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Abstract

Over the last three decades, Bayesian theory has been widely adopted in civil engineer-

ing for dealing with uncertainty and for purposes of decision making under uncertainty.

However the Bayesian approach is not without criticisms. One major concern has been

that information or knowledge, no matter how weak or sparse, must necessarily be

represented by conventional, precisely specified, probabilities. This has lead to the

development of statistical methods which allow for more flexible expressions of both

information inputs, and inferred results. More recently a general concept, called im-

precise probability, which embraces a number of these methods, has been described

[Walley, 1991].

Weak information is often encountered in civil engineering. This is especially true

in decision making as major decisions are often dominated by random, but infrequent,

extreme natural events. For these rare events the sample record is usually short and

the relevant subjective knowledge based on human experience is also likely to be very

limited. The imprecise probability concept therefore has potential relevance to some

important civil engineering decision problems.

Among the existing imprecise probability schemes, Dempster-Shafer (D-S) theory is

prominent. This theory has attracted considerable attention in the Artificial Inteligence

(AI) field, but the applications are different from those considered here. This has

largely overshadowed the relevance of the theory to the more conventional inference

and decision making types of problems encountered in civil engineering.

In this thesis, some applications of the D-S theory primarily to water resources

engineering decision problems are developed. The engineering examples presented
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throughout the thesis provide some indications of the impact of implementing imprecise

probabilities on engineering decision analysis. In most instances a closest equivalent

Bayesian analysis is performed and the results compared with those obtained from the

D-S scheme.

The concept of imprecise probability is philosophically important to the research

and is briefly reviewed. The theoretical ingredients of D-S theory which are necessary to

support engineering applications are then introduced. This is followed by presentation

of several different procedures for translating weak sampling information inputs into D-

S inference results. The elicitation of subjective prior inputs for the D-S scheme is also

discussed and includes representing some typical engineering expressions of subjective

knowledge. Two civil engineering models, one in hydrologic design and the other in

reliability analysis, are also developed, and they demonstrate how the scheme can be

applied in more complex engineering situations.

When presented with weak information input, the D-S decision analysis yields upper

and lower expected utilities. This reduces the ability to choose between the best de-

cision alternatives, especially when the expected utility intervals for different decisions

overlap. But this reduction in resolution is believed to more realistically reflect the

true decision making situation. The factors governing the size of the expected utility

interval are also discussed.
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Preface

The Dempster-Shafer (D-S) statistical theory, on which this thesis is largely based,

dates back only about 30 years. The theory was originally developed by Dempster and

later extended by Shafer. The term "imprecise probability" has been used by Walley

[1991] to describe a broader concept which embraces the D-S and other relatively new

statistical developments aimed at relaxing the restrictions of the conventional Bayesian

expression of uncertainty under conditions where the available information is distinctly

weak. In civil engineering, and water resources engineering in particular, important

professional decisions are often made under such conditions.

D-S theory is of ongoing interest to statisticians and has also received considerable

attention from the AI community. The application of D-S theory to decision making

in a professional field, other than possibly AI, does not appear to have been explored.

This is certainly the case in civil engineering where concerns about weak information

have been expressed in the literature. There have, however, been a few papers con-

cerned with other kinds of applications of D-S theory in civil engineering. The material

presented in the early chapters represents an original synthesis of the earlier work of

Dempster, the subsequent extensions by Shafer, as well as contributions by others. This

material is considered necessary for the D-S decision making theory to be applied to

civil engineering and to be judged from an engineering perspective. It includes new

explanations of both fundamental theories and computational aspects and utilizes a

graphical representation of the basic distributional form, known as a basic probability

assignment (BPA), which has not previously been exploited for expository purposes.

New theoretical developments of the D-S theory were necessary when it was applied

xiv



to some common water resources problems and also to an application in reliability

analysis. Examples include the D-S inference for parameters of the lognormal and

maximum extreme value type I distributions in Chapter 6, the D-S theory applied to

hydrologic design model in Chapter 8, and the resultant BPA for a function of two

uncertain variables in Chapter 9.

Numerical examples are presented for every type of application considered. They

include adaptations of previously published Bayesian examples as well as some newly

developed ones. In most instances the nearest Bayesian analysis and its result are

presented for comparison. The examples not only demonstrate the implementation

process but also provide a first indication of the quantitative consequences when the

theory is applied in an engineering context. One paper arising from this work has

already been published in the journal Water resources research [Caselton and Luo,

1992] and is cited in this thesis. This paper was based on an early draft of Chapters 2,

3, and 4. Some diagrams and text from that paper appear in these chapters.

Overall, the thesis describes research into just one of a number of possible schemes

for implementing the concept of imprecise probability. It therefore represents only a

first, though necessary, step towards establishing if imprecise probability can be of value

in civil engineering decision making.

XV



Chapter 1

Introduction

1.1 Uncertainty and the Bayesian View

In water resources engineering, design and planning decisions often have to be made

under uncertainty. In the situations where the degree of uncertainty and its effect on the

final design are not significant, uncertainty can be ignored by using the best estimates

for the uncertain factors and treating the problem as deterministic. However there

are many situations where both the magnitude of uncertainty and its consequences

in decision making are significant. In these cases, uncertainty has to be dealt with

explicitly.

Uncertainties in civil engineering can be classified into three types [Benjamin and

Cornell, 1970]. The first type deals with the inherent uncertainty of some naturally

random processes, e.g. the annual maximum flood in a hydrological design. This

type of uncertainty, called natural uncertainty, can not be reduced or eliminated by

obtaining more information about the random variable. The future outcome of such a

random variable is unpredictable and can take various values with different frequencies

or probabilities. In conventional statistics, this type of uncertainty is described by a

statistical model or probability distribution.

The second type is called statistical uncertainty and is related to the estimation

of the parameters of a statistical model. The parameters for a selected model are

unknown and must be estimated from the information available about the random
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process, usually in the form of sampling. Since this information is invariably incom-

plete, there are consequent uncertainties associated with the parameter estimates. The

parameter uncertainty can be reduced if more information is obtained, but can only

be entirely eliminated by sampling the entire population of outcomes, in effect with

complete information.

The third type of uncertainty is model uncertainty which reflects the lack of precision

in model selection. The model uncertainty is also induced by the lack of information

about the random process. It can be reduced as well if more information is available

but with natural processes can never be eliminated.

The parameters of a selected model, and the model itself both represent some factors

whose truths are fixed for a given random process but are unknown due to the lack of

information. The second and third types of uncertainty can therefore be considered as

uncertainty of unknown "states of nature".

In classical statistics, a conventional statistical model (e.g. a log-normal distribu-

tion) is first selected as a contending model to describe the random variable. The

parameters of this model are then estimated from past sampling data of the random

variable. Usually a point estimate, based on the method of maximum likelihood, is

obtained for each parameter and a confidence interval is then calculated to indicate the

potential errors of the estimation.

With the point estimates of the parameters the model is completely determined and

it is then verified by comparing its predictions with other sampled data. The verification

is performed through some goodness-of-fit tests such as the x 2 test or Kolmogoroff test.

The verified model is then ready for its intended engineering purpose.

Accurate estimates of the parameters, and the selection of the model, require a

large sample record. In engineering practice however, the sample record of a random

event is usually short, typically less than 50 years in water resources engineering. As a
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result, the estimated parameters and selected model involve large uncertainties. These

uncertainties are not considered in the final engineering design in the classical statistical

approach; as a consequence, the resultant design can be inefficient [Bodo and Unny,

1976] and could be substantially under- or over-designed [Afshar and Mariio, 19901.

Indeed, for a given set of data, several probability models might be selected fit the

data equally well. The distribution models may be very close to each other in the

central part where the sample records are concentrated, but significantly different in

the tails where the samples occur with low frequency or are unavailable. On the other

hand, economic losses due to damage from civil engineering projects is generally caused,

not by the occurrence of the more frequent events, but by the occurrence of the rare

events with low frequencies. Stedinger and Grygier [1985] have shown, explicitly, that

hydraulic dam spillway design is very sensitive to the shape of the tail portion of the

distribution model.

In designing an engineering project engineers often have some personal or subjective

knowledge, based on their past experience about the random process, which contributes

to the design. In situations where the sample record is limited, as is almost invariably

the case in water resources engineering, this subjective knowledge can be an important

supplement to the sample information in determining the unknown parameters and

selecting the model. The classical statistical approach to the parameter and model

inferences uses only the sampling data and ignores this subjective information, resulting

in less informative inferential results [Martz and Ray, 1982].

Over the last three decades, Bayesian theory has been widely adopted in civil engi-

neering for inference and decision making under uncertainty (see Benjamin and Cornell

[1970] or Ang and Tang [1975, Vol. I] as examples of engineering texts which confirm

this). This theory explicitly recognizes subjective probability and is philosophically

distinct from classical statistics and the frequentist interpretation of probability.
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According to the classical or frequentist interpretation, the probability of an event

is the long run relative frequency of that event in a sequence of repeated trials. The

parameters of a selected model, which usually do not have the characteristics of fre-

quency, are considered as unknown constants and can not be assigned probabilities

in the classical sense. As a result, the confidence interval of a point estimate of an

unknown parameter does not have a probability interpretation. Subjective probability

theory however interprets the probability of an event as a person's subjective belief

that the event will occur in the future. Based on subjective probability theory, an

unknown parameter, though recognized as being a constant, can be considered as a

random variable and assigned a probability distribution. The latter distribution when

established solely on, say, an engineer's stated opinion would be assumed to reflect

his personal knowledge of the unknown parameter. Over the last 200 years, there has

been a debate over the subjectivist and frequentist interpretations of probability. For

a review of the history of this debate, which is still inconclusive, see Shafer and Pearl

[1990].

Recall that the parameters of a model, and the model itself, can all be defined as

different states of nature. Bayesian theory deals with the uncertainty of a state of

nature by first representing subjective knowledge through a so called prior probability

distribution and the sampling information through the sample likelihood function. The

prior distribution and the sample likelihood function are then combined through the

use of Bayes' theorem to yield a posterior distribution. This posterior distribution

then represents the resultant inference on the state of nature based on both subjective

and sampling information. The posterior distributions of the parameters of a model,

along with the sampling model itself, are then used in the final decision making. Just

a few examples of the many uses of Bayesian theory in the field of water resources

engineering are Shane and Gayer [1970], Davis et al. [1972], Vicens et al. [19751, Wood
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and Rodriguez-Iturbe [1975a, 1975b], Bodo and Unny [1976], Kuczera [1982, 1983] and

McAniff et al. [1980].

Bayesian theory represents a step forward over the conventional statistical approach

in that it is able to represent the decision maker's subjective information about an un-

known state of nature through the prior probability distribution. Furthermore, the

uncertainty of a state of nature which is represented by the Bayesian posterior dis-

tribution can be incorporated systematically into the final decision making. But the

Bayesian approach is not without shortcomings and in recent years new criticisms have

emerged beyond those traditionally expressed by the classical or frequentist schools of

statistics. Of particular interest here, and central to this thesis, are those concerns

which arise when the prior and sampling information might be characterized as being

very "weak", implying that it is inadequate, ill defined, incomplete, or even nonexistent.

In water resources engineering, decision problems are often dominated by natural,

extreme, rarely occurring, uncertain events. Because these extreme events are rare it

is not unusual for them to be absent from the record. Furthermore, because the time

span of human experience is short relative to the typical reoccurrence times of these

large events, any relevant subjective prior knowledge is also likely to be very limited.

It is not uncommon then, in a water resources context, that important decisions have

to be made when the information available on important but uncertain events can be

characterized as being weak.

The principal difficulty with conventional Bayesian analysis when presented with

weak information sources arises from what Walley [1991] has described as the "Bayesian

dogma of precision" — that the information concerning uncertain statistical parame-

ters or the states of nature, no matter how vague, must necessarily be represented by

a conventional, exactly specified, probability distribution. The danger is that this ex-

aggerated, though inadvertent, statistical precision may lead to inappropriately strong
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conclusions being drawn from the decision analysis. This has stimulated research for

new methodologies for dealing with the uncertainties associated with weak information.

It should be stressed at the outset, however, that any such methodology is likely to

produce a more realistic but, at the same time, more equivocal view of the decision

alternatives. This weaker result reflects more accurately the scarcity of information

and the true decision making situation. It provides the decision maker with only that

information which can justifiably be extracted from the inputs provided.

1.2 Alternatives to the Bayesian View

Alternatives to the Bayesian scheme, which claim to accommodate weak information

more appropriately, have been proposed. Some approaches, such as fuzzy logic, involve

entirely new theories. Others are based on the familiar concepts of probability and re-

tain some connection to the conventional Bayesian framework. Currently the principal

representatives of this group are:

• Bayesian Robustness [Berger, 1984, 1985]

• Upper Lower Probability [Walley, 1991; Walley and Fine, 1982]

• Dempster-Shafer [Dempster, 1966, 1967a, 1967b, 1968a, 1968b, 1969; Shafer,

1976, 1982a, 1982b]

All three of the above listed methods address the consequences of weak information

through a concept which has recently been called "imprecise probability" [Wally, 1991].

Only key references are given in the above list but the cited literature in each of these

references is extensive.

The growing literature on these approaches reflects the considerable interest and

support which each enjoys. But, just as there is debate over the concepts of frequentist
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and subjective probabilities, not surprisingly there is also a debate between the concepts

of conventional probability and this newly emerged imprecise probability. As well there

is debate over the quite different implementations of the imprecise probability concept.

Representative views on all of these debates can be found in Shafer and Pearl [1990],

Shafer [1982a, 1982b] and Walley [1987].

This thesis aims at exploring the relevance, implementability, and consequences

of being able to express imprecise probabilistic inputs, primarily in a water resources

engineering decision making context but also in civil engineering in general. Only

the Dempster-Shafer (D-S) approach will be considered. The D-S approach to solving

decision problems under uncertainty has been over shadowed by its prominence in

artificial intelligence and expert systems. Investigation of Dempster's original work,

and those aspects of Shafer's advancement of Dempster's ideas relevant to decision

analysis, during the course of this research revealed aspects of the theory that appeared

to be appealing to engineering application.

In civil engineering, the D-S approach has been applied to the prediction of soil

erosion [Toussi and Khanbilvardi, 1988], and to uncertainty inference in expert systems

applications [Blockley and Baldwin, 1988; Caselton et al. , 1988]. However, these have

not addressed the problem of decision analysis. A more comprehensive application of

D-S theory, including decision analysis, is given by Caselton and Luo [1992], which was

developed from an early draft of chapters 2, 3 and 4 of this thesis.

It is still premature to recommend any one of these three new approaches over

the others. The question of superiority will likely be answered only after extensive

applications of all three have been attempted in a particular field of application.
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1.3 Structure of the Thesis

The concept of imprecise probability is fundamental to D-S and other new alternative

approaches described in the previous section. This concept is both philosophically and

technically important to the thesis and will be elaborated on in Chapter 2.

In Chapter 3, the theoretical ingredients of the D-S scheme, including the D-S

representation of uncertainty, the combination of independent sources of information,

and D-S decision analysis, will be introduced. The D-S expression of uncertainty is

supported by a graphical representation which, together with other explanations, will

aid non-statisticians to visualize this new way of representing uncertainty.

In Chapter 4, Dempster's inference of the parameter of a binomial model from

sample observations is described. The incorporation of prior information in the bino-

mial parameter inference is also discussed. Finally the inferential results are used in

a water resources decision making example where increasing levels of information are

considered.

The D-S inference for the binomial parameter was presented here for several reasons.

Firstly, the D-S inference for the binomial parameter simplifies the demonstration of

the application of D-S theory and its comparison with the equivalent Bayesian results.

Secondly, it is fundamental to D-S inference as it acts as a basis for the more general

probability model parameter inference necessary for more advanced water resources

problems. And thirdly, the binomial model is well accepted in the water resources area

for describing natural event uncertainties, and the results are of practical value.

In Chapter 5, the D-S inference of an unknown parameter of any statistical model

based on a sample likelihood function is introduced. The inferential results are simple

and have some very attractive features from a practical standpoint. Again, a water

resources decision making example is used to demonstrate the application of these
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results.

In Chapter 6, a more formal theoretical approach to the general model parameter

inference from sample observations, based on Dempster [1969], is presented. The ap-

proach requires the assumption that the unknown parameter of the statistical model

satisfies the "monotone density ratio condition". Some specific inferences for several

commonly used statistical model parameters are obtained.

In Chapter 7, the issue of representing subjective information of the unknown pa-

rameter in the D-S scheme will be discussed. Closely related with this issue is the more

fundamental and profound aspect of axiomatic justification of the imprecise proba-

bility theory in general and the D-S approach in particular. The issue of axiomatic

justification of different probability approaches has been discussed extensively in the

literature. Savage's axioms, which support the Bayesian approach, are under criticism

from both statisticians and psychologists [e.g. Ellsberg, 1961; Levi, 1982; Tversky and

Kahneman, 1974, 1986; Shafer, 1986]. Shafer and others have been trying to justify all

of the statistical approaches mentioned above, from the common "constructive prob-

ability" point of view [Shafer, 1981, 1982a; Shafer and Tversky, 1985]. The literature

on axiomatic and elicitation issues, both Bayesian and non-Bayesian, appears to be

inconclusive though and a thorough and detailed discussion on these issues are outside

the scope of this thesis.

In Chapters 8 and 9, two applications of the D-S theory to solving practical engi-

neering problems which involve uncertainties are presented. In Chapter 8 a hydrologic

design model based on the D-S scheme is presented. In Chapter 9, the D-S scheme is

used to characterize parameter uncertainties in civil engineering reliability analysis.

The D-S decision analysis generally yields upper and lower expected utilities for

each decision. This is in contrast with the conventional Bayesian approach which con-

ventionally yields a single expected utility for each decision option. The interpretation



Chapter 1. Introduction^ 10

of this interval formed by the upper and lower expected utilities, and an understanding

of its implications, are important for D-S application and will be discussed in Chapter

10. The conclusion and summary of this research are presented in Chapter 11.



Chapter 2

Imprecise Probability

Imprecise probability is a general concept, but is best explained in the context of

specifying prior subjective knowledge. Its application to inference is invariably more

complex technically.

Consider a conventional probability specification concerning knowledge of some un-

known state of nature. This will involve a probability assignment to each of a number

of possible states of nature, only one of which can be the truth. Such a specification will

always reveal, with absolute precision, whether any one of the possible states of nature

is either more likely, or equally likely, or less likely, than any other. This precision

is unwarranted if the information or knowledge about the unknown state of nature is

truly weak, yet it is inescapable.

By contrast, an imprecise probability scheme avoids having to make such a precise

statement by introducing an extra dimension or degree of freedom into the formal ex-

pression of uncertainty. This makes it possible to represent the knowledge according to

its quality without introducing any extra unsubstantiated information. The resulting

indeterminacy in the belief about the unknown state of nature reflects the weakness

of the knowledge. This inevitably introduces some indeterminism into any subsequent

decision analysis as we are increasing the dimensionality of the problem while deal-

ing with less, not more, information. The weakness of the knowledge or information

therefore is explicitly represented in the imprecise probability approach and is carried

through to the final decision analysis. The resultant indeterminism, rather than being

11
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a shortcoming, can be viewed as a strength, more faithfully reflecting the reality of the

situation faced by a decision maker.

While the concept of imprecise probability has been proposed by many statisticians,

[e.g. Dempster, 1966, 1968a; Smith, 1961; Good, 1962; Shafer, 1976; Kmietowicz and

Pearman, 1981; Gdrdenfors and Sahlin, 1982, 1983; Levi, 1982, 1985; Berger, 1984;

Einhorn and Hogarth, 1985] as a way of representing weak information, and has been

discussed at length in the statistical literature, no single universal technical definition

has emerged. Its translation into a quantitative form depends upon the implementing

methodology. As mentioned in the introduction, three representative imprecise prob-

ability approaches are: the Bayesian Robustness, the upper lower probability and the

D-S theory.

The Bayesian Robustness approach is closely linked to the conventional Bayesian

representation of uncertainty. Imprecision in the specification of prior probabilities is

represented by adopting a set of prior distributions rather than just one. Unlike other

imprecise probability schemes, Bayesian Robustness remains faithful to the conven-

tional Bayesian view by assuming that there still exists a true conventional Bayesian

representation, even though this cannot be identified.

According to Shafer [1981, 1982a], the upper lower probability theory involves spec-

ifying a class of conventional probability distributions and defining the upper and lower

probabilities of an event A as the supremum and infimum probabilities of A from these

distributions. This is a simplified version of the formal upper lower probability scheme

which is theoretically more complex (See Fine [1987], and Walley and Fine [1982] for

a more rigorous introduction). Walley [1991] further extended the upper lower proba-

bility theory and developed the so called theory of "upper lower previsions".

Fundamental to the D-S approach is the representation of uncertain knowledge

in the form of a Basic Probability Assignment (BPA) in which probabilities can be
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assigned directly to subsets of the states of nature as well as to individual states of

nature. The direct consequence of this kind of assignment is that, while the actual

probability of any individual state of nature may not be specified, its minimum and

maximum values will be specified. Imprecision is thus reflected in a possibilistic type

of specification of the probabilities. Note that the conventional precise probability

distribution is a special form of BPA in which the probabilities are all assigned to the

singleton subsets.

Comparisons of different imprecise probability approaches can be found in Shafer

[1981, 1982a] and Walley [1991]. A noteworthy technical discussion of the common and

dissimilar aspects of imprecise probability schemes can be found in Wasserman [1990a].



Chapter 3

Introduction to Dempster-Shafer Theory

The Dempster-Shafer theory is derived from Dempster's original work [Dempster, 1966,

1967a, 1967b, 1968a, 1968b, 1969] which was aimed at relaxing certain Bayesian re-

strictions when dealing with the inference of unknown parameters. Shafer [1976, 1982a,

1982b] expanded Dempster's original concepts and produced what is now generally re-

ferred to as the D-S theory. In this Chapter the basic ingredients of the D-S theory,

including the D-S representation of uncertainties, the combination of different sources

of information and the D-S decision analysis, will be introduced. To facilitate un-

derstanding of the more unfamiliar aspects, the theory will first be described for the

discrete variable case and then extended to the continuous case in the latter part of

this chapter.

3.1 D-S Representation of Uncertainties

Let 0 represent a random variable whose true value is unknown. Let 0 = {0 1 , 0 2 ...0„}

represent individual, mutually exclusive, discretized values of the possible outcomes of

0. In conventional probability theory uncertainty about 0 is represented by assigning

probability values p i to the elements O i ,i 1,...n, which satisfy E pi = 1.0. As an

example, consider a random variable with only four outcom values a,b,c and d. Then

a typical probability assignment might be as shown in Figure 3.1.

The representation of uncertainties in the D-S theory is similar to that in conven-

tional probability theory and involves assigning probabilities to the space 0. However

14
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0.20 0.35 0.40 0.05
a b c d

Figure 3.1: A conventional probability assignment.

the D-S theory has one significant new feature: it allows the probability to be assigned

to subsets of 0 as well as the individual elements O i . Here the collection of all the

subsets of 0. including the singleton elements, defines the D-S frame of 0. In the

context of this theory the union of the elements in any subset is always implied. The

complete representation of uncertainty in D-S theory therefore involves assigning prob-

ability values to the D-S frame. The complete probability specification on the frame

is defined as a D-S Basic Probability Assignment (BPA) [Shafer, 1976], and is denoted

as m(A) where A represents any subset of 0. As in conventional discrete probability

theory, the discrete BPA function m(A) must satisfy

o<m(A)<1
^

for all A C 0

m(0 0
^

(3.1)

E m(A) = 1.0
AC®

where represents the null subset.

The discrete BPA denoted by m(A) is analogous to the conventional discrete prob-

ability assignment usually denoted by P(0) in that the subsets A act like the individual

elements 9, and the summation of all the BPA values in m(A) is 1.0 as expressed in

(3.1).

When probability represents an individual's subjective knowledge about some un-

known state of nature, it is also referred to as the "degree of belief" (e.g. Walley, [1991]
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pp19), or simply the "belief". Thus the expressions probability, probability assignment,

and belief will be used interchangeably throughout this thesis when concerning subjec-

tive knowledge.

Being able to assign one's belief to a subset as well as a singleton element of 0 in

the D-S BPA provides extra freedom in expressing uncertainties and it is this freedom

which makes the theory potentially attractive and useful. It represents that amount

of probability or belief which can be committed to A but to nothing smaller. This

reflects the imprecision of the evidence by indicating that through lack of information

this probability value can not be further subdivided among the elements in that subset.

Furthermore the BPA value on any subset is not the total probability value attachable to

that subset. Because of the freedom of expressing separate probabilities on overlapping

subsets, this total probability value may be unknown. This is in contrast with the

conventional probability theory where the summation of the probability values on the

elements of the subset always equates with the subset probability.

For the more rigorously minded, the concept of BPA in D-S theory and its resem-

blance with the conventional probability distribution can be further clarified by consid-

ering a multivalued mapping from one space to another [Dempster, 1967a; Wasserman,

1990a]. Here one space 0 which represents the possible values of an unknown random

variable, has been defined. Let T represent another space on which a conventional prob-

ability distribution IT is known. Let F(t) C 0 represent a multivalued mapping from

T to 0, which means that an observation t in T is equivalent to the observation that

the true value of 9 is in I`(t) C 0. The concept of multivalued mapping is illustrated in

Figure 3.2. Through the multivalued mapping from space T to space 0, a conventional

probability distribution fLT in T thus corresponds to a probability distribution on 0,

which is a D-S BPA assigning probabilities to subsets as well as singleton elements of

U. Such a probability distribution on 0 is also called by Walley [1991] an "imprecise
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probability distribution".

SPACE T
^ SPACE 0

Figure 3.2: The multivalued mapping from T to 0 which generates a BPA on 0
(following Wasserman, [1990a]

The following example illustrates how the BPA might be used to express real world

information.

EXAMPLE 3.1. A site is being considered for the construction of a dam. The hy-

draulic conductivity of the fissured bedrock is of concern and will be assessed, for

feasibility purposes, as either High, Medium, or Low, which are represented as 8 1 ,8 2 ,83

respectively. A geologist's assessment, based on a review of geological maps of the area

and his past experience on similar sites, is that there is a 60% chance of it being 0 1 , a

30% chance of 82 and a 10% chance of 63. Without a site visit the geologist evaluates

the chance of his overall assessment being meaningful at 0.8 and the chance of it being

worthless at 0.2. An assessment is "worthless" when the geologist knows nothing about

the hydraulic conductivity of the bedrock at the site. This subjective information might

be represented in the form of a BPA as
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m 1 ({0 1 }) = 0.48

m 1 ({0 2 }) = 0.24

m i ({03 }) = 0.08

m1({0}) = 0.20

with all remaining m 1 (A) values equal 0.0. Here the subscript "1" in m i (A) indicates

that this BPA is based on the first piece of information. The chance 0.2 is assigned to

the whole set 0 = (0 1 ,0 2 ,03 ) to represent the ignorance and the proportional chances

of 0 1 ,0 2 ,03 are maintained but adjusted to meet the requirement E m i (.4) = 1.0.

The BPA is the fundamental expression of uncertainty in D-S theory. In the special

case when the BPA has non-zero values only on the individual elements, it becomes a

conventional probability distribution. The conventional probability distribution there-

fore is a special type of BPA. It is referred to as a Bayesian BPA in the D-S scheme

as it conveys the same information as does a conventional distribution in the Bayesian

scheme. The Bayesian BPA satisfies

m(0i ) = pi for i = 1, ...n

and m(A) = 0 A (3.2)

E = 1.0

There are situations where a person has no knowledge about 0 other than knowing

that the truth lies within the bounds of 0. In these cases, he will assign his total belief

1.0 to the whole set 0, i.e.
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m(0) = 1

m(A) = 0^A c O^ (3.3)

This type of BPA represents complete ignorance in D-S theory and therefore is re-

ferred to as an ignorance BPA. This provides an interesting contrast with the Bayesian

representation of ignorance using a noninformative prior distribution. There are situa-

tions where there could be several different noninformative prior distributions and often

there is no clear reason to prefer anyone over the other [Berger, 1985]. Furthermore,

Walley [1991] points out that the Bayesian noninformative prior is not noninformative

but that its precise specification of probability values on the singleton elements implies

substantial knowledge. In comparison, provided the range of possible values implied

by 0 is sufficiently large, the ignorance BPA appears to be truly vacuous.

