
APPLICATIONS OF FUZZY SET THEORY IN RESERVOIR OPERATIONS

by

PAUL FRANCIS CAMPBELL

B.Eng., Technical University of Nova Scotia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF CIVIL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1993
PAUL FRANCIS CAMPBELL, 1993



in presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of c/iI/Z E///,v1A/c

The University of British Columbia
Vancouver, Canada

Date 7’P/ 5 1

DE-6 (2/88)



ABSTRACT

Attempts to maximize benefits from hydroelectric reservoirs with

mathematical models have been a focus of study for water resource specialists.

As increasingly complex models are developed to more closely imitate reality,

their usefulness may paradoxically diminish since reservoir operators are less

apt to fully understand the models. This results in a general lack of acceptance

of mathematical reservoir models amongst the people they were originally

developed to serve. Also, the stochastic nature of modelling a system

influenced by climatic and economic factors such as a hydroelectric reservoir

puts an upper limit on the attainable accuracy of a model. This thesis suggests

that a method based on fuzzy set theory may provide a more readily

understandable model that recognizes the inherent uncertainties in reservoir

modelling. Heuristics or “rules of thumb” are used to simulate operation of a

reservoir subject to uncertain inflows and changing hydroelectric power values.

This system describes the operation of the reservoir in vague terms such as: “IF

predicted inflow is medium-low AND reservoir volume is high THEN suggested

outflow is ...“. These rules can be obtained directly from an experienced

operator; from analysis of historical data; from data generated by a

mathematical simulation of the reservoir or any combination of all three.

This thesis illustrates the development and use of a simple fuzzy rulebase

for a single hydroelectric reservoir. The rulebase is formed from data generated

by a mathematical optimization model (dynamic programming) of the reservoir

that simulates several years of operation with random inputs.

II
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CHAPTER 1: INTRODUCTION

Since most of the cost effective and environmentally acceptable sites for

hydroelectric dams have already been exploited, electrical utilities have

attempted to defer construction of new dams by implementing demand side

management and optimizing operations. As a result, water resource engineers

involved with hydroelectric development are increasingly redirecting efforts from

construction of new hydro facilities to efficient utilization of existing ones. The

development of efficient strategies for reservoir operations provide tempting

challenges to those involved in optimization theory. This thesis will examine the

potential of a relatively new and quite distinct method of aiding the decision-

making process using fuzzy set theory.

The crux of the problem in reservoir models usually involve dealing with

the uncertainty of future events and the nonlinear relations that commonly exist

between variables. Even the simplest single reservoir models are subject to

stochastic inflows since weather is inherently unpredictable. Hydroelectric dams

are usually components of larger power systems which would require

consideration of continually varying external factors such as the price of oil and

demand for electrical power. The uncertainty associated with predicting such

economic trends adds to the stochastic nature of planning optimal reservoir

strategies.

Examples of nonlinear relations in reservoir modelling may occur when

describing the relationship between reservoir volumes and available head or

between head and power produced per unit flow. Reservoirs can also provide

multiple services, some of which work in almost direct conflict with each other

such as allowing storage for flood control and supplying head for power

generation.

In an effort to account for these conflicting demands and uncertain

parameters, models of reservoir operations have become increasingly complex.

However, it is this complexity that may hinder their acceptance within the

hydroelectric industry. Yeh (1985) in his survey of reservoir management and
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operations models, notes the reluctance of reservoir operators to use

optimization models for real time control. One of the reasons cited for the

rejection by operators is that development of the models often takes place

without input from those involved in day to day operations of the systems. This

may be due to lack of coordination between academic researchers and the

operators. It may also be attributed to the inability of the modelers to utilize

heuristics or ‘rules of thumb’ that the operators have acquired through

experience.

It is not in the nature of those who create models to ignore any potential

source of information but until the development of fuzzy set theory, rules of

thumb and information dealing with vague descriptions could not be integrated

into reservoir models. Fuzzy set theory allows the transformation of vague but

valuable information into a format that is acceptable for computer models.

This thesis investigates a model of a simplified single reservoir operating

system that recognizes the stochastic and nonlinear nature of the system. The

model simulates operation of a 110MW hydroelectric dam operating under 85

to 100 m of head with a reservoir containing 1400 cu.m/s - months active

storage. The model, based on a procedure called fuzzy inference, is capable of

incorporating knowledge provided by an experienced operator. This knowledge,

expressed as a set of rules, can be supplemented by data from hindsight

analysis thereby gaining from the strengths of both the operator and the

hindsight model.

Another model, called a backpropogation artificial neural network, which

shows some similar characteristics to the fuzzy inference model is examined

later in the thesis for purposes of comparison. This backpropogation model does

not use heuristics from a human expert but may be considered in situations

where no expert knowledge exists.

A third distinct model that applies fuzzy set theory to stochastic dynamic

programming is also investigated. This model bears little resemblance to the

fuzzy inference model but it is included with the intention of showing the
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diversity of fuzzy sets in modelling. Although three models are discussed, the

emphasis of the thesis is placed on exploring the strengths and weaknesses of

the fuzzy inference model.

Chapter 2 of this thesis introduces fuzzy set theory, with its unique

terminology and novel concepts. The various guises of uncertainty in modelling

and the potential pitfalls encountered in fuzzy models are then covered in

chapter 3.

The fuzzy inference model developed in this study is contained within

chapters 4, 5 and 6. These three chapters describe respectively, the simulation

of a hydroelectric reservoir by hindsight analysis, using the ‘experience’ gained

through the simulation to develop a series of rules and finally putting these rules

in operation to assist in controlling the reservoir.

The method used for simulating the operations of a reservoir in chapter 4

uses a framework similar to dynamic programming (DP). Simulation is necessary

if no historical data exists for the reservoir. If there is historical data available

for the reservoir, the techniques covered in chapter 4 are not required to

implement the fuzzy inference model. Chapter 5 describes an algorithm that

creates a series of ‘ IF THEN ‘ type rules from the DP simulation. This is a

type of categorizing algorithm that recognizes general trends between inputs

and output. Eventually, a simple, structured series of rules ( a rulebase ) is

created that can be easily understood and verified by an experienced operator.

Chapter 6 describes a computation routine called fuzzy inferencing that

combines the rules to yield a decision when given any combination of inputs.

The fuzzy inferencing method uses input values to fire the appropriate

“IF. .THEN” rules, sums up weighted outputs from each rule and then

determines a final averaged output value.

In chapter 7 another model called fuzzy dynamic programming is

investigated. Fuzzy DP uses fuzzy sets in a much different manner than the

fuzzy inference model. Also, rules are not explicitly stated in the fuzzy DP
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model. Instead the model generates a series of decisions that are optimized

according to fuzzy constraints and fuzzy goals.

Chapter 8 provides an introduction to a third model, the backpropogation

neural network. Based loosely on the workings of the brain, it does not

resemble the fuzzy inference model at first glance but yields similar results.

Upon closer investigation, it is seen that both the fuzzy inference model and the

backpropogation model both involve encoding of a memory and subsequent

recall during reservoir operation. However, there is not an explicit rule base

used in the backpropogation neural net and a certain ‘black box’ effect is

inherent within this setup. Finally, chapter 9 summarizes the strengths and

weaknesses of the three different models and provides conclusions and

suggestions for future research on fuzzy models in reservoir operations.
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CHAPTER 2: FUZZY SET THEORY

2.1 Introduction to Fuzzy Sets

Fuzzy set theory is an attempt to quantify previously unquantifiable

information by assigning numerical values to vague terms and performing

operations on these values in a consistent and, hopefully, logical manner. A

fuzzy model can be considered as a ‘common sense’ model that also uses

historical data and other non-intuitive statistical parameters to influence

decisions. When incorporating vagueness into decision making, some

efficiencies are lost and the traditional objective of optimizing performance is

compromised. Rather than striving for the last one or two percentage points of

efficiency, the objective turns into developing a robust, flexible model that has

more intuitive appeal to the user. The risk of major failure is minimized. The

model does not counter nor neglect the experience of the operator and as more

experience is acquired, this additional knowledge can be incorporated into the

system. Vagueness in a fuzzy system is not useful in the form of “ If there is

some inflow and some . ..“ but must contain a relative (but not necessarily

exact) measurement of a variable like “ If inflow is low and ....“

Fuzzy sets theory is the creation of Lotfi Zadeh, a USC Berkeley

professor. He first promoted the concept in a 1962 article comparing circuit

theory and system theory. In 1965, Zadeh’s article entitled “Fuzzy Sets” for the

journal, Information and Control, presented a more complete mathematics “of

fuzzy or cloudy quantities”.

When fuzzy set theory is placed in a historical context, it can be seen

that western logic and mathematics have been based on a binary or “true or

false” system that has helped shape our view of the universe. Aristotle, in his

work MetaDhysics, introduced the laws of Contradiction and the Excluded

Middle which can be summed as “ A cannot be B and NOT B” and “A must be

either B or NOT B” respectively( Bier 1991). These axioms have been accepted

by other western philosophers such as Decartes, Locke and Kant in their further

studies of logic. The concept of partial truths ( A is mostly B and a little not B
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has, until recently, received little attention since it involves negation of these

most basic axioms.

As a binary system of logic was developing in western societies,

Nagarjuna, a Buddhist philosphopher of the second century, created a four

sided system of logic (Freiberger 1993) that more closely resembled the graded

degrees of truth in fuzzy set theory.

Although these schools of thought may appear far removed from present

day applications of technology, it is interesting to note how fuzzy set theory

was enthusiastically accepted and applied in Japan where Buddhist concepts

are a part of daily life.

Despite its origins in the United States, fuzzy set theory remained

relatively unrecognized in the West for its first ten years of existence. It was

only after Japanese firms developed practical applications of fuzzy real-time

control in household appliances, electronics and transportation systems did the

Western applied science community begin to invest significant time and effort

into this field.

2.2 Basics of Fuzzy Set Theory

Fuzzy set theory provides a means for translating ambiguous terminology

often used in everyday language for use in mathematical problems such as

decision analysis and real time control. The following material can be found in

various fuzzy math texts, but the author suggests referring to Terano (1992) for

a more thorough discussion of the topic.

Fuzzy set theory can determine the degree of membership that any

element x of set X belongs to subset —A. A function which expresses this

within the real number interval from zero to one [0,1] is called the membership

function. This may be expressed by;

IJA(xl) = 0; PA (x2) = 1;1UA(x3) = 0.7 etc.

where PA is the membership function.



7

SupportSetX

zzySet Figure 2.1 Representation of a

xl
3
x2) Fuzzy Set

Where the rectangular area in

figure 2.1 represents the set X

and within it the dotted circle represents a fuzzy subset of X called -A with an

ambiguous border.

Conditions are described in terms of degree of belongingness to a set. For

example, if the condition “ If ball is approaching quickly, swing bat quickly.”

were to be programmed into an expert system for an automated baseball player,

the term quickly must be more discretely defined to be utilized by the program.

