20 SYK(I1,J)=SYK(I1,J)+YK(I1,J)
CALL DGMULT (BY1T,BY1,YK,8,1,8,8,1,8)
DO 30 11=1,8
DO 30 J=1,8
30 SYK(I1,J)=SYK(I1,J)+YK(I1,J)
100 CONTINUE
RETURN
END

C

C THE CONTRIBUTION OF THE SPRING IN Z DIC. CALLED BY STIP12

C

C

C
SUBROUTINE BZ (N,M,IE)

IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MP0 = 0, MNF = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B07/ PTK, PEX, PBY, PFX, PXY, PKX, PKY, PKV, PKG,
1 PDY, PDV, PDG
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MP0,MOZ),
1 XP(MFT,MEQ), RFF(MFT, MEQ), SVEC(MFT, MEQ),
3 SVEC(MFT, MEQ), SVEC2(MFT, MEQ), XFX(MFT, MEQ), EK(8,8)
COMMON /B14/ XK(8,8), YK(8,8), ZK(8,8),
1 BX1T(8,1), BX2T(8,1), BY1T(8,1), BY2T(8,1),
3 BZ1T(8,1), BZ2T(8,1), HZ1T(8,1), HZ2T(8,1),
4 SXK(8,8), SYK(8,8), SZK(8,8), EK12(12,12)
COMMON /B15/ EX(MSP), EY(MSP), EZ(MSP), NAM, NP, MNF
COMMON /B17/ ICH(MSP, MNF), ICH(MSP, MNF), SL(12)
1 DDX, DDX, FX, FY, TOLL, NNA

DO 10 I=1,N
DO 10 J=1,8
10 SZK(I,J)=0.0
DO 100 I=1,NP
DX=XL/(NP-1)
IF (I.EQ.1 .OR. I.EQ.NP) DX=0.5*XL/(NP-1)
XI=(I-1)*XL/(NP-1)

BZ1(1,1)=DSIN(M*PI*XI/XL)
BZ1(1,5)=DSIN(M*PI*XI/XL)
KZ1 = (I -1) * 6 + 5

C ---
DZ1T(1,1)=DSIN(N*PI*XI/XL)*E2(IE)
1 *ICH(IE,KZ1)
DZ1T(1,5)=DSIN(N*PI*XI/XL)*E2(IE)
1 *ICH(IE,KZ1)

CALL DGMULT (DZ1T,BZ1,ZK,8,1,8,1,8,1,8)
DO 20 I=1,8
DO 20 J=1,8
20 SZK(I,J)=SZK(I,J)+ZK(I,J)
100 CONTINUE

C ---
DO 200 I=1,NP
DX=XL/(NP-1)
IF (I.EQ.1 .OR. I.EQ.NP) DX=0.5*XL/(NP-1)
XI=(I-1)*XL/(NP-1)
\begin{verbatim}

BZ2(1,1) = DSIN(M*P*I/XL)
BZ2(1,2) = DSIN(M*P*I/XL)

KZ2 = (I - 1) * 6 + 6

BZ2T(1,1) = DSIN(N*P*I/XL)*E(1)
1 "ICH(E, KZ2)
BZ2T(5,1) = DSIN(N*P*I/XL)*E(1)
1 "ICH(E, KZ2)

CALL DGMULT (BZ2, BZ2, BZ2, 1, 8, 1, 8)
DO 21 I = 1, 8
DO 21 J = 1, 8
21 EZK(I, J) = EZK(I, J) + EZ(I, J)
200 CONTINUE

RETURN
END

C THIS SUBROUTINE EXPANDS EK(8,8) TO EK12(12,12) CALLED BY STIF12

SUBLTINE EXP
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBQ = 20, MFF = 20)
PARAMETER (MFP = 9, MPO = 5, MNP = 378)
COMMON /B13/ GSTIF(MFT, MSZ), ASTIF(MFP, MOZ),
1 XF(MFT, MEQ), FF(MFT, MBQ), I1FF(MFT, MEQ), SVEC(MFT, MEQ),
3 SVEC1(MFT, MEQ), SVEC2(MFT, MEQ), XFX(MFT, MBQ), EK(8,8)
COMMON /B14/ XK(8,8), YK(8,8), ZK(8,8),
1 BX1(1,8), BX2(1,8), BY1(1,8), BY2(1,8),
2 BZ1(1,8), BZ2(1,8), BZ1T(1,8), BZ2T(1,8),
3 BY1T(1,8), BY2T(1,8),
4 SYK(8,8), EZK(8,8), EK12(12,12)
DO 10 I = 1, 12
10 EK12(I, J) = 0.0
DO 20 I = 1, 3
20 EK12(I, J) = EK(I, J)
DO 200 J = 1, 3
200 EK12(5, J) = EK(4, J)
10 DO 30 J = 7, 9
30 EK12(I, J) = EK(I, J)
100 EK12(11, J) = EK(8, J)
100 CONTINUE

DO 100 I = 1, 3
DO 200 J = 1, 3
200 EK12(I, J) = EK(I, J)

END
\end{verbatim}
Appendix D. PTB SOURCE CODE AND I/O FILE

130 EK12(5,5)=EK(4,4)
 DO 140 I=7,9
 J5=1-2
140 EK12(I,5)=EK(15,4)
 DO 300 J=7,9
 J5=1-2
300 CONTINUE
 DO 320 I=1,3
 EK12(I,11)=EK(I,8)
 EK12(5,11)=EK(4,8)
320 CONTINUE
RETURN
END

C TO MULTIPLY A REC. M BY N MATRIX BY ANOTHER RECT. N BY L MATRIX.
C
SUBROUTINE DGMULT(A, B, C, M, N, L, NA, NB, NC)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
REAL*8 A(NA, L), B(NB, L), C(NC, L)
DO 20 J = 1, L
 DO 20 I = 1, M
 C(I,J) = 0.D0
 20 CONTINUE
RETURN
END

C SUBROUTINE LOAD COMPUTES THE GLOBAL LOAD VECTOR.
C
SUBROUTINE LOAD(III,IIII)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, M13C = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B03/ ETA(6), GWT(6)
COMMON /B04/ NM, NSTEP, NPT, NJT, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /B06/ XL, SPJT
COMMON /B09/ X1LD(MLD), X2LD(MLD), Y1LD(MLD), Y2LD(MLD),
 PWLD(MLD), PTLD(MLD), JTLD(MLD), NWLD
COMMON /B10/ XP(MPF), PTF(MPF), NPTF
COMMON /B13/ GSTIF(MFT, MSZ), ASTIF(MFO, MOZ),
 XF(MFT, MEQ), FF(MFT, MEQ), RFF(MFT, MEQ), SVEC(MFT, MEQ),
 SVEC1(MFT, MEQ), SVEC2(MFT, MEQ), XFX(MFT, MEQ), EK(8, 8)
COMMON /B17/ ICH(MSP, MNP), ICH1(MSP, MNP), SL(12),
 DDX, DDFS, FX, FZ, TOLL, NNA
DIMENSION W(19)