When the subsets A i , i = 1, 2,...,n , which have the non-zero BPA values, are nested,

then the corresponding BPA function is called a consonant BPA. The consonant BPA

has the important feature that the beliefs assigned to the subsets do not conflict with

each other. A consonant BPA can be expressed as

^

0 < m(A i ) < 1^for A i C A 2 ... C A„ C 0

^

m(A i ) = 1.0
^

(3.4)
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3.2 Some important quantities based on a BPA

A BPA on the frame of 0 is the basic representation of uncertainty associated with

the unknown parameter 9 in the D-S theory. Once the BPA is obtained, a number of

quantities which can be used for a variety of purposes can be determined. Some of the

more important quantities based on a BPA are described in the following subsections.

3.2.1 Belief and Plausibility Functions

Consider a subset A C 0 for which the probability value is unknown as a result of

imprecision in the evidence, which is reflected in the BPA. For any subset B of A the

BPA value which is committed to B also naturally supports A. The total belief on A,

which is the collection of all the beliefs committed to all the subsets of A, was defined as

the belief of A and denoted as Bel(A) by Shafer [1976]. If a subset B does not conflict

with A, i.e. the intersection of B and A is not empty, the BPA value which is assigned

to B also provides possible belief supporting A. The collection of these possible beliefs

to A defines the plausibility of A which is denoted as P1(A). The complete specification

of Bel(A) and Pl(A) for any A C 0 are called belief and plausibility functions which

can be calculated from the BPA on 0 as follows

Bel(A) = > m(B)
BCA

Pl(A) =^m(B)
^

(3.5)
BnA*0

The Bel(A) represents the least probability and P1(A) the most probability that the

true f9 value is in A, based on the information expressed in the BPA. They can therefore

be considered as the lower and upper bounds of the probability on A respectively.
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Indeed, Dempster originally called the belief and plausibility on subset A the lower and

upper probabilities of A.

3.2.2 Commonality Function

A further quantity of interest, known as the commonality, can also be determined

from the BPA. The commonality of subset A collects all of the BPA values that could

potentially be committed to A from all of the supersets which include A. It is analogous

to the cumulative probability in conventional statistics. The commonality of subset A

is denoted H(A) and is defined as

I-1(A) = E m(B)^ (3.6)
AcBco

If values of H(A), A C 0, are specified for the entire frame of 0, it is referred to as a

commonality function. When the commonality function is determined, the correspond-

ing BPA will also be uniquely determined [Shafer, 1976, Eq. 2.4, 2.2]. The commonality

function is introduced here mainly as a computational device as it facilitates combining

different sources of information.

The following example demonstrates the calculation of belief, plausibility and com-

monality functions from a known BPA function.

EXAMPLE 3.1 (continued). The belief, plausibility and commonality functions of the

BPA, m i (A), in the previous example can be calculated and are shown in Table 3.1.

Sample calculations are given below

Be1 1 (10 1 ,0 2 D = mi({0 1 }) mi({92}) mi({01,02}) = 0.48 + 0.24 = 0.72
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P1 1 ({01,0 2 })^m i ( { 01 } )+mi( { 192})+ ini({01, 02}) -1- m l ({01 ,03 })+m i ({0 2 ,0 3 })

+mi({ 0 1, 02,93}) = 0.48 + 0.24 + 0.20 = 0.92

H1({01,92})^mi({01,02})+ m1(01, 02, 031) = 0.2

Table 3.1: Belief, plausibility and commonality functions of m 1 (A).

Subset A
fed {0 2 } {63} {01,02} {01,03} {02,03} {191,02,93}

Bel l (A) 0.48 0.24 0.08 0.72 0.56 0.32 1.0
P/ 1 (A) 0.68 0.44 0.28 0.92 0.76 0.52 1.0
H1 (A) 0.68 0.44 0.28 0.20 0.20 0.20 0.20

3.2.3 Compatible Probability Distributions

The true conventional probability distribution on 0 is unknown but, based on the belief

and plausibility functions, a set of conventional probability distributions P(A) which

satisfy

Bel(A) < P(A) < Pl(A) A C O (3.7)

can be determined [Dempster, 1967a; Wasserman, 1990a, 1990b]. Individual distribu-

tions in this set are referred to as the compatible probability distributions of the BPA.

The BPA therefore can be interpreted as implying a set of conventional probability

distributions, or density functions when 0 is treated as a continuous variable. This

interpretation provides another perspective on the concept of BPA by relating it to

conventional probability distributions. It also forms the basis of D-S decision analysis,

as will be discussed in Section 3.6.
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Interpreting the BPA as representing a set of conventional probability distributions

permits a comparison with another of the imprecise probability schemes mentioned in

Chapters 1 and 2 — the Bayesian Robustness approach. There, also, a set of "possible"

prior distributions on CI, rather than a single prior distribution, are adopted, to reflect

the lack of knowledge about O.

The next example illustrates the determination of a compatible probability distri-

bution from a known BPA function.

EXAMPLE 3.1 (continued). Considering again the BPA m i (A). one compatible prob-

ability distribution would be

P({1}) = 0.547

P({2}) = 0.306

P({83 }) = 0.147

which is obtained by distributing the ignorance 0.2 equally among the three singleton

elements and can be seen to meet the Bel(A) < P(A) < Pl(A) condition by inspection

of Table 3.1.

3.3 Combining BPA's via Dempster's Rule of Combination

If two BPA's, m i (A) and rn 2 (B), on 0 are obtained as a result of two pieces of indepen-

dent information, they can be combined via. Dempster's rule of combination [Dempster,

1967a] to yield a new BPA. The combination is actually the orthogonal sum of the two

BPA's, which is based on the fact that if rn i (A) from one BPA supports subset A

and rn2(B) from another independent BPA supports the subset B, then the product
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m i (A)m 2 (B) should naturally support the subset C which is the intersection of A and

B, i.e. C = A n B. Since the BPA value should be zero on empty subsets, the resultant

products must be normalized by a factor which is one minus the BPA values on these

empty subsets. The Dempster's rule of combination can be expressed as

m(C)^mi(A) m 2 (B)

(1 —^ E mi(A)m2(B);
^

for C C
AnB=C

(3.8)

where k = EAnB.onli(A)m2(B) and m() = O.

In addition to combining two BPA's, Dempster's rule of combination can also be

performed more directly and conveniently through the commonality functions

H(A) = KII i (A)112 (A);^for A C 0^ (3.9)

where 11(A) is the commonality function of the resultant BPA, K = (1 — k) - ' and k is

defined as above.

Equations (3.8) and (3.9) follow Shafer ([19761, theorems 3.1, 3.3). Once the resul-

tant commonality function is obtained, as in equation (3.9), the corresponding BPA can

then be calculated and will be identical to the resultant BPA from (3.8). If more than

two BPA's are obtained as a result of several independent sources of information, they

can be combined sequentially using either of the two procedures, and the combination is

both commutative and associative. The combined BPA represents the inference of the

unknown parameter 9 based on the information from those independent sources. Since
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the combination procedure using the commonality functions is much simpler, (3.9) will

be used when combining BPA's representing independent sources of information.

In addition to the properties discussed above, Dempster's rule of combination has

some other important features [Shafer, 1976; Wasserman, 1990a]. When a BPA is

combined with an ignorance BPA, the resultant BPA is always identical to the original

BPA. This feature further suggests the idea that the complete ignorance does represent

an informationless input. When any general BPA, which includes a Bayesian BPA,

is combined with a Bayesian BPA, the result will always be another Bayesian BPA.

This leads to the claim that the conventional Bayesian theory is actually a special case

of the more general D-S theory. While Dempster's rule of combination has a credible

basis and has been widely accepted, it can not claim to be theoretically perfect and

has its critics. For more discussion on Dempster's rule of combination, see [Shafer,

1982a, 1982b; Walley, 1987; Weichselberger and POhlmann, 1987]. The application of

Dempster's rule of combination is illustrated in the following simple example.

EXAMPLE 3.1 (continued). Suppose that an opportunity arises for a crew to under-

take just one test drilling at the site. The test reports 0 1 but, because a single test

drilling cannot sense spatial variability over the entire site, its indication is known to

be incorrect 30% of the time. If the test drilling result is incorrect, then the truth could

be either 0 2 or 03 . The test result might be characterized by the following BPA:

rn2({01}) 0.70

m2 ({02 ,03 }) = 0.30

with all remaining m 2 (A) values equal 0.0.
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Since this test result and the geologist's subjective knowledge are two independent

sources of information, they can be combined using Dempster's rule of combination.

The combination can be performed using either (3.8) or (3.9), and the resultant BPA's

are the same. The combination of m i (A) and m 2 (A) using the commonality functions,

i.e. equation (3.9), is given in Table 3.2. It can be seen that since both BPA's clearly

support 0 1 , the resultant BPA, m(A), also gives strong support to 8 1 . Note that the

value 0.1 assigned to the subset {0 2 ,0 3 } contains some ambiguity which is not resolved

by all of the current information.

Table 3.2: The combination of m i (A) and m 2 (A).

Subset A
{01 } {9 2 } {63} {01,02} {0 1 ,03} {82,93} 01,82,031

m i (A) 0.48 0.24 0.08 0.00 0.00 0.00 0.20
m2 (A) 0.70 0.00 0.00 0.00 0.00 0.30 0.00
H i (A) 0.68 0.44 0.28 0.20 0.20 0.20 0.20
112(A) 0.70 0.30 0.30 0.00 0.00 0.30 0.00
H (A) 0.48 0.13 0.08 0.00 0.00 0.06 0.00
m(A) 0.76 0.11 0.03 0.00 0.00 0.10 0.00

3.4 Discretized Contiguous Frame

In the general case the BPA value can be assigned to any subset in the frame. But

where the singleton elements arise from the discretization of a continuous real variable,

many of the subsets in the full frame become unreasonable. In practical applications

the unknown variables often represent physical quantities that, at least in theory, are

measurable on a continuum. Once such a variable has been discretized, say, into a

sequence of ranked elements a, b, c and d, it is rare that real world knowledge would

result in a non-zero probability assignment to a union involving non-adjacent discrete

element such as the subset {a, c}, as this would imply that the knowledge somehow
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explicitly excluded the intermediate value b. Therefore in many practical situations

it is only necessary to consider unions of elements which are contiguous. Eliminating

non-contiguous unions substantially reduces the complexity of the frame. Henceforth

this type of frame is referred to as a contiguous frame.

Since in a contiguous frame the elements in any subset can be arranged in an

ascending or descending sequence, a subset can be identified by just its starting element

and ending element. For example, [b, d] represent a subset which contains elements b,c

and d. Thus all of the subsets in a contiguous frame can be generated by considering

each of the elements in 0 as a starting element, and for any starting element, each

of the elements which are greater than it as the ending element. A contiguous frame

therefore can be organized so that it can be represented graphically [Strat, 1984] in a

triangular diagram as illustrated for the discrete case in Figure 3.3.

d

b

a

a^b^c^d

0.15 0.18 0.00 0.05

0.00 0.15 0.07

0.30 0.00

0.10

Figure 3.3: Graphical representation of a contiguous frame — discrete case.

In this triangular diagrani, any subset is now represented by its starting element,

which is written above the horizontal axis, and its ending element, which is written

beside the vertical axis. Thus, in Figure 3.3, the entry of 0.18 in the box in row d,

column b represents a probability assignment to the contiguous subset fb,c,c11. Entries

in the boxes on the diagonal from lower left to upper right correspond to probabilities

assigned to the singleton elements. An allocation of the non-zero probability values
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that is confined solely to these diagonal elements therefore represents a Bayesian BPA,

i.e. a conventional discrete probability distribution. Note that, since the starting and

ending elements of subsets vary over the whole set 0, they can be considered as two

random variables which, except for their new role in forming subsets in a contiguous

frame, are otherwise identical to the random variable O.

This triangular diagram, along with its continuous equivalent introduced in the

next section is, to the D-S scheme, the direct analogy of the familiar probability mass

or density plots in conventional statistics. It follows that it is equally valuable when

conceptualizing actual BPA's.

The remainder of this thesis will be confined to the contiguous variable case and

a subset A will be represented by an interval "[9 i , 9a ]" where O i and 0.i represent the

starting and ending elements of the interval and O i < Oi,i,j 1,...n.

The expression for the commonality of a subset A = [9 i , 9a ], as defined by (3.6), is

simplified in the contiguous frame case and becomes

i n

H([92,93]) = E E^oyi)
^

(3.10)
x=1 y=j

where 19 0 and 0„ represent the first and last elements of the discretized continuous

variable. This formula is also demonstrated graphically in Figure 3.4. The Dempster's

rule of combination expressed in (3.9) can also be simplified for the contiguous case

and rewritten as

H([0,0i]) =^ (3.11)
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0
^

N

N

0

Figure 3.4: BPA elements of discrete contiguous frame contributing to commonality
H([u,v]) (the shaded elements) (from Caselton and Luo, [1992]).

The combination of any number of BPA's specified on the same contiguous frame

always yields a resultant BPA function that also has its non-zero probability values

confined to the same contiguous frame.

Knowing a BPA on a discrete contiguous frame, two compatible probability distri-

butions (see Section 3.2.3) of particular significance can be determined. These are the

two marginal distributions of O. The lower of these two distributions is generated by

concentrating the BPA value on each subset onto its starting element (i.e. to its lower

bound). The probability value for any one of these elements is obtained by summing

all the components of the BPA values which can be concentrated on the element. Since

the resulting distribution concentrates as much probability as possible to the smallest

elements within subsets, it is defined here as the lower marginal distribution. It is de-

noted by f(8). Similarly, by concentrating the BPA value on each subset to its ending

element, the resultant compatible distribution, which concentrates as much as possible



Chapter 3. Introduction to Dempster-Shafer Theory^ 30

probabilities to the largest elements within subsets, is defined as the upper marginal

distribution and denoted by g(0). Thus the upper and lower marginal distributions

g(0) and f(0) are expressed in the discrete case as

g(0j) = Em[e„e i ]^for j = 1,2,...n

n

f ( 82) =^ej]^for i = 1,2,...n^ (3.12)
:7=2

3.5 The Continuous Contiguous Frame

In the previous section, the continuous random variable 0 was discretized into n el-

ements, i.e. 0 1 ,0 2 , ..., O n . Now with 0's range fixed, as the number of elements is

increased, the interval represented by every individual element is decreased, and the

contiguous frame diagram would be discretized more finely. In the limiting case, as the

number of discretized elements becomes infinite, the diagram evolves into a continuous

surface bounded by a triangle formed by the two axes and the diagonal line. It then

represents the continuous contiguous frame for a real continuous variable 0. Any in-

terval is now represented by a point in this triangular region and its coordinates [u, v],

measured on the horizontal and vertical axes respectively, are the lower and upper

bounds of the interval.

The calculation of commonality value for 0 in any interval [u, v] is essentially the

same as in the discrete case except that the summations are replaced by integrals.

H([u,v]) = fu:^m([x,y])dydx^ (3.13)
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where u 0 vo represents the starting point and u 1 v 1 the ending point of the

full range in which the variable 0 can lie. In the discrete case m( ) was analogous

to a probability mass assignment whereas in the continuous case it is analogous to

probability density. The integration of the BPA density in the above equation occurs

over areas which can be readily identified in the contiguous frame represented by a

triangular BPA diagram, as shown in Figure 3.5. For the continuous contiguous frame,

the Dempster's rule of combination in (3.9) can be expressed as

Figure 3.5: Area of continuous contiguous frame BPA where m([u,v]) is integrated to
determine H([u,v]) (the shaded area) (from Caselion and Luo, [1992]).

H([u,v]) = KI-liCu,vpH2([u,vi)
^

(3.14)

conversely, if the continuous commonality function H({u,v]) is known, the BPA density

mCu,vi) can easily be determined from the derivatives of H(iu,vp as follows:
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d2 H(Lu,v])
rri,([u, v]) =  

auav
(3.15)

As in the discrete case, the lower and upper bounds, u and v, of an interval [u,v] can

themselves be considered as two continuous random variables and are denoted as U and

V respectively, where U < V. Again these two random variables are identical to the

random variable B except for their additional roles in forming intervals in a continuous

contiguous frame. Specifying a continuous probability measure BPA on the contiguous

frame for the variable of interest is then analogous to specifying a bivariate density

function on U and V in conventional statistics, though the implications are completely

different. Given the BPA density m([u,v]), the continuous upper and lower marginal

distributions are defined for V and U and can be calculated as:

G(v) = Pr(V v) =^lv m([u,v])dudv
vo =A,

F(u) = Pr(U < u) = 1:: fuvi m([u,v])dvdu^(3.16)

and the upper and lower marginal density functions can be determined as

g(v ) = —dv G(v ) = fo m([u, v]) du

Au) = —ddu-F(u) = f tl m([u,v])dv^ (3.17)

An equivalent but more direct way of determining the upper and lower marginal density

functions are from the commonality functions H([u,v]), i.e.
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g(v) =

f(u) =^ (3.18)

The upper and lower marginal distributions G(v) and F(u) are members of the

compatible probability distributions implied by the BPA m([u,v}) and represent two

extreme interpretations from the information, contained in the BPA, about the un-

known parameter O. They play an important role in the D-S decision analysis as will

be discussed in the next section.

3.6 D-S Decision Analysis

In the previous sections, the representation of uncertainties of some unknown state of

nature 8 using D-S theory has been described. In engineering practice, the ultimate

purpose of quantifying uncertainties is to support decision making. In this section, D-S

decision analysis, i.e. decision making based on the D-S representation of uncertainties,

will be described.

3.6.1 Review of the Utility Function

Consider a typical decision problem where uncertainties stem from the value of a state

of nature B whose true value is unknown. Let D = [di , j = 1, ...m] represent the possible

decision options among which the decision maker can choose. For any decision option

di , there is a consequence corresponding to a possible outcome of the state of nature O.

According to the conventional decision criterion, which involves comparing expected

values, the consequence must be expressed in terms of the "utility", which is a function
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of decision option d3 and possible outcome 8, and is denoted by U(d, 8). The utility

function reflects the" decision maker's attitude towards risk and may or may not be the

same as the monetary consequence. In water resources engineering decision analysis,

the decision maker often represents a large corporation or government and the amount

of monetary loss may not be so severe as to cause the decision maker to deviate from

being "risk neutral". If this is the case, the utility function can be equated with

monetary consequences. This will be assumed to be the case throughout the rest of

this thesis but does not preclude the use of other utility forms in the D-S scheme.

3.6.2 The D-S Upper and Lower Expected Utilities

In conventional Bayesian analysis, uncertainty of the state of nature 8 is represented

by a posterior distribution of 8. Bayesian decision analysis involves calculating the

expected utility for each decision option based on the utility function U(d,8) and the

posterior distribution of O. The decision criterion is to choose the option which will

yield the maximum expected utility.

In the D-S approach, the final inferential result is a BPA density on 0. Unlike a

conventional probability distribution, the BPA density offers no direct way to compute

a single representative expected utility. Furthermore, it is important to avoid any

approach which by computing a single value result effectively destroys information

concerning the full extent of the uncertainties reflected in the BPA.

In Section 3.2.3 it was explained how a BPA can be interpreted as implying a

set of compatible probability distributions. Together with the utility function, it is

therefore possible to calculate an expected utility value from any one of the compatible

distributions. The maximum and minimum among these are called the upper and lower

expected values and form the basis of D-S decision making, as will be discussed in the

next subsection.
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In general the upper expected value is obtained by choosing a compatible probability

distribution which is derived from the BPA in a way that, for any interval [u,v), the

density m([u,v]) is concentrated at the point in the interval [u,v] at which the utility

function reaches its maximum. The compatible probability distribution which results in

the lower expected value is obtained in a similar fashion by concentrating the m({u,v])

value at the minimum utility point within [u, v]. With the utility function U(d, 9), the

upper and lower expected utilities are thus defined as

EIU(d)] =^
v]ce

mflu,vp[supeck,,vit (d,O)id[u,v]
[u, 

E.[U(d)] "Wu, v HinfeE[2,,v]U(d, 0)]d[u,v]
.J [u,v]c®

(3.19)

In the case where the utility function is a monotone function of the state of nature

0, equation (3.19) can be simplified in the following way. Consider the upper and lower

marginal density functions g(v) and f(u) defined by (3.17) or (3.18). Since the random

variables u and v are identical to the state of nature 0, g(v) and f(u) are the upper and

lower marginal density functions of 0, and are simply referred to as g(0) and 1(0). Note

that AO) is constructed in a way that concentrates as much of the probability measure

as possible, within the constraints of the BPA function, towards the smaller 0 values,

while g(8) is constructed in an analogous fashion so that the probability measure is

concentrated towards larger 8 values.

In conjunction with a monotone utility function, g(0) and f(0) will produce the

upper and lower expected values defined in (3.19). If the utility function is monotone

increasing, then (3.19) simplifies to:
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E - [U(d)] =

E„[U(d)] =
JeEo 

U(d,0)dG(0) = eee U(d,0)g(0)(10

fece U(d,0)dF(0) = 
E0 

U(d,O)f(0)cle
8

(3.20)

and in the monotone decreasing utility function case E - [U(d)] and E[U(d)] are simply

reversed in the above.

Thus, in contrast with the Bayesian approach which produces a single precise ex-

pected utility value for each decision option, the D-S approach yields both upper and

lower expected utilities. The size of the interval formed by the difference between the

upper and lower expected utilities, E[U(d)] and EJU(d)], is maximum when the ex-

tent of knowledge about the unknown 0 is complete ignorance. The interval becomes

zero either when the knowledge about 8 is sufficiently strong and precise to specify a

conventional probability distribution, as in the Bayesian situation, or when the true

value of B is known and the problem becomes deterministic. In the intermediate situa-

tion where the information is weak or imprecise, the width of the interval is affected by

the form of the utility function, the amount of information available and the degree of

disagreement among different sources of information brought to bear on the problem.

The significance of this interval will be discussed further in Chapter 10.

3.6.3 Making a Decision

Since for each decision choice d, the D-S analysis will yield both upper and lower

expected utilities, there is no obvious way to rank the decisions and consequently select

the "optimal" decision alternative. In engineering practice, one criterion of making a

decision is choosing the alternative which minimizes the maximum, i.e. upper, expected

cost. This is called the mini-upper decision criterion in D-S analysis [Dempster and
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Kong, 1987]. Since this criterion minimizes the worst possible consequence, under

the constraint of information available, it generally leads to a conservative decision.

The mini-upper decision criterion (i.e. minimizing the upper expected cost) closely

resembles the conventional minimax decision principle [Berger, 1985] where the best

decision is also to minimize the worst possible consequence.

The decision based on the mini-upper criterion may not be the optimal choice, which

is unknown under the weak information condition. But rather, it can be considered as

a reliable, convenient, and satisfactory decision with some desired properties. For more

discussions on the topic of decision making under imprecise probability, see Walley

[1991].

When making a. decision based on the mini-upper decision approach, the information

reflected in the intervals formed by the upper and lower expected utilities is effectively

ignored. A more interpretive approach which utilizes the information contained in all

of the results would seem appropriate. Such an alternative will be discussed in Chapter

10.

3.7 Summary

The theoretical elements of the D-S theory, including representation of uncertainty,

Dempster's rule of combination of independent sources of information and D-S decision

analysis, were introduced in this chapter. In engineering practice, the unknown states

of nature are often measurable quantities on a continuum and rankable. The relevant

knowledge reflects this and therefore the D-S theory is confined to the appropriate

contiguous frame. The graphical representation of the contiguous frame is invaluable

in both understanding and utilizing the D-S theory. The D-S decision analysis leads to

indeterminism in decision making which is a direct result of the weak information input.



Chapter 3. Introduction to Dempster-Shafer Theory^ 38

One reasonable way of making a decision, when the utility function resembles cost, is the

mini-upper criterion which is analogous to the conventional minimax decision criterion

but more interpretive alternatives will be proposed in Chapter 10. In Chapters 4 to

6, some engineering relevant examples of D-S statistical inference of unknown states of

nature will be discussed.



Chapter 4

D-S Statistical Inference ^ Binomial Parameter

4.1 Introduction

In Chapter 3 the basic ingredients of the D-S theory, including the representation of

knowledge and uncertainty for some unknown state of nature using a BPA and D-S

decision analysis, have been introduced. As in conventional Bayesian analysis, the

BPA inference in the D-S approach can be based on two sources of information. One

source is the subjective knowledge which represents some expert's personal experience

about the state of nature and the other source is the sampling record in conjunction

with a statistical model. In this chapter, the D-S inference of a binomial parameter

will be discussed. The theory is based on Dempster's work [Dempster, 196813]. The

inferential results of the unknown binomial parameter based on sample information

are presented in Section 4.2. In Section 4.3, the incorporation of prior information in

drawing the parameter inference is discussed. An example is then given in Section 4.4

to demonstrate the application of D-S inferential results in decision making in a water

resources engineering context.

The D-S inference of the simple binomial model parameter is of great significance

for a number of reasons. Firstly it clearly demonstrates one D-S inferential procedure,

and is easily contrasted with the nearest Bayesian case. Secondly, it forms the basis for

D-S inference of the parameters for a more general statistical model. And thirdly, the

binomial model has been widely adopted in water resources engineering practice as a

39
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probability model to describe the occurrence of random events through return periods.

4.2 D-S Binomial Parameter Inference from Sample Data

Let Z be a Bernoulli random variable whose outcome is either S (success) or F (failure).

The probability of observing Z=S is denoted as 0, 0.0 < 0 < 1.0, which is the unknown

parameter of the Bernoulli variable Z. If a set of n observations are obtained, then the

total number of S's, which is denoted as r, follows a binomial distribution with the

same parameter O. The binomial probability distribution with parameter 8 is

p(r) =^Or(1 — Orr
^

(4.1)

The inference procedure presented here involves introducing another random vari-

able with known probability distribution. Let W represent this random variable whose

sampling distribution is denoted as iz(w) which is uniformly distributed on [0.0,1.0].

The introduction of W is simply recognition of the fact that the process of observing Z

is itself a random process. Thus, obtaining an observation of Z is equivalent to drawing

a sample from W, but the true value of this sample can not be identified. The pur-

pose and justification of introducing random variable W in the inference of 9 has been

discussed by Dempster [1968b]. A simple explanation of the role of W in the inference

will be given in the familiar context of a Monte Carlo simulation of the outcome Z.

This explanation will lead more naturally, if less rigorously, to the inferential result for

9 from the observation of Z.

A Monte Carlo simulation technique can be used to generate random values which
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follow a given probability distribution. The simulation can be performed by first gen-

erating a random number from a uniform distribution on [0.0,1.0] and then transform-

ing it to another random number which follows the required distribution. A detailed

introduction to Monte Carlo simulation and its application can be found in most in-

troductory books on probability and statistical methods in civil engineering, e.g. Ang

and Tang, [1984, Vol. II]. In the situation considered here, if the value of parameter

8 is known, Monte Carlo simulation can be used to generate the outcome of Z which

follows a Bernoulli trial with parameter O. This involves drawing a sample value w

from W according to the uniform distribution p,(w). If w < 0, then Z=S is obtained

and if w > 0, Z=F is obtained.

The difference between the conventional Monte Carlo simulation procedure and

the inference situation is that, in the latter case, the observations of Z are obtained

while the value of 0 is unknown and must be inferred. First, consider just a single

observation of Z which is assumed to be a success, i.e. Z = S. It can be concluded

from this observation that the value of w must have been less than or equal to 0, or,

equivalently, 0 must lie somewhere in the interval [w,1.0] as shown in Figure 4.1. In

the representation provided by the contiguous BPA diagram for 0, which is bounded

by 0.0 and 1.0, this interval must correspond to a point on the upper horizontal edge

of this diagram. Since the probability density of obtaining any specific value w is 1.0,

as it is draw from the uniform distribution, then the density of 0 being in the interval

[w,1.0] is also 1.0. The specific value of w can not be identified but this density of

1.0 is applicable to all possible values for w in its range from 0.0 to 1.0. If this result

is entered into the contiguous BPA diagram it will be seen that a continuous uniform

BPA density is obtained on the edge BC of the contiguous frame, as shown in Figure

4.2a. This continuous uniform BPA density therefore represents the BPA inference

from a single observation Z = S.
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wses1

1-4^I.1
0^ w
^ 1

Figure 4.1: The inferred relationship between w and 8 given an observation Z = S
(from Caselton and Luo, [1992]).

m([u,1.0])=1.0

1111111111111 111111111111 111111111111
=

(a)
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0.0^U
^1.0

Figure 4.2: The BPA density for observation (a) Z = S; (b) Z=F (from Caselton and
Luo, [1992]).
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The adoption of the uniform distribution for W facilitates explanation of this key

step from sample result to BPA. It can be shown that any other assumed distribution

for W, together with an appropriately modified simulation rule, produces the same

uniform BPA density result on the edge BC. Thus the inferred uniform distribution on

the edge BC is "exact" and not simply duplicating the distribution adopted for W.

