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Abstract

The design of coastal and offshore structures requires a thorough understanding of
environmental loading, particularly due to waves. Structural elements such as decks
located in the splash zone encounter intermittent contact with the water, and the loads
associated with the water impact may be several times larger than those experienced by
elements when fully submerged. These forces may give rise to localized damage and to

fatigue problems.

Such structures should clearly be designed to account for wave impact, in addition to
more general wave loading. Several studies have reported the related problems of ship
bottom slamming, missile entry and sea plane landing. Although previous studies have
contributed to an improved understanding of wave impact, there is still considerable
uncertainty in the estimation of impact loads on structural elements near the water surface.
In this context, the present study has been carried out to examine the wave loads on a fixed

horizontal plate located near the still water level.

Experiments were conducted in the wave flume of the Hydraulics Laboratory of the
Department of Civil Engineering at the University of British Columbia. A plate, 60.0 cm
long, 20.0 cm wide and 6.25 mm thick, was instrumented with load-cells to measure the
vertical force on the plate due to waves. The plate was supported by two vertical rods
through the load-cells which were connected to a cross shaft mounted on bearings at the

ends.

Tests were conducted over a range of wave periods and wave heights in combination
with different plate clearances above the still water level. The vertical reactions at the two

supports were measured, and the time histories of vertical force and its line of action are



thereby obtained. The wave surface elevations at the leading and rear end of the plate were
measured with the plate absent. Results are presented in the form of force time histories,
their lines of action and the associated water surface elevation. An analysis of these time
histories is carried out to obtain various parameters of wave impact which include, the peak
upward and downward force, their lines of action and times of occurrence, and the
associated wetted lengths. The influence of incident wave parameters on these is
investigated. Video images are studied to understand the impact process and to identify the
difficulties involved in the investigation. An attempt is also made to predict the vertical

force based on the hydrodynamic impact, drag and buoyancy forces.
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Chapter 1

Introduction

1.1 General

The design of coastal and offshore structures requires a thorough understanding of
environmental loads which are primarily due to waves. Structural elements such as decks,
which are located in the splash zone (i.e. at elevations which cause them to be intermittently
submerged), may be subjected to impulsive loads that can be several times larger than those
experienced by continuously submerged elements. These impulsive forces may give rise to

fatigue and to localized damage.

There are various examples of structural damage due to wave impact. For example,
Denson and Priest (1971) described the inspection of structural damage due to hurricanes
along the Gulf Coast, which revealed that horizontal floors, decks and platforms are
susceptible to severe damage by wave action. Da Costa and Scott (1988) reported that a
moderate storm on Lake Michigan in 1987 moved partially constructed concrete slabs at the
Jones Island East Dock. Another example is the case of the Ekofisk platform whose deck

was exposed to severe wave impact (Broughton and Horn, 1987).

Figure 1.1 provides a view of a typical jetty with its deck structure above the mean water
level. Clearly, such structures should be designed for local stresses due to wave impact in
addition to the design for overall loads. Even so, decks need to be sufficiently high above
the water surface in order to avoid unduly severe wave impact. Besides the phenomenon

of wave impact on decks, other situations such as seaplane landing, ship bow slamming,



platform bracings situated in the splash zone, and liquid sloshing in tanks also require
design with respect to hydrodynamic impact. It is therefore important to have a good
understanding of the wave slamming process on the basis of theoretical and/or experimental
investigations. Although previous work has contributed to the understanding of the wave
impact nature, there is still considerable uncertainty in the estimation of impact loads on
structural elements near the water surface. In this context, the present study has been
carried out to address the problem of wave loads on a fixed horizontal plate located near the

still water level.

1.2 Literature Review

The Morison equation is commonly used to calculate the wave force on fully submerged
slender structural members of different cross sections. However, structural members
which are located in the splash zone, such as the deck of a wharf, are intermittently
submerged and experience a large vertical force which cannot be predicted by the Morison
equation. These vertical forces are highly dynamic and characterized by large magnitudes

with short duration.

Although, problems relating to water entry and wave impact on flat bottom ships have
been the subject of numerous theoretical and experimental studies for many years, wave
impact forces on horizontal decks has received attention only since the early sixties. In the
following sections, a brief review of available theoretical and experimental investigations

relating to water impact and entry problem is presented.

