
OBJECT-ORIENTED SOFTWARE DEVELOPMENT
IN STRUCTURAL ENGINEERING

by

KEVIN MICHAEL ELBURY

B.A.Sc. (Civil), The University of British Columbia, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Civil Engineering

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
APRIL, 1992

© Kevin Michael Elbury, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of C t v,, Ev6-4

The University of British Columbia
Vancouver, Canada

Date /2k-p_i. L._ 30^1 44 Z.

DE-6 (2/88)

Abstract

The recent emergence of the object-oriented paradigm has created a very powerful

methodology to aid software developers in the creation of complex applications. This technology

is quite common in fields such as computer science and computer engineering but still remains

relatively unexplored in more traditional disciplines such as Civil Engineering. The paradigm

enforces several basic necessities required by complex, modern software applications. These include

management of complexity, data modelling, information hiding, software reusability, and software

evolution.

The purpose of this thesis is to give an overview of the object-oriented paradigm. This

discussion includes a review of the necessary requirements of an object-oriented language. This is

followed by the presentation of a software diagramming notation which can aid in the data modelling

and design of a software system before coding is started. Also presented is a discussion on the

pragmatics of object-oriented development.

A universal structural analysis preprocessor called "Cross Link" is developed by the author to

demonstrate the application of the object paradigm. Cross Link is intended to provide a unified,

easy to use, graphical preprocessing environment that can be used as a front end for any type of

finite element analysis programme or CADD package. This is achieved through the implementation

of a powerful macro programming language which allows users to manipulate the finite element

database in many different ways.

Table of Contents

Abstract^ ii
Table of Contents^ iii
Table of Figures^ iv
Acknowledgements^ vii

1 INTRODUCTION^ 1

2 THE SOFTWARE LIFE CYCLE^ 3
2.1 Structured and Object-Oriented Development^ 4

3 BACKGROUND ON OBJECT -ORIENTED (00) SYSTEMS^8
3.1 Framework of an 00 System^ 8

Encapsulation^ 9
Classification^ 10
Flexible Sharing^ 12
Interpretation^ 14

3.2 The Booch 00 Design Notation^ 15
The Process^ 16
Class Diagrams^ 17
Object Diagrams^ 19

3.3 Pragmatics of Object-Oriented Development^ 21
Generalization and Specialization^ 21
Designing for Reuse^ 23

4 CROSS LINK:
A UNIVERSAL STRUCTURAL ANALYSIS PREPROCESSOR^26

4.1 Requirements^ 27
Overview^ 27
Preprocessor Requirements^ 29

4.2 Application Framework^ 30
The Zinc Interface Library^ 30

4.3 Implementation^ 35
The Structure Framework^ 36
Controllers^ 38
The Macro Language^ 40
Interfacing the Macro Language with other Applications^43

4.4 A Sample Session in Cross Link^ 44
Exporting a Structure to the ANSYS Finite Element Programme^53

4.5 Extending Cross Link^ 58
Recognition of the Physical and Finite Element Models^ 58
Extending the Macro Language^ 62

5 CONCLUSIONS^ 64

6 REFERENCES^ 65

APPENDIX A
CROSS LINK MACRO LANGUAGE FUNCTION REFERENCE^67

BIOGRAPHICAL INFORMATION

Table of Figures

Figure 1.
Cross Link as a Universal Structural Analysis Preprocessor^ 2
Figure 2.
The Five Phases of the Waterfall Life Cycle^ 3
Figure 3.
Top-Down or Structured Software Development^ 5
Figure 4.
The Three Concepts of Object -Oriented Programming^ 6
Figure 5.
The Multidimensional View of an Object Oriented System^ 8
Figure 6.
Classification using Classes and Inheritance^ 11
Figure 7.
Polymorphism and the Class Hierarchy^ 13
Figure 8.
The Object Design Model for the Booch Notation^ 16
Figure 9.
The Class Category Icon^ 18
Figure 10.
The Class Icon^ 18
Figure 11.
The Class Relationship Icon^ 18
Figure 12.
The Class Template^ 19
Figure 13.
The Operation Template^ 19
Figure 14.
The Object Icon^ 20
Figure 15.
The Object Relationship Icons^ 20
Figure 16.
The Object Visibility Symbols^ 20
Figure 17.
The Object Template^ 21
Figure 18.
The Object Message Template^ 21
Figure 19.
A Class Hierarchy for an Editor Class^ 22
Figure 20.
Revised Editor Class to Enhance Code Reusability^ 23
Figure 21.
Reusability Using Subclassing or Construction.^ 24
Figure 22.^ 28
Sample Objects Supported by the Preprocessor

- iv -

Figure 23.
The Stages of Structural Analysis and Design^ 29
Figure 24.
The UI LIST and UI ELEMENT Generic Classes^ 31
Figure 25.
The Zinc Interface Library Class Diagram^ 32
Figure 26.
A Partial ZIL Window Object Hierarchy^ 34
Figure 27.
A Standard Window Created by ZIL^ 34
Figure 28.
The Cross Link User Interface^ 35
Figure 29.
The Cross Link Application and Utilities^ 36
Figure 30.
The Structure Window and Structure Object Framework^ 37
Figure 31.
Cross Link Object Diagram^ 37
Figure 32.
Cross Link Node Controller Object Diagram^ 38
Figure 33.
Layout of the BOB Macro Language Compiler and Interpreter^ 40
Figure 34.
Example Tokens Returned Generated by the Lexical Scanner^ 41
Figure 35.
Example Bytecodes produced by the Bytecode Compiler^ 41
Figure 36.
Macro to Add Two Numbers^ 42
Figure 37.
Resulting Bytecodes from Figure 36^ 42
Figure 38.
Internal Function for the BOB Sin() Library Function^ 44
Figure 39.
The Example Frame to be Modelled using Cross Link^ 45
Figure 40.
The Cross Link Editing Environment^ 46
Figure 41.
Setting the Structure Limits^ 47
Figure 42.
Setting the Structure Display Options^ 48
Figure 43.
Placement of the Column Node Points^ 49
Figure 44.
Generation of Nodes and Elements for Top and Bottom Chords^50
Figure 45.
Final Placement of Nodes and Elements^ 51

- v -

Figure 46.
Placing Node Boundary Conditions^ 52
Figure 47.
Setting Element Fixity^ 53
Figure 48.
Running a BOB Macro^ 56
Figure 49.
Resulting ANSYS Frame Data File^ 57
Figure 50.
Example Frame Exported to the ANSYS Programme^ 58
Figure 51.
The Physical and Finite Element Structural Models^ 59
Figure 52.
Alternate Implementation of Element Container^ 60
Figure 53.
Extending the Assembly Class for Design^ 61

Acknowledgements

I would like to take this opportunity to thank the many people who have helped me in

completing this thesis under the Professional Partnership Programme. I extend my gratitude to Mr.

Bill Kendrick, P.Eng., Chief Engineer at Canron Inc., and Mr. Dave Halliday, P.Eng., Special

Projects Manager at Coast Steel Fabricators Ltd. I also thank Mr. David Lo, P.Eng., for his

contribution to this thesis, Mr Manfred Frank, P.Eng., and Mr. Phil Sullivan, P.Eng., for their

practical perspectives on the steel fabrication business. Finally, I thank Dr. Siegfried F. Stiemer and

Dr. Helmut P. Prion, my graduate advisors, for the valuable support and guidance they provided

for me.

Kevin M. Elbury

1 INTRODUCTION

Software development often involves the process of mapping or decomposing a complex

problem space into modules that are ordered and simplified. The success of this mapping is often

determined by the methodology used to analyze and design the "building blocks" that will solve the

problem. Recent advances in development tools that support the object-oriented paradigm are now

giving the software developers the ability to create complex software applications that excel over

traditional techniques in modelling a problem space. As engineers, we naturally deal with complexity

through the classification and decomposition of concepts into hierarchial or tree-like formations.

The object-oriented development process follows in a manner very similar to this so it may be argued

that the paradigm is well suited as a development tool for complex engineering applications.

Early observations also indicate that object-oriented software is far more economical to

produce than software developed using traditional procedural approaches such as Structured

Design. This is mostly due to the large amount of code that can be reused both inside and across

applications. Object-oriented software also tends to be much more adaptable and easier to maintain

as programme requirements change because of features such as encapsulation, inheritance and

information hiding. The purpose of this thesis is, firstly, to provide an overview of object-oriented

principles in a language independent manner and secondly, to explain the object-oriented

development of structural engineering software application.

The second chapter of this thesis introduces the software life cycle, a process oriented

procedure which most software follows as it is developed. Two different development paradigms

are presented: Structured Development and Object-Oriented Development. Different types of

knowledge representation are presented and compared with the two paradigms and it is concluded

that the structured paradigm follows an algorithmic approach which places the data being modelled

secondary to the procedure. Conversely, the object-oriented paradigm follows a more data-centered

approach whereby entities are recognized as objects that have both state and behavior.

The third chapter outlines the four principles an object-oriented language must support in

order to be classified as "object-oriented". These include encapsulation, classification, flexible

sharing and interpretation. Also presented is an brief overview of the Booch Design Notation which

-1-

is a diagramming technique developed to aid designers in the creation of software design

specifications. Finally, some practical considerations in object-oriented development are discussed,

including classification and designing for reusability.

AutoCAD
(DXF)

User
Defined

ANSYSPlane 2.0

Figure 1.
Cross Link as a Universal Structural Analysis Preprocessor

The fourth and final chapter looks at the design and implementation of Cross Link, a universal

structural analysis preprocessor. Developed using object-oriented techniques, the application allows

structural analysts to generate finite element models for any type of analysis programme, design

utility or CADD (Computer Aided Drafting and Design) application using an easy to use, integrated

environment (Figure 1). The preprocessor supports two editing modes. The first, an interactive

drawing mode, lets the analyst draw a structure on the display and perform all usual editing operations

such as moving, resizing and setting boundary conditions on nodes and elements. The second editing

mode, driven by a powerful macro programming language, allows users to write macros to manipulate

the structure database in many different ways. For example, macros can be developed to enhance

existing editing features, perform automated mesh generation or design parametric structures (ie.

a truss with variable span and depth etc.). Most importantly though, the macro facility provides a

means for a two way link (import and export) to any type of analysis programme, providing the

analysis programme's file format is known. As an example, two macros (for import and export) are

developed that bridge Cross Link with the ANSYS finite element programme.

-2-

Analysis

Design

Testing
4.166 " Ne./..fedWAVAW.,

Integration

Coding

2 THE SOFTWARE LIFE CYCLE

The process model used in software engineering formalizes the phases of the software life

cycle to make each more visible. The most general process model is that of the Waterfall Life Cycle,

proposed by Royce (1970) (Figure 2). Based on this model, a multitude of specialized paradigms)

have evolved that attempt to provide better models of some of the various aspects of the software

development process. However, the waterfall life cycle model remains the most widely accepted

process model used in software development. The five phases of the cycle include: Analysis, Design,

Coding, Testing and Integration. [18]

Figure 2.
The Five Phases of the Waterfall Life Cycle.

Phase 1: Analysis

The analysis phase establishes the software system services and constraints through

consultation with the users and developers of the system. Generally, the goal is to "build a

vocabulary of the problem domain" 2. This involves identification or invention of tangible

objects, roles, events, interactions and procedures. The result of this process is a "Software

1 Other paradigms include Exploratory Programming, Prototyping and Formal Transformations [18]
2 Booch, Grady. Object-Oriented Design. pg. 141 [3].

-3-

Requirements Document" that must be readable by both users and developers. Popular

analysis techniques include Structured Analysis (SA), Object-Oriented Analysis (00A),

Domain Analysis and Entity-Relationship Modelling [3,6,18].

Phase 2: Design

Using the "Requirements Document", design proceeds with the specification of software

components and associated functionalities. The results of design are usually presented in a

way that allows for easy transformation into a computer code. Several design techniques exist;

correct selection depends on the type of analysis used. The two most common are Structured

Design and Object-Oriented Design.

Phase 3-5: Coding, Testing and Integration

Using the design documents, the problem is coded into the computer using a programming

language suitable to the type of analysis and design performed. Testing of each module in the

system is then performed according to the specifications in the Requirements Document.

This phase is followed by integration whereby all modules and programme units are tested as

a whole, again according to Requirements Document specifications.

2.1 Structured and Object -Oriented Development

This section introduces the two popular software development paradigms, one established

and one emerging. These are the Structured Development and Object-Oriented development

paradigms. Of the different software development paradigms that have evolved over the past 30

years, Structured Development (SD) has come forth as an efficient software development technique.

Dale and Orshalick describe SD as (Figure 3):

'A design methodology that works from an abstract functional description of
a problem (top) to a detailed solution (bottom); a heirarchial approach to
problem solving that divides a problem into functional sub-problems
represented by modules...The design consisting of a hierarchy of separate
modules with lower level modules containing greater detail than higher level
modules."3

However, within the past 15 years, progression of the Object-Oriented (00) development

paradigm has progressed to the point that it can now be called a formal software development

3 Dale, Nell. and Orshalick, David. Introduction to PASCAL and Structured Design, p. A50 [7].

-4-

TOP ABSTRACT

Level 2

"f

BOTTOM
•

PARTICULAR

Figure 3.
Structured or Top-Down Software Development.

technique. Being a formal technique, every phase in the development life cycle fully supports the

paradigm. The 00 model views a system as an assembly of objects, each capable of enveloping its

own state and behavior. Objects use messages to communicate with other objects. Classes provide

a template that describes the behavior of an object and the inheritance mechanism allows a class to

be specialized from existing classes (Figure 4). Fundamentally, the 00 paradigm addresses the issues

of code reusability, information hiding and software evolution.

Structured and Object-Oriented development have evolved essentially from the differing

processes humans use to classify knowledge. Loy breaks this classification into two categories:

structural representation and functional representation [11]. The structural paradigm organizes

knowledge into entities that have both state and services with the services having secondary

importance over the state (the Object Oriented paradigm). The functional paradigm, on the other

hand, represents knowledge as an algorithm or procedure. Conversely, functional knowledge places

the procedure primary and the data secondary (the Structured paradigm). Recognition of these

differing representations of knowledge has lead to hybrid analysis and design techniques that bring

together the advantages of the structural and functional approaches [8].

- 5 -

• - . . • ' - • '

. • • ..

CIRCLE .;
-^•^- •

CIRCLE :-.(--00 SQUARE
- • • . • •

Shape

Circle Rectangle

Fil ed
Circle

Filled
Rectangle

I

Object^ Messages

Classes

Figure 4.
The Three Concepts of Object-Oriented Programming.

It is interesting to note the process in which software development occurs using either of the

two paradigms. The Structured Development approach is to "divide and conquer". High level or

abstract properties of the system are identified and broken down into lower level components.

Programme coding then begins with implementation of the low level components, eventually ending

in coding at a high level. In this way, analysis and design usually occur top-down and implementation,

bottom-up. Thus, any changes made in analysis and design are much more difficult to implement at

the coding stage.

In object-oriented development, the goal is to identify the major objects or entities in the

system. From these, one abstracts as many properties as possible common to all objects. These form

the abstract classes which are the foundation of the system. Programme coding then begins with

implementation of the abstract classes. The more specialized classes are then implemented using

the inheritance mechanism which allows the behavior encapsulated in the parent class(es) to be

shared with derived classes. Thus in the object-oriented paradigm, development occurs in the same

-6-

order in which the classes are abstracted. This makes the process of analysis, design and coding much

more synchronized than that of Structured Development. In this way, it becomes much easier to

return to any phase in the process life cycle and make modifications as more is learnt about the

system.

Object
Acive Object

Classes
Prototypes

Static Binding
Dynamic Binding
Static Typing
Static Binding

:luta .

Polymorphism
Subciassing
Overloading
Prototyping

3 BACKGROUND ON OBJECT-ORIENTED (00) SYSTEMS

3.1 Framework of an 00 System

The framework of an object-oriented (00) system is built around a multidimensional view

of the object paradigm. These dimensions are viewed as the fundamental principles of object

orientation that provide the basic building blocks for dealing with complexity in software systems.

The principles allow most of the object-oriented developments to date to be classified in a coherent

and unified manner, thus allowing for objective evaluation of the many different techniques

available. The features found in any given 00 language can be classified into the following principles

of object orientation:

• Encapsulation

• Classification

• Flexible Sharing

• Interpretation [2]

Figure 5.
The multidimensional model of an object-oriented system. Within each dimension there exists
several different solution techniques.

-8-

Shown in Figure 5 is the generalized framework (principles) of an 00 system. Each principle

lists a series of different techniques that have been used in various languages to apply the principle.

Thus, by looking at a particular technique, the framework enables a connection to be made between

it and its associated principle. Following is a brief discussion of the principles of 00 systems along

with some of the more common associated techniques 4 .

Encapsulation

Encapsulation (also referred to as information hiding) provides a method of grouping together

the various properties5 associated with an identifiable entity in the system into one logical unit (an

object). Access to the object is provided via its interface, which defines the protocol users of the

object use to communicate (ie. the object's external view). On the other hand, the implementation

of an object is the set of properties that only the object itself knows about (ie. the internal view).