Using a crisp (non-fuzzy) definition of quickly may result in a traditional logic

statement such as “If speed > 40 mph then quick; else not quick”. Fuzzy set

theory allows a function ascribing membership to the term ‘quickly’, assigning a

value in the interval [0,1] to express belongingness. For instance, any speed

above 90 mph may be considered definitely quick so it would be assigned a

quickness value of one. Likewise a speed below 40 mph may be considered

slow and these quickness values are zero. Speeds between 40 and 90 mph can

then be represented on a linear scale from 0 to 1 (see figure 2.1) or they can be

represented by a non-linear function.
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LINEAR NONLINEAR CRISP

I_________
T I Figure 2.2

go 40 SB

SPEED OF PITCH (MPHJ Different

representations of “quick” by fuzzy and crisp membership functions.

The crisp membership function is a special case of a fuzzy set with an

abrupt transition from zero to full membership. This illustrates that classical set

theory is a subcategory of a more general fuzzy set theory.

Although fuzzy set theory is considered more general than classical set

theory, many of the operations governing fuzzy sets are derived from classical

set theory. Applying the rules of classical set theory to the more general fuzzy

sets is viewed by some theorists as a logical extension but others such as

French (1984) regard this as an unsubstantiated assumption.

2.3 Operations with Sets

The union of sets: —AU —B = max[PA(x),.,UB(x)], where p(x) is the

membership function.

A U —B is shown in solid line below.

1.0

0
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Figure 2.3 Union of Fuzzy Sets.

Bellman and Zadeh (1973)

use this operation to describe the

X term “—A or —B “. The

U(x)
‘A

4’
4’

intersection of sets: —A fl —B = min[JJA(x),/JB(x)]

—A fl —B is shown below in solid.

‘A
Ufxl 4

I, I B
I

I
I

1%

x

Figure 2.4 Intersection of Fuzzy Sets.

This is the verbal equivalent of “—A and —B”.

The complement of a set (fuzzy negation): .A = l-JJA(X), not A
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Figure 2.5 Complement of

Fuzzy Sets.
U(x)

Algebraic sum and product of

Fuzzy Sets---

___________________________

Sum: P-AU —B (x) =

IJA(X) + PB(X) - PA(X) • /J8(x)

Product: /1 -Afl -B (x) = PA(X) • fl8(x)

Bellman and Zadeh (1973 ) state that these operations can be used in

some circumstances as a “softer” version of “—A and —B / —A or —B”

respectively. The softer versions may be used when interactivity or some type

of interdependent relationship is implied between the two sets.

Zadeh and other proponents of fuzzy set theory have stated that the

“hard” max and mm operations are based on an assumption of noninteractivity

between the arguments in a premise. In other words, the resulting value of the

truth of a compound statement is only dependent on the values of the

components of the statement and there should be no interrelationship between

the components. V.M.Bier (1992 ) refers to this condition as “truth

functionality” and expresses concern about potential misuse of fuzzy operators

because of violation of this condition. When considering the equivalent

operations in classical probability such as Bayes’ theorem (Eq. 1 ) the

relationship between arguments is taken into account.

(1) P(A fl B) = P(A) P(B/A)

I
I

I
I

/
I
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In fuzzy set theory there is no equivalent consideration for

interrelationship in the “hard” operations; max and mm. Bier concludes that

this aspect of truth functionality in the max and mm operators should be

eliminated to avoid the misrepresentation of the meaning of the words “AND”

or “OR” within rule bases.

Consider for example a fuzzy rule describing age and height of buildings,

or more specifically, skyscrapers. Building A, built in 1930, is 30 stories high

Building B is also 30 stories high but was built in 1992. Both buildings are

considered to have a value of .6 in the membership of “tall”, since there may be

several taller buildings in a large city. Building A is given a value of .6 in the set

of “old” and building B is described as 1 .0 in the set “new”. The Building A

satisfies the statement “tall,old skyscraper” with the value 0.6 which also

happens to be the same that Building B satisfies the premise of “tall, new

skyscraper”.

This seems to be a reasonable answer until our expert states that “for an

old skyscraper, Building A is pretty tall. For a new structure, Building B is only

average in height”. It is seen that the two descriptors do not satisfy the

condition of noninteractivity required for the mm operator.

This can be extended to reservoir operations in which an expert may

consider a high inflow in the winter season as being very different from a high

inflow in the summer. Linguistic variables are valuable because they are

versatile but it is also this versatility that forces the builder of the knowledge

base to consider the context of their use. Zimmerman (1991) found that the
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most commmon usage of the word “AND” corresponds more closely to the

geometric mean of the arguements than to either the hard or soft definitions of

intersection.

The truth functionality of fuzzy max and mm operators can still allow

consistently logical handling of vague descriptions if interdependence between

arguments is considered. However according to French (1984), truth

functionality in fuzzy operators leads to inconsistencies in solving uncertainties

of a statistically random nature. Bellman and Zadeh (1973) recommend that in

most circumstances the “hard” (i.e. max and mm) operators be used except

when it is obvious a soft meaning is intended.

Fuzzy set theory differs noteably from classical set theory when the Laws

of contradiction and excluded middle are brought into the picture.

Neither I.LAU A-(x) = 1 nor PAfl .A-(x) = 0 are supported by fuzzy set

theory. In other words, water can be described as both hot and not hot. This

is often the desired effect in a rule base but it is noted by V.M.Bier (1992) that

in some circumstances it may be desired to have a linguistic use of negation

that accomodates the law of contradiction. This can be done in classical

probability but not yet in fuzzy set theory.

Parallel to the laws of contradiction and negation, Ng and Abramson

(1992) expressed concern about the mm rule of the form

IJA*B(u,V) = min[,UA(u), PB(V)].
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“If A and B are mutually exclusive events, the possibility that they

will occur simultaneously should be zero, but the mm rule may not

recognize it.”

It is difficult to imagine the premise of a rule in an expert system that

might involve mutually exclusive events. However, within expert systems, not

all rules are expressed explicitly and arguments within a premise can be

variables. In this situation, mutual exclusivity can occur within a rule that might

not be forseen during the development of the system.

CONVEXITY

Convexity of the fuzzy sets is implied in the above operations. Formally

stated this is:

For x < y < z; PA> mm [,UA(x), JJA(z)l. A property of convexity

is for —A and —B which are both convex then —A fl —B is also convex.

MODIFIERS

Membership functions are used in expressing fuzzy propositions such as

‘X is —A’ where —A is a fuzzy set. These propositions can be modified further

by such linguistic variables as “very” and “almost”. Representing the modifier

by the letter “m” we arrive at: X is m(—A)

Examples of liguistic modifiers could be:

almost —A = 0.8—A ; very —A = —A2; not —A = 1 - —A

EXTENSION PRINCIPLE - defines how the fuzzy subset —A of X can

correspond to fuzzy subset f(A) of Y.
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If —A is a fuzzy set on u;

—A x1/u1 + x2/u2 +

the extension principle states that

f(—A) = f( x1/u1 + x2/u2 + + x/u)

= x11 f(u1) + x2/f(u2) + + x/ f(u)

for example u = { 1, 2, 3 10}

—A set describing “large” =0.4/1 + 0.6/2 + 0.8/3 + 1.0/4 + 1.0/5

then “very large” = —A2 0.4/1 + 0.6/4 + 0.8/9 + 1.0/16 + 1.0/25

this acts in much the same way as the principle of superposition in classical

sets.

A further example:

define —A = “about 2” = —2 = 0.6/ 1 + 1/ 2 + 0.8/ 3

define —A = “about 9” = —9 = 0.8/ 8 + 1/ 9 + 0.7/ 10

Now find “(about 2) * (about 9)”.

f(u1, u2) = (x11/ u11 + x21/u21 + x31/ u31) * ( x/u1 + x22/u22 + x32/u32)

= min(x11,x12)/u11
j12 + min(x11,x22) / u11 *u22 + min(x111x32)/u11*u32

+ min(x211x12)/u21
*j12 + min(x21,x22)/u21*u22 + mm

+ min(x311x32)/u31*u

—2 *
= (0.6/1 + 1/2 + 0.8/3) * (0.8/8 + 1/9 + 0.7/ 10)

= min(0.6, 0.8)! 8 + min(0.6, 1)! 9 + + min(0.8, 0.7)! 30

= 0.6/8 + 0.6/9 + 0.6/ 10 + 0.8/ 16 + 1/18 + 0.7/20 + 0.8/24

+ 0.8/ 27 + 0.7/30
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if more than one member of u1 x u2 is mapped to one only one member of V,

use the maximum membership grades of the member in fuzzy set —A.

—A — “about 4” — 0 5/ 3 + 1/ 4 + 0 6/ 5 = —4

—B = “about 5” = 0.4/4 + 1/5 + 0.4/6 = —5

—4 x —5 = min(0.5, 0.4)/12 + min(0.5, 1)/15 + min(O.4, 1)116

+ mm (0.5, 0.4)/18 + max[min(1, 1), min(0.6, 0.4)] / 20 +

= 0.4/12 + 0.5/ 15 + 0.4/16 + 0.4/18 + 1/20 + 0.4/24 +

0.6/25 + 0.4/ 30

2.4 Fuzzy Propositions

Consider the composite proposition “ Bill is not a very heavy person, he’s

about average.” Logically, this resembles the proposition, x is A and x is B.

What rules govern the combination of fuzzy sets in this manner? For tying

together two propositions based on a single subject (or dimension) such as the

weight of a person, the following rules can be applied.

x is —A or x is -B = x is —A U —B (the hard max operator)

x is —A and x is —B = x is —A fl —B (the hard mm operator)

This can be extended to applications of propositions of two or more

dimensions or subjects such as “ Bill is average height and not very heavy.”

x is —C and y is —D = (x,y) is —C x —D where —Cx —D is the direct

product of —C and —D.

and also
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x is —C or y is —D = (x,y) is [—C x Yl U [Xx —Dl where X is the

support set of —C and Y is that of —D. In both cases the result is a fuzzy

support set of two dimensions.

A third type of proposition is of the type “if x is —C then y is —D”.The

“if then” proposition is denoted in logical terms by an arrow -->

x is —C --> y is —D = (x,y) is —C--> —D

where —C --> —D is the fuzzy subset of Xx Y and its membership function is

1-4-c--> _D)(X,Y) = PR (x,y)= max[(./Jc(x) fl pD(y),(1 - Pc(x))]

We can show this with an example of crisp sets:

Let the sets —C and —D be represented as:

CRISP SETS

1.111 1.01

X1X2X3X4X5

the relational matrix then would be:

yl y2 y3 y4 y5 y6

xl 1 1 1 1 1 1

x2 0 0 1 1 1 0

x3 0 0 1 1 1 0

relational matrix=> x4 1 1 1 1 1 1

,UR(x,y) x5 1 1 1 1 1 1
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The previous two dimensional relational matrix can be shown in other

ways. The membership function PR(X,V) decribes the relation x to y and is

demonstrated in the following example in which IJR(X,Y) describes the relation x

is much larger than y.

