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Abstract

This thesis summarizes a numerical model used to predict the wave field in a harbour of constant

depth with partially reflecting boundaries, and describes laboratory tests undertaken to assess the

numerical model and the importance of partial reflection effects. The numerical model is based on

linear diffraction theory, and involves the application of a partial reflection boundary condition.

The extension to general harbour configurations that includes breakwaters is made by utilizing a

wave doublet representation of the fluid boundaries instead of the usual wave source

representation. The numerical model is initially compared to closed-form results for the

fundamental case of a straight impermeable offshore breakwater, and the method is found to

compare well for this case. Further comparisons are made for a semi-circular harbour with a pair

of symmetrical protruding breakwaters, and for a rectangular harbour with a pair of symmetrical

protruding breakwaters. The boundaries of the semi-circular harbour were perfectly absorbing and

the numerical model predicts the wave field within the harbour realistically. For the later

configuration cases which are considered include perfectly absorbing, perfectly reflecting and

partially reflecting harbour boundaries, and in all cases the numerical model predicts the wave field

within the harbour realistically.

Experiments were conducted at the Ocean Engineering Centre at BC Research, Vancouver. During

the experiments the wave field within a model harbour was measured under different conditions

corresponding to changes in the wave period, incident wave direction, incident wave height, and

reflection coefficients of the harbour boundaries and breakwaters. The experimental results are

compared to those of the numerical model and agreement is generally good. In general the wave

heights within the harbour are slightly underpredicted, while the wave heights outside the harbour

are slightly overpredicted. Overall, the numerical model is found to provide a reasonably reliable

means of predicting the wave field within a harbour of constant depth and arbitrary shape with

partially reflecting boundaries.
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Chapter 1

Introduction

1.1 General

A primary consideration in the design of harbours is the degree of protection afforded to vessels

within the harbour. Consequently the prediction of the wave field within a harbour is of major

concern to the design team planning the harbour. In developing such predictions, it should be

borne in mind that the wave field within the harbour may be influenced by a combination of wave

transformation effects, including wave shoaling, wave diffraction, wave refraction, wave

reflection, wave breaking and wave run-up.

Over the years both experimental and theoretical approaches to the solution of wave

transformations in a harbour have been developed. The most fundamental theoretical approach

has dealt primarily with the problem of wave diffraction around breakwaters in a harbour of

constant depth. However, these calculations have either ignored wave reflection off interior

boundaries of the harbour, or else have treated all boundaries as fully reflecting. Since partial

reflections are not accounted for, these approaches may give rise to incorrect predictions of the

wave field. Closed-form solutions for wave diffraction around a straight semi-infinite breakwater,

and a gap between a pair of co-linear straight, semi-infinite breakwaters are often used in marina

design for estimating short wave diffraction into marinas. In order to treat the more general case of

harbours and/or breakwaters of arbitrary configuration, as indicated in Fig. 1.1, research into the

development of suitable numerical approaches has been underway for some time. Bearing in mind

the ultimate objective of treating the general case of a harbour of arbitrary shape, with breakwaters

and with partial reflection, Isaacson and Baldwin (1991) recently presented a numerical method of

predicting the wave field in a harbour using a wave doublet distribution along the fluid boundaries.

The wave doublet distribution is not as widely used as the conventional wave source distribution.
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The method is based on linear diffraction theory and gives rise to an integral equation based on

a wave doublet distribution along the fluid boundaries. Advantages of a doublet distribution over a

source distribution are:

(i) breakwaters can be modelled. Unlike a doublet distribution, a source distribution cannot

model a thin breakwater because the boundary conditions on both sides cannot be modelled

simultaneously when the breakwater is treated as very thin.

(H) partial reflection along the boundaries can be modelled. For one-sided boundaries along a

harbour contour the doublet distribution can be extended to include the case of partial

reflection. In the case of a two-sided boundary, corresponding to a thin breakwater, the

scattered potential may be represented as due to a distribution of both wave sources and wave

doublets.

The use of a doublet or dipole distribution is well known from classical hydrodynamics (Lamb,

1932) but little has been reported on its use to solve problems of water wave diffraction (Mei,

1978, Yeung, 1982, Hess, 1990).

Isaacson and Baldwin (1991) compared their formulation to the fundamental case of a straight

impermeable offshore breakwater for which a closed-form solution is available and the method

compared well. Further comparisons were made with more general diffraction problems such as a

circular cylinder, rectangular harbour, and a circular harbour with protruding breakwaters, and in

all cases excellent agreement with known solutions was obtained.

The lack of previous work based on the wave doublet representation of the fluid boundaries

prompted the present research to try to verify or calibrate the numerical model using experimental

results. A harbour of arbitrary shape with both two-sided fully-reflecting boundaries, and one-

sided partially-reflecting boundaries is modelled by using wave doublet representations of the fluid

boundaries.
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1.2 Literature Review

A number of theoretical analyses have been carried out to investigate wave diffraction

phenomena neglecting the effects of interior boundary reflection. Penny and Price (1952)

published a solution of the boundary value problem for small amplitude waves impinging on a

single semi-infinite straight breakwater, based on the equivalent problem in optical diffraction

which had earlier been solved rigourously by Sommerfeld. This was verified by experimental data

presented by Putman and Arthur (1948). Wiegel (1962) used Penny and Price's theoretical

approach to study wave diffraction around a single breakwater and presented tables of diffraction

coefficients and corresponding diffraction diagrams. These are also given in the 'Shore Protection

Manual' (1984), and in other texts.

The theory of diffraction of water waves which are incident normally through a gap between a

pair of coliner, straight semi-infinite breakwaters was also described by Penny and Price (1952).

Their theoretical work was in agreement with the experimental work carried out earlier by Blue and

Johnson (1949). Johnson (1951) developed an approximate analytical solution to obtain

diffraction patterns for waves approaching a gap between a pair of semi-infinite colinear

breakwaters from various wave directions. More recently, this solution was extended to non-

colinear breakwaters by Memos (1980). Sobey and Johnson (1986) investigated narrow

breakwater gaps, typical of smaller gaps where available results were sparse, and extended the

technique to angled incidence for wide breakwater gaps and generally to non-aligned breakwaters.

Kos and Kilner (1987) carried out a set of experiments dealing with pure wave diffraction

through a breakwater gap. They eliminated the effects of reflected waves, cross waves and basin

resonance effects.

The above cases all relate to short wave diffraction into a harbour so that wave reflections off

the harbour boundaries are neglected. On the other hand, long wave resonance in a harbour is
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governed by complete reflection along the boundary. For this case Hwang and Tuck (1970)

presented a numerical procedure by representing the harbour boundary as a distribution of wave

sources with strengths chosen to ensure that the full reflection boundary condition is satisfied along

the boundary. An alternative approach proposed by Lee (1971) involves dividing the fluid into

two regions, one within the harbour and the other exterior to the harbour, and applying matching

conditions at the boundary between the regions. Mattioli and Tinti (1980) extended this method to

harbours with a projecting breakwater or headland. In a variant of the method, Chen and Mei

(1974) used a finite element solution for the interior region matched to a boundary integral solution

for the exterior region. The special cases of resonance in a rectangular harbour has been

investigated by Miles and Munk (1961), Garrett (1970) and Mei (1983).

The problem of partially reflecting boundaries was treated by Berkhoff (1976). The boundaries

are schematized as vertical and a mixed boundary condition is used instead of the full reflection

condition. Chen (1986) introduced partial reflection and bottom friction refinements to a hybrid

element model of wave behaviour in a harbour. Isaacson and Qu (1990) presented a general

solution for wave behaviour in a harbour of arbitrary shape and constant depth, based on the

approach indicated by Berkhoff (1976) with a matching boundary and taking partial reflections into

account. Isaacson and Baldwin (1991) used a wave doublet representation of the harbour

boundaries, for harbours of arbitrary shape and constant depth, taking partial reflections into

account.