Snyder describes encapsulation as:

"...a technique for minimizing interdependencies among separately written
modules by defining strict external interfaces. The external interface of a
module serves as the contract between module and clients. If clients depend
only on the external interface, the module can be re-implemented without
affecting any clients, as long as the implementation supports the same external
interface." [17]

Object-Oriented languages achieve encapsulation via two techniques: passive objects and

active objects.

Passive and Active Objects

In class based languages, passive objects signify the importance of structural organization

of objects. In general, passive objects represent state; this state can only be changed when

instructed by other objects.

In contrast to class based languages, actor languages are mainly concerned not with the

structural organization of objects, but with the "communication structure of interacting

4 It is important to note that most object-oriented languages support any or all of the following principles.
This leads to a popular question demanded of many so-called object-oriented languages: Is it really
object-oriented?

5 The term property collectively represents the both the state (ie. Member variables) and operations (ie.
Member functions) associated with an object.

-9-

processes"6. This is achieved via active objects. Active objects differ from passive objects in that

they encompass their own thread of control. While passive objects can only undergo changes in

state when explicitly acted upon, active objects can show behavior without being operated on

by another object. Active objects are of direct importance in concurrent or multi-tasking

computer systems and will likely become more significant as more computers gain multi-tasking

capability.

Classification

Classification is a higher level approach to encapsulation. Instead of grouping together

properties of an entity into an object, classification works to group together objects with common

properties. Given that various combinations of classification can be formed in a given system, one

must determine exactly how to classify them. Should objects be classified according to particular

attributes (ie. Color, shape) or according to the operations performed by objects (ie. Read, write)?

Some common methods of classification are discussed below.

Classes

A class is a template from which objects can be created. It is based on the grouping together

of state descriptors and methods for the object. The inheritance mechanism allows one class to

acquire, modify or extend the behavior of another class. The result of inheritance is a class

hierarchy which is useful for capturing redundant behavior in a particular group of classes (Figure

6).

Class relationships are usually expressed using any one of three basic principles:

generalization, aggregation or association 7. Generalization denotes the "kind of relationship

amongst classes. For example, a highrise is a kind of building. Secondly, aggregation usually

denotes the "part of relationship amongst classes. Here, a storey is not considered a kind of
building but a part of a highrise. Thirdly, association expresses some type of connotative

connection amongst otherwise unrelated classes. As an example, an earthquake may govern the

design of a highrise building but in no way can it be considered dependent class of building.

6 Blair, Gordon et. AL, Object Oriented Languages, Systems and Applications, p.62 [2].
7 Booch, Grady. Object Oriented Design. p.96 [3]

- 10 -

Rectangle

A

Circle

FilledCircle

A I FilledRectangle

•

Orty1.7
lhgt

wid

•(x ,v) Point

Figure 6.

Classification using classes and inheritance. Inheritance allows classes to evolve from simple to
advanced.

Some consider class based systems to be the most restricted form of classification because
construction of a given class hierarchy is sometimes difficult due to the many different (and

correct) combinations that may be possible [2]. Despite this, class based systems (ie. C++,

Smalltalk, CLOS) are currently most popular in object-oriented computing. Moreover, this style

of object orientation solves some of the more pragmatic problems of software development,

mainly in the areas of code reusability and program evolution.

Prototypes

Alongside classes, prototypes provide a second form of classification. A prototype

represents the "default behavior for a concept, and new objects can re-use part of the knowledge
stored in the prototype by saying how the new object differs from the prototype" [14]. Objects
in a prototypical system use the mechanism of delegation to send messages to prototypes that
represent general knowledge (in general, any object can serve as a prototype). Similar to class

based systems, prototypes also support behavior sharing but in a fundamentally different manner.

Objects that share knowledge with a prototype are constructed using an extension object

which contains a list of prototypes which can be shared and a personal definition of the object

that gives it a unique identity. When an extension object receives a message, it first attempts to

respond to the message using its personal part. If this is unsuccessful, it then forwards (delegates)

the message to its prototypes.

Flexible Sharing

00 systems generally distinguish between two types of techniques, the first being those which

support classification and the second being those which support flexible behavior sharing. The

techniques discussed in this section enhance behavior sharing and evolution in an 00 system.

Polymorphism

Polymorphism is one of the most characteristic features of an object-oriented system. It

is defined as "the ability of behavior to have an interpretation over more than one class" 8 .

Polymorphism represents a shift towards the modelling of common behaviorisms amongst a

group of objects. For example, in the class hierarchy shown in Figure 7, every class exhibits a

Draw() and Erase() function. Users of any one of these classes can generically send a Draw()
or Erase() message to the object and be guaranteed that the it will behave appropriately. If a

Draw() message were sent to an instance of class FilledCircle, the Draw() function defined for

filled circle may fill the circle and then call the Draw() function for the Circle class to draw the

circle's outline.

8 Blair, Gordon. et al. Object Oriented Languages, Systems and Applications, pp. 35,116. [2]

- 12 -

Point

Draw()
Erase()
Print()

Draw()
Erase()

Circle

Draw()
Erase()

A dRectangle

FilledRectangle

Draw()
Erase()

Figure 7.
A class hierarchy for the representation of some geometric shapes. Sending the Draw() message
to an instance of any of these classes will elicit a uniform response.

Subclassing (Inheritance)

Subclassing or inheritance incorporates the behavior of one class into another. The new

class is called the subclass of the parent or superclass. Through the process of subclassing, a

specialization of a class is created that allows existing code to be easily re-used, modified and

extended.

A subclass may be specialized in several ways: extension, re-definition, or restriction [2].

Using extension a new method is added to the subclass. By using re-definition as a specialization

technique, the subclass maintains the same interface as the parent class but some part of the

implementation may be re-coded. Restrictive specialization allows the subclass to inherit only

a subset of the methods of the parent class.

Draw()
Erase()

Circle

Overloading

Overloading permits methods in a class hierarchy to use the same name but to overload

the meaning. Overloading is actually another form of polymorphism. In the example shown in

Figure 7, the Draw() message is an example of an overloaded method (meaning it has a different

implementation depending on where it is in the hierarchy).

Interpretation

The principle of interpretation determines exactly how the techniques of flexible sharing are

be implemented, specifically at the point where a program is compiled or interpreted into machine

language. The issues of interpretation generally involve the concepts of type checking and binding.

When a compiler performs type checking, it determines whether operations are supported by a

particular object or type and whether type inconsistencies will result (ie. can a string be added to

an integer?). When a compiler performs binding, it tries to locate the correct implementation of a

method (which may lie within another superclass). The issue is when to perform typing and binding:

compile time (a static process) or run-time (a dynamic process).

Binding: Static or Dynamic?

As a direct consequence of inheritance, classes no longer contain all information about

the class in a central location because of the line of superclasses that may exist before it. Thus,

binding ensures that the correct method is attached to an object. Binding may be achieved either

statically or dynamically.

In static or early binding, methods are bound to objects at compile time. This type of

binding relies on the compiler to build a table of class-method relationships and embed calls to

methods directly into the code. Static binding has the advantage of no runtime overhead to find

the correct method to attach to the object. An additional advantage is that failed bindings (ie.

a method that may not exist) are caught at compile time and not at runtime.

Conversely, dynamic or late binding allows methods to be attached to objects at run-time.

This offers the advantage of increased flexibility but the disadvantage of possible failed bindings

(ie. a method does not exist) at runtime. Dynamic binding is a requirement if an object-oriented

language is to support polymorphism.

- 14 -

Typing: Static or Dynamic?

In addition to binding, typing determines whether specified operations are supported by

an object and whether type inconsistencies will occur as a result. Like binding, this may be done

at either compile time or runtime.

Static typing offers the advantage of entrapment all type errors before program execution

begins. This is because all variables and expressions are explicitly bound to a type at compile

time. However, this does impose restrictions on the language. Conversely, dynamic typing

ensures correctness of type at runtime. This offers more flexibility for the language but also

creates extra runtime overhead and burden for the programmer because error trapping facilities

must be provided when type inconsistencies do occur (this would never happen in a staticly typed

system).

3.2 The Booch 00 Design Notation

Several object-oriented design notations exist today. Most common are the EVB, HOOD

(Hierarchial Object-Oriented Design) and OOSD (Object-Oriented Structured Design) notations

[2,8]. However, Booch's OOD notation is the most common in North America (HOOD is most

common in Europe). The purpose of any design notation is to decompose a complex system into

smaller subsystems which are more easily approachable. Additionally, a notation should address the

issues of data abstraction, information hiding and responsiveness to change (in the future) [2,3].

This section looks in particular at using the Booch Notation in software design. This design method

is attractive because not only is it language independent but can be easily adapted into a CASE

(Computer Aided Software Engineering) tool (the notation is to clumsy to use by hand) 9.

The Booch notation is based on the Object Model shown in Figure 8 [3]. The Object Model

views a software system from several different perspectives. These perspectives include the logical

view, the physical view, static semantics and dynamic semantics. The logical view looks at how classes

are decomposed and interact with each other while the physical view looks more closely at hardware

issues such as where certain classes are defined and implemented and which processes will be

9 The Rose CASE Tool by Rational Systems fully supports the Booch design notation.

-15-

Dynamic Semantics

Static Semantics

Logical View

Physical View

Booch Notation

Figure 8.
The Object Design Model forms the basis of the Booch Design Notation.

performed by what processor (in a concurrent system). In the Booch Notation, class diagrams and

object diagrams are used to design and present the physical view of the system. Module diagrams

and process diagrams are used to design and present the physical view of the system.

The four diagrams listed so far generally describe static processes that are time independent

(ie. a snapshot of the system at on instance in time). These are representations of the static semantics

of the system. The dynamic semantics of the system describe the time ordering of events (such as

message passing). These semantics are designed and presented using state transition diagrams and

the timing diagrams.

The purpose of this section is to provide a brief overview of some of the diagrams used in the

notation - in particular, class diagrams and object diagrams. The complete specification of the Booch

Design Notation can be found in reference [3].

The Process

The general approach using the Booch Design is a five step method. Blair et. al describe this

development using the following steps 10 :

(1) identify the objects and their attributes

(2) identify the operations required by each object

10 Blair, Gordon et Al., Object-Oriented Languages, Systems and Applications. pp.206-207 [2].

- 16 -

(3) establish the visibility of each object relative to other objects

(4) establish an interface to each object

(5) implement the objects

The first step, the identification of objects and their attributes, is probably the most difficult

stage in the process because of the multitude of different and correct groupings that may exist in a

problem space. Booch suggests identification of key attributes based on the nouns used to describe

the problem space.

Identification of the operations suffered by and required of each object establishes the static

and dynamic semantics of the object. At this stage it is important to look at the operations required

of an object because it enforces decoupling of objects from one another. The third step, to establish

object visibility, determines the static dependencies required amongst objects. In other words, one

determines what objects see and are seen by a given object.

The establishment of the interface to an object determines the protocol for which objects can

communicate amongst themselves. The interface forms the boundary between the internal and

external view (implementation) of an object. The final step involves implementation of the object

whereby a representation of each object or class of objects is chosen.

Class Diagrams

Class diagrams are used to present the class structure (hierarchial information), its

specification, and its relationship with other classes. Class diagrams are built using several different

icons and templates. These include:

• Class Category Icon

• Class Icon

• Class Relationship Icon

• Class Template

• Operation Template

Class Category Icon

Because class diagrams can sometimes get very large, the class category can be used to

organize them into meaningful blocks. The class category is used to represent only the highest

- 17 -

levels of abstraction in the class diagram and thus gives only an overview of the general

architecture of the system (Figure 9). Generally, every component in a class category diagram

is a high level reference to a class diagram or another class category.

name

Figure 9.
The Class Category Icon.

Class Icon

The class icon, shown in Figure 10, represents a class in a class diagram. The class name

is enclosed within the dashed line. The dashed line is used to show that clients of the class operate

on instances of the class (IE. objects) and not the class itself.

• class name
. •

' - . . . - " • . -

Figure 10.
The Class Icon.

ox^x uses interface

7"------"iolA uses implementation

^ io.^Inherits
0 zero^--),.. instantiates
1 one
• zero or more
+ one or more
? zero or one
n n

Figure 11.
Class Relationship Icons and Cardinality.

Class Relationship Icon

The class relationship icon shown in Figure 11, displays the various relationships that may

exist amongst classes. These include the using, inheritance and instantiation relationships. Using

relationships employ a double line with a circle placed by the class that uses the other class. If

the circle is filled, the implementation of the class is being used; if not filled, its interface is being

used. Circles can be placed on both ends of the icon in instances where there is a two way

relationship.

-18-

Two numbers can be placed on the icon to indicate cardinality, the number of objects

affected by the relationship. For example, a container class would have one instance, but many

objects in the container so the cardinality here would be 1 to n. If the cardinality is 1 to 1, is is

not placed on the icon Inheritance relationships are shown using a single solid line with the

arrow always pointing to the parent class (superclass).

Class Templates and Operation Template

The class template provides the detailed documentation of each class in the system (Figure

12). The information presented is generally an amalgamation of all the other class diagrams.

Class templates provide descriptive narrations of the class, inheritance information, class

interface and implementation, and descriptions of operations the class perform. Obviously, the

class template can become very detailed so it may only be used later on in the analysis/design

stage. Additionally, it is not necessary to use all the fields within the template; only the ones

capture the important design decisions. The operation template is a spin-off of the class template.

The operation template is used to specifically describe the operations (member functions)

performed by the class (Figure 13).

Name:
Documentation:
Visibility:
Cardinality:
Hierarchy:
Superclasses:

Metaclass:
Generic Parameters:
Interface/Implementation:

Uses:
Fields:
Operations:

Finite State:
Concurrency:
Space Complexity:
Persistence:

identifier
text
exported/private/imported
0/1/n

class names
class name
list of parameters

list class names
list field
list operations
state transition diagram
sequential/blocking/active
text
persistent/transitory

Name:
Documentation:
Category:
Qualification:
Formal Parameters:
Result:
Preconditions:
Action:
Postconditions:
Exceptions:
Concurrency:

Time complexity:
Space complexity:

identifier
text
text
text
list of declarations
class name
object diagram
object diagram
object diagram
list of exceptions
sequential /guarded / concurrent/
multiple
text
text

Figure 12.^ Figure 13.
The Class Template.^ The Operation Template.

Object Diagrams

Object diagrams are used to explain objects and their relationships in the logical design of the

system. While class diagrams describe the static semantics, object diagrams describe the dynamic

semantics of a design. However, the two are closely related since an object is an instance of a class

- 19 -

and both adhere to the same sets of operations. The difference is "class diagrams document the key

abstraction in the system, and object diagrams highlight the important mechanisms to manipulate

these abstractions"[3]. An object diagram is completed using the following icons and templates:

• Object Icon

• Object Relationship Icon

• Object Template

• Message Template

Object Icon and Object Relationship Icon

The object icon in Figure 14 is similar to the class icon except a solid line is used to draw

the boundary of the object.

Figure 14.
The Object Icon.

list of messages

label

inside system

outside system

Figure 15.
The Object Relationship Icons.

The object relationship icon shows the flow of messages between objects using lines

(Figure 15). A solid line represents a relationship amongst two objects inside the system and a

grey line provides a method to document the relationship between the object and any objects

outside the software application. Figure 16 shows several detailed icons can be placed at the

ends of the object relationship icons to express visibility between objects.

P parameter

shared parameter

field

F
^shared field

Figure 16.
The Object Visibility Symbols.

Object and Message Templates

As with the class template, the object template provides more detailed information about

the object, specifically on the class of the object and its persistence qualities (Figure 17).

Name:^identifier^ Operation:^operation name
Documentation: text^ Documentation:^text
Class:^class name^ Frequency:^aperiodic / periodic
Persistence:^persistent / static / dynamic^Synchronization:^simple / synchronous / balking / timeout

/asynchronous

Figure 17.^ Figure 18.
The Object Template.^ The Object Message Template.

Object message templates document the individual messages an object may send to other

objects (Figure 18). This template is generally only used to document time critical operations.

3.3 Pragmatics of Object-Oriented Development

Like any other development paradigm, object orientation has its own set of problems, mostly

in the area of classification. As already discussed, a large part of the 00 analysis and design process

lies in the area of classification - the discovery and invention of key abstractions and their interactions.

Most inexperienced designers encounter problems in mapping a complex problem space into

something ordered. In class based systems, the class hierarchy is the result of this mapping. However,

in most instances, a wide variety of solutions may exist in the creation of a class hierarchy because

of many different classification criteria.

- 21 -

.^•^• • • •. •^. •^•^• •^• •^.

Field•
(abstract)

StringField^-.

Data validated charact4r
•by character

• IntegerField • •
Data validated characteir
by character

•DateField ••
Data validated character
by character
• •^'

Generalization and Specialization

One of the main objectives in building a class hierarchy is to maximize code reusability. This

is sometimes done by embedding generic behavior into a base class for use by all derived classes.

An example presented by Duntemann [9] shows some of the shortfalls of this philosophy. The

example involves implementation of an abstract class called Field which would enable editing of

different types of values (a string field, a data field, or an integer field). The Field class takes care

of operations that every field requires. This would include painting a title for the field and indicating

the field is active but exclude the actual editing of a value. Derived from Field would be the classes

that perform the actual editing of the value. Operations in the derived class would include moving

the cursor within the field, ensuring that only numbers are only typed into an integer field or deleting

characters from the field. The derived classed may include a StringField, anlntegerField or aDateField

(Figure 19). It is evident, however, that there is a great deal of code duplication (three times),

particularly for processes such as moving the cursor in the field and formatting characters read from

the keyboard.