DO 20 IK = 1, NM, NSTEP
 IKO = IK
 IF (NSTEP .EQ. 2) IKO = (IK + 1) / 2
 DO 10 I = 1, NEQ
 XF(IKO, I) = 0.0D0
 10 CONTINUE
 20 CONTINUE

C CONTRIBUTION FROM TRANSVERSE LOADING

IF (III .EQ. 2) THEN
 IF (NWLD .EQ. 6) THEN
 DO 70 IL = 1, NWLD
 IE = JTLD(IL)
 11 = (IE - 1) / 19
 DO 60 IK = 1, NM, NSTEP
 IKO = IK
 IF (NSTEP .EQ. 2) IKO = (IK + 1) / 2
 PINL = PI * IK / XL
 DO 30 I = 1, 19
 W(I) = 0.0D0
 30 CONTINUE
 XI = 2.0D0 * X1LD(IL) / SPJT
 X1Y = 2.0D0 * Y2LD(IL) / SPJT
 DO 40 I = 1, 6
 XI = X1X + (X1Y - X1X) * (1.0D0 + ETA(I)) / 2.0D0
 40 CONTINUE
 X12 = XI**2
 X13 = XI**3
 X14 = XI**4
 X15 = XI**5
 W(1) = W(1) + (XI2 * (5.0D0 * XI3 / 4.0D0) - (XI4 / 2.0D0) + (3.0D0 * XI5 / 4.0D0)) * GWT(I)
 W(2) = W(2) + (XI2 - XI3 - XI4 + XI5) * GWT(I) / 8.0D0
 W(9) = W(9) + (XI - (2.0D0 * XI3) + XI5) * GWT(I) / 2.0D0
 W(10) = W(10) + (1.0D0 * (2.0D0 * XI2) + XI4) * GWT(I)
 W(14) = W(14) + (XI2 + (5.0D0 * XI3 / 4.0D0)
 - (XI4 / 2.0D0) (3.0D0 * XI5 / 4.0D0)) * GWT(I)
Appendix D. PTB SOURCE CODE AND I/O FILE

\[
W(15) = W(15) + (X12 - X13 + X14 + X15) \times GWT(I) / 8.0D0
\]

CONTINUE

Y1 = Y1LD(IL)
Y2 = Y2LD(IL)
X1 = X1LD(IL)
X2 = X2LD(IL)
PACC = (1.0D0 / (2.0D0 * PINL)) \times (Y2LD(IL) - Y1LD(IL)) \times \\
(\cos(PINL \times X1LD(IL)) \times \cos(PINL \times X2LD(IL)))

W(1) = W(1) \times PACC
W(2) = W(2) \times PACC
W(9) = W(9) \times PACC
W(10) = W(10) \times PACC
W(14) = W(14) \times PACC
W(15) = W(15) \times PACC
DO 50 I = 1, 19
\[
XF(IKI,IKJ) = XF(IKI,IKJ) + PTF(I) \times V5
\]
CONTINUE
50 CONTINUE
CONTINUE
70 CONTINUE
END IF
END IF
RETURN
END

C CONTRIBUTION FROM POST TENSIONING FORCES

IF (III .EQ. 1) THEN
IF (NPTF .NE. 0) THEN
DO 90 I = 1, NPTF
DO 80 IK = 1, NM, NSTEP
IKI = IK
IF (NSTEP .EQ. 2) IKI = (IK + 1) / 2
PINL = PI \times IKI / XL
V5 = \sin(PINL \times XPTF(I))

IJ = 5
XF(IKI,IKJ) = XF(IKI,IKJ) + PTF(I) \times V5
V18 = \sin(PINL \times XPTF(I))

IJ = (NJT - 1) \times 19 + 18
XF(IKI,IKJ) = XF(IKI,IKJ) - (PTF(I) \times V18)
CONTINUE
80 CONTINUE
90 CONTINUE
END IF
END IF
RETURN
END

C **
C THIS SUBROUTINE CALCULATES THE EQUIVALENT LOADS CONTRIBUTED
C FROM THE NON-LINEAR STRINGS
C **
SUBROUTINE SLOAD(IE,IK)
Appendix D. PTB SOURCE CODE AND I/O FILE

IMPLICIT DOUBLE PRECISION (A - R, 0 - Z)
PARAMETER (MJT = 10, MBQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MPT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, MIT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PKX, PKY, PKV, PKG,
1 PDX, PDY, PDV, PDG
COMMON /B13/ GSTIP(MFT,MSZ), ASTIP(MFO,MOZ),
1 XP(MPT,MBQ), XP(MPT,MBQ), XP(MPT,MBQ), XP(MPT,MBQ),
3 SVEC1(MFT,MBQ), SVEC2(MFT,MBQ), XP(MFT,MBQ), RFX
COMMON /B15/ EX(MSP), EY(MSP), EZ(MSP), NAN, NP, MNL
COMMON /B17/ ICH(MSP, MNP), ICH(MSP, MNP), SL(12),
1 DDX, DDX, FX, FZ, TOLL, NNA

DO 10 I = 1, 12
10 SL(I) = 0.0
DO 100 IP = 1, NP
XI = (IP - 1)*XL/(NP - 1)
KX1 = (IP - 1)*6 + 1
KX2 = (IP - 1)*6 + 2
KZ1 = (IP - 1)*6 + 3
KZ2 = (IP - 1)*6 + 4

SL(1) = SL(1)
1 + PTK/2.*(IK*PI/XL)*DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX1)
2 - PTK/2.*(IK*PI/XL)*DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX2)
3 - DSIN(IK*PI*XI/XL)*FX*ICH1(IE,KZ1)
3 - DSIN(IK*PI*XI/XL)*FX*ICH1(IE,KZ2)

SL(3) = SL(3)
1 - DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX1)
2 - DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX2)

SL(7) = SL(7)
1 - PTK/2.*(IK*PI/XL)*DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX1)
2 + PTK/2.*(IK*PI/XL)*DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX2)
3 + DSIN(IK*PI*XI/XL)*FX*ICH1(IE,KZ1)
3 + DSIN(IK*PI*XI/XL)*FX*ICH1(IE,KZ2)

SL(9) = SL(9)
1 + DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX1)
2 + DCOS(IK*PI*XI/XL)*FX*ICH1(IE,KX2)