1.3 Research Objectives

The objectives of the present investigation are:

(i) to carry out laboratory tests with a model harbour using different interior reflection

coefficients in order to investigate the wave field within the harbour, described by contours

of wave height and variations of water surface elevation (1) and wave height (H) along

traverses of the harbour interior.
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(ii) to streamline the numerical model of Isaacson and Baldwin (1991) and to compare its

predictions to corresponding results of the physical model.
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Chapter 2

Numerical Model

2.1 Mathematical Treatment

2.1.1 Governing Equations

The general case of a harbour of arbitrary configuration and with one or more breakwaters is

shown in Fig. 1.1. It is assumed that all topographical irregularities lie within the contour C where

the depth is constant and that the coastline is otherwise straight and coincides with the y-axis. A

train of regular small amplitude waves approaches the harbour as shown and the wave field in the

vicinity of the harbour is to be determined. A coordinate system (x,y,z) is defined with x and y

horizontal and z measured vertically above the still water level. The fluid is assumed

incompressible and invisid and the flow is irrotational, so that the flow may be described by a

velocity potential (130 which satisfies the Laplace equation within the fluid region. Provided that all

barriers are considered vertical and to extend from the seabed (or deep water) up to the free

surface, the velocity potential is represented as:

= A 0(x cosh[k(z+d)] cto(x,y,z)	 exp(-iwt)	 [2.1]cosh(kd)

where t is time, d is the still water depth, (0(x) is a two-dimensional potential function which is to

be determined, and x represents a general point (x,y) in the horizontal plane. Also A = -igH/2co,

i = H is the incident wave height, k is the wave number, and co is the angular frequency

which is related to the wave number by the linear dispersion relation:

CO 2 = gk tanh(kd)	 [2.2]

Eq. [2.1] directly satisfies the seabed and free-surface boundary conditions. In addition, the

potential function itself must satisfy the Helmholtz equation within the fluid region and is also
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subject to a boundary condition along the fluid boundaries and to a radiation condition. In the case

of complete reflection at impermeable boundaries, the boundary condition corresponds to that of

zero normal velocity along the fluid boundary:

a(I) — 0
an —

[2.3]

where n is the distance normal to the fluid boundary as indicated in Fig. 1.1.

It is convenient to express the potential function 4) as a superposition of a known incident wave

potential,,, and a scattered wave potential 4s :

(I) = Ow ± Os	 [2.4]

The incident wave potential O w is known and may be expressed as:

Ow (x) = exp [ ik (xcos0 + ysin0)] 	 [2.5]

where 9 is the incident wave direction measured from the x axis as shown in Fig. 1.1.

Solving for 4)s is the crux of the problem, since a solution for 4)s then directly provides 0. Any

required property of the wave field may then be obtained. In summary, 4) s satisfies (i) the

Helmholtz equation, (ii) the radiation condition, and (iii) the reflection boundary condition.

2.1.2 Extension to Partial Reflection

For the more general case of wave diffraction in harbours, neither the assumption of fully

absorbing or fully reflecting boundaries is really appropriate since in practice partial reflection

invariably occurs within a harbour. A boundary condition corresponding to partial reflection may

be introduced in the manner used by Chen (1986), and Isaacson and Qu (1990). This takes the

form of a mixed boundary condition :

& I) ±ocko = 0
Dn

[2.6]



8

in which n is distance into the fluid region measured normal to the boundary and a ( = at + ia2) is

a complex transmission coefficient. This coefficient may be interpreted in a number of different

ways as summarized by Isaacson and Qu (1989). These relate to;

(i) its relation to the rate of transfer of energy at the boundary,

(ii) its relation to the height and phase of the wave field at the boundary,

(iii) its relation to the conventional reflection coefficient.

In particular, the transmission coefficient a ( = al + ia2) may be related to the reflection

coefficient Kr and a phase shift p associated with the reflection, and the angle y which the incident

wave train makes with the normal to the boundary. Assuming the wave train undergoes oblique

reflection from a vertical wall located at x = 0, the total potential of the combined wave field

corresponds to a three-dimensional wave pattern and may be written as the sum the incident and

reflected wave potentials;

(1) = A [ exp[ik (x cos 7 + y sin 7)] + Kr exp[-ik (x cos y - y sin y) + 43]) [2.7]

Here Kr is defined as the ratio of the reflected wave height to the incident wave height.

Substituting Eq. [2.7] into Eq. [2.6], the transmission coefficient a is given as:

al —
1 + IC? + 2 Kr cos

(1 - IC?) cos y 

1 + Ki. + 2K r cos 13

For the particular case of normally incident waves (7 = 0°) and 13 = 0° may be expressed in

terms of the conventional reflection coefficient Kr as:

a 1 = 0
1 - K r 

a 2 — 1 + K r

a; —

2K r sin p cos y

[2.8]

[2.9]
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2.1.3 Green's Function Representation

The boundary value problem which has been specified is solved by expressing the scattered

potential at any point x in the fluid domain as due to a distribution of wave doublets on the fluid

boundary S:

Os(x) = —
1

4ic s
J
r 

1-L(t) G(r,t) dS
	

[2.10]

where g(t) represents the doublet strength distribution function, t = (40)) is the doublet location

along the fluid boundary S and G is a known Green's function for a wave doublet. This

corresponds to a fundamental solution of the Helmholtz equation which satisfies the radiation

condition, and is given as:

G(X;t) = i IC H( P(kr) cos[ 	 [2.11]

where r = Ix - tl = '\/ (x - ) 2 + (Y-T1) 2, R is the angle at the doublet location which the point x

makes with the doublet axis taken normal to the surface contour as shown in Fig. 2.1 and HT is

the Hankel function of the first kind and order one.

The application of the boundary condition Eq. [2.3] for the general case of partial reflection

gives rise to the following integral equation for t():

f	 ;t)	 a(
p.(4) 

aG 	
dS +	 a(i)wu.(4) G (x; 4) dS – - ,,, ( x) - k a(x) O w (x) [2.12]

4n	 an	
k 

4n
x) i

S

where x is the point on S at which the boundary condition is applied, and n is the normal vector to

S at x. In the case of a fully reflecting portion of the boundary, a = 0 so that the second integral in

Eq. [2.12] is then absent. In the case of a fully absorbing portion of the boundary, a = i and the

radiation condition is satisfied directly so that this portion of the boundary can then simply be

omitted from Eq. [2.12]. Along one-sided boundaries Si, the Green's function may be taken as
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either a wave source or wave doublet, although it is customary to use the wave source (eg. Hwang

and Tuck, 1970). In Eq. [2.12] the Green's function has been taken to be a wave doublet and it

will be shown here that this provides a practical alternative to wave source methods. Along two-

sided boundaries S2, the wave source representation is no longer appropriate since a source

distribution involves a velocity discontinuity across the contour of the distribution. A wave

doublet avoids this difficulty and may be used to simultaneously satisfy the boundary condition of

full reflection on both sides of a breakwater, Hunt (1980). The extension to partial reflection

implies that the velocity potential must be represented as due to a distribution of both wave sources

and wave doublets. This refinement gives rise to numerical difficulties and has not yet been

developed so that in the present study two-sided boundaries are taken to be fully reflecting. Thus

a is then zero and the second integral in Eq. [2.12] is omitted for x on S2.