Figure 19.
A class hierarchy for an editing class to edit strings, integers and dates.

Shown in Figure 20, is an alternate proposal for editing different values. This arrangement is

built on the the premise that a string class can handle all input and when completed, need only be

verified by the child class (DataField or IntegerField). Thus, most of the code used to perform all

editing operations is written only once. The problem with this arrangement is that data validation

is only performed after the user presses the enter key. A user editing an integer value would be

- 22 -

. • • • . • • •^. • • • •

IntegerField
Data validated after
carriage return

••• •
• • . •^. .

DateFleld
Data validated after
carriage return

.^.
•

• • .^. • • • • • . '

permitted to enter an alphabetic character into the field but would only be informed of the error

after pressing the Enter key. In the first arrangement (Figure 19), this scenario would never arise

because the code that reads the keyboard is customized to that particular type of field. This highlights

a problem that will often be encountered in differient situations. That is, there is a trade-off between

code reusability (and therefore programme size) and getting the desired behavior from a class.

. • • • - • • • .. • - • -

StringField^•
• Data validated after^•
• carriage return

•

Figure 20.
Revised implementation to enhance code reusability. All editing is performed in StringField and
validation is performed by the subclasses.

Duntemann refers to this problem as the case of distribution versus extension. In the first

scenario, most of the behavior of the class is distributed throughout many subclasses with little

embedded in the abstract class. In contrast, the second approach builds a fully functional base class

which is then extended to support any required variations.

Designing for Reuse

Object-oriented programming promises to increase programmer productivity through

software reusability through use of the techniques of encapsulation and inheritance. Two different

approaches can be used in designing a system to maximize reusability. These are the subclassing

approach or the construction approach [20]. In order to compare the two concepts, consider the

example of a container class used to hold a list of strings. Assume that a generic container class,

Container, holds generic objects that must be derived from the generic class Object.

- 23 -

. ...•^•^•^•

Container

....- • .• .

.^...^..

.• • • ...• • • • .

Object

...." • . • •
• • ...• - •

Object

. . •

• - • • .^• - - ..^..
Container

•

• -^• - •

StringContainer.

••StringContainer .•

Subclassing Approach Construction Approach

Figure 21.
Reusability using the Subclassing Approach or the Construction Approach.

The Subclassing Approach

The subclassing approach derives StringContainer from Container so that StringContainer,
is given complete access to the interface and implementation of Container. Operations for adding

or removing objects from Container need not be defined in StringContainer since they are already

defined in Container and are be called directly. This is desirable from both reusability and

flexibility points of view. On the other hand, subclassing may not be the best alternative in

situations where the preceding hierarchy is very large. Here, the large number of methods that

are inherited become difficult to manage (since one picks up both interface and implementation).

Additionally, information that was cautiously hidden in the implementation part of the class

suddenly becomes accessible to a derived class (that maybe should not have that access), thus

defeating the whole concept of interface and implementation. The subclassing approach should

only be used in instances where the class to be derived is really a subtype of the parent class.

The Construction Approach

Using the construction approach, the StringContainer is implemented as a derived class

of Object. Included in StringContainer is a field which references (uses) the interface to Container.
Unlike the subclassing approach, StringContainer now requires methods to be declared to

interface with Container (ie. to Add or Remove a string from Container). This approach is

beneficial from a maintainability point of view since it only uses the interface to Container and

is thus more resilient to any future modifications made in Container. However, many times the

interface to the reference class (Container) is insufficient and the designer is forced to use the

subclassing approach simply to gain access to a particular method hidden in the implementation

part of the class. Additionally, the construction approach requires implementation of additional

interface methods to perform operations such as adding and removing strings from the container

(if inheritance were used, these methods are automatically included in the derived classes

interface).

4 CROSS LINK: A UNIVERSAL STRUCTURAL ANALYSIS PREPROCESSOR

In the past, analysts using computer aided structural analysis programmes have had to work

at an unnecessarily low level of detail. A typical analysis session would start with a paper sketch of

the structure to be analyzed. On this sketch, the analyst would identify all node points and elements.

Nodes and elements would be numbered in some particular sequence. From this sketch, the analyst

would proceed to enter the data defining the node points and elements into a data file, its format

dependent on the analysis programme being used. If the structure being analyzed requires the

resources of several different analysis programmes, most times the data would have to be manually

re-entered each time. Additionally, since most design offices now use some form of CADD

(Computer Aided Drafting and Design), analysis data must be re-entered into the CADD

programme for final detailing. Not only is this unproductive, but it also allows for more errors.

Throughout the whole analysis procedure, the analyst often expends unnecessary time and energy

having to remember correct file formats and maintain correct numbering and connectivity sequences

for nodes and elements. Instead of concentrating on the problem at hand, the analyst has to worry

about small details that can easily be taken care of by preprocessing software. Clearly, there is a

need for structural analysis preprocessing software that allows for intuitive, high level model

definition along with a facility that allows the model to be transferred between different analysis

and CADD programmes.

The Cross Link Universal Structural Analysis Preprocessor, provides a graphical editing

environment that allows structural engineers to perform preprocessing without becoming distracted

with small details. Using the mouse, the analyst has the capability of draw a structure on the display

and then use a host of tools to perform editing operations to manipulate the structure. Cumbersome

data file formats or node and element numbering schemes no longer need the attention they have

received in the past. Cross Link also addresses the data transfer issue between alternate analysis

and CADD programmes (and is hence called Universal). This been solved via the use of a unique

macro programming language. Because the macro language has the capability to manipulate the

internal database kept by Cross Link, its uses are limitless:

• Automated parametric structure definition,

• Mesh generation and refinement,

- 26 -

• Enhanced editing capabilities such as alignment and transformation,

• Design modules and,

• Import/Export of data in any format (Binary and ASCII).

The purpose of this chapter is to introduce and discuss some of the software design issues in

Cross Link with particular emphasis on the data modelling aspects. This will be concluded with a

tour through Cross Link including the use of the macro programming language.

4.1 Requirements

Overview

A software application is required to create and edit a graphical model of a structure which

is then used in a numerical analysis programme to analyze deflections and stresses due to loads

applied to the structure. Typically, the graphical model is composed of nodes and elements which

define key locations and components of the structure. Node points are defined by some spatial

coordinates and a code to represent allowable degrees of freedom. Springs may be applied to node

points to model semi-rigid support points and can be applied to the same degrees of freedom as the
node (x, y and rotational for a 2-D problem). Point loads can also be applied to node points in the

same directions as springs. Since springs and loads are not common to every node, they are considered

separate entities to the node.

Elements are used to model load carrying members in the structure. In the specification of

an element, reference is usually made the lower and upper node numbers, a fixity code and the

elements geometric properties (ie. cross sectional area, moment of inertia). An element cannot

have zero length or be composed of two identical node points. Elements may also contain loads in

the form of an offset point load and/or a uniformly distributed load (UDL). The UDL may be

specified with either x,y components or as perpendicular to the element.

Several other types of elements are often used in analysis. One general type is the plate

element, used to model surfaces. These elements are typically composed of a variable number of

nodes (typically 3 to 8) defined by a particular numbering sequence. Although it is not required that

these elements be supported in this specification, it is expected that the application will later be

extended to support them.

- 27 -

(b)

(c)

Figure 22.
(a) Nodes points with loads and springs.
(b) Beam element with UDL and offset point load
(c) Some plate elements

A session inside the editor would consist of describing the geometry of the structure, assigning

preliminary cross sections to the elements, setting node/element boundary conditions and placing

springs and loads on the structure. After saving the structure to a file with a format compatible with

the analysis being performed, an analysis would be completed to calculate deflections and stresses.

The results of the analysis would then be viewed inside a post-processor. At this stage, code

requirement checks would be completed to ensure structural components are correctly designed.

The user then proceeds back to the preprocessor to make the required changes to the structure and

the cycle is repeated again (Figure 23).

Resize members
Refine mesh
Alternate structural
system

Preprocessing
- geometric model
- boundary and loading
conditions

Analysis
- calculate displacements
- calculate stresses

Postprocessing
- code check on stresses
and deflections

Figure 23.
The stages of Structural Analysis and Design.

Preprocessor Requirements

The first objective of the preprocessor is that it be used as tool for taking a structural concept

and rapidly developing a design prototype. Hence its power will be in its inherent ability to quickly

generate a model and perform basic editing such as moving or re-sizing components, changing

boundary conditions or creating loading cases.

The second objective is that the preprocessor provide a generic link with other analysis

programmes. This link must be user defined to allow complete flexibility in communication between

the preprocessor and the desired application. The advantages offered by such a feature are twofold.

Firstly, this will allow analysts to do prototyping in a single environment regardless of the type of

analysis programme being used. Secondly, the information gap between engineer and draftsperson

will likely be bridged due to the preprocessor's ability to import and export data via any CADD

drawing interchange standard (ie. DXF or IGES). The first version of the preprocessor should

provide support for the following structural components:

- 29 -

• Nodes with plane translations and rotations

• 2-D beam elements with fixity control

• Nodal springs and point loads

• Element loads - UDL and offset point loads

Basic tools should be provided to add, delete, re-size and move components within a user

defined coordinate system.

4.2 Application Framework

From the requirements presented in the previous section, we may proceed to discuss some

of the software implementation details. At this stage, let's look at the application framework for the

Cross Link package. The application framework provides a library of highly flexible, pre-written

functions to manage the interface between application and user, thus allowing developers to

concentrate on problems specific to the application. In this case, a commercial software package

called the Zinc Interface Library (ZIL), was selected [21]. This particular library was chosen because

it was the first GUI (Graphical User Interface) based library written using object-oriented

techniques since the introduction of the Borland C+ + compiler. Additionally, the library is

completely portable between DOS and Microsoft Windows.

The Zinc Interface Library

The purpose of the application framework is to provide an easy to use, customizable user

interface to an application. Because ZIL is object-oriented, customization and modification can be

achieved quite easily by simply deriving new classes from the existing framework. ZIL has three

important classes that form the engine of the library. These are the display manager, the event

manager and the window manager. Along with the these, the window class (UIW_WINDOW) and

the window object class (UI_WINDOW_OBJECT) are also important in programme development.

Before the role of each of these classes is explained, the foundation of the ZIL library must be

explained.

Generic Classes

All of the generic classes in ZIL are built around the concept of the container. A containers

is a linked lists which is capable of holding many different types of objects. The only requirement

for an object to be registered in a container is that it must be derived from some common class.

All containers in ZIL are built from the generic base class, UL LIST and objects to be placed

- 30 -

in the container must all be derived from the UI ELEMENT base class. In this configuration,_
the container class maintains pointers to the first and last objects in the list and the

UL ELEMENT objects provide pointers to the next and previous objects in the list (Figure 24).

UI_LIST

UI_ELEMENT's

First

^PI FirstObject
Next,Previous

Last^ I Object^I

I Object^I

LastObject 1

Figure 24.
The UI LIST and UI ELEMENT generic classes._^_

A UI LIST object acts as a manager for a group of objects. Its basic functions include_

insertion and deletion of objects to and from the list. Additionally, the manager can traverse the

list and send messages to each object. All classes within ZIL are derived from either the UL LIST

class or the UL ELEMENT class (Figure 25).

- .^. - •^•

. • • .^• •

U I_D ISPLAY

UI_LIST

• . , • •

Ul_WINDOW-

' • . . " • •

.^. .

UI_WINDOVi •
. MANAGER

. UI DOS TEXT •

. bISPLAY
• . . • • . • •

• •^•
UI^ '

OBJECT
. . •^. . •

• • • . .•

UI_ELEMENT
• .^•

• .^.•^•^•^-

•111_11GI GRAPHICS '
• DISPLAY

• .^•^• •

. . .

.UI_MS WINDOWS '
.^DISPLAY^. •

• • . . •^• . • •

Figure 25.
The Zinc Interface Library Class Diagram.

The Display Manager

The purpose of the display manager (UIDISPLAY) is to encapsulate all display

input/output to provide a consistent application to hardware interface that is easily portable to

other environments 11 . The first role of the display manager is to provide an interface between

the software application and any hardware devices such as printers or video displays. The display

manager also acts as a container for all object regions on the display. Whenever an object (ie.

a window) is added to the window manager (discussed below), the window manager registers

the region with the display manager. The window manager and the display manager then work

11 ZIL is packaged with several display managers that support the following environments: DOS text mode,
DOS graphics mode, and Microsoft Windows. By simply changing the display manager the application
ports seamlessly to other environments.

- 32 -

together to determine the areas of all objects in the region list that should be displayed (for

features such as overlapped windows). They also determine which objects are affected by events

such as mouse clicks.

The Event Manager

The event manager (ULEVENT_MANAGER) is a container class for all devices

(UI DEVICE) attached to the system. UI DEVICE objects (or anything derived from a_^ _

UI DEVICE) usually provide the communication medium between the user and the application_

and are generally responsible for generating events. Example devices include the mouse, the

keyboard, a serial port, or a timer. The purpose of the event manager is to poll all of the devices

that is holds, looking for events such mouse or keyboard actions. When an event is generated,

the event manager informs the window manager of the type of event that occurred. The window

manager then tries to determine which object on the display to dispatch the event to.

The Window Manager

The window manager (UI_WINDOW_MANAGER) is a container class for all window

objects. Window objects include windows (UIW_WINDOW) and any objects (discussed below)

associated with the window (ie. title bar, borders etc.). The window manager class provides the

interface between the event manager and any window objects on the display. In other words,

the window manager receives events from the event manager then dispatches them to the

appropriate window objects.

Windows and Window Objects

The UI_ WINDOW_ OBJECT class is an abstract class from which all useable objects such

as buttons and icons in ZIL are derived from (Figure 26). In ZIL, window objects are either

used to enhance the appearance and behavior of a window or they are used as data fields in a

window. This feature is very elegant because it allows the behavior and appearance of the window

to be dynamically created and easily customized. Additionally, code size is smaller because only

the features that are required are added. Trying to include every window feature provided by

ZIL in one data structure or class would not only result in a very inefficient (speed and size)

window, but would also be very difficult to maintain. With this dynamic system, each window

object is only responsible for itself which results in very easily maintainable objects.

- 33 -

U1W_INTEGER ..

• - • '^' •

UIW_REAL

• •^' • •^•

. ,^• .

1.11W_MAXIMth
.^BUTTON , •
• •^•

. UIW_POP_UP •
• ITEM^•
.......

. UIW_TITLE •^AWILMINIMIZE
. BUTTON^•

•
• • • • • • •

•

.UI_WINDOW_•
OBJECT

•^•^• •^•^' .
.USER DEFINED-
. OBJECTS •
• .^.^. • •

, • • .

UIW_NUMBER.

•., •^. •

UIW_ICON^
UIW_BORDER.

r Til tUIPtatin.133REIPS.01,131111111,..../Irlar.13£.1.1Rn

St.ttirly,

X Grid Spacing: 11400
V Grid Spacing: 11400

X Origin:
V Origin:

10
10

Display Grid

() Vas 0
Points.?

No

^1r
=MI aanca 1 I Halo I

11111/11,43MMAAM,F,J10.0.4.1.1SaftratilStRARRI.IesrASULINIftfirSSSLAXIASL

Figure 26.
A partial ZIL window object class hierarchy.

For example, the window shown in Figure 27 is built from several window objects that

allow the window to exhibit a wide variety of behavior. The system button (top left corner), when

pressed, opens a menu with options to expand the window to full screen or shrink it to an icon,

close it or restore it to its original size. The border object allows the window to be re-sized and

the title object not only displays the window title but allows the window to be moved when

dragged with the mouse.

Figure 27.
A standard window created by ZIL.

- 34 -

The radio buttons (Display Grid Points) show another unique feature of the window class.

The radio button class is also a window class (RADIO CONTROL) which can be placed within

another window (added to it). The RADIO _CONTROL class corresponds to the area around

the two radio buttons (RADIO BUTTON class) and its responsibility is to ensure that when

one button is selected that the other is unselected. The RADIO _ BUTTON objects then receive

messages from the RADIO_CONTROL to display themselves as selected or unselected.

4.3 Implementation

This section briefly describes how the different features of Cross Link have been interfaced

with the Zinc Interface Library using the C+ + programming language. It also discusses the

implementation of the Cross Link Macro Language that enable users to' modify and customize the

operation of Cross Link in many different ways. Detailed internal documentation on Cross Link

can be found in reference [10].

Menu Bar

Ells Edit &lettings hacro pools &la

Structure
Window

.^•^ C^\..sil._ I Mt, •,) C:, ME^Ws 1^ Km^T
(5600.0 : 4200.0)

•
Tools

0

ril
iii
x0
T ,,, •

.^.^.^.^.

qt.4-4P:-.0-ff::* .:', ...^,...^%,:^\ i /^.:.:^...-*:^/ .. • /1"*.t.:.

.^4^.

X

1^ .I
"^• I^ Match Nlndow^ 1 i I t^"

. ^k

Tool Box

Watch Window

Figure 28.
The Cross Link User Interface.