0; x>=y

UR(x,y) =

1/(1 +(1O/ y-x)2); x < y

So far it has been shown how to deal with the logical propositions:

1) x is -A or -B 2) x is —A and —B

by using max and mm comparisons respectively on the fuzzy subsets. Also it

has been shown how to use the fuzzy relation R , to express “ if x is —A, then

yis —B”.

We can further extend the concept of fuzzy relations, If R is a fuzzy

relation in X x Y and S is a fuzzy relation in Y x Z, the composition of R and S.

R S. is a fuzzy relation in X x Z.

R S <---> /JR.S(x,z) = max{ min[p(x,y), ps(x,y)]}

This is termed the max-mm composition.

For example: given fuzzy sets —A = 0.3/a + 0.9/b + 0.5/c
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and —B = O.5/x + 1/y

x V

a p p
Ietf= b q r

c r p

[a,xl [a,y] [c,y]

PB(P) = max[min(0.3,0.5), min(0.3,1), min(0.5,1)] ;

[b,xl

PB(q) = max[min(0.9,0.5)];

[c,xl [b,y]

= max[min(0.5,0.5), min(0.9,1)]

The resulting membership function: = 0.5/p + 0.5/q + 0.91r

This is how a fuzzy control system can generate a fuzzy output p—given a

fuzzy input /.LAand a fuzzy system ,LLR.



19

CHAPTER 3: UNCERTAINTY IN MODELLING

3.1 Probability, Possibilty and Uncertainty

Uncertainty comes in many different forms. The statement : “It will

probably not rain today, by the looks of the blue sky.” shows two types of

uncertainty, namely that caused by vagueness (blue), and that of a more

statistical nature due to random processes unknown to the observer at present

(probably not). The latter type of uncertainty has been the focus of classical

probability analysis. Vagueness cannot be analyzed with classical probability

methods since randomness or chance has nothing to do with a vague

statement. Fuzzy set theory is equipped to handle vagueness.

When developing a reservoir model that incorporates uncertainty in the

form of vagueness, it is important to understand the various conditions in which

fuzzy set theory is applicable and those in which the more familiar probability

theory should be used. This chapter will quickly summarize types of uncertainty

and the corresponding methods for solving each type.

Zadeh suggests that vagueness or fuzziness is unavoidable in describing

our surroundings. If we choose to say that the sky is blue, it is not necessary to

state the average wavelength of visible light to describe just how blue it is.

Although ‘blue’ is a vague description, it still contains significant value as

information. Precise information is good if it can be easily collected. Vague

information is better than no information and sometimes the only way of

efficiently describing a situation.
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Fuzzy set theory has already proven its effectiveness in real time control

situations by increasing the efficiency and robustness of various systems. In the

application of fuzzy sets to decision analysis however, controversies have

arisen in regard to proper usage of fuzzy arithmetic in a way that is consistently

logical.

When should fuzzy set theory be used to aid in the decision making

process? French (1984 ) questions the idea of modelling fuzziness when the

purpose of a management decision making tool is to clarify the thinking within

the user’s mind. French argues that many vague concepts such as “Bill is tall

have historically been broken down into crisp concepts (i.e. Bill is 6’ 2”). He

further suggests that a vague concept such as flexibility of workforce can be

broken down into crisp indices that are suitable for analysis by classical set

techniques. This is how most economic analysis is currently carried out by

monitoring indices of various sorts that represent complex and vague concepts

such as the economic health of a nation.

However if one wishes to input an expert’s advice into a decision support

model, there is no sense in delineating a crisp boundary in the model where

none exists in the expert’s mind. Precision without accuracy is not to be

encouraged in these models. It can also be argued that viewing a problem in the

simpler and less precise manner encouraged by fuzzy set theory promotes more

clarity of thought than a more precise, complex model filled with indices. When

used properly, fuzzy set theory describes problems with simplicity and clarity.

The flip side is loss of precision. If the decision maker wishes to obtain an



21

answer within five percent of the optimum, fuzzy sets will not deliver and

classical set theory should be used.

So far, only two types of uncertainty, randomness (or dissonance) and

vagueness ( or fuzziness) , have been considered. Klir (1992) suggests that

there exists two other types of uncertainty, namely nonspecificity and

confusion. Nonspecificity is due to lack of information and is examplified in the

case of someone drilling for oil in an area previously unexplored. Information

does not exist about chances of finding an oil reserve. Dissonance describes

conflict between options and would be applicable if one knew they had a 40%

percent chance of hitting oil based on past drilling patterns. Confusion contains

potential conflict as well as pure conflict, which might occur if test wells

sometimes give misleading results about oil reserves. Conflict and chances of

incorrect test results must both be considered in the case of confusion.

Fuzziness would occur if a local geologist stated “There is a fair bit of oil in that

area”.

As mentioned earlier, dissonance or randomness is treated by probability

theory and fuzzy set theory can be used for resolving vagueness and

nonspecificity. For cases of confusion and nonspecificity, possibility theory can

be utilized.

Possibility theory, developed by Zadeh, parallels probability theory in

some ways but has some unique traits. Below is a short example describing

Zadeh’s concept of possibility.
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We may associate a possibility distribution with X by interpreting

F(u) as the degree of ease with which Hans can eat u eggs. We

may also associate a probability distribution with X by interpreting

P(u) as the probability of Hans eating u eggs for breakfast.

Assuming that we employ some explicit or implicit criterion for

assessing the degree of ease with which Hans can eat u eggs for

breakfast, the values of F(u) and P(u) might be as shown:

u 1 2 3 4 5 6 7 8

F(u) 1 1 1 1 0.8 0.6 0.4 0.2

P(u) 0.1 0.8 0.1 0 0 0 0 0

We observe that, whereas the possibility that Hans may eat 3 eggs for

breakfast is 1, the probability that he may do might be quite small. Thus,

a high degree of possibility does not imply a high degree of probability,

nor does a low degree of probability imply a low degree of possibility.

However, if an event is impossible it is bound to be improbable.(Gaines

et. al [1984. p81

In this case the probabilty distribution must total one, whereas the

membership function representing possibility can total to a value greater than

one.
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Proving or disproving the validity of using fuzzy set theory for assessing

probabilistic uncertainty by using possibility theory is significant for determining

the type of model suitable for generating the input into a fuzzy inference

program. Galvao and Ikebuchi (1992 ) utilize possibility sets for inflow

prediction in their fuzzy reservoir model based on long range forecasts. Many

weather forecasts combine fuzziness with dissonance in short term forecasts

(i.e. There is a 40% chance of heavy rain). Possibility theory is not intuitively as

appealing as probabilistic methods for long range inflow predictions since the

envelope of possible inflows is relatively unrestricted.

Input combining dissonance and fuzziness is utilized in the fuzzy DP

model with the use of state transition matrices and fuzzy constraints. The

fuzzy inference model does not address the method of estimating inflows

directly. Since many probabilistic inflow prediction models exist, it would be

suitable to select such a model for input into the fuzzy inference model. It is not

necessary to develop a possibilistic model.

To further confuse matters, Bart Kosko, a mathematician at USC, derived

Bayes’ s Theorem from his more broad concept of fuzzy subsets implying that

probability theory may be a subdomain of fuzzy set theory. Should this theory

gain acceptance, all types of uncertainty described by Klir may be handled

within the framework of fuzzy sets. This is described in McNeill and Freiberger

(1993 p.200).
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CHAPTER 4: RESERVOIR SIMULATION AND DATA GENERATION

4.1 Fundamentals of Modelling Hydroelectric Systems

Before a method of optimization is introduced, it is helpful to recap the

fundamental concepts of reservoir modelling.

The equation of continuity states that outflow and losses of volumes of

water in a reservoir must be equal to inflows plus the change in volume. The

losses may be due to evaporation from the surface of the reservoir or losses

due to groundwater seepage. In the model adopted here, these losses are not

considered. Also, outflow is either directed through the turbines or over a

spillway. Spillway flows in this model only occur at full reservoir conditions

coupled with maximum flow through the turbines and do not contribute to the

generation of power.

Power generated is expressed in S.l. units by P (in kilowatts) = y Q H /1000

where y = the unit weight of water ( 9810 N /cu. m)

Q = the rate of flow ( cu. m/ sec)

H = the energy head, ( m

the energy developed is this power multiplied by time ( eg. kilowatt-hours). A

factor representing revenue per unit energy (eg. mill! kw-hr) is then used to

determine the total revenue generated.

The efficiency of a turbine , = (power delivered to the shaft) I (power

taken from water). In this case the efficiency increases at a diminishing rate as

energy head is increased. A reservoir characteristics curve expressing net head
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supplied vs. volume of the reservoir is combined with the turbine efficiency vs.

head to result in Table 4-1 which gives volume vs. efficiency.

4.2 Hindsight Analysis and Reservoir Systems

Hindsight analysis is a formalized method of learning from experience.

Reservoir operation analysts utilize this type of learning to circumvent the

problem of dealing with unpredictibility. By looking at historical input data

inflows and unit energy values for this model), it is possible to calculate what

would have been the best way to operate the system. If this type of analysis is

done with substantial quantities of data, patterns begin to emerge between

predicted input and optimal output. These patterns will take the form of

“If.. .Then” rules for the fuzzy inference model.

This chapter is concerned with the problem of using hindsight to

determine optimal decision strategies given various inputs to the system.

Pseudo random inputs are generated, simulating several years of inflows and oil

price fluctuations and then optimal outflows are determined with the aid of a

dynamic programming algorithm.

Dynamic programming, first presented by Richard Bellman in 1957, is a

method of finding an optimal strategy in the case of sequential decisions.

4.3 Basics of dynamic programming.

Most optimization problems take the form of

Maximize (or minimize) f(x1 , x)

subject to constraints on the values of x1 x.
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Dynamic programming instead expresses a problem in terms of n stages. A

stage is a discrete interval in time or space when a decision is required to be

taken before advancement to the next stage. In this particular example, policy

decisions are to be made at the beginning of each month, so stages are

represented by months.

At each stage the system must be at one of several states. The system

may change state from one stage to another depending on the decision made at

the previous stage. This model expresses the reservoir volume in a series of 22

discrete state values from a minimum of 350 m3/s months to a maxmimum of

1400 m3/s months in increments of 50 m3/s months. The resultant state

(volume) at stage n + 1 depends on the decision (outflow through turbines)

taken at stage n.

In simple graphical terms this is represented as

Shiqes—> [Mouths)

o o 0

: :
States

0 0 0

o o 0

0 0

0 0

Figure 4.1 Possible Optimal Paths in Dynamic Programming
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The number of possible paths through the state-stage grid can become

unwieldy as the states and stages increase. Even a simple problem with 12

stages and 22 states is unsolvable when all possible combinations have to be

considered. Bellman’s principle of optimization allows us to discard suboptimal

paths during the problem solving process, greatly reducing the number of

required calculations.