In evaluating the integrals in Eq. [2.12], the derivative of the Green's function aG/an is

required. This may be expressed as:

aG
an	

H ( 1
x;4) = - in {	 'r

)(1cr) cos 
(y+(3) — k H(P ) (kr) cosy cos13}	 [2.13]

where HW is the Hankel function of first kind and order zero, and y and 13 are indicated in Fig. 2.1

and are related to the normal vectors at x and 4:

nxx (x-4) + 4 (y-11) 
cos y —	 [2.14]r

ri (x-4) + n ); (y-i) 
cos 13 — x r [2.15]

where nx and ny are the direction cosines of the normal vector n with respect to the x and y

directions, and the superscript denotes the location at which the direction cosines are evaluated.
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2.2 Numerical Approximation

The integral equation is solved by a discretization process in which the fluid boundary is

divided into N short straight segments, and the doublet strength distribution is assumed constant

over each segment . In this way the integral equation is transformed into a matrix equation:

 

N
I Bii jai = bi

j=1
[2.16]

where

Nowbi = -	 --.1 (xi) - k a(xi) cp w (xi)

Bid  1 1 a9— ' 
'

(x' 4i) dS + k a(xi) 4-17i AfsG
i (xj;4j) dS

' 4 ir	 an
ASj

[2.17]

[2.18]

and ASj is the length of the j-th segment, xi denotes the centre of the i-th segment, and the

integrations apply to the moving point t.

The evaluation of the matrix coefficients Bii is carried out separately for the first and second

integrals in Eq. [2.18]. For i#j, the second integral is evaluated by the usual mid-point

approximation. However, for the first integral the normal velocity induced by one segment on a

neighbouring segment is not small, so that a mid-point approximation is unsuitable and a numerical

integration is then necessary. This has been carried out using a 4 point Gaussian quadrature rule

(e.g. Brebbia and Walker, 1980), with care taken to include the variation of y and 13 along the

segment length. When i = j, a singularity occurs in both integrals so that an analytic integration is

then used. Retaining the leading terms in expansions for aG/an and G near the singularity a

suitable approximation for Bii is given as:
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(kAS )
 - 1 } + i
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a
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nkAS	 4n	 47c
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where the higher order terms, though not strictly required for convergence, have been found to

greatly increase the performance of the method.

Once the matrix coefficients Bij have been evaluated, Eq. [2.16] can be solved by a standard

complex matrix inversion procedure to provide the doublet strengths pj. The potential function, O s

at a general point x, may then be obtained from a discretized version of Eq. [2.10]:

1
Os(x) =	 G(x;j) ASi

47c j= 1
[2.20]

where, as a consistent approximation, G is assumed constant over the segment length and a mid-

point approximation is used. If the point x lies on the boundary, a singularity occurs when x is at j

and an integration of the leading singular term gives:

(	 =
	 [2.21]

where the positive sign corresponds with the definition of the surface normal.

Once Os and hence 4:• are known, then any required property of the wave field may be obtained.

In particular, the water surface elevation ri at time t=0 is useful in obtaining a general view of the

wave field at a particular instant, and the diffraction coefficient Kd describes the variation of the

wave heights within the harbour. These are given as:

tl = Re (0)	 [2.22]

Kd =14)w +	 [2.23]
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Chapter 3

Physical Model

3.1 Experimental Facilities

A set of laboratory experiments relating to the wave field within a harbour were conducted at the

Ocean Engineering Centre (OEC) at BC Research, Vancouver during November 1991. The Centre

is operated by the British Columbia Research Corporation, under an agreement between BC

Research, the University of British Columbia, and the National Research Council of Canada

(NRC).

The wave basin at OEC measures 30.5 m x 26.5 m (100 ft x 87 ft) with a maximum operating

depth of 2.4 m (8 ft) deep (see Fig. 3.1). The basin is equipped with a unidirectional wavemaker,

and a modern VAX computer system. The dimensions of the wavemaker are 15 m x 1.8 m (50 ft

x 6 ft). It may be relocated within the basin in order to provide for the propagation of waves from

a number of different directions. The wavemaker may be operated in a number of different modes

which can be selected by adjusting a mechanical pivot point. The wavemaker may be operated in

either a piston mode, a hinged flapper mode, or a combined mode with equal contributions of

piston/flapper. This allows for the accurate simulation of shallow, intermediate and deep water

waves.

Wave absorber modules may be positioned around the basin so as to minimise the corruption of

the measured wave field by wave reflections from the basin walls . These wave absorbers are

made from two sheets of 0.6 m x 3 m perforated metal fixed 0.3 m apart by timber blocks. The

absorbers are portable and work by dispersing the wave energy as it passes through the perforated

metal.
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The wave generation, data acquisition and analysis is carried out using the GEDAP software

system. GEDAP was developed at the NRC Hydraulics Laboratory in Ottowa and is an acronym

for Generalized Experiment control, Data acquisition and data Analysis Package.

3.2 Model Harbour

The hypothetical model was conceived on the basis of a harbour at Comox, B.C., Canada (see

Fig. 3.2). Fig. 3.3 shows the harbour at Comox in detail, including depth soundings and

breakwater lengths. It should be noted that the marina located to the left of the breakwater has

since been relocated to the right of the breakwater (i.e. inside the new harbour).

In planning the model harbour layout, a length scale ratio of 1:50 was found to be suitable, and

the water depth was kept constant at 450 mm. On the basis of Froude scaling, the time scale ratio

is 1: 4-5-0. A view of the physical model is shown in Photograph 3.1 and a sketch of the model is

given in Fig. 3.4.

The model experiments can be divided into three different phases as indicated in Fig. 3.5. In

Phase 1, both the breakwater and the harbour interior represented fully reflecting vertical walls.

This was accomplished by constructing the harbour boundaries from vertical sheets of plywood

(see Fig. 3.6 (a), (c)), with hardboard used for the curved portions of the boundaries as shown in

Photograph 3.4. In Phase 2, the breakwater remained fully reflecting while the interior harbour

boundaries were changed to represent a partially reflecting beach. In order to achieve this, the

plywood and hardboard were replaced by a beach of slope 1:2.5, which was comprised of sand

overlain by a layer of artificial horsehair as shown in Fig. 3.6 (d) and Photograph 3.5. In Phase 3,

the breakwater was changed to represent a partially reflecting rubblemound breakwater (see

Fig. 3.6 (b)) and the harbour interior remained a partially reflecting beach (see Photograph 3.6).

The rubblemound breakwater was represented by placing rocks, of mean diameter 60 mm, against

the existing plywood breakwater at a slope of 1:1.5. While running the tests for Phase 1 a

considerable interval was required to allow for dissipation of the wave energy.
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The wavemaker at BC Research has four sections on the wave board. In order to minimise the

amount of wave energy produced, the two end sections of the wave board were disconnected. As

a result the wavemaker had to be calibrated. To do this calibration a 2-dimensional wave flume,

3 m wide, was placed orthogonal to the wave board face. This enabled the measurement of the

wave produced by the wavemaker without interference from wave reflections, diffraction and other

distortions.

3.3 Dimensional Analysis

In planing the model tests and presentation of results, it is useful to carry out a dimensional

analysis of the problem in order to identify the governing parameters so that controlled variables in

the model could be suitably varied. For regular incident waves and a specified harbour

configuration, the wave height H at any location within the harbour may be expressed in the form:

H = f (Hi, 0, d, L, g, x, y)	 [3.1]

where

Hi is the incident wave height,

9	 is the angle of wave incidence,

d	 is the still water depth,

L	 is the wavelength,

g	 is the acceleration due to gravity,

(x,y) is the position inside the harbour.

Note that the wave celerity c or wave period T are not specifically identified since these may be

expressed in terms of d, g and L by linear wave theory.