- 35 -

Analysis
Module

Postprocessor :

Spreadsheet :

Application

Cross Link

Utilities

Menu Bar

Tool Box

Macro
Language

Structure

Database

External Utilities

Shown in Figure 28 is the Cross Link user interface. It is composed of four windows: the menu

bar, the tool box, the watch window and the structure window. These features along with other

utilities are also presented in Figure 29. The menu bar provides basic services for Cross Link including

options to read and write the database to file, set drawing parameters such as the coordinate system

limits, grid points and snap points. The menu bar also contains options to execute user macros, run

external applications and obtain help. The tool box contains six icons that let the user select an

appropriate editing mode. The watch window is a utility used by the macro language that allows

macro programmers to write useful macro results to the display. Most importantly, the structure

window, which is the engine of the preprocessor, provides the interface between the user and the

database.

Figure 29.
The Cross Link Application and Utilities

The Structure Framework

Figure 30 shows the class diagram for the structure framework (using the Booch design

notation). The four important classes to recognize in this diagram are the UIW_STRUCTURE

class, the STRUCTURE class, the SO_NODE_CONTROL class and the

SO ELEMENT CONTROL class. Referring to Figure 28, the UIW_STRUCTURE class

corresponds to the structure window and the STRUCTURE class corresponds to the interior border

- 36 -

. -

WI_WINDOW OBJECT. .

. - - . • ' ' - -

- - , . . . _ - -• .
,^ .

, UIW_STRUCTURE .0^(:) STRUCTURE

UIW WINDOW 2
• - . , - - . - '

SO_ NODE CONTROL •

. .^• - - . •

• ••' .

ELEMENT CONTROL' .
.^ ,
- • . . ' - - - -

in the structure window. The structure database, which provides storage facilities for nodes and

elements, is represented by the two node and element controllers. As already mentioned, the

structure window and the structure object provide the interface between all utilities (ie. the menu

bar or the macro language) and the structure database. In other words, utilities never communicate

directly with the database.

' Ul_WINDOW_MANAGER '

Figure 30.
The structure window and structure object framework (using the Booch Notation).

In order to demonstrate how the system works, consider the Booch object diagram shown in

Figure 31. Shown on the diagram are six objects: a menu bar object (aMenuBar), a tool box object

(aToolBox), a structure window object (aStructureWmdow) and two controllers (aElementControl

and allodeControl) 12. The two messages displayed on the diagram correspond to a user using the

node tool to set the degrees of freedom on some selected nodes (SetDOF) and the using the

Edit...Delete menu option to erase some selected nodes (DelectObjects). Following the SetDOF

message, it is sent to the aStructureWmdow object who in turn dispatches it to the aStructure object.

12 Container-type objects can be represented in the Booch notation with a series of smaller
object icons placed inside the container icon.

- 37 -

4SetDOF
I DeleteObjects

DeleteObjects\

aStructureWindo
SetDOF

DeleteObjects \DeleteObjects
SetDOF

aToolBox

allodeController

The aStructure object then sends the message to the allodeController object which sends the SetDOF
message to all selected allode objects. To erase all selected objects, the DeleteObjects message is
dispatched in a similar manner except this time, the message is also sent to the aElementController
object.

Figure 31.
Cross Link Object Diagram.

Controllers

The structure database is represented using the SO_NODE_CONTROL and the

SO ELEMENT CONTROL controllers (Figure 32). Controllers provide a powerful, high level

method of organizing information. Generally, it is not a requirement of the controller to know the

type of objects stored in the container as long as the stored objects abide by the common message

protocol defined by the controller. For example, it is perfectly acceptable for a controller to hold a

node object and an element object as long as the objects know what type of messages they can

receive from the controller. In this implementation however, two controllers were used. Each one

was customized specifically for the type of objects that would be contained.

UIW WINDOW

.^-^-
SO GRAPHIC CONTROL^•-^-

' -
•IN

t

I

STRUCTURE •
• •

so_NooLcoNTRol.

SO_NODE^
SO_LOAD^•

.^- .

SO_SPRING^•

.^.^-

Ul WINDOW_OBJECT^SO_GRAPHIC

.^.

Figure 32.
Implementation of the SO_NODE_CONTROL class and the SO NODE class. The
SO ELEMENT CONTROL and SO ELEMENT classes are similar.

Storing the nodes and elements in separate containers was done for efficiency reasons. With

structures that consume a large amount of time in displaying themselves, a user has the option to

suppress display of a given object (ie. nodes, elements or loads) in order to increase the overall

programme efficiency. For example, when the flag is set to suppress the display of nodes, a draw

message sent to both controllers is only accepted by the element controller. In a single controller

implementation however, there is no way of filtering a message and sending it to a particular group

of objects such as elements. This is because the controller now has to iterate through the complete

container and for each object, either blindly send the message or determine if it is a candidate for

the message.

ill
BOB Source

File

The Macro Language

The Cross Link Macro Language (BOB) is a powerful object-oriented programming language

that can be used by end users of Cross Link [1]. Through a set of callable library functions that access

the Cross Link kernel, users can write macros to manipulate Cross Link in many different ways.

Appendix A gives and overview of the language and also provides a complete listing of the macro

library functions.

The macro language is implemented using three modules, the lexical scanner, the bytecode

compiler and the bytecode interpreter, which are shown below (Figure 33).

token
Lexical^—0-^Bytecode
Scanner^

get token
^Compiler

r \
Data Dictionary

t
Stack

Bytecode
Interpreter

sp -to-

4-stk_bottom

Figure 33.
Layout of the BOB Macro Language Compiler and Interpreter.

The Lexical Scanner

The purpose of the lexical scanner is to scan a macro file and parse it into tokens which

are fed into the bytecode compiler. The lexical scanner does not perform syntax checking but

it must distinguish between language keywords and operators (ie. class, if, else, nil, > =, =) and

variables in order to send the correct token to the bytecode compiler (Figure 34).

Bytecodes

/

essassgsasens+ i p 4.

4-stk_top

- 40 -

T_INTEGER
T_FLOAT
T_STRING
T EO
ILE
T_IF
T AND
T_NEW

integer value (12)
floating point value (1.234)
string value ("ab123.0")
equal (==)
less than or equal to operation (<-.)
begin an if statement
logical AND (&&)
new keyword

Figure 34.
Some example token values returned by the lexical scanner.

The Bytecode Compiler

The bytecode compiler calls the lexical scanner to parse the source file and then using its

defined syntax rules, converts these tokens into a series of bytecodes 'Which are later interpreted

using the bytecode interpreter (Figure 35). The compiler also builds a data dictionary where all

variables, functions, class definitions and class implementations are stored. This dictionary is

referenced to using the gererated bytecodes. There is a class of possible syntax errors that are

not trapped by the compiler and therefore must be located by the interpreter. These errors arise

because of the fact that the language is typeless. Being typeless, any variables defined within a

macro are not required to be explicitly declared as integers, floats or strings (variable types are

set when an assignment is made to the variable - ie. x = 123.1; sets the type of x to a float).

Therefore, the compiler cannot check for incorrect operations such as adding an integer to a

string because this is unknown at compile time. If the language were typed, type syntax could

be checked by the compiler.

OP_PUSH
OP_ADD
OP_DIV
OP_GE
OP_SET
OP CALL

push nil onto the stack
add the top two stack entries
divide the two top stack entries
perform "greater than or equal to" on two top entries
set the value of a variable
call a function

Figure 35.
Some example bytecodes (or opcodes) produced by the bytecode compiler.

The compiler-interpreter arrangement has some advantages over a straight interpreter

arrangement (such as BASIC) where syntax checking, compilation and execution are all

performed in one pass. Not only is programme execution much faster (because language syntax

is verified by the compiler) but development of a runtime-only system that does not include the

- 41 -

compiler could also be implemented. This would allow a compiled macro to be written to a file

where it could later be retrieved and executed using the interpreter (the compiler could be

packaged as a separate application). This feature would offer a significant speed advantage in

instances where macros are never modified and do not require compilation every time they are

executed.

The Bytecode Interpreter

The bytecode interpreter executes the series of bytecodes that are built by the bytecode

compiler to create a running application. It is also responsible for the verification of type

correctness at run-time.

To show how the bytecode interpreter uses the stack when interpreting bytecodes,

consider the macro shown in Figure 36 which adds two numbers together. Shown in Figure 37

are the bytecodes (opcodes) created by the bytecode compiler.

main(;i,j,k)^ TSPACE 03
PUSH

i = 2.0;^ LIT ; 2.0
j = 4.0;^ TSET 02
k = i + j;^ LIT ;4.0

TSET 01
TREF 02
PUSH
TREF 01
ADD
TSET 00 ; k
RETURN

Figure 36.^ Figure 37.
Macro to add two numbers.^Resulting bytecode instructions execute the function

main() in Figure 36.

The interpreter uses a stack as a temporary storage facility for intermediate operations

and values (Figure 33). The stack pointer (sp) is used to point to different slots on the stack. In

the example programme, the TSPACE opcode allocates three temporary slots onto the top of

the stack which are used the three local variables i, j and k. A PUSH opcode is then executed

to push a slot onto the stack, followed by a LIT opcode which sets the value of the new slot to

the value 2.0. Next, a TSET opcode sets the value of the variable i to the current value pointed

to by the stack pointer (2.0). The same LIT-TSET sequence is also performed for the assignment

to variable j. The TREF opcode then pushes a slot onto the stack and sets the value of this slot

to the value of variable i and the same is done for variable j. The ADD opcode is then executed

- 42 -

which adds the value pointed to by the stack pointer (j) with the value contained in the next slot

above the stack pointer. The result is then stored in the slot above the stack pointer and the

TSET opcode is issued to set the value of variable k to this value. The RETURN opcode then

indicates execution of the function is complete.

Interfacing the Macro Language with other Applications

The macro language supports two different types of callable functions. The first is any function

which is declared in a macro file (ie. a subroutine). The second type of callable function, specified
by a developer of the system, is called an internal or library function. As part of the compiler

initialization routine, a set of library functions can be added to the data dictionary (a storage

dictionary for all macro variables and internal functions) which can then be executed from within a

BOB macro. These internal functions are written in C and have to be compiled into the application's
executable file.

Programming the internal functions requires minimal understanding of the

compiler/interprete operation. The external function is written to accept one parameter in the

function call, the number of arguments passed in the BOB function. For example, consider the BOB

library function Sin (value), which calculates the sine of value. Shown in Figure 38 is the equivalent

C function that calculates the sine and returns the result back to the interpreter. Allone need to

know in order to add a library function to the language is the state of the stack right before the

external function is called. The interpreter will push all the parameters passed to the function onto

the stack (in this case only value) so the internal function need only check that the parameters

number of parameters were passed and that they are of the correct type (obviously, value can only

be of type integer or float). Once the parameter type is verified, it can be extracted from the stack

and the calculation can be performed. In order to pass the result back to the interpreter, the stack

pointer must be incremented by the number of arguments in the function. After the stack increment,

the result will be placed on the stack where the interpreter will insure it is assigned to the correct

variable.

Using this method, a full complement of functions can be developed to interface BOB with

functions and data that are internal to the application. This creates a very high level of flexibility

// init functions - initialize the internal functions
void init_functions()
C

// add the BOB Sin() function using a pointer to the sine function
add_function("Sin",sine);

I/ sine calculates the sine of a value
static int sine(int argc)
C

float value, retval;

// make sure only 1 parameter was passed by BOB.
argcount(argc,1);

// ensure the parameter has the correct type
if(!type(O,DT_INTEGER) && !type(O,DT_FLOAT))

badtype(0,DT_NUMERIC);

// perform the calculation
if(type(0,DT_INTEGER))(

value^sp(O].v.v_integer;
retval = sin(vatue); // call a function to do the calculation

else if(type(O,DT_FLOAT))C
value = sp(07.v.v_float;
retval = sin(value);

// increment the stack pointer by the number of params passed (1)
sp += argc;

// set the value pointed to by sp to the return value of sin
set_floataspI0],retval);
return(0);

Figure 38.
The internal function to calculate the sine of the BOB Sin() function.

because, with the proper interface to the kernel of the application, it is possible to shift much of the

programming from internal development to external development which can be done by end users

of the application.

4.4 A Sample Session in Cross Link

The purpose of this section is to provide a tour through CLUSAP. In the example, a model

of the frame shown in Figure 39 will be developed. Then using the macro language, the frame will

be exported to the ANSYS finite element programme for final analysis.

Start the Cross Link programme by typingxlink<enter> at the DOS command line. If this is

not the first editing session, any structure that was edited in another session will automatically be

loaded. A screen similar to that shown in Figure 40 should appear. The preprocessor environment

consists of four windows on the display: the Menu Bar, the Tool Window, the Watch Window and

the Structure Window. The Menu Bar contains menu options to open and save files, set environment

- 44 -

0
LI)
O

full moment
connection req'd

full moment
connection req'd

//.{/f

assume full moment transfer betwen
web members and chord

14 CP 2000 28 000

Figure 39.
The Example Frame to be Modelled using Cross Link.

parameters, run macros and obtain help. The Tool Window contains six icons or tools that determine

the editing mode. The Structure Window is the window where the structure is displayed and edited.

Finally, the Watch Window is used as an output facility for the macro language. Macro developers

can use this window display information for users of the macro or use it as a debugging facility (by

printing variable values to the window).

- 45 -

En... Last lettings nacre, Loomis Halo

a^ (Untitled)^ 4^1 Teelsi
(0.0, 0.0)

Zo
—0

Node Tool

• -^•^-^ •^Element- Tool^-
.^.^.^.

.^'^•^'^'Spring' Tobl
.^.
.^.^.^ .^Point.^Lo.ad . Tool^.

• •^•^-^ •^4 .^•^•^UDL • Tool

Property Tool

.^.^.^-^•^•^ •

11
1111 .,,

pi pp

11481

I^J^.^I^ Watch Windom^ 1 4 I 1. L

1 ,^ ,r

Figure 40.
The Cross Link Preprocessor Editing Environment.

The first step in a session is to set up a coordinate system and a grid sustem. To do this select

Settings...Limits from the menu and enter the minimum and maximum coordinates of the frame

(allowing for some margin space) in the dialogue box (Figure 41). To set the grid size, select

Settings...Grid and enter 500 (mm) for the x and y grid spacings. The Settings...Display option can

be used to set some of the structure display options on the screen. In this case, select the display of

nodes and node numbers, and element and element numbers (Figure 42).

^r Tools

Helm, Iaancst 1 I

J^ Watch Window

(Untitled)

(1000.0 : 6500.0)

=I a mc zu a al^mu IN I ^
Mininun x coordinate: 1-2000

Minimum w coordinate: 1-2000

Maximum x coordinate: 128000

Maximum w coordinate: 118000

1 4 1
0

rt

File Edit tettinws near° Ioola Uelo

Figure 41.
Setting the Structure Limits.

The preprocessor is now ready to begin definition of the frame. This will proceed with the

definition of the node points, then the elements and their properties and finally any boundary

conditions (both node and element). To place nodes, select the node tool from the Tools window

using the left mouse button. Move over the structure window and click the right mouse button to

make it current (the window title bar will highlight). Now, using the left mouse button, add the node

points for the two columns (Figure 43). The F9 key can be used to toggle the snap-to-grid option

(the coordinate display will tell you if it is on or off). Similarily, F8 will toggle the grid display. If you

wish to zoom into a region of the structure to place the nodes, drag the mouse with the right button

pressed over the area you wish to zoom. To return to the previous view, click on the Zp ('Zoom

Previous') button.

- 47 -

(Untitled) ToolsI 4' 1

ms(11500.0 : 18000.0)

Eile Edit tettings nacro Davis Help

Watch Window 4 1 t

0

N

Ea
A.0
-r ri

I aanbel I I Help I

— Display Options

ED Nodes 11 Node numbers
Egi Elements^Element numbers

El Springs Spring stiffnesses
Loads Load values

1^

Figure 42.
Setting the Structure Display Options.

Next, select Edit...Generate to generate a line of nodes for the top and bottom chords (Figure

44). The node generator contains options to control node placement at the beginning and ending

coordinates and optional element generation (with or without properties attached). For the bottom

chord, start node generation at (0,8500) and end at (28000,8500) using 14 elements. Do not include

generation of the first and last nodes because Cross Link will automatically look at these coordinates

for a node to connect an element to.

4 I tHatch Window

Tools

0

iii

(12000.0 : 11000.0)

(Untitled)

06

02^

4 ^

1^

File Edit lettings nacre Lools help

Figure 43.
Placement of the Column Node Points.

For the top left hand chord, start at (0,10000), stop at (14000,11500) and generate 7 elements.

This time, include generation of the last node. For the top right hand chord, start at (14000,11500),

stop at (28000,10000) and again generate 7 elements. Do not specify generation of the first and last

nodes this time since they already exist. Placement of the remaining web elements can now be

performed using the element tool. Select the element tool with the left mouse button, move over

the frame and select the first node for an element. A rubber-banded element will follow the mouse

cursor until the second node point for the element is selected. Element selection is continuous until

you press the <Escape> key. Figure 45 shows the fmal frame model with all nodes and elements

placed.