100 CONTINUE
RETURN
END

C **
C SUBROUTINE GBC APPLIES THE BOUNDARY CONDITIONS TO THE STIFFNESS MATRIX
C GSTIF(IKO,JK) AND LOAD VECTOR XF(IKO,JK).
C
SUBROUTINE GBC (IKO)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B11/ IBC(MBC,2), NBC
COMMON /1313/ GSTIF(MFT,MSZ), ASTIF(MFO,MOZ),
 XF(MFT,MEQ),FF(MFT,MEQ),RFF(MFT,MEQ),
 SVEC(MFT,MEQ),SVEC2(MFT,NEQ),XFX(MFT,MEQ),EK(8,8)
IF (NBC .NE. 0) THEN
 DO 30 I = 1, NBC
 NE = IBC(I,1)
 IDOF = IBC(I,2)
 M = (NE - 1) 19 IDOF
 MM = M - 1
 IF (M .GE. 19) THEN
 DO 10 .1 = .11, MM
 JK = (LHB - 1) * M
 GSTIF(IKO,JK) = 0.0
 10 CONTINUE
 M1 = M + 1
 M8 = M + 18
 IF (M8 .GT. NEQ) M8 = NEQ
 DO 20 J = M1, M8
 JK = (LHB - 1) * (M1 - 1) + J
 GSTIF(IKO,JK) = 0.0
 20 CONTINUE
 JK = (LHB - 1) * (M1 - 1) + M
 GSTIF(IKO,JK) = 1.0
 XF(IKO,M) = 0.0
 ELSE
 DO 30 .1 = .11, M8
 JK = (LHB - 1) * M
 GSTIF(IKO,JK) = 0.0
 30 CONTINUE
 END IF
 END IF
RETURN
END

C SUBROUTINE ABC APPLIES THE BOUNDARY CONDITIONS TO THE STIFFNESS MATRIX
C ASTIF(IKO,JK).
C
SUBROUTINE ABC (IKO,IE)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B04/ NM, NSTEP, NPT, NJT, NST, NEQ, LHB, NSZ, NA1
Appendix D. PTB SOURCE CODE AND I/O FILE

COMMON /B11/ IBC(MBC,2), NBC
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MFO,MOZ),
1 XFP(MPT,MEQ),FFP(MPT,MEQ),BFPP(MPT,MEQ),SVECP(MPT,MEQ),
3 SVECP(MPT,MEQ),SVECP2(MPT,MEQ),XFP(MPT,MEQ),XK(8,8)
COMMON /B14/ XK(8,8),YK(8,8),ZK(8,8),
1 DX1(1,8),DX2(1,8),DY1(1,8),DY2(1,8),
2 BZ1(1,8),BZ2(1,8),BX1T(8,1),BX2T(8,1),BY1T(8,1),
3 BY2T(8,1),BZ1T(8,1),BZ2T(8,1),SXK(8,8),
4 SYK(8,8),SZK(8,8),EK12(12,12)

IF (NBC.NE.0) THEN
DO 20 I = 1, NBC
 NE = IBC(I,1)
 IDOF = IBC(I,2)

C ***

IF (NE.NE.IE) THEN
IF (IDOF.GE.14) THEN
J = IDOF - 13
DO 10 K = 1,12
10 EK12(J,K) = 0.0
K = IDOF - 13
DO 14 J = 1,12
14 EK12(J,K) = 0.0
END IF
END IF

IF (NE.NE.IE + 1) THEN
IF (IDOF.LE.6) THEN
JJ = IDOF + 6
DO 16 KK = 1,12
16 EK12(JJ,KK) = 0.0
KK = IDOF + 6
DO 18 JJ = 1,12
18 EK12(JJ,KK) = 0.0
END IF
END IF

20 CONTINUE
END IF
RETURN
END

C ***
C SUBROUTINE DCOMP DECOMPOSES THE STIFFNESS DIAGONAL SUB-MATRICES
Appendix D. PTB SOURCE CODE AND I/O FILE

C USING THE CHOLESKY METHOD.
C
SUBROUTINE DCOMP (IKO)
IMPLICIT DOUBLE PRECISION (A - H , O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MPT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B04/ NM, NSTEP, NFT , NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MFo,MOZ),
 XF(MFT,MEQ), FF(MFT,MEQ), RFF(MFT,MEQ), SVEC(MFT,MEQ),
 SVEC1(MFT,MEQ), SVEC2(MFT,MEQ), XFX(MFT,MEQ).EK(8,4)

C THE SYSTEM MATRIX GSTIF IS STORED COLUMNWISE.

KB = LHB - 1
TEMP = GSTIF(IKO,1)
TEMP = DSQRT(TEMP)
GSTIF(IKO,1) = TEMP
DO 10 I = 2, LHB
 GSTIF(IKO,I) = GSTIF(IKO,I) / TEMP
10 CONTINUE
DO 60 J = 2, NEQ
 J1 = J - 1
 IJD = LHB * J - KB
 SUM = GSTIF(IKO,J1)
 KO = 1
 IF (J .GT. LHB) KO = J - KB
 DO 20 K = KO, J1
 JK = KB * K + J - KB
 TEMP = GSTIF(IK0,JK)
 SUM = SUM + TEMP ** 2
20 CONTINUE
GSTIF(IKO,J1) = DSQRT(SUM)
DO 50 I = 1, KB
 II = J + I
 KO = 1
 IF (II .GT. LHB) KO = II - KB
 SUM = GSTIF(IKO,J1 + I)
 IF (J .EQ. KB) GO TO 40
 DO 30 K = KO, J1
 JK = KB * K + J - KB
 IK = KB * K + II - KB
 TEMP = GSTIF(IKO,JK)
 SUM = SUM - GSTIF(IKO,JK) * TEMP
30 CONTINUE
GSTIF(IKO,J1 + I) = SUM / GSTIF(IKO,J1)
50 CONTINUE
60 CONTINUE
RETURN
END