The application of dimensional analysis to Eq. [3.1]then provides:

Hi = f	 H	
[3.2]
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The wave steepness Hi/L may be omitted if nonlinear effects are ignored. In Eq. [3.1] H/Hi

corresponds to the diffraction coefficient Kd. Consequently, the diffraction coefficient may

expressed in the form:

Kd =g=f{Lf. ,dre} [3.3]

Thus, in carrying out tests for a specified harbour configuration subjected to regular waves,

contour plots of the diffraction cofficient may be obtained for different incident wave directions 0,

and different values of d/L corresponding to changes in the wave period. In addition, since the

primary focus of the present study is an examination of the effects of the reflectivity of the harbour

boundaries, contour plots would also be required for different degrees of reflectivity.

3.4 Wave Elevation Measurement

Capacitance wave probes were used to measure the instantaneous water surface elevation.

Water level measurements made with these probes are accurate to within ± 1.0 mm, and are not

influenced by spray above the continuous air/water interface.

The wave probes were calibrated by using the GEDAP calibration called RTC_NPCAL. The

calibration is based on a fourth order polynomial relating the wave elevation to the corresponding

sensor signal measured in volts. The corresponding fine calibration constants were computed and

stored in the GEDAP port file. They were subsequently used in processing the data (see section

3.6).

It was essential to place wave elevation probes at a sufficiently large number of grid positions in

order to measure the wave field throughout the interior of the model harbour. The grid spacing

was small enough to provide an acceptable resolution of wave elevation information, while not

resulting in too cumbersome an amount of data. The grid spacing was also prescribed by the

shortest wavelength to be tested. A 0.6 m spacing was deemed appropriate.
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The wave probe apparatus is shown in Fig. 3.7. It consists of an array of 14 wave probes set

as two rows of 7 probes supported on a rigid frame which could be moved to the required

locations with relative ease. One reference probe was located outside the harbour as indicated in

Fig. 3.8. The measurement of the wave field within the harbour was achieved by moving the

rectangular array of fourteen probes to three and four positions for Phases 1 & 2 and Phase 3

respectively. The corresponding areas covered in the three phases the area shown in Fig. 3.7.

3.5 Reflection Analysis

In order to ensure accurate prediction of the wave field using the numerical model, it is essential

to be able to specify values of the reflection coefficients of the fluid boundaries. To this end a

series of reflection analyses were carried out on the physical model.

The experimental layout for these tests is shown in Fig. 3.9. A set of two plywood guide

walls, 1 m apart, were positioned perpendicular to the inner harbour boundary so as to create a

two-dimensional wave field without any influence from reflection or other wave distortions, thus

ensuring accurate measurement of the reflection coefficients. Three colinear wave probes were set

up, with the nearest located 3 m from the boundary. A series of three tests were carried out

corresponding to the three categories of boundary located at the end of the guide walls:

(i) sand at 1:2.5 overlain with horsehair, (see Photograph 3.7),

(ii) a vertical plywood sheet, (see Photograph 3.8),

(iii) rocks at 1:1.5 positioned against the plywood, (see Photograph 3.9).

For each boundary, wave reflection tests were carried out for the five wave conditions used in the

experiments.

The data was analysed using the program REFLM. This program separates the incident and the

reflected wave from a measured wave field on the basis of a least squares analysis using data from

3 probes. The accuracy of the method decreases when the spacings between the two pairs of

adjacent probes is equal (Isaacson, 1991), and consequently probe two was placed slightly off
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centre such that L12 = 0.95 L23, where L12 and L23 are the distances between the two pairs of

adjacent probes. Isaacson (1991) found that this relative spacing should have good accuracy.

3.6 Wave Generation, Data Acquisition and Analysis

The GEDAP software package includes a program category denoted WAVE_GEN which

contains a comprehensive set of programs for two-dimensional wave generation in laboratory

flumes, towing basins and wave basins. A program RWREP2 computes the wave machine control

signal for a regular wave train corresponding to a wave height and period specified by the user.

The wave heights and periods may be specified in either full scale units or model scale units, since

RWREP2 automatically converts these to model scale units when calculating the control signal for

the wave machine. The duration of the control signal is always set to an integer number of wave

periods, so that the signal can be continuously recycled when driving the wave machine. The

control signal file produced by program RWREP2 is sent to the wave machine controller through a

D/A output channel by using the real-time control program RTC.

The software package RTC (Real Time Control) Single User System was used in all stages of

the experimental procedure. RTC consists of a main hardware execution program and a command

entry program that allows the user complete control over data acquisition, control loops and signal

generation.

Wave generation was carried out by first loading the control signal file into an RTC buffer file

and then enabling the buffer to start the wave machine. When the enable command was given, the

output signal was smoothly ramped up from zero amplitude to full amplitude over a period of

10 sec. This automatic ramping was a carried out in order to protect the wave machine from being

subjected to sudden transients in its control signal.

The program RTC was also used to measure the wave train produced by the wave machine.

The wave probes were sampled at a rate of 20 samples per second for a duration of 45 seconds.
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The resulting data file had was demultiplexed by running the program PDMULT2 before the

measured wave train could be analysed.

This program is used to demultiplex a GEDAP Primary Data File produce by the GEDAP Data

Acquisition System. The demultiplexing produces individual GEDAP compatible data files that

may then be analysed or plotted by existing GEDAP programs. The output data is converted to

calibration units using calibration factors stored in the GEDAP Port File. The demultiplexing is

base upon the polynomial function:

z = A + Bx + Cx2 + Dx3 + E x4 [3.4]

From PDMULT2 there is one output file for each wave probe. The signal from each probe can

be inspected visually using GPLOT. From the plot of wave height vs time one can inspect the

wave train and choose the segment or subrecord to be analysed.

SELECT1 is used to select a sub-record from a longer time series input record. The sub-record

is defined by specifying T1 and T2, where T1 is the initial time of the sub-record and T2 is the

final time. The selected sub-record will match T1 and T2 as closely as possible subject to the

resolution limit imposed by the time step of the input record. The selected sub-record is stored in a

GEDAP output file.

The sub-record can now be analysed using ZCA (Zero-Crossing Analysis of a Wave Elevation

Time Series Record). ZCA performs a time-domain zero-crossing analysis on a time series signal.

It is designed primarily for wave elevation records but it may also be used to analyse other types

of data such as force records. ZCA performs both zero up-crossing and zero down-crossing

analyses.

The program ZCA checks the time spacing of the input signal to ensure that the sampling rate is

high enough for accurate zero-crossing analysis. If the input signal contains fewer than 50 points

per average zero-crossing period, then it is automatically resampled using cubic spline interpolation
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so that the time spacing is small enough to meet this criterion. In addition to resampling, ZCA also

uses local parabolic curve fitting to define the peaks and troughs in the signal. The zero up-

crossing and down-crossing times are calculated by linear interpolation so they are not limited by

the sampling rate of the input signal. The parameter of interest is average wave height which is

taken as the average of the average zero up-crossing wave height and average zero up-crossing

wave height.

The average wave height from each of the 15 wave records are now collected using the

program COLLECT, which collects individual header parameter values from several different

GEDAP input files and stores them in a single data vector in a GEDAP output file. The number of

input files is equal to the number of program cycles. One output file is generated for each

parameter name selected.

The wave heights are then exported to the UBC main-frame computer in order to generate

contour plots. This is achieved using the program EXPORT which converts one or more binary

GEDAP data files to a single ASCII file with a simple format. This program is normally used to

convert GEDAP data for processing by non-GEDAP programs or for transfer to non-VAX

computers such as Apple Macintosh or main frame terminals. Each GEDAP input file is stored in a

single column of the ASCII output file.