Eile Edit lettings Macro tools UelP
w^

I

• (Untitled)^ I iitt Tools
(26000.0^

■^Automatic Nodc Gcmcvatiom^...^1^t

 ^Start Point:^End Paint:

-^ Zn E)
 ^...

 ^...

^ .c.,6
V.,

.

a1/4\alx = 10^1 X̂ = (28000^I
u .)8500^I^.W = 0500^i

 ^Generate n Elements: ...i4;
n =^1 14^1 Eli

SI

,, AV7
O'
.2
0

0*

— Generation Options

Generate first node
Generate last node
Generate elements

N Use current property settings
a^Use current fixity settings

^ez..5̂
W

x o
AL.0

[^ay.^IgAirvmel ^I^Help
- %T.,

 ,,:,,4
^- Ilt

, rillill
• I^ Watch Window^ 1 1 1t1

1

Figure 44.
Automatic Generator of Nodes and Elements for Top and Bottom Chords.

Now you can place the boundary conditions. Start by selecting the two column support nodes

by dragging the mouse with the left button held down. Eight selector icons will appear on the display

encompassing the selected objects. The selector icons can perform two operations when the mouse

is moved over top of them and then dragged (a different mouse cursor appears when the mouse is

over a selector). Dragging a selector icon with the left mouse button down will increase the box size

in order to add or remove objects from the selection set. Dragging a selector icon with the right mouse

button down will move all selected objects. The F4 key can also be used to add or remove elements

from the selection set. The default selection criterion is to select all elements inside and crossing

the selector box (the region inside the eight icons). Pressing F4 once will then proceed to select

only elements completely inside the selector box. Pressing F4 yet again will proceed to select all

elements crossing the selector box.

- 50 -

Eile Edit lettings ffeero tools Hello ,

-^•^ (Untitled)^ 4^t Toole
(12500.0 : 6500.0)

Zia ED

as.25^*RI ... a-i27
'' -^29

--^2s

^

22 ^4 23^a - ..0^AD^''''.-^ ''^.1, '''^CD- --- CO ---- - 400 ^31^32
0?.... 1,p-4e 1

^(!),,,,^-i--,„ ^.--,-. i^,.-^ „A) ----- -.*^06
Cir..'"

- i,s^.•' ,e ll - -4 12^-4.. ;6 2' -, (V ..-- -408^c:4 113^40:4 ^6.0 ^®16 ^17 ^40 ^,Isr . 45

■.

0 1 4

. .

ALO
-I- in

i

-..-Z.1^ Watch Window^ 4^t^-

Figure 45.
Final placement of Nodes and Elements.

With the two column support points selected, select the node tool with the right mouse button.
A window will appear that will display all possible nodal constraints (Figure 46). Select the icon

representing a node with no translational or rotational degrees of freedom. Cross Link will proceed

to set the boundary conditions on all selected nodes.

The frame geometry is now complete. If element releases are required for any elements, select

the elements and then select the element tool using the right mouse button (The spring tool, the

point load tool and the UDL tool all behave in a similar manner). A window will open presenting

the available release options for an element (Figure 47). The convention for placing releases is

based on the element's high and low node numbers. Note that the elements are displayed as dotted

lines when they do not have properties assigned to them. In order to set the element properties,

select the desired elements and select the property tool with the right mouse button. A window will

prompt you to enter the required properties for the selected elements.

- 51 -

File Edit Settings nacro Laois halo

■^1^ (Untitled)^ F 4 I 1 f Too
(29500.0 : 9500.0)

EDIP I^ 0

1

^ A
^ A
 ^.__.^.

P 0

(i)2 ''' ..-6L::-45_.;:::49.: () 1 0...:
...22........?A...?±...*K--4F-1:-.;(07....

-*Fs - .

03?.4P. • • ...30 31

Ill ^4 ;9'6:^: 41 1'44i2^_.i. (ifig ,:iiii .4jili 40'45i ,

,._.

[^ .

 ^i

■ ^ • ^III
lg. 1^ of

= ci
A. 0
I' I-1

III ^ IIII^

■ 11111111, i
J^.^I^ Watch Window^) 4 I

i ^r

Figure 46.
Placing Node Boundary Conditions. Constraints are placed by selecting the node tool with the right
mouse button. The selected nodes (below) will be affected by the selection.

Elle edit lettings Macro 'polo Halo
.^ .

J^■^I^ (Untitled)^ I 4^Et - Tools
(25500.0 : 17500.0)

Zo ED

0--0
1^2 El:

(i)?-----F5` ---*F 1,•^• l'•,.....^
24

 :^1 :'--..
!8...:: 40. •::619:

2p........at. ^2.7^2B .1^.'219-..^30 ^31^32 ..4102.-t-- 4:1>^• -t.^-^•• Ar.. ... 407 .^1,....rl.... ___403^.0^436

I^'-... ^...-^; ii- •^i iis.:^. ii- ..^, iii. : I ii .-.^: 5 ea
i 1 r ^it?')41:4111 4_... 0^ i ^(9^w^t

^ 1

ge ^ W

s ciA. 01' r1

1^ '1111111111iJ .^I^ Watch Window^ 1 4Itl

in .

Figure 47.
Setting Element Fixity. Element fixity is specified by selecting the element tool with the right mouse
button.

Exporting a Structure to the ANSYS Finite Element Programme

In order to export a structure to the ANSYS finite element programme, a macro must be

written to extract the node and element data from the Cross Link database and to write it to an

ASCII file in a format readable by ANSYS. Nodes are specified in an ANSYS data file using the N

command which has the following syntax:

N,nodenumber,x_coordinate,y_coordinate[,z_coordinate]

Elements are specified using the E command. The ANSYS E command automatically takes

care of the element numbering so its syntax is:

E,lo_node_number,hi_node_number

Nodal boundary conditions are placed using the D command. Its syntax is:

- 53 -

D,node_number,dof,displacement [„„dof2,dof3

where:

dof, dofl and dof3 can be either UX,UY or ROTZ,

displacement = 0.0

For simplification, we will assume that only the node, element and boundary condition

information must be provided for ANSYS. To start, using an ASCII editor open a file called

'ansys.bob'. Three functions are required to write the nodes, the elements and the boundary

conditions to a file. The first function will be called writeNodes(). It takes one parameter, the file

handle, and is specified as follows (review Appendix A for an overview of the BOB programming

language and the Cross Link library functions):

// writeNodes - writes all node information to file
writeNodes(file;nodeNumber,x,y)

nodeNumber = NodeFirst();
while(nodeNumber)(

x = NodeGetX(nodeNumber);
y = NodeGetY(nodeNumber);
fwrite(file,"N,",nodeNumber, 11,11,x,11,11,y,11\n"); \\ '\n' is linefeed

nodeNumber = NodeNext();

To extract the nodes, a call is first made to the NodeFirst() function which returns the number

of the first node in the node database or nil if there are no nodes. The x and y coordinates are

obtained using the NodeGet?() function. The fwrite 0 function is then used to write the information

to file in an ANSYS compatible format (note thatfwrite 0 can take a variable number of parameters).

The NodeNext() function is then called to get the next node in the database. This is all performed

inside a while loop until NodeNext() returns a value of nil.

The function writeElements() can be implemented using a procedure identical to writeNodes()
except this time the two nodes points for the element are required. These are obtained using the

ElementGet??Node 0 functions:

// writeElements - writes all node information to file
writeElements(file;elementNumber,loNumber,hiNumber)
C

elementNumber = ElementFirst();
while(elementNumber)(

loNumber = ElementGetLoNode(elementNumber);
hiNumber = ElementGetHiNode(elementNumber);
fwrite(file, "E,", loNumber, 11,11, hiNumber, "\n");

- 54 -

elementNumber = ElementNext();

To write the node boundary conditions, the node database must be traversed again, this time

to retrieve the degree of freedom (dot) code for each node (using NodeGetD0F0). This code is

compared with a set of constants which represent each allowable degree of freedom for a node. For

example, the constant ID _101 represents a node with no allowable x translations or z rotations. The

value of ID 101 is 5 which is obtained from the binary representation 101. Hence logical operators

(such as a bitwise OR [I]) can be used on the dof code to determine if a particular dof is free or not.

For example, to set the x dof in an existing code (which may or may not have the code set) the dof

can be OR'd with the ID 100 code (ie. dof = dof I ID 100). The writeBoundwyCond() function is

implemented as follows:

writeBoundaryCond(file;nodeNumber,dof)

num = NodeFirst();
while(num)(

// get the node degree of freedom
dof = NodeGetD0F(num);

if(dof == ID_100)
fwrite(file,"D,",num,",UX,0.0\n");

else if(dof == ID 110)
fwrite(file,"

-

0,",num,",UX,0.0„„UY\n");
else if(dof == ID 111)

fwrite(file,"D,",num,",UX,0.0„„UY,ROTZ\n"):
else if(dof == ID 101)

fwrite(file,"D

-

,",num,",UX,0.0„„ROTZ\n");
else if(dof == ID_001)

fwrite(file,"D,",num,",ROTZ,0.0\n");
else if(dof == mom)

fwrite(file,"0,",num,",UY,0.0\n");
else if(dof == ID 011)

fwrite(file,"0

-

,",num,",UY,0.0„„ROTZ\n");

num = NodeNext();

All three functions along with the following required main() function are placed in the same

ASCII file (main() usually appears first). The main() function will open the ANSYS ASCII data

file (harded coded to be 'test.dat') and call the three functions to write the node, elements and

boundary conditions respectively:

main(;filehandle)

// open a file (test.dat) for writing
filehandle = fopen("test.dat", "w");

// write the nodes, elements and BC's
writeNodes(filehandle);
writeElements(filehandle);
writeBoundaryCond(filehandle);

- 55 -

// close the file
fclose(filehandle);

File Edit Eettines Macro tools Help

1
(Untitled>^ 111T1- Tools

(0400 _0 :^11200_0)
MI E)

• .^.

.^.^.

•

•^1188BEW-8888888

Extutu,^m_iuty^filiL.._
.38888881,188388E4188888-38868138888388EBB88883a8tO888803111.888 , Asu

File nano: 1ANS-OUT.BOB^1
.^.^.

• •^•

•

.^
.

.^.

Directors: C:NXLINKNMACROS

Files:^Directories: C9.41

r,:;:iANS-IN.BOB
ANS-OUT
DEMO.BOB
ERASE.BOB

1;1

. .
C A:^]
[^B:^]
C^C:^3

1111

X 0
JL.T. ,0

PREWAR^I ca---1^I^I^11° 11) I

• I^ Watch Window^ 4^t l

1^ r,^ .
Figure 48.
Running a Macro in Cross Link.

Let's return back to the frame problem. The 'ansys.bob' macro can be run from Cross Link

by selecting the Macro...Run macro menu option which will present a listing of all macro files (*.bob)

in the current directory. Select the ansys.bob file and then the OK button (Figure 48). The frame

will be written to the file 'test.dat' which is presented in Figure 49. Shown in Figure 50 is the frame

as interpreted by the ANSYS preprocessor, PREP7.

Listed in Appendix A is a more complete ANSYS file export macro (ANS-OUT.BOB) which

comments the data file and also includes a dialog box to get the name of the destination data file.

Also presented is a listing for a macro to import a commented ANSYS data file (ANS-IN.BOB).

Basicly, this macro uses the fread 0 function to read in a line of data from a file and the token()
function is used to parse the fields from the string. It takes a two parameters; the first is the string

- 56 -

N,^1,
N,^2,
N,^3,

0.0000, 0.0000
0.0000, 8500.0000
0.0000, 10000.0000

E,^2,
E,^7,
E, 8,

7
8
9

E, 7, 20
E, 8, 20
E, 8, 21

N, 4, 28000.0000, 0.0000 E,^9, 10 E,^9,^21
N, 5, 28000.0000, 8500.0000 E, 10, 11 E, 9, 22
N, 6, 28000.0000, 10000.0000 E, 11, 12 E, 10, 22
N, 7, 2000.0000, 8500.0000 E, 12, 13 E, 10, 23
N, 8, 4000.0000, 8500.0000 E, 13, 14 E, 11,^23
N, 9, 6000.0000, 8500.0000 E, 14, 15 E, 11,^24
N, 10, 8000.0000, 8500.0000 E, 15, 16 E, 12, 24
N, 11, 10000.0000, 8500.0000 E, 16, 17 E, 12,^25
N, 12, 12000.0000, 8500.0000 E, 17, 18 E, 13,^25
N, 13, 14000.0000, 8500.0000 E, 18, 19 E, 13, 26
N, 14, 16000.0000, 8500.0000 E, 5, 19 E, 13, 27
N, 15, 18000.0000, 8500.0000 E, 1, 2 E, 14, 27
N, 16, 20000.0000, 8500.0000 E, 2, 3 E, 14, 28
N, 17, 22000.0000, 8500.0000 E, 3, 7 E, 15, 28
N, 18, 24000.0000, 8500.0000 E,^3, 20 E, 15, 29
N, 19, 26000.0000, 8500.0000 E, 20, 21 E, 16, 29
N, 20, 2000.0000, 10214.2861 E, 21, 22 E, 16, 30
N, 21, 4000.0000,^10428.5713 E, 22, 23 E, 17, 30
N, 22, 6000.0000, 10642.8574 E, 23, 24 E, 17, 31
N, 23, 8000.0000,^10857.1426 E, 24, 25 E, 18, 31
N, 24, 10000.0000,^11071.4287 E, 25, 26 E, 18, 32
N, 25, 12000.0000,^11285.7139 E, 26, 27 E, 19 , 32
N, 26, 14000.0000,^11500.0000 E, 27, 28 E, 6,^19
N, 27, 16000.0000,^11285.7139 E, 28, 29 E, 5, 6
N, 28, 18000.0000,^11071.4287 E, 29, 30 E, 4, 5
N, 29, 20000.0000,^10857.1426 E, 30, 31 D, 1,UX,0.0,,,,UY,ROTZ
N, 30, 22000.0000, 10642.8574 E, 31, 32 D, 4,UX,0.0,,,,UY,ROTZ
N,^31, 24000.0000,^10428.5713 E, 6, 32
N,^32, 26000.0000,^10214.2861

Figure 49.
The resulting ANSYS data file for the frame.

to parse and the second is a string listing all possible field delimters in the string (the ANSYS delimiter

is a comma [,]). The first call to token() returns the first parameter in the string. To parse the

remainder of the string, successive calls are made to token with no string passed (ie. tok =

token(0,delimiter)) until the nil is returned. Thestrcmp 0 and val() functions can be used to compare

a string and convert it to a number respectively.

offina.0111111Liturmin

ANSYS 4.4
UNIV VERSION
MAR 23 1990
10:34:2R
FRET'? ELEMENTS
TYPE NIIM
BC SYMBOLS

ZU =1
DIST=n400
XF =14000
YF =5750

Cross Link to ANSYS Transfer

Figure 50.
Example Frame Exported to the ANSYS Programme.

4.5 Extending Cross Link

Several modifications could be made to Cross Link's editing environment and macro language.

This section discusses some alterations that could be done to enhance the editing capabilities and

also extend the preprocessor to a postprocessor.

Recognition of the Physical and Finite Element Models

Currently, a shortfall with the preprocessor is the fact that analysts still have to describe a

structural model in terms of nodes and elements. No feature is yet provided to model a complete

structural component such as a continuous beam, as a single entity and still recognize that it is

composed of multiple nodes and elements. Structural analysis is performed at a level closer to the

finite element model rather than the physical model (Figure 51). Clearly, an alternate data modelling

technique is required that recognizes the requirements of the physical model and the finite element

model. The physical model is most intuitive for structure description because it explains the structure

- 58 -

1PREPROCESSING MODEL

PHYSICAL MODEL

FINITE ELEMENT MODEL

in terms of it structural components (ie. beam, column, slab). The finite element model provides a

method of discretizing the physical model into data which is then used in forming the mathematical

model of the structure.

Figure 51.
The Physical and Finite Element Structural Models

To move from the finite element based model and back towards the physical model,

modifications have to be made in the way nodes and elements are currently represented. Shown in

Figure 52 is an alternate implementation of the element container which has been renamed to an

assembly container, SO_ASSEMBLY CONTAINER. The assembly container now holds assembly

objects (SO_ASSEMBLY) which are container classes that model both the physical and finite

element views of "vector type" elements such as beam and columns or "area type" elements such as

slabs and walls. As shown in the figure, the assembly object will always contain, at the least, one

element (SO _ELEMENT) which would represent the physical view of the structural component

(the beam or column). Finite elements could then be added to the container (as SO _ELEMENT's)

- 59 -

but would be distinguished from the corresponding physical model element. Numerous other objects

such as custom components or custom sub-assemblies (which are again container classes) can also

be added to the assembly to model loads, boundary conditions or section table objects. Every

component and sub-assembly in the assembly container has to behave according to a common

message protocol defined by the container. Sub-assembly components could also define a message

protocol to communicate object with the sub-assembly container.

^..... ^. .

..SO_GRAPHIC_CONTROL . .
.^Generic container^'

class

• . •^•^•

.,
.^

SO_ASSEMSLY_CONTROL^

1^

•
^

Cy
. SO_ASSEMILY^' . i^+

contain., oft.. for 0__________^Container class for^ 0^SO_ELEMENT

• assembly objects assembly components••
'' . „ . . . • . . . •

. • • • - . , • "

CUSTOM
COMPONENTS

• • .^. •^. • •

CUSTOM
• SUR-ASSEMILIES

•• •• •• • •^•

Figure 52.
Alternate Implementation of the Element Container. The element container is now called an
assembly container.