C
Appendix D. PTB SOURCE CODE AND I/O FILE

C SUBROUTINE SOLVE SOLVES THE SYSTEM OF EQUATIONS USING THE
C DECOMPOSED MATRIX OBTAINED FROM SUBROUTINE DCOMP.
C

SUBROUTINE SOLVE (IKO)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B13/ GSTIF(MFT, MSZ), ASTIF(MFO, MOZ),
1 XF(MFT, MEQ), FF(MFT, MEQ), RFF(MFT, MEQ), SVEC(MFT, MEQ),
3 SVEC1(MFT, MEQ), SVEC2(MFT, MEQ), XFX(MFT, MEQ), EK(8, 8)
C FORWARD SUBSTITUTION.
KD = LHB - 1
TEMP = GSTIF(IKO, 1)
XF(IKO, 1) = XF(IKO, 1) / TEMP
DO 20 I = 2, NEQ
 II = I - 1
 KO = 1
 IF (I .GT. LHB) KO = I - KB
 SUM = XF(IKO, I)
 II = LHB * 1 - KB
 DO 10 K = KO, II
 IK = KB * K + I - KB
 TEMP = GSTIF(IKO, IK)
 SUM = SUM - (TEMP * XF(IKO, K))
 10 CONTINUE
 XF(IKO, I) = SUM / GSTIF(IKO, II)
20 CONTINUE
C BACKWARD SUBSTITUTION.
Ni = NEQ - 1
LB = LHB * NEQ - KD
TEMP = GSTIF(IKO, LB)
XF(IKO, NEQ) = XF(IKO, NEQ) / TEMP
DO 40 I = 1, Ni
 II = NEQ - I + 1
 NI = NEQ - 1
 KO = NEQ
 IF (I .GT. KB) KO = NI + KB
 SUM = XF(IKO, NI)
 II = LHB * NI - KB
 DO 30 K = II, KO
 IK = KB * NI + K - KB
 TEMP = GSTIF(IKO, IK)
 SUM = SUM - (TEMP * XF(IKO, K))
 30 CONTINUE
 XF(IKO, NI) = SUM / GSTIF(IKO, II)
40 CONTINUE
C ITERATING METHOD IS USED IN THIS SUBROUTINE TO SOLVE
C THE COUPLING EQUATIONS.
C
SUBROUTINE ITERATE
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST.NEQ, LHB, NSZ.NA1
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MFO,MOZ),
XF(MFT,MEQ),FF(MFT,MEQ),RFF(MFT,MEQ),SVEC(MFT,MEQ),
SVEC1(MFT,MEQ).SVEC2(MFT,MEQ),XFX(MFT,MEQ),EK(8,8)
COMMON /B17/ ICH(MSP,MNP),ICH1(MSP,MNP),SL(12),
DDX,DDZ.FX,FZ,TOLL,NNA
DIMENSION X(MEQ),XX(MEQ)
IF (NM .EQ. 1) GO TO 1230
C
1090 NFLAG = 1
DO 1220 IK = 1, NM, NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (IK + 1) / 2
DO 1100 I = 1, NEQ
XX(I) = FF(IKM,I)
DO 1170 IN = 1, NM, NSTEP
IF (IN .EQ. IK) GO TO 1170
INM = IN
IF (NSTEP .EQ. 2) INM = (IN + 1) / 2
IF (IN .GT. IK) GO TO 1110
IKO = (INM 1) * NFT + IKM INM (INM + 1) / 2
GO TO 1120
1110 IKO = (IKM 1)* NFT + INM IKM (IKM + 1) / 2
C
1120 DO 100 IE = 1, NST
IJ1 = (IE - 1) * 19 + 14
IJ2 = (IE - 1) * 19 + 14 + 11
IJ3 = (IE - 1) * 144
DO 80 I = IJ1,IJ2
TEMP = 0.0
CHI = I - (IE - 1) * 19 - 13
DO 60 J = IJ1, IJ2
CHII = J - (IE - 1) * 19 - 13
TEMP = SVEC(INM,J)
CHICHI = IJ + (CHI-1)*12 + CHII
Appendix D. PTB SOURCE CODE AND I/O FILE

60 TEMP = TEMP + ASTIP(IKO,CHICH) * TBMP1

80 XX(I) = XX(I) - TEMP

100 CONTINUE

C **
C THIS SUBROUTINE CHECKS THE DEFORMATIONS OF THE SPRING ELEMENTS
C TO SEE WHICH DEFORMATION EXCEEDS THE LIMITATION.
C **
SUBROUTINE CHECK(LMNLMN)
C
LMNLMN = 1 WRITE = 0 DON'T WRITE
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MPO = 6, MNF = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ,NA1
COMMON /B05/ XL, SPJT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
1 PDX, PDY, PDV, PDG
COMMON /B12/ GSTIF(MFT,MSZ), ASTIF(MPO,MOZ),
1 XP(MFT,MEQ),PP(MFT,MEQ),RFP(MFT,MEQ),SVEC(MFT,MEQ),
3 SVEC1(MFT,MEQ),SVEC2(MFT,MEQ),XFX(MFT,MEQ),ER(9,8)
COMMON /B12/ EX(MSP),EY(MSP),EZ(MSP),NAN,MF,MNL
COMMON /B17/ ICH(MSP,MNP),ICH(MSP,MNP),SL(12),
1 DDX,DDZ,FX,FZ,TOLL,NNA
COMMON /B18/ SIGMAY,WDX1(MSP),WDX2(MSP),
1 WDX1(MSP),WDY1(MSP),WDY2(MSP),WDZ1(MSP),WDZ2(MSP)
DIMENSION S(12)
C
DO 5 IK =1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM =(1.+IK)/2
DO 5 I = 1,NEQ
5 SVEC(IKM,I) = SVEC(IKM,I) + SVEC2(IKM,I)
DO 170 IE = 1,NST
WDX1(IE) = 0.D0
WDX2(IE) = 0.D0
WDY1(IE) = 0.D0
WDY2(IE) = 0.D0
WDZ1(IE) = 0.D0
WDZ2(IE) = 0.D0
DO 130 IK = 1,NM,NSTEP
IKO = IK
IF (NSTEP .EQ. 2) IKO = (IK + 1)/2
DO 20 I =14.19
1 = (IE - 1)*19 +1
IF (DY1 .LE. 0.0 .AND. ICH(IE,KY1) .NE. 0) THEN

IF (ICH(IE,KX1) .EQ. 1) THEN
IF (DADS(DX1) .GE. DDX) THEN
ICH(IE,KX1) = 0
IF (DX1 .GT. 0.0) ICH1(IE,KX1) = 1
IF (DX1 .LT. 0.0) ICH1(IE,KX1) = -1
END IF
END IF
ICH(IE,KY1) = -1
END IF

IF (DY1 .GT. 0.0) THEN
ICH(IE,KX1) = 0
ICH1(IE,KX1) = 0
NNA = NNA + 1
ICH(IE,KY1) = 0
NNA = NNA + 1
END IF

C IN Z - DIRECTION " Z1 "

IF (DY1 .LE. 0.0 .AND. ICH(IE,KY1) .NE. 0) THEN

IF (ICH(IE,KZ1) .EQ. 1) THEN
IF (DABS(DZ1) .GE. DDZ) THEN

ICH(IE,KZ1) = 0
IF(DZ1 .GT. 0.0) ICH1(IE,KZ1) = 1
IF(DZ1 .LT. 0.0) ICH1(IE,KZ1) = -1
NNA = NNA + 1
END IF
END IF
END IF

C IN Z - DIRECTION ** Z2 **

IF (DY1 .LE. 0.0 .AND. ICH(IE,KY1) .NE. 0) THEN
 IF (ICH(IE,KZ2) .EQ. 1) THEN
 IF (DABS(DZ2) .GE. DDZ) THEN
 ICH(IE,KZ2) = 0
 IF(DZ2 .GT. 0.0) ICH1(IE,KZ2) = 1
 IF(DZ2 .LT. 0.0) ICH1(IE,KZ2) = -1
 NNA = NNA + 1
 END IF
 END IF
END IF
IF (DY1 .GT. 0.0) THEN
 ICH(IE,KZ1) = 0
 ICH1(IE,KZ1) = 0
 NNA = NNA + 1
END IF
IF (DY2 .GT. 0.0) THEN
 ICH(IE,KZ2) = 0
 ICH1(IE,KZ2) = 0
 NNA = NNA + 1
END IF

IF (DABS(DX1) .GE. WDX1(IE)) WDX1(IE) = DABS(DX1)
IF (DABS(DX2) .GE. WDX2(IE)) WDX2(IE) = DABS(DX2)
IF (DABS(DZ1) .GE. WDZ1(IE)) WDZ1(IE) = DABS(DZ1)
IF (DABS(DZ2) .GE. WDZ2(IE)) WDZ2(IE) = DABS(DZ2)
IF ((DY1) .LE. WDY1(IE)) WDY1(IE) = (DY1)
IF ((DY2) .LE. WDY2(IE)) WDY2(IE) = (DY2)