Once the bivariate density distribution on the contiguous frame has been obtained

for the single sample Z=S, the corresponding commonality function can be determined.

From the definition in (3.6) and Figure 4.2a, the result is

H([u,v]) = u (4.2)

Similarly, if an observation Z=F is obtained, it implies that 8 lies in an interval [0, w].

Again, since the probability density of obtaining w is 1.0, the probability density of

being in the interval [0,w] is also 1.0. As w varies uniformly from 0.0 to 1.0, this

will lead to a continuous probability density function on the edge AB of the contiguous

frame as shown in Figure 4.2b. The expression of H ( [u, v]) for this sample result can

be deduced from Figure 4.2b and is

H([u,v]) =1 — v (4.3)

So far, it has been shown that for any single observation of Z (i.e. either Z=F or

Z=S), there is an inferential result about the unknown parameter B which is expressed

by the commonality function (4.2) or (4.3). If a set of observations of Z are obtained,

then the BPA's from individual observations can be combined, using Dempster's rule of
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combination (3.9), to produce a resultant BPA. This is demonstrated in the following

example.

EXAMPLE 4.1. If just two observations are made and Z=F and Z=S are obtained,

then the resultant commonality function is given by (3.9) and will be:

H([u,v]) = Ku(1 — v)

The BPA density function at m([u,v]) can be obtained through (3.15) and is equal

to K. The integration of this density over the triangular region is K/2 and must be set

to unity. K must therefore be equal to 2. The BPA density for this two sample case is

thus uniform over the entire contiguous frame.

The upper and lower marginal density functions of U and V, which are two members

of the compatible probability distributions of m([u,v}), can be calculated from (3.18).

They are

f(u) = 2(1 — u)

g(v) = 2v

For the general case when there are n observations of Z, r of them being S's and

n — r of them being F's, the commonality function (from Dempster [1968b]) can be

determined as



F(u)

G(v) (4.7)

r-1
=7= 1 — V

x=0

x=r+i
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(n \
H([u,v]) =

T
ur( 1 — v)- (4.4)

The corresponding BPA density function can be obtained from (3.15) which is

ni([u,v]) = r(n — r) 
nr

—^(4.5)

The lower and upper marginal density functions for this general case are as

f(u) =^Tnr-1(1 — u)n -r

g(v) =^n (n — r)vr(1 — v)n -r -1

r

(4.6)

for 0 < r < n. For the extreme cases: when r = 0 then f(u) = 0 and g(v) =

n(1 — v)n -1 ; and when r = n then f(u) = nun -1 and g(v) = 0. Note that two marginal

density functions f(u) and g(v) are Beta distributions. The corresponding cumulative

probability distributions, F(u) and G(v), were given by Dempster and are
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The following example shows the plots of the BPA density and the two marginal

distributions obtained above for some general sample situations. A comparison of D-S

inferential results with the parallel Bayesian is also addressed.

EXAMPLE. Consider a series of situations where the ratio r/n is kept at 1/3 for two

different n values reflecting relatively small, n = 6, and large, n = 30, sample sizes. The

corresponding two BPA density functions can be determined from (4.5) and are plotted

in Figure 4.3. When n = 6, indicating that the sampling information is very weak, the

inferred BPA of 0, see Figure 4.3a, is widely spread over the contiguous frame. When

the sampling number n is increased to 30, the sampling information becomes stronger

and the corresponding BPA converges towards 0 = 1/3, as shown in Figure 4.3b. In

the extreme case as n goes to infinity, the BPA density function converges to a unit

spike at the point B = 1/3.

The two marginal density functions f(u) and g(v) for these two cases are obtained

from (4.6). Since they also represent two possible compatible probability distributions

of parameter 0, we will simply refer to them as f(0) and g(0). These are plotted in

Figure 4.4a and 4.4b for n = 6 and n = 30 respectively.

Also superimposed onto Figure 4.4a and 4.4b are the Bayesian posteriors 70) ob-

tained when the same two cases are solved using the conventional Bayesian methodology

and a uniform prior. Recall that AO) and g(0) are just two of the many compatible

distributions which can be drawn from a resultant BPA. As compatible distributions

are considered to be conventional distributions then, qualitatively, f(0) and g(0) re-

flect uncertainty concerning B in a similar fashion to the Bayesian posterior. However,

they have no quantitative equivalence to the Bayesian posterior except for a tendency,

shared with all the other compatible distributions of a resultant BPA, to converge on

the Bayesian posterior when the sample size n grows large. This convergence is not
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OP

oS)

Figure 4.3: The BPA density matt, v]) for observations (a) n = 6, r=2; (b) n = 30, r
= 10 (from Caselton and Luo, [1992]).
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Figure 4.4: The D-S marginal distributions f(0) and g(0), and the Bayesian posterior
distribution 7r(0) with uniform prior for a) n = 6, r = 2; b) n = 30, r = 10 (from
CaseIton and Luo, [1992]).
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fully achieved until both methods produce unit spikes with an infinite sample.

The "distance" between f(9) and g(9) might be viewed as an indication of the

uncertainty due to imprecision which is detected by the D-S scheme. Exactly how this

distance should be measured is an interesting but still open question. If, as in the

Bayesian approach, the posterior mean is used as a point estimate of the parameter 9,

then f(0) and g(9) will yield the highest and lowest posterior mean values attainable

from any of the compatible distributions. The distance between these point estimates

might then be viewed as one possible quantification of imprecision. As described in

Section 3.6 of Chapter 3, a related property of f(0) and g(9) that plays a central role

in the D-S decision analysis is that, with any monotone utility function on 9, they will

yield the highest and lowest expected utilities of all compatible distributions of the

resultant BPA.

4.3 Incorporating Prior Information

In Section 4.2 the inference of the unknown binomial parameter 9 based solely on

sampling information was discussed. This can be considered as synonymous with the

situation where the prior knowledge is complete ignorance. In the more general situa-

tion one usually has some prior knowledge about the parameter 9 and this may have a

profound effect on the inferential results of 9, especially when the sampling information

is weak. The incorporation of such prior information for the case of binomial parameter

inference is therefore considered here. The D-S representation of subjective knowledge

for more general situations will be discussed in Chapter 7.

First consider the situation where the prior evidence is strong and without any

imprecision, meaning that it can be correctly expressed as a Bayesian prior probability

distribution or equivalently, as a Bayesian BPA. The discrete case has been considered
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(4.8)
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n
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by Dempster [196813]. Here the continuous Bayesian BPA density, denoted as p(0) on

9 where 0 < 0 < 1.0, will be considered. The commonality function in this case can be

expressed as

H([u,v]) = p(0) for u = v =

= 0^otherwise

The Dempster combination of this type of prior information with the Binomial

sampling information expressed by (3.9) leads to the commonality function

= 0 otherwise

Since the combined commonality function is non-zero only at the singleton points u

= v = 9, it represents a conventional probability distribution, which is easily recognized

as a Bayesian posterior distribution. This demonstrates the basis of the claim that

the Bayesian approach is a special case of the more general D-S approach when the

prior information can be represented by a conventional probability distribution, i.e. a

Bayesian BPA.

Consider now the more general situation where the prior subjective information is

weak or imprecise, indicating that it is inappropriate to specify a precise probability

distribution. This type of prior information can be more properly represented by a

BPA. Here one simple form of prior information which can be expressed entirely in

the statement "that the parameter p is within interval [a, b] with probability a", will

be considered. Note that nothing is said in this statement about the assignment of
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the residual probability 1 — a. This piece of information can be expressed in the D-S

scheme as

Pr([u,v]) = a^when [u, v]^[a,b]

^

= 1 — a when [u, v]^[0, 1]

The corresponding commonality function is

H^v]) = 1^when u > a and v < b

= 1 — a otherwise

(4.9)

(4.10)

Combining this with the commonality function from the Binomial sampling information

given by (4.4) yields the commonality function

H([u,v1) = K ur(1 — v)" -r^when u > a and v < b

(1 — a)ur(1 v)' otherwise

(4.11)

The normalizing factor K can be determined analytically (see Appendix A for math-

ematical details) and is found to be

K={1 — a -1-- at( n )az(1 — a)' --
n

— byi- x (4.12)
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However, in numerical analysis, the best strategy found in this research for deter-

mining the constant K is by summing the probability weights and normalizing. Since

the commonality function is discontinuous on the triangular region, the corresponding

BPA function is also discontinuous. The demonstration of the BPA function is given

in Appendix A and will not be presented here. The upper and lower marginal density

functions g(v) and 1(u), which can be determined from the commonality function in

(4.11), also shown in Appendix A, will be discontinuous and involve probability spikes

at some points. They are

K
n

r

n

(1 — cx)(n — r)(1 — v)n - r - lv 7
(density along 0 < v < a

and b < v < 1.0)

g(v) = K

K

r

n

r

(n — r)(1 — v)n- r - 'vr

ab, (1 — On -7

(density along a < v < b)

(probability at v = b)

(4.13)

(density along 0 < u < a
K ( n ) (1 — a)rur -1 (1 — u)n'r 

and b <u <1.0)

(n)
f(u) , K^aar(1 — arr^(probability at u = a)^(4.14)

r

K ()n rur -1 (1 — u)n -T^(density along a < u < b)
r 

Note that each of the two marginal distributions expressed in (4.13) and (4.14), though

they seem to be somewhat complex, is composed of simple Beta distribution forms,

except the probability spikes at v = b and u = a for g(v) and Au) respectively.
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The information described by the statement "that the parameter p is within interval

[a, b] with probability a" represents a very simple but commonly occurring expression

of weak knowledge. It represents the situation where the individual expressing his sub-

jective knowledge has some sense of an interval in which the unknown parameter value

might lie, with some specifiable probability, but he is unable to specify the distribu-

tion of probability within this interval. Furthermore he feels noncommittal about the

remaining unassigned probability but uncomfortable with simply allocating it to the

compliment of the interval.

In this section, the D-S inference of the binomial parameter based on both sampling

information and subjective prior information has been discussed. The results can then

be used in D-S the decision analysis. In the following section, a water resources decision

making example is presented to demonstrate such an application.

4.4 An Application

4.4.1 Description of the Problem

The example adopted here is developed from one given by Benjamin and Cornell

[pp232-235, 1970]. The example is simple but sufficient to demonstrate the D-S decision

analysis based on the inferential results presented in the preceding section.

Suppose that a highway drainage culvert needs to be designed and thus requires

the adoption of a design flood value. The design is to be based on the criterion of

minimizing the combined construction and expected flood damage costs. Only two

decision choices for the design flood will be considered: a design flow value of 40 m3 /s

which will be identified as Qd, i ; and a flow value of 50 m3/s which will be identified as

d ,2•

A 6 year record of annual maximum floods at the design site only indicates that the
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annual maximum flood has exceeded the 40 m 3 /s value on just two occasions while the

50 m 3 /s value has been exceeded on only one occasion. No other sample information

is available.

A simple Binomial model will be adopted to describe the random sequence of annual

exceedances of any specified flood value. This implies the existence of fixed probabili-

ties, 0 1 and 02, of exceedance by annual maximum floods for either of the two design

flood choices. The true values of these probabilities are not known.

Utilities are considered to be directly equivalent to monetary cost. The utility value

corresponding to the construction cost is assumed to be proportional to the design flood,

i.e. a constant s times the design flood. The value of s is 1.0. In any year, if the flood

exceeds the design value, a constant damage cost of utility c will occur, if the flood is

less than the design value, there will be no damage. The value of c is 3.0. It will also

be assumed that, after each exceeding flood, the culvert will not be destroyed and the

capacity of the culvert is not changed. With the 20 year service life of the culvert the

total expected cost can be expressed as:

20
U(Q0, 0i)^SCh,i E cxPi [x failures occur]

..o
sCh,i 20c0, (4.15)

where i identifies a choice of design flood value, i = 1 or i = 2. The construction cost for

any given design Qd ,i is a constant and the expected cost becomes a function of just the

uncertain annual exceedance probability 0 i . Note that the utility function expressed in

(4.15) is a linear monotone increasing function of parameter Oi . Therefore, (3.20) can

be used in calculating the upper and lower expected utilities in the D-S approach.

Three cases will be considered here. The first case assumes no prior information and
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also ignores the entire record data, i.e. considers the decision analysis based on complete

ignorance. This extreme case is presented here mainly to demonstrate the maximum

imprecision embodied in complete ignorance. The second case considers the record as

the sampling information but still assumes that there is no prior knowledge. And the

third case considers both prior and sampling information. The parallel conventional

Bayesian approach will also be presented and the results will be compared with the

D-S analysis for the first and second cases.

4.4.2 Case I: Complete Ignorance

Bayesian Analysis. Bayesian decision analysis utilizes a noninformative prior

distribution to represent complete ignorance. For the binomial parameter 0, there is no

unique noninformative prior for the Bayesian analysis and four noninformative priors,

i.e. r i (0) = 1, 7r 2 (0) = 9 - '(1 r3(6) oc 0 -1 / 2 (1_9) -1 / 2 , r4 (0) cc e(1 — 9) 1 _8 , have

been proposed which are considered to be plausible [Berger, 1985]. Note that 7. 2 (9) is

an improper probability density function. Since there is no sampling information, the

Bayesian posterior for 9 will be the same as the noninformative priors.

Since the utility U(Qd ,i3 Oi ) is a linear function of the unknown parameter O i , only

the expected value of O i is needed to calculate the expected utility. The expected

value of 0i is 0.5 for 7r 1 j r3 , and 7.4 and is nonexistent for the improper prior 11- 2 . The

expected utilities Eir,[U(Qd,i)] based on the four noninformative priors 7rj , j = 1, ...4,

with respect to 0i for the two decisions are given in Table 4.1. Note that, for each

decision, the expected utilities from the three proper noninformative priors are the

same because of the linearity of the utility function. If the utility function had been

nonlinear with respect to the parameter 0 i , then the noninformative priors would not

necessarily produce identical expected utilities.

According to the usual Bayesian decision criterion of minimizing expected utility,
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Table 4.1: D-S and Bayesian decision results in Case I: complete ignorance (from
Caselton and Luo, [1992]).

Decision
Choices

D-S Bayesian
E.,[ ] El ] E,, [ ] E„.],[ ] E,., [ ] E.„,[ ]

C 2 d,1 40 100 70 n/a 70 70
Q d,2 50 110 80 n/a 80 80

Here n/a denotes "not applicable "

Q do. would be chosen as the design flood. Here, the Bayesian decision analysis gives a

clear preference between the two design options even though there is no information

about the unknown parameter.

D-S Analysis. The D-S method represents total ignorance by the complete igno-

rance prior which assigns probability 1.0 to the union representing the entire parameter

range, i.e. m(0) = 1.0. With the contiguous frame this is equivalent to a unit spike at

the upper left corner point of the triangular BPA diagram. The commonality function

in this case is H- ([u,v]) = 1.0 and the upper and lower marginal densities for both

decision choices are also unite spikes at the extreme ends of O's range, i.e.

1 9 = 0
f( 9 )

0 otherwise

1 9 = 1
g(0) =

0 otherwise

The utility function and the above two marginal density functions, in conjunction

with (3.20), provide the following expressions for the upper and lower expected costs

KIU(Q d ,i )] = sCh,i + 20c
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E.[U ( Q d,i)] = s Qd,i

With s=1 and c=3, the upper and lower expected values can be calculated and, together

with the Bayesian results, these are given in Table 4.1.

If the mini-upper expected utility criterion is adopted then the D-S decision choice

in this case should be Qd , i , which yields the value 100. At the same time it can

be noted that the difference between the lower and upper expected utility values for

both decision choices is very large compared with the difference in the upper expected

consequences of the two decisions as well as the lower expected consequences. This

is a reflection of the substantial uncertainty involved in the parameters 0 1 and 02. In

effect, by providing a more explicit recognition of the full uncertainties involved, the D-

S analysis is indicating near indifference between the two decision choices. In contrast,

the Bayesian result produces just a single expected cost for each decision while the

posterior parameter uncertainty is the same as the adopted informationless prior.

4.4.3 Case II: Using the Record Information

Bayesian Analysis.^It is again assumed that there is no prior information and

the four noninformative prior distributions will be considered.

The sample likelihood can be expressed as:

1(01 /x) oc 02i (1 — 0 1 ) s-Ti

where r 1 is the number of annual exceedances of the design flood C20 observed in the

record. With the four noninformative priors, the four posterior distributions are
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r1(t9i/x) OC tr(1

7r2 (0i /x) oc 82i -1 (1

7r3( /x) a O2i
-0.5 (1

7r4(0i/x) a 0';' ±ei(1

Note that r i (Oi /x), 71- 2 (0i /x) and 71-3 (0i /x) are Beta distributions. For each decision

option Qd ,i the expected utilities from the four posterior distributions can then be

calculated and are shown in Table 4.2. The expected costs are different for each decision

option depending on the choice of the noninformative prior, and there is no obvious

reason to prefer any individual result over the others. The noninformative priors ir 1 , 7r3 ,

74 all support Qd, i as the design flood decision, but r2 indicates indifference between

Qd,1 and Qd,2.

Table 4.2: D-S and Bayesian decision results in Case II: record information only (from
Caselton and Luo, [1992]).

Decision
Choices

D-S Bayesian
E-^] E*^]_ Ei,L _Er2E4._]_

61.75Qd,1 57.14 65.71 62.50 60.00 61.43
Qd,2 58.57 67.14 65.00 60.00 62.86 63.78

D-S Analysis.^The D-S analysis can be performed with just the information

drawn from a data record, and a prior is not necessary. Furthermore, as was mentioned

previously, the introduction of the noninformative prior BPA into the D-S analysis has

no effect on the result.

From (4.6), if the total number of exceedances of the design flood in the record is

r i in 6 observations, then the two marginal distributions for parameter 9  are
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)

ri 8 72"jr.-1 (1 —

6

 

(6 — r i )v•i(1 — v)' - ri^(4.16)

   

ri j

for 0 < r i < n.

Knowing the utility function and the marginal density functions, the upper and

lower expected values of U(Q0 ,8,) can then be calculated from (3.20) as

1^ ri + 1
EIU(Qd ,i )]^+ 20c I 9ig(0i)clei = sQd ,i + 20c^

31

E.[U(Q0)]
Ti

=^+ 20c^Oi f(Oi )d0i = sC2d,i + 20c-
31^

(4.17)

Equation (4.17) reveals, for binomial sampling and this simple utility function,

the influence of the various elements of the problem on the magnitude of, and differ-

ence between, the upper and lower expected utilities. In the general case with record

length n years, the denominator of the second term in (4.17) is n 1. For compar-

ison, the equivalent Bayesian expected utility with the uniform prior, i.e. 7r 1 , yields

E,,[U(Qd,i)] = sQd,i+ 20c(ri 1)/(n + 2).

With s = 1 and c = 3, the upper and lower expected values for the two decision

choices Qd , 1 and Q d , 2 are 65.71, 57.14 and 67.14, 58.57 respectively. These, together

with the Bayesian results, are summarized in Table 4.2.

The D-S results indicate that the ranges between upper and lower values have

narrowed considerably for both decisions as a result of introducing the record. Also,
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all of these expected values for both D-S and Bayesian analyses have been reduced

as a result of the diminished assessment for risk. There is some overlap between the

ranges for the two decisions which makes the choice less clear cut. According to the

mini-upper criterion the decision choice should be Qd,i.

4.4.4 Case III: Using Both Prior and Record Information

In the preceding two cases the prior information was non existent, and was treated as

being equivalent to complete ignorance. In the case considered here, suppose that an

experienced engineer overseeing the culvert design project expressed some subjective

knowledge which is independent of the record. He has a feeling that the return period

of the 40 m3 /s flood event is somewhere in the 2 to 4 year region. Furthermore, he

also feels that the 50 m 3 /s event has a return period somewhere above 4 years but less

than 10 years. In neither case has he any sense of the way that the unknown parameter

might be distributed within or outside these intervals. His prior information might be

expressed along the following lines: there is a 0.9 probability that the parameter 0 1

lies in the interval [0.25,0.50] and a residual probability 0.1 that says nothing about 0 1 ;

also, there is 0.9 probability that the parameter °2 lies in the interval [0.10,0.25] and a

residual probability 0.1 that says nothing about °2.
The above conforms to the type of weak prior information discussed in the previous

section on incorporating prior information and represents a simple and natural expres-

sion of knowledge under uncertainty. While the D-S scheme is able to reflect such a

statement faithfully, it presents some difficulties in the Bayesian approach. To use the

Bayesian approach, further elicitation is needed and this will involve more time, effort,

and possibly risk of distorting the knowledge.

It should be noted that the record suggests that the maximum likelihood return

period for the 40 m 3 /s event is 3 years and for the 50 m 3 /s event is 6 years. Thus
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the prior information can be considered to be in general agreement with the record for

both Qd , i and Qd , 2 events.

For each decision option Qd ,i, the resultant commonality function and upper lower

marginal density functions are determined from (4.11), (4.13) and (4.14). With the

utility function expressed in equation (4.15), the upper lower expected utilities can

then be calculated from (3.20) which are given in Table 4.3.

Table 4.3: D-S decision results in Case III: prior and record information.

Decision
Choices

D-S Bayesian
E.[^] El 1 E.„.,[ ] E,[ ] E„,[ ] E.„,[ ]

Qd,1 57.62 65.15 n/a n/a n/a n/a
Qd,2 58.05 63.41 n/a n/a n/a n/a

Here n/a denotes "not applicable."

Comparing with the D-S results for Case II, as shown in Table 4.2, it can be seen

that the interval formed by the upper lower expected utilities in Table 4.3 is narrowed

for each decision Qd,2. This is a result of incorporating the prior information which, as

pointed earlier, is in general agreement with the sample information. According to the

mini-upper decision criterion, Qd,2 should be chosen as the decision. This is in contrast

with Case II where Qd,1 was the decision. Hence the consideration of prior information

in this case has changed the decision. The reason for the alteration in decision is that

the prior information about Qd , 2 indicates rather strongly that the decision Qd , 2 has

even smaller risk.

4.5 Summary

In this chapter, the D-S inference of a binomial model parameter based on sampling

information was discussed. The interpretation of the inferential process from Monte
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Carlo simulation point of view is convincing and facilitates understanding of the in-

ferential scheme. The incorporation of prior information into the inference was also

discussed and it was revealed that when the prior knowledge supports a conventional

Bayesian prior, the final inferential results will be the Bayesian posterior.

The inferential results were demonstrated in a simple water resources decision mak-

ing example where three cases with increasing level of information were considered. The

comparison of D-S results with the parallel Bayesian results in Case II revealed that

for each decision option, the four Bayesian expected utilities corresponding to the four

noninformative priors all fall within the D-S upper and lower expected utility range.

This indicates that there is a general agreement on the magnitude of the assessed risk

between the conventional Bayesian and D-S methods. This kind of agreement is also

mentioned by Wasserman [1988], and adds support to the D-S results from a Bayesian

perspective.

On the other hand, the four Bayesian expected utilities obtained for each decision

option span only about 30% of the D-S range in the case of C2d,i and 60% in the case

of Qd ,2 . Thus only some of the imprecision detected by the D-S analysis appears to be

reflected in the Bayesian analysis even when four quite different ignorance priors are

considered. While this one example is clearly insufficient to draw general conclusions, it

does indicate that some substantial uncertainties have been overlooked in the Bayesian

approach.



Chapter 5

D-S Statistical Inference — Likelihood Based BPA

5.1 Introduction

In Chapter 4, the D-S inference of a binomial model parameter, based on both sampling

information and subjective prior knowledge, was discussed. In the more general situa-

tion, however, a random event may be assumed to follow a more complex probability

model such as a normal or lognormal distribution. The parameter of the probability

model may be unknown and thus needs to be inferred from the information available.

This includes the sample observations of the random event, and some experts' subjec-

tive knowledge about the unknown parameter.

The D-S approach to the inference of the unknown parameter involves representing

the sampling information and the independent subjective prior knowledge by BPA

functions, and then combining these via Dempster's rule of combination to yield a

resultant BPA. In this chapter, the D-S inference of the unknown parameter from

sampling information will be discussed. A general discussion of D-S representation of

subjective information using BPA functions will be presented in Chapter 7.

Once sampling data are obtained and a statistical model is assumed, the sample

likelihood function, which summarizes the sample information, is established. It would

seem reasonable to expect that the D-S statistical inference of the unknown parameter

could be obtained from this sample likelihood function view of the information. The

interpretation presented in Section 5.2 represents one such approach. The method

63
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was originally developed by Shafer [1976] and subsequently extended and endorsed by

Wasserman [1988, 1990a, 1990b]. The axiomatic justification of the results, which

reveals some very attractive features, are discussed in Section 5.3. An example is then

given in Section 5.4 to demonstrate an application of the D-S inferential results in water

resources engineering decision making.

5.2 Sample Likelihood Based BPA

Let X represent a random variable whose outcome x is assumed to be best described

by a probability distribution f(x/0) where 8 is the unknown parameter and 8 E 0.

Let x-,-(x 1 , x 2 ,...x,n ) be m independent and identically distributed observations of the

random variable X. The sample likelihood function from x is denoted as L(9) and

calculated from

L(0), II f(xj /0)^ (5.1)
3 =1

The ratio of the sample likelihood function to the supremum likelihood value is

defined as the relative likelihood function and denoted as R(9). That is

L(0) 
R(0) =

suPe ee L(0)
(5.2)

If a set of observations x is obtained, it tends to provide more support to the true 9

value being the one which has the greater chance of producing x. The relative likelihood

function R(9) expresses the relative chance of each 8 value being able to produce x, i.e.
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being the truth. Thus for any 6, and Bi if R(0i) > R(03 ), then 6, is more likely to be the

true parameter value than 03 . It is then assumed that the plausibility of any individual

6 value being the truth is equal to its relative likelihood R(8), i.e. P1(0) = R(0).

A further assumption is needed in order to determine the D-S inference of the un-

known parameter from the sample likelihood function. Without knowing theoretically

how the sample information determines the D-S inference, a reasonable assumption

would be that the sample evidence should be consonant (as defined in Section 3.1

of Chapter 3) in providing support to the inference of the unknown parameter O.

Consequently, the BPA inference based on the sample likelihood function should be

consonant, i.e. the subsets on which the BPA values are not zero are nested.

Indeed, consider the discrete case where the parameter space O is discretized into

n possible values, i.e. 0 = {0 1 ,8 2 , among which only one is the truth. Reorder

the parameter space into 0 = {01,82,...,00 according to their relative likelihood values

from high to low. Then 01 which would have the highest relative likelihood value, and

thus the highest tendency of producing x, deserves some explicit support and therefore

should be assigned some non-zero BPA value m(0 11 ). The element 021 will not be given

any exclusive support as this would conflict with the support for 01. But the subset

{01,0'2 } should have more support than 01 alone as it has a greater tendency to produce

x. This indicates that the subset {81,0 12 } should be assigned a non-zero BPA value. The

same argument can be repeated for progressively larger subsets like {01, 82 , ..., a , i < n,

justifying non-zero BPA values for each of them. Let A i = {01,02,...,0j for i < n. Since

all A i are also nested and include the singleton element 01, the resultant BPA therefore

will be a consonant BPA centered on 01.