For users of the application, most structural modelling would occur on the physical model

level. However, a user would also have the ability to enter into a finite element model mode which

would allow assemblies to be selected and discretized into finite elements. Returning to the physical

model, all finite elements would disappear. An editing operation such as moving an assembly would

occur on the physical model level; all finite elements would automatically be moved (so instead of

selecting 10 elements representing one continuous beam or assembly, the user would select one

assembly).

• . „^. • ' • . • •

- 60 -

gusset plate
object

point load object

...------
distributed load object

A......-- shear connection
object

the assembly object

N section object

moment connection
object

The concept of an assembly container that holds sub-assemblies and components could ideally

serve as an extension of the preprocessor to a design programme (Figure 53). Objects such as

connections or web stiffeners could be added to an assembly container to create detailed assemblies.

Using polymorphism, generic messages such as DesignYourself would be dispatched from the

assembly container to all objects. The objects in the container would then respond to a message

such as this and proceed to design themselves. Because of the two way interaction between the

container and the object, the object would also have the capability to query the container for required

design information. For example, a moment connection object may query the assembly object to

obtain the design moment and shear for the connection.

Figure 53.
Extending Assemblies for Postprocessing and Design

The benefits of this approach must be emphasized. Firstly, this model recognizes the needs

of the end user of the system - a compromise in modelling capability between the physical and finite

element views. Secondly, all assemblies, sub-assemblies and components are developed and

debugged as separate entities, each adhering to the interface-implementation concept. This results

in a set of objects that should be more resilient to changes made in the system. Finally, assemblies

now have a very dynamic appearance because of the ability to modify and enhance behavior simply

by adding components. Future objects can easily be implemented as long as they adhere to the

message protocol defined by the assembly container.

- 61 -

Extending the Macro Language

Implementation of the aforementioned assembly concept would require modifications to the

interface between the macro language and the Cross Link kernel. This is mainly because the

containers are now nonhomogenous because they can hold many different types of objects. The

existing implementation exploits the fact that the node and element containers are homogeneous.

For example, the BOB library functions ElementFirstOlElementNext0 (see Appendix A) are used

to traverse the element container by initializing and incrementing an internal pointer. Both functions

return an integer value representing the current element number.

// example function to print all element fixity codes
PrintFixity(; elementNumber,fixity)
C

// get the first element •
elementNumber = ElementFirst();
while(elementNumber)(

fixity ElementGetFixity(elementNumber);
print("Element ",elementNumber,"^",fixity);

// get the next element in the list
elementNumber = ElementNext();

}

Clearly, the above system used to manipulate the element container could not work adequately

in an assembly container based system. Functions such as ElementFirst() and ElementNext() could

still be implemented but the internal representation of the assembly container would not be fully

accessible to macro users. Really, a macro user should have the ability to edit the contents of any

object in the container. A feature such as this could be implemented using the class mechanism

supported by the macro language. Pre-built classes could be designed into the language that would

allow duplication of the objects data and provide a set of methods within the class to manipulate

the data. Additional language keywords could also be created to allow determination of class types

(in the existing implementation of the macro language, classes do not know their type). For example,

an assembly container may be manipulated with a macro in the following way:

// get the first object in the container
object = AssemblyFirst()
while(object)(

// compare the object string type
if(type(object,"Assembly"))(

subObject = ObjectFirst(object);
while(subObject)C

// look for element objects
if(type(subObject,"SO_ELEMENT"))f

// we've got an element stored in the assembly
elementNum = subObject->Number();
print("Found element number ",elementNum);

- 62 -

else if (type(subObject,"SO_PROPERTY"))(
// we've get a property object in the assembly
Inertia = subObject->GetInertia();
Area = subObject->GetArea();

subObject = ObjectNext(object);

)

// get the next object in the container
object = AssemblyNext();

Here, the ElementFirstOlElementNext0 functions have been replaced by the

AssemblyFirstOlAssemblyNext0 functions. These functions now return a handle which now

represents a reference to any type of object stored in the container. A special language keyword,

type, is then used to determine the class type of the object. The functions ObjectFirstOlObjectNext(),

which take an object as a parameter, can then be used to determine the contents in an assembly

object. The above example looks only for element (SO_ELEMENT) and property

(SO PROPERTY) objects. Once the object's type is determined, member functions that are

internally attached to the object can be used to manipulate the object.

5 CONCLUSIONS

This thesis has examined the use of object-oriented programming techniques in the

development of engineering applications. The paradigm is very well suited to large, complex software

applications where issues such as encapsulation, code reusability, portability and maintainability are

important. These aforementioned features can be implemented using conventional paradigms such

as structured programming, but only through programmer discipline. For example, most procedural

languages provide only very limited support in the language syntax for concepts such as information

hiding. Conversely, object-oriented languages imbed concepts such as information hiding rules

directly into the language syntax and let the compiler provide the enforcement. Consequentially,

software becomes more reliable and programmers become more productive because the compiler

is now used as a more active tool in the development process.

Cross Link, a universal structural analysis preprocessor, provides an easy to use, interactive

editing environment that, through the use of a macro programming language, links bi-directionally

with any structural analysis programme. The unique macro facility also gives end users the exciting

ability to customize the preprocessor to their own requirements, thus providing unprecedented

flexibility. Conceivably, the macro language could also be used to provide an electronic link between

structural design and drafting. Traditionally, this communication link is done through hand drawn

sketches; engineers describe the geometry of a structure in their analysis and design programmes,

produce a sketch of the final product and then pass this on to drafting personnel. These people then

have to re-enter the information back into a CADD programme for final detailing. Cross Link could

be used to provide a smoother, more effective communication link between engineer and draftsman.

The link may be simple as a wire frame model or as complex as a fully detailed and dimensioned

frame. Features such as these could be implemented using a drawing exchange standard such as

IGES or DXF.

6 REFERENCES

[1] Betz, David. Your Own Tiny Object-Oriented Language. Dr. Dobb's Journal, September
1991, pp.26-33.

[2] Blair, Gordon. et al. 1991. Object-Oriented Languages, Systems and Applications.
Reading, London:Pitman Publishing

[3] Booch, Grady. Object Oriented Development IEEE Transactions on Software
Engineering, Volume 12, Number 2, February 1986, pp.211-221.

[4] Booch, Grady. 1991. Object Oriented Design With Applications. CA:Benjamin
Cummings.

[5] Borland International Inc. 1990. Turbo C+ + Programmer's-Guide.

[6] Coad, Peter. And Yourdon, Edward. 1990. Object Oriented Analysis. NJ:Prentice Hall.

[7] Dale, Nell. and Orshalick, David. 1983. Introduction to PASCAL and Structured Design.
MA:D.C. Heath and Company

[8] Dupont, G. et al. A Functional and Object-Oriented Design Approach, Fourth
International Conference on Computer Aided Software Engineering, December 1990,
pp. 356-372.

[9] Duntemann, Jeff. Structured Programming. Dr. Dobb's Journal, May 1990, pp.141-145

[10] Elbury, Kevin M. Source Code for the Cross Link Universal Structural Analysis
Preprocessor. 1992, University of British Columbia, Vancouver, B.C., Canada.

[11] Hoy, Patrick. A Comparison of Object-Oriented and Structured Development Methods.
ACM SIGSOFT, Volume 15,Number 1, January 1990, pp.44-48.

[12] LaLonde, Wiif R. and Pugh, John R. Specialization, Generalization and Inheritance:
Teaching Objectives Beyond Data Structures and Data Types, SIGPLAN Notices,
Volume 20, Number 8, August 1985, pp.88-92.

[13] Lee. H.S. and Arora, J.S. Object-Oriented Programming for Engineering Applications.
Engineering With Computers. Volume 7, 1991, pp.225-235.

[14] Lieberman, Henry. Using Prototypical Objects to Implement Shared Behaviour in Object
Oriented Systems. Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications (00PSLA '86). 1986, pp. 214-223.

[15] Mullin, Mark. 1989. Object Oriented Program Design. Reading, MA:Addison-Wesley.

[16] Pascoe, Geoffrey A. Elements of Object Oriented Programming. Byte, Volume 11,
Number 8. August 1986, pp.139-144.

- 65 -

[17] Snyder, A. Encapsulation and Inheritance in Object Oriented Programming Languages.
Proceedings of the Conference on Object-Oriented Programming Systems, Languages
and Applications (00PSLA '86). 1986, pp. 38-45.

[18] Sommerville, Ian. 1989. Software Engineering. Reading, MA:Addison-Wesley.

[19] Stroustrup, Bjarne. 1986. The C+ + Programming Language. Reading,
MA:Addison-Wesley.

[20] Taenzer, David., Murthy, Ganti and Podar, Sunil. Problems in Object-Oriented Software
Reuse. Proceedings of the Third European Conference on Object-Oriented
Programming (ECOOP 89). 1989. pp.25-38

[21] Zinc Interface Library Programmer's Reference (Version 2.0), Zinc Software
Incorporated, Pleasant Grove, Utah.

APPENDIX A

CROSS LINK MACRO LANGUAGE

FUNCTION REFERENCE

Cross Link

Macro Language

Function Reference

bel

Cross Link^ Programmer's Reference

Table of Contents

1 THE CROSS LINK MACRO LANGUAGE^ 71
1.1 Basics^ 71
1.2 Variables and Expressions^ 72

Data Types^ 72
Expressions^ 73

1.3 Program Control Statements^ 74
1.4 Objects and Classes^ 75

2 CROSS LINK PROGRAMMER'S REFERENCE^ 77
2.1 Programming Constants^ 77
2.2 Input / Output Functions^ 79

fclose()^ 79
fopen()^ 80
fread()^ 81
fwrite()^ 82
getc()^ 82
putc()^ 83
print()^ 83

2.3 Math Functions^ 84
abs()^ 84
acos () / asin () / atan ()^ 84
atan2()^ 85
cos() / sin() / tan()^ 85
exp()^ 85
hypot()^ 86
log() / log10()^ 86
pow() / pow10()^ 87
sqrt()^ 87

2.4 String Functions^ 88
strcmp()^ 88
token()^ 89
val()^ 90

2.5 Cross Link System Functions^ 91
SetGrid()^ 91
New()^ 92
Prompt()^ 93
PromptYesNo()^ 94
Repaint()^ 95
SetLimits()^ 95
Speaker()^ 96

2.6 Node Functions^ 97
NodeErase()^ 97

-71-

Cross Link^ Programmer's Reference

NodeFirst() / NodeNext()
NodeGetDOF() / NodeSetDOF()
NodeGetX() / NodeGetY()
NodeHigh()
NodePut()
NodeSelect()
NodeSelected()
NodeSetX() / NodeSetY()
NodeToggleSelect()
NodeUnSelect()

2.7 Element Functions
ElementErase()
ElementFirst() / ElementNext()
ElementGetFixity() / ElementSetFixity()
ElementGetLoNode() / ElementGetHiNode()
ElementSetProp()
ElementHigh()
ElementPut()
ElementSelect()
ElementSelected()
ElementToggleSelect()
ElementUnSelect()

3 EXAMPLE APPLICATIONS
3.1 Demonstration Program
3.2 ANSYS File Transfers

ANS-IN.BOB
ANS-OUT.BOB

98
99
100
100
101
102
102
103
103
104
105
105
105
106
107
108
108
109
110
110
111
111

112
112
114
114
117

Cross Link^ Programmer's Reference

1 THE CROSS LINK MACRO LANGUAGE
The BOB macro language is a weakly typed, object oriented programming language that users of the

Cross Link Preprocessor have access to within an editing session. The uses of the language are limitless:

importing/exporting data files, manipulating the Cross Link node and element databases, and parametric

structure definition to name a few.

BOB has several features that make it unique as a programming language. It contains flavours of

C, C+ + and LISP although its syntax is almost identical that of C. Being object oriented, it supports

class definitions and inheritance. In a weakly typed language, basic data types such as integer numbers,

floating point numbers and character strings are never explicitly typed by the programmer as integers,

floats, or strings. This is advantageous since it makes the language more flexible and easier to use.

1.1 Basics
The basic program unit inside a BOB program is the function. Every BOB program requires

a function called main() that must exist somewhere in the program file. A functions can take any

number of parameters and perform operations on those parameters. The function may directly

modify the values passed into it or it may only use them for calculations. Functions also have the

ability to return a value. Hence a call to a function usually appears as an assignment.

main(; x, x_squared)

x = 5;
4x squared = Square(x); // call the Square() function

// Function: Square(z)

// - returns the square of z
Square(z ; tmp)^// note x is a parmeter, tmp is a local variable

tmp = z * z;^// calculate the square...

return(tmp);

)

Figure 1.
A BOB program to calculate the square of a number. The function Square does the
calculation.

From the example program in Figure 1, several observations can be made:

-73-

Cross Link^ Programmer's Reference

• The function main() has two local variables, x and x squared which are

declared after the semicolon in declaration of main().

• Any function must enclose all of its associated code in curly braces {}.

• A semicolon (;) ends every line in which there is an assignment.

• The Square() function takes one parameter, x (declared as z).

• The Square() function has one local variable, imp, declared after the

semicolon in the function definition.

• The Square() function returns the value of x * x.

• Program comments are place by preceding the comment with two slashes

1.2 Variables and Expressions

Data Types

As mentioned in the introduction, BOB is an untyped language. Thus as a user of BOB, you

are not required to explictly declare the type of any variable. However, you must be aware of the

basic internal representation of data types in order to use the language correctly. When a variable

is declared, its default data type is type nil. Only when an assignment is made to the variable, is its

type set.

Shown in Figure 2 is an example program emphasising BOB's internal treadment of data

types. From this example we can make the following observations:

• Variables are of type nil before they they are used.

• In Part A, i and j are typed as integers because no decimal point appears in

the number 2 or 5. The result of the integer division, 5 / 2, is 2.

Cross Link^ Programmer's Reference

main(;i,j,k)

// Part A: Division using integers
i = 5;^// represented as integer
j = 2;

k = i / j;^// result is 2

// Part B: Dividision using floats (deimals)
= 5.0;^// represented as float

j = 2.;^// also represents as float
k = i / j;^// result is k = 2.5

Figure 2.
A BOB program used to compare calculations using integers and floating point (decimal)
numbers.

• In Part B, the variables i and j change type from integer to floating point

(legal in BOB) as indicated by the decimal point (2.0). Here the result is

different: 5.0 / 2.0 = 2.5.

• If the division involved a floating point number (ie i = 5.0) and an integer

(ie. j = 2.0) the result would a float (k = 2.5).

• The above rules are applicable to all other basic mathematical operations.

Expressions

Listed in Figure 3 are the basic expressions supported by BOB. Since all of these expression

are a subset of the C programming language, instructions and examples on their use can be found

in any C programming reference (ignore anything to do with pointers).

-75-

<expression> II <expression>
<expression> && <expression>
<expression> I <expression>1
<expression> - <expression>
<expression> & <expression>

<expression> == <expression>
<expression> I= <expression>
<expression> < <expression>
<expression> <= <expression>
<expression> >_ <expression>
<expression> > <expression>
<expression> « <expression>
<expression> » <expression>

logical OR
logical AND
bitwise OR
bitwise XOR

bitwise AND
equal to
not equal to
less than
less than or equal to
greater than or equal to
greater than

shift left
shift right

<expression> + <expression>
<expression> - <expression>
<expression> * <expression>
<expression> / <expression>
<expression> % <expression>

plus
minus

multiply
divide
remainder

-<expression>
!<expression>
<expression>

++<expression>
--<expression>

<lvalue>++
<lvalue>--

unary minus
logical negation (NOT)
bitwise negation
preincrement

predecrement
post increment
postdecrement

Cross Link^ Programmer's Reference

<expression>,<expression>
^

comma expression

<lvalue> = <expression>
^

assignment
<lvalue> += <expression>

^
assign sum

<lvalue> -= <expression>
^

assign difference
<lvalue> *. <expression>

^
assign product

<lvalue> 1= <expression>
^

assign quotient

<test-expression> ? <true-expression> : <false-expression>
conditional operator

Figure 3.
Operations supported by BOB. An <lvalue> is a left hand side value meaning the variable must
be able to have the result of an expression assigned to it.

1.3 Program Control Statements
BOB contains all the program control statements of the C language (except for the switch

statement). Listed in Figure 4 are the four program control statements used by BOB.

Cross Link^ Programmer's Reference

if(<test-expression>)
<then-statement>

[else
<else-statement>]

uhile(<test-expression>)
<body-statement>

do <body-statement>
uhile(test-expression);

for(<init-expression>;<test-expression>;<increment-expression>)
<body-expression>

break;
continue;

return(<result-expression>);

Figure 4.
Program control statements supported by BOB.

1.4 Objects and Classes

BOB supports class definitions and single inheritance. A class can be used to combine both

data (called member data) and the functions (called member functions) that operate on that data

into a single entity. Generally a complete class system includes two components. The first is the class

template which defines the member data and the member functions of the class. Using inheritance,

classes are able to inherit the member data and functions of other classes in order to extend or modify

them. The second component of a class system is the implementation or definition of the member

functions. These are coded outside of the class template; they look like regular functions except the

function name is preceded by the class to which the function belongs. However, member data appears

global to the member functions so member data is never passes as an argument to a member functions.