150 CONTINUE

170 CONTINUE
DO 200 IK = 1,NM,NSTEP
 IKM = IK
 IF (NSTEP .EQ. 2) IKM = (1+IK)/2
 DO 200 I = 1,NB
 SVEC(IKM,I) = SVEC(IKM,I) - SVEC2(IKM,I)
 RETURN
END
C **
C THIS SUBROUTINE CALCULATES THE IMBALANCE LOAD CAUSED
C BY THE NON LINEAR DEFORMATION OF THE SPRING ELEMENTS
C **

SUBROUTINE IMBALANCE
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
COMMON /B00/ PI, PI2, PI4, TOL
COMMON /B04/ NM, NSTEP, NFT, NJT, NST, NEQ, LHB, NSZ, NA1
COMMON /B05/ XL, SPJT
COMMON /BOG/ EJT(MJT), GJT(MJT), BJT, HJT, AJT, RIY, RIZ, RIT
COMMON /B07/ PTK, PEX, PEY, PG, PVXY, PVYX, PKX, PKY, PKV, PKG,
PDX, PDY, PDV, PDG
COMMON /B11/ IDC(MBC,2), NBC
COMMON /B12/ ESTIF(19,19)
COMMON /B13/ GSTIF(MFT,MSZ), ASTIF(MFO,MOZ),
XP(MFT,MEQ),PP(MFT,MEQ),RPP(MFT,MEQ),SVEC(MFT,MEQ).
SVEC1(MFT,MEQ),SV1(MFT,MEQ),XF(MFT,MEQ),FF(MFT,MEQ),RFF(MFT,MEQ),
SVEC(MFT,MEQ),SV2(MFT,MEQ),XFX(MFT,MEQ),EK(8,8)
COMMON /B14/ XK(8,8),YK(8,8),ZK(8,8),
BX1(1,8),BX2(1,8),BY1(1,8),BY2(1,8),
BX1T(8,1),BX2T(8,1),BY1T(8,1),BY2T(8,1),BZ1(8,1),BZ2(8,1),SXK(8,8),
SYK(8,8),SZK(8,8),EK12(12,12)
COMMON /B15/ EX(MSP),EY(MSP),EZ(MSP),NAN,NP,MNL
COMMON /B17/ ICH(MSP,MNP),ICH1(MSP,MNP),SL(12),
DDX,DDZ,FX,FZ,TOLL,NN
DIMENSION SG(19),SG1(19)
CALL CHECK(0)

DO 5 IK = 1,NM,NSTEP
IKM = IK
IP (NSTEP,NEQ, 2) IKM = (1+IK)/2
DO 5 I = 1,NEQ
5 SVEC(IKM,I) = SVEC(IKM,I) SVEC2(IKM,I)
DO 20 IK = 1,NM,NSTEP
IKM = IK
IP (NSTEP,NEQ, 2) IKM = (IK + 1)/2
DO 5 I = 1,NEQ
10 XF(IKM,IJ) = XF(IKM,IJ-f-I) = SL(I)
DO 300 IK = 1,NM,NSTEP
IKM = IK
IP (NSTEP,NEQ, 2) IKM = (IK + 1)/2
DO 5 I = 1,NEQ
20 XF(IKM,IJ+1) = XF(IKM,IJ+1) - SL(I)

DO 300 IK = 1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) THEN
 IKM = (IK+1)/2
END IF
DO 300 IN = 1,NM,NSTEP
IF (IN .EQ. IK) THEN
 FAC2 = (IK**2) * PI2 / (2.0D0 * XL)
 FAC4 = (IK**4) * PI4 / (2.0D0 * (XL**3))
 DO 200 IE = 1,NJT
 CALL COVCON(IK,IN)
 ESTIF(10,10) = ESTIF(10,10) + (EJT(IE) * RY * FAC4)
 ESTIF(11,11) = ESTIF(11,11) + (EJT(IE) * AJT * FAC2)
 ESTIF(12,12) = ESTIF(12,12) + (EJT(IE) * RIZ * FAC4)
 ESTIF(13,13) = ESTIF(13,13) + (GJT(IE) * RIT * FAC2 / (SPJT**2))
 IL = (IE - 1)*19 + 1
 J = 0
 DO 120 I = 11,12
 J = J+1
 SG(J) = SVEC(IKM,I)
 CALL DGMATV (ESTIF,SG,SG1,19,19,19)
 IL = (IE - 1)*19 + 14
 J = 0
 DO 140 I = 11,12
 J = J+1
 SG(K) = SVEC(IKM,I)
 CALL DGMATV (ESTIF,SG,SG1,12,12,12)
 END IF
DO 200 IE = 1,NJT
IF (IN .NE. IK) THEN
 INM = IN
 IF (NSTEP .EQ. 2) INM = (IN +1)/2
 DO 290 IE = 1,NJT
 CALL COVCON(IK,IN)
 END IF
END IF
IP (IE .LE. NST) THEN
 CALL STIF12(IE,IK,IN)
 K = 0
 IL = (IE - 1)*19 + 14
 J = 0
 DO 160 I = 11,12
 J = J+1
 SG(K) = SVEC(IKM,I)
 CALL DGMATV (EK12,SG,SG1,12,12,12)
 DO 180 I = 11,12
 K = K+1
 SG(K) = SVEC(IKM,I)
 CALL DGMATV (EK12,SG,SG1,12,12,12)
 END IF
 END IF
IF (IE .LE. NST) THEN
 CALL STIF12(IE,IK,IN)
END IF
Appendix D. PTB SOURCE CODE AND I/O FILE

K = 0
I1 = (IE - 1)*19 + 14
I2 = I1 + 11
DO 260 I = I1,I2
K = K+1
260 SG(K) = SVEC(IKM,I)
CALL DGMATV (EK12,SG,SG1,I2,I2,I2)
K = 0
DO 280 I = I1,I2
K = K+1
280 XF(INM,I) = XF(INM,I) - SG1(K)
END IF
END IF
CONTINUE
CONTINUE

C APPLIES THE BOUNDARY CONDITIONS TO THE LOAD VECTOR XF(IKO,M)
IF (NBC.NE.0) THEN
DO 330 I = 1, NBC
NE = IBC(I,1)
IDOF = IBC(I,2)
M = (NE - 1)*19 + IDOF
C
DO 330 IK = 1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (IK+1)/2
XF(IKM,M) = 0.0
330 CONTINUE
END IF
DO 365 IK = 1,NM,NSTEP
IKM = IK
IF (NSTEP .EQ. 2) IKM = (IK+1)/2
DO 365 I = 1,NEQ
365 SVEC(IKM,I) = SVEC(IKM,I) - SVEC2(IKM,I)
RETURN
END