So far, two assumptions have been introduced and some arguments supporting them

have been discussed. These two assumptions can be summarized as follows
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Assumption I^The plausibility of any singleton element 6, is equal to its relative

likelihood value, i.e. Pl(9j ) = R(8:);

Assumption II The likelihood-based BPA is consonant which assigns BPA values

only to the nested subsets A i = {01.en,...,0:} where i = 1, 2,...n.

For more discussions on the justification of these two assumptions, see Shafer [1976]

and Wasserman [1988]. Based on these two assumptions, a BPA function represent-

ing the D-S inference from the sampling information is uniquely determined from the

likelihood function. Let n7„(.) denote this BPA, then

m(Ai) = R(9) — R( 9:+1) for i = 1,..n — 1

77/(0) = ROO
^

(5.3)

m,(A) = 0^otherwise

The example given later in this chapter demonstrates the generation of a BPA from

sample likelihoods.

While the likelihood-based BPA derived above is based on two straightforward

assumptions, its derivation can be justified in a more formal way. This involves some

basic axioms developed by Wasserman [1988] which any BPA based on the likelihood

function would be required to satisfy. Furthermore, it has been shown by Wasserman

that the above derived likelihood-based BPA is the only one which satisfies these basic

axioms. This axiomatic justification of the likelihood-based BPA reveals some very

interesting and attractive features and will be discussed in Section 5.3.
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5.3 The Axiomatic Justifications of a Likelihood-Based BPA

The first axiomatic condition states that when the sample likelihood values of all 9, C

are the same, meaning that the sample likelihood function does not provide any effec-

tive information concerning the state of nature, the corresponding likelihood-based

BPA should be a complete ignorance BPA. The second axiomatic condition is that the

state of nature t9 i which has the higher likelihood value should also be given greater

support in the derived BPA. And the third axiomatic condition requires that, when the

prior subjective knowledge can be accurately expressed by any Bayesian prior distribu-

tion, its combination with the likelihood-based BPA should yield a Bayesian posterior

distribution and the conventional Bayesian analysis result.

Consider the likelihood-based BPA derived in Section 5.2 and expressed by (5.3).

When the likelihood values are the same for all O i C 0, the corresponding relative like-

lihoods ROO become 1.0 in which case (5.3) specifies a complete ignorance BPA. This

satisfies the first axiomatic condition. The second condition is similar to Assumption

I in Section 5.2 and therefore is clearly satisfied in the derived BPA. Now assume that

a Bayesian prior distribution is determined from the subjective knowledge and is ex-

pressed with exact equivalence as a Bayesian BPA in the D-S theory, i.e. as m o (OD = pi

and mo (A) = 0 otherwise, where E i pi = 1.0. To combine this with the likelihood-based

BPA, the commonality functions from the two BPA's will first have to be determined.

For the Bayesian BPA, the commonality function H o(A) has non zero values only on

the singleton elements. That is

-110( 9:) = Pi

I-1 0(A) = 0^otherwise
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Since H0 (A) has nonzero values only on singleton elements, only the commonality

values of singleton elements of the likelihood-based BPA, i.e. Hx (C, need be deter-

mined to combine it with the prior Bayesian BPA. According to the definition, the

commonality value for any singleton element is always equal to its plausibility value.

Therefore

I- I (fi)^R(0:)

L( 92)
sup0® L(0)

The combination of the two commonality functions using Dempster's rule of com-

bination (3.9) results in the posterior commonality function which is non-zero only for

singleton elements, i.e.

H(9) K p iL(OD (5.4)

where K is a normalizing factor. This combined commonality function corresponds to

a Bayesian BPA and is identical to the conventional Bayesian posterior distribution

result. Thus the likelihood-based BPA also satisfies the third axiomatic condition, i.e.

when the prior knowledge can be expressed as a Bayesian BPA, the D-S approach

should be identical to the conventional Bayesian result.

The three axioms are the basic conditions that, from a practical standpoint, any

BPA based on the sample likelihood function should satisfy. Furthermore, Wasserman

[1988] has shown that the resulting BPA is the unique BPA which satisfies the three

conditions. Therefore it can also be considered as a proper BPA, where proper implies
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that it is the only type of BPA satisfying the basic requirements, derived from the

sample likelihood function.

The BPA derived in Section 5.2 has been based on the likelihood function from the

total set of sample observations x. An alternative method would be to determine a BPA

from each individual sample result and then combine the m BPA's from m individual

observations to produce a resultant BPA. This resultant BPA would be different from

the BPA based on the likelihood function of all samples, one major difference being

that the final BPA would no longer be consonant. The reason being that this approach

reveals conflicting information in the samples which is suppressed in the likelihood

function summary. Arguments have been presented which favor obtaining the BPA

directly from the likelihood function of the sample set [Wasserman, 1988] as it is only

this approach that meets the axiomatic requirements described above. Also, as a minor

pragmatic consideration, the BPA based on the likelihood function of total samples is

easier to use in say engineering practice.

5.4 An Application

The following water resources engineering decision problem was taken from McAniff

et al. [1980]. The problem was originally solved using Bayesian decision analysis. It

will be used here to demonstrate the application of the likelihood-based inference in

the D-S decision analysis and the results will be contrasted with that from the original

Bayesian approach.

An agricultural producer needs to choose one irrigation system, among a range of

options, which will minimize his total cost. The total cost of an irrigation system

includes the initial capital expenditures and operation and maintenance expenses. The

operational cost depends on the future energy price increases which are uncertain.
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Therefore the decision has to be made under uncertainty.

Let D = (di ,j = 1, ...5) represent the decision options, i.e. the possible irrigation

systems, among which the decision maker must choose. The five options considered

here are Center pivot units, Travelling trickle units, Gated pipe units with tailgater

return, Open ditch units and Dead level units. The future energy price level is the

unknown parameter, or state of nature, denoted here as O. The possible values of

are represented by 0 = = 1, ...10) among which only one value can be the truth.

Each of the ten possible values represents an annual average percentage energy price

increase. For each decision option d3 and state of nature 0 i , there is a cost (i.e. negative

utility) which is denoted as C(di , 0 i ) and is given in Table 5.1.

Table 5.1: Prior probabilities and costs in dollars (from McAniff et al., [1980]).

States
of

nature

Price
increase

range

Average
price

increase

Prior
probabi-

lities

Ccosts in dollars
d1 d2 d3 d4 d5

91 <0 < 0 0.11 268190 269750 273780 287430 299780
02 0-3 1.5 0.07 280020 280930 284440 306540 313300
03 3-6 4.5 0.09 308620 307540 310050 331370 330720
04 6-9 7.5 0.11 344760 341510 342810 371150 358800
05 9-12 10.5 0.12 382080 385320 385060 421980 394810
06 12-15 13.5 0.12 452790 441870 439530 488280 441610
87 15-18 16.5 0.11 531180 515060 509990 573170 501540
08 18-21 19.5 0.09 646880 609830 601250 683540 579410
09 21-24 22.5 0.07 764400 726960 719420 826540 680290

On > 24 > 24 0.11 903500 862160 844350 977600 787020

A prior probability distribution on 0 has been specified and this, together with

the cost function C(c/3 ,00, is given in Table 5.1. It should be stressed that a prior

distribution is mandatory in Bayesian analysis and its precision is governed entirely by,

in this case, the discretization of 0 adopted. This is in contrast with the D-S analysis

where it is entirely optional and, if adopted, can be expressed at any level of precision
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equal to or lower than the discretization of O.

The sample information is represented by the sample estimate x of the true state of

nature obtained from a forecasting model. For a given true state of nature 0i , the model

will predict different future energy price levels with different probabilities, reflecting the

precision of the model. In the situation considered here a prediction of x = 10.5% has

been provided. The sample likelihoods for this prediction are given in Table 5.2.

Table 5.2: Sample likelihood values from x = 10.5% (from McAniff et al., [1980]).

8i 01 02 03 04 05 06 07 08 09 010
L(0i) 0.031 0.041 0.071 0.143 0.408 0.143 0.071 0.041 0.031 0.02

Bayesian analysis.^This was documented by McAniff et al. [1980] and is

briefly reviewed here.

The posterior probability distribution of 0 is determined, via Bayes' theorem, from

the prior probabilities and sample likelihood function. The Bayesian expected cost

for each decision option is calculated from this posterior distribution and the the cost

function. The results are given in Table 5.3. According to the Bayesian decision

criterion of minimizing the expected cost, the decision d 3 , i.e. the Gated pipe with

return irrigation system is the optimal choice.

Table 5.3: Expected costs based on Bayesian analysis (from McAniff et al., [1980]).

Decisions d1 d2 d3 d4 d5
Expected costs 414799 410139 409050 451284 415465

D-S decision analysis.^The D-S analysis can draw an inference on 0 solely

from the sampling information, which is then combined with a BPA representing the

subjective prior knowledge to produce the final inference for 9.
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First consider the sampling information alone. The D-S analysis involves deriving a

BPA, mx (A), from the sample likelihood function following the procedure described in

Section 5.2. Based on the likelihood values in Table 5.2, the BPA m x (A), determined

from (5.3), is shown in Table 5.4.

Table 5.4: Sample likelihood based BPA m x (A).

A {85} {84 -8 6} {03 ...61 7} {02...98} {91-99} {91.-810}
m2,(A) 0.65 0.175 0.075 0.025 0.025 0.050

Consider now the prior information. Here a precise prior probability distribution on

O has already been provided but the situation will be amended to reflect some concern

about the precision of specifying such a distribution. In other words, allow for the

fact that there might be some doubt about the specification of the precise probability

distribution given based on the prior information. One way of reflecting this doubt is

by introducing a factor a, ranging from 0 to 1, which represents the confidence one has

about the prior probability distribution. The value a can therefore be viewed as the

probability that the prior distribution is "correct" and 1 — a the probability that the

prior is meaningless and there is only ignorance about the unknown parameter O. This

way of weakening the prior information is known as "contamination of the prior". It will

be adopted somewhat arbitrarily here but will be discussed in more detail in Chapter 7.

Note that, for the extreme cases, a 0 means that one is in complete ignorance about

parameter 0, and a = 1.0 indicates that one is entirely confident about representing

the prior information by the given precise probability distribution.

Given some value for the factor a, the precise prior probability distribution can be

"discounted" by a and this leads to the prior BPA

mo(9:)^aP(OD^for i = 1,2...10
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mo(0)^1 - a^ (5.5)

A sensitivity approach to a will be adopted here so as to give some insight into its

influence.

The prior BPA m 8 (A) and the BPA based on sample information are combined

using Dempster's rule of combination to yield a posterior BPA m(A) which represents

the D-S inference of the unknown state of nature based on both subjective prior and

sampling information. The combined BPA's for different a values are given in Table

5.5. Note that when a = 0, the combined BPA is the same as that obtained using

the sample likelihood function alone and when a = 1, the combined BPA becomes the

familiar previously obtained Bayesian posterior distribution.

Table 5.5: The combined BPA's m(A) for different a.

Subset
A

Discounting factor a
0.0 0.2 0.4 0.6 0.8 1.0

0 1 0 0.0019 0.0047 0.0088 0.0159 0.0305
92 0 0.0016 0.0040 0.0075 0.0134 0.0259
93 0 0.0037 0.0089 0.0168 0.0303 0.0582
94 0 0.0090 0.0217 0.0411 0.0740 0.1423
95 0.6500 0.6369 0.6185 0.5904 0.5427 0.4436
06 0 0.0098 0.0237 0.0448 0.0807 0.1553
97 0 0.0045 0.0109 0.0205 0.0370 0.0712
08 0 0.0021 0.0051 0.0096 0.0173 0.0333
99 0 0.0012 0.0030 0.0056 0.0101 0.0194
Oto 0 0.0013 0.0031 0.0059 0.0106 0.0203

94 ...96 0.1750 0.1639 0.1483 0.1245 0.0841 0
03-07 0.0750 0.0702 0.0635 0.0534 0.0360 0
02 ...0 8 0.0250 0.0234 0.0212 0.0178 0.0120 0
0 1 ...08 0.0250 0.0234 0.0212 0.0178 0.0120 0
01 ...0 10 0.0500 0.0468 0.0424 0.0356 0.0240 0

With the posterior BPA m(A) and the cost function C(dj ,0 i ), the D-S upper and
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lower expected costs for each decision dj over the range of values for a is calculated

using the procedure described in Section 3.6. Note here that the cost is a monotone

increasing function of the unknown parameter 9 so that upper and lower expected costs

can be calculated using the upper and lower marginal distributions g(.) and P.). The

results are shown in Table 5.6.

Table 5.6: Upper lower expected utilities (costs) for different decisions d i and different
a values.

a
0 0.2 0.4 0.6 0.8 1

d1 E [C(d 1 )] 358946 362484 367479 375067 387972 414798
E*[C(d 1 )] 447885 445789 442830 438335 430690 414798

d2 E.[C(d2 )] 360542 363683 368119 374857 386317 410138
E" [C (cl 2 )] 442942 440864 437930 433474 425894 410138

d3 E. C(d3 )_ 361179 364211 368492 374996 386057 409050
E*[C(d3 )] 440690 438686 435856 431557 424247 409050

d4 E.[C(d4 )] 393311 396983 402168 410044 423439 451283
E* [C (4)] 489355 486944 483539 478366 469570 451283

d5 E.[C(d5 )] 374536 377128 380789 386349 395806 415464
E*[C(d4 )] 442367 440663 438257 434602 428386 415464

From Table 5.6 it can be seen that the smaller the a value, indicating greater

weakness of the prior information, the bigger the difference between the upper and

lower expected costs for any decision option. When a is 1.0, i.e. the Bayesian case,

the upper and lower expected costs coincide. This can be seen clearly from Figure 5.1

where the upper and lower expected costs vs a for d 1 only are plotted.

The upper expected costs vs. a for different decisions di ,j = 1,...5, are plotted in

Figure 5.2. It can be seen that the upper expected costs for decision d 3 are the smallest

for all a values. According to the D-S mini-upper decision criterion, the decision d 3 ,

i.e. Gated pipe with return, should be chosen as the alternative.

In this particular example, D-S decision analysis for any a value yields the same
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Figure 5.1: The upper and lower expected costs as functions of a for d 1 .
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final decision as the Bayesian approach, namely d 3 . However this is not necessarily

always the case. Consider for example a situation where the cost values for d 2 are

slightly lower than specified in Table 5.1 but are unchanged for other decision options.

The modified costs for d 2 are given in Table 5.7, from which the corresponding upper

and lower expected costs are calculated and presented in Table 5.8. The upper and

lower expected costs for other decision options remain the same as in Table 5.6. The

modified upper expected cost vs. a for d 2 , together with the unchanged upper expected

cost curves for d 1 , d3 and d5 are plotted in Figure 5.3. From Tables 5.8 and 5.6 or Figure

5.3, it can be seen that when a is greater than 0.6, the D-S decision based on the mini-

upper criterion is d 2 . But when a is less than 0.6, the D-S decision becomes d 3 .

Table 5.7: The modified costs for d 2 .

States of
nature

Costs
in dollars, d2

0 1 265050
92 276230
93 302840
04 336810
95 382820
96 441570
97 514760
08 609530
99 726660
0 10 861860

Table 5.8: The corresponding modified upper lower expected costs for d 2 and different
a values.

a
0 0.2 0.4 0.6 0.8 1

d2 E. C(d2 )] 357272 360468 364981 371836 383496 407732
E'[C(d 2 )] 441212 439091 436097 431548 423813 407732
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Figure 5.3: The upper expected cost as functions of a for did = 1, 2, 3, and 5, after
cost function for d 2 are modified.

5.5 Summary

The sample information about an unknown state of nature is often expressed in the form

of the sample likelihood function. In this chapter, the D-S inference of an unknown state

of nature based on the sample likelihood function was presented. The approach, though

based on some intuitively reasonable assumptions, can be given a more formal axiomatic

justification. Again, when the prior knowledge can be expressed by a conventional

probability distribution, the combination of it with the likelihood-based BPA yields

the conventional Bayesian posterior. The inferential results were demonstrated in a

water resources decision making example where the weak prior information based on

contamination of a conventional prior probability distribution was also considered. The

results indicate that when the input information is weak, the imprecision reflected in

the upper lower expected costs are also significant. Such kind of imprecision however
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can not be obtained in the conventional Bayesian analysis.



Chapter 6

D-S Statistical Inference — General Model Parameters

6.1 Introduction

In Chapter 5, the D-S inference of an unknown parameter of a general statistical model,

based on the sample likelihood function, was introduced. In this chapter a more formal

and theoretical approach to the D-S inference of general statistical model parameters,

based on sampling information, will be presented. This will be based on Dempster's

[19691 original work which was confined to single parameter situations.

The general D-S statistical inference is introduced through the multinomial model

with a single parameter. Such a multinomial model can be considered as a discretization

of a continuous statistical model, and the inferential results can therefore be easily

extended to the general continuous model situation. The multinomial model, together

with a general description for the D-S inferential procedures of the unknown parameter,

from sampling information, will be presented in Section 6.2.

The general results described in Section 6.2 are of theoretical importance but have

limited practical use. The practically more useful results can be developed by introduc-

ing an additional requirement, known as the monotone density ratio, for a statistical

model. This important condition, together with the corresponding D-S inferential re-

sults, will be described in Section 6.3. This restricts the applicability of the D-S theory

to some degree but as will be seen, still permits an imprecise probability approach to be

applied to commonly used statistical models in engineering such as normal, lognormal

79
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and maximum extreme type I etc. In Sections 6.4 and 6.5, these general inferential

results will be used to derive specific inferential results for the unknown parameters

of some commonly used probability models which satisfy the monotone density ratio

requirement.

It should be noted that Section 6.2 is included here mainly for the purpose of con-

tinuity of the theoretical development in this chapter. The more practically relevant

results presented in Section 6.3 can be appreciated without developing a full under-

standing of the basic theory in Section 6.2.

Only the D-S inference of general statistical model parameters based exclusively on

sampling information will be presented in this chapter. The sample based BPA can

be combined with a BPA representing subjective knowledge to yield a resultant BPA.

Once the BPA inference on the unknown parameter is obtained, it can then be used in

engineering decision analysis following the procedure described in Section 3.6 of Chapter

3. Since this is a routine procedure which has been demonstrated through examples

in Chapters 4 and 5, it will not be illustrated again in this chapter. Nevertheless,

decision making is often the ultimate purpose of any statistical inference dealing with

uncertainties.

6.2 The Multinomial Model and D-S Statistical Inference

The multinomial model with a single parameter has been described in detail by Demp-

ster [1969]. The following is a brief introduction to this model.

Consider a random event x whose outcomes are from k categories, where the integer

k > 2. This random event x can then be described by a multinomial model with

probability values specified on the k categories. The probability value specified on any

category represents the relative frequency of the random outcome of x being from that
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category.

Let K represent the set of k categories, i.e.

K^{1,2,...,k}^ (6.1)

and let 7r(i) represent a probability value assigned to category i for i C K. Then a

typical multinomial probability distribution can be expressed as

7r^[7r(1),7r(2),...,lr(k)]^ (6.2)

where E IL (i) = 1. Here the true multinomial frequency model is assumed unknown

but to lie among a set of possible multinomial models represented by a parametric form

governed by a single parameter

740) = [7r(1,0),7r(2,0),...,7r(k,0)]^ (6.3)

where B C 0, i.e. B represents an unknown state of nature whose true value lies within

0. Once the 8 value is determined, the true multinomial model becomes known. Thus

the problem of determining the true multinomial model is equivalent to the problem of

dealing with uncertainty of the single unknown parameter 8.

Suppose a single sampling outcome of x is obtained and is from category j. For

a random event x, obtaining any outcome of x itself is random in nature. This fact

is recognized in the D-S approach through the introduction of another space U whose
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points are in one to one correspondence with the observations of x. That is, when an

observation of x is obtained, this corresponds to a random sample in space U. This

random sample however is not directly observable and thus can not be specifically

identified. The space U takes the same mathematical form as the multinomial model

7r, therefore a general point of U can be expressed as

u= {u(1),u(2),...,u(k)} (6.4)

where E itL i u(i) = 1. The space U is a collection of u, i.e. U = {u}. The distribution of

u over U is assumed known, and governs the random sampling operation. The choice

of this distribution is not critical as one distribution can always be transformed into

another distribution. For convenience a uniform distribution of u over U is adopted

here.

Suppose a single observation of the random event x is obtained which is in category

j. This random observation is equivalent to drawing a sample u from the space U

though, as mentioned above, this sample itself can not be identified. However the

sample u must match the observation j and the parametric multinomial model 7(8),

and this can be achieved if and only if

r(i,fnu(j) < 7r(j,O)u(i) (6.5)

for all i C K (see Dempster {1969] for a detailed discussion). In other words, the above

relationship ensures that the sample u will be in correspondence with the observation

j, under the multinomial model 7(0).
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The understanding of the relationship in (6.5) is facilitated by considering the special

case of binomial model which has been discussed in Chapter 4. Let r(1,0) = 6 represent

the probability of S(uccess) and 7(2,0) = 1 - 6 the probability of F(ailure), where

r(1,0) r(2,0) = 1.0. Let the space u be represented by u(1) = w and u(2) = 1 - w,

where 0 < w < 1.0 and u(1) u(2) = 1.0. If a sample of S is obtained, i.e. j = 1, then

according to (6.5) there is

(1 - 0)w < 0(1 - w)

which can be simplified as

w < < 1 .0

This is exactly the relationship developed in Chapter 4 and demonstrated in Figure 4.1

for a sample of S.

Since u is uniformly distributed over U, the relationship in (6.5) determines a proba-

bilistic distribution, i.e. the D-S inference, on 6 based on the observation j. Let R(j, u)

represent the random subset of 6 determined by the above relationship when j is fixed.

The D-S inference of 0, which is expressed in the form of a commonality function on

any subset A of CI, can then be determined as [Dempster, 1969]

r(i
H(RU,IL) D A) = C [EsuPecA 

[r(j
,9)11
,0)i

=
if infecAr(i 3 O) > 0^(6.6)

otherwise
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where C is a normalizing constant.

The general D-S inferential result of 8 expressed in (6.6) is of little practical value.

Rather, it serves as an intermediate step towards more practical D-S inference under

the condition that the parametric multinomial model has a property called "monotone

density ratio". The monotone density ratio condition, together with the inferential

results for 8 based on the sampling observations, are presented in the next section.

6.3 D-S Inference of Parameter with Monotone Density Ratio

Consider the multinomial model r(8) defined by (6.3) in Section 6.2. The parameter

here is assumed to be a real continuous variable in the range a < 0 < [3, where a and

/3 can go to -oo and ±oo respectively. For any two categories i,j C K, the ratio of the

probabilities

r(i, 0) 
r(i, 19 )

(6.7)

is a function of 8 on a < < /3. If this ratio is a monotone nonincreasing or nonde-

creasing function of 8 for all i,j C K, then the multinomial model r(8) is defined as

meeting the monotone density ratio condition.

The parametric model 70) with monotone density ratio has some attractive features

[Dempster, 1969]. First, the subset R(j, u) of 8 in (6.6) will be a closed interval for all

j C K, i.e. R(j,u) C [8 1 ,02] for a < 8 1 < 02 < 0. This suggests that the BPA inference

for 8 based on an observation j can be expressed on the continuous contiguous frame

of 8 as defined in Chapter 3.

Additionally, when r(9) has monotone density ratio, the k categories of random

variable x can be reorganized into r partially ordered, mutually exclusive, subsets
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< k, so that if i and j belong to a common subset K„, then

r(i 3 O 1 )^r(i, 0 2 )
r(..7, 19 1)^7r(.1, 09 2)

while if i C K, and j C Kt with s < 1, then

r(i 3 O 1 ) > 7r(i 3 O 2 ) 
r(i, 9 1)^r(i, 9 2)

for all 01, 02 on a < 01 < 02 < Q. The partially ordered subsets K1, K2, K, are called

equivalence classes and K is the union of these equivalence classes.

With the above two properties of the monotone density ratio assumption, the D-S

inference for parameter 0 from the single sample observation j C K,, as expressed in

(6.6), can be significantly simplified. Let the k categories of random variable x be

arranged so that they are in the same order as the equivalence classes K1 ,K 2 ,...,K,..

Then for any closed interval [0 1 , 0 2] on a < 0 1 < 02 < #, the supremum of the ratio

r(i 3 O)/r(j,0) in (6.6) can be attained either at 0 1 or 02 , depending on which equivalence

class the value i is in. If i is in the same equivalence class K, as j is, then the probability

ratio will be a constant for any 0 C [0 1 , 0 2]; if i is in an equivalence class Kt where t < s,

then the ratio reaches its supremum at 0 1 ; and if i is in the equivalence class k1 where

1 > s, the ratio achieves its supremum at 02. Thus under the monotone density ratio

assumption, (6.6) simplifies to

H([01,02]) = C 
7r( 31
^ + 1 

r (i,
11(

02)
i, 62)1 -1
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if 71-(j,0) > 0 on 8 1 < 8< 92

= 0^otherwise
^

(6.8)

where II(j,0) = E i<j r(j,0) is the cumulative probability value of j. Note that this

cumulative probability value is the summation of all of the probability values in the

equivalence classes Kt for any t < s. Equation (6.8) is the commonality function on

the subsets of O representing D-S inference on 8 from a single sample j.

If n observations are obtained, n commonality functions can be deter-

mined which can be combined via Dempster's rule of combination (3.9) to yield a

resultant commonality function, i.e.

H({91,92]) =c, Hn^61)^1 Mih,92)1
.

^h.1 r(.7h, 9 1)^r(3h,92)
if r(j,0) > 0 on 0 1 < 0 < 92

= 0^otherwise
^

(6.9)

where C' is a normalizing constant.

The above discussion has been based on the multinomial model r(8) with k cate-

gories. This model can be extended to the continuous sampling model situation. Let

ik(x,O) represent the continuous sampling model, and let the x values be arranged so

that they are in the same order as the equivalence classes. Then for a set of samples

x i , x 2, x n , the D-S inference for 9 is

H([91,92])^[91x i_, 0 1 ) + 1 - tli(x;,09.) -1

^0(xj, 9 1)^0(xi,92)
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if 7/)(x„ 0) > 0 on 0 1 < 0 < 9 2

= 0 otherwise (6.10)

where ‘11(x 2 ,0) is the cumulative probability of x i . If x, is in the equivalence class K„

then this cumulative probability is equal to the integration of 0(x, 6) over the x values

in the equivalence classes Kt for all t < s.

From Equation (6.10), it can be seen that the commonality function for single point

subsets, i.e. when 6 1 = 62 = 6, becomes the conventional sample likelihood function,

i.e.

H([6,6]) =^11 (xi, 6)
i=1

(6.11)

Thus in the Bayesian case when the prior knowledge can be expressed as a conventional

precise probability distribution or a Bayesian BPA on 0, say p(0), the corresponding

commonality function has non-zero values only on the single value subsets. The com-

bination of this prior knowledge with the sampling information, using Dempster's rule

of combination, yields a posterior commonality function which has non-zero values

C"p(0) (x i , 6), where C" is a normalizing factor, only on single value subsets.

The corresponding posterior BPA is a Bayesian BPA which is identical to the conven-

tional Bayesian posterior distribution. This further supports Dempster's [1969] claim

that the Bayesian analysis is a special case of the more general D-S approach.

Once the commonality function for the unknown parameter 6 is obtained for n sam-

ple observations from (6.10), the BPA density m(0 1 ,0 2 ) and two marginal distributions

f(0) and g(0) for 0 can then be determined. To facilitate the formulation, define
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( x i ,^)t i 0 1(^)

( x^)

1 - 1if(x 2 ,8 2 )
si(e92) (6.12)

0(x,, 02)

then the commonality function in (6.10) becomes

n

II( [01, 02]) = c" II [tt( 91) + si(92)] (6.13)
i=1

According to equation (3.15), the BPA is then

02 11([91,82j)
m([01,02})^=^

a81002

=^021) {t[ii(01) + si(92)1 -2 t:(90s:(02) +
1=1

[t (^) 1 ( 02 )]^( 01 )1 [E.^[t 1 (0 1 ) + 8102 )1 -1 s:(02 )1} (6.14)
i=1^ i=1

where tat 9 1 )  and s1(02 ) are defined as

i:(91)^ii(01)= de l

(6.15)
s:(02)^=^d9 2 si(92)

The two marginal distributions f(0) and g(0) can be determined from (3.18) and

H([0 1 ,H({01 ,0 2]) as follows
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0H([01, 0 2]) f(0) =^801^162=61=6

=^ii'cb(xi,6)t;(6)1

011([01,02]) g(0) =
002^161,-.92=8

= C i^Ik(xj, 0) [E 91)(X/,0)S;(6)1^(6.16)
i=1^/=1

In this section, the D-S statistical inference of an unknown parameter of a general

sampling model with the monotone density ratio condition has been described. The

inferential results are represented by the commonality function in (6.10), the BPA

density function in (6.14) and the upper lower marginal distributions in (6.16). In the

following section, the specific D-S inferential results for unknown parameters of some

commonly used sampling models will be presented.