The syntax for class definition is shown in Figure 5.

The class definition serves as a template for the physical definition of an object; an object is

an instance of a class. An object is instantiated using the new operator. Member functions within

the object are then referenced using the -> operator. However, all member data in a class definition

is private so it cannot be referenced using the -> operator. Therefore, member data is typically

referenced by users of the object via members functions that set or retrieve the value of member

data. Figure 6 shows the syntax for creating objects and accessing them.

-77-

Cross Link^ Programmer's Reference

Class Definition:
class <class-name> [: <base-class-name>]

C
<member-definition>
<member-definition>

where <member-definition> is any/all of the following:
<variable-name>;
static <variable-name>;
Ounction-name>((formal-argument-list>1);
static Ounction-name>((<formal-argument-list>l);

Member Function Definition:
<class-name>::<member-function>([<argument-list> ; <temporary-argument-list>])
C

<statements>

Figure 5.
Class definition syntax.

Object Creation:
<object-name> = new <class-name>((<constructor-arguments>3);

Object Access:
<object-name>-><function-name>((<arguments>1)
<object-name>-><data-name >;

Figure 6.
Object creation and access syntax.

Every object usually has a constructor as one of its member functions. Constructors have the

same name as the class and are used for initialization on any member data. They are automatically

called when an object is instantiated using the new keyword. Figure 7 shows an example

implementation of a class system to represent a point in space.

// The Point class definition
class Point
C

x,y;

Point(x,y);
Move(dx,dy);

GetX();
GetY();

// the coordinates of the point

// Constructor
// move the point

// get the data

-78-

Cross Link^ Programmer's Reference

// Constructor
Point::Point(a_x,a_y)

x = a_x;

Y = a_Y;

// move the point a distance (dx,dy)
Point::Move(dx,dy)
C

x += dx;
y += dy;

// get the x and y coordinates of point
Point::GetX()
C

return x;

Point::GetY()
C

return y;
)

// Example implementation of a Point class
main(; aPoint, x)
C

// instantiate a Point object at (0,0)
aPoint = new Point(0.0,0.0); // constructor is automatically called

// offset the point a distance of (10.0,10.0);
aPoint->Move(10.0,10.0);

// inquire about its coordinates
x = aPoint->GetX();

Figure 7.
Example implementation of class Point.

-79-

Cross Link^ Programmer's Reference

2 CROSS LINK PROGRAMMER'S REFERENCE

2.1 Programming Constants

Several constants are pre-coded into to the system. These are listed in the following table:

Name Value Comments

TRUE
FALSE

0
1

Generally used as a return value
from some functions.

PI 3.14159265

ID 000
ID 001
ID 011
ID 111
ID 101
ID 100
ID 010

N/A These are node degree of freedom
codes used by NodeGetD0F0,
NodeSetDOF() and NodePut()

ID_FF
ID_PP
ID_FP
ID_PF

N/A These are element fixity codes used
by^ElementGetFixity(),
ElementSetFixity(),^and
ElementPut().

Cross Link^ Programmer's Reference

2.2 Input / Output Functions

fclose()

Synopsis

fclose(file)

file - file handle

Remarks

fclose() closes the file associated with the file handle file.

Example

outputfile = fopen("test.dat","rb");

fctose(outputfite);

Cross Link^ Programmer's Reference

fopen0
Synopsis

fopen(fname,mode)

fname - the file name
mode^- the access mode for the file

Remarks

Use fopen to perform I/O to a file. fopen() returns the handle to the file frame opened. Valid
modes are any combination of the following access modes and file translation modes:

Access Modes for File I/O

String^Interpretation
"r"^Open file for read only operations
"w"^Open a new file for writing. Existing contents will be overwritten.

iiai,^Open a file for appending.
"r +"^Open an existing file for read and write operations. Error it the file

does not exist.
,,w+t,^Create a file and open it for reading and writing.
"a +"^Create a file and open it for reading and writing.

File Translation Modes for File 1/0

Mode^Interpretation

"b"
^

File is opened in binary mode. Every character is read as is without
the changes described below.

"t"
^

File is opened in translated mode subject to the following:
1. Carriage Return-Line Feed combinations on input are

translated to single linefeeds.
2. During input, the Ctrl-Z character is interpreted as the EOF

character.

Example

-82-

Cross Link^ Programmer's Reference

// open test.dat for writing to

outfile = fopen("test.dat 11,H0);

fwrite(outfile,"This file is called test.dat");

fread0
Synopsis

fread(file)

file- file handle (see fopen())

Remarks

Use fread to read a line from file. The line is read until a newline character (\n) is encountered.
The maximum line length is limited to 255 characters.

If there are no errors, fread() returns the the string read; otherwise it returns nil.

Example
// program to print the file test.dat to the watch window

main(; file, string)

(

// open test.dat for reading

file = fopen("test.dat","r");

// read the first line

string = fread(file);

while(string)(

print(string);

string = fread(file);

)

)

-83-

Cross Link^ Programmer's Reference

fwrite()
Synopsis

fwrite(file,...)

file- the file handle (see fopen())

Remarks

Use fwrite to write data to a file. Numeric values are automatically padded with a blank space
on the left hand side. Floating point numbers are output to four decimal point accuracy.

Additional characters can be used to control output:

\n^- new line character
\t^- insert a tab character

Example
// open test.dat for writing to

outfile = fopen("test.dat 11,110);

// write some text and add to Line feeds

fwrite(outfile,"\tThis file is called test.dat\n\n");

getc()
Synopsis

getc(fhandle)

fhandle - the file handle

Remarks

Use getc() to read the next character from the file associated with fhandle. The function
returns -1 when the end of file is reached.

Example
// read a character from file

char = getc(file);

print("Read the char: ",char," from file.");

Cross Link^ Programmer's Reference

putc()

Synopsis

putc(char,thandle)

Remarks

Use putc() to write the character char to the file associated with (handle.

Example

// write a character to file
putc("a",file);

print()

Synopsis

print(...)

Remarks

Use print() to print information to the Watch Window inside Cross-Link. Print takes any
number of data types and is capable of distinguishing between different data types. This
function is useful for debugging and displaying information to the user.

Example

print(ncount," nodes selected");

Cross Link^ Programmer's Reference

2.3 Math Functions

abs()

Synopsis

abs(number)

number^- the number

Remarks

abs() returns the absoulute value of number.

Example

value = -10.3454

value = abs(value); // value = 10.3454

acos() / asin() / atan()

Synopsis

acos(x)
asin(x)
at an(x)

Remarks

Use acos(), asino, atano to compute the arc cosine, arc sine and arc tangent of argument x.
For acos() and asin(), x must be between -1 and 1. The returned angle is in RADIANS.

Example

angle = acos(0.5); // angle = P1/3

Cross Link^ Programmer's Reference

atan2()
Synopsis

atan2(y,x)

Remarks

atan2() returns the arc tangent of y/x in radians.

Example
angle = atan2(y,x);

cos() / sin() / tan()
Synopsis

cos(theta)
sin(theta)
tan(theta)

Remarks

Use cos(), sin(), and tan() to compute the cosine, sine and tangent of angle theta (in
RADIANS)

Example
vat = cos(PI); // yal = -1

exp()
Synopsis

exp(x)

Remarks

Use exp() to calculate the exponential of x.

Example
eyal = exp(10.345);

-87-

Cross Link^ Programmer's Reference

hypot()
Synopsis

hypot(x,y)

Remarks

Usehypot() to compute the length of the hypotenuse of a right angle triangle given the length
of both sides, x and y.

Example
length = hypot(3.0,4.0);^// length = 5.0

log() / log10()
Synopsis

log(x)
log10(x)

Remarks

Use loge and log10() to calculate the natural logarithm and logarithm to the base 10
respectively of argument x.

Example
y = log(2.0); // t = 0.693147

Cross Link^ Programmer's Reference

pow() / pow10()
Synopsis

pow(x,y)
pow10(z)

Remarks

Usepow() to calculate the value of x raised to the power of y. Usepow100 to raise 10 to the
power of z.

Example
x = pow10(2);^// x = 100.0

y = pow(2,4);^// y = 16.0

sqrt()
Synopsis

sqrt(x)

Remarks

Use sqrt0 to compute the square root of value x. If x is less than zero an error will occur;

Example
y = sqrt(abs(-2.0);^// y = 1.414

Cross Link^ Programmer's Reference

2.4 String Functions

strcmp()

Synopsis

strcmp(stringl,string2)
strcmp (stringl ,string2,n)

stringl^- the strings to be compared
string2
n^- number of characters to compare

Remarks

The first function compares stringl and string2 lexigraphically. The second function compares
the first n characters of stringl and string2. Both functions are case sensitive.

strcmp () returns a number less than, equal to, or greater than 0, depending on whether stringl
is less than, equal to, or greater than string2, respectively.

Example

if(strcmp(token,"Node") == 0)
print("The token is a 'Node'");

if(strcmp("Kevin Etbury","KevinEtbury",5) == 0)
print("First 5 characters are the same!);

Cross Link^ Programmer's Reference

token()

Synopsis

token(string,delimiter)

string
delimiter

Remarks

- the number
- a string containing the delimiting characters

Use the token() function to parse the records out of a delimited string. The first argument,
string, is a character string containing all the delimited tokens. The second string, delimiter, is
a string describing the set of characters that delimit the tokens.

In general the token() function must be called several times to completely parse string. The
first call to token() includes the complete string that requires parsing. Subsequent call to
token() must pass 0 as the first parameter to indicate that parsing is still to be done on the old
string. However, every call still requires the delimiter string (which can be changed between
calls).

token() returns nil when there are no more records to parse.

Example

// parse each of the records from a string containing the

// following format (ANSYS Node command):

//^N,node_num,x,y,z

//

delimiter^11,11;^
// delimiter is a comma

string = "N,12,123.4,232.23,0.0";

// initialize the token parser

strtok = token(string,delimiter);

// check the first token to see if it is a node string

if(strcmp(strtok,"N")C

// get the node number

strtok = token(0,delimiter);

num = val(strtok);

// get the x, y and z coordinates

strtok = token(0,delimiters);

x = val(strtok);

strtok = token(0,delimiters);

y = val(strtok);

strtok = token(0,delimiters);

z = val(strtok);

-91-

Cross Link^ Programmer's Reference

val()

Synopsis

val (string)

string - the number in string form

Remarks

Use the val 0 function to convert string to a numeric value. If string contains any non-numeric
characters, val() returns nil, otherwise val() returns the numeric value.

Example

nunber = val("123.23");
number = val(flab123");

// nunber = 123.23
// number = nil

Cross Link^ Programmer's Reference

2.5 Cross Link System Functions

SetGrid

Synopsis

SetGrid(grid_x, grid_y, x_origin, y_origin, snapflag, gridflag)

grid x^- the x direction grid spacing
grid_y^- the y direction grid spacing
x_origin^- the x_origin of the grid
y_origin^- the y_origin of the grid
snapflag^- snap-to-grid flag (TRUE/FALSE)
gridflag^- grid display flag (TRUE/FALSE)

Remarks

The SetGrid() function is used to set the grid parameters.

Example

// set up grid with snaps off and grid display off

SetLimits(0,0,15000,10000);

snapflag = FALSE;

gridflag = TRUE;

SetGrid(1000, 1000,0,0,snapflag,gridflag);

Cross Link^ Programmer's Reference

New()
Synopsis

New()

Remarks

Use New() to reset a structure by erasing all nodes and elements. Any work not saved will be
lost.

Example

main()

C

1/ start with a clean structure

New();

SetLimits(0,0,15000,1000);

)

-94-

r 18121.1.11.4.11186.1,1141.14,,,k1.7 V .14 .111{114,1,

ANSYS Vile Import__

Cross Link^ Programmer's Reference

Prompt()

Synopsis

Prompt(title,prompt,value)

title - the title for the dialogue box
prompt^- the prompt string placed within the box
value^- the initial value to be edited (integer, float or string)

Remarks

Prompt() opens a dialog box centered on the screen. The diaglog box consists of a title bar
with title, a prompt string, a value editor and an OK button. The parameter value must be
initialized (type nil is not supported) with the type of value you wish to edit (ie. string, integer
or decimal number) before it is passed into this function.

Prompt() returns the new value entered by the user.

Example

main()
C

filename = "test.dat"
string = Prompt("ANSYS Fite Import... ","Import ANSYS filename: ",filename);

// edit an integer value
intval = 1;
intval = Prompt("Example Integer Editor","Enter an integer: ",intval);

-95-

88.

nrisys

Replace existing structure?

Imp 1 Ho^I

Cross Link^ Programmer's Reference

PromptYesNo()

Synopsis

PromptYesNo(title,prompt)

title - the title for the dialogue box
prompt^- the prompt string placed within the box

Remarks

PromptYesNo() opens a dialog box to retrieve a Yes or No answer from the user. The diaglog
box consists of a title bar with title, a prompt string, a Yes button and a No button.

PromptYesNo() returns the TRUE if the Yes button was pressed or FALSE if the No button
was pressed.

Example

main()

// do we want to run the macro with a new structure?
ans = PromptYesNo("ANSYS Fite Inport...","Replace existing structure?");
if(ans == TRUE)

New();^// erase the existing structure...

-96-

Cross Link^ Programmer's Reference

Repaint()
Synopsis

Repaint()

Remarks

Repaint() redisplays the contents of the structure database. Only items selected in the
Settings... Display will be displayed.

Example
// add a node and redisplay the structure

NodePut(NodeHigh(),1000,2000,ID000);

Redisplay();

SetLimits()
Synopsis

SetLimits(left,bottom,right,top);

Remarks

Use SetLimits() to set the current structure limits. The limits are defined as the minimum
area required to fit a structure on the screen. Cross Link will provide a viewport with at least
the specified limits However, in order to maintain an aspect ratio of 1:1 the x or y limits may
need to be internally adjusted. These adjusted limits are referred to as 'extents' and are stored
separately from the structure limits. Note that grids will only be drawn on the specified limits.

Example
// define Limits big enough to hold a 10m wide by 20m high structure

SetLimits(-1000,-1000,12000,22000);

-97-

Cross Link^ Programmer's Reference

Speaker()

Synopsis

Speaker()

Remarks

Use Speaker() to sound the speaker on your computer. This is useful for debugging programs

Example

// select a node - make some noise if we can't find if
err = NodeSelect(num);
if(err == nil)(

Speaker();
print("Can't find node ",num);

-98-

Cross Link^ Programmer's Reference

2.6 Node Functions

NodeErase()

Synopsis

NodeErase()
NodeErase(num)

num - node number to erase

Remarks

The first function removes all selected nodes from the node database. The second function
erases node num from the node database. Both functions will additionally remove any point
loads, springs and elements attached to the node.

Example

// erase the last node in the database
num = NodeHigh() - 1;
retval = NodeErase(num);
if(retval == nil)

print("Node number ",num,"does not exist!");
else

print("Node number ",nun, "deleted");

Cross Link^ Programmer's Reference

NodeFirst() / NodeNext()

Synopsis

NodeFirst()
NodeNext()

Remarks

NodeFirst() returns the number of the first node in the node database. It is generally used in
conjunction with the NodeNext() function to traverse the node database and perform
operations on individual nodes. NodeFirst() returns nil if there are no nodes in the node
database.

Example

// function to erase nodes that are NOT selected
MyErase(,num)
(

num = NodeFirst();^// get the first node in the database
while(num != nil)(

if(!NodeSelected(num))
NodeErase(nun);

// get the next 'nun' in the database
nun = NodeNext();

)

)

Cross Link^ Programmer's Reference

NodeGetDON) / NodeSetD0F()

Synopsis

NodeGetDOF(num)
NodeSetDOF(num,dof)

num - node number to get
dof - node dof code

Remarks

NodeGetDOF 0 returns the degree of freedom code for node num.
NodeSetDOF 0 sets the degree of freedom of node num. See NodePut() for a description of
these codes.

Example

main()
(

// change all pinned nodes to fixed nodes
ModifyD0F(ID_110,1D_111);

)

// function to change all nodes with dof lold_dof' with 'new_dof
ModifyD0F(old_dof, new_dof; num, dof)
(

num = NodeFirst();
while(num != nil)(

if(NodeGetDof(nun) == old_dof)
NodeSetDof(num,new_dof);

nun = NodeNext(); // proceed to next number
)

)

-101-

Cross Link^ Programmer's Reference

NodeGetX() / NodeGetY()

Synopsis

NodeGetX(num)
NodeGetY(num)

num - node to get

Remarks

NodeGet?() returns the x or y coordinate of node num or returns nil if node num does not
exist.

Example

// function to calculate the distance between two nodes
Length(num1,num2; dx, dy)
C

dx = NodeGetX(num1) - NodeGetX(num2);
dy = NodeGetY(num1) - NodeGetY(num2);
length = hypot(dx,dy);
return(length);

NodeHigh()

Synopsis

NodeHigh()

Remarks

NodeHigh() returns the number of the next available node number.

