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Abstract

A number of studies have described the theoretical and numerical aspects of the chaotic

motions of offshore structures with nonlinear moorings. As one such example, Aoki,

Sawaragi and Isaacson (1993) described the numerical simulation of the motions of a single

degree of freedom system with a piecewise-linear restoring force function. However,

relatively few laboratory measurements of chaotic motions have been reported, and the

primary aim of the present study is to investigate the corresponding problem experimentally.

Thus, the present work describes the measurement of chaotic motions of a floating structure

with nonlinear moorings. The structure is modeled as a rectangular box, and the moorings are

represented by a nonlinear restoring force - displacement relationship, corresponding to an

idealized geometric nonlinearity associated with a slack mooring or a mooring with gaps.

The experiments were conducted in the wave flume of the Hydraulics Laboratory of the

Department of Civil Engineering at the University of British Columbia. The flume is 40 m

long, 0.62 m wide, operates with a nominal water depth of 0.55 m, and is equipped with a

wave generator capable of producing regular and random waves and controlled by a DEC

VAXstation-3200 computer.

The model structure is 76 cm long x 25 cm wide x 20 cm high. Two vertical Plexiglas

plates parallel to the sides of the wave flume were installed so as to limit the structure motions

to three degrees of freedom corresponding to surge, heave and pitch. Ball bearings mounted

on the sides of the box are used to minimize friction between the plates and the structure. Two

vertical cantilevered beams located at some distance from the each end of the structure were

used to simulate the nonlinear mooring stiffness.
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Displacement measurements at three different locations on the body were made using

potentiometers mounted on a rigid aluminum frame, with a system of strings, pulleys and

counter-weights used to transmit the structure motions to the potentiometers. The measured

displacements were transformed to provide the surge, heave and pitch motions with respect to

the centre of gravity of the structure.

The results are presented in the form of time series, phase portraits, spectra, Poincare

maps, and Lyapunov exponents. The influence of various governing parameters on the

response is examined. These include a dimensionless wave height, which characterizes the

magnitude of the excitation; a relative wave frequency; and gap width and a dimensionless

spring stiffness, which characterize the moorings.

Periodic, sub-harmonic and chaotic responses are observed for both monochromatic and

bichromatic waves. In general, sub-harmonic and chaotic responses were obtained for

bichromatic excitation to a greater extent than for monochromatic excitation. Transient chaotic

motions have also been observed, such that the response initially appears to be very irregular,

but eventually settles to a regular periodic motion. Poincart maps of the response exhibit a

distinct fractal structure under certain conditions, indicating the presence of chaotic motions.

Finally, Lyapunov exponents, which provide a quantitative indication of chaotic motions,

have also been computed for each time series, and are used to confirm the presence of chaotic

motions.
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Chapter 1

Introduction

1.1 General

The phenomenon of chaotic behaviour in nonlinear dynamical systems has received

considerable attention in recent years. At the turn of the century, the French mathematician

H. Poincare (1890) discovered that certain mechanical systems whose time evolution is

governed by Hamilton's equation could display chaotic motion. Unfortunately, this was

considered by many physicists as a mere curiosity, and it took another 65 years until in 1963

meteorologist Edward Lorenz discovered a similar phenomenon. Lorenz (1963), in his

famous work "Deterministic non-periodic flow", which was published in the Journal of

Atmospheric Science, presents a system of three differential equations which are

deterministic, but show very irregular (also called random-like) behaviour. Lorenz's paper,

the general importance of which is recognized today, was not widely appreciated until many

years after its publication. He discovered one of the first examples of deterministic chaos in

dissipative systems. A physical system is said to have deterministic time dependence, if

there exists a well defined governing differential or difference equation for calculating its

future behaviour from given initial conditions.

The term deterministic chaos denotes an irregular or chaotic motion that is generated by

a nonlinear system whose dynamical laws uniquely determine the time evolution of a state

from the knowledge of its previous history. In recent years, new theoretical results, the

availability of high speed computers, and refined experimental techniques have made it clear
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that this phenomenon is widespread in nature and has far reaching consequences in many

branches of science and technology.

Examples of nonlinearities in mechanical and electrical systems include the following:

• Nonlinear elastic or spring elements
• Nonlinear damping such as friction
• Backlash, limiters or bilinear springs
• Fluid related forces
• Nonlinear boundary conditions
• Nonlinear feedback control forces in servo systems
• Nonlinear resistive, capacitor or inductive circuit elements
• Diodes
• Many transistors and other active devices
• Electric and magnetic forces

It should however be noted that, a system nonlinearity is a necessary but not a sufficient

condition for the generation of a chaotic motion.

Observed chaotic behaviour is not due to external sources of noise, but rather is a

property of the nonlinear system which results in adjacent trajectories separating

exponentially fast in a bounded region of phase space. Consequently, it becomes virtually

impossible to predict the long-term behaviour of such systems, because in practice initial

conditions can only be fixed with finite accuracy, and errors increase exponentially fast. An

attempt to solve such a nonlinear system on a computer, gives rise to a result which depends

increasingly on more decimal digits of the numbers representing the initial conditions.

Since, the errors increase exponentially fast, even a very small change in the initial

conditions produce an entirely different response.

The above results give rise to a number of fundamental questions:

• Can one predict whether or not a given system will display deterministic chaos?



3

• Can one specify the notion of chaotic motion more mathematically and develop

quantitative measures for chaos?

• Does the existence of deterministic chaos imply the end of long-time predictability in

physics for certain nonlinear systems or can one still learn something from a chaotic

signal?

These questions have been discussed in great detail in literature. (e.g. Schuster, 1988).

1.2 Literature Review

Although there is a vast literature on chaotic behaviour in nonlinear dynamical systems,

there has been relatively little work reported on the chaotic motions of floating structures

with nonlinear moorings. Before discussing chaos in nonlinear offshore systems, a brief

review of chaos in nonlinear systems will be presented in paragraphs to follow for the sake

of completeness.

As already mentioned, considerable interest in chaotic systems began after Lorenz'

(1963) work on the model of atmospheric convection. Many other deterministic equations

showing chaotic behaviour have been obtained, both as simple, analytical systems and as

models of real physical, biological or chemical systems. These include both systems of

nonlinear ordinary differential equations and maps.

Duffing's equation is perhaps the most widely studied by researchers working in the area

of chaotic dynamics. It is defined as

x + ax + bx + cx3 = f(x)^ (1.1)

where, an overdot denotes a time derivative.
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This equation is important in the theory of nonlinear oscillations because of the large

number of systems that can be modeled by it. Duffing's equation in a slightly different form

was investigated by Ueda (1979) as applied to certain electrical systems.

.

3 Bx + ax + x = cos t (1.2)

This equation is now widely recognized as exhibiting important dynamical properties. An

excellent coverage of Duffing's equation can be found in Kapitaniak (1991).

The concept of chaos is relatively new to ocean engineering. The first reported research

work dates back to mid to late eighties. In their pioneering work, Bishop and Virgin (1988)

used a combined numerical and geometric approach to study the dynamic behaviour of a

moored semi-submersible based on solutions of the nonlinear differential equation used to

model the system. They observed competing steady states, sub-harmonic resonance and

chaos as typical responses in regular seas. They used a quantitative overview to classify the

computer generated results of direct time simulation, with the aim of illustrating the

inadequacies and limitations of a linear, analytical approach.

Aoki, Sawaragi and Isaacson (1993) have studied motions of a floating body with

nonlinear moorings modeled as a single degree of freedom system. Response of the system

to monochromatic and bichromatic excitation with both material and geometric

nonlinearities is studied. They have reported existence of jump phenomenon for both

material and geometric nonlinearity cases. They report sub-harmonic and chaotic response

for geometrically nonlinear system for monochromatic and bichromatic excitation.

The damping ratio is a one of the most crucial parameters deciding the system

behaviour. Chaotic behaviour in nonlinear systems is normally found at lower damping

ratios. Aoki, Sawaragi and Isaacson (1993) have reported that chaotic behaviour disappears

at high damping ratios. Interestingly, Sumanuskajonkul and Hu (1992) have observed that

in certain dynamical systems chaotic motions may occur at high damping situations even
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when periodic motions are found at identical low damping systems. They investigated

dynamic responses of bilinear and impacting oscillators subjected to harmonic loading.

Instead of adapting the frequency ratio of excitation and structure as the controlling

parameter, they used damping and stiffness ratio.

Gottlieb et. al. (1990) have reported on a semi-analytic method for predicting local

instability, global bifurcation and the onset of chaotic motion in a multi-point mooring

system. They considered large geometric nonlinearities and combined periodic waves and

regular current. They have shown that a stability analysis based on an approximate solution

of a strongly nonlinear ocean system can serve as an efficient indicator for the nonlinear

behaviour, thus reducing numerical search efforts for global instability and chaotic response

regions.