The contours plots are generated using the program DISSPLA on the UBC main-frame

computer. Once generated, the plots are transferred to an Apple Macintosh IIx computer for

printing.

3.7 Test Program

In view of the foregoing, the purpose of the experiments was to measure the wave field within

the harbour under different conditions corresponding to changes in the wave period (and

consequently the length), incident wave direction, incident wave height, the reflection coefficients
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of the harbour boundaries and finally the reflection coefficients of the breakwaters. Table 3.1 lists

the characteristics of the wave conditions tested.

The conditions were selected with respect to a base case corresponding to the following

parameters:

0 = 0°, T = 0.803 sec, H = 30 mm.

Thus Table 3.1 corresponds to the following set of tests:

(i) the effects of wave period were examined by changing the wave period to include

T = 0.803, 0.937, 1.068, 1.20 sec, while keeping harbour boundaries and breakwaters fully

reflecting and the other parameters constant (tests 2 - 5).

(ii) the effects of wave direction were investigated by changing the wave direction to include

0 = +30°, 0°, -30°, (tests 1, 2, 7).

(iii) the effects of wave height were examined by changing the wave height to include

H = 30 mm, 15 mm (tests 1, 6).

(iv) the series of 7 tests were repeated with the low reflecting harbour boundary and fully

reflecting breakwaters (tests 8-14).

(v) finally 6 of these tests were repeated (wave direction 0 = -30° was omitted), with the low

reflecting harbour boundary and the partially reflecting breakwaters (tests 15-20).

As can be seen from Table 3.1, all of the test conditions correspond to intermediate depth waves

(i.e. 0.05 < d/L < 0.5), and are in fact close to the deep water wave region (i.e. d/L 0.5).

Therefore the wave generator was used in the flapper mode, which simulates deep water wave

conditions, in order to produce the required wave conditions as closely as possible.
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Chapter 4

Results & Discussion

4.1 Comparison of Numerical Results with Exact Solutions

The wave doublet representation of the fluid boundaries was examined to verify its suitability.

Preliminary results are presented here for cases corresponding to:

(i) a straight offshore breakwater for which an exact solution is available,

(ii) a breakwater gap represented by a semi-circular harbour with straight fully reflecting

breakwaters and totally absorbing interior harbour boundaries. The results may be compared

to the exact solution for a breakwater gap between a pair of straight, fully reflecting, colinear,

semi-infinite breakwaters (Sobey and Johnson, 1986).

4.1.1 Straight Offshore Breakwater

In order to investigate the convergence of the wave doublet representation, a comparison was

made to results for the wave force on a rigid vertical plate, since this force corresponds to a suitable

averaged value of the velocity potential difference across the breakwater. The force F is given as:

F _ pgHd tanh(kd) r
2	 kd	 J (Ow -F(0s) nx dS e -kot [4.1]

Table 4.1 indicates the number of segments necessary to reproduce the closed-form solution

adequately and the corresponding degree of accuracy, for the particular case of the plate subjected

to a uni-directional incident wave train of unit height, and propagating orthogonal to the plate

(0 = 0°) as indicated in Fig. 4.1. A plate length to wave length ratio of B/L = 2.0, and a still water

depth to wave length ratio of d/L = 0.4 were chosen.

The ratio of the maximum horizontal force computed using N segments to the corresponding

closed-form solution is tabulated for the various numbers of segments used. The table indicates
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that as little as 10 segments per wave length is adequate to predict the force. A 4 point Gaussian

integration of the matrix coefficients in Eq. [2.15] was used to obtain the results. Further

improvements corresponding to either 8 or 16 point are not shown here, but were found to give

only a marginal increase in accuracy and therefore were not warranted. The diagonal components

of the matrix equation were approximated to the second order.

For breakwater applications it is the wave height distribution around the breakwater that is of

practical interest rather than wave force. Fig. 4.2 shows a comparison of the distribution along the

breakwater contour for the same conditions as before: B/L = 2.0, d/L = 0.4 and 9 = 0°. The

breakwater extends along the y-axis from y/L = ±1. The distributions of the wave height along the

upwave (exposed) and downwave (sheltered) sides of the breakwater are shown in Fig. 4.2 (a)

and 4.2 (b) respectively. Numerical solutions for N = 10 and N = 20 are compared to the closed-

form solution, and the solution obtained using N = 20 is seen to show excellent agreement with the

closed-form solution.

Of more general interest is the wave height distribution in the vicinity of the breakwater, and the

corresponding contours of the wave height are shown in Fig. 4.3 for the same conditions as

before, and with N = 50. Once more excellent agreement with the closed form solution is

obtained. A three-dimensional view of the water surface elevation in the vicinity of the breakwater

at the particular instant t = 0 is shown in Fig. 4.4, and serves to confirm that the general form of

the wave field in the region near the breakwater is as anticipated. The figure clearly shows the

wave build-up in the upwave region and a wave height reduction in the leeward (sheltered) region

of the breakwater.

4.1.2 Breakwater Gap

In order to investigate the accuracy of the wave doublet representation of the harbour

boundaries, numerical results for a semi-circular harbour with protruding breakwaters as shown in

Fig. 4.5, with fully reflecting breakwaters and fully absorbing harbour boundaries, was compared
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to the closed-form solution for the case of a gap between a pair of straight, fully reflecting,

colinear, semi-infinite breakwaters. The harbour has a radius of 350 m and a gap width of 50 m

between the pair of symmetrical breakwaters.

The harbour was subjected to a uni-directional incident wave train of unit wave height,

propagating orthogonal to the breakwater gap (0 = 0°) as indicated in Fig. 4.5. The wave period

of T = 5.7 sec, depth of d = 20 m corresponds to a wave length L = 50 m which gives a

breakwater gap to wave length ratio B/L = 1.0.

Fig. 4.6 shows a comparison of the contours of the diffraction coefficient in the vicinity of the

breakwater gap. The wave field is symmetric so that only one half is shown. The breakwater gap

extends along the y axis between y/L = IF 0.5. The solution obtained corresponds to 10 segments

per wave length. The wave doublet representation is seen to show very good agreement with the

exact solution.

A three-dimensional view of the surface elevation at the particular instant t = 0 in the vicinity of

the breakwater gap is shown in Fig. 4.7. The general form of the wave field is as expected,

exhibiting the expected features of wave crests which approximately form concentric arcs centred at

the middle of the breakwater gap, and wave heights which noticeably decrease in the shadow zone

behind the breakwaters and which are close to the incident wave height outside of the shadow

zone. This figure serves to confirm visually that the wave doublet representation of the wave field

yields satisfactory results.

4.2 Effects of Reflection Coefficients

The wave doublet representation of the fluid boundaries enables the representation of one-sided

partially reflecting boundaries along with two-sided fully reflecting boundaries. In an effort to

investigate the performance of this method, the numerical model was applied to the fundamental

case of a rectangular harbour with protruding breakwaters as shown in Fig. 4.8. The harbour has

a length of 300 m, a width of 300 m, and a gap width of 50 m between the pair of symmetrical



25

breakwaters. The harbour was subjected to a uni-directional incident wave train of unit wave

height, propagating orthogonal to the breakwater gap (0 = 0°) as indicated in Fig. 4.8. The wave

period of T = 5.7 sec, depth of d = 20 m corresponds to a wave length L = 50 m which gives a

breakwater gap to wave length ratio B/L = 1.0. The fully reflecting breakwaters and the partially

reflecting harbour boundaries are represented by wave doublets.