Bellman’s principle says that an optimal policy is made up of optimal

subpolicies. In other words, if we consider only the optimal subpolicies to get

to each state at stage n, then only these are used in the formulation of the

optimal subpolicies to get to stage n + 1. This principle is utilized by treating the

problem recursively. The algorithm works from the last stage to the first;

determining the benefit of the optimal policy with n stages remaining. Usually

dynamic programming examples are stated in terms of minimizing costs but

since the objective function of the reservoir model is concerned with maximizing

revenue, the examples will reflect this.

If f*(i) is the benefit of an optimal policy when there are n stages remaining

and the decision of state at the beginning of stage n-i is made at state i,

f*(j)
= max1{r(i,i1)+ (i1)}

where r(in,ini) is the revenue earned from into 1111.

DeNeufville (1991) breaks down dynamic programming method into four

activities; namely organization, formulation, constraints and solution. These four

steps will be used to describe the reservoir model.
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4.4 Reservoir Model

ORGANIZATION

Determining the basic structure of a reservoir operation DP problem is

relatively simple. Using months to represent the various stages and reservoir

volumes to represent states is almost the only reasonable arrangement to

represent medium to long term operation. What is less intuitive, is deciding

how many stages to include within a single run of the program. The DP

algorithm was originally used to simulate a 12 month operating time. Initial

conditions and constraints on the reservoir volume at the beginning and end of

the run tended to restrict the optimal path such that, in spite of value and

inflow inputs, it tended to rise to the reservoir volume yielding maximum

turbine efficiency after the first three months and drop to meet the final

constraints after month nine. Initial and final constraints were relaxed and the

run time was increased to 24 months in order to more closely represent a

continual process that responds to the inputs in a flexible manner.

FORMULATION

As stated previously, the objective function is to maximize revenue.

Revenue is the product of a value of each unit of energy and the amount of

power produced.

Maximize Revenue in month n where revenue Energy* energy value

factor * discount rate

Energy = Energy/unit outflow * outflow

Energy/unit outfIow is obtained from head-efficiency curve.
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The head-effic. curve is a lookup table which returns power/unit outflow

given ave. res. vol. (See table 4-1

OutfIow = Reservoir Volume + lnfIow - Reservoir Volume +1 (mass

balance equation)

The transition from reservoir volume at stage n to volume at n + 1 is the

decision process.

CO NSTRAI NTS

Constraints are placed on the maximum and minimum outflow through

the turbines ( 30 > Q > 200 cu.m/s ). There is also a constraint on the rate of

fluctuation of the reservoir volume. This is simply a limitation on the number of

decisions that can be taken at any state. In other words, the states from stage

to stage cannot change by more than 150 cum/s -months. This leaves a limit of

seven possible decisions (-150, -100, ..., 0, ...+150).

There is a maximum and a minimum level of the reservoir, If the water

level reaches the maximum reservoir level and outflow through the turbines is at

the maximum, any additional discharge will be redirected over the spillway.

Initial and final reservoir volumes at the beginning and end of the 24 month

runs are specified.

SOLUTION

The DP algorithm is used in two ways. One is to accept pseudo random

inputs and produce data that represent the best way of operating the reservoir

given perfect hindsight. This output from the DP algorithm is then used as input

into the fuzzy rule generating algorithm. After the fuzzy rules have been
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developed and the fuzzy inference model has been run, the DP algorithm is

again run for comparison purposes against the fuzzy decision model. In the

second case, both models are given the same inputs, and the differences in

recommended ouflows are noted.

In the first instance where raw data is generated for rule generation, the

data sets corresponding to the optimal stage-state path was used for rule

generation . However after running several simulations, it was observed that the

optimal path restricted the data sets to a relatively limited range of reservoir

volumes around the maximum head/efficiency level as would be expected.

There was limited data generated to create operating rules for very high or low

reservoir volumes. To expand the range of reservoir volumes of the data sets it

was decided to include the optimal decision at each state and stage within the

DP simulation rather than just the optimal path. This gave an even

representation of data sets from all states for input into the rule generation

algorithm.

Concept of Value per Unit of Energy

Since most hydroelectric facilities are part of a larger grid system

comprising of fossil fuel, nuclear or other hydro generating stations, it is only

reasonable to consider this external effect on the operation policies of the single

reservoir.

Donald J. Druce (1988) describes several factors which affect the

potential value of impounded water. He describes an algorithm developed by

B.C. Hydro to maximize benefits from short term exports of hydroelectricity.
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The model considers expected future export markets for both firm and

interruptable quantities as well as the cost of generating power by thermal

sources. The potential cost of flood damage can also be factored into such a

water- value model where the efficiency of generating power at high heads is

offset with loss of storage capability.

In the current dynamic programming model the value of water is

represented by a value factor which is multiplied by each unit of energy

produced. An actual representation of value factors on a real reservoir would

entail considerable study and is outside of the scope of this thesis, however, an

arbitrary distribution of value factors was generated such that it affected the

optimal operation strategy beyond merely optimizing power output. These

factors multiplied energy units by values obtained from a normal distribution

with a mean of 1 .4 and a standard deviation of 0.4.

Specific units such as mills per kilowatt hour were not used in this model

to emphasize the concept of relative values of impounded and moving water

and not strictly revenue from power generation. A practical application could

use the marginal cost of power expressed in mills/kW.hr in place of this factor.

Final revenue values are expressed simply in revenue units. If the value factors

in this study were represented by mills/kW.hr annual revenue in dollars could be

determined by multiplying the revenue units by 365. Since this study is

comparitive in nature, revenue is expressed in relative terms between models.
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Discount Rate

A discount rate of .5 % per month is factored into each iteration or stage

of the algorithm. This translates to slightly over 6% per year which is

considered low but not unrealistic in conditions of low inflation and interest

rates. The overall effect of factoring in the discount rate is small in comparison

to other constraints and inputs into the algorithm.

Correlation of inputs

It is a common assumption that inflows are correlated in reservoir

models. This assumption may appear less valid as the forecasting horizon is

stretched from short term to long term. Under what conditions is it reasonable

to suggest that a high inflow in month n increases the probability of a high

inflow in month n + 1? If the inflows are not moderated by snowpack and the

reservoir is fed by a relatively small watershed, it is less likely to show

correlation between monthly inflows. For instance, many of B.C. Hydro’s

reservoirs are dependant on snowpack to replenish volumes over the summer

months and this allows rough forecasting of summertime inflows in January.

The correlation coefficient of monthly flows was set at 0.3 and the value

factor correlation coefficient was set at 0.6. In the DP algorithm, correlated

inputs at stage n were calculated by multiplying the input value at stage n + 1

by the correlation coefficient and adding a random value that corresponded to

the given distribution characteristics.
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Necessary assumptions for dynamic programming

1) The return functions must be independent. In other words, the return

from stage n + 1 has nothing to do with the decision at stage n or any previous

decision. Although the model inputs are correlated so inflow and the value

factor at n + 1 are affected by inflow and value factor at stage n, they are still

independent of the decisions.

2) Monotonicity of multiplicative functions. As stated by deNeufville

(1990), given an objective function of the form G(X) = [g1(Xj, G’(X)] the

objective function is monotonic if for all the cases where g1(X1’) > g1(X111) for the

different states X1’ and Xi”. This is satisfied in the reservoir model with

increases to either input resulting in nonlinear, but continuous and positive

increases to the objective function.
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CHAPTER 5: RULE GENERATION

5.1 Develonment of Fuzzy Rulebase from Raw Data

The purpose of the dynamic programming algorithm explained in the

preceding chapter was to develop a simple model of a reservoir and simulate

several years of operation by subjecting it to random but correlated inputs and

suggesting corresponding suitable outputs. Experience or knowledge of the

reservoir is not created by simulating its operation, only data in the form of

input-output pairs.

The objective of this chapter is to show a method for extracting patterns

from such raw data to build a structured series of “IF.. .THEN” rules. There are

two ways rules can be acquired for a fuzzy control system. Someone acting as

a knowledge engineer can interview an expert familiar with the system and

distill the expert’s thought processes into a more formal and discrete set of

rules for input into the control system. Another method to acquire the rule base

is to artificially generate rules from hard data obtained either from actual or

simulated operation of the system. If actual data can be obtained , this would

be preferable to that created by a computer model but in the case of a new

system, a model may be the only option to create the rule base.

Wang and Mendel (1991) have suggested a general method for creating

fuzzy rules from data. The three input variables (inflows - x, (n), value factor -

x, and reservoir level- x3) and the output variable (outflow - y) are divided

up into fuzzy regions with linear, triangular membership functions. These

membership functions could be nonlinear but equilateral triangles with apexes
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coinciding with the zero membership values of the functions on either side

provide a simple and effective description. The difference between triangular

and nonlinear membership functions is insignificant in terms of performance of

the system but the positioning of the functions can have a significant effect

(Sulzberger et. al 1993). There will be a comparision of systems using different

positionings of membership function later in this chapter.

Splitting the variables into fuzzy categories is an arbitrary process. There

should be a minimium of three categories for each variable. For example, the

reservoir level can be described as either low, medium or high. The number of

fuzzy categories for each variable is limited by the total number of rules that

one wishes to input into the fuzzy inference algorithm. For instance, the author

selected three fuzzy categories for reservoir level, four for value factor and four

for projected inflow. This results in 3 *4*4
= 48 rules. It can be seen that by

increasing the number of descriptive fuzzy categories for each variable the fuzzy

model becomes less vague but requires a greater number of rules to be input.

For each data set, determine the level of membership in each fuzzy

category. A data set is an input-output pair (for example: x1’1,x21,x3’1;y1”)

obtained from a month of actual operation or a line of output from the dynamic

programming model.

A rule is generated from a data set by incorporating the fuzzy category

with the highest membership value into the rule format.
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Figure 5.1 Membership Values of a Data Set

Example:

Given the data set shown on the above diagram where:

x11 (inflow) = 130; x21 (value factor) 0.9; x3’” (reservoir level) = 1110 and

y1 (outflow) = 125.

An inflow of 130 has a membership of 0.0 in low, 0.7 in med-low, 0.3 in

med-high and 0.0 in high. To construct the rule base, only the fuzzy region

with the highest degree of membership is considered in this case. This data set

is assigned the following rule: “ If Inflow is Med-Low and Value Factor is Low

and Reservoir Level is Medium THEN Outflow is Medium.”

Notice only logical “ANDS” are used in the formulation of the rules. Later

the rule set can be abbreviated with the use of “OR” rules. Each rule is assigned

a degree of membership which is simply the product of all the individual

membership values.

D(Rule) = PMed-Low
(x1)* P LOW(X2) PMedium(X3)* PMedium(Y1)

125
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In this example the total rule membership value is 0.7 * 0.8 * 0.6 *

1 .0= 0.33 6 for the previous data set.