Yim and Lin (1991) investigated chaotic and stochastic dynamics of the rocking

response of free-standing offshore equipment subjected to horizontal base excitation. They

used a realistic model to take into account the geometric nonlinearity (finite slenderness

ratio) of the rocking system. Additional important nonlinear effects including transition of

governing equations of motion at impact were examined. It was demonstrated that the

nonlinearities associated with the transition of governing equations at impact produced

complex responses. In addition to the anticipated harmonic and sub-harmonic periodic

responses, two new types of steady state motions - quasi-periodic and chaotic responses

were observed. In this study, it was shown that although the excitations to the rocking

systems were simple and purely deterministic, some stochastic characteristics of the chaotic

rocking responses could be detected using Poincard maps and amplitude probability

densities.

Papoulias and Bernitsas (1988) analyzed dynamic behaviour of a single-point mooring

system under time-dependent external excitation. They described the time evolution of the

corresponding dynamical system in a six-dimensional phase space. Bifurcation sequences of
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state equations were studied and parameter values at which the response of SPM changed

rapidly were identified. An analysis of stability and instability domains of the system

revealed regions of operationally hazardous response. An important conclusion of their

study was that an SPM system under time-independent environmental excitation might not

stay in a position of static equilibrium.

Lyapunov exponents are perhaps the best quantitative estimate of chaotic nature of a

deterministic dynamical system. A Lyapunov exponent characterize the properties of an

attractor of a dynamical system. Lyapunov exponents are related to the average rates of

convergence and/or divergence of nearby trajectories in phase space and, therefore, they

measure how predictable or unpredictable the system is. A considerable amount of work has

been reported on the estimation of the Lyapunov exponents. They were introduced to the

theory of dynamical systems by Oseledec (1968). The first numerical visualization of the

chaotic motion in phase space trajectory in terms of the divergence of nearby trajectories

was introduced in Henon & Heiles (1964). It was then developed further by Chirikov

(1979), Ford (1975), Wolf et al. (1985), Wolf (1986) and others.

Generally, in experimental chaotic dynamics, observations are stored in the form of a

time series. The next important step is to assess whether the system behaviour is chaotic or

periodic. The Lyapunov exponent offers a quantitative measure of aperiodicity of the

system response. Generally Wolf et. al. (1985) are credited with presenting the first

algorithm to compute Lyapunov exponents from experimental time series. They provide

two useful computer programs to evaluate the two largest Lyapunov exponents. A system

with one or more positive Lyapunov exponents is defined to be chaotic. Recently Frank

(1992) has modified the algorithm of Wolf et. al. for the improved estimation of the largest

Lyapunov exponent in the case of noisy and small data sets. Wolf's algorithm is useful to

compute the two largest Lyapunov exponents only. A few other algorithms to compute all

Lyapunov exponents have been proposed in literature (e.g. Parker and Chua, 1989).
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However, in spite of its limitation, Wolf's algorithm has been widely used by researchers in

the area of chaotic dynamics.

1.3 Scope of Present Work

The primary aim of the present investigation is to detect chaos experimentally in a nonlinear

offshore structural system. Several numerical studies have been reported on this topic

before, but there is generally a lack of supporting experimental work. On the basis of a

single degree of freedom model, Aoki, Sawaragi and Isaacson (1993) have reported sub-

harmonic and chaotic surge motions in an offshore structural system with geometrically

nonlinear moorings and their work is taken as a base for the present experimental

investigation. A three degree of freedom system is considered, such that heave and pitch

degrees of freedom are included in addition to surge. Displacement measurements at three

different locations on the body are made using potentiometers mounted on a rigid aluminum

frame, with a system of strings, pulleys and counter-weights used to transmit the structure

motions to the potentiometers. The measured displacements are transformed to provide the

surge, heave and pitch motions with respect to the centre of gravity of the structure

(Appendix A provides a detailed derivation of these transformation equations). The results

are presented in the form of time series, phase portraits, spectra, Poincar6 maps, and

Lyapunov exponents. The influence of various governing parameters on the response is

examined. These include a dimensionless wave height, which characterizes the magnitude

of the excitation; a relative wave frequency; and gap width and a dimensionless spring

stiffness, which characterize the moorings. Finally, the largest Lyapunov exponent is

computed for each experimental time series using Wolf's algorithm An analysis of the

results shows that chaos is indeed observed in this nonlinear dynamical system. An

analytical approach to the present problem involves solution of the nonlinear equation of

motion in time domain. This procedure is described briefly in Appendix B.
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Chapter 2

Nonlinear Dynamics and Chaos

Introduction

This chapter provides a brief introduction to the theory of nonlinear dynamics and its

applications to chaotic systems. This provides sufficient theoretical background of chaotic

dynamics, and discusses methods employed in identifying and quantifying chaotic motions.

The ideas discussed in the present chapter will be incorporated directly in subsequent

chapters in order to analyze experimental data.

2.1 Nonlinear Dynamics

The spring-mass-dashpot system shown in Fig. 2.1 provides the classic example of a

dynamic system exhibiting linear vibrations. In the absence of any external excitation, the

undamped system (A. = 0) vibrates with a frequency coo that is independent of the amplitude

of vibration.

k } 1/2coo = { K4- (2.1)

where, M and K are respectively the mass and stiffness. In this state, energy flows

alternately between elastic energy in the spring and kinetic energy in the mass. The

presence of damping introduces a decay in the free vibration such that the displacement

amplitude of the mass exhibits the following time dependence:
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x(t) = Ao e-milt cos (03dt - (0)
^

(2.2)

where, x(t) is the instantaneous displacement response, Ao is the displacement response

amplitude, C is the damping ratio, cod is the damped natural frequency and 4) is the phase

difference between the input excitation and displacement response.

One of the classic phenomena of such a linear system is that of resonance under

harmonic excitation. For this problem, the differential equation that models the system may

be expressed in the form:

i + 2Cconk + con2 x = Fo cos ox^(2.3)

where, an overdot represents a time derivative, Fo and co are the forcing function amplitude

frequency respectively.

If Fo is fixed and the driving frequency w is varied, the absolute magnitude of the steady

state displacement reaches a maximum which is close to the natural frequency con at the

damped natural frequency cod. This phenomenon is illustrated in Fig. 2.2 as a transfer

function plot. The effect is more pronounced when the damping ratio C is small. With this

background, the behaviour of nonlinear systems is now considered.

2.1.1 Nonlinear Vibration Theory

A classical example of a nonlinear system is one with a nonlinear spring described by the

Duffing equation.

X + 2Co)nic + ax + I3x3 = F(t)^ (2.4)

where, a and r3 are coefficients of the nonlinear stiffness term.
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If the system is acted on by a periodic force, in the classical theory one assumes that the

output also will be periodic. When the output has the same frequency as the force, the

resonance phenomenon for the linear spring is shown in Fig. 2.3. If the amplitude of the

forcing function is held constant, there exist a range of forcing frequencies for which three

possible output amplitudes are possible as shown in Fig. 2.3. One can show that the dashed

curve in Fig. 2.3 is unstable so that a hysteretic effect occurs for increasing and decreasing

frequencies. This is called a jump phenomenon. Other periodic solutions can also be found

such as sub-harmonic and superharmonic vibrations. Sub-harmonics play an important role

in pre-chaotic vibrations.

There exist three classic types of dynamical motion:

• Equlibrium

• Periodic motion or limit cycle

• Quasiperiodic motion

These states are called attractors, since if some form of damping is present the transients

decay and the system is attracted to one of the above three states. There is another class of

motions in nonlinear vibrations that is not one of the above classic attractors. This new class

of nonlinear motions is chaotic and is known in literature as a strange attractor.

2.2 Identifying Chaotic Vibrations

In this section, a set of diagnostic tests are presented to help in identifying chaotic

oscillations in physical systems. Engineers often have to diagnose the source of unwanted

oscillations in physical systems. The ability to classify the nature of oscillations can provide

a clue as to how to control them. For example, if the system is thought to be linear, large

periodic oscillations may be traced to a resonance effect. However, if the system is non-
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linear, a limit cycle may be the source of periodic vibration, which in turn may be traced to

some dynamic instability in the system.

A checklist to identify chaotic or non-periodic motion is compiled below:

Qualitative Methods

• Identifying a nonlinear element in the system

• Check for sources of random input in the system

• Observe the time history of the measured signal

• Examine the phase plane history

• Examine the Fourier spectrum of the signal

• Obtain the Poincare map of the signal.

• Vary the system parameters (routes to chaos)

Quantitative Method

• Compute the Lyapunov exponents

A diagnosis of chaotic vibrations implies that one has a clear definition of such motions.

However, as research uncovers more complexities in nonlinear dynamics, rigorous

definitions seem to be limited to certain classes of mathematical problem. An

experimentalist may find this rather difficult to achieve, so that one is encouraged to use two

or more tests to obtain a consistent picture of the chaos.