The wave field within the harbour predicted by the present method for the case of fully

absorbing boundaries and impermeable breakwaters is shown in Fig. 4.9 and 4.10. Fig. 4.9

shows the contours of diffraction coefficients which are compared to the predictions of the

analytical solution for a pair of colinear breakwaters. As can be seen the wave field is similar to the

analytical solution for example the wave heights diminish along the breakwaters. The wave

doublet representation of the rectangular harbour is seen to show very good agreement with the

exact solution. Fig. 4.10 shows a view of the computed free water surface elevation at time t = 0.

This exhibits the expected features of wave crests which approximately form concentric arcs with

centres at the middle of the breakwater gap.

In comparison to this case, Fig. 4.11 and 4.12 show corresponding results for the identical

conditions, except that the boundaries of the harbour are fully reflecting, Kr = 1.0. This case of

full reflection was considered by Miles and Munk (1961), Garrett (1970), and Mei (1983) in the

context of harbour resonance. The diffraction coefficient contours within the harbour are shown in

Fig. 4.11, while Fig. 4.12 shows the computed free surface elevation at time t=0, indicating a

generally confused, three-dimensional wave field within the harbour.

The more genera'. case of boundaries with partial reflection corresponding to a reflection

coefficient of Kr = 0.1 is shown in Fig. 4.13 and 4.14. For the relatively low value of reflection

coefficient adopted here, the results are not too different from the case of fully absorbing

boundaries as already indicated in Fig. 4.9 and 4.10. The diffraction coefficient contours show a

slight increase in the wave energy in the harbour (Fig. 4.13). However Fig. 4.14 shows no

significant differences from the corresponding results for fully absorbing boundaries (Fig. 4.10).
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Fig. 4.15 compares the wave height contours for the example problem being considered, but

with the reflection coefficient along the harbour boundaries taken as Kr = 0, 0.1 and 0.2 in turn.

The figure shows an increasing irregularity in the diffraction coefficient contours as a transition to

the more confused state of full reflection, indicated in Fig. 4.11 is being approached.

4.3 Numerical and Experimental Analysis of Harbour

4 A3xExperimental Result slt

The purpose of the experiments was to measure the wavefield within the harbour under

different conditions corresponding to changes in the wave period (and consequently the length),

incident wave direction, incident wave height, the boundary reflection characteristics of the harbour

boundaries and finally the reflection coefficients of the breakwaters. The experimental layout

shown in Fig. 3.4 was subjected to a total of 20 test runs (see Table 3.1).

4.3.1.1 Effect of Wave Period

Four wave periods were used in the experiments as indicated in Table 3.1 (T = 0.8, 0.94, 1.07,

1.2 sec). The reference probe (Fig. 3.8) did not function during one of the tests in this set (test 2,

T = 0.8 sec) so that the corresponding plot is absent. Fig. 4.16 shows the diffraction coefficient

contour plots for the different periods (except one), used for Phase 1 of the tests, corresponding to

highly reflective harbour boundaries and breakwaters. The contours indicate a confused wave field

corresponding to standing waves within the harbour. On close examination, the contour plots

show some unacceptable features, including contours crossing and relatively jagged contours.

These effects may be due in part to an imperfect contouring program and in part to the relatively

course spacing of the wave probes used to measure the wave field. (A spacing of 0.6 Lm in =

600 mm, was chosen). The wave lengths of the standing waves in the harbour appear to have

been considerably shorter than this value. This combined to seems to have given rise to the poor

quality of the contour plots. It is difficult to extract any useful results from these plots.
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Fig. 4.17 shows diffraction coefficient contour plots for the four periods used for Phase 2 of

the tests, corresponding to highly reflective breakwaters and partially reflecting beaches. In all

cases the wave heights now decrease significantly in the shadow region as expected. The general

trend of increased wave heights in the shadow region with increasing wave period is in agreement

with standard results (e.g. Shore Protection Manual, 1984).

Fig. 4.18 shows the diffraction coefficient contour plots for the four periods used for Phase 3

of the tests, corresponding to partially reflecting breakwaters and partially reflecting beaches. Once

more the wave heights decrease significantly in the shadow region. There is little change in the

plots with increasing period except for the largest period (T = 1.2 sec) which shows a slight

decrease in the wave heights near the tip of the breakwater. This may be due to inaccurate

measurement, rather than indicating a general trend.

4.3.1.2 Effect of Incident Wave Direction

Three incident wave directions were used throughout the experiments: 0 = -30°, 0°, +30° (see

Fig. 3.4). Fig. 4.19 shows the diffraction coefficient contours for the three directions with

T = 0.8 sec for the Phase 2 set of tests with increasing angle of incidence. As expected, a greater

level of wave energy enters the harbour, indicated by the contours extending further into the

harbour. A comparison of Figs. 4.19 (a) and 4.19 (c) indicates that the difference is quite

appreciable emphasising the importance of adequately accounting for the incident wave angle.

In Fig. 4.19 (c) the contours may not be as accurate as one would like (the 0.8 contour should

not change orientation). This may be due to the reference probe miss-reading the wave height. It

is probable however that the general appearance of the contours is relatively accurate.

4.3.1.3 Effect of Boundary Reflection Characteristics

A total of three combinations of reflection coefficients were used throughout the experiments

corresponding to the three Phases of the tests. Phase 1 corresponds to a highly reflecting
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breakwater and fully reflecting harbour boundaries; Phase 2 corresponds to a highly reflecting

breakwater and partially reflecting harbour boundaries; and Phase 3 corresponds to a partially

reflecting breakwater and partially reflecting harbour boundaries. The three corresponding

configurations are sketched in Fig. 3.5.

The diffraction coefficient contours for each of the three Phases and for T = 0.94 sec are shown

in Fig. 4.20. The diffraction coefficient contours for Phases 2 and 3 show a pattern similar to that

for the case of a semi-infinite breakwater (Shore Protection Manual, 1984) since the interior

harbour boundaries have a relatively low degree of reflectivity. On the other hand the contours for

Phase 1 show a more confused wave field associated with the presence of standing waves which

were observed. The highly reflecting boundaries prevented the dissipation of wave energy at the

harbour boundaries.

The difference in diffraction coefficient contours between Fig. 4.20 (a) and (c) emphasises the

importance of accounting for the reflectivity of the harbour boundary.

4.3.1.4 Effect of Incident Wave Height

Two incident wave heights were used throughout the experiments. The nominal incident wave

height was 30 mm for most of the tests, whereas this was reduced to 15 mm test 6, 13 and 20,

corresponding to T = 0.8 sec for each of the three phases. In order to indicate the influence of

wave height, Fig. 4.21 shows a comparison between the results of test 13 and 9 corresponding to

the two wave heights but otherwise identical conditions (Phase 2, T = 0.8 sec, 0 = 0°). The figure

shows the diffraction coefficient along a traverse at y = 2.1 m. In both cases the wave heights

decrease significantly in the shadow region and the diffraction coefficients are very similar

indicating that the diffraction coefficient is independent of wave height. As indicated earlier the

reference probe did not function during test 2, therefore the comparison between test 6 and test 2

cannot be made.
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Fig. 4.22 shows a corresponding comparison between the results of test 20 and 16

corresponding to the two wave heights but otherwise identical conditions (Phase 3, T = 0.8 sec,

0 = 0°). The diffraction coefficient along a traverse at y = 2.2 m is shown, and once more the

wave heights decrease significantly in the shadow region and the diffraction coefficients are very

similar indicating that the diffraction coefficient is independent of wave height.

4.3.1.5 Measured Reflection Coefficients

The reflection coefficients of the vertical plywood, sand covered by horsehair at a slope of

1:2.5, and the rocks at a slope of 1:1.5 were measured during the physical experiments. The

results are summarized in Table 4.2. These results did not exhibit any trends (i.e. no apparent

relationship between reflection coefficient and either wave period or wave height).