6.4 Application to Normal and Lognormal Models

If a random variable x follows the lognormal distribution with parameters and a, then

log(x) follows the normal distribution with IL as the mean and o- as the standard devi-

ation. Dealing with the uncertainties of the lognormal model parameters is therefore

equivalent to dealing with the uncertainties of the corresponding normal model param-

eters. In the following discussion, only the D-S inference of normal model parameters

are presented. The D-S inference of lognormal model parameters can be obtained by

first transforming the lognormal model into a normal model and then perform D-S

inference on the corresponding normal model parameters.

The probability density function, ,t7bN (x ; it,o.) of a normal distribution with mean



exp
2o.2

( 4 — x . — 2/1(x i — x i )
(6.18)
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and standard deviation o can be expressed as

1^(x — p) 2 \
ON(x;  ^exp

V2ro-^2o•2 )
(6.17)

Verification of the monotone density ratio condition for each of the two parameters

of the normal model follows the same procedure as for the multinomial model. For any

two values x i and xi of x, the probability density ratio of x i and xi can be expressed

as

lkiv(xi; it, a)
exp C (xi — it) 2 — (xi — 0 2 )

ON(xj; y,o-)^2o2

When the parameter a is fixed, this ratio is either a monotone non increasing (when

x i < xi) or nondecreasing (when x i > x i) function of a. Therefore according to

the definition, the normal model with parameter p, satisfies the monotone density ratio

assumption. Similarly, when ,u is fixed, the normal model with parameter cr also satisfies

the monotone density ratio condition.

Since D-S inference deals only with single parameter situations, one parameter has

to be assumed fixed while the inference for another parameter is considered. In prac-

tice there might be uncertainties associated with both parameters. In this situation

the parameter whose uncertainty is greater or has the more significant influence, on the

consequent results, such as from a decision analysis, should be treated as the uncertain

parameter and the other parameter assumed constant. For example, Ang and Tang
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[19841 suggested that, for a normal sampling model, the uncertainty associated with

the mean is more significant than with the standard deviation. Only the uncertainty

associated with the mean value is then considered, and the standard deviation is con-

sidered as a constant. In the following two subsections, the D-S inferential results for

each of the two parameters, while assuming the other is fixed, are presented.

6.4.1 Inference on it with o Fixed

Before discussing the D-S inference on p., the equivalence classes of the values of x under

parameter y are determined. Consider again the probability density ratio expressed in

(6.17). For any different x i and xi values of x, the density ratio is different for different

/1 values. Thus any individual value of x forms an "equivalence class". Also for any

< /1 2 and x i < xj , there is

ON(Xi; Pi)^ON(Xi; 112) 

ikN(Xj;^
)

^(PN( Xj; 112)
(6.19)

Therefore the order of the equivalence classes is from the class with small x value to the

one with large x value. It is seen that the natural order of x values is consistent with the

order of the equivalence classes. Thus for any observation x i , the cumulative probability

111 N (x i ,p), necessary for determining the D-S inference on it, can be expressed as

TN(xi;,a)
izi
j-. 7,1) N (x; p.,a-)dx

(
x i — ft)

(6.20)



((x i - /1 1) 2 ) (xi — fLi).^2ro-exp
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where 41(•) is the standardized cumulative normal distribution. The functions t i (p. i )

and s i (y 2 ) in (6.12) can then be determined as

4011)

Si

 

1 — TN(xi; P, 2) 

ON(xi; A2)

= \/-27rcrexp ( (xi 2—c/r2L2)2 ) [1^4) ( xi --cr 1t2 )]

and the derivatives of t i (p 1 ) and s i (/u 2 ) to A i and /1 2 respectively are

Xi -2 /L1^_ 1

Q
xi —,a22 sz(ii2) + 1 (6.21)

The following numerical example demonstrates the application of the results devel-

oped in this subsection.

EXAMPLE 6.1. The annual maximum flow x, in cfs, of a stream has been recorded for

the last 10 years as follows

4025.8 3536.9

6506.5 9093.3

2012.0 12823.3

2409.0 12646.9

1347.7 4017.3
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Studies indicate that the maximum flood values can be modeled by a lognormal dis-

tribution with parameters p and u. The logarithm of the data therefore follows a

normal distribution with mean p and standard deviation cr. The corresponding natural

logarithms of above data are

^

8.30^8.17

^

8.78^9.12

^

7.61^9.46

^

7.79^9.45

^

7.21^8.30

from which the maximum likelihood estimate of the standard deviation can be deter-

mined as (3- = 0.734. Assume the standard deviation cr is known and is equal to the

sample standard deviation 0.734. The D-S inference on the uncertain parameter p can

then proceed. The BPA density functions, m N ({p i „a 2 ]), of p from 2 and 10 data are

plotted in Figures 6.1a and 6.1b respectively. Here, and in the examples following, only

the first two data are used in the 2 data case for the purpose of demonstration. It is

found that in all the examples presented in this chapter, choosing any other two data

will not have a significant effect on the results. From the plots it can be seen that

when the number of data is small, as in Figure 6.1a, the BPA density is widely spread,

indicating large uncertainty associated with p. As the number of data increases, the

BPA density function concentrates about the true IL value as in Figure 6.1b. In the

extreme case when the number of data becomes infinite, the BPA density will become

a unit spike at the mean value, indicating the deterministic situation. Only in this

extreme case do the D-S inference and the sample likelihood estimate of p become the

same.

For comparison, the Bayesian posterior distributions r iv (p) for p were determined
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(a)

(b)

Figure 6.1: The BPA density functions for normal model parameter^mN((f11,1/2)),
for a) n= 2; b) n= 10.
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2.0

95

0.0

4.0^6.0
-r^i^1
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(b)

1

12.0

Figure 6.2: The D-S upper and lower marginals, gN (p) and fN (,u), and the Bayesian
posterior r-N(y) for normal mean p., a) n = 2; b) n = 10.
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for different sized samples. The commonly used noninformative prior for the location

parameter u, is the uniform distribution on p, which is an improper distribution as

the integration over u is infinite. The Bayesian posterior distributions irN (ii) with the

uniform prior for p, together with the D-S upper and lower marginal distributions,

gp,-(p.) and fN(p), of p from 2 and 10 samples are plotted in Figures 6.2a and 6.2b

respectively. It can be seen that the Bayesian posterior distribution lies between the D-

S upper and lower marginal distributions. Furthermore as the number of data increases,

the upper and lower marginal distributions and the Bayesian posterior distribution all

tend towards the true mean value. Again, when the number of data becomes infinite

both D-S and Bayesian approaches lead to the same result.

A qualitative evaluation of these results suggests that significant additional uncer-

tainty due to imprecision has been recognized by the D-S scheme when the sample size

is small, i.e. n = 2. But the difference between the D-S and Bayesian results at n = 10,

and, in particular, the implications in a decision analysis are probably negligible.

6.4.2 Inference on u with p Fixed

The equivalence classes for values of x and the order of the equivalence classes, under

parameter o-, are determined first. Consider the probability density ratio expressed in

(6.18). This ratio will be the same for any two different values, x i and xj, which satisfy

x i = 2p, - xj . This suggests that any two values of x which are symmetrical about the

mean p, are in the same equivalence class. A typical equivalence class can be expressed

as {x, 2µ - x} where x > p and the order of the equivalence classes can be determined

as follows:

Since for any p, < x i < x3 , the density ratio in (6.18) satisfies



xi
tacri) =^

-^( 1^(Xi - (r1)2 ) 4070
0. 1
^ 3

(Xi - Cr2) 2 )1Xi -
)
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ON(xi; al)^ N(xi;u2) 

bN(xj; ui)^ON(xj;u2)
(6.22)

for all of < u 2 , then the order of the equivalence classes is the same as the order of x

values for x > If all the x values are arranged so that they are in the same order as

the equivalence classes, the cumulative probability of x 2 , tlI N (x i ,cr), is

111 N (x i ; u) ON(x; o)dx

24, 
(x i —A)

= (6.23)

The two functions ti (c 1 ) and s i (o-2 ) are then

ti(o1)

si(u2)

*N(xi;u1) 
PAr(xi;u1)
1 — WN (x i ; cr2 )

ON(xi; u2)
(6.24)

and the two derivatives tau ].) and s=(c2 ) are

(6.25)

The following example demonstrates the results developed in this subsection.
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EXAMPLE 6.1 (continued). Assume that the population mean value it of the normal

distribution is known to be 7.414. The D-S inference on the standard deviation o

from the sample observations can then proceed. The BPA density functions of u,

mN([(71,0- 2}), from 2 and 10 data are plotted in Figures 6.3a and 6.3b. The plots

show again the tendency of the BPA density converging towards the true u value as

the number of data increases. Compared with the BPA density for ,a in the previous

example, the convergence of the BPA density for c is much slower. This will be seen

more clearly below.

For comparison, the Bayesian posterior distributions of cr, 7-N (Q), for 2 and 10

data are determined using the noninformative prior, 1/c, for the scale parameter cr.

The Bayesian posteriors, together with the D-S upper and lower marginal distributions,

gN (c), and fN (cr) are plotted in Figures 6.4a and 6.4b. From the plots it can be seen that

the two Bayesian posterior distributions all lie between the corresponding D-S upper

and lower marginal distributions. Also when the sample size is small, as in Figure 6.4a,

the D-S upper and lower marginal distributions are significantly different. However

as the sample size increases, as represented by Figure 6.4b, the two D-S marginal

distributions become closer, indicating a decrease in the amount of uncertainty. In

the extreme case as the sample size becomes infinite, both the D-S marginal and the

Bayesian posterior distributions will converge to the true a- value. Note that in Figure

6.4b, the D-S upper and lower marginal distributions are still quite different and fairly

widely spread, indicating still some considerable uncertainty associated with a even

with the sample size of 10.
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Figure 6.3: The BPA density functions for normal model parameter o, rnN([0-1,0- 2]),
for a) n = 2; b) n = 10.
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10.0 ^

8.0 -^f ed (a)

1.0
a

(a)

1.5^2.0

Figure 6.4: The D-S upper and lower marginals, gN (o) and fN (a), and the Bayesian
posterior T-N(a) for normal standard deviation a, a) n = 2; b) n = 10.
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6.5 Application to Gumbel Model

The Gumbel, or maximum extreme value type I, model has been widely used in engi-

neering to describe the distribution of the random extreme value events, such as annual

maximum floods. The probability density function of the type I distribution is

X
I(X; (7) —exp [— ^ exp ^ (6.26)

for all 0 < x < co.

For any x i and xj of x, the probability density ratio is

= exp
{ x i — xi

exp (LI ) [exp^
cr
^exp (--x

o-
)] }^(6.27)

a

For any given u this ratio is a monotone non increasing (i.e. when x i < xj ) or

nondecreasing (i.e. when x i > xi ) function of the parameter it. Thus the type I model

with uncertain parameter and fixed o, satisfies the monotone density ratio condition.

However, since the density ratio is not a monotone nondecreasing or nonincreasing

function of a for any fixed it, the type I model with parameter c uncertain does not

satisfy the monotone density ratio condition. Therefore for the type I model, the D-S

inference can only be performed on parameter ft with a assumed as fixed.

Considering again the density ratio in (6.27), since for any x i < xj

Or (xi; /L i )^'01(xi; 11 2) 

OI(xi;^ ki(xj;p2)
(6.28)
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for p i < p, 2 , therefore any single x value forms an equivalence class, and the order

of the equivalence classes is the same as the natural order of the x values. Thus the

cumulative probability distribution ‘11(x„kt) for any observation x i , which are necessary

for determining the D-S inference for can be determined as

Tr(x2;11 ) = exp [—exP (6.29)

The functions t i (A 1 ) and s i (1, 2 ) and their corresponding derivatives are

= o-exp ( xi  kil )

i -7. /12 i(xi  p+2)exp ( xi — P2)1,-_- cexp
Q^ o-^IJ

—o-exp ^
cr

, —ex ^p 
( xi — p i )

a )
{xi — 11, 2^( xi — /12)1

= —exp^+ exp
c^o-^).1

+exp [exp ( xi —
c

112 )]

+exp (x
i — fi2 )

a

 

(6.30)

The results developed in this subsection are illustrated in the following example.

EXAMPLE 6.2. The following observations are from a random event which can be modeled

by a type I distribution (see Bury [1975} for the original example).
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4.0 5.5

4.9 6.3

4.6 4.5

5.0 5.9

7.5 6.9

5.4 5.7

The maximum likelihood estimates of parameters a and it are 0.818 and 5.05 respec-

tively [Bury 1975]. Assume parameter o- is equal to the sample estimate, i.e. a = 0.818.

The D-S inference on from sampling information can then be performed. The BPA

density functions for p, m1([ii i „u 2 ]) from 2 and 12 data are illustrated in Figures 6.5a

and 6.5b respectively. The plots again demonstrate that as the number of data in-

creases, the uncertainty associated with parameter au decreases, and the BPA density

function tends towards the true value of it.

Using a uniform distribution as the noninformative prior for the location parameter

the Bayesian posterior distributions, ri(p), of p, from 2 and 12 samples can be

determined. These, together with the corresponding D-S upper and lower marginal

distributions, gr(p) and fr(p,), are all plotted in Figures 6.6a, and 6.6b. It is again seen

that the Bayesian posterior distribution lies between the D-S upper and lower marginal

distributions. Also as the number of sampled values increases, the Bayesian posterior

distribution and the D-S upper lower marginal distributions all converge to the true

value. As the number of data becomes infinite, the D-S approach, the conventional

Bayesian method, as well as the classical maximum likelihood estimate of parameter p,

all converg e on the same result.
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Figure 6.5: The BPA density functions for Extreme Type I model parameter p,,
rnAkt1,A21), for a) n = 2; b) n = 12.
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Figure 6.6: The D-S upper and lower marginals, .9/(µ) and f 1(A), and the Bayesian
posterior r/(//) for Extreme Type I parameter u, a) n = 2; b) n = 12.
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6.6 Summary

A more formal and theoretical approach to the D-S statistical inference of an unknown

parameter of a general statistical model, based on sampling information, was presented

in this chapter. Though this approach requires that the unknown parameter in the

model satisfies the monotone density ratio condition, it still can be applied to commonly

used statistical models such as normal, lognormal and maximum extreme value type I.

Again, the inferential results, when combined with a Bayesian prior probability distri-

bution, yields the conventional Bayesian posterior. The application of the inferential

results to several common statistical models showed that when sampling information is

very limited, the D-S result reveals significant imprecision which is overlooked by the

conventional Bayesian results with noninformative priors. The two methods converge

to deterministic results when the sampling information becomes infinite.



Chapter 7

Representing Subjective Knowledge with a BPA

In Chapters 4, 5 and 6, the D-S inference of an unknown parameter of a statistical model

based on objective sampling information was described. In addition to the sampling

information there may be other sources of knowledge, often categorized as subjective

in nature, about the unknown parameter. These sources of information can play an

important role in situations where the sampling information is very limited. In this

chapter several methods of determining the BPA's from subjective knowledge, each for a

different situation, will be discussed. Unlike determining BPA functions from objective

sampling information, where a formal analytical approach is possible, the representation

of subjective knowledge will necessarily involve an elicitation process. The issue of

elicitation is, however, closely related to the more fundamental and profound issue

of axiomatic justification of any uncertainty representation scheme. The literature is

extensive on this subject but inconclusive and one can find authoritative arguments

both for and against most schemes. But just as the debate on the Bayesian approach

has not deterred it from being used in engineering practice, the dispute on the D-S

scheme should also not impede the exercise of exploring the potential implementation

of this new scheme in the engineering world. The axiomatic issue itself is considered

to be outside the scope of this thesis though. Representative discussion on this subject

can be found in Shafer and Pearl [1990].

107
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7.1 The BPA Based on Contamination of a Prior Distribution

In conventional Bayesian theory, the subjective knowledge about the unknown state

of nature 8 must be represented by a precise probability distribution. Suppose, after

taking into consideration the subjective knowledge, this prior probability distribution is

determined and denoted as 7r(9). From the viewpoint of the D-S theory, 7r(0) represents

subjective knowledge which is qualitatively precise or complete, i.e. provides a basis

on which a precise probability judgement about 9 can be made.

In practice, however, when the subjective knowledge is weak or imprecise, it is

virtually impossible to characterize this knowledge as a single precise probability dis-

tribution [Berger, 1984]. In effect there may always be some degree of doubt associated

with the precise probability distribution 7r(0). In spite of this, 7r(0) might still be con-

sidered as representing the best effort in characterizing the subjective knowledge in the

context of conventional Bayesian theory.

The lack of precision in 7r(0) can be reflected by introducing a factor e, 0.0 < e < 1.0,

to represent the degree of doubt one has about the precise nature of 7r(0), as has been

briefly discussed in Section 5. 4 of Chapter 5. This is generally referred to as the

contamination of a prior distribution in the literature. In Robust Bayesian analysis an

almost identical scheme is used and 1 — e is interpreted as the probability that the true

prior probability distribution is 7r(0) and e the probability that the prior distribution

can take any form [Berger, 1984]. In the D-S scheme, however, e is simply interpreted as

the amount of ignorance one has about any specification of 9 and 1-- e as the confidence

in the belief assignment 70) on 0. The 7r(0) ordinates can then be discounted by a

factor 1 — e and the remaining portion of belief a can be assigned to 0. This naturally

leads to a BPA, known as a contamination BPA [ Wasserman, 1990b] as follows
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m(9) = (1 — e)r(0)

m(0) (7.1)

The contamination BPA expressed by (7.1) is governed by the factor E. When e

is zero, indicating that precise probability values can be elicited from the subjective

knowledge with complete confidence, the BPA becomes a conventional precise proba-

bility distribution or a Bayesian BPA. At the other extreme when e is 1.0, indicating

that one knows nothing other than that the true 9 value is within 0, (7.1) specifies

a complete ignorance BPA. Any intermediate value of e, 0.0 < e < 1.0, corresponds

to a general BPA which represents the weak or imprecise subjective knowledge. The

determination of the e value is clearly subjective as it would also necessarily involve an

individual's personal judgement.

Though the above is a simple and easily understood method, one concern is that the

derived BPA assigns the same degree of imprecision to all individual elements, including

the extreme values in the tails where the knowledge is usually particularly weak. This

is inappropriate, especially when the tails of the distributions are of crucial importance

in decision making. In the next section, a more flexible approach to characterizing

imprecision will be introduced.

7.2 The BPA Based on Perturbation of a Prior Distribution

The basis of the method is again a Bayesian prior r-(0) on 9 which is to be altered

to reflect the weakness of the knowledge it purports to represent. The modification

can be achieved by attaching, to any singleton value 9 (or element in the discrete
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case), an interval (or subset) which contains this value, and assigning the probability

density on the singleton value to this interval. Unless there is evidence to suggest

otherwise, a reasonable assumption for the interval is that its bounds are symmetrically

located on either side of the singleton value. This modification of a precise probability

distribution to reflect weakness in the subjective knowledge is called local perturbation

of a prior probability distribution [Wasserman, 1990b], and the corresponding intervals

are denoted as local perturbation intervals.

The width of the perturbation interval reflects an individual's personal assertion

of the weakness of his subjective knowledge. In the simplest case, the width can be

considered as a constant for all the intervals. But in the more general and realistic

situation, the width of the interval should vary reflecting different knowledge on differ-

ent 9 values. For example, the width should be smaller for the 9 values in the central

part of the distribution where there is greater support from experimented information

and therefore less uncertainty. In the tails of the distribution, where the uncertainty is

typically much greater, the width should be larger.

As with e in Section 7.1, the determination of width of the perturbation interval is

necessarily subjective. The constant width situation, which has been briefly discussed

by Wasserman [1990b], is presented and further expanded in Section 7.2.1. The more

general case of the width being a function of 9 is considered in Section 7.2.2.

7.2.1 Local Perturbation Interval with Constant Width

Let [0 — k, k] denote the interval attached to the point value 9 where k is an unknown

constant and needs to be determined. The local perturbation of the distribution 7r(0),

which involves reassigning the density 740) to the interval [0 — k, 9 + le] as described at

the beginning of this section, leads to a BPA density
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m([0 — k,0 k]) = r(0) (7.2)

This is demonstrated in Figure 7.1 where the points on the diagonal line /—/' repre-

sent the singleton values of O. For any singleton value 0, the corresponding perturbation

interval [8 — k,0 k] is represented by a point with horizontal and vertical coordinates,

0 1 and 02, being 8 — k and 0 k respectively. Note that the connection of the point

[8 — k, 8 k] with the corresponding singleton value point 8 on 1-1' is perpendicular to

the diagonal line / — /' and the distance between the two points is -‘124. For constant lc,

the points [0 — k, 8 k] for all 8 values form a straight line which is parallel to / — l', as

represented by line r — r' in Figure 7.1. Thus the precise probability distribution r(0)

is situated on the diagonal line 1— l' and the BPA density expressed in (7.2) is located

on line r — r', which, as can be seen from Figure 7.1, is simply a parallel shift of 7(8)

in the direction vertical to 1 — 1'.

When the width of the perturbation interval is a constant for all 0 values, the de-

termination is simplest. One reasonable way suggested by Wasserman [1990b] involves

first choosing an interval, called a reference interval, for 0. A reference interval can

be of any form depending on an individual's subjective choice, but the selection of it

should be such that a person feels confident in making a probability judgement within

such an interval. For this reason, it should be located in the central part of the pre-

cise distribution r(0). For example, a reference interval might be [fi e — cro ,tt e ere ]

where fie is the mean and cre the standard deviation of 0, i.e. one standard deviation

around the mean value. Note that a reference interval should not be confused with the

perturbation interval [0 — k,0 + k], and the k value therefore can not be equivalent to
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Figure 7.1: The BPA based on local perturbation with constant interval width.

Henceforth a reference interval is assumed to be of the form [119 - C9, i.e -1-c-e ]. Once

a reference interval is selected the probability of 19 being within this interval based on

the precise probability distribution r(0) is then calculated as a single precise value.

The plausibility or upper probability, .P/nµ61 — tee, a9 + creD, of the reference interval

based on the perturbation BPA in (7.2) can also be obtained which is a function of k.

One is then asked to set an upper bound p - , which he feels reasonable, for the reference

interval. This upper probability bound p - is then set equal to P/(1/Le —cre ,p e —cep and

the constant k is thus determined from this relationship.

The plausibility of the reference interval Pi([fie — cr0,129 — o-01) can be calculated by

definition in conjunction with Figure 7.1. The reference interval [129 — tee, µe + co ] is

represented by point A in Figure 7.1. By definition, P/Wie —a-9 , ye +cep is the integral

of the BPA density over the area D 1 D2 D3D 4 . In the particular case considered here,
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this is equivalent to integrating the BPA density expressed in (7.2) from B to C on line

r — r'. Since the two points B and C represent the pe-rturbation intervals of the two

singleton values BE and OF at points E and F, the integral is again equivalent to the

integration of the precise probability distribution 7(0) from E to F on line I —

For BE at point E, its perturbation interval represented by B is expressed as [OE —

k,OE k]. The upper bound of this interval, OE+ k, is the same as the singleton value

represented by D2 which is fie — tee , i.e. the lower bound of the interval represented by

point A. That is

OE^=^— cre^ (7.3)

The value BE is then BE =^— cre k. Similar procedures can be used to determine

BE which is OF =^0-0 k. Therefore, the plausibility of the reference interval

[pe — cro ,p.9 ae] can be calculated

PI(Lue — 0-8,14 — ceD =
eF

71-(0)c10
B E
re +00 +k

71-(9)c10
— cre — k

(7.4)

As an example, consider a situation where 70) is a normal density with mean pe

and standard deviation at,. For the reference interval [11, 13 — cre , + tee], the single

precise probability value based on 740) is (DM — 4(-1) = 0.683 where 41(•) denotes

the cumulative standard normal distribution. If the upper bound of the probability is

considered to be p', then the value for k can be determined

= — cre * (I) -1 ( 1
2

P*) co
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= tee *^(1
 2

p*)^
cre^ (7.5)

As a numerical illustration, if an upper probability of 0.80, i.e. p* = 0.8, is consid-

ered to be reasonable, then k is 0.290-e .

7.2.2 Local Perturbation Interval with Varying Width

Let [9 — k(9), 9 k(9)} denote the perturbation interval for the singleton value 9 where

k(9) is varying as a function of O. The perturbation BPA from 7r(0) for this more

general situation is similar to the BPA expressed in (7.2) except that the constant K

is now replaced by the functional form k(9), i.e.

m([9 — k(0),0 k(9)]) = 7r(9) (7.6)

The determination of k(9) can be performed in a similar fashion as described in

Section 7.2.1. At first, a simple reasonable form of k(9) as a function of 9 is assumed

which contains some unknown coefficient. Then a reference interval for 9, say [tio —

tee, µe gel, is selected as an upper bound of the probability of this interval, p*, is

specified by the engineer based on the subjective knowledge. The p' value is then set

equal to the plausibility of the reference interval based on the BPA density in (7.6),

and the unknown coefficient in k(9) is thus determined from this relationship.

As an example, consider a simple situation where k(9) is assumed to be zero at the

maximum likelihood point 9 (i.e. where 7r(9) is maximum) and is increasing linearly as

9 moves toward the two tails, i.e.
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k(9) = c • IO — 9^ (7.7)

where c is an unknown coefficient which needs to be determined. This is demonstrated

in Figure 7.2 where the local perturbation intervals [0 — k(0),9 + k(9)] are represented

by the points on the two lines r — o and o — r'. Note here that the point o on line 1 — I'

represents the maximum likelihood value B. The perturbation BPA expressed in (7.6)

is situated on lines r — o and o — r' as shown in Figure 7.2.

Figure 7.2: The BPA based on local perturbation with varying interval width.

The reference interval [126 —o-e ,p 9 H-o-8 ] is represented by point A in Figure 7.2. Again,

by definition, the plausibility of this interval, p/([/20 — cro ,A 0 + cro ]), is the integral of
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the BPA density expressed in (7.4) over the area D 1 D 2 D3 D 4 which, for this particular

situation, is equivalent to the integration of the BPA density on lines BO and OG .

Since the points B and C represent the local perturbation intervals of the singleton

values OE and OF at points E and F, the integral is equivalent to integrating the precise

probability distribution r(0) from E to F on line 1 — 1'.

For the singleton value 9E at E, its perturbation interval represented by point B can

be expressed as [0 — k(9),8 k(9)]. From Figure 7.2, the upper bound of this interval,

9 + k(9), is the same as the lower bound of the interval represented by A which is

— cre , i.e.

OE k(9) fie — (79 (7.8)

Note that this expression is the same as (7.3) except that the constant k is replaced by

the functional form k(9). Substituting (7.7) for k(9) in (7.8), OE is determined as OE =

(14 -0.0 — CO)1( 1— C). Similarly, OF at point F can be found as OE (11,8±Cre—CO)1(1—C).

The plausibility of the reference interval Pi([ite — cro , — o-9)) can then be calculated

as

P1 ([110 — COI^— COD^le—cre—
c
ce

1—
r(0)c10^ (7.9)

1-c

Setting (7.9) equal to p - , the coefficient c can then be determined from this relationship.

For example, if 7r(8) is normal with mean tie and standard deviation (re , then O =

and (7.9) becomes



(7.11)
1

= 1
• (1+P*)

2
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Pia - Gr 6 )119 - Cr OD (13
1 ^1 
 (^e) (7.10)

Letting this expression be equal to the upper probability bound p- of the reference

interval, the coefficient c can then be determined from

= 1 + 1
1-• (1

k 2

As a numerical illustration, if the engineer specifies p' as 0.8, then c is 0.225.