Characteristics of Chaotic Vibrations

Following are some of the important characteristics of chaotic vibrations:

• Sensitivity to initial conditions

• Broad spectrum of Fourier transform when motion is generated by a single frequency
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• Fractal properties of motion in phase space which denote a strange attractor

• Increasing complexity of regular motions as some experimental parameter is changed

• Transient or intermittent chaotic motion; nonperiodic bursts of irregular motion

(intermittency) or initially randomlike motion that eventually settles down into a regular

motion

Tests to identify chaotic motion can be divided into two categories, viz., qualitative methods

and quantitative methods. Each of these methods will be discussed separately in following

sections.

2.2.1 Nonlinear System Elements

A chaotic system must have nonlinear elements or properties. This is a necessary but not a

sufficient condition. A linear system cannot exhibit chaotic vibrations. In a linear system,

periodic inputs produce periodic outputs of the same frequency after transients have

decayed. In mechanical systems, nonlinearities may exist as a result of:

• Nonlinear elastic or spring elements

• Nonlinear damping

• Most systems with fluids

• Nonlinear boundary conditions

Nonlinear elastic effects can be associated with either material or geometric properties.

2.2.2 Random Inputs

In chaotic vibrations, the excitation is assumed to be deterministic. By definition, chaotic

vibrations arise from nonlinear deterministic physical systems or nonlinear deterministic

differential or difference equations. It is presumed that large non-periodic signals do not
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arise from very small input noise. Thus, a large output signal to input noise ratio is required

if one is to attribute a non-periodic response to a deterministic system behaviour.

2.2.3 Observation of Time Series

Usually, the first clue that a physical model exhibits chaotic vibrations arises from an

observation of the time series of the output signal. The motion is observed to exhibit no

pattern or periodicity. However, this test is not very reliable, since a motion could have a

long-period behaviour that is not easily detected. Also, some nonlinear systems exhibit

quasi-periodic vibrations where two or more incommensurate signals are present. Here the

signal may appear to be non-periodic but can be broken down into the sum of two or more

periodic signals.

2.2.4 Phase Portrait

Consider a single degree of freedom system with displacement x(t) and velocity v(t). The

phase plane is defined as the set of points (x,v). When the motion is periodic, the phase

plane orbit traces a closed curve. For example, the forced oscillations of a linear spring-

mass-dashpot system exhibit an elliptical orbit. However, a forced nonlinear system with

cubic spring element may show an orbit that crosses itself but is still closed corresponding

to sub-harmonic oscillations.

On the other hand, chaotic motions correspond to orbits that never close or repeat. Thus,

the trajectory of the orbits in the phase space will tend to fill up a section of the phase space.

Although this wandering of orbits provides a clue to chaos, continuous phase plane plots

provide relatively little information, and a modified phase plane technique called the

Poincare mapping should rather be used.
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2.2.5 Fourier Spectrum

The appearance of a broad spectrum of frequencies in the output signal is another

characteristic of chaotic vibrations. This feature becomes more important if the system is of

low dimension (one to three degrees of freedom). Often, if there is an initial dominant

frequency component con, a precursor to chaos is the appearance of sub-harmonics at

frequencies coo/n in the frequency spectrum. In addition, harmonics of this frequency will

also be present, i.e. at mwo/n.

However, it may be erroneous to conclude that multi-harmonic outputs imply chaotic

vibrations, since the system in question may turn out to posses many degrees of freedom. In

systems with many degrees-of-freedom, the Fourier spectrum may not be of much value in

detecting chaotic vibrations, unless one can observe changes in the spectrum as one varies

some parameter such as driving amplitude or frequency.

2.2.6 Poincarë Map

The theoretical basis for Poincar6 maps was introduced by Poincare (1898). The recent

widespread use of computers with graphics facilities for examining chaotic behaviour in

dynamical systems has led to the method of Poincare maps becoming one of the most

popular and illustrative methods.

Consider, the motion of a point with time as displayed in the phase plane (displacement,

velocity). Rather than viewing the continuous motion of the point, it is convenient to view

the point at discrete times so that the motion appears as a sequence of dots in the phase

plane. If xn= x(tn) and Yn =i(tn), this sequence in the phase plane represents a two-

dimensional map, which when the sampling time t o is chosen according to certain rules is

called a Poincare Map. When the exciting motion is periodic with period T, an obvious

sampling rule for a Poincar6 map is to choose t o = nT + to, where To is an arbitrarily chosen



15

time delay. This allows one to distinguish between periodic motions and non-periodic

motions.

A Poincarë map enables the study of continuous time systems to be reduced to the study

of an associated discrete time system. The construction of the Poincarë map involves

elimination of at least one of the variables of the system, resulting in a lower dimensional

problem to be studied. In lower dimensional problems numerically computed Poincare

maps provide an insightful display of the global behaviour of the system. Unfortunately,

there exists no general method of constructing the Poincare maps associated with arbitrary

ordinary differential equations, since this construction requires some knowledge of the

geometrical structure of the phase space of the ordinary differential equation.

2.2.7 System Parameter Variation

In examining a system for chaotic response, it is useful to vary one or more of the control

parameters of the system, so that one may examine the presence of a steady or periodic

response for some range of parameter space. In this way one can have confidence that the

system is deterministic and that there are no hidden inputs and sources of truly random

noise.

In changing a parameter, one looks for a pattern of periodic responses. A response

characteristic precursor to chaotic motion is the appearance of a sub-harmonic periodic

response and by varying the system parameters, such sub-harmonic vibrations may change

into chaotic motion.
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2.2.8 Lyapunov Exponents

Lyapunov exponents are perhaps the most useful diagnostic tool for detecting a chaotic

response. Lyapunov exponents measure the mean rate of divergence of adjacent

trajectories. They were introduced in a form adapted to the theory of dynamical systems and

to ergodic theory in the late sixties, when Oseledec (1968) published his non-communicative

ergodic theorem which provides a general and simple way to compute all Lyapunov

exponents. In the general case, there are as many exponents as phase-space dimensions,

though a particular Lyapunov exponent is not associated with a unique direction in phase

space. An excellent coverage of Lyapunov exponents may be found in Wolf (1986).

Positive Lyapunov exponents indicate divergence and chaos, while negative or zero

Lyapunov exponents are characteristic of regular behaviour.

Chaos in deterministic systems implies a sensitive dependence on initial conditions.

This means that, if two trajectories start close to one another in phase space, they will move

exponentially away from each other for small times on the average. If Lo is the initial

distance between the two starting points, at a small time later the distance changes to

L(t) = Lo 2Xt (2.5)

where, X is the Lyapunov exponent. The choice of base '2' is arbitrary but convenient.

The divergence of chaotic orbits can only be locally exponential, since if the system is

bounded, as most physical experiments are, L(t) cannot go to infinity. In order to define this

divergence of orbits, the exponential growth may be averaged at many points along the

trajectory as shown in Fig. 2.5. The process involves beginning with a reference trajectory

(called a fiduciary) and a point on a nearby trajectory, and measuring L(t)/Lo. When L(t)

becomes too large (i.e. the growth departs from exponential behaviour), a new nearby
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trajectory is chosen and a new L0(t) is defined. Hence, the first Lyapunov exponent is

defined as
N

L(tk)= lim ,
"

1_^log2 { 
tk4)}

N —>00^`u k=1

(2.6)

where k is an iteration number. The limit of large N is necessary to obtain a quantity that

both describes long-term behaviour and is independent of initial conditions. The motion is

considered chaotic, if X > 0 and regular if A, 0.

This procedure can also be used to estimate Lyapunov exponents from an experimental

time series as described in section 2.2.9.

2.2.9 Estimation of Lyapunov exponents from experimental time series

As mentioned earlier, there are as many exponents as phase-space dimensions. For an

experimental time series, the number of phase-space dimensions may not be known in

advance. In such a case, the technique of phase-space reconstruction with delay coordinates

makes it possible to obtain Lyapunov spectrum from discrete time samples of almost any

dynamical observable. An m-dimensional phase portrait of a time series x(t) can be

constructed by the delay co-ordinates method. A point on the attractor is given by

fx(t),x(t+r),...,x(t+(m-1)t)}, where ti is the almost arbitrarily chosen delay time. The nearest

neighbour in the Euclidean sense to the initial point ( x(to), x(to+t), . . x(to+(m-1)t) )is

chosen, with the distance between these two points denoted as L(to). After time t1, the

initial length will have evolved to the length L' (t1). The length element is propagated

through the attractor for a time short enough so that only a small-scale attractor structure is

likely to be examined. If the evolution time is too large L' shrinks as the two trajectories that

define its pass through a folding region of the attractor. In this case there is an
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underestimation of Xi, so that a new data point must be selected that satisfies the following

two criteria:

• Its distance from the evolved fiducial point is small

• the angular separation between the evolved and replacement elements is small.

This procedure is described in Fig. 2.6. When the proper replacement point cannot be

found, the points that were being used are retained. This procedure is repeated until the

fiducial trajectory has traversed the entire data file, at which point Xi may be estimated:

,^1^I- (t k)ln ,1 = 11111 tnt0^I, (t k-1 )n-->°°
(2.7)

as the maximum Lyapunov exponent.