4.3.2 Comparison of Numerical and Experimental Results

The harbour configuration used for the numerical modelling is shown in Fig. 3.4. In setting up

the numerical model the fluid boundaries were divided into short segments of length of 0.1 m

corresponding to one tenth of the shortest wave length (1 m) as recommended in section 4.1.1. To

test the harbour using the numerical model, the coordinates and reflection coefficients of each

segment was specified. All the fluid boundaries (coastline, breakwaters and harbour interior) were

represented by wave doublets. Table 4.3 shows the four conditions and the corresponding

experimental tests for which the numerical results were obtained.

Test 5 corresponds to the case of highly reflecting breakwaters and interior boundaries (Phase

1) with waves propagating orthogonal to the breakwater (8 = 0°) and a period T = 1.2 sec.

Fig. 4.23 shows a comparison of the diffraction coefficient contours in the region behind the

breakwater. Unfortunately there seems to be little correlation between the numerical and

experimental results. This is probably due to the difference in grid size used and to the

shortcomings in the experiments as indicated in section 4.3.1.1. For the experimental model a grid

of 8 x 7 points was used to create the contour plot, whereas for the numerical model a grid size of
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20 x 30 was used. The fluid boundaries were all highly reflecting giving rise to standing waves

and therefore a large number of contour intervals. Lack of resolution with the experimental grid

may have caused the omission of many contour lines thus changing the superficial appearance of

the plot. However on close examination of Fig. 4.23 it becomes apparent that, at any given point

the actual values of the diffraction coefficients are similar on both plots while the contours take

different routes due to the lack of precision.

Test 9 corresponds to the case of highly reflecting breakwaters and interior boundaries (Phase

2) with waves propagating orthogonal to the breakwater (0 = 0°) and a period of 0.8 sec.

Fig. 4.24 shows a comparison of the diffraction coefficient contours in the region behind the

breakwater. The agreement between the experimental results and the numerical predictions is now

generally good, with all of the important features of the wave field within the harbour being

reproduced. The lack of resolution of the experimental grid may again have contributed to the

omission of some contour lines.

Test 12 was for the case of highly reflecting breakwaters and interior boundaries (Phase 2) with

waves propagating orthogonal to the breakwater (0 = 0°) and a period of 1.2 sec. Fig. 4.25 shows

a comparison of the diffraction coefficient contours in the region behind the breakwater.

Agreement is generally quite good, with the numerical model underestimating the wave heights

within the harbour. This may be due to radiating secondary waves generated at the breakwater tip

as indicated by Pos and Kilner, 1987. The occurence of secondary waves has been described by

Biesel (1963) who states that "any local surface pressure fluctuations of a given frequency will

give rise to a circular wave of the same frequency and radiating energy in all directions."

Test 14 was for the case of highly reflecting breakwaters and interior boundaries (Phase 2) with

waves propagating at an angle to the breakwater (0 = +30°) and a period T = 0.8 sec. Fig. 4.26

shows a comparison of the diffraction coefficient contours in the region behind the breakwater.

Agreement between the numerical and experimental contour plots is generally quite good, with the
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numerical model underestimating the wave heights within the harbour. The lack of resolution of

the experimental grid may again have caused the omission of some contour lines.

In all cases the wave heights decrease significantly in the shadow region. In general the wave

heights within the harbour are slightly underpredicted. This phenomenon has been reported

previously by Pos and Kilner, 1987 and may be due to radiating secondary waves as described

earlier in this section.
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Chapter 5

Conclusions & Recommendations

5.1 Conclusions

A numerical method developed by Isaacson and Baldwin (1991) for predicting the wave field in

a harbour of constant depth and arbitrary shape which contains partially reflecting boundaries has

been verified as predicting the wave field accurately. The approach used is based on linear

diffraction theory and uses a wave doublet representation of the harbour boundaries.

Numerical results are presented for the wave field due to a specified incident wave train

approaching a straight offshore breakwater, a semi-circular harbour with a pair of symmetrical

protruding breakwaters, and a rectangular harbour with a pair of symmetrical protruding

breakwaters. The wave field in the lee-side of the straight offshore breakwater predicted by the

numerical model agrees closely with the exact solution. For the semi-circular harbour case, the

boundaries were considered to be perfectly absorbing, and the numerical model predicts the wave

field within the harbour realistically. For the rectangular harbour, cases which are considered

include perfectly absorbing, perfectly reflecting and partially reflecting harbour boundaries. In all

of these cases the numerical model predicts the wave field within the harbour realistically.

The numerical model using a doublet representation for both one-sided and two-sided fluid

boundaries is compared to an experimental model for different wave period, incident wave

direction, incident wave height, reflection coefficients of the harbour boundaries and reflection

coefficients of the breakwaters. The agreement between the experimental results and the numerical

predictions is generally good. As a rule the wave heights within the harbour are slightly

underpredicted, while the wave heights outside the harbour are slightly overpredicted.
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The numerical model gives an accurate and reliable means of predicting the wave field within a

harbour of arbitrary shape with partially reflecting boundaries. It is relatively easy to use and a

users guide is available to help in the execution of the program.

5.2 Recommendations for Further Study

The scope of the present study was limited to partially reflecting one-sided boundaries and fully

reflecting two-sided boundaries. The obvious progression from here is to investigate the case of

partially reflecting two-sided boundaries. Isaacson and Baldwin (1991) made initial efforts to

extend their method to the case of two-sided partially reflecting boundaries with limited success.

The closed form solution for wave scattering around a partially reflecting straight breakwater

exhibited noticeable wave height reduction along the surface with reduced reflection coefficients.

However when the numerical method was applied the results exhibited a discontinuity in the

velocity potential at the breakwater tip and convergence was not apparent. Research into this area

would be another step along the road towards a numerical model which realistically predicts the

wave field within an arbitrarily shaped harbour.
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Tables

Test run e
(deg)

H
(mm)

T
(sec)

L
(mm)

d
gT2

d
L

Kr
Breakwater

Kr
Shoreline

Phase

1 +30 30 0.803 1,000 0.072 0.450 0.92 0.92 1

2 0 30 0.803 1,000 0.072 0.450 0.92 0.92 1

3 0 30 0.937 1,333 0.052 0.3375 0.92 0.92 1

4 0 30 1.068 1,666 0.040 0.270 0.92 0.92 1

5 0 30 1.200 2,000 0.032 0.225 0.92 0.92 1

6 0 15 0.803 1,000 0.072 0.450 0.92 0.92 1

7 -30 30 0.803 1,000 0.072 0.450 0.92 0.92 1

8 -30 30 0.803 1,000 0.072 0.450 0.92 0.21 2

9 0 30 0.803 1,000 0.072 0.450 0.92 0.21 2

10 0 30 0.937 1,333 0.052 0.3375 0.92 0.21 2

11 0 30 1.068 1,666 0.040 0.270 0.92 0.21 2

12 0 30 1.200 2,000 0.032 0.225 0.92 0.21 2

13 0 15 0.803 1,000 0.072 0.450 0.92 0.21 2

14 +30 30 0.803 1,000 0.072 0.450 0.92  0.21 2

15 +30 30 0.803 1,000 0.072 0.450 0.45 0.21 3

16 0 30 0.803 1,000 0.072 0.450 0.45 0.21 3

17 0 30 0.937 1,333 0.052 0.3375 0.45 0.21 3

18 0 30 1.068 1,666 0.040 0.270 0.45 0.21 3

19 0 30 1.200 2,000 0.032 0.225 0.45 0.21 3

20 0 15 0.803 1,000 0.072 0.450 0.45 0.21 3

Table 3.1	 Wave conditions and reflection coefficients for each of the 20 test runs of the

experimental model.