5.2 Structure of Rulebase

As the rule base is developed by assigning a rule and a membership value

to each data set , spaces in the Fuzzy Associative Memory (FAM) Bank are

completed. A FAM Bank is a convenient method of mapping multiple fuzzy

inputs to a fuzzy output. A graphical depiction of a 3 variable input -1 variable

output FAM Bank is shown below.

H

MH

VALUE FACTOR ML

‘ii,

— INFLOW—)

Figure 5.2 FAM Structure

Each section of the cube represents a rule as a conjunction of inflow, reservoir

volume,and value factor fuzzy descriptors. When completed, each section has a

resultant output value (outflow) and a combined membership value expressing

degree of belongingness to the rule. The blackened out section in figure 5.2

represents the premise; If Inflow is high AND Value Factor is med-low AND

Reservoir Volume is low THEN Outflow is...”. In this case there are 1600 sets

of data created by the DP reservoir model that were used as input for the FAM

RES
Id’
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rule generation algorithm. This data was generated by the dynamic

programming algorithm in the form as shown

Data pair lnf. Val. Fact. Res. Vol Outflow
(cu.m/s) (cu.m/s-mon) (cu.m/s)

1 120 1.2 1200 170
2 90 0.9 1150 140
3 114 1.5 1100 154

Since there are more data sets than rule spaces available in the FAM

Bank, there will be several data sets corresponding to each of the 48 rule

spaces.

Wang and Mendel suggest that when more than one data set is assigned

to a rule space, the data set with the highest total membership degree takes

precedence and all other data sets that suit the same rule with lesser

membership values be excluded.

This method of artificially generating linguistically descriptive rules from

numerical data has certain disadvantages. When Wang and Mendel recommend

the data set with the highest belief value (or the greatest correlation to the

subjectively defined membership functions) be selected, it is not necessarily

representative of the data. Consider the following situation, If several data sets

had near optimal belief values for the antecedent of a rule then the output for

that given antecedent is totally dependent on the degree of belief of the output.
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Figure 5.3 Three Sample Data Sets and Resulting Memberships

In the above case, the third data set with the outflow membership of one

in the category Med , is chosen as representative of the antecedent If inflow

is Med-Low and Value factor is Low and Reservoir Level is Med” despite the

other two sets which suggest a Med-Low output. The first two data sets are

not considered in the final rulebase, only data set number three.

To further illustrate the instability of this method of rule construction,

consider the situation of a moderately noisy output and densely defined

membership functions for the output. Rule generation becomes a random

process and less apt to define trends in the data.

For example:



41

Figure 5.4 Sample Output Functions

A slight shift in the position of one of the output values changes the

degree of membership m[y1”]and the output assigned to the antecedent. Wang

and Mendel suggest a method to get around this problem posed by “wild data”.

A degree of membership expressing the reliability of the data set is assigned to

each set.

For example D(rulel) = PMedLoW(X1) PLOW(x2) PMedium(X3) m”

Where m1 is the degree of reliability of data set one. This is similar to using

confidence factors, a common technique in expert systems.

The above mentioned methodology is not desirable for this particular

application since the data sets that have input from the DP simulation can be

seen as being all equally reliable. The following is a suggested modification to

the algorithm which is analogous to determining the centroid for the output and

creating a “weighted rule FAM”.

The degree of belief in the output membership functions is disregarded

for the rule formulation. Instead the value of the output is multiplied by the

product of the belief values of the antecedent.
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Output for antecedent IiJIJtotal*yiI1J[utotal]

where = ,UA(xl) *

= # of data sets; = # of input variables; A,B,C,. . .Z = fuzzy category

corresponding to antecedent

Consider the following example in which four sets of data are assigned to

one antecedent.

Seti Set2 Set3 Set4 Sum

lnf [/1(x1)] 120 [1.0] 120 [1.0] 115 [0.9] 115 [0.91

Val Fac [/1(x2)] 1.2 [0.91 1.2 [0.91 1.1 [1.0] 1.1 [1.01

Res Lev[/J(x3)] 1200 [1.01 1200[1.0] 1200[1.O] 1200[1.0]

0.9 0.9 0.9 0.9 3.6

100 145 152 146 543

90 131 137 131 489

Final output is 489/3.6 = 136

In the previously discussed (non-weighted) method, the output would

have been 100 if that coincided with a vertex of a fuzzy category for output.

This method is more descriptive of trends in data than the method suggested by

Wang and Mendel but requires more calculation and memory. New data is not

compared and discarded but rather accumulated into the final result.

The rule base developed by the weighted rule method shows the

expected trends with outflows increasing as the reservoir level, inflow and
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value factor increase. This overall trend is not as evident in the original method.

See tables 5.1 through 5.6 for results.

Data sets can also be used as input into other learning algorithms such as

a neural net. A main advantage of developing a fuzzy rule base is that it can be

displayed in graphical form and easily inspected for inconsistencies. It should be

noted that this method is suitable for continuous systems. If discontinuities or

bifurcations exist in the system, the resulting rule base may prove misleading.

Another method of representing an operation strategy is using the

knowledge engineering approach. An experienced decision maker in the field

may be able to distill complex decisions into a series of rules. These rules may

also be of the form; “If A and B and C then X”. Where A,B, and C represent

input variables (i.e. inflow, season) and X represents a choice of output. It is

assumed in this case that the operator(the expert) is aware of all the significant

input variables. He may choose to neglect some input variable (i.e. hours of

sunshine) should the effect of these seem relatively insignificant on the

outcome. As well the expert may choose to simplify the rulebase by combining

several factors (snowpack depth, water content of snow) into a single

representative factor. In other words, an FAM Bank can be constructed through

raw data, expert advice or a combination of both. Often historical or model

generated data does not cover all foreseeable conditions and must be

supplemented by expert opinion.
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CHAPTER 6: FUZZY INFERENCE

6.1 Introduction to Fuzzy Inference Techniques

This thesis has thus far demonstrated a way of creating a rulebase from

data generated by a reservoir model. Now, all that is required is to put the rules

to work by giving an output for any combination of inputs. This is done through

fuzzy inferencing.

No pretentions are made about applying this simplistic model to the full

anatomy of a multipurpose reservoir subject to regulatory influences. A more

complex rulebase would be required in a practical application. However, the

rulebase should be simple enough to allow itself to be expressed in clear natural

language thus making it subject to review, rejection or modification by a human

expert. The final objective of the fuzzy reservoir control model is to describe the

operation of the reservoir through a series of linguistically expressible ‘IF. .THEN’

rules.

In the previous chapters, development of a rule base in the absence of an

expert and supplementing the rule base with historical data have been

discussed. Once the rules are created, a method of inference is selected to

suggest a crisp (nonfuzzy) action given a set of crisp inputs. The FAM rule

generation algorithm has developed the rule base shown in figure 6.1. The

fuzzy outflow values are shown in the boxes.

To infer something is to derive a conclusion from facts or premises.

Fuzzy inference procedures require the input of crisp numbers. Then these

inputs may activate many of the various fuzzy premises (or rules) which may be
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assigned various weights depending on how applicable they are to the inputs.

Finally a crisp answer is derived through a defuzzification process. Self (1990)

and Mamdami (1975) provide background articles on fuzzy inference and

control.

The most common inference algorithms use the mm or “hard and”

operator to find the conjunction of the membership functions of the premise

variables. A combined output function is created and a crisp output is

calculated by finding the centroid of this combined membership function.

VALUE FACTORS => LOW ML MH HIGH

LOW INF

MED-LOW INF

MED-HIGH INE

HIGH INF

0.9 1.15 1.4 1.B5

L L L L

L L L ML

L L I ML

MLML ML ML
6O

100

140

200

LOW INF

MED-LOW INF

MED-HIGH INF

HIGH INF

LOW INF

MED-LOW INF

MED-HIGH INF

HIGH INF

L L

LOW RESERVOIR
LEVEL

MEDIUM RESERVOIR
LEVEL

HIGH RESERVOIR
LEVEL

ML M

L L ML M

L ML ML M

ML M M M

MLMLM MH

MHMH MH MH

MI-IMH H H

MH H H H

Figure 6.1 Summary of Generated Rule Base
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Two of the most widely used methods of fuzzy inferencing are the max

mm and max-product methods. The max-mm method truncates the membership

functions of the output variable to form trapezoidal shapes for a further max

operation. The max-product method scales the output functions to form

triangles with vertices equal to the conjunction of the premise functions.

inflow outflow

rule 2

_______________ ________________________ ____________

input for inflow res input I r

rule 1— if ml is med AND res is med THEN out is med i
I

rule 2— if mt Is med AND res is low THEN out Is low centroid

MAX- MIN METHOD

inflow

rule 2

_______________ ________________________ ____________

input for inflow res input I
rule 1— if ml is med AND res is med THEN out is med
rule 2— if mt is med AND res Is low THEN out is low centroid

MAX - PRODUCT METHOD

reservoir level

ed res

low
res
-‘

low
A’oufflow

reservoir level outflow

low
res low

AuI?’oufflow

Figure 6.2 Two Fuzzy Inference Methods



53

For computational ease, the max product method is used in this study.

This is a simplified example in which each premise leads to different outputs.

When there are several premises that correspond to the same output level (ie.

med) the mm membership values are accumulated and the sum is multiplied by

the moment and area of the corresponding output function. This procedure is

repeated for all output levels and all of the factored areas and moments of the

different level are summed.The resulting sums of output moments are divided

by the sum of the areas to get the centroid which is the crisp output.

For example.

Figure 6.3 Overlapping Rule Conclusions

In the above diagram, rules two and three both lead to the same

conclusion (i.e. med outflow). There are different methods of incorporating a

suboptimal rule such as rule three. One method is assessing each rule

individually and finding the max output activation over the support set of x as is

shown by the thick outline. A second option is to sum the vertices of the scaled

Ua

1.11

mm rule 1

mm rule 3

outflow
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functions for each output value. In the above diagram, this would be done by

summing vertices of rule two and three and multiplying the sum by the moment

and area of the med outflow membership function. This creates the potential

for scaled membership functions with values greater than one. The latter

method of summing the vertices is utilized in this paper due to the

computational efficiency of performing simultaneous operations on rule

premises that correspond to the same output value rather than handling each

rule individually. Also the latter method uses information from all fired rules

rather than just the maximal mm values for each output descriptor level.