Example

// add a node but find out the next number we can use
num = NodeHigh();
NodePut(num,100,1200,ID_000);

Cross Link^ Programmer's Reference

NodePut()
Synopsis

NodePut(num,x,y,dof)

num - the node number
x,y - the x and y coordinates
dof - the dof code number

Remarks

NodePut places a node at the specified x,y coordinates with a dof degrees of freedom.
Allowable dof codes are global variables set by the system. A code is specified by 'ID_' along
with the x,y and rotational degrees of freedom represented by ones and zeros with 1 = free
and 0 = fixed. Allowable codes are:

ID_000 - free joint
ID_001 - 0 rotation joint
ID 011
ID 111 - fully fixed joint
ID 100
ID 110 - pinned joint
ID 101

If node num already exists in the node database, Cross Link will update the existing node
parameters with the supplied values.

Example
// generate a parabolic Line of nodes

k = 0.00005;

for(x=0.0, x <= 10000; x += 500)(^// space nodes at 500

num = NodeHigh();

y = k * x * x;

NodePut(num,x,y,1D_000);^// ID_000 is a system variable

Cross Link^ Programmer's Reference

NodeSelect()

Synopsis

NodeSelect(num)
NodeSelect(left,bottom,right,top)

Remarks

The first function selects node num. The second function selects ALL nodes defined by a box
with coordinates (leftbottom) to (righ4top). NodeSelect() returns the number of nodes
selected. Use the NodeSelected() function to determine if a node is selected.

Example

// select all nodes within (100,100) to (500,800)

count = NodeSelect(100,100,500,1000);

print(count," nodes selected");

NodeSelected()

Synopsis

NodeSelected(num)

num - node number to inquire about

Remarks

NodeSelected returns TRUE if node num is selected and FALSE if node num is not selected.

Example

if(NodeSelected(num) == TRUE)

print("Node ",nun, "is selected");

Cross Link^ Programmer's Reference

NodeSetX() / NodeSetY()

Synopsis

NodeSetX(num,x_coordinate);
NodeSetY(num,y_coordinate);

Remarks

NodeSetX and NodeSetY are used to set the x and y coordinates of num respectively. Both
return TRUE if succesful and FALSE if not.

Example

// set the x coordinate on node 12
num = 12;
ret = NodeSetX(num,10500.0);

NodeToggleSelect()

Synopsis

NodeToggleSelect()

Remarks

NodeToggleSelect() runs through the whole node database and toggles selected and
unselected nodes.

Example

// delete all nodes except for number 5 and 7
NodeSelect(5);
NodeSelect(7);
NodeToggleSelect(); // flip selected/unselected nodes
NodeErase();

-105-

Cross Link^ Programmer's Reference

NodeUnSelect()
Synopsis

NodeUnSelect()

Remarks

NodeUnSelect() unselects all selected nodes in the node database.

Example
// unselect all unselecded nodes

NodeUnSelect();

Cross Link^ Programmer's Reference

2.7 Element Functions

ElementErase()

Synopsis

ElementErase()
ElementErase (num)

Remarks

The first function erases all selected elements. The second function erases element num. The
return value for this function is TRUE if successful of FALSE if num does not exist.

Example

// erase all selected elements

ret = ElementErase();

ElementFirst() / ElementNext()

Synopsis

ElementFirst()
ElementNext()

Remarks

ElementFirst() returns the number of the first node in the node database. It is generally used
in conjunction with the ElementNext() function to traverse the element database and perform
operations on individual elements. Both functions return nil when there are no more elements
in the element database.

Example

// traverse the element database

element = ElementFirst();

while(element)(

// perform any required operations on each element

element = ElementNext();

-107-

Cross Link^ Programmer's Reference

ElementGetFixity() / ElementSetFixity()

Synopsis

ElementGetFixity(num)

ElementSetFixity(fix_code)
ElementSetFixity(num,fix_code)

Remarks

ElementGetFixity returns the fixity code for element num.
ElementSetFixity sets the fixity code for an element. If the first is used, all selected elements
are affected. If the second is used, only element num is affected (if it exists).

See ElementPut() for list of fix _code's.

Example

// set all selected elements to pin-pin

ElementSetFixity(ID_PP);

Cross Link^ Programmer's Reference

ElementGetLoNode() / ElementGetHiNode()

Synopsis

ElementGetLoNode(el_num)
ElementGetHiNode(elnum)

Remarks

ElementGetLoNode returns the lower node number of element el_num.
ElementGetHiNode returns the higher node number of element el_num.
Both return nil is el num does not exist.

Example

// function to erase all elements that are attached to node 'nun'
Spc_Erase(num; el_num o tonode,hinode)
C

// run through the element database
el_num = Elementfirst();
while(el_num != nil)(

Londe = ElementGetLoNode(el_num);
hinode = EtementGetHiNode(el_num);

// do we have a match??
if(lonode == nun)

ElementErase(el_num);
else if(hinode == nun)

EtementErase(el_num);

// get the next element
elnum = EtementNext();

Cross Link^ Programmer's Reference

ElementSetProp0

Synopsis

ElementSetProp(A,Av,I)
ElementSetProp(el_num,A,Av,I)

el_num^- the element number
A^- the Area of element el_ num (returned)
Av^- the Shear Area of element el_num (returned)
I^- the Moment of Inertia of el num (returned)

Remarks

ElementSetProp() sets the sectional properties for the element. The first function set the
section properties of all selected elements. The second function sets the section properties
for element elnum.

Example

ElementSetProp(el_num,A,Av,1);

ElementHigh()

Synopsis

ElementHigh()

Remarks

ElementHigh() returns the number of the next available element number.

Example

// add an element but find out the next number we can use
num = ElementHigh();
ElementPut(num,lonode,hinode,1D_FF);

-110-

Cross Link^ Programmer's Reference

ElementPut()

Synopsis

ElementPut(el_

el_num
lonode
hinode
code

Remarks

- reference number for the element
- the lower node number
- the high node number
- the fixity code

num,lonode,hinode,code)

ElementPut add an element to the element database. The lonode and hinode numbers must
already exist. The fixity codes precode into the system as follows:

ID
-

PP- lonode Pinned, hinode Pinned
ID

-

FP- lonode Fixed, hinode Pinned
ID

-

PF- lonode Pinned, hinode Fixed
ID FF- lonode Fixed, hinode Fixed

Example

// generate parabolic line of nodes and elements
Parabola(dx,dy,num1,num2,elnum)

num1 = NodeHigh();

// place the starting node
NodePut(num1,0,0,ID_000);

// generate the line at increments of 1000
for(dx=1000.0; dx <= 11000.0; dx += 1000.)(

num2 = NodeHigh();
dy = 0.00008 * dx * dx;
NodePut(num2,dx,dy,ID_000);

// get the next available element number and add the element
elnum = ElementHigh();
ElementPut(elnum,num1,num2,ID_FF);
num1 = num2;

Cross Link^ Programmer's Reference

ElementSelect()

Synopsis

ElementSelect(el_num)
ElementSelect(left,bottom,right,top)

Remarks

ElementSelect selects an element. The first function selects an element by its number, el _num.
The second function selects any elements inside a box with coordinates (left,bottom) to
(right, top).

Example

ElementSelect(1000,1000,5000,10000);

ElementSelected()

Synopsis

ElementSelected(el_num)

Remarks

ElementSelected returns TRUE if if element el num is selected of FALSE otherwise.

Example

// see if element 12 is selected

if(ElementSelected(12) == TRUE)

print("Element 12 is selected");

else

print("Element 12 is NOT selected");

Cross Link^ Programmer's Reference

ElementToggleSelect()

Synopsis

ElementToggleSelect()

Remarks

ElementToggleSelect toggles selected and unselected elements in the element database.

Example

// erase element all UNselected elements using ToggleSelect()

ElementToggleSelect();

ElementErase();

ElementUnSelect()

Synopsis

ElementUnSelect()

Remarks

ElementUnSelect unselects all selected elements in the element database.

Example

// unselect all the elements

ElementUnSelect();

-113-

Cross Link^ Programmer's Reference

3 EXAMPLE APPLICATIONS

Following is the BOB source code for two sample applications

3.1 Demonstration Program
// ^
// File:^DEMO.BOB

// Description:^Demo of the BOB programming Language

// Written By:^KME
// Date:^Decenber 15, 1991
//
// Copyright (c) 1992, by Kevin Michael Elbury
// ^
main()

C
// start with a clean structure

New();
print("Cross Link Demo Program - (demo.bob)");

// set up the grid and limits
SetGrid(1000,1000,0,0,TRUE,TRUE);
SetLimits(-1000,-1000,15000,12000);

// perfom the demostration
Circle(3000.,5000.,3000.,20);

SineWave(8000,5000,14000,5000,2000);

// update the display
Repaint();

// Circle()
// %% Creates a circle out of node and elements with origin at x,y

//
Circle(x,y,radius,points; i,num1,num2,elnum,dx,dy,dt,theta,start)

C
start = num1 = NodeHigh();^// rememeber the first node

num2 = 0;

i=1;
theta = dt = 2.0 * PI / points;
NodePut(num1,x+radius,y,ID_000);
while(i<points)f

theta = dt * i;
dx = x + radius * cos(theta);
dy = y + 1.30 * radius * sin(theta);
I++;

num2 = NodeHigh();
NodePut(num2,dx,dy,ID_000);

// get the next element number
elnum = ElementHigh();
ElementPut(elnum,num1,num2,ID_FF);
num1 = num2;

)

// add the element
ElementPut(ElementHigh(),num2,start,ID_FF);
Repaint();

-114-

Cross Link^ Programmer's Reference

// SineWave()
// X% Creates a sine wave out of node and elements with origin at xo,y0
//^and ending at xf,yf. Amplitude of wave is A.
//
SineWave(xo,yo,xf,yf,A;num1,num2,spc,w,i,di,dx,dy)

num1 = num2 = 0;
di = 80;
spc = (xf - xo)/ di;
w = 12 * PI / (xf-xo);
num1 = NodeHigh();
NodePut(numl,xo,yo,ID_000);
i = 1;
dx = xo;
while(dx < xf)(

dx = xo + i * spc;
dy = yo + A * sin(w * i * spc);
I++;
num2 = NodeHigh();
NodePut(num2,dx,dy,ID_000);
elnum = EtementHigh();
ElementPut(elnum,num1,num2,ID_FF);
num1 = num2;

)

-115-

Cross Link^ Programmer's Reference

3.2 ANSYS File Transfers

ANS-IN.BOB

The following program provides limited file compatability with the ANSYS finite element program.

// ^
// File:^ANS-IN.BOB
// Description:^Imports an ANSYS script file into Cross Link
// Written By:^KME
// Date:^January 14, 1992

//
// Copyright (c) 1992, by Kevin Michael Elbury
// ^
main(; filename,line,tok,dx,dy)
f

// set this to the ANSYS file you wish to import
filename = "test.dat";
delimit = ","; // field delimiter is a comma - global var

file = fopen(filename,"r");

// read in first line and get the first token in the string...
line = fread(file);
tok = token(line,delimit);

max_x = max_y = 3.4 * pow10(-38.0);^// smallest floating point number possible
min_x = min_y = 3.4 * pow10(38.0);^// Largest ...

// compare first token
while(line)C

if(strcmp(tok,"N") == 0)
readNode();

else if(stromp(tok,"E") == 0)
readElement();

else if(strcmp(tok,"0") == 0)
readBoundaryCond();

else
print("Ignoring command: ",tok);

// read and tokenize next line
line = fread(file);

if(line)

tok = token(line,delimit);

);

// add 30% margin to limits
dx = max_x - min_x;
dy = max_y - min_y;
dx *= 0.30;
dy *= 0.30;

minx -= dx;
max_x += dx;

min_y -= dy;
max_y += dy;

SetLimits(min_x,min_y,max_x,max_y);
Repaint();

// readNode()
// %% continues parsing the ANSYS 'N'ode command and adds the node

//^to the node database

//
// Format:
//^N,node_num,x_coord,y_coord
//

-116-

Cross Link^ Programmer's Reference

readNode(;num,x,y)
C

// get the next token string and convert it to a number
nun = val(token(0,delimit));
x = val(token(0,delimit));
y = val(token(0,delimit));
// add the node to the data base
NodePut(num,x,y,ID_000);
// evaluate structure limits
max_x = (x > max_x ? x : max_x);
max_y = (y > max_y ? y : max_y);
min_x = (x < min_x ? x : min_x);
min_y = (y < min_y ? y : min_y);

// readElement()
// %% continues parsing the ANSYS 'E'Lement command
//
// Format:
//^E,lonode_num,hinode_num
//
readElement(;Ionode,hinode,num)
C

// get the next token string and convert it to a number
lonode = val(token(0,delimit));
hinode = val(token(0,delimit));
num = ElementHigh();
// add the node to the data base
ElementPut(num,lonode,hinode,ID_FF);

// readBoundaryCond()
// %% Parses the ANSYS 'D'isplacement command .

//^and sets the degrees of freedom on the associated nodes
//
// Format:
//^D,node_num,UX,disp(„„UY,ROTZ]
//
readBoundaryCond(;num,disp,dof,tok)
C

// get the next token string and convert it to a number
nun = val(token(0,delimit));
tok = token(0,delimit);
if(strcmp(tok,"UX") == 0)

dof = ID_100;
else if(strcmp(tok,"UY") == 0)

dof = ID_010;
else if(stromp(tok,"ROTZ") == 0)

dof = ID_001;
else

print("Error: No support for dof - ",tok," on node ",nun);
disp = val(token(0,delimit));
if(disp > 0.0)

print("Warning: Displacment > 0 on node ",num);
// read in the rest of the degrees of freedom
tok = token(0,delimit);
while(tok)(

if(strcmp(tok,"UX") == 0)
dof = dof 1 ID_100;^/ bitwise . OR to add additional dof

else if(strcmp(tok,"UY") == 0)
dof = dof 1 ID_010;

-117-

Cross Link^ Programmer's Reference

else if(strcmp(tok,"ROTZ") == 0)
dof^dof I ID 001;

else
print("Error: No support for dof - ",tok," on node ",num);

tok = token(0,delimit);

// add the node to the data base
NodeSetD0F(num,dof);

Cross Link^ Programmer's Reference

ANS-OUT.BOB
// ^
// File:^ANS-OUT.BOB

// Description:^Exports a Cross Link structure to ANSYS
// Written By:^KME

// Date:^January 14, 1992

//
// Copyright (c) 1992, by Kevin Michael Elbury
// ^
main(;file)

C
file = fopen("test.dat","w");

// write a file header, go directly to PREP?
fwrite(file,"! ^ \n");
fwrite(file,"! - Cross Link to ANSYS Transfer -\n");
fwrite(file,"! \n");

fwrite(file,"/PREP7\n");

fwrite(file,"/TITLE Cross Link to ANSYS Transfer\n");

// dump the data to 'file'
writeNodes(file);

writeElements(file);
writeBoundaryCond(file);

// close the file
fclose(file);
Speaker();

)

// writeNodes()

// X% Extracts all node info from the database and dump to file in ANSYS format

//
// Format:
//^N,node_num,x_coord,y_coord
writeNodes(file;num,x,y)

C
print("Writing nodes...");
fwrite(file,"! ^ \n");
fwrite(file,"! ***Node Data\n");
fwrite(file,"! ^ \n");
nun = NodeFirst();
while(num)C

x = NodeGetX(num);
y = NodeGetY(nun);
fwrite(file,"N,",num,",",x,",",y,"\n");
nun = NodeNext();

// writeElements()

// X% Extracts all element info from the database and dump to file in ANSYS format

//
// Format:
//^EFlonode_nuv,hinode_nun

//
writeElements(file;num,lo,hi)

C
print("Writing elements...");
fwrite(file,"! ^ \n");
fwrite(file,"! ***Element Data\n");
fwrite(file,"! \n");
nun = ElementFirst();

-119-

Cross Link^ Programmer's Reference

while(num)(
lo = ElementGetLoNode(num);
hi = ElementGetHiNode(num);
fwrite(file,"E,u,lo,li,u,hi,"\n");
num = ElementNext();

// readBoundaryCond()
// %X Scans node database and extracts any boundary conditions in ANSYS format
//
// Format:
//^D,node_num,UX,disp(„„UY,ROTZ1 - (] optional
//
writeBoundaryCond(file;num,dof)
C

print("Writing BC's...");
fwrite(file,"! ^ \nu);
fwrite(file,"! ***Boundary Conditions \n");
fwrite(file,"! ^ \nu);
num = NodeFirst();
while(num)(

dof = NodeGetD0F(num);
if(dof == ID_100)

fwrite(file,"D,u,num,H,UX,0.0\n");
if(dof == 1D_110)

fwrite(file,"0,",num,u,UX,0.0,„,UY\n");
else if(dof == 1D_111)

fwrite(file,"D,",num,",UX,0.0„„UY,ROTZ\n");
else if(dof == ID_101)

fwrite(file,flD,",num,u,UX,O.0„„ROTZ\n");
else if(dof == 1D_001)

fwrite(file,"0,",num,",ROTZ,0.0\n");
else if(dof == 10_010)

fwrite(file,"D,",num,",UY,0.0\n");
else if(dof == 1D_011)

fwrite(file f uD,u,num,H,UY,0.0,„,ROTZ\n");
num = NodeNext();

-120-

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128