7.3 BPA Based on the Range and most Likely Value of 9

In civil engineering, it may be convenient and more realistic for one to express his

knowledge about 8 in terms of the range and the most likely true value of 8 [Ang and

Tang, 1984]. The application of conventional statistics requires a precise probability

distribution within this range to represent the uncertainty of O. See Ang and Tang [1984]

for possible types of distributions. However from the imprecise probability theory point

of view, the adoption of any type of precise probability distribution within the range

will necessarily imply significant extra information. In this section a possible way of

using D-S theory to express weak subjective knowledge of this kind will be presented.

Let 01 and 0,2 represent the lower and upper limits of the possible values for 9 and

let O represent the most likely value of O. It is reasonable to assume that the possibility

of any 8 value being the truth decreases as it moves away from O. Without presuming

any specific form of BPA, it is also fair to assume that the subjective knowledge be
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represented in a consonant way, hence that a consonant BPA be adopted. Finally for

practical purposes, the form of BPA should be simple.

Figure 7.3: The contiguous frame of parameter 6 C [0 1 ,0„].

Consider the triangular diagram representing the contiguous frame of the unknown

state of nature 6 as, shown in Figure 7.3. The point D on the diagonal line AC represents

the most likely value 6 of 6, and the upper left corner, i.e. point B, represents the whole

set 0 = [01, 0,,]. Now consider the straight line connecting points D and B; any point

on this line represents an interval which contains the singleton value 6. Note that the

size of the interval corresponding to each point increases linearly as one moves from

point D to B. Thus the intervals represented by all the points on DB are nested, and

any BPA function expressed entirely on this line represents a consonant BPA.

When specifying a BPA density on line DB, the only singleton point which could
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receive positive support, i.e. positive BPA density value, is O. Furthermore the plausi-

bility of 0 always has the maximum value of 1.0 and the plausibility of B value decreases

as it moves away from O.

A BPA density expressed on line DB captures the main features of the subjective

knowledge. However the question of specifying the BPA density along the line DB for

any particular situation still remains unresolved. In the rest of this section, the impli-

cation of different forms of BPA on line DB when representing subjective knowledge

will be discussed.

Since the size of the interval represented by any point on DB increases linearly

from D to B, any interval represented on the line DB, [0 1 ,02], can be expressed by the

general form

[0 1, 02] = [ + w(0 i - e), e + wou - (7.12)

where w varies from 0.0 to 1.0. When w is 0.0, the interval becomes [B, B] which is a

singleton value represented by point D. When w is 1.0, the interval becomes the whole

set [Oi , O.] which is represented by point B on the upper left corner of the diagram.

Therefore, the interval represented by any point on DB is a function of w.

Before discussing general subjective knowledge, it is helpful to consider first the two

simple but important extreme cases. One is the deterministic case where the true value

of 0 is known to be O with certainty. This is represented by a BPA which assigns the

total belief 1.0 to Adj. The other case is complete ignorance, where the true 0 value

is only known to be within [0l , Bu ]. This is represented by the BPA which assigns the

total belief 1.0 to [9 i , 0u ].

The general subjective knowledge representation by a BPA density on DB can take
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various forms depending on how strong one feels about O being the truth compared with

the other 9 values. If 9 is considered much more likely to be the truth than the other 9

values, one would like to reflect this fact by assigning greater belief to the points closer

to D, i.e. to the intervals which are smaller. This suggests a monotone decreasing BPA

density from D to B which might be expressed by the following functional form of a

simple Beta distribution

m1([9 1, 82]) = (A1 + 1)(1 - w)A1 (7.13)

where the parameter A l > 0. When A l increases, (7.13) assigns more belief to the

points closer to D, indicating stronger subjective knowledge. In the extreme case when

A i goes to infinity, (7.13) converges to a unit spike at point D which represents the

deterministic case. On the other hand when A goes to zero, (7.13) becomes a uniform

BPA density on DB, which can be viewed as representing the situation where one just

knows that O is the most likely value of 8 and knows little about how it is compared

with other 8 values. The BPA densities represented by (7.13) for different A values are

demonstrated in Figure 7.4(a). Let P1 1 (0) be the corresponding plausibility distribution

on the singleton values. In a different context, Wasserman [1990b] called P1 1 (9) the

upper probability distribution of 8. The plots of P1 1 (8) for different A l values are shown

in Figure 7.4(b). From Figure 7.4(b) it can be seen that as A l increases from zero to

infinity, the plausibility plot varies from a triangular shape to a unit value at 8 which

represents the deterministic case.

Now consider the situation where one feels that while 9 is the most likely value

of 8, the other 9 values are also very likely to be the truth. This represents weaker

knowledge than discussed above and it can be reflected by assigning greater belief to
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(a)

(b)

Figure 7.4: a) The BPA density functions mi([01,02]); b) the plausibility functions
P11(9).
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the larger interval, i.e. to the point closer to B. In contrast to the previous case, this

suggests a monotone increasing BPA density from D to B which might be expressed

by the general functional form

m2([01,0 2 ] ) = (A2 + 1) w A2 (7.14)

where A2 > 0. When A2 is zero, (7.14) becomes a uniform distribution representing

the situation where one only knows that O is the most likely value. As A2 increases,

(7.14) assigns more belief to the larger interval and thus represents weaker subjective

knowledge. In the extreme case when A2 is infinity, the BPA density converges to

a unit spike at point B and represents complete ignorance. The BPA densities for

different A2 values are demonstrated in Figure 7.5(a) and the corresponding plausibility

distributions P12 (0) are plotted in Figure 7.5(b). From Figure 7.5(b) it can be seen

that as A2 increases from zero to infinity, the plausibility plot varies from the triangular

shape to a uniform distribution of plausibility which represents the complete ignorance.

In engineering practice, subjective knowledge of 8 can often be expressed as knowing

the range and the most likely value of O. In this section, a flexible yet reasonable method

of representing this type of subjective knowledge in D-S theory has been proposed. It

can accommodate widely differing feelings concerning how strongly a person feels about

O being the most likely value compared to the other 8 values. To achieve this, the BPA

function takes on various forms as represented by (7.13) and (7.14). It should be noted

here that the specification of values for either Al or A2 in (7.13) or (7.14) would have

to be based on subjective judgement.

Similar to the approaches of Sections 1 and 2 of this chapter, the approach pro-

posed in this section for representing subjective knowledge is not justified by rigorous
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(a)

(b)

Figure 7.5: a) The BPA density functions m2(191, 92j); b) the plausibility functions
P/2(0).
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theoretical argument but rather from intuition and practical needs. But as subjec-

tive knowledge is likely to be imprecise, the approach captures the main features of

the subjective knowledge and has some intuitively appealing properties. Furthermore,

the adoption of a simple BPA expression to formalize subjective knowledge with im-

precision makes the approach easier to understand and more practical to implement.

Nevertheless, the approach should not be considered in any sense as a rigorous theo-

retical approach, which does not yet exist.

7.4 BPA Based on Constructive Probability of Canonical Example

In Sections 1, 2 and 3 of this chapter, the D-S representation of subjective knowledge in

three different situations has been discussed. However in real practice, the subjective

knowledge may be expressed in other ways which do not conform with these three

situations. In this section, yet another approach for representing subjective knowledge

using a BPA will be discussed.

The approach is based on the concept of "constructive probability" proposed by

Shafer and Tversky [Shafer, 1981, 1982a, 1987; Shafer and Tversky, 1985]). According

to constructive probability theory, the probability assessment of any subjective knowl-

edge can be achieved by comparing the subjective knowledge with a set of canonical

examples. The canonical examples are based on situations which involve familiar but

uncertain events and about which one feels comfortable to make probabilities judge-

ments. Through a comparative approach, one can choose a specific canonical example

with known probability specification which best matches the subjective knowledge in

strength. This probability specification is then considered as representative of the sub-

jective knowledge. It should be noted that canonical examples do not need to match

the real uncertainty problem. Rather, they are meant only to be standard examples
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with which the subjective knowledge can be compared and the probabilities thereby

assessed.

Different canonical examples might lead to different probabilities representations,

such as Bayesian or D-S, of the subjective knowledge [Shafer, 1981, 1982a; Tversky and

Shafer, 1985]. For example, a set of canonical examples might be based on the game of

tossing a dice in which the possible outcomes are governed by different known chances.

Thus the probability judgement p of some event A based on subjective knowledge might

be compared to a chance distribution which produces the event A with exact frequency

p. The comparison of the subjective knowledge with this set of canonical examples

will lead to a precise Bayesian probability distribution representation of the subjective

knowledge.

As another illustration, a set of canonical examples were given by Shafer and Tver-

sky [1985] which lead to a special type of BPA called a simple BPA Imagine a truth

telling machine which is only sometimes reliable. That is, the machine is operating

in two modes: reliable and unreliable. If the machine is reliable, it will send out a

message telling, for example, that the truth is in A. On the other hand, if the machine

is unreliable, its message tells nothing at all. The chances of the machine being in the

two modes can vary, thus forming a set of canonical examples. If the chance of the

machine being reliable is believed to be p, the resulting BPA will be m(A) = p and

m(0) = 1 —p.

This elementarily structured BPA is referred to as a simple BPA. In practice, the

type of subjective knowledge which can be expressed through comparison with this set

of canonical examples should be relatively explicit about the bounds of the uncertain

parameter 9 even though it is not entirely confident about 8 lying in this interval. For

example one may conclude that, based on the subjective knowledge, the parameter 9 is

in the subset A but be only 100p% sure about this conclusion. This leads to the simple
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BPA function as expressed at the end of the preceding paragraph.

More complex types of canonical examples, potentially representing more complex

subjective knowledge, are possible. See Shafer and Tversky [1985] and Shafer [1981,

1982a] for examples. However it is very difficult, or virtually impossible, to obtain

probability assessments by comparing the subjective knowledge with complex canonical

examples. A more practical way to deal with complicated subjective knowledge, also

suggested by Shafer [1981] and Shafer and Tversky [1985], is to decompose it into

several simple and unrelated pieces of evidence, then represent each piece of evidence

by a simple BPA and, finally, combine all the simple BPA's to form a more complex

BPA which represents the total subjective knowledge. This decomposition may not be

entirely straightforward, and always involves considerable personal judgement in the

process.

The constructive probability theory has been briefly introduced in this section.

Although the idea of probability elicitation by comparing the subjective knowledge

with canonical examples is very attractive, the process may be difficult to apply in

practice. Nevertheless, as emphasized by Shafer and others [e.g. Shafer, 1981, 1982a;

Shafer and Tversky, 1985], the theory has important philosophical significance in that

it tends to provide an alternative way of justifying existing probability theories. Thus

the introduction of the constructive probability theory is perhaps more significant in

its philosophical aspects than as a tool for probability assessment. For a rigorous

introduction on the concept of constructive probability theory, see Shafer [1981].

7.5 Summary

In this chapter, the representation of weak subjective knowledge in the form of a BPA

has been discussed. In Sections 7.1 and 7.2, intuitively approximated approaches based
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on the original ideas extracted from the statistical literature were introduced for a

situation where the subjective knowledge is represented by a precise probability distri-

bution but there is not complete confidence about this precise probability distribution.

A third and new development applicable to a situation where the range and most likely

value of the unknown parameter is known, together with some qualitative idea of how

this most likely value is compared with the other 0 values, was presented in Section 7.3.

This represents a typical form of weak subjective knowledge often encountered in civil

engineering circumstances. These three approaches might all be considered as reason-

able practical methods of representing weak subjective knowledge. In Section 7.4, the

constructive probability theory was described and this provides a more theoretical basis

for generating a BPA from subjective knowledge. The importance of the constructive

probability theory however is that it provides a possible alternative justification for all

of the existing probability theories.

The approaches discussed in this chapter are not in any sense exhaustive and other

ways of generating BPA from the subjective knowledge are possible. But in any prac-

tical situation a general rule in representing complex subjective knowledge should be

to decompose it into several simple, unrelated pieces of evidence, represent each piece

of knowledge by the simplest forms of BPA and combine these BPA's to obtain a BPA

reflecting the total subjective knowledge. While this and other strategies have been

discussed at some length in the AI literature, it is still too early to judge the superiority

of any one strategy over the others.



Chapter 8

The D-S Theory Applied in Hydrologic Design

8.1 Hydrologic Engineering Design

In designing a new water resources project, or upgrading an existing one, a decision of-

ten has to be made on the choice of a design flood. The economic criterion is to choose

the design flood that will minimize the total annual expected cost which includes the

construction cost and the expected damage cost [Linsley and Franzini, 1979]. The con-

struction cost depends on the design flood adopted and the expected damage depends

on the probabilistic characteristics of the flood, the damage as a function of the flood

magnitude, and the design flood adopted.

With long project life the flood process is usually characterized by the annual max-

imum flood values, called the annual floods. In traditional flood frequency analysis, a

statistical model based on a conventional probability distribution is used to describe

the annual floods. One way of determining this statistical model is to fit the past ob-

servations of the annual floods to a variety of probability distributions and then choose

the distribution which gives the best fit to the sampling data. The parameters of the

model can be estimated either by the conventional maximum likelihood method, which

uses only sampling information, or by the Bayesian method, which uses both sampling

and subjective prior information. The annual expected damage is calculated from the

resulting statistical model and a specified damage function.

Hydrologic design for large important projects is invariably concerned with rare

128
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flood events. Thus, typically, the design flood has a long return period or, equivalently,

a small probability of being exceeded, and is much larger than the maximum observed

annual flood. Also the major flood damage is caused not by the small more frequent

events, but by the rarer floods which occupy the tail portion of the distribution of

annual floods. Therefore the shape of the tail distribution is significant in conventional

hydrological design and thus has attracted much attention amongst hydrologists [i.e.

Shen et al., 1980; Stedinger and Grygier, 1985; Haimes et al., 1988].

In a typical hydrologic engineering design, the duration of recorded observations of

annual floods is usually short relative to the return period of the design flood. As a

consequence a variety of statistical distributions may fit the data equally well. These

equally qualified distributions may have similar shapes in the central part, where the

observed data are concentrated, but may be very different in the tails. Yet for the

purpose of hydrologic design, these distributions must be extrapolated to the region

of rare floods with long return periods where there are usually no sample data. The

enormous uncertainties associated with these extrapolations have been recognized by

engineers. For example, Benjamin and Cornell [1970, p499] warn that estimation of

probabilities of rare events based on extrapolations of different distributions can be of

order-of-magnitude difference. Shen et al. [1980] fitted sampling data to two different

types of distributions, Gumbel type I and type II, and concluded that "a decision to

use a type I model for data more appropriately modeled by type II model can lead

to terrible underestimates of extreme events." Clearly, hydrologic design based on the

direct extrapolations of the distributions is potentially unreliable.

The U.S. Bureau of Reclamation [1986] also reports that the uncertainty associated

with the estimation of a rare flood based on the extrapolation of a fitted distribution

is enormous. As a result the report concludes that "the frequency relationships should

not be extrapolated beyond twice the length of record or 100-yr return period whichever
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provides the rarer annual probability of being equalled or exceeded". Since it is not

adequate to simply extrapolate a fitted distribution to the rare events, two separate

curves, one for the more frequent floods, say less than 100-yr return period and another

for the rare floods, say between 100-yr event and the PMF, are adopted to describing

the annual floods [e.g. U.S.B.R., 1986; Stedinger and Grygier, 1985]. Here the PMF

denotes the Probable Maximum Flood and its probability of exceedance, according to

the definition, should be zero. The PMF should therefore be the upper bound of the

annual flood distribution.

The flood frequency curve for the more frequent events can be determined through

conventional flood frequency analysis. For the rare floods in between the 100-yr event

and the PMF, observations are usually not available and other experiential information

about the probabilistic aspects of these rare events is invariably limited. A frequency

curve for these rare events can be established by first assigning a return period to the

PMF and then fitting a two parameter distribution using the 100-yr flood and the PMF

as quantiles. The obvious problem with this approach is that it attaches a finite return

period to the PMF which contradicts the definition of the PMF. The value of the return

period assigned to the PMF is therefore entirely arbitrary. Furthermore, the selection

of the distribution in this critical interval is also arbitrary as there is little evidence to

support any one choice.

Indeed Haimes et al. [1988] stated that "the return period of the PMF is highly

uncertain: different reports recommended values ranging from 10 4 to 10 12 years. Most

of these recommendations are actually based on subjective judgement and experience

rather than on statistical evidence. Similar problems cripple the estimation of the

flood-frequency distribution for floods ranging from the 100-yr event to the PMF."

Stedinger and Grygier [1985] have extensively studied the sensitivity of the optimal

hydrological design to various factors and conclude that this design is very sensitive to
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the type of distribution tails and the return period assigned to the PMF.

From the above discussion it can be seen that, in the realm of the extreme or

limiting design condition, a large amount of uncertainty can be involved in hydrologic

engineering design. One main source of uncertainty is the lack of information concerning

design event magnitude floods, and the conventional approach is limited in dealing

with such weak information. In this chapter, a design approach, based on the D-S

theory, which accommodates the weak information situation is introduced. It should

be noted here that only the uncertainty associated with the annual maximum floods

is considered. The damage function is assumed to be known as its variation does not

generally have a significant effect on the optimal design [Stedinger and Grygier, 19851.

8.2 The Basic Hydrologic Design Model

Let the random variable x C X represent the annual maximum flood. A set of observa-

tions of x is known and is denoted as {x i , x 2 ,...x n } which are ordered and relabelled so

that x 1 < x 2 < < xn . Let A = faj ,j = 1,...ml represent a set of design options and

for each ai there is an annual construction cost which is denoted as cj . The damage,

which is a function of both flood value x and the design option a, is assumed known

with certainty and denoted as D(x, a). The problem is to choose the decision a* C A
so that it will minimize the total annual expected cost including construction cost and

expected damage.

Since the PMF, which is denoted here as xp, is considered as the upper bound of

the annual flood, the domain of the annual flood is from zero to xp, i.e. x C (0,x p).

The annual flood domain is partitioned by the observations of X into n+1 intervals

which are represented by 10 = (x0,x 1 ),/i = [x1,x2),..-,/i = [xn,xp).

Here the square bracket means that the boundary point is contained in the interval
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while the parenthesis means it is just excluded. Thus each of the intervals I i , i = 1,...n

contains exactly one sample observation.

Let qi denote the probability that x is within the interval I. The average damage

in the interval I2 is denoted by d i and can be determined through discretization of the

damage function. If the number of samples n is very large, the sample data will tend

to cover the whole range of the annual flood domain from zero to the PMF and the

probability qi for each interval Ii can be approximated by 1/n. The annual expected

damage in this case can be calculated by summing the products of q i and di over all

intervals, and the result should closely approximate that obtained from the conventional

approach based on flood frequency analysis.

In practice however, even though for large hydrologic engineering design there is

usually a moderate length of sampling data, typically in the order of 50 to 100 years, the

sample record is still short relative to the design event return period, and concentrated

over a small portion of the whole annual flood domain. Thus there are no sampling

data in the rare flood region and, as a result, the last interval In , i.e. the interval

between the maximum observed flood x 7, and xp, is extremely large relative to the rest

of the intervals. While the components of the annual expected damage for the other

intervals can still be calculated the same way as above, it would be inappropriate to

calculate the damage component for this last interval using the average damage do and

probability qn .

For a moderate length of sample record on the order of, say, 50-100 years, the last

interval In then contains the floods from about the 50 year return period event to the

PMF event. In the approach presented here, a function, which is called a probability

decay function and denoted by q5, (x), is introduced for the last interval In to describe

the distribution of the probability value qn within this interval. The function 0,i (x) is

considered to be monotone decreasing and bounded by x r, and xp. Furthermore On(x)
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is normalized so that its integral over the interval In is 1.0, i.e. 957,(x)dx = 1.0.

The - probability decay function On(x) introduced here is somewhat similar to the

"tail probability distribution" in conventional flood frequency analysis. However unlike

the conventional approach, it treats the PMF as the bound of the annual floods. Fur-

thermore, the probability decay function does not follow one specific type of probability

distribution.

Since there is no evidence about the occurrence of rare floods between xn and xp,

the shape of the probability decay curve could take any of a variety of different forms.

The mathematical function adopted for ckn (x) should therefore be flexible enough to

represent a wide range of different shapes. The following parametric function adopted

for On (x) satisfies this need

On(z/A)^(zP — x )A -1

(xp _ xn )), (8.1)

where the parameter A should satisfy A > 1.0 for On (x/A) to be a monotone decreasing

function. The function On (x/A) is recognizable as a special form of the general Beta

distribution with one shape parameter being A, the other shape parameter being 1.0,

and two location parameters xn and xp (See Bury [1975] for a more thorough discussion

of the Beta distribution). The integral of O n(x/A) from xn to xp is 1.0.

Once the two location parameters xn and xp are fixed, the probability decay function

On (x/A) will totally depend on the parameter A. As an illustration, consider a situation

where the maximum annual flood observation is x n = 30,000 cfs and the PMF is

xp = 150,000 cfs. The resulting shapes for On (x/A) for different A values are plotted

in Figure 8.1.

From Figure 8.1 it can be seen that when A is 1.0 then O n (x/A) represents a uniform
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xn^ X p

Figure 8.1: The probability decay function

distribution. When A is greater than 1.0 then On (x/A) becomes a monotone decreasing

function from x„ to xp. As .\ becomes bigger the probability decay curve indicates a

faster initial probability decay from xn . In the extreme case when .\ tends to infinity,

66„(x/A) becomes unit spike at the point xn , meaning that the total probability qn is

concentrated at the point xn . Thus the probability decay function c¢„(x/A) defined in

(8.1) is very flexible. In the following section, the uncertainty associated with parameter

A will be assessed using the D-S theory.

The damage function for the interval in is defined by D(x, a) but within this interval

is denoted here by Dn (x, a). Knowing the probability decay function 0„(x/)) and

the damage function Dn (x, a) for the interval In , the total annual expected damage

L(qi ,A,xp) can then be calculated by summarizing the contributions from the smaller

discretize intervals 1 to n — 1 and integrating over the larger final interval.
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L(qi , A,xp) = E qi di^On(x / A)Dn (x , a)dx
n-1

i=1
^ (8 .2)

Now let pi represent the probability that x is in the interval (0, x j+. 1 ) where i =

1,...n — 1. The value pn then is the probability that x is within (0,xp) and is 1.0. The

probabilities qi and pi are related as follows

qi = pi —^for i = 1...n
^

(8.3)

Substituting (8.3) in (8.2) yields

n-1

L(pi, A,xp) = E(Pi^(1 — p7,1)1 On(x / A)Dn (x, a)dx^(8.4)

For any given i, the unknown probability pi can also be interpreted as a binomial

parameter and its value might be estimated from the observations of i "successes" in

the interval (0,x i+1 ) and n — i "failures" outside this interval. Let E(pi ) represent the

expected value of pi. Since the loss function L(pi ,A,xp) expressed in (8.4) is a linear

function of pi , the expectation of L(pi ,A,xp) with respect to pi can then be expressed

as

n-1

E[L(pi ,A,xp)] = E(E(pi ) — E(pi_ i ))di

i=i
— E (pn-i))L On(x / A)Dn (x, a)dx^(8.5)
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The annual expected damage therefore is a function of the unknown parameters

E(p2), A and xp. In the next section, the D-S theory perspective on the uncertain-

ties in these parameters will be discussed and incorporated into the expected damage

calculation.

8.3 The D-S Approach to Parameter Uncertainties

For a moderate sample record of, say 50 to 100 years, it is reasonable to assume that

the shape of the probability decay function ck(x/A) is independent of the samples

and thus the probability values p2 . The parameter A therefore can be considered to

be independent of the parameters E(p2). It is also reasonable to consider the PMF

estimate xp independent of the parameters E(p2) and A since the PMF governs only

the termination of the distribution tail but not its shape. Furthermore, the parameters

E(pi ), and the other two parameters A and xp are considered to be independent among

themselves and therefore they can be dealt with separately. In the following three

subsections the uncertainties associated with the three sets of parameters E(p2 ), A and

xp will be discussed individually. It will be seen however that the order of dealing with

these parameters will not affect the results.

8.3.1 Uncertainties Associated with E(pi )

Recall that the probabilities p i are a set of binomial parameters. The D-S inference of

the binomial parameter pi based on the sampling information was presented in Chapter

4. Let [pi,„,pi ,v ] represent the continuous interval in the contiguous frame of p i . From

equation (4.5) of Chapter 4, the D-S inference of the parameter pi with i successes and

n — i failures is expressed by the following BPA,
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m([13i,u,Pi,vi) =^- i)Pii:u1 ( 1^Pi,v)n-z-1
^

(8.6)

The two variates p i ,„ and pi ,v have the same meaning as the variable p, except that

they are used to form the random interval [p i ,u ,p i ,v ]. The two marginal distributions of

pi, as expressed in (4.6), are

f (pi) =

g(pi) =

ipii-1(1^pir-i

(n — i)pij1 — (8.7)

From these two marginal distributions, the upper and lower expected values of pi

can then be calculated as

i + 1
E*(Pi) n + 1

E.(Pi) n̂ +i 1 (8.8)

where i = 1,...,n — 1. The upper and lower expected values E(pi ) and E(pi) can be

considered as the upper and lower bounds of the unknown expected probability E(pi ).

Since the expected damage (8.5) is a linear function of E(pi ), the upper and lower

expected damages can then be calculated by determining all of the E(pi), subject to the

constraining effect of the upper and lower expected probability values. This involves

solving the following two simple linear programming problems
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I. maximize^E[L(pi, A,xp)]

II. minimize^E[L(pi ,A,xp)]
n-1

where^E[L(pi,A,xp)] = E [E(pi ) — E(pi _ i )ldi
i=1

-F[1 — E(pri--1)]^0(x / A)Dr,(x , a)dx (8.9)

all subject to^E,,(pi) < E(p i ) < .E'(pi )^for i = 1,2...n — 1

E(pi ) > 0

Simple analytical solutions of the upper and lower expected damages with respect

to E(pi ) can be obtained from the above linear programming problems as follows

^1 n-1^2 rp.E;,[L(A,xp)] 
= n + 1 Edi+n-Flfx. 

d),(x / A)Dn (x , a)dx

^1 n-1^1

^

Z pi [L(A,xp)] = ^ E^+ ^4,(x/A)Dn(x,a)dx
^n+1 i=i^n+1 

j' xP
(8.10)

For any decision a, the upper and lower expected damages are now functions of

the unknown parameters A and xp. In the next subsection, uncertainty concerning the

parameter A will be studied.

8.3.2 Uncertainty with A

When the PMF, xp, is specified, the probability decay function On (x/A) defined by

equation (8.1) is totally dependent on the parameter A. If enough information is avail-

able for determining the shape of On (x/A), the parameter A will be a constant and

the uncertainty of the probability decay function will be eliminated. However in a real

design problem, little evidence is available about the rare floods. Thus there is large



Chapter 8. The D-S Theory Applied in Hydrologic Design^ 139

uncertainty associated with the shape of the probability decay function, or equivalently,

large uncertainty associated with the parameter A.

Since the evidence about the unknown parameter A is very weak and likely to be

highly subjective in nature, the uncertainty associated with A would appropriately be

addressed using the D-S theory and the techniques discussed in Chapter 7. Suppose

then, after considering all the information available, the uncertainty about A is repre-

sented by a BPA function in the contiguous frame of A. Let mA([A„, A,,]) denote this

BPA where {A,Av ] is a continuous random interval in the contiguous frame of A. The

upper and lower marginal distributions of A can then be calculated fr om rnA([A.,Avj)

and equation (3.12), and are denoted as fA (A) and g),(A) respectively.

Now consider the upper and lower expected damages expressed in (8.10). The

discussion of the probability decay function 0 7,(x/A) in Section 8.2 reveals that when A

becomes large, the probability curve decays rapidly, and more probability is distributed

to the smaller values of x. From (8.10) it is seen that since the damage function D,,(x , a)

is a monotone increasing function of the annual flood magnitude x, the upper and

lower expected damages are therefore monotone decreasing functions of the parameter

A. Thus, knowing the upper and lower marginal distributions of A, f A (A) and gA (A), a

pair of upper and lower expected damages with respected to A for the upper expected

damage function can be calculated. Similarly, the upper and lower expected damages

with respect to A for the lower expected damage function can also be calculated. Of

interest here is the upper of the upper expected damage denoted as C,),[L(xp)] and

the lower of the lower expected damage .E. p,,),[L(xp)]. These are the upper and lower

expected damages with respect to both E(pi ) and A. The upper and lower expected

damages thus calculated therefore represent the upper and lower bounds of the damage

after considering the uncertainties associated with the parameters E(pi ) and with A.