N F(N)
Fexact

10 1.0360

20 1.0181

50 1.0071

100 1.0036

200 1.0020

Table 4.1	 Effect of the number of segments N on the computed wave force on a vertical plate.
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Material Kr

Plywood 0.92

Rock (1:1.5) 0.45

Sand (1:2.5) 0.21

Table 4.2	 Measured reflection coefficients for vertical plywood, rock at slope 1:1.5, and
sand at a slope of 1:2.5 overlain with horsehair.
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Test run e
(deg)

T
(sec)

L
(m)

d
L

Kr
Breakwater

Kr
Shoreline

5 0 1.20 2.00 0.225 0.92 0.92

9 0 0.803 1.00 0.450 0.92 0.45

12 0 1.20 2.00 0.225 0.92 0.45

14 +30 0.803 1.00 0.450 0.92 0.45

Table 4.3
	

Wave conditions and reflection coefficients for the 4 test runs of the numerical
model. (Note: Test number corresponds to that for the experimental model in

Table 3.1)



Incident wave
direction

Figures

40

Figure 1.1	 Definition sketch of general harbour.
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Figure 2.1	 Geometry of Green's function representation .



Removable (End) Wave
Absorber Modules

 

Ramp

            

	 26.5 m 	

42

Figure 3.1	 Sketch of the wave basin at BC Research.
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Figure 3.2 Location of Comox, BC.
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Figure 3.3	 Details of Comox harbour.
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Figure 3.4	 Sketch of the model harbour showing principal dimensions.
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Figure 3.5	 Sketch of the boundary configurations for the 3 Phases of the laboratory tests.
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Figure 3.8	 Location of the wave field measurements.
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Figure 4.1	 Rigid vertical plate used in the numerical example.
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Figure 4.2 Wave height distribution along a straight offshore breakwater with B/L = 2.0, 0 = 0°.
(a) upwave face, and (b) downwave face. 	 N = 10, 	 N = 20,
	 exact solution.
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Figure 4.3	 Diffraction coefficient contours in the vicinity of the offshore breakwater
with B/L = 2.0, 0 = 0°. 	  exact solution, 	 numerical solution.
(a) N = 20, (b) N = 50.
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Position of the Breakwater

Figure 4.4	 View of surface elevation (at t = 0) in the region of the offshore breakwater for
B/L = 2.0 and 0 = 0°.
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Figure 4.5	 Sketch of the semi-circular harbour used as a numerical example.



56

3.0

1 .00.0 2.0

0.2
2.0

_ ————————	 •• _
0.4

3.0	 4.0
x/L

5.0	 6.0

T

.o

Figure 4.6 Diffraction coefficients in the vicinity of a breakwater gap with B/L = 1.0, 0 = 0° and
K = O. -  numerical solution for semi-circular harbour,  exact solution for
breakwater gap (Sobey and Johnson, 1986).

Figure 4.7	 View of the surface elevation (at t = 0) in the region of the breakwater gap for
the semi-circular harbour with B/L = 1.0, 0 = 0° and K r = 0.
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Figure 4.8	 Rectangular harbour used as a numerical example.
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Figure 4.9	 Diffraction coefficient contours within the rectangular harbour with B/L = 1.0,
0 = 0° and K r = 0. 	 numerical solution, 	 exact solution for breakwater
gap (Sobey and Johnson, 1986).

Figure 4.10	 View of the surface elevation (at t = 0) for the rectangular harbour with
B/L =1.0, 0 = 0° and K r = 0.
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Figure 4.11	 Diffraction coefficient contours within the rectangular harbour with B/L = 1.0,
0 = 0° and K = 1.0.

Figure 4.12	 View of the surface elevation (at t = 0) for the rectangular harbour with
B/L = 0, 0 = 0, and K r = 1.0.
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Figure 4.13	 Diffraction coefficient contours within the rectangular harbour with B/L = 1.0,
0 = 0° and K =0.2.

Figure 4.14	 View of the surface elevation (at t = 0) for the rectangular harbour with
B/L = 1.0, 0 = 0°, and Kr = 0.2.
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Figure 4.15	 Diffraction coefficient contours within the rectangular harbour with B/L = 1.0,
0 = 0°. (a) Kr = 0.0, (b) Kr = 0.1 and (c) Kr = 0.2.
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Figure 4.15	 Continued.
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Figure 4.16
	

Diffraction coefficient contours for Phase 1 tests with 0 = 0° and H = 30 mm
showing the effect of wave period. (a) T = 0.94 sec, (b) T = 1.07 sec,
(c) T = 1.2 sec.
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Figure 4.17 Diffraction coefficient contours for Phase 2 tests with 0 = 0° and H = 30 mm
showing the effect of wave period. (a) T = 0.8 sec, (b) T = 0.94 sec,
(c) T = 1.04 sec, (d) T = 1.2 sec.
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Diffraction coefficient contours for Phase 3 tests with 0 = 0° and H = 30 mm
showing the effect of wave period. (a) T = 0.8 sec, (b) T = 0.94 sec,
(c) T = 1.04 sec, (d) T = 1.2 sec.
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Figure 4.18	 Continued.
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Figure 4.19	 Diffraction coefficient contours for Phase 2 tests with T = 0.8 sec showing the
effect of incident wave direction. (a) 0 = -30°, (b) 9 = 0°, (c) 0 = +30°.
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Figure 4.20	 Diffraction coefficient contours for T = 0.94 sec, 0 = 0° showing the effect of
boundary reflection characteristics. (a) Phase 1, (b) Phase 2, (c) Phase 3.
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Figure 4.21 Diffraction coefficients along a traverse at y = 2.1 m
for Phase 2 tests with T = 0.8 sec and 9 = 0°.
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Figure 4.22 Diffraction coefficients along a traverse at y = 2.2 m
for Phase 3 with T = 0.8 sec and 8 = 0°.



(

**-----___---./
3.9

3.0 -

(a)

1.2 -

0.3
-3.7

3.9 -	

3.0-

2.1-

1.2 -

0.5

(b)

0.3-•
-3.7 -3.0	 -2.3	

n
-1.8

x(m)
-0.9 -0.2 f 	0.5

Figure 4.23	 Diffraction coefficient contours for Phase 1 tests with T = 1.2 sec, 0 = 0°.
(a) experimental results, (b) numerical results.
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Figure 4.24	 Diffraction coefficient contours for Phase 2 tests with T = 0.8 sec, 0 = 0°.
(a) experimental results, (b) numerical results.
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Figure 4.25	 Diffraction coefficient contours for Phase 2 tests with T = 1.2 sec, 8 = 0°.
(a) experimental results, (b) numerical results.
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Figure 4.26	 Diffraction coefficient contours for Phase 2 testswith T = 0.8 sec, 0 = +30°.
(a) experimental results, (b) numerical results.



Photographs

Photograph 3.1	 Experimental layout in the wave basin at BC Research.
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Photograph 3.2	 Wavemaker calibration in the wave basin at BC Research.
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Photograph 3.3	 Wavemaker calibration in the wave basin at BC Research.

Photograph 3.4	 Experimental layout for Phase 1 tests.
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Photograph 3.5	 Experimental layout for Phase 2 tests.

Photograph 3.6	 Experimental layout for Phase 3 tests.
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Photograph 3.7	 Measurement of the reflection coefficient of the sloping sand.

Photograph 3.8	 Measurement of the reflection coefficient of the vertical plywood.
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Photograph 3.9	 Close-up of the measurement of the reflection coefficient of the rocks.
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