A flow diagram of the inference procedure is shown in the following

diagram. A10 is the sum for all the premises leading to output low of the

confluences of the membership values. The moment and area of each

membership function for the output must be determined before use in this

procedure. This is a specialized example of a fuzzy inference algorithm since it

describes the case of premises of the type “ If x1 AND x2 ANDx3THEN y1. No

premises utilizing “OR” is used in this inference example.
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INFERENCE SUBROUTINE

Input one set of crisp values for Inflow, val.tact. and res. level

A1 = p [res_is_lowj fl p Lval.fact. _is_low) fl pliaf_is_lowi
OW

+ p (res_is_low) fl p _is_low) fl p[inf_ls_med_lnw)
+ .u(res_is_IowJ fl p(val.fact. _is_med_IowJ fl p(inf_is_Iow)
+

+ for all premises with conclusion low)

Also find Amed low: Amed high and Ahlgh

ihigh
outflowcontrol moment= Z. A outflow momentS

l=low I

ithigh
outflow control area

= Z. A. outflow area.
ij011 I

outflow control outflow control momentj outflow control area

where outflow moment. the moment of the 1111 membership function for outflow

and outflow area the area of the i membership function for outflow

Figure 6.4 Inference Algorithm

The maximum potential value for A1 is 4. This does not imply a

multiplicative effect on the output value but rather a skewing of the centroid of

the output towards the vertex of the output descriptor that is fired most often.

This will give a crisp output for one set of crisp inputs. The inference

model can be used as a subroutine within a mass balance program that will

update the reservoir volume by adding the inflows and subtracting the outflows

for each stage. With this routine, comparisons can be made between different
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rule bases and hindsight analysis can be used to see if membership functions

should be adapted.

NUMBER OF RULES

To test the significance of the coarseness of the rule structure on the

output of the inference algorithm, a second rule base consisting of 100 rules

was developed by the FAM rule generator from the same sets of data pairs as

in the 48 rule example.

The 100 rule set consists of 5 inflow, 5 value factor and 4 reservoir level

descriptors. The outflow support set is divided into 5 descriptor functions. All

of the membership functions retain a symmetrical triangular shape with vertices

corresponding to boundaries of adjacent functions. Examples of differences

between the first and second rule sets are shown in the diagram below.

48 rule
set

60 90 120 150 180 ll. 1.1 1.3 1.5 1.7

INFLOW VALUE FACTOR

Figure 6.5 Differences in Membership Structure between 48 and 100 rule sets.

100
rule
set

0.9 1.15 1.4 1.G5

I MLMMHH

>000<
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Sets of value factors and inflows, each serially correlated as described in

Chapter 4 are fed into the inference algorithms for both 48 and 100 rule sets

with the results shown in tables 6-1 through 6-4.

It can be seen that the outflow decisions are very close by the parallel

paths of the reservoir levels. Expected revenue units are shown in the brackets.

The 100 rule set is often offset at a slightly higher level than the 48 rule set.

This can be attributed to a coarse definition of reservoir levels in the 48 rule

set. When only three membership functions are used to describe a range of 16

or more states it could be expected that imprecision of one or more states

should occur. The general effect of changing the number of fuzzy descriptors is

not very significant unless the number is relatively low.

The results of the inference model are then compared against the crisp

DP model which has perfect hindsight over the span of the 24 month cycle. In

other words, the inference model is idealized in the sense that the predicted

inflow and value factor for the next month is correct whereas the crisp DP

assumes perfect prediction abilities for a full 24 months. These are shown in

tables 6-6 through 6-10. The revenues generated by the fuzzy model and the

crisp DP model are both compared against a steady volume model in which

inflows equal outflows subject to constraints on maximum outflow. The steady

volume examples maintain the reservoir level at near maximal efficiencies but

ignore the effect of the value of water.

Robustness of the fuzzy inference model was tested by changing the

inputs in only a few months and rerunning the model to see what the change in
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response is. The fuzzy model moved from its original path in proportion to the

magnitude of the changes as would be expected. The sensitivity of the crisp DP

model to changes in inputs was not easily measured since the optimal path may

remain identical until a completely new optimal path is selected. For an example

see table 6-1 1. If a low head reservoir was being modelled, the resulting flat

optimal surface would increase the sensitivity of the crisp DP model while the

fuzzy inference model would still behave in a similar manner. Robustness is

desired over optimality since it only uses extreme states and policies for

extreme inputs.

A model that emphasizes optimization may recommend maintaining very

high or low levels in order to obtain a slightly better output. This is usually

avoided in practical reservoir operation by maintaining target levels and

minimizing variations from these levels. The fuzzy inference acts as an

adaptable rule curve by acting upon forecast inputs and current level without

radical fluctuations. This moderation is due in part to training by correlated

inputs and the interpolating nature of fuzzy inferencing. As an additional note,

the fuzzy model still gives better results than guesses without the aid of a

model.

The robustness of the fuzzy inference model was further tested by

disabling 10 rules from the 48 rule set. The modified rule base is shown with

disabled rules blacked out.
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LOW INF

MED-LOW INF

MED-HIGH INF

HIGH INF

LOW INF

MED-LOW INF

MED-HIGH INF

HIGH INF

LOW INF ML MH

MED-LOW INF MH MH MH

MED-HIGHINF MHMH E
HIGH INF H H

with disabled rules blackened out.

The results from this partially disabled rule base are shown in tables 6-12

and 6-13. It can be seen that the decisions are consistent with the 48 rule

inference model. Thus it seems that it is not necessary to develop a complete

FAM to achieve good results.

The significance of this becomes more apparent when models requiring

more rules are to be created. If, instead of 3 input variables, there were 5, the

number of rules to be input might exceed 450 to 600 rules depending on the

VALUE FACTORS => LOW ML MH HIGH
0.9 1.15 1.4 1.B5
—

El
ElLOW RESERVOIR

LEVEL

MEDIUM RESERVOIR
LEVEL

HIGH RESERVOIR
LEVEL

Figure 6.6 Rule base

:IMI

Ll
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coarseness of the membership functions. Instead of expressing each rule

explicitly, a suitable model may be created with only two thirds of the full FAM

set.
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CHAPTER 7: FUZZY DYNAMIC PROGRAMMING

7.1 Introduction to Fuzzy DP

Fuzzy set theory is not restricted to models based on fuzzy inferencing as

shown in the previous chapters. Since proponents of fuzzy set theory consider

crisp sets as a subdomain of fuzzy sets, then it would be expected that crisp

optimization techniques could be modified to suit fuzzy sets. Some of the

applications explored in publications include fuzzy linear programming, fuzzy

goal programming and fuzzy dynamic programming.

The extent to which these techniques can be fuzzified vary from

expressing constraints and goals as membership functions to fuzzifying states

and stages in certain fuzzy DP applications. However, since too much fuzziness

in a system can reduce it to a mess, it is helpful to use crisp sets whenever

possible.

This chapter will discuss a simple reservoir model based on fuzzification

of the stochastic dynamic programming algorithm. Fuzzy dynamic programming

adapts to uncertainty in a different manner than fuzzy inferencing. This method

allows stochastic treatment of inflows and fuzzy treatment of constraints and

goals. The states and stages will remain crisp in this example.

Zadeh and Bellman (1973 ) first described a multistage decision process

that accommodates fuzzy goals, constraints and decisions. The reservoir

problem can be treated as a stochastic system in a fuzzy environment with a

fixed time of termination. In this problem the goal is to achieve a desired

reservoir volume at the end of the forecasting horizon, say 5 months. This goal
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is fuzzified to represent wishes of the operator to achieve a desired volume and

the willingness to accept a nonoptimal result. This fuzzy DP operating method is

much like creating a fuzzy rule curve that accounts for stochastic inflows and

uses fuzzy and crisp constraints. A rule curve is a plot of recommended

reservoir volumes over a time period. Usually these curves are represented by a

single line or one target volume for each point in time whereas a fuzzy rule

curve implies that there may be several acceptable volumes at any one time

with varying degrees of preference assigned to each.

A fuzzy rule curve is shown in figure 7.1. A membership value of 1.0 at a

particular stage, represents the most desirable reservoir volume to maintain.

Membership values of 0.0 put upper and lower limits on the acceptable volumes

at different stages. During certain months, for example, flood control capacity

may take precedence over power generation or recreational needs. Such

tradeoffs can be represented accurately by a fuzzy rule curve.

1

Res.
Vol.

1300

Fuzzy Goals - Staje by Stage Example

.0.0

1100

Jan Feb. Mar. Apr.

Months

Figure 7.1 Fuzzy Goals
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Desired outflows from the reservoir may be represented in fuzzy terms as

well. Factors affecting outflows may include downstream water levels,

navigation and ecological/fisheries requirements.

In figure 7.2 examples of fuzzy constraints on flows are shown with a

membership value of 1 .0 representing the most desired outflow level and 0.0,

an unacceptable outflow decision.

Figure 7.2 Fuzzy Constraints

As in the crisp DP model, states represent the various reservoir volumes

and stages represent months. The states are denoted by x0,x1...x,., where x0 is

the lowest volume and x. is the highest volume within the set X. The stages are

denoted by subscript t.

7.2 Nonstochastic Decision Making

Given n fuzzy goals and m fuzzy constraints, the decision is the

confluence of all.

Flow

Hi!Jh

Example of Fuzzy Constraints on Flows

0.0 0.0

Jan Feb. Mar. Apr.

Mo nths
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D=GlflG2fl....flGnflClflC2fl . flCm

or in other words p0 = PG1 fl PG2••’ fl Pn fl jil flp2... flpm

where PD’ MG’ Pc are the membership functions of the fuzzy decisions, goals

and constraints respectively. Figure 7.2 shows constraint membership functions

for each stage which may be the confluence of several different constraints,

both crisp and fuzzy.

In sequential situations, the inputs (or decisions) uO, U1, ...UN1 gives the

membership function of a fuzzy goal at time N-i

= Max UN1 (PM-i (uNi) fl PG (f (xNl,uNl)

where xi, x2 xN-1 are states analogous to crisp dynamic programming.

f(x, u1 is a function that represents the state for xgiven an input u.

By introducing the recursion of dynamic programming to this equation

from the last stages to the first we get

pG(xNU = Max uNU(p(uN..U) fl PG(xNU+i)) (1)

XN.U+1 f(xNU, UNU)

whereu = 1

7.3 Stochastic Programming

Bellman and Zadeh (1973) state that the objective is to maximize

probability of attainment of the fuzzy goal at time N, subject to the fuzzy

constraints C0, ..., C1. The conditional probability of attaining the fuzzy goal

GN given state xNl and input (or decision) uNl is a function of the probability of
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attaining state XN. In the case of a reservoir, the probabililty of achieving a

volume x in a month’s time depends on the current volume, the outflow

decision and a known probability distribution of inflows for this month.

Prob (GN xNl,uNl) = EPGN(N) = XN P(XNiXN1, uNl)PGN(N)

Expressing this in terms of equations (1)

IJG(X = Max UNU(PNU(uNU) fl E,ii”’ (xNU+ 1))

N-u+1g — ,-.I-v I, j
‘-lG XNU+1, — XNU÷1 t-’ N-u+1 I N-u’ ‘-4N-u’IG ‘ N-u

fiG XNU m describes the fuzzy goal membership function at t = N - ci induced

by the fuzzy goal at t = N - u+ 1, u= 1 ,...N.