1.2.1 Water Entry Problem

Hydrodynamic impact refers to the early stages of the entry of a body into water.
Approaches to describing this have generally been based on potential flow theory for an

incompressible fluid with a free surface. The solution of such problems may be related to



the determination of a variable added mass associated with the body as it enters the fluid.
In a classical paper, von Kdrmén (1929) presented a physical picture of the impact of a
wedge on a still water surface, intended to represent the impact process for the case of a
seaplane landing. On the basis of von Kdrméan’s approach, Wagner (1932) provided a
mathematical treatment of forces acting on a seaplane float. In this classical approach, no
consideration has been given to the effects of entrapped air or water compressibility.
Nevertheless, Wagner's theoretical values show reasonable agreement with experimental

results obtained for two-dimensional models (Chuang, 1967).

The above approach is based on potential flow theory and provides an estimate of the
impact force on the impacting member during the initial stage of water entry. Beyond this
stage, the member also experiences inertia and drag forces. An extensive review of the
subject has been given by Szebehely (1966), emphasizing the principles involved in
different kinds of wave impact. Also, Faltinsen (1990) has summarized recent

developments of the water impact and entry problem.

A number of experimental studies on a flat bottom plate striking normal to a smooth
water surface have been reported. The magnitude of the maximum impact pressure is
theoretically equal to the acoustic pressure, which is the product of the velocity of sound in
the fluid, the fluid density and the velocity of the striking body. The results of drop tests
on models with flat bottoms have, however, shown that peak pressures are usually much
lower than the acoustic pressure because of the air entrapped between the body and the
water surface. Verhagen (1967) developed a theory to predict the impact pressures by
considering the influence of the compressed air between the plate and water surface. He
also investigated the phenomenon experimentally and showed that the predicted values are
in good agreement with the observed values obtained from two-dimensional tests of a body

having a completely flat bottom. Recently, Chan et al. (1991) emphasized the influence of



trapped air on impulsive pressure and examined the process of wave impact relating to

vertical plates on the basis of a simplified one-dimensional model.

In the following sections, the related situation of a horizontal circular cylinder is

considered, followed by experimental investigations of wave action on a horizontal plate.

1.2.2 Horizontal Cylinder

The impact force on a cylinder is given by the rate of change of fluid momentum which is a
function of the cylinder's added mass that varies with the submergence. From a number of
past theoretical and experimental investigations on circular cylindrical horizontal members,
the slamming force Fs is considered to be proportional to the square of the wave impact

velocity and is expressed as:

F =(Cy) (3 pv2) (DY) (L.1)

where Cj is a slamming coefficient, ¢ is the cylinder length, D is the cylinder diameter,
p is the fluid density, and v is water particle velocity normal to the member surface. There
has been considerable debate on the choice of a proper value of Cs, typically ranging from
T to 27 (e.g. Kaplan and Silbert, 1976, Sarpkaya, 1978, Sarpkaya and Isaacson, 1981,
Armand and Cointe, 1987, Greenhow and Li, 1987, Chan and Melville, 1989,
Chan, et al. 1991, Isaacson and Prasad, 1992). Although the slamming force is
associated with the rate of change of momentum during the early stages of impact,
extending such a formulation beyond the initial stages gives rise to a number of
complications. These are mainly attributed to the water level variations in the vicinity of the
partially submerged member and the subsequent onset of drag forces. In addition to the
above, the buoyancy force and the inertia force also form significant components of the
vertical force on the cylinder. The associated force coefficients also vary with the

submergence, member size and flow kinematics. Also, the problem of wave action on a



5
cylinder may involve splashing and air entrapment, and partial and/or complete

submergence.

1.2.3 Horizontal Plate

The following paragraphs give a brief account of previous studies relating to wave action

on a horizontal plate.

El Ghamry (1963) carried out an early experimental study on the vertical force due to
non-breaking and breaking regular waves slamming on a horizontal plate. He indicated that
the vertical force is characterized by an initial peak of considerable magnitude and short
duration, followed by a slowly varying force of smaller magnitude extending over the
remaining period of submergence. He proposed a theoretical description of the force based
on a potential flow past a rigid fixed flat plate, incorporating suitable correction factors

relating to the deck length, wave length and water depth.

Furudoi and Murita (1966) studied experimentally the total vertical force on a horizontal
plate extending seaward from a vertical wall and noted a sharp impulsive force as indicated
by El Ghamry, with the average pressure head on the platform ranging from 1 to 8 times

the incident wave height.