Wolf et. al. (1985) provide a useful computer program to compute the largest Lyapunov

exponent from experimental time series. This program has been used in the present

investigation.

In Chapter 4, the methods discussed above will be applied to the experimental

observations.
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Chapter 3

Experimental Investigation

Introduction

As mentioned earlier, one of the aims of present research is the demonstration of the chaotic

response of floating structures with nonlinear moorings. Keeping this objective in mind, a

series of experiments were carried out at the Hydraulics Laboratory of the Civil Engineering

Department, UBC. This chapter gives a detailed account of this experimental investigation.

A numerical approach to the present problem involves solving the nonlinear equation of

motion in the time domain using appropriate time stepping procedure. Appendix B may be

referred for a brief description of the procedure involved.

The floating structure model is a rectangular plywood box. The nonlinear spring action

is simulated by two cantilever beams placed on either side of the box. The cantilever beam

is not in immediate contact with the box, but leave some gap between the box and itself.

GEDAP software developed by NRC is used for wave generator control and data

acquisition.

3.1 Dimensional Analysis

Dimensional analysis provides an important preliminary step to any experimental

investigation and may be used to identify key non-dimensional parameters of the problem at

hand. In the present case, the response in any degree of freedom may be expressed as a
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function of parameters characterizing the incident wave conditions, structural and fluid

properties. Hence, for a monochromatic wave train we may write

R = f (H, T, d, B, dg, k, K, M, p, g, C)^(3.1)

where, H, T and d are the incident wave height, incident wave period and water depth

respectively. Also dg , k, K and M are the gap width, spring stiffness, stiffness ratio and

mass respectively; and p, g and C are the water density, gravitational acceleration and

damping ratio respectively.

Dimensional analysis yields

R_ ff H d B^M^r
Fr Fr H' pH3' con'

Similarly, for a bichromatic incident wave train, we can write

R = f (H, T, d, B, dg, k, K, M, C, AT, p, g)

where, AT is the difference in the incident wave periods.

which gives

R { H dB d M co AT r
f H H H' 013' (on' T '

3.2 Natural Frequency in Surge

For a linear dynamical system, the undamped natural frequency is constant and is given by

(3.2)

(3.3)

(3.4)

(3.5)
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In contrast to this, for a nonlinear dynamical system the undamped natural frequency is

not constant, but is a function of the initial displacement. For the present problem involving

a floating box with nonlinear stiffness, an expression for the undamped natural frequency in

surge motion may be derived as indicated below.

Let the initial compression of the spring K1 be 81. Hence, the potential energy stored in

the spring will be

PE = –2101'-
1^9^ (3.6)

Assuming no energy loss, and from the principle of conservation of energy, the potential

energy PE stored in the spring must be equal to the kinetic energy of the box. Hence, we

may write

1^1ICE = –2MV2 = –2 1(812

which gives

V „\[171
—

The time required to uncompress spring k1 is Ti/4, where T1 is the natural period of

vibration of the spring kl. As the box loses contact with spring kl, it travels a distance of

dg l+dg2 with a constant velocity V as there is no energy loss. The kinetic energy of the box

is still 1/2 MV2. The box then compresses spring k2 and the maximum compression of the

spring k2 is

2 =^ -1 v^(3.9)

(3.7)

(3.8)

Hence, the total time required to complete one cycle is

Ti^dgl+dg2 T2Tn = —2 + 2^+ 2V (3.10)
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Since, V = col 81, Ti = 27c/coi and T2 = 27t/c02, we may rewrite Eq. (3.10) as

[ , (01 , do+dg2 Tn — — -r
(01^0)2^81

where, Tn is the natural period in surge. Hence, the natural frequency co n in surge is

2 col con –
[ 1 + ("`) + 2 4grgE(1 2

(3.11)

(3.12)

Eq. (3.12) indicates the dependence of natural frequency on the initial displacement 81. It

may be noted that natural frequency decreases with an increasing gap width and increases

for an increasing initial displacement.

For a linear system, with k1 = k2 and dg i = dg2 = 0, the natural frequency (o n reduces to

col as expected.

3.3 Location of Centre of Gravity

Responses in the surge, heave and pitch degrees of freedom are defined as the displacements

of the centre of gravity of the system with respect to these three degrees of freedom. Hence,

it is important to know the location of the centre of gravity. This may be accomplished as

described below.

The box is idealized as a set of discrete masses ml..m4 as indicated in Fig. 3.2.

Referring to Fig. 3.2, ml, m2 and m3 are the masses of upstream/downstream side pieces,

lateral pieces and bottom piece respectively. The "m4" is the external mass added to the

system.
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Due to symmetry, the centre of gravity will be located on a vertical axis passing through

the centre of the box as shown in Fig. 3.2. Hence, the x coordinate of the centre of gravity

with respect to the lower bottom corner of the box is B/2, where B is the beam length. The y

coordinate can be computed by taking moments of the masses about the bottom edge of the

box. Hence, we may write

Gy - { (2m1 + m2) d1 + 2m4 d31
LM 1 M2 + M3 + 2 M4 j (3.13)

3.4 Measurement of Spring Stiffness

As mentioned earlier, aluminum cantilever beams were used to simulate nonlinear spring

action. The load-deflection curve for these aluminum cantilever beams was found to be

linear. Fig. 3.3 shows a schematic diagram of the procedure used to obtain the load-

deflection curve.

A load P is applied at a distance z from the fixed end of the beam. Deflection 8 of the

beam at the point of application of load P is measured. The procedure is repeated for

different load values. The load-deflection values are as shown in Table 3.1. The deflection

in colunm 3 is calculated from applied load 'P' as, 8 = Pz 3/3EI. It is evident from Table 3.1

that, the load-deflection behaviour is quite linear and there is a good agreement between

experimental and calculated values (Fig. 3.4). Hence for calculating w/con and K, the

computed values of spring stiffness are used.
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3.5 Experimental Setup

3.5.1 General

Fig. 3.5 shows a schematic sketch of the entire experimental setup. The floating object is a

hollow plywood box of size 30" X 10" X 8" (76 cm X 25 cm X 20 cm) suitably coated with

waterproof paint to avoid water seepage. The empty box has a mass of 4.1 kg. Provision is

made to add extra weights to the box so as to vary its mass and mass moment of inertia.

These extra weights, each of mass 6.25 kg, are kept at 6 cm from the plane of symmetry of

the box as shown in the figure. Two Plexiglas plates limit motion of the box to three

degrees of freedom, viz., surge, heave and pitch. Eight ball bearings mounted on longer

sides minimize friction between Plexiglas plates and the box which otherwise would have

had an adverse effect on the experiments. Two cantilever beams are used to simulate the

nonlinear springs, with different size beams used to vary the effective spring constant.

Displacement measurements at three different locations on the body are carried out using

displacement probes. These probes consist of strings, about 1.5 m long with one end

attached to the point of measurement on the box. These strings run over three pulleys fitted

with potentiometers and are mounted on a rigid aluminum frame. Small weights 100 gm)

are attached to the free ends of the strings to keep them under tension at all times and to

prevent slippage. The potentiometers require a ± 5 V regulated DC supply. The gap width

dg may be varied as required. During the experiments, spurious high frequency spring

vibrations were initially observed, and were eliminated by the use of rubber bands acting as

vibration dampers.

3.5.2 Wave Flume and Wave Generator

The Hydraulics Laboratory Wave Flume measures 20 m X 0.5 m X 0.75 m. An artificial

beach is located at its downstream end. This beach is an essential component of the wave
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flume as it helps in reducing the degree of wave reflection. During the experimental

program, the water depth was maintained at 55 cm. (Depths above 65 cm are not

recommended as there is a possibility of water spilling out of the flume.) Waves are

produced by a single paddle wave generator located at upstream end of the flume. It is

capable of generating both regular and random waves. This generator is controlled by a

DEC VAXstation-3200 minicomputer using GEDAPt software developed by the National

Research Council (NRC) of Canada. This generator is capable of producing waves of height

up to 30 cm and a minimum period of 0.5 s. In the present investigation wave heights

ranging from 6 cm to 16 cm are used. The range of wave periods used is 2.0 s to 3.0 s.

3.5.3 GEDAP Software

The GEDAP software was used extensively during all stages of the experimental

investigation. GEDAP stands for GEneral purpose Data-acquisition and Analysis Program.