According to the definitions, E2,,A [L(xp)] and Z pi ,A [L(xp)] can be expressed as
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[L( xp )] =
n +1

1
E,^[L( x p )1 = ^

n +1

-1
+^

2^[fXp
q5,,(x / A)Dn (x, a)dx] fA (A)dA

2=1^n +1^Xn
n-1^ xp

^n+1^n[I
+ ^ 0,i(x A)Dn (x , a)dx] gA (A)dA^(8.11)

Depending on the information available, various approaches may be used to con-

struct the BPA function for A, as discussed in Chapters 4, 5, 6, 7. This result will be

demonstrated in a numerical example presented in Section 8.4.

8.3.3 Uncertainty with the PMF Estimate xp

The estimation of PMF requires transforming the Probable Maximum Precipitation

using some hydrological model such as rainfall-runoff model, or some simulation tech-

niques [Linsley et al., 1982]. Models for this transformation are well established and

there is relatively less uncertainty associated with the PMF than with the shape of the

probability decay function.

Stedinger and Grygier [1985] conclude that the hydrological design is not very sen-

sitive to any adjustment of xp within a reasonable range. This is equivalent to saying

that the annual expected damage for a given design is not very sensitive to the varia-

tions of the Xp. If this is the case, the uncertainty of xp can be ignored and the best

estimate of Xp can be used in the hydrological design. However, if the uncertainty of

xp or its influence on the design is considered to be potentially significant, it should be

reflected in the design analysis. If information about xp is weak then the D-S approach

should be considered.

Depending on the particular circumstances the various approaches discussed in

Chapters 4, 5, 6, or 7 may be used to obtain a BPA for the unknown xp. Suppose, after
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considering all of the information available, a BPA describing the uncertainty of xp is

obtained. The corresponding upper and lower marginal distributions of xp can then be

calculated and are denoted as fop (xp) and g„,(xp) respectively. Consider the upper

and lower expected damages with respect to E(pi) and A expressed in (8.11). Since the

function Z.' On (x / A)./),(x , a)dx is a monotone increasing function of Xp, and fa (A) and

gA (A) are all positive functions, the upper and lower expected damages with respect to

E(pi ) and A are also monotone increasing functions of the value Xp. Thus using the

upper and lower marginal distributions of Xp, the upper and lower expected damages

with respect to all the unknown parameters E(pi ), A and xp can then be calculated as

1 n-1^2
EZ, ),, p [L] ^E +^

n+1

[1:: On(x/A)Dn(x,a)dxj fA(A)dA] g ip (x p)dx p

1^1[L] =^d
n±lt z + n+1

[f^On(x I A)Dn (x, a)dx] g),(A)dAl hp (x p)dx p (8.12)
yn

In this section, the incorporation of uncertainties of the unknown parameters E(pi),

A and Xp, using the D-S theory, in calculating the annual expected damage have been

combined and will lead to the upper and lower annual expected damages for any decision

option ai . The upper and lower annual expected costs for each decision option a; can

be calculated simply by adding the annual equivalent construction cost ci to the upper

lower expected damages of^According to the D-S mini-upper decision criterion as

discussed in Chapter 3, the optimal design flood would be the one which minimizes the

upper annual expected cost. In the next section, a numerical example demonstrates

the application of the model developed this chapter.
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8.4 Numerical Example

8.4.1 Description of the Problem

The hydrologic design problem presented here is from Stedinger and Grygier [1985]. An

existing dam has a spillway which is capable of passing 40,000 cfs (1100 m3 /s), which

is a fraction of the PMF value whose estimate is 150,000 cfs (4200 m 3/s). Four options

concerning the spillway are to be considered and these, together with the corresponding

design floods and the annual construction costs, are listed in Table 8.1. Note that option

1 is to do nothing and the other three options expand the spillway capacity.

Table 8.1: Design options and cost (in dollars) (from Stedinger and Grygier [1985]).

Option
Design flow

a (cfs)
Annual construction

cost (in dollars)
1^Do nothing 40,000 0
2^Modify spillway 60,000 50,000
3^Rebuild spillway

and raise dam 120,000 120000
4^Rebuild spillway

and lower crest 150,000 130,000

The flood damage is a function of the flood magnitude. For small floods less than

10,000 cfs (280 m3 ), equivalent to a 10-yr return period flood, the damage is negligible.

For the floods between 10,000 cfs and the design flood a, the damage is a monotone

increasing function of the flood value. When the flood is bigger than the design flood,

the dam is considered to be destroyed and the damage is considered as a constant. This

damage function is expressed by the following formula (damage in dollars)
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x < 10, 000^cfs
108^10,000 cfs < x < a

1.3 x 10 8 a < x < xp

D(x) =
1 + 6 070 0 0 I 3

(8.13)

Now, instead of adopting two separate probability distributions for the floods from

0 to the 100-yr return period and from the 100-yr event to the PMF xp respectively,

as Stedinger and Grygier [1985] did, it is assumed here that only a set of sampling ob-

servations of the annual floods are available. In order to demonstrate the methodology

presented in this chapter, a sampling record was created by simulating a set of n data

values from a log-normal distribution with tc = 8.374 and cr = 0.651. Suppose n = 100,

i.e. there are 100 annual observations, these data then divide the flood range from zero

to xp into n 1 = 101 intervals. Here only the intervals formed by the floods greater

than 10,000 cfs, which cause damage, are of interest. These intervals, together with the

average damages calculated from the damage function (8.13), are listed in Table 8.2.

Table 8.2: The annual flood intervals and average damages x10 3 (in dollars) for inter-
vals.

z`" obs ery atz on 90 91 92 93 94 95
flood value x i 9886.58 11044.7 11548.2 11664.8 11805.0 12646.9

average damage di 529.5^663.3^718.7^742.6^839.9
i th observation 95 96 97 98 99 100
flood value x i 12646.9 12823.3 17155.3 21511.9 29880.1 30710.0

average damage d i 947.2^1565.3^3273.2^7422.1^11405.7

In the last interval [x ioo ,xp], the damage function which is denoted as Dn(x,a) is

used and expressed as



Chapter 8. The D-S Theory Applied in Hydrologic Design^ 144

/),(X) ==^1+4°.'"J 3
 xn <x <a^

(8.14)
1.3 x 10 8 a < x < xp

The probability decay function for this interval is expressed, as in (8.1), by

On(x/A) = A
(xp — x)A-1

(xp — x,i )A

8.4.2 D-S Theory Applied to Hydrologic Design

Since the sampling information is given, the upper and lower expected annual damages

with respect to the unknown parameters E(pi ),i = 0,1,-100, can be calculated from

(8.10) as

E;),[L(xp, A)]

E., pi [L(xp,))]

2  jr
.

= 287 +^0.(x/A)Dn(x,a)dx
101^100

1^"xi'
= 287 + 101 j 073(x/ A)-Dn(x,a)dx

x100
(8.15)

The above upper and lower expected damages are still functions of the unknown

parameters A and xp. Consider first the uncertainty associated with A. There is no

objective information about A but some subjective knowledge may be implemented

here. In the conventional flood frequency analysis, it is generally believed that the

shapes of the tail distributions vary within some range [e.g. Stedinger and Grygier,

1985]; Haimes et al., 1988]. This corresponds to a range of the parameter A in terms

of the probability decay function. Stedinger and Grygier [1985] state that the shapes

of the tail distributions are generally thought to be bounded by the thick-tailed Pareto
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distribution and the thin-tailed Gumbel distribution. Haimes et al. [1988] consider

the tail distribution to be in the range of Pareto and Normal which has thinner tail

than the Gumbel distribution as can be seen from Figure 8.2. Based on these sources of

evidence, the A value is considered to be within the range of [9,25] which approximately

embraces the possible shapes of the tail distributions from Pareto to Normal.

Figure 8.2: Possible tail distributions in conventional frequency analysis (from Figure
6.7 of Haimes et al. [1988]).

If no other information is available, a complete ignorance BPA on A, which assigns

BPA value 1.0 to the whole interval [9,25], should be used. However if there is some

knowledge about A, it should be used to construct the BPA. As an example consider

a situation where one feels that the tail distribution is most likely to be a Gumbel

distribution. This is equivalent to saying that A = 12 is the most likely value, as the

probability decay function of A = 12 is close to the shape of a Gumbel tail distribution.
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A consonant BPA on A in this case, as discussed in Section 7.3 of Chapter 7, is a

uniform BPA density on the diagonal line from [12,12] to [9,25] as shown in Figure 8.3.

The upper and lower marginal distributions of A are also shown in Figure 8.3.

9.0
^ 25.0

Figure 8.3: The BPA function on parameter A.

The upper and lower expected damages with respect to A as well as E(p i ) can then

be calculated as follows

E;i , A [L(xp)] =279 1-4f re I f 12 (

A)."Lid)1
E. pi,A {L(X13)] = 279 + —^• 11-3-dAi

101 ixioo L-112 41(X'
A)

Dn (x , a)dx

Dn (x , a)dx (8.16)
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The above upper and lower expected damages are still functions of xp. Using the

best estimate of xp = 150,000 cfs, the upper and lower expected damages for each of

the four design options can then be calculated. Subsequently the upper and lower total

expected cost for each of the four design options are calculated as shown in Table 8.3.

Table 8.3: Upper lower expected costs x10 3 (in dollars) with respect to pi, A

Decision a l = 40,000 a, = 60,000 a3 = 120,000 a4 = 150,000
E;,,A[-] 1566 893 878 898
E. F,,,AH 699 528 591 601

Based on the mini-upper decision criterion, the design option a 3 , i.e. Rebuild the

spillway and raise dam , should be selected in this particular example.

As discussed in Section 8.3.3, there is uncertainty associated with the PMF estimate

xp. Here the effect of the variation of xp on the upper and lower expected cost in

(8.16) is studied first. The results of varying the PMF within one third of the current

estimated value, as suggested by Stedinger and Grygier [1985], are presented in Table

8.4.

Table 8.4: Sensitivity analysis to xp

decision
option

X p = 100, 000 xp = 125, 000 X p = 175, 000 X p = 200, 000
E*[•] E.[•] E*[.] E,,[.] E*[.] E.[•] E*[.] E.[.]

a l 1096 519 1361 612 1725 777 1851 845
a2 711 488 803 516 1001 553 1108 582
a3 776 558 832 574 942 698 994 625
a4 786 568 842 584 951 618 1004 635

From Table 8.4 it can be seen that in this particular example, varying the PMF

estimate within one third of its estimated value can have some effect on the upper

and lower expected costs. In fact, the design option based on the mini-upper decision

criterion is a3 for xp > 150,000 cfs and becomes a 2 if xp < 150,000 cfs. This suggests
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that the uncertainty associated with the PMF estimate, xp, should be incorporated

into the analysis.

If there is some information about xp, it can be represented by a BPA function and

(8.12) can be used to calculate the upper and lower expected costs. Here it is assumed

that the decision maker knows only that xp lies within one third of its estimated value

and knows nothing else. This can be represented by a complete ignorance BPA for

xp. For each decision, the resultant upper expected cost corresponds to the upper

expected cost for xp = 200,000 cfs in Table 8.4, and the resultant lower expected cost

corresponds to the lower expected cost for xp = 100,000 cfs. The final upper and

lower expected costs after considering uncertainties for all parameters, pt , A and xp,

are given in Table 8.5. According to the mini-upper decision criterion, the D-S decision

in this case should be a 3 . Note however that for each decision, the difference between

the upper and lower expected costs is significant, indicating substantial imprecision

which is otherwise overlooked by the conventional statistical approach. An alternative

strategy of making a decision based on a more complete interpretation of the D-S upper

lower expected utilities is presented in Chapter 10.

Table 8.5: Upper lower expected costs x103 (in dollars) with respect to p i , A and xp

Decision a l = 40,000 a 2 = 60,000 a3 = 120,000 a4 = 150,000
C ,), ,z,[.] 1851 1108 994 1004
E. p.,),[•] 519 488 558 568

8.5 Summary

Major hydrologic engineering design is invariably concerned with rare flood events

which are much larger than the maximum recorded annual flood, and therefore in-

volves a large uncertainty. In this chapter a hydrologic design model based on the D-S



Chapter 8. The D-S Theory Applied in Hydrologic Design^ 149

theory was developed which does not depend on any specific flood frequency distribu-

tion assumption and is able to deal with the weak information input about unknown

parameters associated with the rare flood events. The model generally produces, for

each design option, upper and lower expected costs as a result of the weak information

input. A D-S decision can then be made based on the mini-upper criterion as demon-

strated in the above example, or following a more complete interpretation of the D-S

results as will be discussed in Chapter 10. The model was demonstrated in a numerical

example which revealed that weak information input about the unknown parameters

can cause significant indeterminism in the choice of hydrologic design.



Chapter 9

Application of D-S Theory in Reliability Analysis

9.1 Reliability Analysis in Civil Engineering

The problem of safety or reliability of an engineering system is essentially the problem

of balancing the capacity of the system against the demand on the system [Ang and

Tang, 1984]. For example, the capacity of a flood control project is the design flood,

which the project is intended to withstand, while the demand is the extreme flood

which the project actually encounters during its life time. The flood control project is

said to be safe if the design flood is greater than the actual extreme flood which occurs

during the service life of the project.

The conventional approach to reliability analysis uses the concept of safety mar-

gin or safety factor. The levels of the margins or factors of safety are determined from

some conservative, deterministic estimations of the capacity and demand, e.g. choosing

the "minimum" capacity and the "maximum" demand. However, engineering design is

usually based on incomplete knowledge and, as a result, uncertainties concerning the

design events are unavoidable. The uncertainties are addressed only in a qualitative

fashion and consequently the reliability of the system can not be described quantita-

tively [Ang and Tang, 1984]). As a result, as pointed out by Duckstein and Bogardi

[1981], the engineering project could be either over- or under-designed.

The probabilistic approach to reliability analysis considers the design events as

150
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naturally occurring random variables and uses statistical models to describe the in-

herent uncertainties associated with these random variables. Under the probabilistic

approach, the reliability of a system can be quantitatively defined as the probability

that the project will fulfil its original design purpose. Conversely, the failure probabil-

ity is defined as the probability that the system will not perform adequately. In terms

of capacity (X) and demand (Y) of a system, the failure probability in the continuous

case can be defined as

pF = P(X 5 Y) = f °Q .1 °°
0 f X ,Y (X y)1(x<oclxdy

^
(9.1)

where fx ,y (x, y) are the joint distributions of X and Y. If X and Y are independent ran-

dom variables with known distributions fx (x) and fy(y), then fx,y(x,y) fx (x) fy (y)

and the above equation becomes [Ang and Tang, 1984]

PF^F

▪ 

x(Y).fr(y)dy

= I

• 

[1 — FY (X)] f X (X)dX
^ (9.2)

Define the safety margin Z as

Z = X — Y^ (9.3)

If X and Y are independent random variables with normal distributions, i.e. X --

N(1.4,cr) and Y N(p,y ,ay ), where^and /iv are the mean values and a and ay the
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standard deviations of X and Y, then Z also follows a normal distribution with mean

and standard deviation as

= 1-Lx^fly

0.^ „\/,. 2^2
'^y

Then the failure probability pF in this case becomes

pF = (-1^(  ^
N/0- + cr!2,

In reliability analysis, another convenient and widely used quantity is the reliability

index Q which is defined as the number of standard deviations of the mean value of the

safety margin, i.e.

— /iy = — = ^
cr

("Y

(9.6)

Equations (9.5) and (9.6) demonstrate that the failure probability pF and the reli-

ability index [3 are related through pF = 4)(-0). This relationship is exact only if the

two variables X and Y are independent and normally distributed. In the situations

where those two conditions are not satisfied, this relationship and the calculated value

of pF will be, at best, only an approximation to the real failure probability.

Under the probabilistic approach, reliability analysis therefore becomes a problem

of determining the probability models of the system. If the statistical models for X and

Y are fixed with known parameters, the failure probability pF will be a deterministic

(9.4)

(9.5)
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constant. However, in practice, the parameters of these models and even the models

themselves will have to be based on the available, but often inadequate, knowledge;

therefore substantial uncertainties may be associated with the parameters of these

models, and the models themselves. As a consequence, the failure probability pF is

itself an unknown random variable. Of interest here, and in line with the central theme

of this thesis, is the situation of weak knowledge and its consequence on the results of

the reliability analysis.

In general situations, the variables X and Y are not two simple variables but are

functions of many factors. The calculation of the failure probability pF in these sit-

uations is more complex. Various approaches have been developed for calculating pF

where the statistical models for the random variables and parameters of these models

are all known, or where only the first and second moments of the random variables

are known. See Yen et al. [1986] for a brief review of these approaches, and Ang

and Tang [1984], Melching et al. [1990] for examples of applications. In the situations

where the parameters are unknown, a Bayesian approach has been used to deal with

the parameter uncertainties [Martz and Waller, 1982].

The Bayesian approach presumes that the subjective knowledge can be represented

by a precise probability distribution and then combined with a precisely specified sam-

ple likelihood function to produce a posterior distribution for the unknown parameters.

But if the knowledge about the unknown parameters is weak we may be unable to spec-

ify such precise probability distributions and likelihood functions. In these cases where

the Bayesian representation is not supported by the knowledge, the D-S approach can

be used to deal with the parameter uncertainties.

The application of D-S theory to uncertainties in reliability analysis will be explored

in the remainder of this chapter. The discussion will be confined to the simple situation

where the capacity and demand of a system are two independent random variables with
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normal distributions, i.e. X ti N(itz ,uz ) and 3' — N(ity , a y ). There could be errors

or uncertainties associated with both the mean values µ x , µy and standard deviations

crz , ay of these normal distributions. But it is believed that uncertainties associated

with the mean values are of primary importance while those uncertainties associated

with the standard deviations are of secondary importance [Ang and Tang, 1984, p387].

Only uncertainties with the two mean values are demonstrated and the two standard

deviations are treated as known constants.

9.2 D-S Reliability Analysis

Traditionally, the uncertainties of the mean values p x , icy of X, Y are represented by

conventional posterior probability distributions. Note here that the two mean values Itz

and Ay are both greater than zero. The determination of these posterior distributions

by the Bayesian method is based on both the engineer's subjective judgement and real

sampling information. Once the posterior distributions on p„ and py are obtained, the

distribution for p, = ity can then be determined. Based on this distribution, and the

deterministically specified values of crz and cry , various modified quantities describing

the reliability, such as the expected failure probability E(pF ), the different percentiles

of pF and the reliability index #, can then be calculated from (9.5) and (9.6).

In the D-S approach, precise probability distributions for itz and yy are not requi-

site and the uncertainties about /4 and py can be represented less restrictively by BPA

functions. The determination of these BPA functions, as discussed in Chapters 4, 5,

6 and 7, can be based on an engineer's subjective knowledge, if any, or the sampling

information alone, or a combination of these two sources of information. Since the pa-

rameters itx and are real and continuous variables, the BPA's on the two parameters

should be specified on the corresponding contiguous frames as discussed in Chapter 3.
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Let [pzu ,//,] and [tiy.,/i,,] represent any intervals in the contiguous frames of //„. and

/iv respectively. Suppose that the BPA's on the two contiguous frames are obtained for

P. and tiv and denoted as Trimz(Laz,,, ium,l) and m, ( [uy., //y.„]) respectively. As in the

conventional approach, it is necessary to determine first the resultant BPA rn n ([tLA,P, ,,i)

on the variable //, = /Ix — Ay where [tin gl y ] represents any interval in the contiguous

frame of A.

If p C [µy„, µ,] and /iv C [tiy„,/iy,], then the difference /2 =^—µy must be in the

interval [ti„,/i„] where

^/1Xv^fly„

flv -^ityt,
^ (9.7)

i.e. ti C [(IL, — ply),(Axi, — µy.)]• Note that pu and tit, can both either be positive or

negative. If /ix and tiy are independent random variables, then the two corresponding

BPA's can be multiplied and the product be assigned to the resulting interval of The

BPA value on any interval [p.,,,p v ] is the collection of all the products of mM.([fixt,,[Lx,])

and nip..„(tity„,//y,1) whose intervals satisfy — = pu and Az, — = ,u,,, i.e.

rnii([//u,Avil =^ : flit, —^= Au,^—^ Ay}
00 f

M ({P it DM^DJo^0^Az^.7.,,^kty^Xv^Xu^IL U^Xu C Xv^(9.8)

In the above integration, m i„([//,, 11,,,]) and m,,,,,([py„,p,y„]) can be of any form

and are undefined, the integration therefore can not be carried out. As a result, the

universal analytical expression for the BPA on ti can not be obtained. However, since
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the failure probability pF and the reliability index 0, as defined in equations (9.5) and

(9.6), are all monotonic functions of (see Sec. 3.6 of Chapter 3) then only the upper

and lower marginal distributions of gp (p) and fi,(11) are needed in calculating the

quantities of interest in a reliability analysis.

According to the definition in (3.17) of Chapter 3, the upper and lower marginal

density function of it are

g,, (Pv) = 
1:11, 

MP([11111 AvDdliti

oo

LL(y.) = J^M 11([11121 Av])
^

(9.9)

Now, let g,,z (f4) and fp.r (Ax ) represent the upper and lower marginal densities of yx

based on the BPA m,„([Ax„,p, x„]). Similarly, let g i,,(uy ) and fi,,(p,y ) denote the upper

and lower marginal densities for py based on the BPA m„([/1y.,py,,]). The upper and

lower marginal densities gm (p,) and 42 (1.1) expressed in (9.9) can now be specified in

terms of these upper and lower marginal densities of fix and y y as follows (see Section

B.1 of Appendix B for detailed mathematical derivations of (9.10))

^=^gp..Gazif„,(kt.,
r.

^f„(iI) =^fAz(u.n)g„,(A, p)dp,^(9.10)

The upper and lower expected failure probabilities E*(pF ) and E,,(pF ), obtained by

calculating the expectation of (9.5), are

E - (pF) =^(--110)
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f CO

(PF
^7 IL \^

)4t
^ (9.11)

- 00

The upper and lower reliability indices can also be obtained by calculating the

expectation of (9.6)

CO

I- 00 

--crgp(A)dtt

1 
pgm(p)dic

f oo

J-0 
fµ(u)dµ

1
1142(04

\ la!^foo
(9.12)

Equations (9.11) and (9.12) summarize the consequences of applying the D-S theory

to reliability analysis. In order to use these results, the BPA's for the two parameters 1.1„

and Pry have to be provided. Depending on the particular problem and the information

available, various approaches, as described in Chapters 4 to 7, may be used to obtain

these BPA's. In Section 9.3, a situation will be considered where two precise probability

distributions, denoted by hp.. (.4) and hu.,(py ) for the two unknown parameters fix and

py , have been obtained, but the engineer has some concern about the precision of this

information. The method described in Section 7.2 of Chapter 7 will be used to derive a

BPA from the precise probability distribution for each of the two parameters to account

for the engineer's concern. The consequent D-S reliability analysis will be carried out,

and the results will be compared with the conventional reliability analysis.

The conventional reliability analysis based on precise probability distributions on

1.6 and Py has been considered by Ang and Tang [1984, Example 6.17] and is first briefly
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reviewed here. Suppose the two precise probability distributions h,„(11,) and h,y (p.y )

on yz and py are normal, i.e.

(9.13)

hp, (PO = N (Y, sy)

where x and y represent the mean values and s z and .s y standard errors of /L s and gy

respectively. Then the difference = — kty is also normally distributed with mean

Tz" y- --g and standard deviation s Vs! + s y2 . The expected failure probability E(pF )

can be calculated as

x — y
E(PF)^[  Vcr!-F cr12,^s121

(9.14)

 

And the reliability index becomes

— y # v0.2 0.2
,

(9.15)

Equations (9.14) and (9.15) are from Ang and Tang [1984].

9.3 An Illustration

Consider first the precise probability distribution lip,(1..t) on pz whose precision is

suspect in the mind of the engineer. Two possible ways of addressing this concern have
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been discussed in Chapter 7 but, for illustrative purposes, the method which is called

local perturbation, as described in Section 7.2, is adopted here. Full details of this

method can be found in Section 7.2 but, briefly stated, it involves attaching to any

point Az an interval [fix — ca,, µ a, ca,] where ca, is taken as a constant, and reassigning

the probability density on p x to this interval. This process thus leads to a BPA which

can be expressed as

Mkix ([µx CZ, + ca]) — hm2. (/u.) (9.16)

If h i,.(px ) is assumed as normal with mean x and standard deviation s x , as was the

case in (9.13), then the upper and lower marginal distributions of it z are also normally

distributed with the same variance as la kz.(p) but different means, i.e.

9µx (p=) = N(Y ca,, s x )

= N(Y — cz,^) (9.17)

As described in Section 7.2, the determination of the constant c x requires the se-

lection of a reference interval and the engineer's specification of an upper probability

bound for this interval. Choose [5 — s a,, s a,] as the reference interval, then the prob-

ability of this interval based on hp..(pz ) is 0.683. Suppose the upper probability bound

of this interval is specified as /4, then, from (7.5), cz can be expressed as

cx^—sa, * 4,-1 (1 —
2

p;)^
s a,^ (9.18)
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As numerical examples, if p; = 0.9 then cx 0.645s z , and if p; = 0.99 then

cz = 1.575s z . In the extreme case when p; = 1.0 then cy = oo and represents complete

ignorance about Ax . In reality if the engineer assumes to have at least some knowledge,

then he should assign a value for p; which is less than 1.0. But it would be impractical

for an engineer to specify probability values for p; above say 0.99 as it then becomes

impossible to distinguish any practical difference among these values. Therefore in

practice, a value like p; = 0.99 can be considered as representing the situation where

the engineer has some very serious doubts about any specification of this probability

distribution, precise or otherwise. That is, the knowledge is not only weak but virtually

nonexistent. The corresponding c a, value to p; = 0.99 thus provides some insight about

the upper limit of ca, in practice.

Similarly, if the engineer has some doubt about the precise probability distribution

(Ay) of Ay, the same process described above can be used to determine a local

perturbation BPA for Ay. Let [Ay - Cy, Ay cy ] be the interval associated with the point

ity, where cy is considered to be a constant. The local perturbation BPA, m my ([Ay —

Cy , Ay + Cy] ), can then be expressed as

mg,([1-ty cy, cy}) = hp,(11y) (9.19)

If hp., (Ay) is assumed as normal with mean y and standard deviation sy as was done

in (9.13), then the upper and lower marginal distributions of p y , which are also normal,

are

giL,(tty) = N(^sy)
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.fiLy(uy) = N(Y cy'sy) (9.20)

Again choose the reference interval as [--9- — .s y , -9- + s y]. If the engineer feels that the

probability value of Ay being in this interval can be as high as p';, then from (7.5) cy

can be determined as

As-1 (1 Cy -Sy *
2

(9.21)

As in the cx case, if p; = 0.90 then cy = 0.645sy , and if p; = 0.99 then cy = 1.575s y .