Wang (1967) carried out experiments on a horizontal pier model subjected to slamming
by progressive and standing waves. He derived simple theoretical values for peak
pressures, by adapting an approximate analysis based on the fluid momentum principle,
and related the peak pressure to the celerity of the wave and the velocity of the fluid element
near the wave front. The slowly varying pressure head was simply taken as the pressure in

the undeformed wave at the deck elevation.

French (1969) carried out an extensive laboratory study and confirmed the nature of the

impact force to be similar to that observed by El Ghamry. He predicted the impact force



magnitude on the basis of a momentum conservation and energy equation. Denson and
Priest (1971) carried out a laboratory study to identify the influence of relative wave
height, relative plate clearance, relative plate width and relative plate length on the pressure
distribution under a thick horizontal plate. Tanimoto and Takahashi (1979) reported on an
experimental investigation to obtain the horizontal and vertical forces on a rigid platform
due to periodic waves. The uplift pressure was expressed as the sum of a shock pressure
component and a static pressure component. They developed an empirical shock pressure
term as a function of the contact angle between the undisturbed wave surface and the
bottom of the horizontal platform. More recently, Toumazis et al. (1989) investigated
experimentally wave impact pressures on both horizontal and vertical plates. Pressure
measurements in conjunction with observations using video records were adopted to study

the impact loading behaviour.

Irajpanah (1983) studied wave uplift pressures on horizontal platforms and presented a
finite element method to investigate the hydrodynamic loads on a horizontal platform.
Also, Lai and Lee (1989) developed a potential flow model using the finite element method,
and predicted the vertical forces of large amplitude waves on docks. They used a Galerkin
finite element method and studied the interaction of finite amplitude nonlinear water waves
with platforms. Their results compared reasonably well with the experimental results of

French (1969).

Kaplan (1992) extended the hydrodynamic theory of ship slamming to study wave action
on a deck slab. He proposed the time varying vertical force as a combination of a
hydrodynamic impact force and a drag force. The drag force was computed from a
constant force coefficient and assumed to act over a complete slamming event. Although he
did not compare the predicted vertical force with experimental results, in his re-examination

of hydrodynamic impact theory, he briefly assessed the features of time histories of the



predicted force with respect to field data. The time histories of force indicated that the
magnitudes were comparable during the initial stages of impact. However, the variation

showed a large discontinuity at the instant of complete submergence of the structure.

1.3 Scope of the Present Investigation

The primary aim of the present investigation is to study experimentally hydrodynamic
aspects of the vertical force on a fixed rigid horizontal plate. Despite the considerable
importance of this problem, a literature review reveals little information regarding the
estimation of the slamming force. On the basis of the studies carried out by
El Gahmry (1963) and French (1969), an experimental investigation was carried out on an
instrumented horizontal plate located above the still water level and subjected to wave
action. Vertical reactions at the two plate supports were measured for different
combinations of incident wave conditions and plate elevations, and the vertical force and its
line of action was computed from the measured support reactions. The results are
presented in the form of time series of the force and its line of action. Also, an analysis of
the force records is made in order to obtain the peak upward and downward forces, their
times of occurrence and their lines of action. Video records of the experiments are studied
in order to identify the problems involved in the experimental investigations. Finally, an

attempt is also made to predict the slamming force on a theoretical basis.



Chapter 2

Theoretical Development

In this chapter, important parameters influencing the vertical force on a fixed horizontal
plate subjected to regular waves are identified and a theoretical description of the force is

presented.

2.1 Dimensional Analysis

Dimensional analysis provides an important preliminary step to any experimental
investigation and may be used to identify important dimensionless parameters of the
problem at hand. Figure 2.1 provides a simplified definition sketch indicating a
unidirectional regular progressive wave train in water of constant depth d propagating past
a horizontal plate of width b, thickness w and length £ located at a distance h above the
mean water level. The vertical force on the plate, denoted F, is of interest and is influenced

by a number of variables which include the following:

¢ wave height, H

* wave period, T

e water depth, d

* plate length, £

* plate width, b

» plate thickness, w

* plate elevation, h

* fluid density, p



e gravitational constant, g

e fluid viscosity, B

* time,t

Additional parameters such as surface roughness, surface tension,