This is a general purpose software package available on Digital Equipment Corporation's

VAX computers for the analysis and management of laboratory data, including real-time

experimental control and data acquisition functions. GEDAP is a fully-integrated, modular

system which is linked together by a common data file structure. GEDAP maintains a

standard data file format so that any GEDAP program is able to process data generated by

any other GEDAP program. This package also includes an extensive set of data analysis

programs so that most laboratory projects can be handled with little or no project-specific

programming. The most rewarding feature of GEDAP is its fully-integrated interactive

graphics capability, such that results can be conveniently examined at any stage of the data

synthesis or analysis process. The GEDAP package also includes a vast collection of utility

programs These consist of data manipulation software routines, frequency domain analysis

routines, and statistical and time-domain analysis routines. The RTC_SIG (Real Time

t GEDAP is a registered mark of the National Research Council of Canada.
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Control - SIGnal generator) and RTC_DAS (Real Time Control - Data Acquisition System)

are two important routines of this software package. The program RTC_SIG generates the

control signal necessary to drive the wave paddle, while the routine RTC_DAS reads the

data acquisition unit channels and stores the information in GEDAP binary format

compatible with other GEDAP utility programs.

3.6 Experimental Procedure

3.6.1 Calibration of Potentiometers

Before carrying out the experiments, it is necessary to calibrate the potentiometers used to

measure structural displacements. The calibration is carried out as described below.

The diameter of the pulley mounted on the potentiometer is measured. The pulley is

then rotated through precisely 180 degrees and the resulting voltage across the potentiometer

is measured. This procedure is repeated for four more steps of 180 degree rotation. A graph

of the known displacement vs. measured voltage is then plotted. The slope of straight line

fit is stored as the calibration factor for that particular potentiometer. The remaining two

potentiometers are also calibrated in a similar fashion.

3.6.2 Wave Generator Signal File

The wave generator requires a signal file in order to generate waves of the desired wave

height and period and the GEDAP program RWREP2 is used to create the corresponding

signal file. This program requires four main input parameters, viz., wave generator

calibration file, water depth, desired wave height and period. RWREP2 stores the computed

driving signal in a format readable by the wave generator controller program RTC_SIG.
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3.6.3 The Experiment

After setting up the box in the flume with the springs installed at desired separation, the

water in the flume is allowed to calm down; the Data Acquisition System Channels are then

initialized. After this initialization procedure, the GEDAP wave generation and data

acquisition programs (RTC_SIG and RTC_DAS respectively) are invoked. The program

RTC_SIG generates waves of desired height and period using an appropriate driving signal

file, and the data acquisition program RTC_DAS reads the channels assigned to

displacement probes and stores the data in a suitable format. After the desired duration

RTC_SIG ramps down the wave generator motion. The RTC_DAS output data file is then

de-multiplexed to separate the three wave probe measurements. These measurements are

then transformed into displacements of the centre of gravity of the box using suitable

transformation equations given in section 3.7.

3.7 Computation of Response

Surge, heave and pitch responses of the floating body are defined as the displacements of the

centre of gravity in these three degrees of freedom. Since the wave probes do not measure

the displacement of centre of gravity, a suitable set of transformation equations must be

established to compute the response from the measurements.

Referring to Fig. 3.6, the equations relating the measured displacements di, d2 and d3

with surge, heave and pitch response, ug , wg, and 9 respectively, are as follows:

1
d1 = Ll - { (ug + A sin 9)2 + (L1 + A - wg - A cos 9)2 1 2 (3.15)

d2 = L2 - { (ug - B/2 + R2 cos(02-0))2 + (L2 + A - wg - R2 sin(A2-0))2 12 (3.16)

d3 = L3 -^(L3 + B/2 - ug + R3 cos(A3-13))2 + (wg - Zpi + R3 sin(03-0))2 1 2 (3.17)
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Eqs. (3.5)-(3.7) represent exact transformation equations. However, they are nonlinear and

hence difficult to solve. Nevertheless, under certain conditions, these equations may be

linearized.

If Li, L2, L3 are sufficiently large compared to the measurements d1, d2, d3 and responses u g

and wg then eq. (3.15)-(3.17) may be linearized to:

di = (wg - A) + A cos 0^ (3.18)

Solving for ug, wg, and 0:

d2 = (wg - A) + R2 sin(A2-0)

d3 = ug + R3 cos(A3 -0)

0 = - sin -1 f d2 - di 1
1^11

(3.19)

(3.20)

(3.21)

and

wg = d1 + A (1 - cos 0)^(3.23)

ug = d3 + II - R3 cos(A3 - 0)
^

(3.24)

where

m = 11(R2 sin A2 - A)2 + (R2 cos A2)2^(3.22)

Eqns. (3.21)-(3.24) may now be used to evaluate the pitch, heave and surge responses

respectively. The linearized surge, heave and pitch responses are found to be quite

acceptable for further analysis. The above equations have been derived in detail in

Appendix A.
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Chapter 4

Results and Discussion

This chapter describes the results obtained from the experiments. The results have been

presented in the form of time series, phase portraits and Fourier spectra. Due to the

immense storage requirement, a Poincarë map is drawn for one measured time series only.

The largest Lyapunov exponents have been computed for all experimental time series.

4.1 Time Series, Phase Portraits and Spectra

The time series, phase portrait and Fourier spectrum are the most important qualitative tests

used in detecting chaos in nonlinear systems and these are shown in Fig. 4.1 for the surge

response corresponding to T = 2.5 s, H = 13 cm and K = 4.25. The time series shown in Fig.

4.1a appears to be chaotic and the corresponding phase portrait shown in Fig. 4.1b also

suggests that the system behaviour is not periodic. Fig. 4.2 shows corresponding results for

the case in which the incident wave height is increased by 2 cm and indicates that a drastic

change in surge response occurs. In particular, the time series in Fig. 4.2a that, the system

behaviour has changed from non-periodic to periodic; and the corresponding Fourier

spectrum shown in Fig. 4.2c is now composed of peaks at integral multiples of incident

wave frequency, confirming the periodic nature of the response.

Fig. 4.3 shows results for H = 14 cm, T = 2.5 s, a = 0.423, K = 4.25 and d g = 11.5 cm.

These results show an interesting phenomenon in that there is a sudden change in response
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characteristics from non-periodic to periodic. Such a phenomenon is called transient chaos.

Initially the motion appears to be quite irregular but soon settles down to a periodic

response.

Figs. 4.4 - 4.7 show effect of wave period variation on surge response. The incident

wave period is varied while maintaining the other controlling parameters constant. Fig. 4.4,

which corresponds to H = 13 cm and T = 2.0 s, exhibits some sub-harmonic response.

When the incident wave period was increased by 0.2 s, a significant spectra peak at 1/4th of

incident wave frequency appears as shown in Fig. 4.5d. Phenomenon of transient chaos can

be observed for a wave period of 2.8 s. The response is changed from non-periodic to

periodic after about 250 s (Fig. 4.6). Fig. 4.7 shows time series, phase portrait and Fourier

spectra for T = 3.0 s. The observed response is periodic. The phase portrait is nearly a

closed loop and the Fourier spectrum is composed of spectral peaks at integral multiples of

incident wave frequency, thus confirming periodic nature of the response.

For an incident wave with H = 11 cm and T = 2.8 s very significant sub-harmonic

response is observed. The time series shown in Fig. 4.8 clearly indicates presence of

multiple frequency components. In addition to a peak at the incident wave frequency, a

significant second peak is observed at 1/3rd of the incident frequency. A very periodic

response is observed for H = 15 cm and T = 2.8 s (Fig. 4.9). No sub-harmonic response is

observed in this case.

Some sub-harmonic response is observed for H = 11 cm and T = 2.0 s as shown in Fig.

4.10. A very significant sub-harmonic spectral peak is observed for H =11 cm and T = 2.2 s

(Fig. 4.11).

Both chaotic and periodic/sub-harmonic responses were observed for bichromatic wave

excitation. Ten experiments were conducted to study the model's response to bichromatic

waves. The observed response to H1 = H2 = 7 cm, T1 = 2.2 s and T2 = 2.5 s is very non-
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periodic (Fig. 4.12). A considerable sub-harmonic response is observed in this case. The

spectra shows a number of sub-harmonic peaks at multiples of the incident wave period.

Considerably more sub-harmonic response is observed for bichromatic waves than for the

monochromatic wave excitation. Fig. 4.13 shows an example of the periodic response for

bichromatic excitation.

4.2 Effect of Wave Height

The wave height appears to be an important governing parameter of the system behaviour.

Tests with four different wave heights (11, 12, 13, 14 and 15 cm) were carried out, while

maintaining a constant wave period (2.5 s) and the other controlling parameters held

constant. Fig. 4.14 shows the effect of various wave heights on the surge response. Chaotic

motion was observed for wave heights of 12 and 13 cm, whereas for heights of 11 and 14

cm the observed motion was periodic, as is evident from Fig. 4.14. For a wave height of 11

cm, hardly any spring action was observed. This phenomenon could be attributed to the fact

that the incident wave had insufficient energy to produce required surge to cover the gap

width so that no chaotic motion was observed. For a wave height of 14 cm, the observed

response was completely periodic, as if the system was linear. This observation may be

explained as follows. Since, the total energy of a regular sinusoidal wave is proportional to

the wave height cubed, the 14 cm wave has more energy by a factor of two than the one with

11 cm wave height. Hence, the 14 cm wave produced enough surge to cover the gap width.