In the reservoir model to be described, the expression, PNU(UNU), represents the

membership function values of the decisions.

Example:

Given a reservoir system with four states (volumes, O ... U4) , two

stages (months,t1t2), and two decisions (high and low outflows, a1 a2

probability transition tables are created based on the known inflow probability

distribution and laws of conservation. The decision values are not represented

by fuzzy sets but crisp numbers. This provides a crisp probability table.Losses

due to evaporation were not considered in this model.
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Table One: u = Table Two: u, = a2

decision = low outflow (say 100) decision = high outflow (say 200)

xt+1 xt+1

X ° °2 U3 O4 X 0i U2 U3 U4

a., 0.5 0.4 0.1 0.0 a1 0.9 0.1 0.0 0.0

°2 0.1 0.4 0.4 0.1 a2 0.7 0.2 0.1 0.0

j3 0.0 0.1 0.4 0.5 a3 0.3 0.5 0.2 0.0

U4 0.0 0.0 0.1 0.9 a4 0.1 0.2 0.5 0.2

The tables show the values p(xt+i i x, ui). For instance, the probability of

going from reservoir volume a3 at time t to reservoir volume a2at time t+ 1 is

0.5 given the decision is made for a high outflow. If a low outflow is chosen

then the probability for the same state transition drops to 0.1. The rows of the

tables can be interpreted as rough probability distributions showing what the

most likely future states will be.

Assuming a fuzzy goal at the end of stage two is

PG (a,) = 0.2 PG(U2) = 0.6 PG(U3) = 1.0 PG(4) 0.7

it is desirable to have the reservoir near full but not at maximum level at the end

of stage two.

We can also specify constraints on the decisions.
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These constraints show the operators preference for a lower outflow in the first

month and a high flow in the second.

Now the conditional expectations E1J02(x2)are determined.

with the formula: E,uG0+I(xNu) = XNU p(xNU+1 N-U uN.U)PG(xNU+1)

xl

U1 U1 °2 U3 U4

.44 .73 .81 .73

a2 .24 .36 .56 .78

where p(U1, a1 = 0.44 = 0.5*0.2 ÷ 0.4*0.6 + 0.1*1.0 + 0.0*0.7

This is the product of the fuzzy goal and the probability distributions from the

state transition tables.

This table of conditional expectations can be seen as quantifying the

most desirable decision given the existing state after stage one. For instance, if

the reservoir is closest to state s1 (which is the lowest volume) it is suggested

by this table to select decision a1 (low outflow).

We must also consider the constraints and the effect on the optimal

decision

PG(xN.U) = Max uNU(PNU(UNU), E/JG’’’(xNU÷l))

PG(1) = 0.44 JiG (u2)— 0.7 IJG(U3) = 0.7 PG(4) = 0.78
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This is a result of finding the intersection (mm) of the constraint

functions and the expected values for each decision and then obtaining the

union (max) of the decisions. This is one complete iteration and the fuzzy goal

obtained in this last step [IJG’(ul ...4)] is used for determining the new expected

value table for stage one. Eventually the fuzzy goal for the starting stage is

found. The optimal path of decisions can be traced after the final iteration is

completed.

There have been later extensions to fuzzy dynamic programming such as

fuzzification of the system itself which accommodates noncrisp states or

stages. This is not applied in the following example.

7.4 Reservoir Fuzzy DP Model

For the fuzzy DP model the state transition matrices are sized at 13 X 13

giving state volumes from 1400 cubic meter/second - months to 800 in

increments of 50. There are four of these state transition matrices to represent

each outflow decision (50,100, 150 and 200). The conditional probabilities are

calculated based on a projected inflow normally distributed with an average of

109.6 and a standard deviation of 55.3. The probabilities are rounded off to

one decimal place. For an example of state transition matrices see table 7.1.

In defining the number and size of state transition matrices, it can be

seen the problem of dimensionality in fuzzy DP occurs at this point of

development of the model. In this example, since only one distribution is used,

there is no distinction between the inflows for each stage. A more realistic

model would utilize a different set of state transition matrices for each stage
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since each monthly inflow would most likely have distinct historical

characteristic. With only four possible decisions, and twelve different

distributions, a total number of 4X1 2 = 48 transition matrices would be

required in such a model.

Also information dealing with expected inflows can be used to modify the

probability matrices corresponding to the most immediate stages. If for

instance, snow pack data and weather forecasts suggest that a higher than

average inflow for May will occur then the probabilities for the transition

matrices will be modified to suite this data. Modification of probability matrices

would diminish as the forecasting horizon increases until the matrices for, say,

five months in the future would be strictly based on historical data and not

affected by forecasts. A distinct disadvantage of fuzzy DP is the sizeable

computational effort required to develop these probability matrices. Another

consideration is updating the matrices as new inflows are recorded. Correlation

of inflows is not considered in the fuzzy DP algorithm.

The two dimensional array for constraint membership functions have

rows corresponding to the number of stages in the operating horizon and

columns for each decision. This example has five stages and four decisions.
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FUZZY CONSTRAINTS

Choosing the values for the fuzzy constraint membership functions may

be a complex problem in a multipurpose reservoir, but a sensitivity analysis can

be done by altering the constraint array and rerunning the problem.

The fuzzy goal for month five (the month at the forecast horizon) is

selected as:

Vol. Value
800 0.1
850 0.1
900 0.1
950 0.1
1000 0.3
1050 0.3
1100 0.3

Vol. Value
1150 0.4
1200 0.8
1250 0.8
1300 0.8
1350 0.8
1400 0.6

Below is an example of an expected probability table which is created for

each stage.

EXPECTED VALUE TABLE
decision

Month
(in future) low
5 0.2
4 0.4
3 0.7
2 0.7
1 0.6

Decisions
med-low med-high
0.7
0.8
1.0
1.0
0.9

1.0
0.9
0.7
0.8
0.9

high
0.2
0.3
0.6
0.4
0.6

stage volume low med high v.high
1 800 .12 .14 .17 .23
2 850 .14 .17 .23 .30
3 900 .17 .23 .30 .37
4 950 .23 .30 .37 .44
5 1000 .30 .37 .44 .52
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6 1050 .37 .44 .52 .61
7 1100 .44 .52 .61 .70
8 1150 .52 .61 .70 .74
9 1200 .61 .70 .74 .72
10 1250 .70 .74 .72 .60
11 1300 .74 .72 .60 .42
12 1350 .72 .60 .42 .21
13 1400 .60 .42 .21 .05

Intermediate fuzzy goal membership functions are calculated recursively

until the goal for the most immediate stage is determined. All that is required

for input into this algorithm is a goal on the forecasting horizon, fuzzy and/or

crisp constraints for the decisions and state transition matrices. The fuzzy rule

curve is calculated up to the horizon in terms of intermediate fuzzy goals. Also

an array of optimal decisions is presented; one for each state.

Results from the fuzzy DP are simply the optimal decisions for each stage

that maximizes the probability of achieving the goal. This means fuzzy rather

than crisp answers. This is a distinct drawback in promoting such a technique

for actual usage since a slightly vague answer (eg. med-high outflow) is rarely

as satisfying as a crisp (eg. 152 cu. m/s) answer.

7.5 Satisfying short term goals vs long term

The difference between meeting a short term (one month) and long term

(five month) fuzzy goal is shown in tables 7.2 and 7.3. These tables show the

immediate optimal decision based on current reservoir volume.

In table 7.2, the suggested outflows for the next month range from low

to very high depending on the current reservoir volume. In table 7.3, the

options become more conservative (and less informative) as the immediate
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action has less of an effect on reaching the final goal. This is expected since

the effect of an immediate decision on a distant goal becomes less significant

as the goal is set even further in the future.

Table 7.4 simulates two different runs based on different fuzzy

constraints. The two sets of constraints are shown below.

CONSTRAINT SENSITIVITY

RUN1 RUN2
Decisions Decisions

Mon low med high vhigh low med high vhigh
5 0.2 0.7 1.0 0.2 0.2 0.7 1.0 0.2
4 0.4 0.8 0.9 0.3 0.4 0.8 0.9 0.3
3 0.7 1.0 0.7 0.6 0.7 1.0 0.7 0.3
2 0.7 1.0 0.8 0.4 0.7 1.0 0.6 0.0
1 0.6 0.9 0.9 0.6 0.6 0.9 0.6 0.0

This simple sensitivity analysis shows that when a long term horizon is

selected, decisions in the immediate future are not greatly affected. In this case

optimal decisions are not affected unless the current volume of the reservoir is

1050 cu.m/s - months.

With the number of decision options limited by the development of state

transition tables and difficulties in creating state transition tables that accurately

model reservoirs, it is doubtful that fuzzy D.P. provides a practical alternative to

fuzzy inference in single reservoir analysis. Another consideration is the fuzzy

output provided by fuzzy DP analysis may not be satisfactory in real

applications unless the possible decisions were only limited to less than six or

seven at each stage.
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Below is a flow chart for the fuzzy DP algorithm.

I read tour decision matrices constraint and goal arrays I

-iTI For Stage N11: N<3: N++ I

Create Expected Prab matrix 4 rows X 13 cols
E prob IDI [SI = E prob [DI 151 + Goal [NI IC] dcc [DI IS] IGI

I IF
I IFor State S=1;S<14;S++I

t

______

L._ For Decision 0=1: D<5: D++ I

y

L

Find goal function fur next stage
temp[01 Miri( E prob 101 LS1 Con [DI I
Stage Dedsion = Max[temp[1..4]1
If Stage Decision = temp 1 then output = “low”
If Stage Decision temp 2 then output =11 Mcd”

temp 3 then output “High”



TABLE 7.1

Trans matrix for medium high outflow decision (150 cu.m/s-month)

Transition matrix for high outflow decision (200 cu.m/s-month)
HIGH TO LOW VOLUMES FOR STAGE N-i-i

HIGH VOL 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0. 0.0
0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0

STAGE N 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 -0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3

LOW VOL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

HIGH TO LOW VOLUMES FOR STAGE N-i-i
HIGH VOL 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0

STAGE N 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1
0.0 0.0 0.0 0.0 0.0 0.0 .0.0 0.0 0.0 0.1 0.3 0.3 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3

LOW VOL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3
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CHAPTER 8: ARTIFICIAL NEURAL NET

8.1 Introduction to Neural Nets

There has been much emphasis recently on combining the advantages of

fuzzy systems with algorithms known as artificial neural networks. Neural nets

have gradually developed over the past forty years as a result of research on

the workings and interactions of neurons within the brain. The human brain has

a vast number (10 to 100 billion) of neurons which are interconnected in

complex webs. It is this interactivity that is modelled on computers. In the

brain, electrical impulses are fired across synapses (or gaps) when one neuron

activates another whereas in the computer models, communication between

neurons is in the form of numerical values.