Once the upper and lower marginal distributions for A x and Ay are obtained from the

corresponding local perturbation BPA's, the upper and lower marginal distributions,

gii (p) and 4,(A), for can then be determined from (9.10). After some mathematical

operations (see Section B.2 of Appendix B), gm (p) and fp (p) are found to be normal,

i.e.

gii(y) =^— y) + (cz + cy ),^.9! +

N((Y — y) — (cz + cy), V .s! + s;)^(9.22)

Note that in the conventional approach, the probability distribution of IL is normally

distributed with mean - 9- ,  and standard deviation Vs! + sy. From (9.22) it can be

seen that, in the particular situation considered here, the upper and lower marginal

distributions of A in the D-S approach are of the same shape as the distribution of in

the conventional approach but the mean values are shifted by (ca, cy ) and —(c, cy)



E . (pF) = c13 ^(c. cy))
+ a-y2 + .s! +

E-(PF) =41) ( 
^V)+ (cx + cy ))

+ + +
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respectively. Based on the upper and lower marginal distributions of the upper and

lower expected failure probabilities E'(pF ) and E.(pF ) can be determined as

(9.23)

The upper and lower reliability indices /3 - and 13„ can also be calculated. They are

— g)^(ca,^cy )

V0.! H._ 0.y2

— — (c + Cy)

Va2 4_ 0-2
x ' y

(9.24)

It can be seen from (9.23) and (9.24) that the influence of the two coefficients cx

and cy can be studied by considering only the sum cx +cy . Comparing (9.23) and (9.24)

with (9.14) and (9.15) reveals that the difference between the D-S and the conventional

approaches is also determined by the magnitude of the total cx cy. Indeed when

cx and cy are both zero, indicating that the engineer has complete confidence in the

precise probability distributions on j and py , then (9.23) and (9.24) will be identical

to (9.14) and (9.15). When cz cy becomes larger, indicating weaker information, the

discrepancy between the D-S approach and the conventional approach becomes more

significant.

Consider the upper lower expected failure probabilities expressed in (9.23). They

can be expressed in terms of the ratio sic = Vs ! sy2 viol + cry — a measure of the

modeling error relative to the inherent variability o in the conventional approach, as



E.(pF)

E*(pF) = ^1 ^— y

\/1 (s/o-) 2 (Vol ±

1^x — y

/1 (s/o-) 2 ( N/01+
(9.25)

cy cz—  +̂
Vex

s s z sy

0- Vs ! sy2
1.575 (9.26)
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Note that the term (Y — p-)/Vc•! o-y2 in (9.25) is the conventional reliability index

0 as expressed in (9.15). The new term (c y cz )/Vo-! may, henceforth denoted by 6,

is introduced by the D-S analysis and reflects the influence of imprecision. Also, the

expression in parentheses in the first equation of (9.25) is the lower reliability index

while that in the second equation is the upper reliability index as specified in (9.24).

The magnitude of 8 = (cy c,)/Va.! cq depends, among other factors, on the

two subjectively specified upper probability bounds p: and K. To gain some insight

into the extent of variation of 6, consider the rather extreme practical case where

p: py* = 0.99. As has been shown earlier in this section, this gives cz = 1.575sz and

c11 •= 1 575s Y - The term S then becomes

Since an algebraic property of the expression (s z s y )/Vs! s y2 is that it must be in

the interval 1.0 to 0 for any positive s z and sy , the upper limit of 6, namely 6„, is

given by (9.26) as bz, = 1.5750s/cr. When the ratio s/o- = 1.0, bu = 2.227 and when

s/o- = 0.5, 6„ =1.114.
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The D-S upper and lower expected failure probabilities E - (PF ) and E.(PF ), ex-

/0.1 + y2pressed in (9.25), are plotted in Figures 9.1a-d as functions of 6 = (cy cx )

for different s/a and 8 values where s/o- = 0.5,1.0 and = 1.5,3.5. Here the two values

1.5 and 3.5 for 0 are considered as representing high and low reliability situations in

civil engineering practice.

It can be seen from these graphs that when b = 0, E'(PF ) and E„(PF ) based on

the D-S analysis become identical and coincide with the expected failure probability

E(PF ) based on conventional reliability analysis. Thus when the engineer is confident

about the precise probability distributions specified on the two parameters p„ and it y ,

the D-S reliability analysis will yield the same result as the conventional approach. As

b > 0, indicating that there is some imprecision in the information about Az and py ,

E'(PF ) and E.(PF ) will differ and form the upper and lower bounds of the expected

failure probability which contains the conventional reliability analysis result E(PF ).

When b is relatively small, the difference between E*(PF ) and E*(PF ) is also rela-

tively small, indicating that the conventional reliability analysis result E(PF ) is insen-

sitive to some insignificant imprecision in the information. For example from Figure

9.1b, when b = 0.2 then E - (PF) = 11.6 x 10' and E.(PF ) = 4.6 x 10' while the

conventional reliability analysis result is E(PF ) = 9 x 10'.

However when b. is large, indicating significant imprecision in the information,

E'(PF ) and E.(PF ) can be of a difference of several orders. As can be seen from

the plots, this difference becomes more significant for larger values. Considering

again Figure 9.1b, when b. = 0.8 then E*(PF ) = 8 x 10' and E,,(PF ) = 6 x 10',

which contrast with the conventional analysis result E(PF) = 9 x 10'. It is thus seen

that if there is some serious doubt about the precise probability distributions specified

on px and py , i.e. significant imprecision, the conventional reliability analysis result is

suspect. In fact, a large difference between the D-S upper and lower expected failure
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probabilities indicates that more information should be obtained about the unknown

parameters in order to get more meaningful reliability analysis results.

9.4 Summary

In this chapter, the D-S theory has been used in reliability analysis to accommodate

weak information inputs about the parameters of the random variables. Only a simple

reliability analysis situation was considered where the demand and capacity are two

independent, normally distributed random variables with the two means as the un-

known parameters and the two standard deviations assumed to be known. Analytical

results were developed which produce upper and lower expected failure probabilities

as a direct result of the weak information input about the unknown parameters. The

results were demonstrated in a numerical example which showed that, from the D-S

perspective, when the input information is weak, the conventional reliability analysis

result is not representative of the true situation. It suggests that, in this case, more

information would have to be obtained in order to get a more satisfactory reliability

analysis result.



Chapter 10

The D-S Upper Lower Expected Utilities

So far in this thesis the D-S theory has been used to draw inferences concerning some

unknown state of nature and in making decisions based on these inferences. The impre-

cision expressed in the inference results leads to the upper and lower expected utilities

in any subsequent decision analysis, and will often result in indeterminacy in the de-

cision choice. The actual interval formed by the upper and lower expected utilities is

a significant feature of the D-S approach, but caution should be exercised when inter-

preting such a interval. In this chapter, the way in which the D-S interval is affected

by various factors, and its implication in engineering practice will be explored.

Before proceeding, it is interesting to pause for a conceptual comparison of the D-

S upper and lower expected utility results with the outputs from some conventional

approaches. Recall that in conventional Bayesian analysis, uncertainty about the un-

known state of nature is reflected in the degree of dispersion of the posterior distri-

bution, which is always a conventional precise probability distribution even when the

prior information approaches ignorance and the sample data is sparse. This measure

of uncertainty is suppressed when, for each decision option, a single expected utility

is calculated from the posterior distribution. The Bayesian Robustness on the other

hand adopts a set of possible prior distributions to reflect the weakness or imprecision

in the prior information. As a result, the final output is expressed in the form of the

two posteriors which yield the highest and lowest expected utilities. When the util-

ity resembles cost, one decision criterion, which is analogous to the D-S mini-upper

168
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criterion, would be to choose the decision which minimizes the highest expected cost

[Berger, 1985]. However the choice of the priors is somewhat discretionary, and the

sample data are still represented by the conventional sample likelihood.

Unlike the conventional Bayesian and the Bayesian Robustness approaches, the D-S

scheme, as described in Chapter 3, represents both prior and sample information in the

form of BPA's which are possibilistic in nature, and then combines them via Dempster's

rule of combination to yield a resultant BPA. The prior and sample based inputs are

treated symmetrically and furthermore, if there is no prior information a prior BPA is

not required. The resultant BPA inference can be interpreted as representing a set of

conventional precise probability distributions known as the compatible distributions.

Amongst these are the two marginal distributions which represent two extreme inter-

pretations of the BPA function and which, when combined with the utility function,

produce the upper and lower expected utilities. As pointed out in Chapter 4, the two

marginals are not equivalent in any quantitative sense to the Bayesian posterior except

for a tendency, shared with all other compatible distributions of the resultant BPA and

the Bayesian posterior, to converge on the deterministic result when the information

becomes infinite.

Suppose, after considering all the available sources of information, the D-S inference

has been obtained for an unknown state of nature 9 which is expressed by a BPA

function on the frame of 0. The corresponding upper and lower marginal distributions

are denoted as g(9) and AO). While no formal method has been suggested in the

literature to measure the degree of imprecision embodied in the BPA function, the

"distance" between the two marginal distributions might be considered as having some

bearing on this measure. One possible way of measuring this distance might be to

calculate the difference between the expectations, i.e. between the mean values of the

upper and lower marginal distributions. The units of this measure will thus be the
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same as the particular state of nature under consideration.

Another measure of the distance can be obtained in terms of utility. If a monotone

increasing utility function applies and is expressed as U (a, 8), then the upper and lower

expected utilities can be calculated as described in Section 3.6, and are

ElU(d)] = U(d,6)9(0)d0

E.[U(d)] = U(d,O)f(0)cl0

The width of the interval formed by the upper and lower expected utilities is more

meaningful when the utility function is in monetary terms, which, as stated in Chapter

3, has been assumed to be the case throughout this thesis. It is denoted here as

AE[U(d)] and can be expressed

AE[U(d)] = U(d,0)g(0)d0 — U(d,O)f(0))d0

= f U(d,O)(11(0)— f(0))d0 (10.1)

Equation (10.1) shows that AE[U(d)] is affected by both of the marginal distribu-

tions, g(0) and f(0), and the utility function U(d,0). Note that, in the very simple

extreme situation where the utility function is a constant, AE[U(d)] becomes zero no

matter how much imprecision the BPA function implies, or how weak the knowledge

about the unknown state of nature O. This result is reasonable as a constant utility

function means that the value of 8 has no effect on the outcome.

Consider now the situation where the utility function is either monotone increasing

or decreasing. Greater imprecision reflected in the BPA function means that g(0) and
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f(9) will be further apart, and as a result the width of the interval, AE[U(d)], will be

larger. Thus the weaker the knowledge about the unknown state of nature 0, the larger

the width of the interval.

Now, for given marginal distributions g(0) and f (9), AE[U(d)] will be a function of

the form of U(d, 9). Consider the simple case where U(d, 0) is a linear function of 0 i.e.

U(d, 0) = cO, with coefficient c > 0. It is clear from (10.1) that the greater the c value,

the larger the width AE[U(d)] will be. Since a greater c value indicates that the utility

function is more sensitive to 8, it can be said that the more sensitive the utility function

is with respect to 8, the larger the width AE[U(d)] will be. Although this conclusion is

drawn from the linear utility function case, it can be easily extended to the general non

linear monotone utility function case. It can be concluded that the more sensitive the

utility function is to 8 in the area where g(0) and f(0) are concentrated, the larger will

be the width AE[U(d)]. Note here that a more sensitive utility function also means

that the weakness of knowledge about 8 will tend to make the decision analysis less

conclusive. See the example in Section 4.4.2 of Chapter 4 as a demonstration of this

effect.

The above discussion, though essentially qualitative, indicates that the width of

the interval AE[U(d)] can provide some useful information to a decision maker in the

subsequent decision analysis. A small width AE[U(d)] indicates that the weakness of

the information and the utility function have, in combination, less effect on the decision

consequence. This could be a result of either weak information input, or an insensitive

utility function with respect to 0, or both. In all of these situations the weakness of

information has small effect on the decision analysis, indicating that the decision maker

can make a decision with confidence commensurate with a true Bayesian situation.

However, when AE[U(d)] is very large, then the weakness of information will almost

invariably lead to significant ambiguity or indeterminism in the decision choice. This
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arises because the width of the utility interval for each individual decision then over-

whelms the differences between the various alternative decision outcomes. Although

distinctions between decisions can still be drawn using the mini-upper criterion, there

can be little confidence in coming to any conclusion in the face of the extensive un-

certainty due to imprecision reflected in the large interval. In this case, the decision

maker would have to collect more information to reduce the size of the interval and

strengthen the ability of resolving the decisions.

In addition to its usefulness in a decision analysis, the D-S interval also provides

important information when justifying the use of conventional Bayesian approach, i.e.

the Bayesian analysis and its conclusions are clearly most supportable in situations

where the D-S interval is relatively small. Under these conditions it is, of course, highly

likely that the D-S and Bayesian analyses would support identical decision choices.



Chapter 11

Summary and Conclusions

Water resources engineering decisions often have to be based on knowledge which is

weak and there is some question whether this is adequately expressed by a conventional

precise probability distribution as required by the Bayesian and other conventional sta-

tistical approaches. The objective of this research was to explore the implementation

of D-S theory in characterizing weak information situations in a water resources en-

gineering decision context and compare the approach with the conventional Bayesian

analysis.

D-S theory is now seen, in retrospect, to be based on the concept of imprecise prob-

ability which provides a much more possibilistic expression of probabilistic information

than does a conventional probability distribution. It therefore offers an alternative

statistical approach for dealing with weak information situations in real engineering

practice. The adoption of D-S theory to engineering decision analysis, when faced with

weak information, will often lead to results which are somewhat indeterminate but are

believed to be more realistic. As pointed out by Walley [1991], when weak information

is involved, the decision choice should naturally be indeterminate to some degree.

The D-S theory has some additional features which are both appealing and impor-

tant from a practical point of view. Unlike the conventional Bayesian scheme, both

prior and sample based inputs are treated in exactly the same fashion in the D-S

framework. Also, if there is no prior information, then a prior BPA is not required.

Complete ignorance is represented by the ignorance BPA which has the desired feature
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of not affecting the resultant BPA even if included in the analysis. Furthermore, in spite

of its radically different approach, the D-S framework does not represent a complete

break from the conventional Bayesian scheme. Indeed, when the prior is a conventional

Bayesian distribution, the two approaches produce identical conventional distribution

results for the same sample information. The D-S framework thus includes the con-

ventional Bayesian approach as a special case. One benefit of this research, therefore,

is that it also provides a new and broader perspective from which the appropriateness

and limitations of the conventional Bayesian analysis can be judged.

The idea of a graphical representation of BPA's using the triangular diagrams is

fully exploited in the exposition of the D-S theory in this thesis. Other than appearing

in Strat's original conference paper in 1984, this idea appears to have been totally

overlooked in the literature, but was found to be invaluable both in understanding

basic D-S theory and in conceptualizing the expression of inputs and results in the

form of BPA's. It also proved to be useful in the subsequent D-S analysis. Without it,

much of the new theoretical development which occurs in this thesis would not have

occurred.

Engineering examples of applications of D-S theory, which include in some instances

the adaptation of previously published Bayesian examples, are presented throughout

the thesis. These examples are used not only to demonstrate implementation of the

theory in an engineering context but also to provide a preliminary investigation of

the quantitative implications of weak information in some practical decision making

circumstances.

The D-S inference procedures presented in Chapters 4 to 6 provide a variety of

routines for translating sampling information into BPA's. In most cases, the closest

equivalent Bayesian approaches and results are also presented. The comparison shows
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that the Bayesian results generally fall within the range established by the D-S ap-

proaches. This indicates that there is some general agreement between the conventional

Bayesian and D-S results. This kind of agreement is also mentioned by Wasserman

[1988] and adds support to the notion that the D-S results are "reasonable" from a

Bayesian perspective.

It might also be added that, on the basis of experience gained with this research,

the Bayesian results are "reasonable" from the D-S perspective. But the D-S scheme

has the distinct advantage of analytically detecting the imprecise probabilities due

to weak information inputs. Furthermore, it is able to detect imprecise probabilities

arising solely from sample information without obscuring them by insisting on a prior.

As the information becomes stronger, the degree of imprecision decreases, and both

D-S and conventional Bayesian approaches tend to converge. Thus the D-S scheme

establishes how quickly the imprecision decreases as the sample information grows

stronger. This is of practical importance as it provides some quantitative indication

of the size of sample inputs, with or without the presence of subjective knowledge,

necessary for reducing the imprecision to a level acceptable to the decision maker. The

incorporation of imprecise probability to inference leads, in the D-S decision analysis, to

upper and lower expected utilities. This reduces the ability to choose the best decision,

especially when the expected utility intervals for different decision alternatives overlap.

The resultant indeterminism in the decision making is not necessarily bad but can

be considered as more faithfully reflecting the true decision situation than does the

"precise" Bayesian decision result.

The elicitation of prior BPA's from subjective knowledge discussed in Chapter 7

includes several different approaches which can be used to describe some typical forms of

subjective knowledge in engineering circumstances. As demonstrated, the D-S scheme

along with the exploitation of the triangular BPA diagram, provides a far more flexible
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framework in which more varied expressions of subjective knowledge are possible.

In the early introductory chapters of this thesis an original synthesis of ideas con-

cerning D-S theory, extracted mostly from the existing literature, is presented. These

ideas have been developed by several statisticians over the last 30 years, and were dis-

persed widely in the statistical and AI literatures. Some entirely new explanations are

also incorporated to assist the exposition. They are presented in a form which best

serves the needs of engineers and engineering applications. New theoretical develop-

ments were necessary when the D-S theory was brought to bear on water resources

engineering applications where the concept of imprecise probability appeared to have

its greatest potential relevance. These appear in the D-S inference of parameters of

lognormal and extreme type I distributions in Chapter 6 and the adaptation of the two

more general models in Chapters 8 and 9.

The hydrologic design model in Chapter 8 addresses an important problem posed

by the US Bureau of Reclamation [1988], which was one of the principal motivations

for this research. The model is able to incorporate the weak information inputs about

various parameters associated with extreme annual flood events. In a situation which

is commonly associated with weak inputs, a significant advantage of this approach is

that, it does not depend on any presumed, necessarily arbitrary, statistical model for

the annual extreme floods.

The reliability analysis model presented in Chapter 9, represents an example of the

application of D-S theory to civil engineering reliability analysis. This entails finding

the BPA for an elementary function of two variables whose individual uncertainties are

expressed in the form of BPA's. With weak input concerning the unknown means of the

two random variables, i.e. load and resistance, it produces upper and lower expected

failure probabilities and the expected failure probability interval reflects the weakness

in the information provided. When this interval is large the reliability analysis result
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is ambiguous, and more information would have to be supplied in order to reduce this

interval and obtain a more meaningful reliability analysis result.

The expected utility interval is the most conspicuous new feature arising from a

D-S decision analysis. A general interpretation of the factors governing the size of the

interval for monotone utility functions is provided in Chapter 10. It reveals that with a

monetary utility function, the size of the interval not only reflects the weakness of the

input information but also tends to be enlarged if the utility function is sensitive to the

unknown state of nature in the region of the interval. Of interest here is the situation

when the size of the interval for each decision option is large compared with, say, the

differences between the upper (or lower) expected utilities amongst the decision options.

In this case, the engineer's ability to discriminate between decisions is substantially

diminished and may even be non existent. When facing such a reality, more information

would have to be collected to reduce the size of the intervals in order to make a more

definitive decision.

In the past the introduction of Bayesian decision analysis into resource management

problems represented a major advance, permitting, amongst other things, more varied

qualities of information to be brought to bear on decision problems. The imprecise

probability concept further expands the input information options so that, with weak

information, the full extent of the uncertainties is more completely reflected than in the

conventional Bayesian inputs. Equally important, it brings a broader perspective to

uncertainty and a new viewpoint from which to judge when the Bayesian approach is

adequate. Implementation of this concept in the form of the D-S scheme, as presented

in this thesis, reveals both theoretically and quantitatively the nature and extent of

imprecision arising from weak inputs and the degree of indeterminism that this brings

to the decision analysis.
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While the theoretical basis for applying D-S decision analysis to some civil engineer-

ing problems has been demonstrated in this thesis, full implementation in engineering

practice can not occur until a number of conditions are met. As was stated in Chapter

1, it would be premature to recommend this particular implementation of imprecise

probability until the other alternative approaches have also been investigated. Also,

one might argue that because the D-S scheme can replicate any Bayesian decision result

if conventional Bayesian inputs are provided, then the more general D-S scheme should

always be used. But generalized equivalents of all Bayesian procedures have not yet

been developed. Furthermore, there is no question that when the inputs can be satis-

factorily specified in Bayesian terms, the less complicated and more familiar Bayesian

scheme is preferable. However, an awareness of the alternatives for inputs offered by

the D-S and other imprecise probability schemes would seem to be essential before

this satisfaction with Bayesian type of inputs can be appropriately judged. Finally,

the unfamiliar nature of the D-S theory presents a significant educational challenge

which must be overcome before acceptance by engineering practitioners could occur.

The greater flexibility and possible realism with which the D-S scheme represents weak

information provides a significant incentive to overcome this major obstacle.
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Appendix A

Determination of K, g(v), and f(u)

From equation (4.11), the commonality function is

H([u,v]) = K n ur(1 — v)n -r^when u > a and v < b, i.e. AREA I

= K 
n

 (1 — a)ur(1 — v)n-r AREA II

where the AREA I and AREA II are indicated in Figure A.1.

Since the commonality function is not continuous, the corresponding BPA function

will also not be continuous and, in particular, there will be probabilities concentrated

on lines AB, AC, and at point A in Figure A.1. Based on the commonality function,

the probability distributions and probability weights on different parts of the triangular

area can be determined as follows.

Because of an abrupt change of commonality value at point A, there is a probability

spike concentrated at A which is

PrA = lim{H([a,b]) — 1^— E,b ED}

K^ad' (1 — b)n -r
^

(A.1)
r

184



Appendix A. Determination of K, g(v), and f(u)^ 185

U

Figure A.1: The contiguous frame

Similarly line AB also carries a positive probability. The cumulative probability

from point A to any point represented by [a, v], v < b, on AB can be calculated as

lim{H([a + 6,v1) — Haa,01 — PrA K nl^ aar(1 — v)' — PrA^(A.2)

from which the probability density on AB can be determined as K cx(n—r)af (1—

The probability PrAB carried by line AB is obtained by setting v = a in

equation (A.2), that is
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n \
PrAB = K^aar(1 — a)n' — K ( n aar(1 — b)n -r^(A.3)

r

Using the same procedure as above, the probability on line AC can be determined

as

Pr AC = K^oebr(1 — b)n-r — K^aar(1 — br?
^

(A.4)

which is distributed according to the density 
K (n)

r
^arur -1 (1 — v)n -r.

The probability densities (i.e. the BPA densities) on AREA I and AREA II can be

determined directly from the commonality function which are

m([11,v]) = Kr(n — r)^-

^ AREA I

= Kr(n — r)
(n)

(1 — a)ur(1 — v)n -r AREA II

(A.5)

The probability weight in AREA I, Pr AREA I can then be calculated by integrating the

corresponding BPA density function in (A.5), i.e.

Pr AREA I =
fab

jub
Kr(n — r)

I n
ur -1 (1 — v)n -r - dv

T
du

     



a IE n a'(1 — ar' — a r

^n

x^x=o x
) 17(1 —^+1 — aK
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= K ) ar(1 — b)' + K E
x=o

Ti
—K E bX(1 — b)'

X

n)
ax(1 - a)'

\ x

(A.6)

The probability weight in AREA II, Pr AREA II can be determined in the same fashion as

above but a study of Figure A.1 shows that Pr AREA E[ can be calculated from Pr AREA I

by the following relationship

Pr AREA 11 = ( 1 - a)K — ( 1 — cx)Pr AREA I (A.7)

Once the probability components for different parts of the triangular area are obtained,

the total probability over this area can then be computed by adding all these compo-

nents, i.e.

Pr = Pr A PrAB + Pr AREAI + Pr AREAL(
^ (A.8)

Setting pr equal to 1.0, the normalizing factor K can be determined as

K =
^n^ n

1 —a+aE^a-(1 -^—a E^— brx

^

x=o x^ x
(A.9)
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K

g(v) =

f(u) =

K

K
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Given the probability distribution in the triangular area in Figure A.1, the upper

and lower marginal distributions g(v) and f (u) can be determined from equation (3.17)

where the integrations must be performed separately for different regions as the density

function is not continuous. The g(v) and f(u) distributions are

(1 — a)(n — r)(1 — v)" -r - lvr

(n — r)(1 — v)n

abr(1 — b)"- r

(density along 0 < v < a

and b < v < 1.0)

(density along a < v < biA.10)

(probability at v = b)

(1 — c)rur-to. — ur,

cear(1 — a)"

rur -1 (1 — u)'

(density along 0 < u < a

and b < u < 1.0)

(probability at u = a)^(A.11)

(density along a < u < b)
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Upper Lower Marginal Distributions, g,,(it) and 42 (p), of p,

B.1 Expressing gm (p,) and fµ (µ) in Terms of the Marginal Distributions of

and

Consider first the lower marginal distribution MA) of^Substituting equation (9.8)

for m„([it„,A„]) in equation (9.9), fo(P) can be expressed as

f.
42(l1) = j^Trip([11.44})druv^ (B.1)

0

ri ,z ,^r
^p.„]) 1 .1 miLy^— Ay,^ILO dead dp...4.„.10 

Consider the integration in the square brackets in (B.1). Let s^— A t, then

dict, = —ds and this integration becomes

^E rn ^—^— AtipdAt,

= —^rnpi, ( [s,^— Au])ds
AX,

^- CO
^ — itsupds^ (B.2)

From (9.7), pu is equal to ft, — ityr . Hence, the upper limit of the range of integration

in (B.2) becomes fi zv^—py„). Because ps„ > p„„, this expression is always greater
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than or equal to p y„ Since the BPA density m,,([8„Lt, — p up is zero whenever s is

greater than µ y,,, (B.2) is equivalent to integrating^— ,u,„}) from s = —cc to

s =^which, according to the definition in Chapter 3, is the upper marginal density

— p„) of py . Thus, equation (B.1) becomes

00 Co
fil(P)^ Mgr ( [110u 7 IIXT Dthiy (AZ. — PU )di1 Xly

jocc LI:m ,„(Dix,,,p„„Ddp,x,1gp,(1.1, — pu )d,a,^(B.3)

The integration in the square brackets in (B.3) is recognized as the lower marginal

density function fi,.(itz.) of fix . Equation (B.3) then becomes

10 f,„(p„)g,,y (A, - 1.10d11,^ (B.4)

Similarly the upper marginal distribution gtz (p) of it in (9.8) can be expressed in

terms of the upper and lower marginal distributions of fix and py , which is

gA ( A ) =
^ (B.5)

B.2 The g„(it) and fp (p,) for Normal Marginal Distributions of and µy

If the upper and lower marginal distributions of tix and fly are normal, as represented

by equations (9.17) and (9.20) respectively, the 42 (//,) and gm (p) in (B.4) and (B.5) are

also normally distributed as shown in the following.
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First, consider the f„(p) in (B.4). Based on (9.17) and (9.20), f,i (y) can be expressed

as

Li(it) = 1:(27rs x s y ) 'ex
p_ 2 f — (92^) )2

— —(y+ c. )) 2 1 dpa.„
s 2

(B.6)

The term in the square brackets in (B.6) can be expressed in complete squares as follows

^(4. —^cx))2^— 11 — + ez)) 2
^2^ s 2

2^1^1^— ex )^p^cy)
^s

2^
S

^- ^— zyz„ ^ 2^2
Y

(Y — cx ) 2 + (IL + (y + cy )) 2
+^s2
^2

^

Sx^SY

^1^1^2 3,2^(y — 
ca)

 + 

y + (. + co)]

^y ^

2
S S

^---- (- +^ ) [ttxu^° - (^s 2 + 3 2^2^2^S z^S^ S^S^x ^Y^x^Y
^s z2 s y2^

+ CY ) 2 1 ^
c°) 2^

( fL + (9- + CY ) ) 2 
^2 ^s2^s2^.92^-r- s2^s2

1 + 1 )^s!sy2^c.) + A + + cv) 12
2^(s ^s2 {
^4_ 3 2^s2^sy2 )

^

x^y^x^y

1 ^
— ((f — c. ) —^+ cy)1 2

^
(B.7)

Therefore fi,(p) in (B.6) becomes

1 
s! 

1

27r s 2 +
^exp — 

2
— • 2̂ 111 ((Y Ca) — (9- + CY))12}^(B.8)
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which is recognized as a normal distribution with mean ( — ci,) — (y -E- cy ) and standard

deviation vs! Similarly the upper marginal distribution gp (p) expressed in (B.5)

can be determined as

= ^ 1̂ eXP {^• 2̂ [fl — ((Y cx ) — (g — cy ))1 2 }^(B.9)
1/270 s 2^2 s! sy

which is also a normal distribution with mean (Y-i-c)—(y—cy ) and standard deviation

\/.5.2^sy2.
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