For wave heights between 11 and 14 cm, intermittent contact with springs was observed and

the resulting response was very aperiodic.



32

4.3 Effect of Wave Period

Wave period was also observed to have a similar effect as the wave height on the surge

response. Figure 4.15 shows surge response time series for various values of incident wave

period T. The wave height (13 cm) and the other system parameters were kept constant.

For an incident wave with wave period of 2.0 s, the observed response was relatively

periodic and hardly any spring action was observed. In this case, the wave period was not

sufficient enough to produce horizontal displacement comparable to the gap width. Hence,

spring action was absent and so was the chaotic motion. On the other hand, the surge

response for wave period of 3.0 s was very periodic with full spring action. The system

behaviour appeared to be very linear. The gap width had hardly any effect on the response.

This may also be explained by applying the same logic as in the previous case. The incident

wave in this case induced sufficient horizontal displacement to produce enough restoring

force resulting in periodic system behaviour. In the intermediate case with wave period of

2.5 s, the spring action was intermittent and the system behaviour appeared very non-

periodic.

4.4 Effect of Spring Stiffness and Gap Width

A wider gap width was observed to produce a slight drift in the equilibrium position. At the

end of the experiment, the floating box was observed to come to rest not at its initial position

but a different position in the downstream direction. For example, for a gap with of 14 cm,

the observed drift was of the order of 10 cm. Interestingly, no appreciable drift was

observed for gap width of 7 cm. Fig. 4.16 shows a plot of response amplitude vs. gap width.

It can be seen from the graph that, the response amplitude falls sharply with increase in the

gap width.
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Spring stiffness also was observed to be an important factor in deciding the surge

response characteristics. It was observed that for lower values of frequency ratio (a) the

response tends to be periodic. For higher values of a some sub-harmonic response was

observed.

4.5 Non-dimensional Plots

Fig. 4.17 - 4.19 show plots of the non-dimensional response as a function of various non-

dimensional input parameters, viz., wave height, wave period, frequency ratio and gap

width.

Fig. 4.17 is a graph of R/H vs. B/gT2 . Chaotic response was observed for B/gT 2

between 0.012 and 0.020. For smaller values of B/GT 2 (or larger values of wave period)

response was periodic.

Fig. 4.18 is a plot of R/gT2 vs. B/H. As can be seen from the plot, chaotic response was

observed for values of B/H lying between 5.5 and 6.5. Response was periodic beyond this

range of B/H.

Frequency ratio a has been observed to be one of the very important deciding factors of

the system behaviour. As is clear from fig. 4.19, chaotic response was observed for values

of a between 0.4 and 0.6. For a below 0.4, the response was periodic. This is in

confirmation with the numerical prediction of Aoki, Sawaragi and Isaacson (1993).

4.6 Poincare Map

As indicated in Chapter 2, the Poincare map is a discrete time view of a continuous phase

portrait. In order to observe a fractal-like structure of a strange attractor on a Poincare map,
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a very long response time series is needed. In numerical experiments, it is possible to obtain

response time series of any required length, although in physical tests this may not always

be feasible owing to experimental limitations. For example, in present case, due to immense

disk space requirement, only one time series of 40 min length was measured. The largest

Lyapunov exponent for this particular time series is positive indicating chaos. Fig. 4.20 -

4.22 show Poincare maps for various values of "phase". Strange attractor is visible in Fig.

4.20(a). Fig. 4.20(b) shows two distinct patches indicating presence of two dominant

frequency components (Moon, 1987). On the other hand, a Poincare map of periodic

response lacks any fractal structure. Points tend to concentrate in certain regions of the

phase space unlike the case of a Poincar6 map of chaotic response. Finally, positive

Lyapunov exponent confirms the chaotic nature of the former response.

4.7 Lyapunov Exponent

Lyapunov exponents are of interest in the study of dynamic systems in order to characterize

quantitatively the average exponential divergence or convergence of nearby trajectories.

Since, they can be computed either from a mathematical model or from experimental data,

they are widely used for the classification of attractors. Negative or zero Lyapunov

exponents signal periodic orbits, while at least one positive exponent indicates chaotic orbit.

and divergence of initially neighboring trajectories.

Computation of all Lyapunov exponents is computationally very demanding. As a

matter of fact, one doesn't need all the Lyapunov exponents to decide whether the system

behaviour is periodic or chaotic, because presence of a single positive Lyapunov exponent is

sufficient enough evidence to declare the motion as chaotic. Hence in reality, one needs

only the largest Lyapunov exponent. Various numerical algorithms have been proposed in

literature to compute the largest Lyapunov exponent. An algorithm developed by Wolf et al.



35

(1985) is used in the present investigation. Wolf et. al. have also given a computer program

based on their algorithm.

4.7.1 Fixed Evolution Time Program for Xi

A time series of given duration is read from a data file, along with the parameters necessary

to reconstruct the attractor, viz., the dimension of the phase space reconstruction, the

reconstruction time delay and the time between data samples, required for normalization of

the exponent. Three other input parameters are required: length scales that we consider to be

too large and too small and a constant propagation time between replacement attempts. We

also supply a maximum angular error to be accepted at replacement time, but it is not

considered as a free parameter as its selection is not likely to have much effect on exponent

estimates. It is usually fixed at 0.2 or 0.3 radians.

The calculation is initiated by carrying out an exhaustive search of the data file to locate

the nearest neighbor to the first point (also known as the fiducial point), omitting points

closer than a pre-assigned minimum distance. The main program loop, which carries out

repeated cycles of propagating and replacing the principal axis is now entered. The current

pair of points is propagated through a preset evolution steps through the attractor and its

final separation is computed. The logarithm of the ratio of final to initial separation of this

pair updates a running average rate of orbital divergence. A replacement step is then

attempted. The distance of each delay coordinate point to the evolved fiducial point is then

determined. Points closer than certain minimum but further away than certain maximum

distance, are examined to see if the change in angular orientation is less than maximum

allowable angular orientation. If more than one candidate point is found, the point defining

the smallest angular change is used for replacement. If no points satisfy these criteria, we

loosen the larger distance criterion to accept replacement points as far as twice the maximum

allowable distance. If necessary the large distance criterion is relaxed several more times, at
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which point we tighten this constraint and relax the angular acceptance criterion. Continued

failure will eventually result in our keeping the pair of points we had started out with, as this

pair results in no change whatsoever in phase space orientation. We now go back to the top

of main loop where new points are propagated. This process is repeated until the fiducial

trajectory reaches the end of the data file, by which time we hope to see stationary behaviour

of Xi.

This computer program was used to compute the largest Lyapunov exponents from

experimental time series. It has been observed (Wolf et. al., 1985) that attractors

reconstructed using smaller values of dimension (m) often yield reliable Lyapunov

exponents. Hence, m was chosen to be equal to 3 in this case. The time series in present

case is practically noise-free, hence the largest and smallest length scales may be chosen

arbitrarily. The reconstruction time delay (t) is chosen neither so small that the attractor

stretches out, nor so large that MT is much larger than the orbital period. The reconstruction

time delay in present case is chosen equal to the mean orbital period. Decisions about

propagation times and replacement steps depend upon additional input parameters or on the

operator's judgment. Too frequent replacements cause a dramatic loss of phase space

orientation, and too infrequent replacements allow volume elements to grow overly large

and exhibit folding. It has been recommended that the evolution time in the range of 1/2 to

3/2 orbits almost always provides stable exponent estimates. In the present case an

evolution time of 1/2 the mean orbital period is used. In order to make sure that the

Lyapunov exponent computed by the program is reasonable, the program is fed with a

perfectly periodic time series having the same period as the observed experimental time

series and approximately the same average amplitude. A combination of program input

parameters giving zero Lyapunov exponent value is then used as parameters for the

experimentally measured time series. This initialization procedure makes sure that the

Lyapunov exponent is indeed the one which is being sought for. Tables 4.1 and 4.2 give the

largest Lyapunov exponents computed using the above program.
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Chapter 5

Conclusion and Scope for Further Research

As mentioned earlier, the primary aim of this study was to demonstrate chaos experimentally

in nonlinearly moored offshore structures. Experiments were carried out on a hollow

plywood box of size 76 cm x 20 cm x 25 cm. Two aluminum cantilever beams were used to

model nonlinear spring action. The motion of the model was restricted to three degrees of

freedom only, viz., surge, heave and pitch. Displacement measurements at three different

locations on the body were made using potentiometers mounted on a rigid aluminum frame,

with a system of strings, pulleys and counter-weights used to transmit the structure motions

to potentiometers. Measured displacements were transformed to provide surge, heave and

pitch motions with respect to the centre of gravity of the structure. From the analysis of the

experimental data, it appears that the goal has been achieved.

Wave height, wave period, spring stiffness and gap width dictate the behaviour of the

system. For a certain range of wave height and period, the observed response is chaotic.