C **
C THIS SUBROUTINE IS TO MULTIPLY A RECTANGULAR M BY N MATRIX BY A VECTOR OF LENGTH N.
C **
SUBROUTINE DGMATV(A, V, W, M, N, NDIMA)
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
REAL*8 A(NDIMA,1), W(1), V(1)
DO 10 I = 1, M
W(I) = 0.0
DO 10 J = 1, N
10 W(I) = W(I) + A(I,J) * V(J)
RETURN
SUBROUTINE RESULT
IMPLICIT DOUBLE PRECISION (A - H, O - Z)
PARAMETER (MJT = 10, MEQ = 190, MSZ = 3610, MOZ = 1296)
PARAMETER (MFT = 4, MLD = 12, MBC = 20, MPF = 20)
PARAMETER (MSP = 9, MFO = 6, MNP = 378)
PARAMETER (TOL = 1.0D-8)
PARAMETER (EB = 0.0986680, EI = 1.0D5, US = 1.0D0, ES = 1.0D5, A)
WRITE(2,*)

C LOOP OVER EACH T-BEAM STRIP

DO 170 IE = 1, NJT
C EVALUATING DEFLECTIONS AND STRESSES IN THE JOISTS.

DO 10 I = 1, 19
WB(I) = 0.0D0
WS(I) = 0.0D0
ST(I) = 0.0D0
10 CONTINUE

DO 90 IK = 1, NM, NSTEP
PIN = PI * IK
PINL = PIN / XL
IKO = IK
IF (NSTEP .EQ. 2) IKO = (IK + 1) / 2
DO 20 I = 1, 19
J = ((IE - 1) * 19) + I
P(I) = SVEC(IKO,J)
20 CONTINUE

FACS = EJT(IE) * ((HJT * F(10) * (PINL**2) / 2.0D0) -
((F(11) * PINL))
FAC1 = CKPAL / (2.0D0 * GJT(IE) * HJT * SFC)
FACW = EJT(IE) * (PINL * HJT)**2 / (12.0D0 * GJT(IE))
FACW = FACW + (CKPAL * (HJT + PTK)) / (4.0D0 * GJT(IE) * HJT * SFC)
FACW = (FACW * F(10)) - (FAC1 * (F(7) - F(11))
FACW = ALPHA * FACW
DO 30 I = 1, 19
XIL = DSIN(1*PIN/20)
WB(I) = WB(I) + (P(10) * XIL)
WS(I) = WS(I) + (FACW * XIL)
ST(I) = ST(I) + (FACS * XIL)
30 CONTINUE

40 CONTINUE
C

\begin{verbatim}

WJB = 0.0D0
WJS = 0.0D0
WJT = 0.0D0
STJ = 0.0D0
DO 50 I = 1, 19
 IF (DABS(WB(I)) .GE. DABS(WJB)) WJB = WB(I)
 IF (DABS(WS(I)) .GE. DABS(WJS)) WJS = WS(I)
 WT = WB(I) + WS(I)
 IF (DABS(WT) .GE. DABS(WJT)) WJT = WT
 IF (DABS(ST(I)) .GE. DABS(STJ)) STJ = ST(I)
 CONTINUE

C EVALUATING DEFLECTIONS AND STRESSES IN THE PLATE COVER.
DO 60 I = 1, 19
 SI1T(I) = 0.0D0
 SI1M(I) = 0.0D0
 SI2B(I) = 0.0D0
 S2T(I) = 0.0D0
 S2M(I) = 0.0D0
 S2B(I) = 0.0D0
 CONTINUE
DO 62 I = 1, 38
 WP(I) = 0.0D0
C
EPC = PEY / (1.0D0 - (PVXY * PVYX))
DO 130 IK = 1, NM, NSTEP
 PIN = PI * IK
 PINL = PIN / XL
 IKO = IK
 IF (NSTEP .EQ. 2) IKO = (IK + 1) / 2
 DO 70 I = 1, 19
 J = ((IE - 1) * 19) + I
 F(I) = SVEC(IKO,J)
 CONTINUE
 HT = PTK / 2.0D0
 FAC1T = (F(6) / SPJT) (PVYX * PINL * F(3)) -
 1
 (0.0) ((-46.0D0 * F(1)) + (14.0D0 * F(14)) +
 2
 (32.0D0 * F(10)) - (12.0D0 * F(2)) -
 3
 (2.0D0 * F(15)) - (16.0D0 * F(9))) /
 4
 (SPJT**2) + (PVXY * (-HT) * F(1) * (PINL**2))
 FAC1M = (F(6) / SPJT) (PVYX * PINL * F(3)) -
 1
 ((0.0) ((-46.0D0 * F(1)) + (14.0D0 * F(14)) +
 2
 (32.0D0 * F(10)) - (12.0D0 * F(2)) -
 3
 (2.0D0 * F(15)) - (16.0D0 * F(9))) /
 4
 (SPJT**2) + (PVXY * (0.0) * F(1) * (PINL**2))
\end{verbatim}
\[\text{CONTINUE} \]

\[(\text{INTL} \cdot (\text{INTL}) + (\text{INTL}) \text{)} \text{)} + (\text{INTL}) \text{)}] = \text{INTL} \text{)} ^{12} \]

\[(\text{INTL} \cdot (\text{INTL}) + (\text{INTL}) \text{)} \text{)} + (\text{INTL}) \text{)}] = \text{INTL} \text{)} ^{13} \]

\[\text{CONTINUE} \]

\[(\text{INTL} \cdot (\text{INTL}) + (\text{INTL}) \text{)} \text{)} + (\text{INTL}) \text{)}] = \text{INTL} \text{)} ^{14} \]

\[\text{CONTINUE} \]

\[(\text{INTL} \cdot (\text{INTL}) + (\text{INTL}) \text{)} \text{)} + (\text{INTL}) \text{)}] = \text{INTL} \text{)} ^{15} \]
Appendix D. PTB SOURCE CODE AND I/O FILE

\[WPC = 0.0 \times 10^0 \]
\[S1 = 0.0 \times 10^0 \]
\[S2 = 0.0 \times 10^0 \]
\[S3 = 0.0 \times 10^0 \]
\[S4 = 0.0 \times 10^0 \]
\[S5 = 0.0 \times 10^0 \]
\[S6 = 0.0 \times 10^0 \]

\[\text{C D) 140 I = 1, 19} \]
\[\text{IF (DABS(S1T(I)) .GT. DABS(S1)) S1 = DABS(S1T(I))} \]
\[\text{IF (DABS(S1M(I)) .GT. DABS(S2)) S2 = DABS(S1M(I))} \]
\[\text{IF (DABS(S1B(I)) .GT. DABS(S3)) S3 = DABS(S1B(I))} \]
\[\text{IF (DABS(S2T(I)) .GT. DABS(S4)) S4 = DABS(S2T(I))} \]
\[\text{IF (DABS(S2M(I)) .GT. DABS(S5)) S5 = DABS(S2M(I))} \]
\[\text{IF (DABS(S2B(I)) .GT. DABS(S6)) S6 = DABS(S2B(I))} \]