In 1949 Donald Hebb developed the concept that the resistance of

synapses lower as they are fired more frequently. This implies that humans

remember by training neurons to create pathways through the brain which are

later reinforced as learning continues.

In artificial neural nets, the basic unit that processes information is a

node. Data pairs are fed into one end of a mesh of interconnected nodes. The

data is passed through each layer of nodes as the weights of the connections

are continually adjusted to minimize the error of the output values. When

optimal weights of the connection have been determined for the set of training

data the system has “learned” the data and new sets of input data can be fed

into the system to generate an output consistent with the pattern of the

training data.
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Several different types of neural nets have been developed but this

chapter will focus on the most widely used algorithm for prediction and

optimization purposes, the backpropogation algorithm. Simpson (1990)

describes backpropogation and several other neural net architectures in a clear

manner.

Artificial neural networks are data intensive tools that are capable of

recognizing and reproducing complex, nonlinear patterns but the knowledge is

not available for inspection since it is hidden within the system as a matrix of

weighting factors. A fuzzy inference model similar to that discussed in chapters

5 and 6 has an accessible knowledge base but is limited in modelling complex

systems which are difficult to express heuristically.

In this thesis a commercial neural net package called NSHELL by Ward

was used, with varying success, for classification (development of fuzzy

rulebase from raw data) and prediction (mimic fuzzy inference model given

training data representative of fuzzy rulebase).

A general diagram of the backpropogation algorithm is shown below,
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OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

Figure 8.1 Stucture of Backpropogation Network

The number of nodes at each layer is adjusted to the application. The

reservoir backpropogation neural model has data pairs with three input variables

and one output variable so the number of nodes in the input and output layers

are three and one respectively.

The input-output data pairs are fed into the system for training (

°1..i...t)• where t is the total number of data pairs. The weight values between

layer I and layer H (Xii..Xmn) where m corresponds to a particular input node and

n, a hidden node, are randomly assigned at the beginning as are the weights

between the hidden and output layer ( y1..y) which is just one node in this

case.

Threshold levels Oi . . .On are set for each hidden node and F is set for the output

node. Threshold activation levels are values below which a node is not
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activated. Each node performs a threshold function on the dot product of the

inputs. This allows a node to scale the ranges of input and output values by the

use of either step, linear, ramp or sigmoid functions. The reservoir model uses

the sigmoid function S(x) = (1 + exY1.

Each of the hidden nodes performs the following function:

H = 1 (m=1...3 Im Xmn + 8).

As for the output node; 0 = f ( 1n1..4 Hn y + r)

The error between the calculated output and the output from the training

data is compared....[ d = O(l-O)(O - 0) 1

and the error is determined for the hidden nodes [ e = H (1- H)yd ].

The connections are adjusted for the weights between the hidden layer

and output node

Dy = a Had. where a is a learning factor constant adjusted to speed

convergence.

The threshold level is adjusted for the output level .... [111’ = ad]

The connections between the input and hidden nodes are adjusted

[Xmn = a Imen 1

the thresholds are again adjusted [ 119 = ae 1. This procedure is

repeated until the error is reduced to an acceptably low level.

8.2 Classification of Raw Data into Fuzzy Rules

One of the most useful applications of neural nets involves classifying

noisy data into fuzzy or vague groups. This is the same job performed by the
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FAM rule generation algorithm described in chapter 5. The FAM algorithm is

actually another type of artifical neural system that only uses a two layer

topology as opposed to the three layers used in the backpropogation algorithm.

Also, the backpropogation system employs feedback, the FAM does not. The

input data sets for the neural net are also from the same source as that used by

the FAM rule generation algorithmwhich is the output from the crisp DP

algorithm. The commercial backpropogation package allows direct input of both

ASCII and spreadsheet files, greatly speeding up the training process.

To encourage rapid convergence of the training process, a learn rate of

0.6 is used and the momentum rate is set at 0.9. The momentum rate further

speeds training by adding a ratio of the change of the weight from the previous

trial to the current trial. The number of learning events to minimized error was

5100. The threshold activation level was set at 0.0001.

The results of the fuzzy classification trials however, were less

satisfactory than that of the FAM rule generator. After learning the input data,

the backpropogation algorithm is presented with data input sets that correspond

to the 48 rule premises in the FAM to see what output is predicted.

It can be seen by the results in tables 8-1 to 8-3 that output trends are

correctly identified however, there is a heavy emphasis on following the value

factor which results in operating rules that neglect inflow and reservoir levels.

Later, 24 month simulation trials were conducted with correlated inputs.

Reservoir volumes were adjusted as the trial proceeded according to the

outflow recommended by the backpropogation model. Trials with prolonged
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series of correlated high or low value factors resulted in both emptying and

overtopping of the reservoir. This instability of the backpropogation model may

be attributed to the training data. The backpropogation model must betrained

with data that simulates extreme conditions to prevent misleading results

whereas the defuzzification (or inference) procedure used in the FAM model,

tends to act conservatively when presented with data that is at the relative

extremes of its training set.

The problem of instability of the backpropogation network could be

overcome by using a more representative training set or transforming the input

data in a different manner to yield more conservative results at high or low

reservoir volumes. However without a visible rulebase, this “tuning” or

doctoring of input does not improve upon the operator’s knowledge of the

system.

8.3 Prediction

If the training set was truly representative, how would the prediction

ability of a trained backpropogation network compare with the fuzzy inference

procedure when faced with identical inputs?

In order to make a more stable network, the raw data from the DP

algorithm was replaced with the input-output results of the FAM rule generation

algorithm (100 rule model) as the training set. These 100 data pairs cover high

and low levels of all inputs. The backpropogation model was then simply tested

as a substitute for the inference procedure. Charts 8-4 to 8-6 indicate a close

correlation between the fuzzy and backpropogation model results.
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The suitability of non-rulebased neural nets for decision aids is

questionable. If it is important to clarify the decision making process by

determining a cause and effect relationship between the input and output then

neural nets of this form are not useful. It is doubtful operators would accept a

backpropogation model for a decision aid with its inherent lack of explanation

facilities. A neural net may be used as a secondary consultant for reservoir

operations but a system with a definable rule structure should take precedence.

Documented uses of the backpropogation algorithm directly for decision support

tend to focus on stock trading and other financial matters where results

override the need for understanding the problem.
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CHAPTER 9.0: CONCLUSIONS AND RECOMMENDATIONS

The fuzzy inference model presented offers several advantages over more

conventional reservoir operation models. It does not encourage precision

without accuracy. The inherent imprecision of reservoir models is acknowledged

by fuzzy modelling. Also, potentially useful heuristics can be incorporated into

the fuzzy model that cannot be used in conventional systems.

The fuzzy inference model handles nonlinear, continuous systems easily.

It is also a robust model that does not require all potential conditions to be

explicitly stated. The robust nature of the fuzzy inference model is

demonstrated by its ability to absorb small changes in input data without

changing the output significantly. When rules were randomly dropped from the

rule base, the model behavior was not greatly affected. This suggests that all

combinations of input do not have to be anticipated and the rule base can be

abbreviated without adversely affecting performance of the model. The rule

generation algorithm does not necessarily require historical or model created

data for each space in the FAM Bank. As new data is acquired, it can be fed

into the rulebase.

The most significant advantage of a FAM/ inference model is its intuitive

appeal and simple rule structure that may make it more acceptable in actual

applications. Another notable characteristic of the FAM/inference model is the

ability to function without a complete rulebase. The model handles unforeseen

combinations of inputs by suggesting a compromise of the most applicable
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rules. The conservative nature of the FAM/inference model increases confidence

in the output.

There are also several reasons for exercising caution in applying a fuzzy

inference model. The interactivity of input variables must be considered and

avoided if possible. In other words, the meaning of the variable modifiers

high, low, med etc.) can change depending on context. It is important to

standardize and document what is meant by these modifiers before the model is

completed.

The modeler should also be aware of the nature of the uncertainty and

suitability of the model to logically express it. Probabilistic, possibilistic and

fuzzy types of uncertainty must be differentiated.

Basic cause and effect relationships should be known about the system.

The model will not be useful if factors external to the model have a significant

effect on the output. A maximum of five input variables on a single model

“layer” would be the practical limit to keep the number of rules to a manageable

level. Also the intuitive appeal is lost with increase in the number of variables.

COMPARISON BETWEEN FUZZY DP MODEL AND FUZZY INFERENCE MODEL

The fuzzy dynamic programming model has no restrictions on constraints

whereas the fuzzy inference model is not as flexible when simulating the effect

of different constraints. The fuzzy inference model does not allow easy

examination of scenarios in which constraints are changed since the entire rule

base is dependant on a single combination of constraints. Multiple scenarios

require the development of multiple rule bases.
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The fuzzy DP model is computationally less efficient, especially in

multidimensional situations where the size of transitional matrices increase

rapidly. Correlation of inflows is built into the fuzzy inference model but these

correlated inflows are difficult to incorporate into the fuzzy DP model.

Dissonance (probabilistic uncertainty) and fuzziness are both accepted in

the fuzzy DP model whereas the fuzzy inference model does not deal with

dissonance.

NEURAL NETWORKS AND FUZZY SYSTEMS

As described in chapter 8, the FAM / inference model can be considered

as a type of neural net that categorizes data into fuzzy rules and later

defuzzifies them into crisp outputs for a given input. This method of encoding

(fuzzifying) and recall (defuzzification) resembles typical operations in other

neural network algorithms but has the advantage of retaining a visible

knowledge base.

The backpropogation neural network is also capable of encoding and

recalling data patterns but knowledge of the system is not enhanced.

Difficulties with maintaining stability in the backpropogation algorithm were

encountered when testing data reached the maximum or minimum values of the

training data. More effort in transforming or normalizing the data would be

necessary to overcome this instability. Under normal conditions, however, the

backpropogation model operated in a similar manner as the FAM/inference

model.
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FUTURE CONSIDERATIONS FOR FUZZY MODELS

The fuzzy models examined within this paper are too simple for actual

implementation. With modifications, a combined short and long term model for

reservoir operations can be developed that accepts the format of Environment

Canada’s forecasts and possibly snowpack data for fuzzy estimation of inflows.

Otherwise, a nonfuzzy, stochastic model could be used for inflow estimation.

It may be useful to use fuzzy submodels to predict an input into the main

model. An example of this may be a fuzzy inference model to calculate the

value factor. Factors such as oil prices, local and export hydropower demand

patterns; firm vs. interruptible supplies and ecological concerns could be used

to generate a rulebase for determining a relative value of the water stored in the

reservoir over time.

The FAM/inference model developed for this thesis exists in separate

algorithms which could be combined into one trainable network. This would be

necessary to provide a more user friendly model.

A fuzzy DP algorithm utilizing a branch and bound mechanism (Esobugue

1991) may be useful for modelling series of reservoirs with good historical

records. In this technique, unlike the fuzzy DP model examined, the fuzzy goals

(or fuzzy rule curve) must be previously known.
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