The effect of gap width is in general coupled with the other parameters. If the other three

quantities are held constant, a wider gap width is more likely to generate chaotic response

than a narrower one, as a reduction in the gap width causes a corresponding decrease in the

system's nonlinearity. In addition to chaotic response, a sub-harmonic response was

observed in some cases. Interestingly, for particular threshold values of wave height and

period, a sudden transition from chaotic to periodic response is observed. This phenomenon

has been referred to in literature as transient chaos. It would be of interest to investigate this



38

transition phenomenon in more detail. Further research effort in this area may lead to a

better understanding of the parameters responsible for occurrence of this phenomenon.

Lyapunov exponents appear to offer the most suitable quantitative estimate of chaos

such that presence of even a single positive Lyapunov exponent is sufficient evidence to

declare the motion as chaotic. As mentioned earlier, Wolf's computer program for

estimating the largest Lyapunov exponent has been tested with a perfectly periodic time

series, and was then used with the experimental time series. The presence of positive

Lyapunov exponents in some of these tests confirm the chaotic response.

In the previous numerical study conducted by Aoki, Sawaragi and Isaacson (1993), a

single degree of freedom model (surge) was developed, whereas the study reported here

deals with a three degrees of freedom model (surge, heave and pitch). It would be useful use

the mathematical formulation developed (Appendix B) to compare the numerical results to

the experiments and to study the effects of the other two degrees of freedom on the surge

response by comparing such results with those of the single degree of freedom model. The

present work deals only with geometrical nonlinearity. As an extension to this work, one

could study the effect of material nonlinearity on response of the floating box which has not

been studied here.

Application of chaotic dynamics to ocean structures is still in a developmental stage.

Much can be done in this new area of ocean engineering. The present case is a very

idealized case of geometric nonlinearity. Geometric stiffness characteristics of catenary

moorings are somewhat different than the case considered here. Careful numerical and

prototype experiments performed taking into account the catenary effects may shed

additional light on this phenomenon.
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Appendix - A

Transformation Equations

The displacement probes measure displacement of three different points on the floating

body. The surge, heave and pitch responses of the floating body are defined as the

displacements of its centre of gravity in these three degrees of freedom. The present

experimental setup does not allow the surge, heave and pitch response to be measured

directly. Hence it is necessary to transform these displacements from their present points of

measurement to the centre of gravity. These equations may be derived as shown below.

Let di be the potentiometer reading at time t corresponding to displacement probe #1.

Referring to Fig. A-1, we can express di in terms of L1 and L1' as,

di = Li - Li'
^

(Al)

L1' may itself be expressed in terms of ug, wg and 0 as

L1' = "q(ug + A sin 0)2 + (Li + A - wg - A cos 0)2^(A2)

Substituting in equation (Al):

di = Li - 11(ug + A sin 0)2 + (Li + A - wg - A cos 0)2^(A3)

similarly, referring to Figs. (A2) and (A3), corresponding expressions for d2 and d3 are

d2 = L2 - -v [ug - B/2 +R2 cos (02 - 0)] 2 + [L2 + A - wg - R2 sin (02 - 0)]2^(A4)
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and

d3 = L3 - -‘1[Wg Zpi +R3 cos (A3 - 0)[ 2 + [L3 + B/2 - ug - R3 sin (A3 - 0)]2^(A5)

Equations (A3), (A4) and (A5) in their present form are difficult to solve due to the presence

of nonlinearity. Attempts to solve these equations failed as the solution procedure produced

very unstable results. A closed-form solution of linearized equations is a possibility.

Following assumptions are involved in the linearization procedure.

• lengths L1, L2 and L3 are sufficiently large compared to ug and wg

• Angle 0 is small compared to A2 and A3

Using above assumptions, equations (A3), (A4) and (A5) may be linearized to:

di = Li - (wg - A) + A cos 0
^

(A6)

d2 = L2 - (wg - A) + R2 sin (A2 - 0)^(A7)

d3 = ug - R3 sin (A3 - 0) - B
^

(A8)

Equations (A6)-(A8) can be solved for u g , wg and 0. Hence we get,

0^sin_i d2 - dil^ (A9)

where, p. =^(R2 sin A2 - A)2 + (R2 cos A2)2 and similarly ,

wg = di + A - A cos 0^ (A10)

ug = d3 + - R3 sin (A3 - 0)^ (All)

In order to assess appropriateness of linearization, the linearized values of u g, wg and 0 were

substituted back into the exact equations and new values of di, d2 and d3 were obtained.

The new values were then compared with the original di, d2 and d3 values as shown in Fig.



43

(A-4), (A-5) and (A-6). Evidently, the comparison is quite good especially for the

displacement probe #3. Hence, we can conclude that, ug , wg and 0 obtained from the

linearized equations can be used in subsequent development of the problem without

sacrificing accuracy.
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Appendix B

Mathematical Formulation of Hydrodynamic Coefficients

A numerical approach to the present problem requires an initial calculation of added mass,

hydrodynamic damping coefficients and wave forces. Once these hydrodynamic

coefficients are known, the response may then be obtained by solving the nonlinear

equations of motion in the time domain using an appropriate time-stepping procedure. The

following paragraphs briefly describe the procedure involved.

Fig. B-1 shows a definition sketch of a moored two-dimensional floating body of

arbitrary shape, while Fig. B-2 shows a corresponding mathematical model of this body.

Two coordinate systems are defined. O-X-Z and G-X'-Z are fixed and moving coordinate

systems respectively, as indicated in Fig. B-1. The origin 0 of the fixed system is defined as

the point of intersection of SWL and the vertical through G when the body is in its

equilibrium position. The origin G of the moving system is the centre of gravity of the

body. Note that in the equilibrium position Z and Z' axes overlap.

The equation of motion for the moored two-dimensional body may be written as

[M] + + [K(4)] (4) = F(t) (B-1)

Where [M], [X] and [K(4)] are the mass, damping and stiffness matrix respectively. It may

be noted that, equation (B-1) is a nonlinear equation since the stiffness matrix is a function

of the displacement {4). The excitation F(t) may be computed from linear diffraction

theory. The system properties, viz., the added mass [g], damping matrix [2d, mass matrix

[M], and the stiffness matrix [K] can be individually evaluated.
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The evaluation of incident wave force F(t) is quite classical. This incident wave force

may be easily computed using linear diffraction theory. Since the problem is linear, the

velocity potential can be represented as a sum of three separate components.

= + + (B-2)

where, 4)w , 4)s, and of are the incident, scattered and forced velocity potentials respectively.

These three components separately satisfy the Laplace equation, together with the bottom

and free surface boundary conditions, and 4)s, Of must also satisfy the radiation condition.

The boundary condition at the body surface must account for the velocity of the body

itself and is given by,

aow aos aof „an +^= v n (B-3)

where Vn is the velocity of the body surface in the direction 'n' normal to itself. Since, the

motions are small, this condition is applied at the equilibrium surface S o taken at the rest

position, rather than at the instantaneous position. Equation (B-3) may be broken down into

two equations

as in a fixed body case, together with,

aow . a4s = 0an an 

aOf ,an^v n

at So^(B-4)

at So^(B-5)

The problem defining 4)s is identical to that for the fixed body case and 4) s thus may be

determined in exactly the same way as the fixed body case. Many a times, 4) s is not needed

explicitly since it will be possible to express the wave forces directly in terms of Of.



46

The velocity Vn is the velocity of the body surface in the direction. Hence, we may

write,

3
aof

Vn = E, nj
j=1

(B-6)

where, nj is given as, ni = n x, n2 = nz and n3 = xnz - znx. nx, nz are the direction cosines of

the normal to the surface. In order to apply the boundary conditions, it is convenient to

decompose 4)f into three components associated with each degree of freedom and each

proportional to displacement amplitude j. Hence, we may write

3

= yi4;
J.,

(B-7)

The coefficients 4)Cf) are generally complex. This representation enables the body surface

boundary conditions to be written in terms of 4)r and independent of kj as,

a — ion^on so
4):.)^

J.1,..3^(B-8)

The right-hand-sides of these equations are known and the three functions may be found in

the same manner as is the scattered potential 4) s.

The forces and moments associated with 4) w and 4)s comprise the exciting force F(e) on

the body. Application of Green's theorem makes it possible to express the exciting force

directly in terms of the incident and forced potentials. Such expressions are called Haskind

relations. They may be given in the form

(f) aOw
Fr p fso [4)w^- - an ]dSan (B-9)



47

Hence, one can evaluate F e) from the knowledge of Of° calculated to obtain the added-mass

and damping coefficients.