\[\text{140 CONTINUE} \]
\[\text{DO 144 I = 1, 38} \]
\[\text{IF (DABS(WP(I)) .GT. DABS(WPC)) WPC = WP(I)} \]
\[\text{C C PRINTING OUT RESULTS.} \]
\[\text{C WRITE (3,155) IE} \]
\[\text{WRITE (3,160) WJB, WJS, WJT, STJ, WPC, S1, S3, S4, S6} \]
\[\text{155 FORMAT (', ** ELEMENT ', I2, ', **')} \]
\[\text{WRITE (3,161) WJT, STJ, WPC} \]
\[\text{160 FORMAT (', MAX. JOIST DEFLECTION (BENDING) = ', E12.5, ,)} \]
\[\text{1 MAX. JOIST DEFLECTION (SHEAR) = ', E12.5, ,)} \]
\[\text{2 MAX. JOIST DEFLECTION (TOTAL) = ', E12.5, ,)} \]
\[\text{3 MAX. JOIST BENDING STRESS = ', E12.5, ,)} \]
\[\text{4 MAX. COVER DEFLECTION = ', E12.5, ,)} \]
\[\text{5 MAX. COVER STRESS (NODE 1 TOP) = ', E12.5, ,)} \]
\[\text{6 MAX. COVER STRESS (NODE 1 BOTTOM) = ', E12.5, ,)} \]
\[\text{7 MAX. COVER STRESS (NODE 2 TOP) = ', E12.5, ,)} \]
\[\text{8 MAX. COVER STRESS (NODE 2 BOTTOM) = ', E12.5, ,)} \]
\[\text{9 MAX. COVER STRESS (NODE 2 BOTTOM) = ', E12.5, ,)} \]
\[\text{C WRITE (3,155) IE} \]
\[\text{WRITE (3,160) WJB, WJS, WJT, STJ, WPC, S1, S3, S4, S6} \]
\[\text{161 FORMAT (', MAX. JOIST DEFLECTION (TOTAL) = ', E12.5, ,)} \]
\[\text{3 MAX. JOIST BENDING STRESS = ', E12.5, ,)} \]
\[\text{4 MAX. COVER DEFLECTION = ', E12.5, ,)} \]
\[\text{C IF (DABS(STJ) .GE. DABS(SJMAX)) SJMAX = STJ} \]
\[\text{IF (DABS(WJT) .GE. DABS(WJMAX)) WJMAX = WJT} \]
\[\text{IF (DABS(WPC) .GE. DABS(WPMAX)) WPMAX = WPC} \]
\[\text{IF (DABS(S1) .GE. DABS(SPMAX)) SPMAX = S1} \]
\[\text{IF (DABS(S2) .GE. DABS(SPMAX)) SPMAX = S2} \]
\[\text{IF (DABS(S4) .GE. DABS(SPMAX)) SPMAX = S4} \]
\[\text{IF (DABS(S6) .GE. DABS(SPMAX)) SPMAX = S6} \]
CONTINUE

C SUMMARY OF THE ANALYSIS.

WRITE (2,140) WJMAX, SJMAX, WPMAX, SPMAX
140 FORMAT (///, IX, 12((''), ' SUMMARY OF FLOOR ANALYSIS ', 11('(').
1 //, ' MAX. JOIST DEFORMATION = ', E12.5, /,
2 ' MAX. JOIST STRESS = ', E12.5, /,
3 ' MAX. COVER DEFORMATION = ', E12.5, /,
4 ' MAX. COVER STRESS BETWEEN JOISTS = ', E12.5)
WRITE (2,90)
90 FORMAT (/1X, 50(''))
RETURN
END
END
Appendix D. PTB SOURCE CODE AND I/O FILE

D.2 PTB.DAT

** PTB ** PTB ** PTB ** PTB **

7 3 1

FOURIER NO. JOIST SYMMETRIC

12000.0 1000.0

100.0 500.0

14000.00 14000.00 14000.00

17.0

100.0 .5 .55

14000.00 14000.00 1000.00 0.02 0.20

PEX, PEX, PEX, SYMMETRY

SC, XIN, CKP, CKET, CKROT

TAOSS, TAOSS

1 2 1

NAN, NT, MNL

16.9E+01 16.9E+01

1.00E+10 1.00E+10

17.4E+01 17.4E+01

4

1 4500.00 5000.00 200.0 500.0 1.00E-01

DX1 = DY1 = DZ0 = 15

1 7000.00 7500.00 200.0 500.0 1.00E-01

DX1 = DY1 = DZ0 = 15

2 4500.00 5000.00 200.0 500.0 1.00E-01

DX1 = DY1 = DZ0 = 15

2 7000.00 7500.00 200.0 500.0 1.00E-01

DX1 = DY1 = DZ0 = 15

10

2.0E5 76.53 10.0 2.0

ES AS DIF RFAC

600.0 1.00E+05

1800.0 1.00E+05

3000.0 1.00E+05

4200.0 1.00E+05

5400.0 1.00E+05

6600.0 1.00E+05

7800.0 1.00E+05

9000.0 1.00E+05

10200.0 1.00E+05

11400.0 1.00E+05

0
FLOOR ANALYSIS PROGRAM

PROBLEM TITLE: "PTB" "PTD" "PTB" "PTB" "PTB"

NUMBER OF FLOOR JOISTS = 3
NUMBER OF FOURIER TERMS USED = 4
MAX. ORDER OF FOURIER TERM = 7

PROPERTIES AND DIMENSIONS OF JOISTS
- **JOIST SPAN** = 0.12000E+05
- **JOIST SPACING** = 0.10000E+04
- **JOIST WIDTH** = 0.10000E+03
- **JOIST DEPTH** = 0.50000E+03
- **JOIST NO. = 1**
 - **EJT** = 0.19000E+05
 - **GJT** = 0.82353E+03
- **JOIST NO. = 2**
 - **EJT** = 0.14000E+05
 - **GJT** = 0.82353E+03
- **JOIST NO. = 3**
 - **EJT** = 0.14000E+05
 - **GJT** = 0.82353E+03

PROPERTIES AND DIMENSIONS OF PLATE COVER
- **COVER THICKNESS** = 0.10000E+03
- **KX** = 0.11714E+10
- **KY** = 0.11714E+09
- **KV** = 0.23427E+08
- **KG** = 0.83333E+08
- **DX** = 0.14056E+07
- **DY** = 0.14056E+06
- **DV** = 0.28112E+05
- **DG** = 0.10000E+06

PROPERTIES FOR CONNECTORS
- **STIFFNESS PARALLEL TO JOIST** = 0.10000E+07
- **STIFFNESS PERPENDICULAR TO JOIST** = 0.10000E+07
- **ROTATIONAL STIFFNESS FLANGE/JOIST** = 0.10000E+07
- **SPACING BETWEEN CONNECTORS** = 0.10000E+02