There are three components IP corresponding to each mode motion, and each of these

may be written as (Sarpkaya and Isaacson, 1981),

3
aofFfo = p f ni dS = -i(OP^Uso^ni dS )j

So^ j.1
(B-10)

Above equation may be decomposed into components in phase with the velocity and the

acceleration of each mode and we put

3

F(f) = -^ra^PAI)
1^at2^kJ at )

J= 1

i=1,..3^(B-11)

where the coefficients gij and Xij are taken as real and are called the added mass and

damping coefficient respectively. Hence the rearranged equation of motion may be written

as

(mij + 1100 + a ij PP. + Kij 4j = F e) (B-12)

In the above equation Xij represents only the hydrodynamic damping. In cases where

structural damping or viscous damping are important, these would need to be included in
additional terms alongside the ?4j terms. Likewise Ffe) represents only the force due to wave

field, and if external forces are present these would need to be included alongside Fr.
Application of the body surface boundary condition gives following explicit expressions for

the added mass and damping coefficients

gij =^So^JIm[0:1).(0 ] ni dS
^

(B-13)



48

kij = -pi so Reel ni dS^(B-14)

Now a consequence of Green's theorem is that the added mass and damping coefficients are

symmetric. Finally, it should be noted that both the added mass and damping coefficients

are frequency dependent.

Solution of the linearized diffraction problem always results in the wave elevation 11 of

the form

11(t) = A cos(cot)^ (B-15)

where, A is the wave amplitude. Hence, the exciting force corresponding to 1(t) may be

written as

F(t) = A F* (t) cos(cot+S(co))^(B-16)

where, F*(a)) is a transfer function of the first order exciting force and 5(0)) is the phase lag

between 1(t) and F(t), both of which may be obtained using linear diffraction theory.

For a bichromatic wave train with frequency components coi and 0)2, the free surface

elevation my be expressed as

11(t) = Al cos(0)1t) + A2 cos(0)2t + E)^(B-17)

where, A1 and A2 are the two component amplitudes, col and 0)2 are the component

frequencies and E is the phase difference between the two components. The corresponding

exciting force F(t) may be written in the form

*^ *
F(t) = Al F 1 cos(wit +13(0)1)) + A2 F 1 (0)2) cos(0)2t + e + 8(w2)) +

1^(0)1+0)2AiA2 f pg Cd^2 ) cos ( (col - co2)t - E + &L(DI, 0)2))^(B-18)
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Where Cd(co) is the steady drift coefficient which may be obtained from the results of linear

diffraction theory. In a particular case of component wave having same amplitude and

phase, Al = A2 = A and e = 0, the wave exciting force F(t) given by Eq. (B-18) may be

simplified to:

F(t) = 2AF*(co) cos ( t°—)t cos(cot + 8(co)) + pgA2 Cd(co) cos (Acot)^(B-19)

where, co = (col + (02)/2 as before and Aco = (01 — (02.

The mass matrix for the problem can be easily set by lumping masses corresponding to

the three degrees of freedom, viz., surge, heave and pitch respectively. Hence we can write,

[ m 0 0

[m] =^0 m 0
0 0 I

(B-20)

Here, m is the mass of the floating body and I is the mass moment of inertia of the body

about the axis passing through the centre of gravity. The total mass matrix is the sum of real

and added mass matrix. Hence, we may write [M] = [m] + [p.]

The restoring force on the body is developed as a result of the combined effect of

mooring stiffness and hydrostatic effect. Stiffness characteristic of the spring is as shown in

Fig. B-3. Note that, the spring action becomes effective only after certain displacement d s

of the body. Hence, the spring stiffness matrix Ks(4) may be written as,

^k i^5_ dg

^

KA) = 0^-dg^dg

^k2^4?. dg
}

(B-21)

Hence, the total stiffness matrix [K] due to combined contribution from spring effects and

hydrostatics may be given as:
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LK] = KM + 8(4) [KS]^ (B-22)

Where, 5 is the well known Kronecker delta function defined as

0^if 4^cis

1^if > ds
(B-23)

A detailed derivation of [Kg] and [KS] may be found in Lau et. al. (1990). It should

however be noted that, due to presence of nonlinearity in the stiffness term, a compatibility

condition must be satisfied at all times. Equation (B-1) may now be solved using a suitable

time stepping procedure to obtain the response (4).
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Load P
^

Deflection^Calculated

(N)
^

(cm)
^

Deflection

^

12.29
^

0.8
^

0.75

^

24.58
^

1.5
^

1.5

^

36.88
^

2.1
^

2.3

^

49.17
^

2.8
^

3.0

Table 3.1 - Measured and calculated load-deflection values for spring #4

I Spring #^1 Width (mm)^0 Thickness (mm) I MI (mm4) Stiffness (N/m) I

1 50 6 900.00 251.88

2 63 6 1134.00 317.37

3 76 6 1386.00 382.86

4 63 9 3827.25 1071.12

Table 3.2 - Spring characteristics



Test
No. _^(cm)^II

- I^T^I^a^I^K
(sec)

I^dg
I^(cm) 1

I Lyapunov
Exponent

1 13 2.5 0.423 4.25 -^11.5 -0.4567
2 11 2.5 0.423 4.25 11.5 -0.0499
3 12 2.5 0.423 4.25 11.5 -0.5570
4 14 2.5 0.423 4.25 11.5 0.0622
5 15 2.5 0.423 4.25 11.5 0.1276
6 13 2.0 0.529 4.25 11.5 -0.1293
7 13 2.2 0.481 4.25 11.5 -0.9745
8 13 2.8 0.378 4.25 11.5 -0.0143
9 13 3.0 0.353 4.25 11.5 -0.8034
10 11 2.8 0.378 4.25 r^11.5 -0.1795
11 15 2.8 0.378 4.25 11.5 -0.0985
12 11 3.0 0.353 4.25 11.5 -0.5016
13 11 2.0 0.529 4.25 11.5 -0.2330
14 15 2.0 0.529 4.25 11.5 0.1180
15 11 2.2 0.481 4.25 11.5 0.5998
16 15 2.2 0.481 4.25 11.5 0.4185
17 13 2.5 0.708 1.00 11.5 0.2448
18 13 2.5 0.778 1.00 11.5 -0.3956
19 13 2.5 0.873 1.00 11.5 -0.2724
20 13 2.5 0.423 1.00 11.5 -0.0487
21 13 2.5 0.423 4.25 7.0 -0.1740
22 13 2.5 0.423 4.25 14.0 0.0271

Table 4.1 - Input parameters and Lyapunov exponents - monochromatic excitation

Test
No.

H1
(cm)

I^H2
[ (cm)

T1^T2I^1
[^(s)^I^(s) la1

K R^Lyapunov^I
H^Exponent^I

1 7.0 7.0 2.3 2.7 0.423 4.25 0.880
2 7.0 7.0 2.0 3.0 0.423 4.25 0.519
3 8.0 8.0 2.0 3.0 0.423 4.25 -0.557
4 8.0 8.0 2.2 2.8 0.423 4.25 -0.451
5 9.0 9.0 2.2 2.8 0.423 4.25 -
6 7.0 7.0 2.3 2.7 0.778 1.0 0.028
7 7.0 7.0 2.0 3.0 0.778 1.0 0.616
8 8.0 8.0 2.0 3.0 0.778 1.0 -0.358
9 8.0 8.0 2.2 2.8 0.778 1.0 0.206

Table 4.2 - Input parameters and Lyapunov exponents - bichromatic excitation
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Fig. 2.1 Idealization of the classical spring-mass-dashpot oscillator

oilo)n

Fig. 2.2 Classical resonance curves of a linear single degree of freedom system

53



Frequency co

Fig. 2.3 Classical resonance curve for a nonlinear oscillator
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Fig. 2.4 Comparison of linear and nonlinear systems



Fig. 2.5 Divergence of nearby orbits.
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L(to)

Fig 2.6 Calculation of the largest Lyapunov exponent from time series [Kapitaniak (1991)]
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M4

d2^d2
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Fig. 3.1 Mathematical model of surge motions of the box

Fig. 3.2 Definition sketch for estimating the location of the centre of gravity.
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Fig. 3.3 Definition sketch for calculation of cantilever beam stiffness
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Nomenclature: 

B - Beam = 76 cm
D - Draft = 10.5 cm
d - Water Depth = 55 cm
W - Small weight attached to the string

k2 - Spring Stiffness
a, 13, y — Pulleys fitted with Potentiometers
dg - Gap Width
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Fig. 4.20 Poincare map of surge response for bichromatic input
(a) ti = 10 (b) ti = 20
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(a)

Displacement (m)

Displacement (m)

Fig. 4.21 Poincaré map of surge response for bichromatic input
(a) t = 30 (b) t = 40
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(a)

(b)

Fig. 4.22 Poincaré map of surge response for bichromatic input
(a) t = 50 (b) t = 60
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Fig. A-1 Displacement Probe #1, L 1 - original length, L 1 ' - length at time t
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Fig. A-2 Displacement Probe #2, L2 - original length, 1,2 - length at time t



Fig. A-3 Displacement Probe #3, L3 - original length, 143 - length at time t
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Z, Z'

Fig. B-1 Definition sketch of moored two-dimensional floating body

Fig. B-2 Mathematical model of moored floating object with nonlinear moorings
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