APPLIED TRANSVERSE LOADING

<table>
<thead>
<tr>
<th>JOINT</th>
<th>X1</th>
<th>X2</th>
<th>Y1</th>
<th>Y2</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45000E+04</td>
<td>0.50000E+04</td>
<td>0.20000E+03</td>
<td>0.50000E+03</td>
<td>0.10000E+00</td>
</tr>
<tr>
<td>1</td>
<td>0.70000E+04</td>
<td>0.75000E+04</td>
<td>0.20000E+03</td>
<td>0.10000E+00</td>
<td>0.10000E+00</td>
</tr>
<tr>
<td>2</td>
<td>0.45000E+04</td>
<td>0.50000E+04</td>
<td>0.20000E+03</td>
<td>0.10000E+00</td>
<td>0.10000E+00</td>
</tr>
<tr>
<td>2</td>
<td>0.70000E+04</td>
<td>0.75000E+04</td>
<td>0.20000E+03</td>
<td>0.50000E+03</td>
<td>0.10000E+00</td>
</tr>
</tbody>
</table>

POST TENSIONING FORCES

<table>
<thead>
<tr>
<th>X-LOC</th>
<th>FORCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60000E+03</td>
<td>0.10000E+06</td>
</tr>
<tr>
<td>0.18000E+04</td>
<td>0.10000E+06</td>
</tr>
<tr>
<td>0.30000E+04</td>
<td>0.10000E+06</td>
</tr>
<tr>
<td>0.42000E+04</td>
<td>0.10000E+06</td>
</tr>
</tbody>
</table>
Appendix D. PTB SOURCE CODE AND I/O FILE

THREE DIMENSIONAL SPRING BETWEEN TWO T-BEAMS

NO. OF BOUNDARY CONDITIONS = 0

STIFF. OF THE SPRING IN X-DIC.
JOINT NO. = 1 EX = 0.86224E+05
JOINT NO. = 2 EX = 0.86224E+05

STIFF. OF THE SPRING IN Y-DIC.
JOINT NO. = 1 EY = 0.10000E+11
JOINT NO. = 2 EY = 0.10000E+11

STIFF. OF THE SPRING IN Z-DIC.
JOINT NO. = 1 EZ = 0.88776E+05
JOINT NO. = 2 EZ = 0.88776E+05

FRICTION COEFFICIENT OF THE COVER (X-DIC.) = 0.50000E+00
FRICTION COEFFICIENT OF THE COVER (Z-DIC.) = 0.65000E+00
STIFFNESS OF THE POSTENSIONING CABLE = 0.20000E+06
THE AREA OF THE POSTENSIONING CABLE = 0.78530E+02
THE DISTANCE BETWEEN THE CABLE TEETH = 0.10000E+02
THE RELAX FACTOR OF THE CABLE = 0.20000E+01
THE TURN NO. REQUIRED = 0.41773E+01

** ELEMENT 1 **
MAX. JOIST DEFORMATION (BENDING) = 0.12558E+02
MAX. JOIST DEFORMATION (SHEAR) = 0.12855E+01
MAX. JOIST DEFORMATION (TOTAL) = 0.13843E+02
MAX. JOIST BENDING STRESS = 0.56304E+01
MAX. COVER DEFORMATION = 0.13665E+02
MAX. COVER STRESS (NODE 1 TOP) = 0.10653E+01
MAX. COVER STRESS (NODE 1 BOTTOM) = 0.99706E+00
MAX. COVER STRESS (NODE 2 TOP) = 0.96243E+00
MAX. COVER STRESS (NODE 2 BOTTOM) = 0.87784E+00

** ELEMENT 2 **
MAX. JOIST DEFORMATION (BENDING) = 0.13133E+02
MAX. JOIST DEFORMATION (SHEAR) = 0.15197E+01
MAX. JOIST DEFORMATION (TOTAL) = 0.14652E+02
MAX. JOIST BENDING STRESS = 0.64713E+01
MAX. COVER DEFORMATION = 0.13666E+02
MAX. COVER STRESS (NODE 1 TOP) = 0.17037E+01
MAX. COVER STRESS (NODE 1 BOTTOM) = 0.99706E+00
MAX. COVER STRESS (NODE 2 TOP) = 0.96243E+00
MAX. COVER STRESS (NODE 2 BOTTOM) = 0.87784E+00
ELEMENT 3

MAX. JOIST DEFORMATION (BENDING) = 6.8056E+01
MAX. JOIST DEFORMATION (SHEAR) = 6.4142E+00
MAX. JOIST DEFORMATION (TOTAL) = 6.8874E+01
MAX. JOIST BENDING STRESS = 6.3544E+01
MAX. COVER DEFORMATION = 6.1135E+02
MAX. COVER STRESS (NODE 1 TOP) = 6.1559E+01
MAX. COVER STRESS (NODE 1 BOTTOM) = 6.7712E+00
MAX. COVER STRESS (NODE 2 TOP) = 6.9464E+00
MAX. COVER STRESS (NODE 2 BOTTOM) = 6.9104E+00

*************** SUMMARY OF FLOOR ANALYSIS ***************

MAX. JOIST DEFORMATION = 6.1465E+02
MAX. JOIST STRESS = 6.4713E+01
MAX. COVER DEFORMATION = 6.1366E+02
MAX. COVER STRESS BETWEEN JOISTS = 6.1703E+01
D.4 PTBB.OUT

************************ FLOOR ANALYSIS PROGRAM ************************

PROBLEM TITLE: ** PTB ** PTB ** PTB ** PTB **

NUMBER OF FLOOR JOISTS = 3
NUMBER OF FOURIER TERMS USED = 4
MAX. ORDER OF FOURIER TERM = 7

SUMMARY OUTPUT

WDY is MAX. RELATIVE DISPL. IN Y-DIRECTION
WDZ is MAX. RELATIVE DISPL. IN Z-DIRECTION

POST TENSION FORCE = 6.10000E+06

SIGMAY = 6.83333333333333

<table>
<thead>
<tr>
<th>IE</th>
<th>SIGMAY</th>
<th>WDY1</th>
<th>WDY2</th>
<th>WDZ1</th>
<th>WDZ2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8333E+00</td>
<td>-2473E-05</td>
<td>-2333E-05</td>
<td>0.8878E-02</td>
<td>0.8878E-02</td>
</tr>
<tr>
<td>2</td>
<td>0.8333E+00</td>
<td>-2487E-05</td>
<td>-2222E-05</td>
<td>0.1018E-01</td>
<td>0.1018E-01</td>
</tr>
</tbody>
</table>

** ELEMENT 1 **
MAX. JOIST DEFLECTION (TOTAL) = 0.13843E+02
MAX. JOIST BENDING STRESS = 0.56304E+01
MAX. COVER DEFLECTION = 0.13665E+02

** ELEMENT 2 **
MAX. JOIST DEFLECTION (TOTAL) = 0.14652E+02
MAX. JOIST BENDING STRESS = 0.64713E+01
MAX. COVER DEFLECTION = 0.13660E+02

** ELEMENT 3 **
MAX. JOIST DEFLECTION (TOTAL) = 0.88749E+01
MAX. JOIST BENDING STRESS = 0.35843E+01
MAX. COVER DEFLECTION = 0.11385E+02